西安市XX中学2016-2017学年八年级上期末数学试卷(有答案)

合集下载

学校16—17学年上学期八年级期末考试数学试题(扫描版)(附答案)

学校16—17学年上学期八年级期末考试数学试题(扫描版)(附答案)

2016-2017学年第一学期期末考试八年级数学试题参考答案一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)x;12. 6<x<12;13.4,0),(4,4),(0,4);14.-6;15.①11.②④三、解答题(本题共16分,每小题4分)16.(1))解:方程两边乘以,得------------------------1分解得.--------------------------2分检验:当时,.---------------------------------3分所以,原分式方程的解为.---------------------------4分(2))a2(x﹣y)+4b2(y﹣x)=a2(x﹣y)﹣4b2(x﹣y)------------------------1分=(x﹣y)(a2﹣4b2)---------------------------------------2分=(x﹣y)(a+2b)(a﹣2b).---------------------------------4分17. 解:原式=[﹣]×,=×,-----------------2分=×,-------------------------------------------3分=,--------------------------------------------4分2x+5>1,2x>﹣4,x>﹣2,-------------------------------------------5分∵x是不等式2x+5>1的负整数解,∴x=﹣1,--------------------------------------------6分把x=﹣1代入中得:=3.--------------------------------------------8分18. 解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);-----------------3分-- ------6分(2)S△ABC=6×6﹣×5×6﹣×6×3﹣×1×3,=36﹣15﹣9﹣1,=10.--------------------------------------10分19. (1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.--------------------------------2分又∵AE=BD,∴△AEC≌△BDA(SAS).--------------------------------2分∴AD=CE;--------------------------------5分(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,--------------------------------7分∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.--------------------------------10分20. 解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,…………1分由题意,得=2×+500,解得x=3,经检验x=3是方程的解. (3)分答:该种干果的第一次进价是每千克3元…………5分(2)30009000+-5006+500660%-3000+9000 331+20%⨯⨯⨯⨯()()()…………7分=(1000+2500﹣500)×6+1800﹣12000=3000×6+1800﹣12000=18000+1800﹣12000=7800(元).…………9分答:超市销售这种干果共盈利7800元.…………10分21. 1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,------------1分由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-------------------------------3分∴∠ABC=∠ACB,∴AB=AC;------------------------------4分(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,--------------------------5分由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-----------6分∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;--------------------------9分(3)解:不一定成立,-------------------------10分当∠A 的平分线所在直线与边BC 的垂直平分线重合时AB=AC ,否则AB ≠AC .(如示例图)--------------------------12分22. 解:(1)第一个图形中阴影部分的面积是a 2﹣b 2,第二个图形的面积是(a+b )(a ﹣b ),则a 2﹣b 2=(a+b )(a ﹣b ).故答案是B ; ------------------3分(2)①∵x 2﹣9y 2=(x+3y )(x ﹣3y ),------------------------5分∴12=4(x ﹣3y )------------------------6分得:x ﹣3y=3;------------------------8分 ②111111111+11+-1+1-+1-2233999910010031421009810199=223399991001001101=2100101=200⨯⨯⨯⨯⨯⨯⨯()(﹣)()(1)......()()(1)()......9分............10分......11分......12分。

2016-2017学年陕西省西安三中(尊德中学)八年级(上)期末数学试卷

2016-2017学年陕西省西安三中(尊德中学)八年级(上)期末数学试卷

2016-2017学年陕西省西安三中(尊德中学)八年级(上)期末数学试卷一、选择题1. 下列各数中,不是无理数的是( ) A. B. C.D.…(两个之间依次多个)2. 在平面直角坐标系中,若点在第一象限内,则点所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3. 下列命题是假命题的是( ) A.互补的两个角不能都是锐角 B.若,,则C.乘积是的两个数互为倒数D.全等三角形的对应角相等4. 如图,直线,,,则的度数是( )A.B. C. D.5. 七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级名学生中选出名学生统计各自家庭一个月的节水情况:那么这组数据的众数和平均数分别是()A.和B.和 C.和 D.和6. 如图,两直线和在同一坐标系内图象的位置可能是( ) A.B.C.D.7. 下列各式中,正确的是( ) A. B. C. D.8. 如图,在中,有一点在直线上移动,若,,则的最小值为( )A. B. C. D.9. 早餐店里,李明妈妈买了个馒头,个包子,老板少要元,只要元;王红爸爸买了个馒头,个包子,老板九折优惠,只要元.若馒头每个元,包子每个元,则所列二元一次方程组正确的是( ) A. B. C. D.10. 如图,把放在直角坐标系内,其中,,点、的坐标分别为、.将沿轴向右平移,当点落在直线上时,线段扫过的面积为( )A. B.C. D.二、填空题1. 已知的平方根是,则的立方根是________.2. 若直线经过一次函数和的交点,则的值是________.3. 若一次函数与函数的图象关于轴对称,且交点在轴上,则这个函数的表达式为:________.4. 如图,圆柱形玻璃杯,高为,底面周长为,在杯内离杯底的点处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿与蜂蜜相对的点处,则蚂蚁到达蜂蜜的最短距离为________.(结果保留根号)三、解答题1. (1)化简 1.(2)解方程组.2. 已知在平面直角坐标系中有三点、、.请回答如下问题:(1)在坐标系内描出点、、的位置,并求的面积;(2)在平面直角坐标系中画出,使它与关于轴对称,并写出三顶点的坐标;(3)若是内部任意一点,请直接写出这点在内部的对应点的坐标.3. 如图,直线是一次函数的图象,直线是一次函数的图象.(1)求、、三点的坐标;(2)求四边形的面积.4. 如图,已知,是的平分线,,,求和的度数.5. 在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:合计在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:统计表中的,;被调查同学劳动时间的中位数是________时;请将频数分布直方图补充完整;求所有被调查同学的平均劳动时间.6. 已知:用辆型车和辆型车装满货物一次可运货吨;用辆型车和辆型车装满货物一次可运货吨.某物流公司现有吨货物,计划同时租用型车辆,型车辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:①辆型车和辆型车都装满货物一次可分别运货多少吨?②请你帮该物流公司设计租车方案.7. 如图,在中,,为上一点,且,过点作,垂足为,且,、交于点(1)判断线段与的数量关系和位置关系,并说明理由(2)连接、,若设,,,请利用四边形的面积证明勾股定理.8. 如图,在平面直角坐标系中,一次函数与轴、轴分别相交于点和点,直线经过点且与线段交于点,并把分成两部分.(1)求的面积;(2)若被直线分成的两部分的面积相等,求点的坐标及直线的函数表达式.9. 如图,中,,,,是的中点.现将沿方向平移,得到,交于,交于点.(1)求证:;(2)求四边形的面积.参考答案与试题解析2016-2017学年陕西省西安三中(尊德中学)八年级(上)期末数学试卷一、选择题1.【答案】B【考点】无理数的识别【解析】、、、根据无理数、有理数的定义来求解即可.【解答】解:、是无理数,故选项错误;、是小数,即分数,是有理数,故不是无理数,故选项正确;、是无理数,故选项错误;、(两个之间依次多个)是无理数,故选项错误.故选.2.【答案】D【考点】点的坐标【解析】根据各象限内点的坐标特征解答即可.【解答】∵点在第一象限内,∴,,∴,∴点所在的象限是第四象限.3.【答案】B【考点】命题与定理【解析】利用互补的定义、垂线的性质、倒数的定义及全等三角形的性质分别判断后即可确定正确的选项.【解答】解:、互补的两个角不能都是锐角,正确,是真命题;、若,,则,故错误,是假命题;、乘积为的两个数互为倒数,正确,是真命题;、全等三角形的对应角相等,正确,是真命题,故选.4.【答案】C【考点】平行线的判定与性质【解析】根据两直线平行,内错角相等可得,再根据三角形的内角和定理列式计算即可得解.【解答】解:∵,∴,∵,∴.故选:.5.【答案】A【考点】众数加权平均数【解析】根据众数及平均数的定义,结合表格信息即可得出答案.【解答】解:将数据按从大到小的顺序排列为:,,,,,,,,,,则众数为:;平均数为:.故选:.6.【答案】A【考点】一次函数的图象【解析】根据一次函数的系数与图象的关系依次分析选项,找、取值范围相同的即得答案.【解答】解:根据一次函数的系数与图象的关系依次分析选项可得:、由图可得,中,,,中,,,符合;、由图可得,中,,,中,,,不符合;、由图可得,中,,,中,,,不符合;、由图可得,中,,,中,,,不符合;故选.7.【答案】C【考点】二次根式的混合运算【解析】根据算术平方根的定义对进行判断;根据平方根的定义对进行判断;根据立方根的定义对进行判断;根据二次根式的性质对进行判断.【解答】解:、原式,所以选项错误;、原式,所以选项错误;、原式,所以选项正确;、原式,所以选项错误.故选:.8.【答案】A【考点】勾股定理垂线段最短等腰三角形的判定与性质【解析】根据点到直线的连线中,垂线段最短,得到当垂直于时,的长最小,过作等腰三角形底边上的高,利用三线合一得到为的中点,在直角三角形中,利用勾股定理求出的长,进而利用面积法即可求出此时的长.【解答】解:根据垂线段最短,得到时,最短,过作,交于点,∵,,∴为的中点,又,∴,在中,,,根据勾股定理得:,又∵,∴.故选:.9.【答案】B【考点】由实际问题抽象出二元一次方程组【解析】根据题意可得等量关系:①个馒头的钱个包子的钱元;②(个馒头的钱个包子的钱)折元,根据等量关系列出方程组即可.【解答】解:若馒头每个元,包子每个元,由题意得:,故选:.10.【答案】C 【考点】一次函数图象上点的坐标特点坐标与图形变化-平移【解析】根据题意,线段扫过的面积应为一平行四边形的面积,其高是的长,底是点平移的路程.求当点落在直线上时的横坐标即可.【解答】如图所示.∵点、的坐标分别为、,∴.∵,,∴.∴.∵点在直线上,∴,解得.即.∴.∴(面积单位).即线段扫过的面积为面积单位.二、填空题1.【答案】【考点】立方根的性质平方根【解析】根据平方根的定义,易求,再求的立方根即可.【解答】解:∵的平方根是,∴,∴,∴,故答案是.2.【答案】【考点】两条直线相交或平行问题待定系数法求一次函数解析式【解析】首先联立解方程组,求得直线和的交点,再进一步代入中求解.【解答】解:根据题意,得,解得,∴.把代入,得,解得.故答案为:.3.【答案】【考点】一次函数图象与几何变换【解析】先求出这两个函数的交点,然后根据一次函数与函数的图象关于轴对称,解答即可.【解答】解:∵两函数图象交于轴,∴,解得:,∴,∵与关于轴对称,∴,∴∴.故答案为:.4.【答案】【考点】平面展开-最短路径问题【解析】将杯子侧面展开,建立关于的对称点,根据两点之间线段最短可知的长度即为所求.【解答】解:如图,将杯子侧面展开,作关于的对称点,连接,则即为最短距离,∴答:蚂蚁到达蜂蜜的最短距离的是.故答案为.三、解答题1.【答案】解:(1)原式(2)原方程组化为:①②可得:将代入①中可得:∴方程组的解为:【考点】二次根式的混合运算解二元一次方程组【解析】(1)根据二次根式的运算法则即可求出答案.(2)根据方程组的解法即可求出答案.【解答】解:(1)原式(2)原方程组化为:①②可得:将代入①中可得:∴方程组的解为:2.【答案】解:(1)描点如图,由题意得,轴,且,∴;(2)如图;、、;(3).【考点】作图-轴对称变换【解析】(1)根据点的坐标,直接描点,根据点的坐标可知,轴,且,点到线段的距离,根据三角形面积公式求解;(2)分别作出点、、关于轴对称的点、、,然后顺次连接、、,并写出三个顶点坐标;(3)根据两三角形关于轴对称,写出点的坐标.【解答】解:(1)描点如图,由题意得,轴,且,∴;(2)如图;、、;(3).3.【答案】解:(1)∵一次函数的图象与轴交于点,∴,一次函数的图象与轴交于点,∴,由,解得,∴.(2)设直线与轴交于点,则,直线与轴交于点,则,∴四边形的面积.【考点】一次函数的综合题【解析】(1)令一次函数与一次函数的可分别求出,的坐标,再由可求出点的坐标;(2)根据四边形的面积即可求解.【解答】解:(1)∵一次函数的图象与轴交于点,∴,一次函数的图象与轴交于点,∴,由,解得,∴.(2)设直线与轴交于点,则,直线与轴交于点,则,∴四边形的面积.4.【答案】解:∵是的平分线,,∴,∵,∴,,∵,∴,∴.∴,.【考点】平行线的判定与性质三角形内角和定理【解析】由是的平分线,,根据角平分线的性质,即可求得的度数,又由,根据两直线平行,内错角相等,即可求得的度数,根据两直线平行,同旁内角互补,即可求得的度数,即可求得的度数.【解答】解:∵是的平分线,,∴,∵,∴,,∵,∴,∴.∴,.5.【答案】,,【考点】频数(率)分布直方图频数(率)分布表加权平均数中位数【解析】据两平方项确定出这两数,再根据完全平式的乘积二倍项可确定的.【解答】解:,∴,故答案:.6.【答案】辆型车装满货物一次可运吨,辆型车装满货物一次可运吨.结合题意和得:,∴,∵、都是正整数,∴或或.答:有种租车方案:方案一:型车辆,型车辆;方案二:型车辆,型车辆;方案三:型车辆,型车辆.【考点】二元一次方程组的应用二元一次方程的应用【解析】根据“用辆型车和辆型车载满货物一次可运货吨;”“用辆型车和辆型车载满货物一次可运货吨”,分别得出等式方程,组成方程组求出即可;由题意理解出:,解此二元一次方程,求出其整数解,得到三种租车方案.【解答】解:设每辆型车、型车都装满货物一次可以分别运货吨、吨,依题意列方程组得:,解得:.7.【答案】解:(1),,如图,∵,∴.在和中,,∴,,.∵,∴,∴,∴,∴;(2),,∴,∴.【考点】全等三角形的性质勾股定理的证明【解析】(1)根据全等三角形的判定与性质,可得与的关系,与的关系,根据余角的性质,可得与的关系;(2)根据面积的不同求法,可得答案.【解答】解:(1),,如图,∵,∴.在和中,,∴,,.∵,∴,∴,∴,∴;(2),,∴,∴.8.【答案】解:(1)在直线中,令,得,∴,令,得,∴,∴;(2),∵点在第一象限,∴,解得,而点又在直线上,∴,解得,∴,将点、,代入中,有,∴.∴直线的函数表达式为.【考点】一次函数的综合题【解析】(1)已知直线的解析式,分别令,求出,的坐标,继而求出.(2)由(1)得,推出的面积为,求出,继而求出点的坐标,依题意可知点,的坐标,联立方程组求出,的值后求出函数解析式.【解答】解:(1)在直线中,令,得,∴,令,得,∴,∴;(2),∵点在第一象限,∴,解得,而点又在直线上,∴,解得,∴,将点、,代入中,有,∴.∴直线的函数表达式为.9.【答案】(1)证明:将沿方向平移得到,∴,,,,∵,是的中点,∴,∴,∵,∴,∴,∴;(2)解:如图:过作于,∵,,∴,∵,∵,,∴为等边三角形,∴,∴,∵,,∴,∴,∵,∴,∵,,∴,∴.∴,,∴.【考点】勾股定理等边三角形的性质与判定平移的性质【解析】(1)根据平移的性质可得,,,,再根据直角三角形的性质可得,然后再根据等边对等角,以及平行线的性质可得;(2)过作于,证明为等边三角形,利用勾股定理计算出,根据直角三角形的性质计算出,,再表示出和的面积,求差即可.【解答】(1)证明:将沿方向平移得到,∴,,,,∵,是的中点,∴,∴,∵,∴,∴,∴;(2)解:如图:过作于,∵,,∴,∵,∵,,∴为等边三角形,∴,∴,∵,,∴,∴,∵,∴,∵,,∴,∴.∴,,∴.。

