初三中考向量练习题1
初中数学向量练习题(含答案)
B.3
C.2
1
D.2
【解答】解:∵| + |=| ﹣ |,
∴
,A= ,
∵cos2C+2sin2 =1,∴cos2C=cos(π﹣C),可得 2cos2C+cosC﹣1=0,
解得 cosC= ,所以 C= ,则 B= ,在 Rt△ABC 中,BC=2,BA= ,
•=
=3.
故选:B. 5.在△ABC 中,AB=4,AC=2,∠BAC=60°,点 D 为 BC 边上一点,且 D 为 BC 边上靠
A.6
B.
t ,则△ABC 的面积与△BOC
t C.
D.4
【解答】解:由 t
t ,不妨设
2,
7 , t 3 t,
所以
t,
所以点 O 是△A1B1C1 的重心,
所以
t
t k,
如图所示
又
t
t
t ,
tt
,
t
t
所以 S△OBC t k,S△OAB
k,S△OAC k,
S△ABC=S△OAB+S△OAC+S△OBC=(
为对角线 AC,BD 的中点,则t
的值为 ﹣7 .
【解答】解:如图,连接 FP,FQ,EP,EQ, ∵E,F 为 AB,CD 的中点,P,Q 为对角线 AC,BD 的中点, ∴四边形 EPFQ 为平行四边形,
∴t t t t
∴t
t
t,
ttt
t
t
tt
t ,且 AD=6,BC=8, .
故答案为:﹣7.
8
③当∠C=90°时, • =0,
即﹣1+k•(k﹣3)=0,整理得 k2﹣3k﹣1=0,解得 k=
新初中数学向量的线性运算经典测试题及答案
新初中数学向量的线性运算经典测试题及答案一、选择题1.如图,ABCD □对角线AC 与BD 相交于点O ,如果AB m =u u u r u r ,AD n =u u u r r,那么下列选项中,与向量()12m n +ur r 相等的向量是( ).A .OA u u u rB .OB uuu rC .OC u u u rD .OD uuu r【答案】C 【解析】 【分析】由四边形ABCD 是平行四边形根据平行四边形法则,可求得BC AD n ==u u u r u u u r r,然后由三角形法则,求得AC u u u r 与BD u u u r,继而求得答案. 【详解】∵四边形ABCD 是平行四边形, ∴BC AD n ==u u u r u u u r r ,∴AC u u u r =AB BC m n +=+u u ur u u u r u r r ,=BD AD AB n m -=-u u u r u u u r u u u r r u r , ∴()11=-22OA AC m n =-+u u u r u u u r ur r ,()11=22OC AC m n =+u u u r u u u r u r r ()11=-22OB BD n m =--u u u r u u u r r ur ,()11=22OD BD n m =-u u u r u u u r r u r故选:C . 【点睛】此题考查了平面向量的知识以及平行四边形的性质.注意掌握三角形法则与平行四边形法则的应用是解此题的关键.2.下列等式正确的是( )A .AB u u u r +BC uuur =CB u u u r +BA u u u rB .AB u u u r﹣BC uuu r =AC u u u rC .AB u u u r +BC uuur +CD uuu r =DA u u u r D .AB u u u r +BC uuur ﹣AC u u u r =0r【答案】D 【解析】 【分析】根据三角形法则即可判断. 【详解】∵AB BC AC +=u u u r u u u r u u u r ,∴0AB BC AC AC AC +-=-=u u u u r u u u ru u u r u u u r u u u r r, 故选D . 【点睛】本题考查平面向量的三角形法则,解题的关键是熟练掌握三角形法则.3.如图,在△ABC 中,中线AD 、CE 交于点O ,设AB a,BC k ==u u u r r u u u r r ,那么向量AO uuu r用向量a b⋅r r 表示为( )A .12a b +rrB .2133a b +r rC .2233a b +r rD .1124a b +r r【答案】B 【解析】 【分析】利用三角形的重心性质得到: 23AO AD =;结合平面向量的三角形法则解答即可. 【详解】∵在△ABC 中,AD 是中线, BC b =u u u r r,∴11BD BC b 22==u u u r u u u r r.∴1b 2AD AB BD a =+=+u u u r u u u r u u u r r r又∵点O 是△ABC 的重心, ∴23AO AD =, ∴221AO AD a b 333==+u u u r u u u r r r .故选:B .【点睛】此题主要考查了平面向量与重心有关知识,根据重心知识得出23AO AD =是解题的关键.4.下列判断不正确的是( )A .如果AB CD =u u u r u u u r,那么AB CD =u u u r u u u rB .+=+C .如果非零向量a b(0)k k=坠r r,那么a r 与b r平行或共线D .AB BA 0+=u u u r u u u r【答案】D 【解析】 【分析】根据模的定义,可判断A 正确;根据平面向量的交换律,可判断B 正确;根据非零向量的知识,可确定C 正确;又由0AB BA +=u u u r u u u r r可判断D 错误 【详解】A 、如果AB CD =u u u r u u u r,那么AB CD =u u u v u u u v ,故此选项正确;B 、a b b a +=+r r r r,故本选项正确;C 、如果非零向量a b(0)k k =坠r r ,那么a r 与b r平行或共线,故此选项正确;D 、0AB BA +=u u u r u u u r r,故此选项错误;故选:D . 【点睛】此题考查的是平面向量的知识,掌握平面向量相关定义是关键5.若向量a r与b r均为单位向量,则下列结论中正确的是( ).A .a b =r rB .1a =rC .1b =rD .a b =r r【答案】D 【解析】 【分析】由向量a r 与b r 均为单位向量,可得向量a r 与b r的模相等,但方向不确定.【详解】解:∵向量a r与b r均为单位向量, ∴向量a r与b r的模相等,∴a b =r r.故答案是:D.【点睛】此题考查了单位向量的定义.注意单位向量的模等于1,但方向不确定.6.下列说法正确的是( ).A .一个向量与零相乘,乘积为零B .向量不能与无理数相乘C .非零向量乘以一个负数所得向量比原向量短D .非零向量乘以一个负数所得向量与原向量方向相反 【答案】D 【解析】 【分析】根据平面向量的定义和性质进行判断. 【详解】解:A. 一个向量与零相乘,乘积为零向量.故本选项错误; B. 向量可以与任何实数相乘.故本选项错误;C. 非零向量乘以一个负数所得向量的方向与原向量相反,但不一定更短.故本选项错误;D. 非零向量乘以一个负数所得向量与原向量方向相反.故本选项正确. 故答案是:D. 【点睛】考查了平面向量的知识,属于基础题,掌握平面向量的性质和相关运算法则即可解题.7.已知在ABC ∆中,AB AC =,AD 是角平分线,点D 在边BC 上,设BC a =u u u rr,AD b =u u u r r ,那么向量AC u u u r 用向量a r 、b r表示为( ) A .12a b +r r B .12a b r r - C .12a b -+r rD .12a b --r r【答案】A 【解析】试题分析:因为AB =AC ,AD 为角平分线,所以,D 为BC 中点,=12a b +rr .故选A .考点:平面向量,等腰三角形的三线合一.8.下面四个命题中正确的命题个数为( ).①对于实数m 和向量a r、b r ,恒有()m a b ma mb -=-r r r r②对于实数m 、n 和向量a r,恒有()m n a ma na -=-r r r③若ma mb =rr(m 是实数)时,则有a b =rr④若ma na =r r(m 、n 是实数,0a ≠rr),则有m n = A .1个 B .2个C .3个D .4个【答案】C 【解析】 【分析】根据平面向量的性质依次判断即可. 【详解】①对于实数m 和向量a r、b r ,恒有()m a b ma mb -=-r r r r ,正确;②对于实数m 、n 和向量a r,恒有()m n a ma na -=-r r r ,正确;③若ma mb =r r (m 是实数)时,则有a b =r r ,错误,当m=0时不成立; ④若ma na =r r (m 、n 是实数,0a ≠r r ),则有m n =,正确;故选C. 【点睛】本题考查平面向量知识,熟练掌握平面向量的基本性质是解决本题的关键.9.如图,已知向量a r,b r,c r,那么下列结论正确的是( )A .a b c +=r r rB .b c a +=rr rC .a c b +=rr rD .a c b +=-r r r【答案】D 【解析】 【分析】 【详解】由平行四边形法则,即可求得: 解:∵CA AB CB +=u u u ru u u ru u u r, 即a c b +=-r r r 故选D .10.下列各式不正确的是( ). A .0a a -=rr rB .a b b a +=+r rrrC .如果()0a k b k =⋅≠r r ,那么b r 与a r 平行D .如果a b =r r ,那么a b =r r【答案】D 【解析】 【分析】根据向量的定义是规定了方向和大小的量,向量的运算法则及实数与向量乘积的意义判断各选项即可. 【详解】A.任意向量与它的相反向量的和都等于零向量,所以选项A 正确;B.向量的加法符合交换律,即a b b a +=+r r r r,所以选项B 正确;C.如果()0a k b k =≠r r g ,根据实数与向量乘积的意义可知:a r ∥b r,所以选项C 正确;D.两个向量相等必须满足两个条件:长度相等且方向相同,如果a b =r r ,但a r 与b r 方向不同,则a b ≠r r,所以D 选项错误. 故选D. 【点睛】本题考查了向量的定义、运算及运算法则、实数与向量乘积的意义,明确定义及法则是解题的关键.11.已知a r 、b r 、c r 都是非零向量,如果2a c =r r ,2b c =-r r,那么下列说法中,错误的是( )A .//a b r rB .a b =r rC .72BD =D .a r 与b r方向相反【答案】C 【解析】 【分析】利用相等向量与相反向量的定义逐项判断即可完成解答. 【详解】解:已知2a c v v =,2b c -v v =,故a b v v ,是长度相同,方向相反的相反向量,故A ,B ,D 正确,向量之和是向量,C 错误, 故选C. 【点睛】本题主要考查的相等向量与相反向量,熟练掌握定义是解题的关键;就本题而言,就是正确运用相等向量与相反向量的定义判断A 、B 、D 三项结论正确.12.如果向量a r 与单位向量e r 的方向相反,且长度为3,那么用向量e r 表示向量a r为( )A .3a e =v vB .3a e =-v vC .3e a =v vD .3e a =-v v【答案】B 【解析】 【分析】根据平面向量的定义解答即可. 【详解】解:∵向量e r为单位向量,向量a r与向量e r方向相反, ∴3a e r r=-. 故选:B . 【点睛】本题考查平面向量的性质,解题的关键是灵活运用所学知识解决问题.13.如图,在平行四边形ABCD 中,如果AB a =u u u r r ,AD b =u u u r r ,那么a b +rr 等于( )A .BD u u u rB .AC u u u rC .DB u u u rD .CA u u u r【答案】B 【解析】 【分析】由四边形ABCD 是平行四边形,可得AD=BC ,AD ∥BC ,则可得BC b =u u u r r,然后由三角形法则,即可求得答案. 【详解】解:∵四边形ABCD 是平行四边形, ∴AD=BC ,AD ∥BC ,∵AD b =u u u r r , ∴BC b =u u u r r,∵AB a =u u u rr,∴a b +r r =AB u u ur +BC uuu r =AC u u u r . 故选B .14.在ABCD Y 中,AC 与BD 相交于点O ,AB a =u u u r r ,AD b =u u u r r ,那么OD uuu r等于( )A .1122a b +r rB .1122a b --r rC .1122a b -r rD .1122a b -+r r【答案】D 【解析】 【分析】由四边形ABCD 是平行四边形,可得12OD BD =u u u r u u u r ,,又由BD BA AD =+u u u r u u u r u u u r,即可求得OD uuu r的值.【详解】解:∵四边形ABCD 是平行四边形,∴OB=OD=12BD , ∴12OD BD =u u u r u u u r ,∵BD BA AD a b =+=-+u u u r u u u r u u u r r r , ∴12OD BD =u u u r u u u r =111()222a b a b -+=-+r r r r故选:D . 【点睛】此题考查了向量的知识.解题时要注意平行四边形法则的应用,还要注意向量是有方向的.15.已知一个单位向量e v ,设a v 、b v是非零向量,那么下列等式中正确的是( ).A .1a e a=r r r ;B .e a a =r r r ;C .b e b =r r r ;D .11a b a b=r r r r .【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】解:A 、左边得出的是a 的方向不是单位向量,故错误;B 、符合向量的长度及方向,正确;C 、由于单位向量只限制长度,不确定方向,故错误;D 、左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误.故选:B . 【点睛】本题考查了向量的性质.16.设e r为单位向量,2a =r ,则下列各式中正确的是( )A .2a e =r rB .a e a=rr r C .2a e =r r D .112a =±r【答案】C 【解析】 【分析】根据e r为单位向量,可知1e =r ,逐项进行比较即可解题.