2016—2017学年八年级上期末数学试题(含答案)

2016—2017学年八年级上期末数学试题(含答案)

2016-2017年秋期八年级上期末教学质量检测数学试卷出题人:曾琴一、选择题〔本大题共10个小题,每小题3分,共30分〕1.若分式有意义,则x满足的条件是A.x≠0B.x≠3C.x≠-3D.x≠±32.计算:(-x)3·(-2x)的结果是A.-2x4B.-2x3C.2x4D.2x33.在平面直角坐标系中,点A(7,-2)关于x轴对称的点A′的坐标是A.(7,2)B.(7,-2)C.(-7,2) D.(-7,-2)4.若△ABC≌△A′B′C′,且AB=AC=9,△ABC的周长为26cm,则B′C′的长为A.10cmB.9cmC.4cmD.8cm5.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P为:A.90°﹣α B. 90°+αC. C. 360°﹣α6.分式方程1226x x=+的解为第5题图A.x=-2B.x=2 C.x=-3D.x=37.计算:201423⎛⎫⎪⎝⎭×(-1.5)2015的结果是A.-32B.32C.-23D.238. 下列各图形都是轴对称图形,其中对称轴最多的是A.等腰直角三角形B.直线C.等边三角形D.正方形9.已知△ABC的两边长分别为AB=9、AC=2,第三边BC的长为奇数,则BC的长是A.5B.7C.9D.1110.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为A. 5B. 5或6C. 5或7D. 5或6或7二、填空题(本大题共6个小题,每小题3分,共18分)请将答案直接填在答题卷对应的横线上.11.分解因式:4x2-1=.12.若分式2212xx x-+-=0,则x=.A )BCD 84° (第13题)13.如图,在△ABC 中,点D 是BC 上一点,∠BAD =84°,AB =AD =DC ,则∠CAD =.14.如图,在△ABC 中,EF 是AB 边的垂直平分线,AC =18cm ,BC =16cm 则△BCE 的周长为cm .15.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值X 围是________.16.已知b a b a +=+111 ,则ba ab +的值。

20162017学年度上学期期末八年级数学试题含答案

20162017学年度上学期期末八年级数学试题含答案

2016-2017学年度上学期期末考试八年级数学试题 2017.01第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1. 在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A .B .C .D . 2. 若分式51+x 有意义,则x 的取值范围是 A .5->x B .5-<x C .5≠x D .5-≠x3. 下列运算正确的是A . ()623a a -=-B .842a a a ÷=C . 222)(b a b a +=+D .4)21(2=-- 4. 多项式m mx -2与多项式122+-x x 的公因式是A.1-xB.1+xC.12-xD.2)1(-x5.如图,在△ABC 中,AB =AC ,过A 点作AD ∥BC ,若∠BAD =110°,则∠BAC 的大小为A .30°B .40°C .50°D .70°6. 在平面直角坐标系中,已知点A (-2,a )和点B (b ,-3)关于y 轴对称,则ab 的值 是A .-1B .1C .6D .-67.若2(1)(3)x x x mx n -+=++,则m n +=A .-1B .-2C .-3D .28. 已知4x y +=,3xy =,则22x y +的值为A .22B .16C .10D .4(第5题图)9. 在Rt △ABC 中,已知∠C =90°,有一点D 同时满足以下三个条件:①在直角边BC 上;②在∠CAB 的角平分线上;③在斜边AB 的垂直平分线上,那么∠B 等于A .60°B .45°C .30°D .15°10.如图,△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于F ,若BF =AC ,则∠ABC 的大小是A .40°B .45°C .50°D .60°11. 下列判断中,正确的个数有①斜边对应相等的两个直角三角形全等;②有两个锐角相等的两个直角三角形不一定全等;③一条直角边对应相等的两个等腰直角三角形全等;④一个锐角和一条直角边分别相等的两个直角三角形全等.A. 4个B. 3个C. 2个D. 1个12. 化简2221121a a a a a a +-÷--+的结果是 A.1a B.a C.11a a +- D.11a a -+ 13.如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是 A. 15B. 30C. 45D. 6014. 如图,AD 为 △ABC 的角平分线,DE ⊥AB 于点 E ,DF ⊥AC 于点 F ,连接 EF 交 AD 于点 O .则下列结论:①DE=DF ;②△ADE ≌△ADF ;③︒=∠+∠90CDF BDE ;④AD 垂直平分EF.其中正确结论的个数是A. 1个B. 2个C. 3个D. 4个(第10题图) (第13题图) (第14题图)第Ⅱ卷 非选择题(共78分)二、填空题:(本题共5小题,每小题3分,共15分)15.分解因式:822-x =________________.16. 如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =______度.17. 请在横线上补上一项,使多项式9_______42++x 成为完全平方式.18. 如图,已知AB ∥CF ,E 为DF 的中点,若AB =7cm ,CF =4cm ,则BD =cm .19. 阅读理解:若3,253==b a ,试比较b a ,的大小关系.小明同学是通过下列方式来解答问题的:因为322)(55315===a a ,273)(33515===b b ,而2732>,∴1515b a > ∴b a >.解答上述问题逆用了幂的乘方,类比以上做法,若3,297==y x ,试比较x 与y 的大小关系为x ______y .(填“>”或“<”)三、解答题(本题满分63分)20.(本题满分8分,每小题4分)(1)计算:()343212a b a b •÷-2 ;(2)分解因式:322484y xy y x -+-.21.(本题满分7分)解方程:31.11x x x -=-+(第16题图) (第18题图)22.(本题满分8分)先化简,再求值: 9)3132(2-÷-++x x x x ,其中5x .=-23. (本题满分9分)已知:如图,C 是AB 上一点,点D ,E 分别在AB 两侧,AD ∥BE ,且AD =BC ,BE =AC .(1)求证:CD =CE ;(2)连接DE ,交AB 于点F ,猜想△BEF 的形状,并给予证明.24.(本题满分10分)某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?(第23题图)小丽同学动手剪了如图①所示的正方形与长方形纸片若干张.(1)她用1张1号、1张2号和2张3号卡片拼出一个新的图形(如图②).根据这个图形的面积关系写出一个你所熟悉的乘法公式,这个乘法公式是___________________;(2)如果要拼成一个长为)2(b a +,宽为)(b a +的大长方形,则需要2号卡片______ 张,3号卡片 张;(3)当她拼成如图③所示的长方形,根据6张小纸片的面积和等于大纸片(长方形)的面积可以把多项式2223b ab a ++分解因式,其结果是 ;(4)动手操作,请你依照小丽的方法,利用拼图分解因式2265b ab a ++=________________;并画出拼图.【提出问题】(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.求证:CN∥AB.(第26题图1)【类比探究】(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论CN∥AB还成立吗?请说明理由.(第26题图2)2016-2017学年度上学期期末考试八年级数学参考答案 2017-1一、选择题(每小题3分,共42分)1-~5 CDDAB 6~10 DACCB 11~14 BABC二、填空题(每小题3分,共15分)15.)2)(2(2-+x x 16. ︒25 17. x 12 (或x 12-或x 12±) 18. 3 19.<三、解答题(本大题共7小题,共63分)20. (8分)解:(1)原式3432812a b a b =-÷ ……2分 (2)223484x y xy y -+- 223b =- …………4分 224(2)y x xy y =--+ ……2分 21.(7分)解:方程两边同乘()(1)1x x +-,得 24()y x y =-- ………4分 ()()()()11131x x x x x +-+-=- ……………………………………2分解得,2x = ……………………………………………5分检验:当2x =时,()(1)10x x +-≠ …………………………………………6分 ∴2x =是原分式方程的解. ……………………………………………7分 22.(8分).xx x x x )3)(3()3132(-+⨯--+=原式 ………………………...2分 xx x x 3)3(2+--= ……………………….….4分 xx x x x 9362-=---= …………………………………..6分 当2-=x 时,原式=2112929=---=-x x ……………………8分 23. (9分)(1)证明:∵AD ∥BE ,∴∠A =∠B ,………………………………..1分在△ADC 和△BCE 中⎪⎩⎪⎨⎧=∠=∠=BE AC B A BCAD ∴△ADC ≌△BCE (SAS ),………………………3分∴CD =CE ;……………………………………..…..4分(2)△BEF 为等腰三角形,……………………………………5分证明如下:由(1)可知CD =CE ,∴∠CDE =∠CED ,………………………………………….…6分 由(1)可知△ADC ≌△BEC ,∴∠ACD =∠BEC ,…………………………………………….7分∴∠CDE +∠ACD =∠CED +∠BEC ,即∠BFE =∠BED ,……………………………………..……...8分∴BE=BF , ∴△BEF 是等腰三角形.………………………………….….9分24.(10分)解:(1)设该商家第一次购进机器人x 个,……………….…1分 依题意得:+10=,……………..3分解得x =100.…………………………………....5分经检验x =100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.……………………6分(2)设每个机器人的标价是a 元.则依题意得:(100+200)a ﹣11000﹣24000≥(11000+24000)×20%,..8分解得a ≥140.……………………………………………...9分答:每个机器人的标价至少是140元.…………………..10分25.(10分)解:(1)222)(2b a b ab a +=++……………….…2分(2) 2, 3 …………….…4分(3) ))(2(2322b a b a b ab a ++=++ …………….…6分(4) )2)(3(6522b a b a b ab a ++=++………….…8分 作图正确 ………….…10分26.(11分)(1)证明:∵△ABC 和△AMN 都是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN =60°,….1分∴∠BAM +∠MAC =∠MAC +∠CAN , ∴∠BAM =∠CAN ,………………………….2分在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB ∴△ABM ≌△ACN (SAS ), (4)分∴∠ACN =∠ABM =60°……………………………..5分∵∠ACB=60° ∴∠BCN+∠ABM=180°;…………6分∴CN ∥AB…………………………………………….7分(2)成立,…………………………………………8分理由如下:∵△ABC 和△AMN 都是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN=60°,∴∠BAC+∠CAM=∠CAM+∠MAN , ∴∠BAM=∠CAN在△ABM 和△ACN 中⎪⎩⎪⎨⎧=∠=∠=AN AM CAN BAN AC AB , ∴△ABM ≌△ACN (SAS ),………9分∴∠ACN=∠ABM =60°…………………………….10分∵∠ACB=60° ∴∠BCN+∠ABM=180°;∴CN∥AB……………………………………………………...11分。

2016-2017年度陕西地区西安市铁一中学八年级上学期期末考试数学试卷

2016-2017年度陕西地区西安市铁一中学八年级上学期期末考试数学试卷

2016-2017学年陕西省西安市铁一中学八年级上学期期末考试数学试卷考试范围:xxx;考试时间:100分钟;命题人:xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明一、单选题1.9的平方根是()A. √3B. 3C. ±√3D. ±32.在下列各数0.21,√16,√5,−π,3.14,22,0.030030003⋯(相邻两个3之间依次7增加一个0)中,是无理数....的有()A. 1个B. 2个C. 3个D. 4个3.以下列各组数为三角形三条边长,其中能构成直角三角形的是……()A. 2,3,4B. 4,5,6C. 1,√2,√3D. 2,√2,44.我市从2017年1月1日起连续七天空气质量堪忧,PM2.5大于300时为严重污染,下表是这几天的Pm2.5空气质量指数则这组数据的中位数和平均数分别为()A. 446,416B. 446,406C. 451,406D. 499,4165.下列各式计算正确的是()A. 2√−8=−2B. (−√2)2=4C. √(−3)2=−3D. √16=±46.若点A(−2 , m)在x轴上,则点B(m−1 , m+1)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=4时,点R应运动到()8.如图,在正方形OABC中,点A的坐标是(−3 , 1),点B的纵坐标是4,则B,C两点的坐标分别是()A. (−2 , 4) , (1 , 3)B. (−2 , 4) , (2 , 3)C. (−3 , 4) , (1 , 4)D. (−3 , 4) , (1 , 3)9.长方体的长为15,宽为10,高为20,点B在棱上与点C的距离为5,如图,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,则需要爬行的最短距离是()A. 10√5+5B. 5√29C. 25D. 5√3710.两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯,相关数据如图所示,若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是()A. 6cmB. 4√3cmC. 8cmD. 10cm第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.立方根等于本身的数是______:12.直线v =3x +b 与x 轴的交点坐标是(1 , 0),则关于x 的一元一次方程3x +b =0的理解是_______:13.将直线y =−3x 沿着x 轴正向向右平移2个单位,所得直线的解析式为_______:14.一架25m 长的梯子斜靠在一竖直的墙上,这时梯足距离墙底7m ,如果梯子的顶端沿墙下滑4m ,那么梯足将滑_______m :15.如图,在平面直角坐标系中,已知点A(2 , 3),点B(−2 , 1)。

2016-2017学年初二上学期期末数学试卷(含答案)word版

2016-2017学年初二上学期期末数学试卷(含答案)word版

EDCBA2016-2017学年初二上学期期末数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的1. 下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A B C D 2. 下列计算正确的是( )A .32x x x =+B .632x x x =⋅C .623)(x x =D .339x x x =÷ 3.下列式子为最简二次根式的是( )A 、3B 、4C 、8D 、21 4.如果2-x 有意义,那么x 的取值范围是( )A .x >2B .x ≥2C .x ≤2D .x <25.如图在△ABC 中,∠ACB =90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC =3 cm ,那么AE +DE 等于( )A .2 cmB .3 cmC .4 cmD .5 cm6.如图,所示的图形面积由以下哪个公式表示 2222222222.()().()=2.()2.()()A a b a a b b a bB a b a ab bC a b a ab bD a b a b a b -=-+---++=++-=-+7.若分式211x x --的值为0,则x 的值为( )A . 1.x =B . 1.x =-C . 1.x =±D . 1.x ≠ 8.若11,x x -=则221x x+的值是 ( ) A .3 B .2 C .1 D .49. 如图,△ABC中, AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,连接OC,OB,则图中全等的三角形有A.1对B.2对C.3对D.4对10.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A.B.2C.2D.二、填空题(本题共14分,每空2分)11. 中国女药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素, 这是中国医学界迄今为止获得的最高奖项.已知显微镜下的某种疟原虫平均长度为0.0000015米,该长度用科学技术法表示为.12. 如图,AB=AC,点E,点D分别在AC,AB上,要使△ABE≌△ACD,应添加的条件是 .(添加一个条件即可)13.若22(3)16+-+是一个完全平方式,那么m应为 .x m x14.如图,Rt △ABC 的斜边AB 的中垂线MN 与AC 交于点M ,∠A=150,BM=2,则 △AMB 的面积为 .15.在平面直角坐标系xOy 中,已知点A (2,3),在坐标轴上找一点P ,使得△AOP 是等腰三角形,则这样的点P 共有 个. 16. 观察下列关于自然数的等式:514322=⨯- ① 924522=⨯- ② 1334722=⨯- ③根据上述规律解决下列问题:⑴完成第四个等式: ;⑵写出你猜想的第n 个等式(用含n 的式子表示) ;三、解答题(本题共56分)解答题应写出文字说明,验算步骤或证明过程。

西安市 八年级上期末数学试卷(有答案) -优选

西安市 八年级上期末数学试卷(有答案) -优选

2016-2017学年西安市八年级(上)期末数学试卷一、精心选一选,慧眼识金1.9的平方根是()A.3 B.C.±3 D.2.在下列各数,,,﹣π,3.14,,0.030030003…(相邻两个3之间依次增加一个0)中,是无理数的有()A.1个B.2个C.3个D.4个3.以下各组数为三角形的三条边长,其中能作成直角三角形的是()A.2,3,4 B.4,5,6 C.1,, D.2,,44.我市从2017年1月1日起连续七天空气质量堪忧,PM2.5大于300时为严重污染,下表是这几天的Pm2.5空气质量指数A.446,416 B.446,406 C.451,406 D.499,4165.下列各式计算正确的是()A.B.C. D. =46.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()A.第四象限B.第三象限C.第二象限D.第一象限7.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=4时,点R应运动到()A.M处B.N处C.P处D.Q处8.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是()A.(﹣2,4),(1,3) B.(﹣2,4),(2,3) C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)9.长方体的长为15,宽为10,高为20,点B在棱上与点C的距离为5,如图,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,则需要爬行的最短距离是()A.B.C.25 D.10.如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是()A.2cm B.4cm C.6cm D.8cm二、耐心填一填,一锤定音11.立方根等于本身的数是.12.直线y=3x+b与x轴的交点坐标是(1,0),则关于x的一元一次方程3x+b=0的解是.13.如图,已知直线AB∥CD,且线段AD=CD,若∠1=75°,则∠2的度数是.14.将直线y=﹣3x沿着x轴正向向右平移2个单位,所得直线的解析式为.15.一架长25m的云梯,斜立在一竖直的墙上,这时梯足距墙底端7m,如果梯子的顶端沿墙下滑了4m,那么梯足将滑动.16.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是.三、用心做一做,马到成功17.计算或化简(1)﹣•(2)(π﹣1)0++|5﹣|﹣2.18.解下列方程组(1)(2).19.如图,正方形网格中的两个小正方形的边长都是1,每个小正方形的顶点叫格点,一个顶点为格点的三角形称为格点三角形:(1)如图①,已知格点△ABC,则△ABC (是或不是)直角三角形:(2)画一个格点△DEF,使其为钝角三角形,且面积为4.20.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:信息读取:(1)甲、乙两地之间的距离为km;(2)请解释图中点B的实际意义;图象理解:(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;问题解决:(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?21.已知:如图,已知:D是△ABC的边AB上一点,CN∥AB,DN交AC于M,MA=MC,求证:CD=AN.22.某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的A,B两种长方体形状的无盖纸盒,现有正方形纸板140张,长方形纸板360张,刚好全部用完,问能做成多少个A型盒子?多少个B型盒子?(1)根据题意,甲和乙两同学分别设了不同意义的未知数:甲同学设做了x个A型纸盒,y个B型纸盒,则甲同学所列方程组应为;而乙同学设做A型纸盒用x张正方形纸板,做B型纸盒用y张正方形纸板,则乙同学所列方程组应为.(2)求做成的A型盒子和B型盒子分别有多少个(写出完整的解答过程)?23.如图,一次函数y=﹣x+m的图象与x和y分别交于点A和点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积;(3)在直线OP上是否存在异与点P的另一点C,使得△OBC与△OBP的面积相等?若存在,请求出C点的坐标;若不存在,请说明理由.24.(1)问题发现:如图(1),小明在同一个平面直角坐标系中作出了两个一次函数y=x+1和y=x﹣1的图象,经测量发现:∠1 ∠2(填数量关系)则l1l2(填位置关系),从而二元一次方程组无解.(2)问题探究:小明发现对于一次函数y=k1x+b1与y=k2x+b2(b1≠b2),设它们的图象分别是l1和l2(如备用图1)①如果k1k2(填数量关系),那么l1l2(填位置关系);②反过,将①中命题的结论作为条件,条件作为结论,所得命题可表述为,请判断此命题的真假或举出反例;(3)问题解决:若关于x,y的二元一次方程组(各项系数均不为0)无解,那么各项系数a1、b1、c1、a2、b2、c2应满足什么样的数量关系?请写出你的结论.2016-2017学年陕西省西安市中学八年级(上)期末数学试卷参考答案与试题解析一、精心选一选,慧眼识金1.9的平方根是( )A .3B .C .±3D .【考点】平方根.【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3.故选:C .2.在下列各数,,,﹣π,3.14,,0.030030003…(相邻两个3之间依次增加一个0)中,是无理数的有( )A .1个B .2个C .3个D .4个【考点】无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:无理数有:,﹣π,0.030030003…(相邻两个3之间依次增加一个0)共3个.故选C .3.以下各组数为三角形的三条边长,其中能作成直角三角形的是( )A .2,3,4B .4,5,6C .1,, D .2,,4 【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A 、22+32=13≠42=16,故A 选项错误;B 、42+52=41≠62=36,故B 选项错误;C 、12+()2=3=()2,此三角形是直角三角形,故C 选项正确;D 、22+()2=6≠42=16,故D 选项错误.故选:C .4.我市从2017年1月1日起连续七天空气质量堪忧,PM2.5大于300时为严重污染,下表是这几天的Pm2.5空气质量指数A.446,416 B.446,406 C.451,406 D.499,416【考点】中位数;算术平均数.【分析】利用中位数及算术平均数的定义分别判断后即可确定正确的选项.【解答】解:将所有的数据排序后位于中间的数是1号,446,所以中位数为446;平均数为÷7=406,故选B.5.下列各式计算正确的是()A.B.C. D. =4【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质分别化简判断即可.【解答】解:A、2,无意义,故此选项不合题意;B、(﹣)2=2,故此选项不合题意;C、=3,故此选项不合题意;D、=4,正确,符合题意.故选:D.6.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()A.第四象限B.第三象限C.第二象限D.第一象限【考点】点的坐标.【分析】由点在x轴的条件是纵坐标为0,得出点A(﹣2,n)的n=0,再代入求出点B的坐标及象限.【解答】解:∵点A(﹣2,n)在x轴上,∴n=0,∴点B的坐标为(﹣1,1).则点B(n﹣1,n+1)在第二象限.故选C.7.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=4时,点R应运动到()A.M处B.N处C.P处D.Q处【考点】动点问题的函数图象.【分析】根据三角形的面积变化情况,可得R在PQ上时,三角形面积不变,可得答案.【解答】解:点R在NP上时,三角形面积增加,点R在点P时,三角形的面积最大,故选:C.8.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是()A.(﹣2,4),(1,3) B.(﹣2,4),(2,3) C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)【考点】正方形的性质;坐标与图形性质.【分析】作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.【解答】解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°,∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD,在△AOE和△OCD中,,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD,∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3),同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4);故选:A.9.长方体的长为15,宽为10,高为20,点B在棱上与点C的距离为5,如图,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,则需要爬行的最短距离是()A.B.C.25 D.【考点】平面展开﹣最短路径问题.【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.【解答】解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:∴AB===25;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30,在直角三角形ABC中,根据勾股定理得:∴AB===5;∵25<5<5,∴蚂蚁爬行的最短距离是25.故选C.10.如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是()A.2cm B.4cm C.6cm D.8cm【考点】解直角三角形的应用;圆柱的计算.【分析】首先根据液体的体积相等可求得液体在乙中的高度.在直角三角形中,求得直角边为4 cm,斜边是8 cm,可以求出另一直角边就是12cm,然后根据三角形的面积可知直角三角形的斜边上的高是6cm,所以可求出乙杯中的液面与图中点P的距离.【解答】解:甲液体的体积等于液体在乙中的体积.设乙杯中水深为xcm,则AP=AB=4cm,则π×(2)2×16=π×(4)2×x,解得x=4.在直角△ABP中,已知AP=4 cm,AB=8 cm,∴BP=12cm.根据三角形的面积公式可知直角△ABP斜边上的高是6cm,所以乙杯中的液面与图中点P的距离是16﹣6﹣4=6(cm).故选:C.二、耐心填一填,一锤定音11.立方根等于本身的数是1,﹣1,0 .【考点】立方根.【分析】根据立方根的性质可知等于图本身的数只有3个±1,0.【解答】解:∵=1, =﹣1, =0∴立方根等于本身的数是±1,0.12.直线y=3x+b与x轴的交点坐标是(1,0),则关于x的一元一次方程3x+b=0的解是x=1 .【考点】一次函数与一元一次方程.【分析】根据一次函数与一元一次方程的关系,求出关于x的一元一次方程3x+b=0的解是多少即可.【解答】解:∵直线y=3x+b与x轴的交点坐标是(1,0),∴3×1+b=0,∴关于x的一元一次方程3x+b=0的解是x=1.故答案为:x=1.13.如图,已知直线AB∥CD,且线段AD=CD,若∠1=75°,则∠2的度数是30°.【考点】等腰三角形的性质;平行线的性质.【分析】根据两直线平行,同位角相等可得∠ACD=∠1=75°,再根据等腰三角形的性质和三角形内角和定理可求∠2的度数,从而求解.【解答】解:∵AB∥CD,∴∠ACD=∠1=75°,∵AD=CD,∴∠ACD=∠CAD=75°,∴∠2=180°﹣75°×2=30°.故答案为:30°.14.将直线y=﹣3x沿着x轴正向向右平移2个单位,所得直线的解析式为y=﹣3x+6 .【考点】一次函数图象与几何变换.【分析】根据平移性质可由已知的解析式写出新的解析式.【解答】解:根据题意,得直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=﹣3(x﹣2)=﹣3x+6.故答案为:y=﹣3x+6.15.一架长25m的云梯,斜立在一竖直的墙上,这时梯足距墙底端7m,如果梯子的顶端沿墙下滑了4m,那么梯足将滑动8m .【考点】勾股定理的应用.【分析】利用勾股定理进行解答.先求出下滑后梯子低端距离低端的距离,再计算梯子低端滑动的距离.【解答】解:梯子顶端距离墙角地距离为=24m,顶端下滑后梯子低端距离墙角的距离为=15m,15m﹣7m=8m.故答案为:8m.16.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是(﹣1,0).【考点】轴对称﹣最短路线问题;坐标与图形性质.【分析】作A关于x轴的对称点C,连接BC交x轴于P,则此时AP+BP最小,求出C的坐标,设直线BC的解析式是y=kx+b,把B、C的坐标代入求出k、b,得出直线BC的解析式,求出直线与x轴的交点坐标即可.【解答】解:作A关于x轴的对称点C,连接BC交x轴于P,则此时AP+BP最小,∵A点的坐标为(2,3),B点的坐标为(﹣2,1),∴C(2,﹣3),设直线BC的解析式是:y=kx+b,把B、C的坐标代入得:解得.即直线BC的解析式是y=﹣x﹣1,当y=0时,﹣x﹣1=0,解得:x=﹣1,∴P点的坐标是(﹣1,0).故答案为:(﹣1,0).三、用心做一做,马到成功17.计算或化简(1)﹣•(2)(π﹣1)0++|5﹣|﹣2.【考点】二次根式的混合运算;零指数幂;负整数指数幂.【分析】(1)先把和为最简二次根式,然后根据二次根式的乘除法则运算;(2)根据零指数幂、负整数指数幂和绝对值的意义计算.【解答】解:(1)原式=﹣=1﹣;(2)原式=1﹣2+3﹣5﹣2=﹣6.18.解下列方程组(1)(2).【考点】解二元一次方程组;解三元一次方程组.【分析】(1)方程组整理后,利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)方程组整理得:,①+②得:4x=12,解得:x=3,把x=3代入①得:y=,则方程组的解为;(2),①+②+③得:2(a+b+c)=8,即a+b+c=4④,把①代入④得:c=1;把②代入④得:a=6;把③代入④得:b=﹣3,则方程组的解为.19.如图,正方形网格中的两个小正方形的边长都是1,每个小正方形的顶点叫格点,一个顶点为格点的三角形称为格点三角形:(1)如图①,已知格点△ABC,则△ABC 不是(是或不是)直角三角形:(2)画一个格点△DEF,使其为钝角三角形,且面积为4.【考点】作图—复杂作图;三角形的面积;勾股定理的逆定理.【分析】(1)根据AB=,BC=,AC=,可得AB2+BC2≠AC2,即可得出△ABC不是直角三角形;(2)根据△DEF为钝角三角形,且面积为4进行作图即可.【解答】解:(1)如图1,∵AB=,BC=,AC=,∴AB2+BC2≠AC2,∴△ABC不是直角三角形;故答案为:不是;(2)如图2,△DEF中∠DEF>90°,△DEF的面积=×2×4=4.∴△DEF即为所求.20.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:信息读取:(1)甲、乙两地之间的距离为900 km;(2)请解释图中点B的实际意义;图象理解:(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;问题解决:(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?【考点】一次函数的应用.【分析】直接从图上的信息可知:(1)中是900;(2)根据图象中的点的实际意义即可知道,图中点B的实际意义是:当慢车行驶4h时,慢车和快车相遇;(3)利用速度和路程之间的关系求解即可;(4)分别根据题意得出点C的坐标为(6,450),把(4,0),(6,450)代入y=kx+b利用待定系数法求解即可;(5)把x=4.5代入y=225x﹣900,得y=112.5,所以两列快车出发的间隔时间是112.5÷150=0.75(h),即第二列快车比第一列快车晚出发0.75h.【解答】解:(1)900;(2)图中点B的实际意义是:当慢车行驶4h时,慢车和快车相遇.(3)由图象可知,慢车12h行驶的路程为900km,所以慢车的速度为=75(km/h);当慢车行驶4h时,慢车和快车相遇,两车行驶的路程之和为900km,所以慢车和快车行驶的速度之和为=225(km/h),所以快车的速度为150(km/h).(4)根据题意,快车行驶900km到达乙地,所以快车行驶=6(h)到达乙地,此时两车之间的距离为6×75=450(km),所以点C的坐标为(6,450).设线段BC所表示的y与x之间的函数关系式为y=kx+b,把(4,0),(6,450)代入得,解得,所以,线段BC所表示的y与x之间的函数关系式为y=225x﹣900.自变量x的取值范围是4≤x≤6.(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h.把x=4.5代入y=225x﹣900,得y=112.5.此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km,所以两列快车出发的间隔时间是112.5÷150=0.75(h),即第二列快车比第一列快车晚出发0.75h.21.已知:如图,已知:D是△ABC的边AB上一点,CN∥AB,DN交AC于M,MA=MC,求证:CD=AN.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】根据已知利用ASA判定△AMD≌△CMN,则AD=CN.已知AD∥CN,则ADCN是平行四边形,则CD=AN.【解答】证明:如图,因为AB∥CN,所以∠1=∠2.在△AMD和△CMN中,∴△AMD≌△CMN.∴AD=CN.又AD∥CN,∴四边形ADCN是平行四边形.∴CD=AN.22.某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的A,B两种长方体形状的无盖纸盒,现有正方形纸板140张,长方形纸板360张,刚好全部用完,问能做成多少个A型盒子?多少个B型盒子?(1)根据题意,甲和乙两同学分别设了不同意义的未知数:甲同学设做了x个A型纸盒,y个B型纸盒,则甲同学所列方程组应为;而乙同学设做A型纸盒用x张正方形纸板,做B型纸盒用y张正方形纸板,则乙同学所列方程组应为.(2)求做成的A型盒子和B型盒子分别有多少个(写出完整的解答过程)?【考点】二元一次方程组的应用.【分析】(1)根据无盖纸盒的长方形木板和正方形木板的关系可以得到答案;(2)求解两个同学所列的两个方程中的一个即可求得盒子的个数.【解答】解:(1)甲:乙:,故答案为:,;(2)设能做成的A型盒有x个,B型盒子有y个,根据题意得:,解得:,答:A型盒有60个,B型盒子有40个.23.如图,一次函数y=﹣x+m的图象与x和y分别交于点A和点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积;(3)在直线OP上是否存在异与点P的另一点C,使得△OBC与△OBP的面积相等?若存在,请求出C点的坐标;若不存在,请说明理由.【考点】两条直线相交或平行问题.【分析】(1)将x=2代入正比例函数y=x中即可求出n值,由此即可得出点P的坐标,将点P的坐标代入一次函数y=﹣x+m中即可求出m值;(2)将x=0代入一次函数解析式中即可求出点B的值,再根据三角形的面积公式即可求出△POB的面积;(3)根据△OBC与△OBP的面积相等即可求出点C的横坐标,将其代入正比例函数y=x中即可求出点C的纵坐标,此题得解.【解答】解:(1)∵点P(2,n)在正比例函数y=x图象上,∴n=×2=3,∴点P 的坐标为(2,3).∵点P (2,3)在一次函数y=﹣x+m 的图象上, ∴3=﹣2+m ,解得:m=5, ∴一次函数解析式为y=﹣x+5. ∴m 的值为5,n 的值为3. (2)当x=0时,y=﹣x+5=5, ∴点B 的坐标为(0,5),∴S △POB =O B•x P =×5×2=5. (3)存在.∵S △OBC OB•|x C |=S △POB =5, ∴x C =﹣2或x C =2(舍去).当x=﹣2时,y=×(﹣2)=﹣3. ∴点C 的坐标为(﹣2,﹣3).24.(1)问题发现:如图(1),小明在同一个平面直角坐标系中作出了两个一次函数y=x+1和y=x ﹣1的图象,经测量发现:∠1 = ∠2(填数量关系)则l 1 ∥ l 2(填位置关系),从而二元一次方程组无解.(2)问题探究:小明发现对于一次函数y=k 1x+b 1与y=k 2x+b 2(b 1≠b 2),设它们的图象分别是l 1和l 2(如备用图1)①如果k 1 = k 2(填数量关系),那么l 1 ∥ l 2(填位置关系);②反过,将①中命题的结论作为条件,条件作为结论,所得命题可表述为 如果l 1∥l 2,那么k 1=k 2, ,请判断此命题的真假或举出反例; (3)问题解决:若关于x ,y 的二元一次方程组(各项系数均不为0)无解,那么各项系数a 1、b 1、c 1、a 2、b 2、c 2应满足什么样的数量关系?请写出你的结论.【考点】一次函数综合题.【分析】(1)分别证明△AOB 和△COD 是等腰直角三角形,则∠1=∠2=45°,所以l 1∥l 2; (2)①证明△AOP ≌△BFQ ,即可得出结论; ②同理证明△AOP ≌△BFQ ,即可得出结论;(3)根据方程组表示出直线的解析式,根据方程组无解,可知两直线平行,则根据当b 1≠b 2,k 1=k 2,列式可得结论.【解答】解:(1)如图(1),y=x+1中, 当x=0时,y=1, 当y=0时,x=﹣1, ∴A (0,1),B (﹣1,0), ∴OA=OB=1, ∵∠AOB=90°, ∴∠1=45°, 同理求得∠2=45°, ∴∠1=∠2, ∴l 1∥l 2, 故答案为:=,∥;(2)①当k 1=k 2时,如备用图1,过P 作PQ ∥x 轴,交l 2于Q ,过Q 作QF ⊥x 轴于F , ∴OP=QF ,当y=0时,k 1x+b 1=0,x=﹣,∴OA=,当x=0时,y=b 1, ∴P (0,b 1),∵PQ ∥x 轴,∴点P 与点Q 的纵坐标相等,当y=b 1时,b 1=k 2x+b 2,x=,∴OF=,在y=k 2x+b 2中,当y=0时,0=k 2x+b 2,x=﹣,∴OB=﹣,∴BF=﹣(﹣)=,∵k 1=k 2, ∴OA=BF ,∵∠AOP=∠BFQ=90°, ∴△AOP ≌△BFQ , ∴∠1=∠2, ∴l 1∥l 2;则当k 1=k 2时,l 1∥l 2; ∴故答案为:=,∥;②将①中命题的结论作为条件,条件作为结论,所得命题可表述为: 如果l 1∥l 2,那么k 1=k 2,此命题为真命题; 理由是:∵l 1∥l 2, ∴∠1=∠2,∵∠AOP=∠BFQ=90°,OP=FQ , ∴△AOP ≌△BFQ , ∴OA=BF ,同理可得:OA=,BF=﹣(﹣)=,∴=,∵b 1≠b 2, ∴k 1=k 2;③由a 1x+b 1y=c 1得:y=﹣,由a 2x+b 2y=c 2得:y=﹣,∵方程组无解,∴直线y=﹣和直线y=﹣平行,∴,则.2017年4月12日。