【详解】解:∵e r为单位向量,∴1e =r,A 中忽视了向量的方向性,错误B 中忽视了向量的方向性,错误C 中,∵2a =r ,1e =r, ∴2a e =r r,正确,D 中忽视了向量的方向性,错误故选C. 【点睛】本题考查了向量的应用,属于简单题,熟悉向量的概念是解题关键.17.如果2a b =r r (a r ,b r均为非零向量),那么下列结论错误的是( )A .a r //b rB .a r -2b r =0C .b r =12a rD .2a b =r r【答案】B 【解析】试题解析:向量最后的差应该还是向量.20.a b v vv-= 故错误. 故选B.18.规定:在平面直角坐标系xOy 中,如果点P 的坐标为(,)m n ,向量OP uuu r可以用点P 的坐标表示为:(,)OP m n u u u v=.已知11(,OA x y =u u u v ),22(,)OB x y =u u u r ,如果12120x x y y +=,那么OA u u u r 与OB uuu r互相垂直.下列四组向量中,互相垂直的是( )A .(4,3)OC =-u u u r ;(3,4)OD =-u u u rB .(2,3)OE =-u u u r ; (3,2)OF =-u u u rC .OG =u u u r ;(OH =u u u rD .4)OM =u u u u r ;(2)ON =-u u u r【答案】D 【解析】【分析】将各选项坐标代入12120x x y y +=进行验证即可. 【详解】解:A. 12121202124x x y y =--=-≠+,故不符合题意; B. 121266102x x y y =--=-≠+,故不符合题意; C. 12123012x x y y =-+=-≠+,故不符合题意; D. 1212880x x y y =-+=+,故符合题意; 故选D. 【点睛】本题考查新定义与实数运算,正确理解新定义的运算方法是解题关键.19.设,m n 为实数,那么下列结论中错误的是( )A .m na mn a r r()=()B .m n a ma na ++r r r()= C .m a b ma mb +r r r r (+)= D .若0ma =r r,那么0a =r r【答案】D 【解析】 【分析】空间向量的线性运算的理解:(1)空间向量的加、减、数乘运算可以像代数式的运算那样去运算;(2)注意向量的书写与代数式的书写的不同,我们书写向量的时候一定带上线头,这也是向量与字母的不同之处;(3)虽然向量的线性运算可以像代数式的运算那样去运算,但它们表示的意义不同. 【详解】根据向量的运算法则,即可知A (结合律)、B 、C (乘法的分配律)是正确的,D 中的0v是有方向的,而0没有,所以错误.解:∵A 、B 、C 均属于向量运算的性质,是正确的; ∵D 、如果a v =0v ,则m=0或a v =0v.∴错误. 故选D . 【点睛】本题考查的知识点是向量的线性运算,解题关键是熟记向量的运算法则.20.下列各式正确的是( ).A .()22a b c a b c ++=++r r r r r rB .()()330a b b a ++-=rr r rC .2AB BA AB +=u u u r u u u r u u u rD .3544a b a b a b ++-=-r r r r r r【答案】D 【解析】 【分析】根据平面向量计算法则依次判断即可.【详解】 A 、()222a b c a b c ++=++r r r r r r ,故A 选项错误;B 、()()3333+33=6a b b a a b b a b ++-=+-r r r r r r r r r ,故B 选项错误;C 、0AB BA +=uu u r uu r r ,故C 选项错误;D 、3544a b a b a b ++-=-r r r r r r ,故D 选项正确; 故选D.【点睛】本题是对平面向量计算法则的考查,熟练掌握平面向量计算法则是解决本题的关键.。
初中数学向量练习(含详细解析)
向量概念、加减练习1.如果,,而且,那么与是()A.与是相等向量B.与是平行向量C.与方向相同,长度不同D.与方向相反,长度相同2.下列判断错误的是()A.0•=B.如果(为非零向量),那么∥C.设为单位向量,那么||=1D.如果,那么或3.下列有关向量的等式中,不一定成立的是()A.=﹣B.||=||C.+=D.|+|=||+|| 4.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,如果=,=.那么下列选项中,正确的是()A.=(+)B.=(+)C.=(﹣)D.=(﹣)5.下列命题:①若,,则;②若∥,∥,则∥;③若||=2||,则或=﹣2;④若与是互为相反向量,则+=0.其中真命题的个数是()A.1个 B.2个 C.3个 D.4个6.如图,在平行四边形ABCD中,如果,,那么等于()A.B.C.D.7.如果向量与向量方向相反,且,那么向量用向量表示为()A.B.C.D.8.下列关于向量的说法中,不正确的是()A. B.C.若,则或 D.9.已知非零向量,,下列条件中,不能判定的是()A.B.C.D.10.如果与均是单位向量,以下关系式:(1),(2),(3)中,正确的有()A.0个 B.1个 C.2个 D.3个11.已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为()A.+B.﹣C.﹣+ D.﹣﹣12.如图,已知平行四边形ABCD中,向量在,方向上的分量分别是()A. B.C.、D.、13.已知非零向量、、,其中=2+.下列各向量中与是平行向量的是()A.=﹣2B.=﹣2C.=4+2D.=2+414.下列说法中不正确的是()A.如果m、n为实数,那么B.如果k=0或,那么C.长度为1的向量叫做单位向量D.如果m为实数,那么15.若,且,则四边形ABCD是()A.平行四边形B.菱形C.等腰梯形D.不等腰梯形16.下列关于向量的说法中,不正确的是()A. B.C.若(k为实数),则∥D.若,则或17.下列命题中正确的共有()个①向量与是平行向量,则A、B、C、D四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD是平行四边形必须;⑤模为0的向量方向不确定.A.1个 B.2个 C.3个 D.4个18.已知非零向量、和单位向量,那么下列等式中正确的是()A.B.C.D.19.如图,向量与均为单位向量,且OA⊥OB,令,则=()A.1 B.C.D.220.如图,六边形ABCDEF是⊙O的内接正六边形,若,,则向量可表示为()A.B.C.D.21.下列判断错误的是()A.如果k=0或,那么B.设m为实数,则C.如果,那么D.在平行四边形ABCD中,22.已知是非零向量,与同方向的单位向量记作,则下列式子中,正确的是()A.B.C.D.23.如图,在平面直角坐标系中,O为原点,点A、B、C的坐标分别为(2,0)、(﹣1,3)、(﹣2,﹣2).(1)在图中作向量;(2)在图中作向量;(3)填空:=.向量坐标表示练习1.向量=(1,2),=(3,4),且x,y∈R,x=(5,6),则x ﹣y=()A.3 B.﹣3 C.1 D.﹣12.已知向量=(﹣2,2),=(1,m),若向量∥,则m=()A.﹣1 B.1 C.D.23.已知平面向量=(1,2),=(﹣2,m),且∥,则|+|=()A.B.2C.3D.44.已知点A(0,1),B(3,2),向量=(﹣4,﹣3),则向量=()A.(﹣7,﹣4)B.(7,4) C.(﹣1,4)D.(1,4)5.设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2 B.3 C.4 D.66.已知向量=(1,m),=(3,﹣2),且(+)⊥,则m=()A.﹣8 B.﹣6 C.6 D.87.已知向量=(k,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=()A.﹣B.0 C.3 D.8.在下列向量组中,可以把向量=(3,2)表示出来的是()A.=(0,0),=(1,2) B.=(﹣1,2),=(5,﹣2)C.=(3,5),=(6,10)D.=(2,﹣3),=(﹣2,3)9.已知向量=(2,4),=(﹣1,1),则2﹣=()A.(5,7) B.(5,9) C.(3,7) D.(3,9)10.设向量和满足:,,则=()A.B.C.2 D.311.设向量=(x,﹣4),=(1,﹣x),若向量与同向,则x=()。
最新初中数学向量的线性运算经典测试题附答案
最新初中数学向量的线性运算经典测试题附答案一、选择题1.对于非零向量a r、b r,如果2|a r|=3|b r|,且它们的方向相同,那么用向量a r表示向量b r正确的是( ) A .b r =32a r B .b r =23a r C .b r =﹣32a r D .b r =-23a r【答案】B 【解析】 【分析】根据已知条件得到非零向量a r 、b r的模间的数量关系,再结合它们的方向相同解题.【详解】∵2|a r|=3|b r |,∴|b r|23=|a r |. 又∵非零向量a r 与b r的方向相同,∴23b a =r r .故选B . 【点睛】本题考查了平面向量的知识,即长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向.2.在四边形ABCD 中,,,,其中与不共线,则四边形ABCD 是( ) A .平行四边形 B .矩形C .梯形D .菱形【答案】C 【解析】 【分析】利用向量的运算法则求出,利用向量共线的充要条件判断出,得到边AD ∥BC ,AD=2BC ,据梯形的定义得到选项.【详解】 解:∵,∴,∴AD ∥BC ,AD=2BC. ∴四边形ABCD 为梯形. 【点睛】本题考查向量的运算法则向量共线的充要条件、利用向量共线得到直线的关系、梯形的定义.3.已知向量,且则一定共线的三点是( )A .A 、B 、D B . A 、B 、CC .B 、C 、DD .A 、C 、D【答案】A 【解析】 【分析】证明三点共线,借助向量共线证明即可,故解题目标是验证由三点组成的两个向量共线即可得到共线的三点 【详解】解:由向量的加法原理知所以A 、B 、D 三点共线. 【点睛】本题考点平面向量共线的坐标表示,考查利用向量的共线来证明三点共线的,属于向量知识的应用题,也是一个考查基础知识的基本题型.4.在矩形ABCD 中,如果AB u u u r 3BC uuu r 模长为1,则向量(AB u u u r +BC uuur +AC u u u r ) 的长度为( )A .2B .4C 31D 31【答案】B 【解析】 【分析】先求出AC AB BC =+u u u r u u u r u u u r ,然后2AB BC AC AC ++=u u u r u u u r u u u r u u u r,利用勾股定理即可计算出向量(AB u u u r +BC uuur +AC u u u r )的长度为【详解】22||3,||1||(3)122|||2|224AB BC AC AC AB BCAB BC AC AC AB BC AC AC ==∴=+==+∴++=++==⨯=∴u u u r u u u r Q u u u ru u u r u u u r u u u rQ u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r故选:B. 【点睛】考查了平面向量的运算,解题关键是利用矩形的性质和三角形法则.5.下列判断正确的是( ) A .0a a -=r rB .如果a b =r r ,那么a b =r rC .若向量a r 与b 均为单位向量,那么a b =r rD .对于非零向量b r,如果()0a k b k =⋅≠r r ,那么//a b r r【答案】D 【解析】 【分析】根据向量的概念、性质以及向量的运算即可得出答案. 【详解】A. -r ra a 等于0向量,而不是等于0,所以A 错误;B. 如果a b =r r,说明两个向量长度相等,但是方向不一定相同,所以B 错误;C. 若向量a r 与b 均为单位向量,说明两个向量长度相等,但方向不一定相同,所以C 错误;D. 对于非零向量b r,如果()0a k b k =⋅≠r r ,即可得到两个向量是共线向量,可得到//a b r r,故D 正确. 故答案为D. 【点睛】本题考查向量的性质以及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.6.下列命题:①若a b r r=,b c =rr,则c a =r r; ②若a r∥b r ,b r∥c r ,则a r ∥c r;③若|a r|=2|b r|,则2a b =rr或a r=﹣2b r; ④若a r与b r是互为相反向量,则a r +b r=0. 其中真命题的个数是( ) A .1个 B .2个C .3个D .4个【答案】C 【解析】 【分析】根据向量的定义,互为相反向量的定义对各小题分析判断即可得解. 【详解】①若a b =r r,b c =rr,则c a =r r,正确; ②若a r∥b r ,b r∥c r ,则a r ∥c r,正确;③若|a r|=2|b r|,则2a b =rr或a r=﹣2b r,错误,因为两个向量的方向不一定相同或相反;④若a r与b r是互为相反向量,则a r +b r=0,正确. 综上所述,真命题的个数是3个.7.已知a 、b 为非零向量,下列说法中,不正确的是( ) A .()a ab b --= B .0a 0=C .如果1a b 2=,那么a //b D .如果a 2b =,那么a 2b =或a 2b =-【答案】C 【解析】 【分析】根据非零向量的性质,一一判断即可; 【详解】解:A 、()a ab b --=rr r r ,正确;B 、0a 0⋅=r r ,正确;C 、如果1a b 2=,那么a //b ,错误,可能共线; D 、如果a 2b =,那么a 2b =或a 2b =-r,正确;故选C . 【点睛】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.8.已知AM 是ABC △的边BC 上的中线,AB a =u u u r r,AC b =u u u r r ,则AM u u u u r 等于( ).A .()12a b -r rB .()12b a -r rC .()12a b +r rD .()12a b -+r r【答案】C 【解析】 【分析】根据向量加法的三角形法则求出:CB a b =-u u u r rr ,然后根据中线的定义可得:()12CM a b =-u u u u r r r ,再根据向量加法的三角形法则即可求出AM u u u u r .【详解】解:∵AB a =u u u r r,AC b =u u u r r ∴CB AB AC a b =-=-u u u r u u u r u u u r r r∵AM 是ABC △的边BC 上的中线 ∴()1122CM CB a b ==-u u u u r u u u r r r ∴()()1122AM AC CM b b b a a -=+=+=+u u u u r u u u r u u u r r r u r r r【点睛】此题考查的是向量加法和减法,掌握向量加法的三角形法则是解决此题的关键.9.等腰梯形ABCD 中,对角线AC 与BD 相交于点P ,点E 、F 分别在两腰AD 、BC 上,EF 过点P 且EF ∥AB ,则下列等式正确的是 ( ) A .B .C .D .【答案】D 【解析】 【分析】根据相等向量的定义,依次分析选项,依据图示,大小相等,方向相同的向量即可得到答案. 【详解】根据相等向量的定义,分析可得, A. 方向不同,错误, B. 方向不同,错误, C. 方向相反,错误,D. 方向相同,且大小都等于线段EF 长度的一半,正确;故选D. 【点睛】此题考查相等向量与相反向量,解题关键在于掌握其定义.10.已知在ABC ∆中,AB AC =,AD 是角平分线,点D 在边BC 上,设BC a =u u u rr,AD b =u u u r r ,那么向量AC u u u r 用向量a r 、b r表示为( ) A .12a b +r r B .12a b r r - C .12a b -+r rD .12a b --r r【答案】A 【解析】试题分析:因为AB =AC ,AD 为角平分线,所以,D 为BC 中点,=12a b +rr .故选A .考点:平面向量,等腰三角形的三线合一.11.已知e →为单位向量,a r=-3e →,那么下列结论中错误..的是( ) A .a r ∥e →B .3a =rC .a r与e →方向相同D .a r与e →方向相反【答案】C 【解析】 【分析】由向量的方向直接判断即可. 【详解】解:e r 为单位向量,a v =3e r -,所以a v 与e r方向相反,所以C 错误, 故选C. 【点睛】本题考查了向量的方向,是基础题,较简单.12.下列说法中,正确的是( )A .如果k =0,a r 是非零向量,那么k a r =0B .如果e r 是单位向量,那么e r=1C .如果|b r |=|a r |,那么b r =a r 或b r =﹣a rD .已知非零向量a r ,如果向量b r =﹣5a r,那么a r ∥b r【答案】D 【解析】 【分析】根据平面向量的性质一一判断即可. 【详解】解:A 、如果k =0,a r 是非零向量,那么k a r =0,错误,应该是k a r =0r.B 、如果e r 是单位向量,那么e r=1,错误.应该是e r =1.C 、如果|b r |=|a r |,那么b r =a r 或b r =﹣a r,错误.模相等的向量,不一定平行.D 、已知非零向量a r ,如果向量b r =﹣5a r ,那么a r ∥b r,正确.故选:D . 【点睛】本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.13.化简()()AB CD BE DE -+-u u u r u u u r u u u r u u u r的结果是( ).A .CA u u u rB .AC u u u r C .0rD .AE u u u r【答案】B 【解析】 【分析】根据三角形法则计算即可解决问题. 【详解】解:原式()()AB BE CD DE =+-+u u u r u u u r u u u r u u u r AE CE =-u u u r u u u r AE EC =+u u u r u u u rAC =u u u r ,故选:B . 【点睛】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.14.在ABCD Y 中,AC 与BD 相交于点O ,AB a =u u u r r ,AD b =u u u r r ,那么OD uuu r等于( )A .1122a b +r rB .1122a b --r rC .1122a b -r rD .1122a b -+r r【答案】D 【解析】 【分析】由四边形ABCD 是平行四边形,可得12OD BD =u u u r u u u r ,,又由BD BA AD =+u u u r u u u r u u u r,即可求得OD uuu r的值.【详解】解:∵四边形ABCD 是平行四边形,∴OB=OD=12BD , ∴12OD BD =u u u r u u u r ,∵BD BA AD a b =+=-+u u u r u u u r u u u r r r,∴12OD BD =u u u r u u u r =111()222a b a b -+=-+r r r r故选:D . 【点睛】此题考查了向量的知识.解题时要注意平行四边形法则的应用,还要注意向量是有方向的.15.在下列关于向量的等式中,正确的是( ) A .AB BC CA =+u u u r u u u r u u u rB .AB BC AC =-u u u r u u u r u u u r C .AB CA BC =-u u u r u u u r u u u rD .0AB BC CA ++=u u u r u u u r u u u r r【答案】D 【解析】 【分析】根据平面向量的线性运算逐项判断即可. 【详解】AB AC CB =+u u u r u u u r u u u r,故A 选项错误; AB AC BC =-u u u r u u u r u u u r,故B 、C 选项错误; 0AB BC CA ++=u u u r u u u r u u u r r,故D 选正确.故选:D. 【点睛】本题考查向量的线性运算,熟练掌握运算法则是关键.16.已知a r ,b r 和c r 都是非零向量,下列结论中不能判定a r ∥b r的是( )A .a r //c r ,b r //c rB .1,22a cbc ==r r r rC .2a b =r rD .a b =r r【答案】D 【解析】 【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解. 【详解】解:A.∵a r //c r ,b r //c r ,∴a r ∥b r,故本选项错误;B.∵1,22a c b c ==r r r r ∴a r ∥b r,故本选项错误.C.∵2a b =r r ,∴a r ∥b r,故本选项错误;D.∵a b =r r ,∴a r 与b r的模相等,但不一定平行,故本选项正确;故选:D .【点睛】本题考查了平面向量,是基础题,熟记平行向量的定义是解题的关键.17.如果a b c +=r r r ,3a b c -=r r r,且0c ≠r r ,下列结论正确的是A .=a b r rB .20a b +=r rC .a r与b r方向相同 D .a r与b r方向相反【答案】D 【解析】 【分析】根据向量的性质进行计算判断即可. 【详解】解:将a b c +=r r r 代入3a b c -=r r r ,计算得:-2a b =r r(方向相反).故选:D 【点睛】本题考查了向量的性质,熟悉向量的性质是解题的关键.18.如果2a b =r r (a r ,b r均为非零向量),那么下列结论错误的是( )A .a r //b rB .a r -2b r =0C .b r =12a rD .2a b =r r【答案】B 【解析】试题解析:向量最后的差应该还是向量.20.a b v vv-= 故错误. 故选B.19.已知e r 是一个单位向量,a r 、b r是非零向量,那么下列等式正确的是( )A .a e a v v v =B .e b b =v v vC .1a e a=v v vD .11a b a b=v v v v 【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a 的方向不是单位向量,故错误;D. 左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故答案选B.【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.20.给出下列3个命题,其中真命题的个数是().①单位向量都相等;②单位向量都平行;③平行的单位向量必相等.A.1个B.2个C.3个D.0个【答案】D【解析】【分析】根据单位向量的定义、相等向量的定义和平行向量的定义逐一判断即可.【详解】解:①单位向量的方向不一定相同,故①错误;②单位向量不一定平行,例如向上的单位向量和向右的单位向量,故②错误;③平行的单位向量可能方向相反,所以平行的单位向量不一定相等,故③错误.故选D.【点睛】此题考查的是平面向量的基本概念,掌握单位向量的定义、相等向量的定义和平行向量的定义是解决此题的关键.。
中考数学专题复习向量问题(一)
中考数学专题复习向量问题(一)学校:___________姓名:___________班级:___________考生__________ 评卷人 得分一、单选题1.已知a 是非零向量,2b a =-,下列说法中错误的是( ) A .b 与a 平行 B .b 与a 互为相反向量C .||2||b a =D .12a b =-2.已知e 是一个单位向量,a 、b 是非零向量,那么下列等式正确的是( ) A .a e a =B .e b b =C .1a e a =D .11a b ab=3.已知向量a 和b 都是单位向量,那么下列等式成立的是( ) A .a b =B .2a b +=C .0a b -=D .a b =4.已知a 和b 都是单位向量,那么下列结论中正确的是( ) A .a b =B .2a b +=C .0a b +=D .2a b +=5.已知一个单位向量e ,设a 、b 是非零向量,那么下列等式中正确的是( ). A .1a e a =;B .e a a =;C .b e b =;D .11a b ab=.6.已知向量a 与非零向量e 方向相同,且其模为e 的2倍:向量b 与e 方向相反,且其模为e 的3倍.则下列等式中成立的是( )A .23a b =B .23a b =-C .32a b =D .32a b =-7.如图,已知点D 、E 分别在ABC ∆的边AB 、AC 上,//DE BC ,2AD =,3BD =,BC a =,那么ED 等于( )A .23aB .23a -C .25aD .25a -8.下列命题中,正确的是( ) A .如果e 为单位向量,那么a a e = B .如果a 、b 都是单位向量,那么a b = C .如果a b =-,那么//a bD.如果a b =,那么a b =9.已知1e 、2e 是两个单位向量,向量13a e =,23b e =-,那么下列结论正确的是( ) A .12e e = B .a b =-C .a b =D .a b =-评卷人 得分二、填空题 10.在△ABC 中,AB BC CA ++=_____.11.已知向量关系式()260a b x +-=,那么向量x =______.(用向量a 与向量b 表示)12.计算:()13242a ab --=________. 13.计算:()()2232a b a b -++=________.14.如图,在梯形ABCD 中,AD △BC ,BD 与AC 相交于点O ,OB =2OD ,设AB a =,AD b =,那么AO =____.(用向量a 、b 的式子表示)15.如图,已知平行四边形ABCD 的对角线AC 与BD 相交于点O ,设OA a =,OB b =,那么向量AB 关于a 、b 的分解式为______.16.计算:322a a b ⎛⎫+-= ⎪⎝⎭______.17.如图,在梯形ABCD 中,//AD BC ,2BC AD =,设AB a =,AD b =,那么向量CD 用向量a 、b 表示为______.18.计算:()()322a b a b+--=______.19.计算:()122a b b-+=_______________.评卷人得分三、解答题20.如图,已知点B、E、C、F在同一条直线上,//AB DE,//AC DF,AC与DE 相交于点G,12AG DGGC GE==,2BE=.(1)求BF的长;(2)设EG a=,BE b=,那么BF=,DF=(用向量a、b表示).21.如图,在ABC中,点G是ABC的重心,联结AG,联结BG并延长交边AC于点D,过点G作//GE BC交边AC于点E.(1)如果AB a=,AC b=,用a、b表示向量BG;(2)当AG BD⊥,6BG=,45GAD∠=︒时,求AE的长.22.如图,已知ABC 中,//DE BC ,2AD =,4DB =,8AC =.(1)求线段AE 的长; (2)设BA a =,BC b =.△请直接写出向量AE 关于a 、b 的分解式,AE =________;△连接BE ,在图中作出向量BE 分别在a 、b 方向上的分向量.【可以不写作法,但必须写出结论】23.已知向量关系式()132a xb x -=+,试用向量a 、b 表示向量x .24.如图,一个33⨯的网格.其中点A 、B 、C 、D 、M 、N 、P 、Q 均为网格点.(1)在点M 、N 、P 、Q 中,哪个点和点A 、B 所构成的三角形与ABC 相似?请说明理由;(2)设AB a =a ,BC b =,写出向量AD 关于a 、b 的分解式.25.如图,在ABCD 中,AE 平分BAD ∠,AE 与BD 交于点F , 1.2AB =,1.8BC =.(1)求:BF DF 的值;(2)设AB a =,BC =b ,求向量DF (用向量a 、b 表示).26.如图,已知在ABC 中,点D 、E 分别在边AB 、AC 上,//DE BC ,点M 为边BC 上一点,13BM BC =,联结AM 交DE 于点N .