2016-2017年陕西省西安市西科中学八年级(上)期末数学试卷含参考答案

2016-2017年陕西省西安市西科中学八年级(上)期末数学试卷含参考答案

2016-2017学年陕西省西安市西科中学八年级(上)期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)的平方根是()A.﹣3B.±3C.±9D.﹣92.(3分)在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个3.(3分)下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23 4.(3分)如图,在平面直角坐标系中,点P的坐标为()A.(3,﹣2)B.(﹣2,3)C.(﹣3,2)D.(2,﹣3)5.(3分)方程组的解是()A.B.C.D.6.(3分)已知一组数据:﹣3,6,2,﹣1,0,4,则这组数据的中位数是()A.1B.C.0D.27.(3分)命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有()A.1个B.2个C.3个D.4个8.(3分)如图,△ABC中,BO,CO分别是∠ABC,∠ACB的平分线,∠A=50°,则∠BOC等于()A.110°B.115°C.120°D.130°9.(3分)下列各曲线中表示y是x的函数的是()A.B.C.D.10.(3分)正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k 的图象大致是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.(3分)用计算器计算(精确到0.01).12.(3分)=.13.(3分)如果方程组与方程组的解相同,则m=,n=.14.(3分)如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC 的度数是.15.(3分)在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2.(填“>”“<”或“=”)16.(3分)如图是y=kx+b的图象,则b=,与x轴的交点坐标为,y的值随x的增大而.三.解答题(共9小题,满分52分)17.(8分)解方程组:(1)(2).18.(8分)计算:(1)(+)×.(2)3﹣+﹣.19.(6分)已知直线y=﹣2x+4与x轴交于A点,与y轴交于B点.(1)求A、B两点的坐标;(2)求直线y=﹣2x+4与坐标轴围成的三角形的面积.20.(6分)如图,已知△ADC中,∠A=30°,∠ADC=110°,BE⊥AC,垂足为E,求∠B的度数.21.(6分)在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3).(1)求a的值;(2)设这条直线与y轴相交于点D,求△AOB的面积.22.(6分)甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差.(填“变大”、“变小”或“不变”).23.(6分)学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x人,甲、乙两家旅行社实际收费为y1、y2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:(1)当参加老师的人数为多少时,两家旅行社收费相同?(2)当参加老师的人数为多少人时,选择甲旅行社合算?(3)如果全共有50人参加时,选择哪家旅行社合算?24.(6分)如图,已知∠1=∠2,∠C=∠D,求证:∠A=∠F.25.如图所示,已知函数y=ax+b和y=kx的图象相交于点P,则根据图象可得关于x,y的二元一次方程组的解是.2016-2017学年陕西省西安市西科中学八年级(上)期末数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)的平方根是()A.﹣3B.±3C.±9D.﹣9【解答】解:∵=9,∴的平方根为±3.故选:B.2.(3分)在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A.1个B.2个C.3个D.4个【解答】解:,0.343343334…是无理数,故选:B.3.(3分)下列各组数中,能构成直角三角形的是()A.4,5,6B.1,1,C.6,8,11D.5,12,23【解答】解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.4.(3分)如图,在平面直角坐标系中,点P的坐标为()A.(3,﹣2)B.(﹣2,3)C.(﹣3,2)D.(2,﹣3)【解答】解:点P的坐标为(3,﹣2).故选:A.5.(3分)方程组的解是()A.B.C.D.【解答】解:,①﹣②得:2y=﹣4,即y=﹣2,把y=﹣2代入①得:x=﹣,则方程组的解为,故选:D.6.(3分)已知一组数据:﹣3,6,2,﹣1,0,4,则这组数据的中位数是()A.1B.C.0D.2【解答】解:把数据按从小到大排列:﹣3,﹣1,0,2,4,6,共有6个数,最中间的两个数为0和2,它们的平均数为(0+2)÷2=1,即这组数据的中位数是1.故选:A.7.(3分)命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角是对顶角;④同位角相等.其中假命题有()A.1个B.2个C.3个D.4个【解答】解:对顶角相等,所以①为真命题;在同一平面内,垂直于同一条直线的两直线平行,所以②为假命题;相等的角不一定是对顶角,所以③为假命题;两直线平行,同位角相等,所以④为假命题.故选:C.8.(3分)如图,△ABC中,BO,CO分别是∠ABC,∠ACB的平分线,∠A=50°,则∠BOC等于()A.110°B.115°C.120°D.130°【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣50°=130°,∵BO,CO分别是∠ABC,∠ACB的平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°.故选:B.9.(3分)下列各曲线中表示y是x的函数的是()A.B.C.D.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选:D.10.(3分)正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k 的图象大致是()A.B.C.D.【解答】解:∵正比例函数y=kx(k≠0)的图象在第二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.观察选项,只有B选项正确.故选:B.二.填空题(共6小题,满分18分,每小题3分)11.(3分)用计算器计算(精确到0.01)16.15.【解答】解:运用计算器计算得:≈16.15;故答案为:16.15.12.(3分)=5.【解答】解:原式==5.故答案为:5.13.(3分)如果方程组与方程组的解相同,则m=3,n=2.【解答】解:根据题意,可先用加减消元法解方程组,得.把代入方程组,得,用加减消元法解得m=3,n=2.14.(3分)如图,在△ABC中,∠A=50°,∠ABC=70°,BD平分∠ABC,则∠BDC 的度数是85°.【解答】解:∵在△ABC中,∠A=50°,∠ABC=70°,∴∠C=60°,∵BD平分∠ABC,∴∠DBC=35°,∴∠BDC=180°﹣60°﹣35°=85°.故答案为:85°.15.(3分)在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2.(填“>”“<”或“=”)【解答】解:∵一次函数y=2x+1中k=2>0,∴y随x的增大而增大,∵x1<x2,∴y1<y2.故答案为:<.16.(3分)如图是y=kx+b的图象,则b=﹣2,与x轴的交点坐标为(,0),y的值随x的增大而增大.【解答】解:把(1,2),(0,﹣2)代入y=kx+b得,解得,所以一次函数的表达式为y=4x﹣2,令y=0,得4x﹣2=0,解得x=,所以x轴的交点坐标为(,0)y的值随x的增大而增大.故答案为:﹣2,(,0),增大.三.解答题(共9小题,满分52分)17.(8分)解方程组:(1)(2).【解答】解:(1)由①得,y=2x+4③,将③代入②,得4x﹣5(2x+4)=﹣23,即﹣6x=﹣3,解得x=,将x=代入③得,y=5.所以原方程组的解是;(2),由①得4x﹣3y=12③,②×4﹣③×3,得y=4,将y=4代入③得,x=6所以原方程组的解是.18.(8分)计算:(1)(+)×.(2)3﹣+﹣.【解答】解:(1)(+)×,=×+×,=1+9,=10;(2)3﹣+﹣,=3﹣2+﹣3,=﹣.19.(6分)已知直线y=﹣2x+4与x轴交于A点,与y轴交于B点.(1)求A、B两点的坐标;(2)求直线y=﹣2x+4与坐标轴围成的三角形的面积.【解答】解:(1)当x=0时,y=﹣2x+4=4,当y=0时,0=﹣2x+4,x=2.所以A(2,0),B(0,4);=×2×4=4.(2)直线与坐标轴围成的三角形的面积=S△ABO20.(6分)如图,已知△ADC中,∠A=30°,∠ADC=110°,BE⊥AC,垂足为E,求∠B的度数.【解答】解:∵△ADC中,∠A=30°,∠ADC=110°,∴∠C=180°﹣∠A﹣∠ADC=40°,∵BE⊥AC,∴∠BEC=90°,∴∠B=90°﹣∠C=50°.21.(6分)在直角坐标系中,一条直线经过A(﹣1,5),P(﹣2,a),B(3,﹣3).(1)求a的值;(2)设这条直线与y轴相交于点D,求△AOB的面积.【解答】解:(1)设直线AB的解析式为y=kx+b,将点A(﹣1,5)、B(3,﹣3)代入y=kx+b中,得:,解得:,∴直线AB的解析式为y=﹣2x+3.当x=﹣2时,y=﹣2×(﹣2)+3=7,∴a=7.(2)当x=0时,y=﹣2×0+3=3,=S△AOD+S△BOD=OD•(x B﹣x A)=×3×[3﹣(﹣1)]=6.∴S△AOB22.(6分)甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.(填“变大”、“变小”或“不变”).【解答】解:(1)甲的众数为8,乙的平均数=×(5+9+7+10+9)=8,乙的中位数为9;(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差变小.故答案为:8,8,9;变小.23.(6分)学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x人,甲、乙两家旅行社实际收费为y1、y2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:(1)当参加老师的人数为多少时,两家旅行社收费相同?(2)当参加老师的人数为多少人时,选择甲旅行社合算?(3)如果全共有50人参加时,选择哪家旅行社合算?【解答】解:(1)当两函数图象相交时,两家旅行社收费相同,由图象知为30人;(2)由图象知:当有30人以下时,y1<y2,所以选择甲旅行社合算;(3)由图象知:当有50人参加时,y1>y2,所以选择乙旅行社合算;24.(6分)如图,已知∠1=∠2,∠C=∠D,求证:∠A=∠F.【解答】证明:∵∠1=∠2,∴BD∥CE,∴∠C+∠CBD=180°,∵∠C=∠D,∴∠D+∠CBD=180°,∴AC∥DF,∴∠A=∠F.25.如图所示,已知函数y=ax+b和y=kx的图象相交于点P,则根据图象可得关于x,y的二元一次方程组的解是.【解答】解:关于x,y的二元一次方程组的解是.故答案为:.。

2016-2017学年陕西省西安市碑林区交大附中八年级(上)期末数学试卷(北师大新版)

2016-2017学年陕西省西安市碑林区交大附中八年级(上)期末数学试卷(北师大新版)

2016-2017学年陕西省西安市碑林区交大附中八年级(上)期末数学试卷一、选择题1.(3分)下列语言是命题的是()A.画两条相等的线段B.等于同一个角的两个角相等吗?C.延长线段AO到C,使OC=OAD.两直线平行,内错角相等.2.(3分)的算术平方根是()A.3B.C.±3D.±3.(3分)如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.65°4.(3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC 的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°5.(3分)一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A.8B.5C.D.36.(3分)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.7.(3分)已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)图象中所反应的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离,根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是千米/小时9.(3分)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25C.10+5D.3510.(3分)如果,其中xyz≠0,那么x:y:z=()A.1:2:3B.2:3:4C.2:3:1D.3:2:1二、填空题11.(3分)计算﹣+=.12.(3分)过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是.13.(3分)如图,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y 轴于点A,交x轴于B,将直线AB沿射线OC方向平移个单位,则平移后直线的解析式为.14.(3分)如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB 的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是.15.(3分)设直线nx+(n+1)y=(n为自然数)与两坐标轴围成的三角形面积为S n,则S1+S2+…+S2016的值为.16.(3分)已知方程|x|=ax+1有一个负根但没有正根,则a的取值范围是.三、解答题17.(6分)已知a=,b=,求a3+b3﹣4的值.。