(1)求DNNE的值; (2)设AB a =,AM b =,如果23AD DB =,请用向量a 、b 表示向量NE .27.如图,四边形ABCD 是平行四边形,点E 是边AD 的中点AC 、BE 相交于点O .设BA a =,CB b =.(1)试用a、b表示BO;(2)在图中作出CO在CB、CD上的分向量,并直接用a、b表示CO.(不要求写作法,但要保留作图痕迹,并写明结论)参考答案:1.B 【解析】 【分析】根据向量的有关定义和运算分别进行判断,即可得出结论. 【详解】解:A.因为2b a =-(a ≠0),则b 与a 平行,故此结论正确; B.若两个向量方向相反,大小相等,则为相反向量,故此结论错误; C. 因为2b a =-,则||2||b a =结论正确;D. 2b a =-两边同除以-2,则12a b =-,故此结论正确.故答案为:B . 【点睛】本题考查了向量的相关应用,解题的关键是熟练掌握基本知识及运算法则. 2.B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a 的方向不是单位向量,故错误;D. 左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误. 故答案选B. 【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量. 3.D 【解析】 【分析】根据向量a 和b 都是单位向量,,可知|a |=|b |=1,由此即可判断. 【详解】解:A 、向量a 和b 都是单位向量,但方向不一定相同,则a b =不一定成立,故本选项错误.B 、向量a 和b 都是单位向量,但方向不一定相同,则2a b +=不一定成立,故本选项错误.C 、向量a 和b 都是单位向量,但方向不一定相同,则0a b -=不一定成立,故本选项错误.D 、向量a 和b 都是单位向量,则|a |=|b |=1,故本选项正确. 故选:D . 【点睛】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键 4.D 【解析】 【分析】根据单位向量的定义进行选择. 【详解】解:△a 和b 是两个单位向量,△它们的长度相等,但是方向不一定相同; △2a b +=正确; 故选:D . 【点睛】本题考查单位向量的含义;属于基础题. 5.B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】解:A、左边得出的是a的方向不是单位向量,故错误;B、符合向量的长度及方向,正确;C、由于单位向量只限制长度,不确定方向,故错误;D、左边得出的是a的方向,右边得出的是b的方向,两者方向不一定相同,故错误.故选:B.【点睛】本题考查了向量的性质.6.B【解析】【分析】根据向量的方向和模的关系可得a=2e,b=-3e,从而可得e=13b-,即可求出结论.【详解】解:由题意可知:a=2e,b=-3e△e=1 3b -△a=2e=2 3b -故选:B.【点睛】此题考查的是向量的数乘运算,根据向量的方向和模的关系找出各向量关系是解题关键.7.D【解析】【分析】先根据相似三角形的判定与性质求出DE与BC的数量关系,再根据向量的定义即可求出ED的值.【详解】解:△//DE BC,△DE AD BC AB=,△2AD=,3BD=,△223 DEBC=+,△25DE BC =. △BC a =, △ED =25a -.故选D . 【点睛】本题考查了相似三角形的判定与性质,以及向量的定义,向量用有向线段来表示,有向线段长度表示向量的大小,有向线段的方向表示向量的方向. 8.C 【解析】 【分析】根据向量的定义和要素可直接进行排除选项. 【详解】A 、如果e 为单位向量,则有1e =,但e 不等于1,所以a a e ≠,故错误;B 、长度等于1的向量是单位向量,故错误;C 、如果a b =-,那么//a b ,故正确;D 、a b =表示这两个向量长度相等,而a b =表示的是长度相等,方向也相同的两个向量,故错误; 故选C . 【点睛】本题主要考查向量的定义,熟练掌握向量的定义是解题的关键. 9.C 【解析】 【分析】由1e 、2e 是两个单位向量的方向不确定,从而判定A 与B 错误;又由平面向量模的知识,即可判定选项C 正确,选项D 错误. 【详解】解:△1e 、2e 是两个单位向量,方向不一定相同,△1e 与2e 不一定相等,选项A 错误;△1e 、2e 是两个单位向量,方向不一定相同,△a 与b -不一定相等,选项B 错误; △133a e ==,233b e =-=,△a b =,选项C 正确,选项D 错误;故选:C【点睛】本题考查了单位向量的定义和向量的数量积,注意平面向量的模的求解方法与向量是有方向性的.10.0.【解析】【分析】由在△ABC 中,根据三角形法则即可求得AB +BC 的值,则可求得答案.【详解】△0AB BC CA AC CA ++=+=.故答案为:0.【点睛】本题考查向量的性质,大小和方向是向量的两个要素,分别是向量的代数特征和几何特征,借助于向量可以实现某些代数问题与几何问题的相互转化.11.13a b + 【解析】【分析】利用类似一元一次方程的求解方法,去括号、移项、系数化1,即可求得答案.【详解】解:△()260a b x +-=△2660a b x +-= 626x a b =+x =13a b + 故答案为:13a b + 【点睛】此题考查了平面向量的知识.此题难度不大,此向量方程的解法与一元一次方程的解法类似.12.22a b +【解析】【分析】根据向量的线性运算法则进行运算,从而可得答案.【详解】解:()13242a a b --=3222.a a b a b -+=+ 故答案为:22a b +.【点睛】本题考查的向量的线性运算,掌握向量的加,减,数乘运算是解题的关键.13.8a b -【解析】【分析】根据向量的线性运算以及实数与向量相乘的运算法则计算即可.【详解】解:()()2232a b a b -++=2463a b a b -++=8a b -.故答案为8a b -.【点睛】本题主要考查了向量的线性运算以及实数与向量相乘,掌握相关运算法则成为解答本题的关键.14.1233a+b【解析】【分析】先证明△AOD△△COB ,推出OA OC =12AD OD CB OB ==,求出2AD 2BC b ==,由三角形法则得出2AC AB BC a b =+=+即可根据13AO AC =求出答案.【详解】△OB=2OD,△12 ODOB=,△AD△BC,△△AOD△△COB,△OAOC=12AD ODCB OB==,△2AD2BC b==,△2 AC AB BC a b=+=+,△13AO AC==1233a+b,故答案为:1233a+b.【点睛】此题考查了平面向量的知识与相似三角形的判定及性质,解题时注意三角形法则的应用.15.b a-【解析】【分析】根据AB AO OB OA OB=+=-+计算即可.【详解】解:△OA a=,OB b=,△AB AO OB=+OA OB=-+a b=-+b a=-,故答案为:b a-.【点睛】此题考查了平面向量的知识.注意掌握三角形法则的应用是解决本题的关键.16.42a b-【解析】【分析】直接利用平面向量的加减运算法则求解即可求得答案.【详解】解:323-2=4-22⎛⎫+-=+ ⎪⎝⎭a ab a a b a b 故答案为:4-2a b【点睛】此题考查了平面向量的运算,注意去括号时的符号变化,熟练掌握法则是解题的关键,属于基础题17.a b --【解析】【分析】 根据题意得2BC b =,再求出2CA a b =--,由CD CA AD =+即可求出结果.【详解】解:△2BC AD =,AD b =,//AD BC ,△2BC b =,△()()22CA AC AB BC a b a b =-=-+=-+=--,△2CD CA AD a b b a b =+=--+=--.故答案是:a b --.【点睛】本题考查平面向量,解题的关键是掌握平面向量的计算方法.18.8a b +【解析】【分析】根据向量的线性运算可直接进行求解.【详解】解:()()32236228a b a b a b a b a b +--=+-+=+;故答案为8a b +.【点睛】本题主要考查向量的运算,熟练掌握向量的运算是解题的关键.19.12a b 【解析】【分析】去括号,合并同类向量即可解得.【详解】()1112222a b b a b b a b -+=-+=+ 【点睛】本题考查了向量的线性运算,属于基础题.20.(1)8BF =;(2)4b ,332b a - 【解析】【分析】(1)先证△CEG△△CBA ,再证△ECG△△EFD ,然后求解即可;(2)先证22EC BE b ==,CF b =,再证32ED EG CD a =+=,然后再由23EF EC CF b b b =+=+=得出结论即可.【详解】解:(1)△AB△GE ,△△B=△DEC ,△△ACB=△ACB ,△△CEG△△CBA ,△1=2AG BE GC CE =, △CE=2BE=4,同理△ECG△△EFD ,△1=2DG FC GE CE =, △CE=2FC=4,△FC=2,△BF=BE+EC+FC=2+4+2=8;(2)BE b =,由(1)可知BE=CF=12EC ,△22EC BE b ==,CF b =,△4BF BE EC CF b =++= ,△EG a = ,△1122GD EG a ==, △32ED EG CD a =+=, △23EF EC CF b b b =+=+=,△332DF EF ED b a =-=-. 【点睛】本题考查了相似三角形的性质与判定与向量,解题的关键是掌握相似三角形的性质与判定.21.(1)2133BG a b =-+;(2)42AE =. 【解析】【分析】(1)由G 是重心,可得12AD b →→=, 23BG BD →→=, 因为BD BA AD →→→=+,可得12BD a b →→→=-+, 进而求出BG →; (2)根据G 是重心,求出DG =3,因为△AGD 是等腰直角三角形,勾股定理计算出AD =32,由AD =DC ,DC =3DE 求出DE =2,相加即可.【详解】解:(1)△BD BA AD →→→=+,△点G 是Rt △ABC 的重心,△AD =12AC ,△→→=AB a ,→→=AC b ,△12AD a →→=, △12BD a b →→→=-+ △221()332BG BD a b →→→→==-+,21+33BG a b →→→=-. (2)△G 是三角形的重心,△BG =2GD ,AD =DC ,△BG =6,△GD =3,△AG BD ⊥,45GAD ︒∠=,△AG =GD =3,△223332AD =+=,△//GE BC ,△13DE GD DC BD ==, △DE =2,△AE =AD +DE =42【点睛】本题考查了三角形的重心、平面向量、勾股定理以及平行线分线段成比例定理;熟练掌握三角形重心的性质以及平行线分线段成比例定理,能够熟练运用向量的运算、勾股定理解题是关键.22.(1)83AE =;(2)△1133a b -+;△作图见解析. 【解析】【分析】(1)先求出AB ,再据平行线分线段成比例,写出关于AE 、AC 、AD 、AB 的等比式,问题可解.(2)△以AD ,DE 为边作平行四边形ADEF ,,先再求得11,33AD a AF b =-=,据AE AD AF =+问题可解;△以BD 、DE 为边作平行四边形即可.【详解】解:(1)△//DE BC ,△AD AE AB AC=, △83AE =.(2)△如下图△DE△BC△△ADE=△B,△AED=△C△△ADE△△ABC△2163AD DEAB BC===又BA a=,BC b=△11,33AD a DE b=-=△四边形ADEF是平行四边形△13AF DE b==△1133AE a b=-+,△如下图,BD和BM是BE分别在a、b方向上的分向量.23.1277x a b=-【解析】【分析】根据平面向量的定义,既有方向,又有大小计算即可.【详解】解:△()132a xb x-=+,△11322a xb x-=+,△7122x a b=-,△1277x a b=-.【点睛】本题考查平面向量,解题的关键是理解题意,灵活运用所学知识解决问题.24.(1)点N和点A、B所构成的三角形与ABC相似,理由见解析;(2)2a3b-【解析】【分析】(1)设网格中小正方形的边长为a,利用勾股定理求出各边的长度,然后分类讨论,根据三边对应成比例的两个三角形相似逐一判断即可;(2)延长AB至E,使BE=AB,根据向量加法的三角形法则计算即可.【详解】解:(1)点N和点A、B所构成的三角形与ABC相似,理由如下:设网格中小正方形的边长为a,则BC=a,AB=22a a2a+=,AC=()2225a a a+=,其中BC<AB<AC如下图所示,连接BM、AM则BM=()2225a a a+=,AM=()()223213a a a+=,其中AB<BM<AM△22AB aBC a==,51022BM aAB a==△ABBC≠BMAB△ABM和ABC不相似;如下图所示,连接AN则BN=2a,AN=()22310a a a +=,其中AB <BN <AN △22AB a BC a ==,222BN a AB a ==,1025AN a AC a==, △AB BC =BN AB =AN AC △NBA △△ABC ; 如下图所示,连接BP则BP=()2225a a a +=,AP=3,其中AB <BP <AP △22AB a BC a==,51022BP a AB a == △AB BC ≠BP AB△ABP △和ABC 不相似; 如下图所示,连接BQ 、AQ则BQ=()()222222a a a +=,AQ=()22310a a a +=,其中AB <BQ <AQ △22AB a BC a==,2222BQ a AB a == △AB BC ≠BQ AB△ABQ △和ABC 不相似;综上:点N 和点A、B 所构成的三角形与ABC 相似;(2)延长AB 至E ,使BE=AB ,根据正方形的性质可知,点E 正好落在格点上,如下图所示△22AE AB a ==,33ED BC b =-=-△AD =AE +ED=2a 3b -.【点睛】此题考查的是勾股定理与网格问题、相似三角形的判定和向量的加法,掌握相似三角形的判定定理和向量加法的三角形法则是解题关键.25.(1)BF :DF =2:3,(2)3355DF a b =-. 【解析】【分析】(1)先证∆BFE ∼∆DF A ,得出BE BF AD DF= ,在利用角平分线的性质进行等量代换,得到BE AB AD AD=再结合平行四边形的性质即可求得答案. (2)利用第(1)小问的结论,得到DF 与DB 的数量关系,进而得到DF 与DB 的关系,根据向量DB =AB AD -即可求解.【详解】(1)在ABCD 中,△BC △AD△△BEA =△DAE ,又△△BFE =△DF A ,△∆BFE ∼∆DF A ,△BE BF AD DF= , 又△AE 平分BAD ∠,△△BAE =△DAE ,△△BAE =△BEA ,△AB =BE ,△BE AB AD AD= 又△ 1.2AB =, 1.8AD BC ==.△ 1.221.83BF AB DF AD === △BF :DF =2:3(2)△BF :DF =2:3△DF =35DB △35DF DB ==3()5AB AD - △BC △ AD , BC =AD ,AB a =,BC =b ,△AD BC b ==△333()555DF a b a b =-=-. 【点睛】 本题主要考查了相似三角形的性质,平面向量的加减法等知识点,证明∆BFE ∼∆DF A 并且进行等量代换、理解平面向量的加减法是解决本题的关键.26.(1)12;(2)4455b a -. 【解析】【分析】(1)由平行线的性质得到△ADN△△ABM ,△ANE△△AMC ,可得DN NE BM MC,即DN BM NE MC =,根据13BM BC =可求出DN NE 的值; (2)根据23AD DB =可得25AD AD AB AD DB ==+,所以DN =()2255BM BA AM =+,根据DN NE =12,即可得出答案.【详解】解:(1)△//DE BC ,△△AND=△B ,△AND=△AMB ,△ANE=△AMC ,△AEN=△C ,△△ADN△△ABM ,△ANE△△AMC ,△DN AN BM AM =,AN NE AM MC =, △DN NE BM MC , △DN BM NE MC=, △13BM BC =, △12BM MC =, △DN NE =12; (2)△23AD DB =, △25AD AD AB AD DB ==+, △DN =()2255BM BA AM =+=()222555a b b a -+=-, △DN NE =12, △224422=5555NE DN b a b a ⎛⎫==-- ⎪⎝⎭. 【点睛】 本题考查了相似三角形的判定与性质,平行线的性质,向量等相关知识.熟练掌握定理并灵活运用是解题的关键.27.(1)2133BO a b =-;(2)见解析,2233CO b a =+ 【解析】【分析】(1)首先证明23BO BE =,求出BE 即可求解; (2)证明23CO CA =,求出CA 即可解决问题. 【详解】解(1)△//AD BC△12OE AE BO BC == △23BO BE =△()222121333233BO BE BA AE a b a b ⎛⎫==+=-=- ⎪⎝⎭; (2)△AE△BC ,△1=2AO AE CO CB =, △23CO CA =, △()()2222233333CO CA CB BA b a b a ==+=+=+ 如图所示,CO 在CB 、CD 上的分向量分别为CN 和CM .【点睛】本题考查作图—复杂作图,平行线的性质、平面向量等知识,解题的关键是正确理解题意,灵活运用所学知识点.。
(专题精选)初中数学向量的线性运算真题汇编及答案
(专题精选)初中数学向量的线性运算真题汇编及答案一、选择题1.已知非零向量a r 、b r 、c r ,在下列条件中,不能判定a r //b r的是( ) A .a r//c r ,b r //c rB .2a c =r r ,3b c =r rC .5a b =-r rD .||2||a b =r r【答案】D 【解析】分析:根据平面向量的性质即可判断. 详解:A .∵a r∥c b rr,∥c r,∴a b P u u r r,故本选项,不符合题意; B .∵a r =2c b r r ,=3c r,∴a b P u u r r ,故本选项,不符合题意;C .∵a r=﹣5b r ,∴a b P u u r r ,故本选项,不符合题意;D .∵|a r|=2|b r |,不能判断a b P u u r r ,故本选项,符合题意.故选D .点睛:本题考查了平面向量,熟练掌握平面向量的基本性质的解题的关键.2.等腰梯形ABCD 中,对角线AC 与BD 相交于点P ,点E 、F 分别在两腰AD 、BC 上,EF 过点P 且EF ∥AB ,则下列等式正确的是 ( ) A .B .C .D .【答案】D 【解析】 【分析】根据相等向量的定义,依次分析选项,依据图示,大小相等,方向相同的向量即可得到答案. 【详解】根据相等向量的定义,分析可得, A. 方向不同,错误, B. 方向不同,错误, C. 方向相反,错误,D. 方向相同,且大小都等于线段EF 长度的一半,正确;故选D. 【点睛】此题考查相等向量与相反向量,解题关键在于掌握其定义.3.如图,已知向量a r,b r,c r,那么下列结论正确的是( )A .a b c +=rrrB .b c a +=rr rC .a c b +=rr rD .a c b +=-r r r【答案】D 【解析】 【分析】 【详解】由平行四边形法则,即可求得: 解:∵CA AB CB +=u u u r u u u r u u u r, 即a c b +=-r r r 故选D .4.下列判断正确的是( )A .0a a -=r rB .如果a b =r r ,那么a b =r rC .若向量a r 与b 均为单位向量,那么a b =r rD .对于非零向量b r,如果()0a k b k =⋅≠r r ,那么//a b r r【答案】D 【解析】 【分析】根据向量的概念、性质以及向量的运算即可得出答案. 【详解】A. -r ra a 等于0向量,而不是等于0,所以A 错误;B. 如果a b =r r,说明两个向量长度相等,但是方向不一定相同,所以B 错误;C. 若向量a r 与b r均为单位向量,说明两个向量长度相等,但方向不一定相同,所以C 错误;D. 对于非零向量b r,如果()0a k b k =⋅≠r r ,即可得到两个向量是共线向量,可得到//a b r r,故D 正确.故答案为D. 【点睛】本题考查向量的性质以及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.5.如图,ABCD Y 中,E 是BC 的中点,设AB a,AD b ==u u u r r u u u r r ,那么向量AE u u u r 用向量a br r 、表示为( )A .12a b +r rB .12a b -r rC .12a b -+rr D .12a b --r r 【答案】A 【解析】 【分析】根据AE AB BE =+u u u r u u u r u u u r ,只要求出BE u u u r即可解决问题. 【详解】解:Q 四边形ABCD 是平行四边形,AD BC AD BC ∴∥,=, BC AD b ∴==u u u r u u u r r ,BE CE Q =, 1BE b 2∴=u u u r r ,AE AB BE,AB a =+=u u u r u u u r u u u r u u u r r Q ,1AE a b 2∴=+u u u r r r ,故选:A. 【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.6.已知1,3a b ==r r ,而且b r 和a r的方向相反,那么下列结论中正确的是( )A .3a b =r rB .3a b =-r rC .3b a =r rD .3b a =-r r . 【答案】D 【解析】 【分析】根据平面向量的性质即可解决问题. 【详解】∵1,3a b ==v v,而且b v 和a v 的方向相反∴3b a vv=-. 故选D . 【点睛】本题考查平面向量的性质,解题的关键是熟练掌握基本知识.7.以下等式正确的是( ). A .0a a -=r rB .00a ⋅=rC .()a b b a -=--rr r rD .km k m =r r【答案】C 【解析】 【分析】根据平面向量的运算法则进行判断. 【详解】解:A. 0a a -=rr r,故本选项错误; B. 00a ⋅=rr,故本选项错误;C. ()a b b a -=--rr r r ,故本选项正确;D. km k m =⋅r r,故本选项错误.故选:C. 【点睛】考查了平面向量的有关运算,掌握平面向量的性质和相关运算法则是关键.8.已知AM 是ABC △的边BC 上的中线,AB a =u u u r r,AC b =u u u r r ,则AM u u u u r 等于( ).A .()12a b -r rB .()12b a -r rC .()12a b +r rD .()12a b -+r r【答案】C 【解析】 【分析】根据向量加法的三角形法则求出:CB a b =-u u u r rr ,然后根据中线的定义可得:()12CM a b =-u u u u r r r ,再根据向量加法的三角形法则即可求出AM u u u u r .【详解】解:∵AB a =u u u r r,AC b =u u u r r ∴CB AB AC a b =-=-u u u r u u u r u u u r r r∵AM 是ABC △的边BC 上的中线 ∴()1122CM CB a b ==-u u u u r u u u r r r∴()()1122AM AC CM b b b a a -=+=+=+u u u u r u u u r u u u r r r u r r r故选C.【点睛】此题考查的是向量加法和减法,掌握向量加法的三角形法则是解决此题的关键.9.D 、E 、F 分别是△ABC 三边AB 、BC 、CA 的中点,则下列等式不成立的是( ) A .+ =B .++=0C .+=D .+=【答案】C 【解析】 【分析】由加法的三角形法则化简求解即可. 【详解】由加法的三角形法则可得, + =, ++= , +=,+=故选:B. 【点睛】此题考查向量的加法及其几何意义,解题关键在于掌握平面向量的加法法则.10.下列结论正确的是( ).A .2004cm 长的有向线段不可以表示单位向量B .若AB u u u r 是单位向量,则BA u u u r不是单位向量 C .若O 是直线l 上一点,单位长度已选定,则l 上只有两点A 、B ,使得OA u u u r 、OB uuu r是单位向量D .计算向量的模与单位长度无关【答案】C 【解析】 【分析】根据单位向量的定义及意义判断即可. 【详解】A.1个单位长度取作2004cm 时,2004cm 长的有向线段才刚好表示单位向量,故选项A 不正确;B. AB u u u r是单位向量时,1AB =uu u r ,而此时1AB BA ==u u u r u u u r ,即BA u u u r 也是单位向量,故选项B不正确;C.单位长度选定以后,在l 上点O 的两侧各取一点A 、B ,使得OA u u u r 、OB u u u r都等于这个单位长度,这时OA u u u r 、OB uuu r都是单位向量,故选项C 正确;D.没有单位长度就等于没有度量标准,故选项D 不正确. 故选C. 【点睛】本题考查单位向量,掌握单位向量的定义及意义是解题的关键.11.已知a r、b r、c r都是非零向量,下列条件中,不能判断//a b rr的是( )A .a b =r rB .3a b =r rC .//a c r r,//b c r rD .2,2a c b c ==-r r r r【答案】A 【解析】 【分析】根据平行向量的定义(两个向量方向相同或相反,即为平行向量)分析求解即可求得答案. 【详解】解:A 、||||a b =r r只能说明a r 与b r 的模相等,不能判定a r ∥b r ,故本选项符合题意;B 、3a b =r r 说明a r 与b r 的方向相同,能判定a r ∥b r ,故本选项不符合题意;C 、a r ∥c r ,b r ∥c r ,能判定a r ∥b r,故本选项不符合题意;D 、2a c =r r ,2b c =-r r 说明a r 与b r 的方向相反,能判定a r ∥b r ,故本选项不符合题意.故选:A . 【点睛】此题考查了平面向量的知识.此题难度不大,注意掌握平行向量与向量的模的定义是解此题的关键.12.规定:在平面直角坐标系中,如果点P 的坐标为(),m n ,向量OP u r可以用点P 的坐标表示为:(),OP m n =u r .已知()11,OA x y =u r ,()22,OB x y =u r,如果12120x x y y ⋅+⋅=,那么OA u r 与OB u r互相垂直.在下列四组向量中,互相垂直的是( ) A .()()013,2019,3,1OC OD -==-u r u r B.))1,1,1,1OE OF =u r u rC.(()21,,82OG OH ⎛⎫= ⎪⎝⎭u r u r D.,OM +⎭u r【答案】A 【解析】 【分析】根据题意中向量垂直的性质对各项进行求解即可. 【详解】 A.()133201910-⨯-+⨯=,正确;B.))11112⨯+⨯=,错误;C.(21842+⨯=,错误;D.))2222⨯+=,错误; 故答案为:A . 【点睛】本题考查了向量垂直的问题,掌握向量互相垂直的性质以及判定是解题的关键.13.对于非零向量a r 、b r ,如果2|a r |=3|b r |,且它们的方向相同,那么用向量a r表示向量b r正确的是( )A .b r =32a rB .b r =23a rC .b r =﹣32a rD .b r =-23a r【答案】B 【解析】 【分析】根据已知条件得到非零向量a r、b r的模间的数量关系,再结合它们的方向相同解题.【详解】∵2|a r|=3|b r |,∴|b r|23=|a r |. 又∵非零向量a r 与b r的方向相同,∴23b a =r r .故选B . 【点睛】本题考查了平面向量的知识,即长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向.14.下列说法中,正确的是( )A .如果k =0,a r 是非零向量,那么k a r =0B .