2016-2017年陕西省西安市曲江一中八年级上学期期末数学试卷带答案word版

2016-2017年陕西省西安市曲江一中八年级上学期期末数学试卷带答案word版

2016-2017学年陕西省西安市曲江一中八年级(上)期末数学试卷一、选择题:1.(3分)点P(2,﹣5)关于y轴的对称点的坐标是()A.(﹣2,5)B.(2,5)C.(﹣5,2)D.(﹣2,﹣5)2.(3分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁3.(3分)下列因式分解正确的是()A.a2b﹣2a3=a(ab﹣2a2)B.x2﹣x+=C.x2+2x+1=x(x+2)+1D.4x2﹣y2=(4x+y)(4x﹣y)4.(3分)下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等;②如果∠1和∠2是对顶角,那么∠1=∠2;③三角形的一个外角大于任何一个内角;④若a2=b2,则a=b.A.1个B.2个C.3个D.4个5.(3分)设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0B.2a﹣3b=0C.3a﹣2b=0D.3a+2b=06.(3分)将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是()A.45°B.50°C.60°D.75°7.(3分)已知一次函数y=kx+7和y=k′x+5,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)如图,已知函数y=x+1和y=ax+3图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是()A.B.C.D.9.(3分)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度10.(3分)如图,在平面直角坐标系中,直线AB与y轴在正半轴、x轴正半轴分别交A、B两点,M在BA的延长线上,PA平分∠MAO,PB平分∠ABO,则∠P的度数是()A.30°B.45°C.55°D.60°二、填空题11.(3分)分解因式:ab4﹣4ab3+4ab2=.12.(3分)在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2.(填“>”“<”“=”)13.(3分)如果实数x,y满足方程组,则x2﹣y2的值为.14.(3分)如图,正方形ABCD的边长为4,点A的坐标为(﹣1,1),AB平行于x轴,则点C的坐标为.15.(3分)某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所在位置的气温是y℃,用函数解析式表示y与x的关系为.16.(3分)已知是二元一次方程的解,则n﹣m的值是.17.(3分)如图,点A的坐标为(﹣3,0),点B在直线y=﹣x上运动,连接AB,当线段AB最短时,点B坐标为.18.(3分)如图,AE⊥EF于点E,BF⊥EF于点F,连接AB交EF于点D.在线段AB上取一点C,使EB=EC=AC,若∠EBF=54°,则∠ABF=.三、解答题19.(6分)解方程级(1)(2).20.(10分)为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)请补全条形统计图,并求扇形统计图中表示“重度污染”的扇形的圆心角度数;(2)所抽取若干天的空气质量情况的众数是 中位数是 . (3)请估计该市这一年(365天)达到“优”和“良”的总天数.21.(12分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A 、B 两种饮料共100瓶,需加入同种添加剂270克,其中A 饮料每瓶需加添加剂2克,B 饮料每瓶需加添加剂3克,饮料加工厂生产了A 、B 两种饮料各多少瓶?22.(12分)如图,在△ABC 中,CD ⊥AB ,垂足为D ,点E 在BC 上,EF ⊥AB ,垂足为F ,∠1=∠2. (1)试说明DG ∥BC 的理由;(2)如果∠B=34°,且∠ACD=47°,求∠3的度数.23.(12分)某厂家在甲、乙两家商场销售同一商品所获利润分别为y 甲,y 乙(单位:元),y 甲,y 乙与销售数量x (单位:件)的函数关系如图所示,请根据图象解决下列问题:(1)分别求出y 甲,y 乙与x 的函数关系式;(2)现厂家分配该商品给甲、乙两商场共计1200件,当甲、乙商场售完这批商品,厂家可获得总利润的1080元,问厂家如何分配这批商品?24.(14分)预备知识:(1)线段中点坐标公式:在平面直角坐标系中,已知A (x 1,y 1),B (x 2,y 2),设点M 为线段AB 的中点,则点M 的坐标为(,).①设A(1,2),B(5,0),点M为线段AB的中点,则点M的坐标为.②设线段CD的中点为点N,其坐标为(3,2),若端点C的坐标为(7,3),则端点D的坐标为.(2)如图1,四边形ABCD中,AD∥BC,点E为DC的中点,连结AE并延长交BC的延长线于点F.求证:S四边形ABCD=S△ABF.(S表示面积)问题探究:如图2,在已知锐角∠AOB内有一定点P,过点P任意作一条直MN,分别交射线OA,OB于点M、N将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.结论应用:如图3,在平面直角坐标系xoy中,已知点A在x轴上,点B在第一象限,且OA=3、AB=4、OB=5,若点P的坐标为(2,1),过点P的直线l分别交OB、AB于点M、N,求三角形BMN面积的最小值.2016-2017学年陕西省西安市曲江一中八年级(上)期末数学试卷参考答案与试题解析一、选择题:1.(3分)点P(2,﹣5)关于y轴的对称点的坐标是()A.(﹣2,5)B.(2,5)C.(﹣5,2)D.(﹣2,﹣5)【解答】解:点P(2,﹣5)关于y轴的对称点的坐标是:(﹣2,﹣5).故选:D.2.(3分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.3.(3分)下列因式分解正确的是()A.a2b﹣2a3=a(ab﹣2a2)B.x2﹣x+=C.x2+2x+1=x(x+2)+1D.4x2﹣y2=(4x+y)(4x﹣y)【解答】解:A、原式=a2(b﹣2a),不符合题意;B、原式=(x﹣)2,符合题意;C、原式=(x+1)2,不符合题意;D、原式=(2x+y)(2x﹣y),不符合题意,故选:B.4.(3分)下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等;②如果∠1和∠2是对顶角,那么∠1=∠2;③三角形的一个外角大于任何一个内角;④若a2=b2,则a=b.A.1个B.2个C.3个D.4个【解答】解:两条平行线被第三条直线所截,内错角相等,故①是假命题;如果∠1和∠2是对顶角,那么∠1=∠2,②是真命题;三角形的一个外角大于任何一个不相邻的内角,③是假命题;若a2=b2,则a=±b,④是假命题,故选:A.5.(3分)设点A(a,b)是正比例函数y=﹣x图象上的任意一点,则下列等式一定成立的是()A.2a+3b=0B.2a﹣3b=0C.3a﹣2b=0D.3a+2b=0【解答】解:把点A(a,b)代入正比例函数y=﹣x,可得:﹣3a=2b,可得:3a+2b=0,故选:D.6.(3分)将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是()A.45°B.50°C.60°D.75°【解答】解:∵∠C=30°,∠DAE=45°,AE∥BC,∴∠EAC=∠C=30°,∠FAD=45﹣30=15°,在△ADF中根据三角形内角和定理得到:∠AFD=180﹣90﹣15=75°.故选:D.7.(3分)已知一次函数y=kx+7和y=k′x+5,假设k>0且k′<0,则这两个一次函数的图象的交点在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵k>0,∴一次函数y=kx+7经过第一、二、三象限;∵k'<0,∴y=k′x+5经过第一、二、三象限.则两个函数的大体图象是:则两个一次函数的图象交点在第二象限.故选:B.8.(3分)如图,已知函数y=x+1和y=ax+3图象交于点P,点P的横坐标为1,则关于x,y的方程组的解是()A.B.C.D.【解答】解:把x=1代入y=x+1,得出y=2,函数y=x+1和y=ax+3的图象交于点P(1,2),即x=1,y=2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故选:A.9.(3分)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.下列说法错误的是()A.小明中途休息用了20分钟B.小明休息前爬山的平均速度为每分钟70米C.小明在上述过程中所走的路程为6600米D.小明休息前爬山的平均速度大于休息后爬山的平均速度【解答】解:A、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;B、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;C、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;D、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;故选:C.10.(3分)如图,在平面直角坐标系中,直线AB与y轴在正半轴、x轴正半轴分别交A、B两点,M在BA的延长线上,PA平分∠MAO,PB平分∠ABO,则∠P的度数是()A.30°B.45°C.55°D.60°【解答】解:∵OA⊥OB,∴∠OAB+∠ABO=90°,∠AOB=90°.∵PA平分∠MAO,∴∠PAO=∠OAM=(180°﹣∠OAB).∵PB平分∠ABO,∴∠ABP=∠ABO,∴∠P=180°﹣∠PAO﹣∠OAB﹣∠ABP=180°﹣(180°﹣∠OAB)﹣∠OAB﹣∠ABO=90°﹣(∠OAB+∠ABO)=45°.故选:B.二、填空题11.(3分)分解因式:ab4﹣4ab3+4ab2=ab2(b﹣2)2.【解答】解:ab4﹣4ab3+4ab2=ab2(b2﹣4b+4)=ab2(b﹣2)2.故答案为:ab2(b﹣2)2.12.(3分)在平面直角坐标系中,已知一次函数y=﹣2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1>y2.(填“>”“<”“=”)【解答】解:∵一次函数y=﹣2x+1中k=﹣2<0,∴y随x的增大而减小,∵x1<x2,∴y1>y2.故答案为:>.13.(3分)如果实数x,y满足方程组,则x2﹣y2的值为﹣.【解答】解:方程组第二个方程变形得:2(x+y)=5,即x+y=,∵x﹣y=﹣,∴原式=(x+y)(x﹣y)=﹣,故答案为:﹣14.(3分)如图,正方形ABCD的边长为4,点A的坐标为(﹣1,1),AB平行于x轴,则点C的坐标为(3,5).【解答】解:如图,∵正方形ABCD的边长为4,点A的坐标为(﹣1,1),∴点C的横坐标为4﹣1=3,点C的纵坐标为4+1=5,∴点C的坐标为(3,5).故答案为:(3,5).15.(3分)某登山队大本营所在地的气温为5℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所在位置的气温是y℃,用函数解析式表示y与x的关系为y=5﹣6x.【解答】解:根据题意得:y=5﹣6x.故答案为:y=5﹣6x.16.(3分)已知是二元一次方程的解,则n﹣m的值是﹣3.【解答】解:把代入方程组得:,解得:m=5,n=2,则n﹣m=2﹣5=﹣3.故答案为:﹣317.(3分)如图,点A的坐标为(﹣3,0),点B在直线y=﹣x上运动,连接AB,当线段AB最短时,点B坐标为(﹣1.5,1.5).【解答】解:作AB⊥直线y=﹣x于点B.易知△OAB为等腰直角三角形,∠AOB=45°,OA=3.作BC⊥x轴于点C,可得OC=OA=1.5,BC=OC=1.5.∴当线段AB最短时,点B的坐标为(﹣1.5,1.5),故答案为:(﹣1.5,1.5).18.(3分)如图,AE⊥EF于点E,BF⊥EF于点F,连接AB交EF于点D.在线段AB上取一点C,使EB=EC=AC,若∠EBF=54°,则∠ABF=18°.【解答】解:∵AE⊥EF于点E,BF⊥EF于点F,∴AE∥BF,∴∠A=∠ABF,∵EB=EC=AC,∴∠A=∠AEC,∠BCE=∠CBE,∵∠BCE=∠A+∠AEC=2∠A,∴∠ABE=2∠A=2∠DBF,∴∠ABF=∠EBF=18°.故答案为:18°.三、解答题19.(6分)解方程级(1)(2).【解答】解:(1),①×2+②得:5x=10,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(2)方程组整理得:,①+②×2得:11x=11,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为.20.(10分)为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)请补全条形统计图,并求扇形统计图中表示“重度污染”的扇形的圆心角度数;(2)所抽取若干天的空气质量情况的众数是良中位数是良.(3)请估计该市这一年(365天)达到“优”和“良”的总天数.【解答】解:(1)抽取的总天数为12÷20%=60天,“轻微”的天数是60﹣12﹣36﹣3﹣2﹣2=5天,“重度污染”的扇形的圆心角=×360°=12°,补图如下:(2)因为良出现了36天,出现的次数最多,则众数是良;根据条形统计图给出的数据可得:中位数是良;故答案为:良,良;(3)该市这一年(365天)达到“优”和“良”的天数是365×=292天.21.(12分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加添加剂2克,B饮料每瓶需加添加剂3克,饮料加工厂生产了A、B两种饮料各多少瓶?【解答】解:设A种饮料生产了x瓶,B种饮料生产了y瓶,根据题意,得:,解得:,答:A种饮料生产了30瓶,B种饮料生产了70瓶.22.(12分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F,∠1=∠2.(1)试说明DG∥BC的理由;(2)如果∠B=34°,且∠ACD=47°,求∠3的度数.【解答】解:(1)DG ∥BC . 理由是:∵CD ⊥AB ,EF ⊥AB , ∴∠CDF=∠EFB=90°, ∴CD ∥EF . ∴∠2=∠BCD , ∵∠1=∠2, ∴∠1=∠BCD , ∴DG ∥BC ;(2)∵CD ⊥AB , ∴∠BDC=90°. ∵∠B=34°,∴∠BCD=90°﹣34°=56°. ∵∠ACD=47°,∴∠ACB=∠ACD +∠BCD=47°+56°=103°. ∵由(1)知DG ∥BC , ∴∠3=∠ACB=103°.23.(12分)某厂家在甲、乙两家商场销售同一商品所获利润分别为y 甲,y 乙(单位:元),y 甲,y 乙与销售数量x (单位:件)的函数关系如图所示,请根据图象解决下列问题:(1)分别求出y 甲,y 乙与x 的函数关系式;(2)现厂家分配该商品给甲、乙两商场共计1200件,当甲、乙商场售完这批商品,厂家可获得总利润的1080元,问厂家如何分配这批商品?【解答】解:(1)设y甲=kx(k≠0),y乙=mx+n,将(600,480)代入y甲=kx,480=600k,解得:k=0.8,∴y甲与x的函数关系式为y甲=0.8x;当0≤x≤200时,将(0,0)、(200,400)代入y乙=mx+n中,,解得:,∴此时y乙=2x;当200≤x时,将(200,400)、(600,480)代入y乙=mx+n中,,解得:,∴此时y乙=0.2x+360.∴y乙与x的函数关系式为y乙=.(2)设分配给乙商场x件,则分配给甲商场(1200﹣x)件,当0≤x≤200时,有0.8×(1200﹣x)+2x=1080,解得:x=100,此时1200﹣x=1100;当x≥200时,有0.8×(1200﹣x)+0.2x+360=1080,解得:x=400,此时1200﹣x=800.答:厂家分配该商品给甲商场1100件乙商场100件或甲商场800件乙商场400件时,厂家可获得总利润的1080元.24.(14分)预备知识:(1)线段中点坐标公式:在平面直角坐标系中,已知A (x1,y1),B(x2,y2),设点M为线段AB的中点,则点M的坐标为(,).①设A(1,2),B(5,0),点M为线段AB的中点,则点M的坐标为(3,1).②设线段CD的中点为点N,其坐标为(3,2),若端点C的坐标为(7,3),则端点D的坐标为(﹣1,﹣1).(2)如图1,四边形ABCD中,AD∥BC,点E为DC的中点,连结AE并延长交BC的延长线于点F.求证:S四边形ABCD=S△ABF.(S表示面积)问题探究:如图2,在已知锐角∠AOB内有一定点P,过点P任意作一条直MN,分别交射线OA,OB于点M、N将直线MN绕着点P旋转的过程中发现,△MON的面积存在最小值,请问当直线MN在什么位置时,△MON的面积最小,并说明理由.结论应用:如图3,在平面直角坐标系xoy中,已知点A在x轴上,点B在第一象限,且OA=3、AB=4、OB=5,若点P的坐标为(2,1),过点P的直线l分别交OB、AB于点M、N,求三角形BMN面积的最小值.【解答】解:预备知识:(1)①∵A(1,2),B(5,0),点M为线段AB的中点,∴M(,),即M(3,1),故答案为:(3,1);②设D(x,y),由中点坐标公式得:=3,=2,∴x=﹣1,y=﹣1,∴D (﹣1,﹣1);故答案为:(﹣1,﹣1);(2)证明:∵AD ∥BC ,∴∠ADE=∠FCE ,在△ADE 与△FCE 中,,∴△ADE ≌△FCE ,∴S △ADE =S △FCE ,∴S 四边形ABCD =S 四边形ABCE +S △ADE =S 四边形ABCE +S △FCE =S △ABF ;问题探究:当直线旋转到点P 是MN 的中点时S △MON 最小,如图2,过点P 的另一条直线EF 交OA 、OB 于点E 、F ,设PF <PE ,过点M 作MG ∥OB 交EF 于G ,由预备知识(2)可以得出当P 是MN 的中点时S 四边形MOFG =S △MON . ∵S 四边形MOFG <S △EOF ,∴S △MON <S △EOF ,∴当点P 是MN 的中点时S △MON 最小;结论应用:如图3,由问题探究当点P 是MN 的中点时S △MBN 最小,∵OA=3、AB=4、OB=5,∴OA 2+AB 2=OB 2,∴∠OAB=90°,∴AB ⊥x 轴,∴N 点的横坐标为3,设M (a ,b ),∵点P 的坐标为(2,1), ∴=2,∴a=1,过M作MC⊥OA于C,∴OC=1,∴MC∥AB,∴△OCM∽△OAB,∴,即,∴CM=,∵=,∴AN=,=S四边形ABMC﹣S四边形ANMC=(+4)×(3﹣1)﹣×(+)×(3﹣1)∴S△MBN=,∴三角形BMN面积的最小值是.附赠数学基本知识点1知识点1:一元二次方程的基本概念1.一元二次方程3x2+5x-2=0的常数项是-2.2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A(3,0)在y轴上。