如果e r 是单位向量,那么e r=1C .如果|b r |=|a r |,那么b r =a r 或b r =﹣a rD .已知非零向量a r ,如果向量b r =﹣5a r,那么a r ∥b r【答案】D 【解析】 【分析】根据平面向量的性质一一判断即可. 【详解】解:A 、如果k =0,a r 是非零向量,那么k a r =0,错误,应该是k a r =0r.B 、如果e r 是单位向量,那么e r=1,错误.应该是e r =1.C 、如果|b r |=|a r |,那么b r =a r 或b r =﹣a r,错误.模相等的向量,不一定平行.D 、已知非零向量a r ,如果向量b r =﹣5a r ,那么a r ∥b r,正确.故选:D . 【点睛】本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.15.在ABCD Y 中,AC 与BD 相交于点O ,AB a =u u u r r ,AD b =u u u r r ,那么OD uuu r等于( )A .1122a b +r rB .1122a b --r rC .1122a b -r rD .1122a b -+r r【答案】D 【解析】 【分析】由四边形ABCD 是平行四边形,可得12OD BD =u u u r u u u r ,,又由BD BA AD =+u u u r u u u r u u u r ,即可求得OD uuu r的值.【详解】解:∵四边形ABCD 是平行四边形,∴OB=OD=12BD , ∴12OD BD =u u u r u u u r ,∵BD BA AD a b =+=-+u u u r u u u r u u u r r r ,∴12OD BD =u u u r u u u r =111()222a b a b -+=-+r r r r故选:D . 【点睛】此题考查了向量的知识.解题时要注意平行四边形法则的应用,还要注意向量是有方向的.16.已知a r =3,b r =5,且b r 与a r 的方向相反,用a r 表示b r 向量为( ) A .35b a =rr B .53b a =r r C .35b a =-r r D .53b a =-r r 【答案】D 【解析】 【分析】根据a r =3,b r =5,且b r 与a r 的方向相反,即可用a r表示b r 向量.【详解】a r=3,b r =5,b r =53a r ,b r 与a r的方向相反, ∴5.3b a =-r r故选:D. 【点睛】考查了平面向量的知识,注意平面向量的正负表示的是方向.17.已知a r ,b r 和c r 都是非零向量,下列结论中不能判定a r ∥b r的是( )A .a r //c r ,b r //c rB .1,22a cbc ==r r r rC .2a b =r rD .a b =r r【答案】D 【解析】 【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解. 【详解】解:A.∵a r //c r ,b r //c r ,∴a r ∥b r,故本选项错误;B.∵1,22a c b c ==r r r r ∴a r ∥b r,故本选项错误.C.∵2a b =r r ,∴a r ∥b r,故本选项错误;D.∵a b =r r ,∴a r 与b r的模相等,但不一定平行,故本选项正确;故选:D . 【点睛】本题考查了平面向量,是基础题,熟记平行向量的定义是解题的关键.18.设e r为单位向量,2a =r ,则下列各式中正确的是( )A .2a e =r rB .a e a=rr r C .2a e =r r D .112a =±r【答案】C 【解析】 【分析】根据e r为单位向量,可知1e =r ,逐项进行比较即可解题.【详解】解:∵e r为单位向量,∴1e =r,A 中忽视了向量的方向性,错误B 中忽视了向量的方向性,错误C 中,∵2a =r ,1e =r, ∴2a e =r r,正确,D 中忽视了向量的方向性,错误故选C. 【点睛】本题考查了向量的应用,属于简单题,熟悉向量的概念是解题关键.19.如图,在ABC V 中,点D 是在边BC 上,且2BD CD =,AB a =u u u v v ,BC b =u u u v v,那么AD uuu v等于( )A .a b +v vB .2233a b +v vC .23a b -v vD .23a b +v v【答案】D 【解析】【分析】根据2BD CD =,即可求出BD uuu v,然后根据平面向量的三角形法则即可求出结论. 【详解】解:∵2BD CD = ∴2233BD BC b ==u u u v u u u v v ∴23AD AB BD a b =+=+u u u v u u u v u u u v v v 故选D .【点睛】此题考查的是平面向量的加法,掌握平面向量的三角形法则是解决此题的关键.20.下列各式不正确的是( ). A .0a a -=r r r B .a b b a +=+r r r r C .如果()0a k b k =⋅≠r r ,那么b r 与a r 平行 D .如果a b =r r ,那么a b =r r【答案】D【解析】【分析】根据向量的定义是规定了方向和大小的量,向量的运算法则及实数与向量乘积的意义判断各选项即可.【详解】A.任意向量与它的相反向量的和都等于零向量,所以选项A 正确;B.向量的加法符合交换律,即a b b a +=+r r r r ,所以选项B 正确;C.如果()0a k b k =≠r r g ,根据实数与向量乘积的意义可知:a r ∥b r ,所以选项C 正确;D.两个向量相等必须满足两个条件:长度相等且方向相同,如果a b =r r ,但a r 与b r 方向不同,则a b ≠r r ,所以D 选项错误.故选D.【点睛】本题考查了向量的定义、运算及运算法则、实数与向量乘积的意义,明确定义及法则是解题的关键.。
初中数学向量的线性运算经典测试题附答案解析
初中数学向量的线性运算经典测试题附答案解析一、选择题1.下列结论正确的是( ).A .2004cm 长的有向线段不可以表示单位向量B .若AB 是单位向量,则BA 不是单位向量C .若O 是直线l 上一点,单位长度已选定,则l 上只有两点A 、B ,使得OA 、OB 是单位向量D .计算向量的模与单位长度无关【答案】C【解析】【分析】根据单位向量的定义及意义判断即可.【详解】A.1个单位长度取作2004cm 时,2004cm 长的有向线段才刚好表示单位向量,故选项A 不正确;B. AB 是单位向量时,1AB =,而此时1AB BA ==,即BA 也是单位向量,故选项B 不正确;C.单位长度选定以后,在l 上点O 的两侧各取一点A 、B ,使得OA 、OB 都等于这个单位长度,这时OA 、OB 都是单位向量,故选项C 正确;D.没有单位长度就等于没有度量标准,故选项D 不正确. 故选C.【点睛】本题考查单位向量,掌握单位向量的定义及意义是解题的关键.2.已知向量,若与共线,则( ) A . B . C .D .或【答案】D【解析】【分析】要使与,则有=,即可得知要么为0,要么,即可完成解答. 【详解】解:非零向量与共线的充要条件是当且仅当有唯一一个非零实数,使=,即;与任一向量共线.故答案为D.【点睛】本题考查了向量的共线,即=是解答本题的关键.3.下列各式中错误的是( )A .()0a a +-=B .|AB BA |0+=C .()-=+-a b a bD .()()++=++a b c a b c【答案】A【解析】【分析】 根据向量的运算法则和运算律判断即可.【详解】解:A. ()0a a +-=,故本选项错误,B ,C ,D ,均正确,故选:A.【点睛】本题考查了向量的运算,熟练掌握运算法则和运算律是解题关键.4.如果向量a 与单位向量e 方向相反,且长度为12,那么向量a 用单位向量e 表示为( ) A .12a e = B .2a e = C .12a e =-D .2a e =- 【答案】C【解析】 由向量a 与单位向量e 方向相反,且长度为12,根据向量的定义,即可求得答案. 解:∵向量a 与单位向量e 方向相反,且长度为12, ∴12a e =-. 故选C .5.已知233m a b =-,1124n b a =+,那么4m n -等于( ) A .823a b - B .443a b - C .423a b - D .843a b - 【答案】A【解析】根据向量的混合运算法则求解即可求得答案,注意解题需细心. 解:∵233m a b =-,1124n b a =+, ∴4m n -=2112834()32232433a b b a a b b a a b --+=---=-.故选A .6.若AB 是非零向量,则下列等式正确的是( )A .AB BA =;B .AB BA =;C .0AB BA +=;D .0AB BA +=.【答案】B【解析】【分析】长度不为0的向量叫做非零向量,本题根据向量的长度及方向易得结果【详解】∵AB 是非零向量, ∴AB BA =故选B【点睛】此题考查平面向量,难度不大7.下列判断正确的是( )A .0a a -=B .如果a b =,那么a b =C .若向量a 与b 均为单位向量,那么a b =D .对于非零向量b ,如果()0a k b k =⋅≠,那么//a b【答案】D【解析】【分析】根据向量的概念、性质以及向量的运算即可得出答案.【详解】 A. -a a 等于0向量,而不是等于0,所以A 错误;B. 如果a b =,说明两个向量长度相等,但是方向不一定相同,所以B 错误;C. 若向量a 与b 均为单位向量,说明两个向量长度相等,但方向不一定相同,所以C 错误;D. 对于非零向量b ,如果()0a k b k =⋅≠,即可得到两个向量是共线向量,可得到//a b ,故D 正确.故答案为D.【点睛】本题考查向量的性质以及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.8.已知3a →=,2b =,而且b 和a 的方向相反,那么下列结论中正确的是( ) A .32a b →→=B .23a b →→=C .32a b →→=-D .23a b →→=- 【答案】D【解析】【分析】 根据3,2a b ==,而且12,x x R ∈和a 的方向相反,可得两者的关系,即可求解. 【详解】∵3,2a b ==,而且12,x x R ∈和a 的方向相反 ∴32a b =-故选D.【点睛】本题考查的是向量,熟练掌握向量的定义是解题的关键.9.已知一点O 到平行四边形ABCD 的3个顶点A 、B 、C 的向量分别为、、,则向量等于 ( )A .++B .-+C .+-D .--【答案】B【解析】【分析】利用向量的线性运算,结合平行四边形的性质,即可求得结论.【详解】如图,,则-+故选B .【点睛】此题考查平面向量的基本定理及其意义,解题关键在于画出图形.10.以下等式正确的是( ).A .0a a -=B .00a ⋅=C .()a b b a -=--D .km k m = 【答案】C【解析】【分析】根据平面向量的运算法则进行判断.【详解】解:A. 0a a -=,故本选项错误;B. 00a ⋅=,故本选项错误;C. ()a b b a -=--,故本选项正确; D. km k m =⋅,故本选项错误.故选:C.【点睛】 考查了平面向量的有关运算,掌握平面向量的性质和相关运算法则是关键. 11.已知a 、b 、c 都是非零向量,下列条件中,不能判断//a b 的是( ) A .a b = B .3a b = C .//a c ,//b c D .2,2a c b c ==-【答案】A【解析】【分析】根据平行向量的定义(两个向量方向相同或相反,即为平行向量)分析求解即可求得答案.【详解】解:A 、||||a b =只能说明a 与b 的模相等,不能判定a ∥b ,故本选项符合题意; B 、3a b =说明a 与b 的方向相同,能判定a ∥b ,故本选项不符合题意;C 、a ∥c ,b ∥c ,能判定a ∥b ,故本选项不符合题意;D 、2a c =,2b c =-说明a 与b 的方向相反,能判定a ∥b ,故本选项不符合题意. 故选:A .【点睛】此题考查了平面向量的知识.此题难度不大,注意掌握平行向量与向量的模的定义是解此题的关键.12.如图,在平行四边形ABCD 中,如果AB a =,AD b =,那么a b +等于( )A.BD B.AC C.DB D.CA【答案】B【解析】【分析】由四边形ABCD是平行四边形,可得AD=BC,AD∥BC,则可得BC b=,然后由三角形法则,即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AD b=,∴BC b=,∵AB a=,∴a b+=AB+BC=AC.故选B.13.在ABCD中,AC与BD相交于点O,AB a=,AD b=,那么OD等于()A.1122a b+B.1122a b--C.1122a b-D.1122a b-+【答案】D 【解析】【分析】由四边形ABCD是平行四边形,可得12OD BD=,,又由BD BA AD=+,即可求得OD的值.【详解】解:∵四边形ABCD是平行四边形,∴OB=OD=12 BD,∴12OD BD=,∵BD BA AD a b=+=-+,∴12OD BD==111()222a b a b-+=-+故选:D.【点睛】此题考查了向量的知识.解题时要注意平行四边形法则的应用,还要注意向量是有方向的.14.下列有关向量的等式中,不一定成立的是()A.AB BA=-B.AB BA=C.AB BC AC D.AB BC AB BC+=+【答案】D【解析】【分析】根据向量的性质,逐一判定即可得解.【详解】A选项,AB BA=-,成立;B选项,AB BA=,成立;C选项,AB BC AC,成立;D选项,AB BC AB BC+=+不一定成立;故答案为D.【点睛】此题主要考查向量的运算,熟练掌握,即可解题.15.在下列关于向量的等式中,正确的是()A.AB BC CA=+B.AB BC AC=-C.AB CA BC=-D.0AB BC CA++=【答案】D【解析】【分析】根据平面向量的线性运算逐项判断即可.【详解】AB AC CB=+,故A选项错误;AB AC BC=-,故B、C选项错误;AB BC CA++=,故D选正确.【点睛】本题考查向量的线性运算,熟练掌握运算法则是关键.16.已知c为非零向量,3a c=,2b c=-,那么下列结论中错误的是()A.