2016-2017学年陕西省西安市雁塔区高新一中八年级(上)期末数学试卷

2016-2017学年陕西省西安市雁塔区高新一中八年级(上)期末数学试卷
17.(3 分)如图,l 是一段平直的铁轨,某天小明站在距离铁轨 100 米的 A 处,他发现一列 火车从左向右自远方驶来,已知火车长 200 米,设火车的车头为 B 点,车尾为 C 点,小
第 3 页(共 29 页)
明站着不动,则从小明发现火车到火车远离他而去的过程中,以 A、B、C 三点为顶点的 三角形是等腰三角形的时刻共有 个.
第 9 页(共 29 页)
【点评】本题主要考查了一次函数的性质,解题的关键是掌握一次函数的性质,一次函 数 y=kx+b(k、b 为常数,k≠0)是一条直线,当 k>0,图象经过第一、三象限,y 随 x 的增大而增大;当 k<0,图象经过第二、四象限,y 随 x 的增大而减小;图象与 y 轴的 交点坐标为(0,b).此题难度不大. 5.(3 分)某校共有 40 名初中生参加足球兴趣小组,他们的年龄统计情况如图所示,则这 40 名学生年龄的中位数是( )
14.(3 分)如图,直线 y=x+b 与直线 y=kx+6 交于点 P(3,5),则关于 x 的不等式 x+b> kx+6 的解集是 .
15.(3 分)五个正整数从小到大排列,若这组数据的中位数是 4,唯一众数是 5,则这五个 正整数的和为 .
16.(3 分)甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑 步 1500 米,先到终点的人原地休息,已知甲先出发 30 秒后,乙才出发,在跑步的整个 过程中,甲、乙两人的距离 y(米)与甲出发的时间 x(秒)之间的关系如图所示,则乙 到终点时,甲距终点的距离是 米.
23.(10 分)如图 1,直线 MN 与直线 AB、CD 分别交于点 E、F,∠1 与∠2 互补. (1)试判断直线 AB 与直线 CD 的位置关系,并说明理由; (2)如图 2,∠BEF 与∠EFD 的角平分线交于点 P,EP 与 CD 交于点 G,点 H 是 MN 上一点,且 GH⊥EG,求证:PF∥GH;

【精选】西安市 八年级上期末数学试卷(有答案)

【精选】西安市 八年级上期末数学试卷(有答案)

2016-2017学年西安市八年级(上)期末数学试卷一、精心选一选,慧眼识金1.9的平方根是()A.3 B.C.±3 D.2.在下列各数,,,﹣π,3.14,,0.030030003…(相邻两个3之间依次增加一个0)中,是无理数的有()A.1个B.2个C.3个D.4个3.以下各组数为三角形的三条边长,其中能作成直角三角形的是()A.2,3,4 B.4,5,6 C.1,, D.2,,44.我市从2017年1月1日起连续七天空气质量堪忧,PM2.5大于300时为严重污染,下表是这几天的Pm2.5空气质量指数日期1号2号3号4号5号6号7号空气质量指数446 402 456 499 500 434 105则这组数据的中位数和平均数分别为()A.446,416 B.446,406 C.451,406 D.499,4165.下列各式计算正确的是()A.B.C. D. =46.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()A.第四象限B.第三象限C.第二象限D.第一象限7.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=4时,点R应运动到()A.M处B.N处C.P处D.Q处8.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是()A.(﹣2,4),(1,3) B.(﹣2,4),(2,3) C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)9.长方体的长为15,宽为10,高为20,点B在棱上与点C的距离为5,如图,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,则需要爬行的最短距离是()A.B.C.25 D.10.如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是()A.2cm B.4cm C.6cm D.8cm二、耐心填一填,一锤定音11.立方根等于本身的数是.12.直线y=3x+b与x轴的交点坐标是(1,0),则关于x的一元一次方程3x+b=0的解是.13.如图,已知直线AB∥CD,且线段AD=CD,若∠1=75°,则∠2的度数是.14.将直线y=﹣3x沿着x轴正向向右平移2个单位,所得直线的解析式为.15.一架长25m的云梯,斜立在一竖直的墙上,这时梯足距墙底端7m,如果梯子的顶端沿墙下滑了4m,那么梯足将滑动.16.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是.三、用心做一做,马到成功17.计算或化简(1)﹣•(2)(π﹣1)0++|5﹣|﹣2.18.解下列方程组(1)(2).19.如图,正方形网格中的两个小正方形的边长都是1,每个小正方形的顶点叫格点,一个顶点为格点的三角形称为格点三角形:(1)如图①,已知格点△ABC,则△ABC (是或不是)直角三角形:(2)画一个格点△DEF,使其为钝角三角形,且面积为4.20.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:信息读取:(1)甲、乙两地之间的距离为km;(2)请解释图中点B的实际意义;图象理解:(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;问题解决:(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?21.已知:如图,已知:D是△ABC的边AB上一点,CN∥AB,DN交AC于M,MA=MC,求证:CD=AN.22.某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的A,B两种长方体形状的无盖纸盒,现有正方形纸板140张,长方形纸板360张,刚好全部用完,问能做成多少个A型盒子?多少个B型盒子?(1)根据题意,甲和乙两同学分别设了不同意义的未知数:甲同学设做了x个A型纸盒,y个B型纸盒,则甲同学所列方程组应为;而乙同学设做A型纸盒用x张正方形纸板,做B型纸盒用y张正方形纸板,则乙同学所列方程组应为.(2)求做成的A型盒子和B型盒子分别有多少个(写出完整的解答过程)?23.如图,一次函数y=﹣x+m的图象与x和y分别交于点A和点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积;(3)在直线OP上是否存在异与点P的另一点C,使得△OBC与△OBP的面积相等?若存在,请求出C点的坐标;若不存在,请说明理由.24.(1)问题发现:如图(1),小明在同一个平面直角坐标系中作出了两个一次函数y=x+1和y=x﹣1的图象,经测量发现:∠1 ∠2(填数量关系)则l1l2(填位置关系),从而二元一次方程组无解.(2)问题探究:小明发现对于一次函数y=k1x+b1与y=k2x+b2(b1≠b2),设它们的图象分别是l1和l2(如备用图1)①如果k1k2(填数量关系),那么l1l2(填位置关系);②反过,将①中命题的结论作为条件,条件作为结论,所得命题可表述为,请判断此命题的真假或举出反例;(3)问题解决:若关于x,y的二元一次方程组(各项系数均不为0)无解,那么各项系数a1、b1、c1、a2、b2、c2应满足什么样的数量关系?请写出你的结论.2016-2017学年陕西省西安市中学八年级(上)期末数学试卷参考答案与试题解析一、精心选一选,慧眼识金1.9的平方根是()A.3 B.C.±3 D.【考点】平方根.【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3.故选:C.2.在下列各数,,,﹣π,3.14,,0.030030003…(相邻两个3之间依次增加一个0)中,是无理数的有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:无理数有:,﹣π,0.030030003…(相邻两个3之间依次增加一个0)共3个.故选C.3.以下各组数为三角形的三条边长,其中能作成直角三角形的是()A.2,3,4 B.4,5,6 C.1,, D.2,,4【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32=13≠42=16,故A选项错误;B、42+52=41≠62=36,故B选项错误;C、12+()2=3=()2,此三角形是直角三角形,故C选项正确;D、22+()2=6≠42=16,故D选项错误.故选:C.4.我市从2017年1月1日起连续七天空气质量堪忧,PM2.5大于300时为严重污染,下表是这几天的Pm2.5空气质量指数日期1号2号3号4号5号6号7号空气质量指数446 402 456 499 500 434 105则这组数据的中位数和平均数分别为()A.446,416 B.446,406 C.451,406 D.499,416【考点】中位数;算术平均数.【分析】利用中位数及算术平均数的定义分别判断后即可确定正确的选项.【解答】解:将所有的数据排序后位于中间的数是1号,446,所以中位数为446;平均数为÷7=406,故选B.5.下列各式计算正确的是()A.B.C. D. =4【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质分别化简判断即可.【解答】解:A、2,无意义,故此选项不合题意;B、(﹣)2=2,故此选项不合题意;C、=3,故此选项不合题意;D、=4,正确,符合题意.故选:D.6.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()A.第四象限B.第三象限C.第二象限D.第一象限【考点】点的坐标.【分析】由点在x轴的条件是纵坐标为0,得出点A(﹣2,n)的n=0,再代入求出点B的坐标及象限.【解答】解:∵点A(﹣2,n)在x轴上,∴n=0,∴点B的坐标为(﹣1,1).则点B(n﹣1,n+1)在第二象限.故选C.7.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=4时,点R应运动到()A.M处B.N处C.P处D.Q处【考点】动点问题的函数图象.【分析】根据三角形的面积变化情况,可得R在PQ上时,三角形面积不变,可得答案.【解答】解:点R在NP上时,三角形面积增加,点R在点P时,三角形的面积最大,故选:C.8.如图,在正方形OABC中,点A的坐标是(﹣3,1),点B的纵坐标是4,则B,C两点的坐标分别是()A.(﹣2,4),(1,3) B.(﹣2,4),(2,3) C.(﹣3,4),(1,4) D.(﹣3,4),(1,3)【考点】正方形的性质;坐标与图形性质.【分析】作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,由AAS证明△AOE≌△OCD,得出AE=OD,OE=CD,由点A的坐标是(﹣3,1),得出OE=3,AE=1,∴OD=1,CD=3,得出C(1,3),同理:△AOE≌△BAF,得出AE=BF=1,OE﹣BF=3﹣1=2,得出B(﹣2,4)即可.【解答】解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,作BF⊥AE于F,则∠AEO=∠ODC=∠BFA=90°,∴∠OAE+∠AOE=90°,∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD,在△AOE和△OCD中,,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD,∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3),同理:△AOE≌△BAF,∴AE=BF=1,OE﹣BF=3﹣1=2,∴B(﹣2,4);故选:A.9.长方体的长为15,宽为10,高为20,点B在棱上与点C的距离为5,如图,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,则需要爬行的最短距离是()A.B.C.25 D.【考点】平面展开﹣最短路径问题.【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.【解答】解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:∴AB===25;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30,在直角三角形ABC中,根据勾股定理得:∴AB===5;∵25<5<5,∴蚂蚁爬行的最短距离是25.故选C.10.如图,两个高度相等的圆柱形水杯,甲杯装满液体,乙杯是空杯.若把甲杯中的液体全部倒入乙杯,则乙杯中的液面与图中点P的距离是()A.2cm B.4cm C.6cm D.8cm【考点】解直角三角形的应用;圆柱的计算.【分析】首先根据液体的体积相等可求得液体在乙中的高度.在直角三角形中,求得直角边为4 cm,斜边是8 cm,可以求出另一直角边就是12cm,然后根据三角形的面积可知直角三角形的斜边上的高是6cm,所以可求出乙杯中的液面与图中点P的距离.【解答】解:甲液体的体积等于液体在乙中的体积.设乙杯中水深为xcm,则AP=AB=4cm,则π×(2)2×16=π×(4)2×x,解得x=4.在直角△ABP中,已知AP=4 cm,AB=8 cm,∴BP=12cm.根据三角形的面积公式可知直角△ABP斜边上的高是6cm,所以乙杯中的液面与图中点P的距离是16﹣6﹣4=6(cm).故选:C.二、耐心填一填,一锤定音11.立方根等于本身的数是1,﹣1,0 .【考点】立方根.【分析】根据立方根的性质可知等于图本身的数只有3个±1,0.【解答】解:∵=1, =﹣1, =0∴立方根等于本身的数是±1,0.12.直线y=3x+b与x轴的交点坐标是(1,0),则关于x的一元一次方程3x+b=0的解是x=1 .【考点】一次函数与一元一次方程.【分析】根据一次函数与一元一次方程的关系,求出关于x的一元一次方程3x+b=0的解是多少即可.【解答】解:∵直线y=3x+b与x轴的交点坐标是(1,0),∴3×1+b=0,∴关于x的一元一次方程3x+b=0的解是x=1.故答案为:x=1.13.如图,已知直线AB∥CD,且线段AD=CD,若∠1=75°,则∠2的度数是30°.【考点】等腰三角形的性质;平行线的性质.【分析】根据两直线平行,同位角相等可得∠ACD=∠1=75°,再根据等腰三角形的性质和三角形内角和定理可求∠2的度数,从而求解.【解答】解:∵AB∥CD,∴∠ACD=∠1=75°,∵AD=CD,∴∠ACD=∠CAD=75°,∴∠2=180°﹣75°×2=30°.故答案为:30°.14.将直线y=﹣3x沿着x轴正向向右平移2个单位,所得直线的解析式为y=﹣3x+6 .【考点】一次函数图象与几何变换.【分析】根据平移性质可由已知的解析式写出新的解析式.【解答】解:根据题意,得直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=﹣3(x﹣2)=﹣3x+6.故答案为:y=﹣3x+6.15.一架长25m的云梯,斜立在一竖直的墙上,这时梯足距墙底端7m,如果梯子的顶端沿墙下滑了4m,那么梯足将滑动8m .【考点】勾股定理的应用.【分析】利用勾股定理进行解答.先求出下滑后梯子低端距离低端的距离,再计算梯子低端滑动的距离.【解答】解:梯子顶端距离墙角地距离为=24m,顶端下滑后梯子低端距离墙角的距离为=15m,15m﹣7m=8m.故答案为:8m.16.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1),在x轴上存在点P到A,B两点的距离之和最小,则P点的坐标是(﹣1,0).【考点】轴对称﹣最短路线问题;坐标与图形性质.【分析】作A关于x轴的对称点C,连接BC交x轴于P,则此时AP+BP最小,求出C的坐标,设直线BC的解析式是y=kx+b,把B、C的坐标代入求出k、b,得出直线BC的解析式,求出直线与x轴的交点坐标即可.【解答】解:作A关于x轴的对称点C,连接BC交x轴于P,则此时AP+BP最小,∵A点的坐标为(2,3),B点的坐标为(﹣2,1),∴C(2,﹣3),设直线BC的解析式是:y=kx+b,把B、C的坐标代入得:解得.即直线BC的解析式是y=﹣x﹣1,当y=0时,﹣x﹣1=0,解得:x=﹣1,∴P点的坐标是(﹣1,0).故答案为:(﹣1,0).三、用心做一做,马到成功17.计算或化简(1)﹣•(2)(π﹣1)0++|5﹣|﹣2.【考点】二次根式的混合运算;零指数幂;负整数指数幂.【分析】(1)先把和为最简二次根式,然后根据二次根式的乘除法则运算;(2)根据零指数幂、负整数指数幂和绝对值的意义计算.【解答】解:(1)原式=﹣=1﹣;(2)原式=1﹣2+3﹣5﹣2=﹣6.18.解下列方程组(1)(2).【考点】解二元一次方程组;解三元一次方程组.【分析】(1)方程组整理后,利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1)方程组整理得:,①+②得:4x=12,解得:x=3,把x=3代入①得:y=,则方程组的解为;(2),①+②+③得:2(a+b+c)=8,即a+b+c=4④,把①代入④得:c=1;把②代入④得:a=6;把③代入④得:b=﹣3,则方程组的解为.19.如图,正方形网格中的两个小正方形的边长都是1,每个小正方形的顶点叫格点,一个顶点为格点的三角形称为格点三角形:(1)如图①,已知格点△ABC,则△ABC 不是(是或不是)直角三角形:(2)画一个格点△DEF,使其为钝角三角形,且面积为4.【考点】作图—复杂作图;三角形的面积;勾股定理的逆定理.【分析】(1)根据AB=,BC=,AC=,可得AB2+BC2≠AC2,即可得出△ABC不是直角三角形;(2)根据△DEF为钝角三角形,且面积为4进行作图即可.【解答】解:(1)如图1,∵AB=,BC=,AC=,∴AB2+BC2≠AC2,∴△ABC不是直角三角形;故答案为:不是;(2)如图2,△DEF中∠DEF>90°,△DEF的面积=×2×4=4.∴△DEF即为所求.20.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象进行以下探究:信息读取:(1)甲、乙两地之间的距离为900 km;(2)请解释图中点B的实际意义;图象理解:(3)求慢车和快车的速度;(4)求线段BC所表示的y与x之间的函数关系式,并写出自变量x的取值范围;问题解决:(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?【考点】一次函数的应用.【分析】直接从图上的信息可知:(1)中是900;(2)根据图象中的点的实际意义即可知道,图中点B的实际意义是:当慢车行驶4h时,慢车和快车相遇;(3)利用速度和路程之间的关系求解即可;(4)分别根据题意得出点C的坐标为(6,450),把(4,0),(6,450)代入y=kx+b利用待定系数法求解即可;(5)把x=4.5代入y=225x﹣900,得y=112.5,所以两列快车出发的间隔时间是112.5÷150=0.75(h),即第二列快车比第一列快车晚出发0.75h.【解答】解:(1)900;(2)图中点B的实际意义是:当慢车行驶4h时,慢车和快车相遇.(3)由图象可知,慢车12h行驶的路程为900km,所以慢车的速度为=75(km/h);当慢车行驶4h时,慢车和快车相遇,两车行驶的路程之和为900km,所以慢车和快车行驶的速度之和为=225(km/h),所以快车的速度为150(km/h).(4)根据题意,快车行驶900km到达乙地,所以快车行驶=6(h)到达乙地,此时两车之间的距离为6×75=450(km),所以点C的坐标为(6,450).设线段BC所表示的y与x之间的函数关系式为y=kx+b,把(4,0),(6,450)代入得,解得,所以,线段BC所表示的y与x之间的函数关系式为y=225x﹣900.自变量x的取值范围是4≤x≤6.(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h.把x=4.5代入y=225x﹣900,得y=112.5.此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km,所以两列快车出发的间隔时间是112.5÷150=0.75(h),即第二列快车比第一列快车晚出发0.75h.21.已知:如图,已知:D是△ABC的边AB上一点,CN∥AB,DN交AC于M,MA=MC,求证:CD=AN.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】根据已知利用ASA判定△AMD≌△CMN,则AD=CN.已知AD∥CN,则ADCN是平行四边形,则CD=AN.【解答】证明:如图,因为AB∥CN,所以∠1=∠2.在△AMD和△CMN中,∴△AMD≌△CMN.∴AD=CN.又AD∥CN,∴四边形ADCN是平行四边形.∴CD=AN.22.某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的A,B两种长方体形状的无盖纸盒,现有正方形纸板140张,长方形纸板360张,刚好全部用完,问能做成多少个A型盒子?多少个B型盒子?(1)根据题意,甲和乙两同学分别设了不同意义的未知数:甲同学设做了x个A型纸盒,y个B型纸盒,则甲同学所列方程组应为;而乙同学设做A型纸盒用x张正方形纸板,做B型纸盒用y张正方形纸板,则乙同学所列方程组应为.(2)求做成的A型盒子和B型盒子分别有多少个(写出完整的解答过程)?【考点】二元一次方程组的应用.【分析】(1)根据无盖纸盒的长方形木板和正方形木板的关系可以得到答案;(2)求解两个同学所列的两个方程中的一个即可求得盒子的个数.【解答】解:(1)甲:乙:,故答案为:,;(2)设能做成的A型盒有x个,B型盒子有y个,根据题意得:,解得:,答:A型盒有60个,B型盒子有40个.23.如图,一次函数y=﹣x+m的图象与x和y分别交于点A和点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积;(3)在直线OP上是否存在异与点P的另一点C,使得△OBC与△OBP的面积相等?若存在,请求出C点的坐标;若不存在,请说明理由.【考点】两条直线相交或平行问题.【分析】(1)将x=2代入正比例函数y=x中即可求出n值,由此即可得出点P的坐标,将点P的坐标代入一次函数y=﹣x+m中即可求出m值;(2)将x=0代入一次函数解析式中即可求出点B的值,再根据三角形的面积公式即可求出△POB的面积;(3)根据△OBC与△OBP的面积相等即可求出点C的横坐标,将其代入正比例函数y=x中即可求出点C的纵坐标,此题得解.【解答】解:(1)∵点P(2,n)在正比例函数y=x图象上,∴n=×2=3,∴点P的坐标为(2,3).∵点P(2,3)在一次函数y=﹣x+m的图象上,∴3=﹣2+m,解得:m=5,∴一次函数解析式为y=﹣x+5.∴m的值为5,n的值为3.(2)当x=0时,y=﹣x+5=5,∴点B的坐标为(0,5),∴S△POB =O B•xP=×5×2=5.(3)存在.∵S△OBC OB•|xC|=S△POB=5,∴xC =﹣2或xC=2(舍去).当x=﹣2时,y=×(﹣2)=﹣3.∴点C的坐标为(﹣2,﹣3).24.(1)问题发现:如图(1),小明在同一个平面直角坐标系中作出了两个一次函数y=x+1和y=x﹣1的图象,经测量发现:∠1 = ∠2(填数量关系)则l1∥l2(填位置关系),从而二元一次方程组无解.(2)问题探究:小明发现对于一次函数y=k1x+b1与y=k2x+b2(b1≠b2),设它们的图象分别是l1和l2(如备用图1)①如果k1= k2(填数量关系),那么l1∥l2(填位置关系);②反过,将①中命题的结论作为条件,条件作为结论,所得命题可表述为如果l1∥l2,那么k 1=k2,,请判断此命题的真假或举出反例;(3)问题解决:若关于x,y的二元一次方程组(各项系数均不为0)无解,那么各项系数a1、b1、c1、a2、b2、c2应满足什么样的数量关系?请写出你的结论.【考点】一次函数综合题.【分析】(1)分别证明△AOB和△COD是等腰直角三角形,则∠1=∠2=45°,所以l1∥l2;(2)①证明△AOP≌△BFQ,即可得出结论;②同理证明△AOP≌△BFQ,即可得出结论;(3)根据方程组表示出直线的解析式,根据方程组无解,可知两直线平行,则根据当b1≠b2,k 1=k2,列式可得结论.【解答】解:(1)如图(1),y=x+1中,当x=0时,y=1,当y=0时,x=﹣1,∴A(0,1),B(﹣1,0),∴OA=OB=1,∵∠AOB=90°,∴∠1=45°,同理求得∠2=45°,∴∠1=∠2,∴l1∥l2,故答案为:=,∥;(2)①当k1=k2时,如备用图1,过P作PQ∥x轴,交l2于Q,过Q作QF⊥x轴于F,∴OP=QF,当y=0时,k1x+b1=0,x=﹣,∴OA=,当x=0时,y=b1,∴P(0,b1),∵PQ∥x轴,∴点P与点Q的纵坐标相等,当y=b1时,b1=k2x+b2,x=,∴OF=,在y=k2x+b2中,当y=0时,0=k2x+b2,x=﹣,∴OB=﹣,∴BF=﹣(﹣)=,∵k1=k2,∴OA=BF,∵∠AOP=∠BFQ=90°,∴△AOP≌△BFQ,∴∠1=∠2,∴l1∥l2;则当k1=k2时,l1∥l2;∴故答案为:=,∥;②将①中命题的结论作为条件,条件作为结论,所得命题可表述为:如果l1∥l2,那么k1=k2,此命题为真命题;理由是:∵l1∥l2,∴∠1=∠2,∵∠AOP=∠BFQ=90°,OP=FQ,∴△AOP≌△BFQ,∴OA=BF,同理可得:OA=,BF=﹣(﹣)=,∴=,∵b1≠b2,∴k1=k2;③由a1x+b1y=c1得:y=﹣,由a2x+b2y=c2得:y=﹣,∵方程组无解,∴直线y=﹣和直线y=﹣平行,∴,则.2017年4月12日。