//a b B.3||||2a b=C.a与b方向相同D.a与b方向相反【答案】C【解析】【分析】根据平面向量的性质一一判断即可.【详解】∵3a c=,2b c=-∴3a b2=-,∴a∥b,32 a b =-a与b方向相反,∴A,B,D正确,C错误;故选:C.【点睛】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.17.已知a,b和c都是非零向量,下列结论中不能判定a∥b的是()A.a//c,b//c B.1,22a cb c==C.2a b=D.a b=【答案】D【解析】【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解.【详解】解:A.∵a//c,b//c,∴a∥b,故本选项错误;B.∵1,22a cb c==∴a∥b,故本选项错误.C.∵2a b=,∴a∥b,故本选项错误;D.∵a b=,∴a与b的模相等,但不一定平行,故本选项正确;故选:D.本题考查了平面向量,是基础题,熟记平行向量的定义是解题的关键.18.已知a、b和c都是非零向量,在下列选项中,不能判定a∥b的是()A.=a b B.a∥c,b∥cC.a+b=0 D.a+b=2c,a﹣b=3c【答案】A【解析】【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解.【详解】解:A、该等式只能表示两a、b的模相等,但不一定平行,故本选项符合题意;B、由a∥c,b∥c可以判定a∥b,故本选项不符合题意;C、由a+b=0可以判定a、b的方向相反,可以判定a∥b,故本选项不符合题意;D、由a+b=2c,a﹣b=3c,得到a=52c,b=﹣12c,则a、b的方向相反,可以判定a∥b,故本选项不符合题意;故选:A.【点睛】本题主要考查了平行向量,掌握平行向量是解题的关键.19.设,m n为实数,那么下列结论中错误的是()A.m na mn a()=()B.m n a ma na++()=C.m a b ma mb+(+)=D.若0ma=,那么0a=【答案】D【解析】【分析】空间向量的线性运算的理解:(1)空间向量的加、减、数乘运算可以像代数式的运算那样去运算;(2)注意向量的书写与代数式的书写的不同,我们书写向量的时候一定带上线头,这也是向量与字母的不同之处;(3)虽然向量的线性运算可以像代数式的运算那样去运算,但它们表示的意义不同.【详解】根据向量的运算法则,即可知A(结合律)、B、C(乘法的分配律)是正确的,D中的0是有方向的,而0没有,所以错误.解:∵A、B、C均属于向量运算的性质,是正确的;∵D、如果a=0,则m=0或a=0.∴错误.【点睛】本题考查的知识点是向量的线性运算,解题关键是熟记向量的运算法则.20.已知a 、b 和c 都是非零向量,在下列选项中,不能判定//a b 的是( ) A .2a b =B .//a c ,//b cC .||||a b =D .12a c =,2bc = 【答案】C【解析】【分析】由方向相同或相反的非零向量叫做平行向量,对各选项分析判断.【详解】 A 选项:由2a b =,可以推出//a b .本选项不符合题意; B 选项:由//a c ,//b c ,可以推出//a b .本选项不符合题意; C 选项:由||||a b =,不可以推出//a b .本选项符合题意; D 选项:由12a c =,2bc =,可以推出//a b .本选项不符合题意; 故选:C .【点睛】考查了平面向量,解题关键是熟记平行向量的定义.。
中考真题(向量)
中考、二模真题(向量)1.如图1,在ABC △中,AD 是边BC 上的中线,设向量 , 如果用向量a r ,b r表示向量AD u u u r ,那么AD u u u r =2.如图,平行四边形ABCD 的对角线交于点O ,=,=,那么2121+等于 (A ); (B ); (C ); (D ).3.如图,在△ABC 中,D 是BC 上的点,若B D ︰D C =1︰2,a AB =,=, 那么= (用a 和b 表示).4.如图,在ABC ∆中,点D 、E 分别是边AB 、AC 的中点,=,=,那么等于 .5.如图,在梯形ABCD 中,AB ‖CD ,CD AB 2=,AC 与BD 交于点P ,令a ==,那么= .(用向量、表示)A C(第2题图)BC(第3题图)AD BCE (第4题图) 图1ABa =u u u r r6.四边形ABCD 中, BC AD 21=,对角线B D 、AC 交于点O ,若=,=,则= .(用n m +的形式表示,其中n m 、为实数.)7.已知:在平行四边形ABCD 中,设AB a =u u u r r ,AD b =u u u r r ,那么CA =u u u r (用向量a r、b r的式子表示).8.平行四边形ABCD 中,E 是AD 上一点,且3AD AE =,设BA a =u u u r r ,BC b =u u u r r,则BE =u u u r .(结果用a r 、b r表示)9. 如右图,△ABC 中,D 是边BC 的中点,BA a =u u u r r ,AD b =u u u r r ,那么BC uuu r等于…( ).(A )a ρ+b ρ; (B )12(a ρ+b ρ);(C )2(a ρ+b ρ); (D )—(a ρ+b ρ).10. 如图,已知O 是△ABC 内一点,AO AD 41=,BO BE 41=,CO C 41=F .设a AB =,b BC =,则用向量b a ,表示F D = 。
初中数学向量的线性运算基础测试题含答案(1)
初中数学向量的线性运算基础测试题含答案(1)一、选择题1.下列各式正确的是( ).A .()22a b c a b c ++=++r r r r r rB .()()330a b b a ++-=rr r rC .2AB BA AB +=u u u r u u u r u u u rD .3544a b a b a b ++-=-r r r r r r【答案】D 【解析】 【分析】根据平面向量计算法则依次判断即可. 【详解】A 、()222a b c a b c ++=++r r r r rr ,故A 选项错误;B 、()()3333+33=6a b b a a b b a b ++-=+-r r r r rr r r r ,故B 选项错误;C 、0AB BA +=uu u r uu r r,故C 选项错误;D 、3544a b a b a b ++-=-r r r r r r ,故D 选项正确;故选D. 【点睛】本题是对平面向量计算法则的考查,熟练掌握平面向量计算法则是解决本题的关键.2.四边形ABCD 中,若向量与是平行向量,则四边形ABCD ( )A .是平行四边形B .是梯形C .是平行四边形或梯形D .不是平行四边形,也不是梯形【答案】C 【解析】 【分析】根据题目中给的已知条件与是平行向量,可得AB 与CD 是平行的,且不确定与的大小,有一组对边平行的四边形可能是梯形或者平行四边形,故可得答案.【详解】根据题意可得AB 与CD 是平行的,且不确定与的大小,所以有一组对边平行的四边形可能是梯形或者平行四边形. 故答案为:C. 【点睛】此题考查平行向量,解题关键在于掌握平行向量的特征.3.在四边形ABCD 中,,,,其中与不共线,则四边形ABCD 是( ) A .平行四边形B .矩形C .梯形D .菱形【解析】 【分析】利用向量的运算法则求出,利用向量共线的充要条件判断出,得到边AD ∥BC ,AD=2BC ,据梯形的定义得到选项.【详解】 解:∵,∴,∴AD ∥BC ,AD=2BC. ∴四边形ABCD 为梯形. 【点睛】本题考查向量的运算法则向量共线的充要条件、利用向量共线得到直线的关系、梯形的定义.4.已知a r、b r和c r都是非零向量,在下列选项中,不能判定//a b rr 的是( ) A .2a b =r rB .//a c r r,//b c r rC .||||a b =r rD .12a c =r r ,2bc =r r【答案】C 【解析】 【分析】由方向相同或相反的非零向量叫做平行向量,对各选项分析判断. 【详解】A 选项:由2a b =rr,可以推出//a b rr.本选项不符合题意;B 选项:由//a c r r ,//b c r r ,可以推出//a b rr .本选项不符合题意;C 选项:由||||a b =r r ,不可以推出//a b r r.本选项符合题意;D 选项:由12a c =r r ,2bc =r r ,可以推出//a b rr .本选项不符合题意;故选:C . 【点睛】考查了平面向量,解题关键是熟记平行向量的定义.5.已知a r 、b r为非零向量,下列判断错误的是( )A .如果a r =3b r ,那么a r ∥b rB .||a r=||b r ,那么a r =b r 或a r =-b u u rC .0r的方向不确定,大小为0D .如果e r 为单位向量且a r =﹣2e r ,那么||a r=2【解析】 【分析】根据平面向量的性质解答即可. 【详解】解:A 、如果a r =3b r ,那么两向量是共线向量,则a r ∥b r,故A 选项不符合题意.B 、如果||a r =||b r ,只能判定两个向量的模相等,无法判定方向,故B 选项符合题意.C 、0r的方向不确定,大小为0,故C 选项不符合题意.D 、根据向量模的定义知,||a r=2|e r |=2,故D 选项不符合题意.故选:B . 【点睛】此题考查的是平面向量,掌握平面向量的性质是解决此题的关键.6.若向量a r与b r均为单位向量,则下列结论中正确的是( ).A .a b =r rB .1a =rC .1b =rD .a b =r r【答案】D 【解析】 【分析】由向量a r 与b r 均为单位向量,可得向量a r 与b r的模相等,但方向不确定.【详解】解:∵向量a r与b r均为单位向量, ∴向量a r与b r的模相等,∴a b =r r.故答案是:D.【点睛】此题考查了单位向量的定义.注意单位向量的模等于1,但方向不确定.7.在平行四边形ABCD 中,AC 与BD 交于点M ,若设AB a =u u u r r ,AD b =u u u r r,则下列选项与1122a b -+rr 相等的向量是( ).A .MA u u u rB .MB u u u rC .MC u u u u rD .MD u u u u r【答案】D 【解析】 【分析】根据向量加法的平行四边形法则和平行四边形的性质逐一判断即可. 【详解】解:∵在平行四边形ABCD 中, AB a =u u u r r ,AD b =u u u r r, ∴AC AB AD a b =+=+u u u r u u u r u u u r r r ,BD AD AB b a =-=-u u u r u u u r u u u r r r,M 分别为AC 、BD 的中点,∴()11112222a M AC ab A b =+==----u u u r u u u r r rr r ,故A 不符合题意;()11112222MB BD b a a b =-=--=-u u u r u u u r r rr r ,故B 不符合题意;()11112222a M AC a b C b =+=+=u u u u r u ur r u r rr ,故C 不符合题意;()11112222MD BD b a a b ==-=-+u u u u r u u u r r rr r ,故D 符合题意.故选D.【点睛】此题考查的是平行四边形的性质及向量的加、减法,掌握平行四边形的对角线互相平分和向量加法的平行四边形法则是解决此题的关键.8.已知在ABC ∆中,AB AC =,AD 是角平分线,点D 在边BC 上,设BC a =u u u r r,AD b =u u u r r ,那么向量AC u u u r 用向量a r 、b r表示为( ) A .12a b +r r B .12a b r r - C .12a b -+r r D .12a b --r r【答案】A 【解析】试题分析:因为AB =AC ,AD 为角平分线,所以,D 为BC 中点,=12a b +rr .故选A .考点:平面向量,等腰三角形的三线合一.9.D 、E 、F 分别是△ABC 三边AB 、BC 、CA 的中点,则下列等式不成立的是( ) A .+=B .++=0C .+=D .+=【答案】C 【解析】 【分析】由加法的三角形法则化简求解即可. 【详解】由加法的三角形法则可得, + =, ++= , +=,+=故选:B. 【点睛】此题考查向量的加法及其几何意义,解题关键在于掌握平面向量的加法法则.10.下面四个命题中正确的命题个数为( ).①对于实数m 和向量a r、b r ,恒有()m a b ma mb -=-r r r r②对于实数m 、n 和向量a r,恒有()m n a ma na -=-r r r③若ma mb =r r (m 是实数)时,则有a b =r r ④若ma na =r r (m 、n 是实数,0a ≠r r ),则有m n =A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】根据平面向量的性质依次判断即可. 【详解】①对于实数m 和向量a r 、b r ,恒有()m a b ma mb -=-r r r r ,正确;②对于实数m 、n 和向量a r ,恒有()m n a ma na -=-r r r,正确; ③若ma mb =rr(m 是实数)时,则有a b =rr,错误,当m=0时不成立; ④若ma na =r r(m 、n 是实数,0a ≠rr),则有m n =,正确; 故选C.本题考查平面向量知识,熟练掌握平面向量的基本性质是解决本题的关键.11.设,m n 为实数,那么下列结论中错误的是( )A .m na mn a r r()=()B .m n a ma na ++r r r()= C .m a b ma mb +r r r r (+)= D .若0ma =r r,那么0a =r r【答案】D 【解析】 【分析】空间向量的线性运算的理解:(1)空间向量的加、减、数乘运算可以像代数式的运算那样去运算;(2)注意向量的书写与代数式的书写的不同,我们书写向量的时候一定带上线头,这也是向量与字母的不同之处;(3)虽然向量的线性运算可以像代数式的运算那样去运算,但它们表示的意义不同. 【详解】根据向量的运算法则,即可知A (结合律)、B 、C (乘法的分配律)是正确的,D 中的0v是有方向的,而0没有,所以错误.