2016-2017学年西安市长安八年级上期末数学试卷含答案解析

2016-2017学年西安市长安八年级上期末数学试卷含答案解析
3.下面哪个点不在函数 y=﹣2x+3 的图象上( ) A.(﹣5,13) B.(0.5,2) C.(3,0) D.(1,1) 【考点】一次函数图象上点的坐标特征. 【分析】把每个选项中点的横坐标代入函数解析式,判断纵坐标是否相符.
第 5 页(共 15 页)
A.因为∠1=60°=∠2,所以 a∥b,所以∠4=∠3=57° B.因为∠4=57°=∠3,所以 a∥b,故∠1=∠2=60° C.因为∠2=∠5,又∠1=60°,∠2=60°,故∠1=∠5=60°,所以 a∥b,所以∠4= ∠3=57° D.因为∠1=60°,∠2=60°,∠3=57°,所以∠1=∠3=∠2﹣∠4=60°﹣57 °=3 °,故∠
2016-2017 学年陕西省西安市长安八年级(上)期末数学试卷
一、选择题 1.已知 P(﹣4,3),与 P 关于 x 轴对称的点的坐标是( ) A.(﹣3 ,4) B.(﹣4,﹣3 ) C.(﹣3 ,﹣4) D.(4,﹣3 ) 2.﹣27 的立方根与 9 的平方根的和是( ) A3..下0 面哪B.个6点不C在.函﹣数6y=D﹣.20x+或3﹣的6图象上( ) A.(﹣5,13) B.(0.5,2) C.(3,0) D.(1,1)
A.m>0,n<2B.m>0,n>2C.m<0,n<2D.m<0,n>2 9.如图,数轴上点 A、B 分别表示 1、 ,若点 B 关于点 A 的对称点为点 C, 则点 C 所表示的数为( )
A. ﹣1 B.1﹣ C. ﹣2 D.2﹣ 10.如图,∠1=60°,∠2=60°,∠3=57°,则∠4=57°,下面是 A,B,C,D 四个 同学的推理过程,你认为推理正确的是( )
2.﹣27 的立方根与 9 的平方根的和是( ) A.0 B.6 C.﹣6 D.0 或﹣6 【考点】实数的运算. 【分析】分别利用平方根、立方根的定义求解即可,解题注意 =﹣3 ,9 的 平方根有两个分别是±3. 【解答】解:(﹣3 )3=﹣27 ,可得﹣27 的立方根为﹣3 , 9 的平方根为:± =±3, ∴﹣27 的立方根与 9 的平方根的和为﹣3 +3=0 或﹣3 +(﹣3 )=﹣6 . 故选 D.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年陕西省西安市XX中学八年级(上)期末数学试卷一、选择题1.下列语言是命题的是()A.画两条相等的线段B.等于同一个角的两个角相等吗?C.延长线段AO到C,使OC=OAD.两直线平行,内错角相等.2.的算术平方根是()A.3 B.C.±3 D.±3.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.65°4.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M 相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°5.一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A.8 B.5 C.D.36.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.7.已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.图象中所反应的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离,根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是千米/小时9.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25 C.10+5 D.3510.如果,其中xyz≠0,那么x:y:z=()A.1:2:3 B.2:3:4 C.2:3:1 D.3:2:1二、填空题11.计算﹣+=.12.过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是.13.如图,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y轴于点A,交x轴于B,将直线AB沿射线OC方向平移个单位,则平移后直线的解析式为.14.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是.15.设直线nx+(n+1)y=(n为自然数)与两坐标轴围成的三角形面积为S n,则S1+S2+…+S2016的值为.16.已知方程|x|=ax+1有一个负根但没有正根,则a的取值范围是.三、解答题17.已知a=,b=,求a3+b3﹣4的值.18.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).19.已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.20.今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.21.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)在(2)的条件下,若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图象.22.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.23.如图,在平面直角坐标系中,O为坐标原点,直线l1:y=x与直线l2:y=﹣x+6交于点A,l2与x轴交于B,与y轴交于点C.(1)求△OAC的面积;(2)如点M在直线l2上,且使得△OAM的面积是△OAC面积的,求点M的坐标.24.(1)问题如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90,请直接写出线段AM长的最大值及此时点P的坐标.25.上周六上午8点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离y(千米)与他们路途所用的时间x(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶30分钟时,距姥姥家还有80千米,问小颖一家当天几点到达姥姥家?26.利用二元一次方程组解应用题:甲、乙两地相距160 km,一辆汽车和一辆拖拉机同时由两地以各自的速度匀速相向而行,小时后相遇,相遇后,拖拉机已其原速继续前进,汽车在相遇处停留1小时后掉转头以其原速返回,在汽车再次出发半小时追上拖拉机,这时,汽车、拖拉机各自走了多少路程?2016-2017学年陕西省西安市XX中学八年级(上)期末数学试卷参考答案与试题解析一、选择题1.下列语言是命题的是()A.画两条相等的线段B.等于同一个角的两个角相等吗?C.延长线段AO到C,使OC=OAD.两直线平行,内错角相等.【考点】命题与定理.【分析】根据命题的定义解答,命题是对事情做出正确或不正确的判断的句子叫做命题,分别判断得出答案即可.【解答】解:根据命题的定义:只有答案D、两直线平行,内错角相等.对事情做出正确或不正确的判断,故此选项正确;故选:D.2.的算术平方根是()A.3 B.C.±3 D.±【考点】算术平方根.【分析】首先根据算术平方根的定义求出,然后再求出它的算术平方根即可解决问题.【解答】解:∵=3,而3的算术平方根即,∴的算术平方根是.故选B.3.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35°B.45°C.55°D.65°【考点】平行线的性质;直角三角形的性质.【分析】利用“直角三角形的两个锐角互余”的性质求得∠A=35°,然后利用平行线的性质得到∠1=∠B=35°.【解答】解:如图,∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠A=35°.故选:A.4.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M 相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24°B.30°C.32°D.36°【考点】线段垂直平分线的性质.【分析】根据角平分线的定义可得∠ABP=∠CBP,根据线段垂直平分线上的点到两端点的距离相等可得BP=CP,再根据等边对等角可得∠CBP=∠BCP,然后利用三角形的内角和等于180°列出方程求解即可.【解答】解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP=32°.故选:C.5.一组数据,6、4、a、3、2的平均数是5,这组数据的方差为()A .8 B.5 C. D.3【考点】方差;算术平均数.【分析】根据平均数的计算公式先求出a的值,再根据方差公式S2= [(x1﹣)2+(x2﹣)2+…+(x﹣)2],代数计算即可.n【解答】解:∵6、4、a、3、2的平均数是5,∴(6+4+a+3+2)÷5=5,解得:a=10,则这组数据的方差S2= [(6﹣5)2+(4﹣5)2+(10﹣5)2+(3﹣5)2+(2﹣5)2]=8;故选:A.6.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设男生有x人,女生有y人,根据男女生人数为20,共种了52棵树苗,列出方程组成方程组即可.【解答】解:设男生有x人,女生有y人,根据题意得,.故选:D.7.已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数图象与系数的关系.【分析】首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限,进而求解即可.【解答】解:∵k+b=﹣5,kb=6,∴k<0,b<0,∴直线y=kx+b经过二、三、四象限,即不经过第一象限.故选:A.8.图象中所反应的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离,根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是千米/小时【考点】函数的图象.【分析】根据观察函数图象的纵坐标,判断A、C,根据观察函数图象的横坐标,可判断B,根据观察纵坐标、横坐标,可得路程与时间,根据路程除以时间,可得答案.【解答】解:A、由纵坐标看出体育场离张强家2.5千米,故A正确,不合题意;B、由横坐标看出锻炼时间为30﹣15=15分钟,故B正确,不合题意;C、2.5﹣1.5=1千米,体育场离早餐店1千米,故C错误,符合题意;D、由纵坐标看出早餐店距家1.5千米,由横坐标看出回家时间是100﹣65=35分钟=小时,回家速度是1.5÷=(千米/小时),故D正确,不合题意;故选:C.9.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.5B.25 C.10+5 D.35【考点】平面展开﹣最短路径问题.【分析】要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将长方体展开,连接A、B,根据两点之间线段最短,(1)如图,BD=10+5=15,AD=20,由勾股定理得:AB====25.(2)如图,BC=5,AC=20+10=30,由勾股定理得,AB====5.(3)只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:∴AB===5;由于25<5<5,故选B.10.如果,其中xyz≠0,那么x:y:z=()A.1:2:3 B.2:3:4 C.2:3:1 D.3:2:1【考点】解三元一次方程组.【分析】理解清楚题意,运用三元一次方程组的知识,把x,y用z表示出来,代入代数式求值.【解答】解:已知,①×2﹣②得,7y﹣21z=0,∴y=3z,代入①得,x=8z﹣6z=2z,∴x:y:z=2z:3z:z=2:3:1.故选C.二、填空题11.计算﹣+=.【考点】二次根式的加减法.【分析】根据二次根式的性质,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:原式=2﹣+=,故答案为:.12.过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.则在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).【考点】两条直线相交或平行问题.【分析】依据与直线平行设出直线AB的解析式y=﹣x+b;代入点(﹣1,7)即可求得b,然后求出与x轴的交点横坐标,列举才符合条件的x的取值,依次代入即可.【解答】解:∵过点(﹣1,7)的一条直线与直线平行,设直线AB为y=﹣x+b;把(﹣1,7)代入y=﹣x+b;得7=+b,解得:b=,∴直线AB的解析式为y=﹣x+,令y=0,得:0=﹣x+,解得:x=,∴0<x<的整数为:1、2、3;把x等于1、2、3分别代入解析式得4、、1;∴在线段AB上,横、纵坐标都是整数的点的坐标是(1,4),(3,1).故答案为:(1,4),(3,1).13.如图,已知点C为直线y=x上在第一象限内一点,直线y=2x+1交y轴于点A,交x轴于B,将直线AB沿射线OC方向平移个单位,则平移后直线的解析式为y=2x.【考点】一次函数图象与几何变换.【分析】设点A沿射线OC方向平移个单位后到达点M,点B沿射线OC方向平移个单位后到达点N,过点M作ME⊥y轴于点M,过点N作NF⊥x轴于点F,则△AEM和△BFN为等腰直角三角形,根据直线AB的解析式利用一次函数图象上点的坐标特征即可得出点A、B的坐标,根据等腰直角三角形的性质结合AM=BN=即可得出点M、N的坐标,再利用待定系数法即可求出平移后直线的解析式.【解答】解:设点A沿射线OC方向平移个单位后到达点M,点B沿射线OC方向平移个单位后到达点N,过点M作ME⊥y轴于点M,过点N作NF⊥x轴于点F,如图所示.∵直线OC的解析式为y=x,∴∠COF=∠COA=45°.∵AM∥OC、BN∥OC,∴∠NBF=∠COF=45°,∠MAE=∠COA=45°,∴△AEM和△BFN为等腰直角三角形,且AM=BN=,∴BF=NF=AE=EM=1.当x=0时,y=2x+1=1,∴点A的坐标为(0,1);当y=2x+1=0时,x=﹣,∴点B的坐标为(﹣,0).∴点M的坐标为(1,2),点N的坐标为(,1).设直线MN的解析式为y=kx+b,将M(1,2)、N(,1)代入y=kx+b,,解得:,∴直线MN的解析式为y=2x.故答案为:y=2x.14.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是50°.【考点】翻折变换(折叠问题);线段垂直平分线的性质;等腰三角形的性质.【分析】利用全等三角形的判定以及垂直平分线的性质得出∠OBC=40°,以及∠OBC=∠OCB=40°,再利用翻折变换的性质得出EO=EC,∠CEF=∠FEO,进而求出即可.【解答】解:连接BO,∵∠BAC=50°,∠BAC的平分线与AB的中垂线交于点O,∴∠OAB=∠ABO=25°,∵等腰△ABC中,AB=AC,∠BAC=50°,∴∠ABC=∠ACB=65°,∴∠OBC=65°﹣25°=40°,∵,∴△ABO≌△ACO,∴BO=CO,∴∠OBC=∠OCB=40°,∵点C沿EF折叠后与点O重合,∴EO=EC,∠CEF=∠FEO,∴∠CEF=∠FEO==50°,故答案为:50°.15.设直线nx+(n+1)y=(n为自然数)与两坐标轴围成的三角形面积为S n,则S1+S2+…+S2016的值为.【考点】一次函数图象上点的坐标特征.【分析】先利用坐标轴上点的坐标特征求出直线与x轴和y轴的坐标,则利用三角形面积公式得到S n=,再分别计算出S1,S2,S3,S2015,然后利用=﹣求它们的和.【解答】解:当x=0时,y=,则直线与y轴的交点坐标为(0,),当y=0时,x=,则直线与x轴的交点坐标为(,0),所以S n=••=,当n=1时,S1=,当n=2时,S2=,当n=3时,S3=,…当n=2016时,S2016=,所以S1+S2+S3+…+S2015=+++…+=1﹣+﹣+﹣+…+﹣=1﹣=.16.已知方程|x|=ax+1有一个负根但没有正根,则a的取值范围是a>﹣1.【考点】含绝对值符号的一元一次方程.【分析】根据绝对值的性质,有理数的乘法,可得不等式,根据解不等式,可得答案.【解答】解:由题意,得﹣x=ax+1,(a+1)x=﹣1,a+1>0,解得a>﹣1,故答案为:a>﹣1.三、解答题17.已知a=,b=,求a3+b3﹣4的值.【考点】二次根式的化简求值.【分析】首先对a和b的值分母有理化,把所求的式子利用立方差公式变形,再代入求解即可.【解答】解:a====2﹣,b====2+;则a3+b3﹣4=(a+b)(a2﹣ab+b2)﹣4=4×(14﹣1)﹣4=48.18.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).【考点】作图—基本作图;平行线的判定.【分析】(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDC,再根据同位角相等两直线平行可得结论.【解答】解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.19.已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=﹣1.(1)应用:已知y=2x+1与y=kx﹣1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式.【考点】两条直线相交或平行问题.【分析】(1)根据L1⊥L2,则k1•k2=﹣1,可得出k的值即可;(2)根据直线互相垂直,则k1•k2=﹣1,可得出过点A直线的k等于3,得出所求的解析式即可.【解答】解:(1)∵L1⊥L2,则k1•k2=﹣1,∴2k=﹣1,∴k=﹣;(2)∵过点A直线与y=x+3垂直,∴设过点A直线的直线解析式为y=3x+b,把A(2,3)代入得,b=﹣3,∴解析式为y=3x﹣3.20.今年“五一”小长假期间,某市外来与外出旅游的总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市今年外来和外出旅游的人数.【考点】二元一次方程组的应用.【分析】设该市去年外来人数为x万人,外出旅游的人数为y万人,根据总人数为226万人,去年同期外来旅游比外出旅游的人数多20万人,列方程组求解.【解答】解:设该市去年外来人数为x万人,外出旅游的人数为y万人,由题意得,,解得:,则今年外来人数为:100×(1+30%)=130(万人),今年外出旅游人数为:80×(1+20%)=96(万人).答:该市今年外来人数为130万人,外出旅游的人数为96万人.21.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)在(2)的条件下,若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图象.【考点】一次函数的应用.【分析】(1)设出AB所在直线的函数解析式,由解析式可以算出甲乙两地之间的距离.(2)设出两车的速度,由图象列出关系式.(3)根据(2)中快车与慢车速度,求出C,D,E坐标,进而作出图象即可.【解答】解:(1)设直线AB的解析式为y=kx+b.∵直线AB经过点(1.5,70),(2,0),∴,解得.∴直线AB的解析式为y=﹣140x+280(x≥0).∵当x=0时,y=280.∴甲乙两地之间的距离为280千米.(2)设快车的速度为m千米/时,慢车的速度为n千米/时.由题意可得,解得.∴快车的速度为80千米/时.∴快车从甲地到达乙地所需时间为t==小时;(3)∵快车的速度为80千米/时.慢车的速度为60千米/时.∴当快车到达乙地,所用时间为:=3.5小时,∵快车与慢车相遇时的时间为2小时,∴y=(3.5﹣2)×(80+60)=210,∴C点坐标为:(3.5,210),此时慢车还没有到达甲地,若要到达甲地,这个过程慢车所用时间为:=小时,当慢车到达甲地,此时快车已经驶往甲地时间为:﹣3.5=小时,∴此时距甲地:280﹣×80=千米,∴D点坐标为:(,),再一直行驶到甲地用时3.5×2=7小时.∴E点坐标为:(7,0),故图象如图所示:22.在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.【考点】一次函数综合题.【分析】(Ⅰ)①利用待定系数法求得直线OF与EA的直线方程,然后联立方程组,求得该方程组的解即为点P的坐标;②由已知可设点F的坐标是(1,t).求得直线OF、EA的解析式分别是y=tx、直线EA的解析式为:y=(2+t)x﹣2(2+t).则tx=(2+t)x﹣2(2+t),整理后即可得到y关于x的函数关系式y=x2﹣2x;(Ⅱ)同(Ⅰ),易求P(2﹣,2t﹣).则由PQ⊥l于点Q,得点Q(1,2t﹣),则OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,所以1+t2(2﹣)2=(1﹣)2,化简得到:t(t﹣2m)(t2﹣2mt﹣1)=0,通过解该方程可以求得m与t的关系式.【解答】解:(Ⅰ)①∵点O(0,0),F(1,1),∴直线OF的解析式为y=x.设直线EA的解析式为:y=kx+b(k≠0)、∵点E和点F关于点M(1,﹣1)对称,∴E(1,﹣3).又∵A(2,0),点E在直线EA上,∴,解得,∴直线EA的解析式为:y=3x﹣6.∵点P是直线OF与直线EA的交点,则,解得,∴点P的坐标是(3,3).②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+d(c、d是常数,且c≠0).由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).又点A、E在直线EA上,∴,解得,∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点,∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),化简,得x=2﹣.有y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,化简,得t(t﹣2m)(t2﹣2mt﹣1)=0.又∵t≠0,∴t﹣2m=0或t2﹣2mt﹣1=0,解得m=或m=.则m=或m=即为所求.23.如图,在平面直角坐标系中,O为坐标原点,直线l1:y=x与直线l2:y=﹣x+6交于点A,l2与x轴交于B,与y轴交于点C.(1)求△OAC的面积;(2)如点M在直线l2上,且使得△OAM的面积是△OAC面积的,求点M的坐标.【考点】两条直线相交或平行问题.【分析】(1)先根据直线解析式,求得C(0,6),再根据方程组的解,得出A(4,2),进而得到△OAC的面积;(2)分两种情况进行讨论:①点M1在射线AC上,②点M2在射线AB上,分别根据点M的横坐标,求得其纵坐标即可.【解答】解:(1)在y=﹣x+6中,令x=0,解得y=6,∴C(0,6),即CO=6,解方程组,可得,∴A(4,2),=×6×4=12;∴S△OAC(2)分两种情况:①如图所示,当点M1在射线AC上时,过M1作M1D⊥CO于D,则△CDM1是等腰直角三角形,∵A(4,2),C(0,6),∴AC==4,∵△OAM的面积是△OAC面积的,∴AM1=AC=3,∴CM1=,∴DM1=,即点M1的横坐标为,在直线y=﹣x+6中,当x=时,y=6﹣,∴M1(,6﹣);②如图所示,当点M2在射线AB上时,过M2作M2E⊥CO于E,则△CEM2是等腰直角三角形,由题可得,AM2=AM1=3,∴CM2=7,∴EM2=,即点M2的横坐标为,在直线y=﹣x+6中,当x=时,y=6﹣,∴M2(,6﹣).综上所述,点M的坐标为(,6﹣)或(,6﹣).24.(1)问题如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为a+b(用含a,b的式子表示)(2)应用点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90,请直接写出线段AM长的最大值及此时点P的坐标.【考点】三角形综合题;全等三角形的判定与性质;等腰直角三角形;旋转的性质.【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;过P作PE⊥x轴于E,根据等腰直角三角形的性质,即可得到结论.【解答】解:(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为:CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,∴由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=4;(3)如图1,连接BM,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣,).25.上周六上午8点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离y(千米)与他们路途所用的时间x(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶30分钟时,距姥姥家还有80千米,问小颖一家当天几点到达姥姥家?【考点】一次函数的应用.【分析】(1)设直线AB所对应的函数关系式为y=kx+b,把(0,320)和(2,120)代入y=kx+b 即可得到结论;(2)设直线CD所对应的函数关系式为y=mx+n,把(2.5,120)和(3,80)代入y=mx+n得得到直线CD所对应的函数关系式为y=﹣80x+320,当y=0时,x=4,于是得到结论.【解答】解:(1)设直线AB所对应的函数关系式为y=kx+b,把(0,320)和(2,120)代入y=kx+b得:,解得:,∴直线AB所对应的函数关系式为:y=﹣100x+320;(2)设直线CD所对应的函数关系式为y=mx+n,把(2.5,120)和(3,80)代入y=mx+n得:,解得:,∴直线CD所对应的函数关系式为y=﹣80x+320,当y=0时,x=4,∴小颖一家当天12点到达姥姥家.26.利用二元一次方程组解应用题:甲、乙两地相距160 km,一辆汽车和一辆拖拉机同时由两地以各自的速度匀速相向而行,小时后相遇,相遇后,拖拉机已其原速继续前进,汽车在相遇处停留1小时后掉转头以其原速返回,在汽车再次出发半小时追上拖拉机,这时,汽车、拖拉机各自走了多少路程?【考点】二元一次方程组的应用.【分析】设汽车的速度是x千米每小时,拖拉机速度y千米每小时,根据甲乙两地相距160千米,1小时后相遇和拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,列出方程,求出x,y的值,再根据路程=速度×时间即可得出答案.【解答】解:设汽车的速度是x千米每小时,拖拉机速度y千米每小时,根据题意得:,解得:,则汽车汽车行驶的路程是:(+)×90=165(千米),拖拉机行驶的路程是:(+)×30=85(千米).答:汽车行驶165千米,拖拉机形式85千米.2017年4月16日。

相关文档
最新文档