解:∵A 、B 、C 均属于向量运算的性质,是正确的; ∵D 、如果a v =0v ,则m=0或a v =0v.∴错误. 故选D . 【点睛】本题考查的知识点是向量的线性运算,解题关键是熟记向量的运算法则.12.下列式子中错误的是( ).A .2a a a +=r r rB .()0a a +-=r r rC .()a b a b -+=--r r r rD .a b b a -=-r r r r【答案】D 【解析】 【分析】根据向量的定义是既有大小又有方向的量,及向量的运算法则即可分析求解. 【详解】A. a r 与a r 大小、方向都相同,∴2a a a +=r r r,故本选项正确;B. a r与a -r 大小相同,方向相反,∴()0a a +-=r r r ,故本选项正确;C.根据实数对于向量的分配律,可知()a b a b -+=--r r r r,故本选项正确;D.根据向量的交换律,可知a b b a -=-+r r r r,故本选项错误.故选D.本题考查向量的运算,掌握运算法则及运算律是解题的关键.13.如果向量a r 与单位向量e r 的方向相反,且长度为3,那么用向量e r 表示向量a r为( )A .3a e =v vB .3a e =-v vC .3e a =v vD .3e a =-v v【答案】B 【解析】 【分析】根据平面向量的定义解答即可. 【详解】解:∵向量e r为单位向量,向量a r与向量e r方向相反, ∴3a e r r=-. 故选:B . 【点睛】本题考查平面向量的性质,解题的关键是灵活运用所学知识解决问题.14.如果||=2,=-,那么下列说法正确的是( )A .||=2||B .是与方向相同的单位向量C .2-=D .∥【答案】D 【解析】 【分析】根据平面向量的模和向量平行的定义解答. 【详解】 A 、由=-得到||=||=1,故本选项说法错误. B 、由=-得到是与的方向相反,故本选项说法错误. C 、由=-得到2+=,故本选项说法错误. D 、由=-得到∥,故本选项说法正确.故选D . 【点睛】考查了平面向量,需要掌握平面向量的模的定义,向量的方向与大小以及向量平行的定义等知识点,难度不大.15.化简()()AB CD BE DE -+-u u u r u u u r u u u r u u u r的结果是( ).A .CA u u u rB .AC u u u r C .0rD .AE u u u r【答案】B 【解析】 【分析】根据三角形法则计算即可解决问题. 【详解】解:原式()()AB BE CD DE =+-+u u u r u u u r u u u r u u u rAE CE =-u u u r u u u r AE EC =+u u u r u u u rAC =u u u r ,故选:B . 【点睛】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.16.在ABCD Y 中,AC 与BD 相交于点O ,AB a =u u u r r ,AD b =u u u r r ,那么OD uuu r等于( )A .1122a b +r rB .1122a b --r rC .1122a b -r rD .1122a b -+r r【答案】D 【解析】 【分析】由四边形ABCD 是平行四边形,可得12OD BD =u u u r u u u r ,,又由BD BA AD =+u u u r u u u r u u u r ,即可求得OD uuu r的值.【详解】解:∵四边形ABCD 是平行四边形,∴OB=OD=12BD , ∴12OD BD =u u u r u u u r ,∵BD BA AD a b =+=-+u u u r u u u r u u u r r r ,∴12OD BD =u u u r u u u r =111()222a b a b -+=-+r r r r故选:D . 【点睛】此题考查了向量的知识.解题时要注意平行四边形法则的应用,还要注意向量是有方向的.17.已知e r 是单位向量,且2,4a e b e =-=v v v v,那么下列说法错误的是( )A .a r∥b rB .|a r |=2C .|b r |=﹣2|a r |D .a r =﹣12b r【答案】C 【解析】 【分析】 【详解】解:∵e v 是单位向量,且2a e =-v v,4b e =vv,∴//a b v v ,2a =v , 4b =v ,12a b =-v v , 故C 选项错误,故选C.18.已知一个单位向量e v ,设a v 、b v是非零向量,那么下列等式中正确的是( ).A .1a e a=r r r ;B .e a a =r r r ;C .b e b =r r r ;D .11a b a b=r r r r .【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】解:A 、左边得出的是a 的方向不是单位向量,故错误;B 、符合向量的长度及方向,正确;C 、由于单位向量只限制长度,不确定方向,故错误;D 、左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误.故选:B . 【点睛】本题考查了向量的性质.19.如果2a b =r r (a r ,b r均为非零向量),那么下列结论错误的是( )A .a r //b rB .a r -2b r =0C .b r =12a rD .2a b =r r【答案】B 【解析】试题解析:向量最后的差应该还是向量.20.a b v vv-= 故错误. 故选B.20.化简OP QP PS SP -++u u u r u u u r u u u r u u r的结果等于( ).A .QP uuu rB .OQ uuu rC .SP u u rD .SQ u u u r【答案】B 【解析】 【分析】利用向量的加减法的法则化简即可. 【详解】解:原式=+Q OP P PS SP ++u u u r u u u r u u u r u u r=Q O uuu r,故选B.【点睛】本题主要考查两个向量的加减法的法则,以及其几何意义,难度不大.。
数学复习题初三平面向量与坐标系
数学复习题初三平面向量与坐标系初三学生,在学习数学的过程中,复习是非常重要的一环。
而平面向量与坐标系是初三数学中的重要内容之一。
下面,我将为大家提供一些数学复习题,帮助大家巩固对平面向量与坐标系的理解。
一、选择题1. 设向量a=2a+4a,向量a=3a−a,向量a=−3a+5a,则a+a+a 的坐标是:A. (2, 6)B. (4, 8)C. (2, 10)D. (8, −2)2. 若向量a=7a−2a,向量a=−3a+5a,则a−a的坐标是:A. (10, 7)B. (4, 7)C. (10, −7)D. (4, −7)3. 已知向量a=(3,−5),求向量a的模长。
A. 8B. 10C. −8D. −10二、填空题1. 设向量a=(2,−3),向量a=(−1,4),则a·a=______。
2. 设a是坐标原点,a(1,−2)、a(3,1),则向量→aa =______。
3. 已知向量a=(4,−1),向量a=(3,2),求a和a的夹角a,结果精确到整度。
三、解答题1. 已知平面向量a=(3,4),a=(5,−2),求向量a+a、a−a的坐标,并画出它们的几何示意图。
2. 设a是坐标原点,a(1,2)、a(3,4),求向量→aa和→aa的模长,并求它们的单位向量。
四、应用题1. 两点a、a的坐标分别为a(2,3)、a(5,7),求向量→aaa的坐标。
2. 已知点a(−1,4)和a(3,−2),求线段aa的长度。
以上就是本次的数学复习题,希望大家能够认真思考、独立解答,巩固平面向量与坐标系的相关知识。
祝大家学业进步,取得好成绩!。
(易错题精选)初中数学向量的线性运算经典测试题含答案(1)
(易错题精选)初中数学向量的线性运算经典测试题含答案(1)一、选择题1.如图,ABCD □对角线AC 与BD 相交于点O ,如果AB m =u u u r u r ,AD n =u u u r r,那么下列选项中,与向量()12m n +ur r 相等的向量是( ).A .OA u u u rB .OB uuu rC .OC u u u rD .OD uuu r【答案】C 【解析】 【分析】由四边形ABCD 是平行四边形根据平行四边形法则,可求得BC AD n ==u u u r u u u r r,然后由三角形法则,求得AC u u u r 与BD u u u r,继而求得答案. 【详解】∵四边形ABCD 是平行四边形, ∴BC AD n ==u u u r u u u r r ,∴AC u u u r =AB BC m n +=+u u ur u u u r u r r ,=BD AD AB n m -=-u u u r u u u r u u u r r u r , ∴()11=-22OA AC m n =-+u u u r u u u r ur r ,()11=22OC AC m n =+u u u r u u u r u r r ()11=-22OB BD n m =--u u u r u u u r r ur ,()11=22OD BD n m =-u u u r u u u r r u r故选:C . 【点睛】此题考查了平面向量的知识以及平行四边形的性质.注意掌握三角形法则与平行四边形法则的应用是解此题的关键.2.等腰梯形ABCD 中,对角线AC 与BD 相交于点P ,点E 、F 分别在两腰AD 、BC 上,EF 过点P 且EF ∥AB ,则下列等式正确的是 ( ) A .B .C .D .【答案】D 【解析】 【分析】根据相等向量的定义,依次分析选项,依据图示,大小相等,方向相同的向量即可得到答案. 【详解】根据相等向量的定义,分析可得,A. 方向不同,错误,B. 方向不同,错误,C. 方向相反,错误,D. 方向相同,且大小都等于线段EF 长度的一半,正确;故选D. 【点睛】此题考查相等向量与相反向量,解题关键在于掌握其定义.3.已知向量,且则一定共线的三点是( )A .A 、B 、D B . A 、B 、CC .B 、C 、DD .A 、C 、D【答案】A 【解析】 【分析】证明三点共线,借助向量共线证明即可,故解题目标是验证由三点组成的两个向量共线即可得到共线的三点 【详解】解:由向量的加法原理知所以A 、B 、D 三点共线. 【点睛】本题考点平面向量共线的坐标表示,考查利用向量的共线来证明三点共线的,属于向量知识的应用题,也是一个考查基础知识的基本题型.4.在矩形ABCD 中,如果AB u u u r 3BC uuu r 模长为1,则向量(AB u u u r +BC uuur +AC u u u r )的长度为( ) A .2 B .4C 31D 31【答案】B 【解析】 【分析】先求出AC AB BC =+u u u r u u u r u u u r ,然后2AB BC AC AC ++=u u u r u u u r u u u r u u u r,利用勾股定理即可计算出向量(AB u u u r +BC uuur +AC u u u r )的长度为【详解】22||3,||1||(3)122|||2|224AB BC AC AC AB BCAB BC AC AC AB BC AC AC ==∴=+==+∴++=++==⨯=∴u u u r u u u rQ u u u ru u u r u u u r u u u rQ u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r故选:B.考查了平面向量的运算,解题关键是利用矩形的性质和三角形法则.5.已知233m a b =-r r r ,1124n b a =+r r r ,那么4m n -r r等于( )A .823a b -r rB .443a b r r -C .423a b -r rD .843a b -r r【答案】A 【解析】根据向量的混合运算法则求解即可求得答案,注意解题需细心.解:∵233m a b =-r r r ,1124n b a =+r r r,∴4m n -r r =2112834()32232433a b b a a b b a a b --+=---=-rr r r r r r r r r .故选A .6.下列说法正确的是( ). A .一个向量与零相乘,乘积为零 B .向量不能与无理数相乘C .非零向量乘以一个负数所得向量比原向量短D .非零向量乘以一个负数所得向量与原向量方向相反 【答案】D 【解析】 【分析】根据平面向量的定义和性质进行判断. 【详解】解:A. 一个向量与零相乘,乘积为零向量.故本选项错误; B. 向量可以与任何实数相乘.故本选项错误;C. 非零向量乘以一个负数所得向量的方向与原向量相反,但不一定更短.故本选项错误;D. 非零向量乘以一个负数所得向量与原向量方向相反.故本选项正确. 故答案是:D. 【点睛】考查了平面向量的知识,属于基础题,掌握平面向量的性质和相关运算法则即可解题.7.给出下列3个命题,其中真命题的个数是( ).①单位向量都相等;②单位向量都平行;③平行的单位向量必相等. A .1个 B .2个C .3个D .0个【答案】D 【解析】根据单位向量的定义、相等向量的定义和平行向量的定义逐一判断即可. 【详解】解:①单位向量的方向不一定相同,故①错误;②单位向量不一定平行,例如向上的单位向量和向右的单位向量,故②错误; ③平行的单位向量可能方向相反,所以平行的单位向量不一定相等,故③错误. 故选D. 【点睛】此题考查的是平面向量的基本概念,掌握单位向量的定义、相等向量的定义和平行向量的定义是解决此题的关键.8.已知在ABC ∆中,AB AC =,AD 是角平分线,点D 在边BC 上,设BC a =u u u rr,AD b =u u u r r ,那么向量AC u u u r 用向量a r 、b r表示为( ) A .12a b +r r B .12a b r r - C .12a b -+r rD .12a b --r r【答案】A 【解析】试题分析:因为AB =AC ,AD 为角平分线,所以,D 为BC 中点,=12a b +rr .故选A .考点:平面向量,等腰三角形的三线合一.9.已知一点O 到平行四边形ABCD 的3个顶点A 、B 、C 的向量分别为、、,则向量等于 ( ) A .++ B .-+C .+-D .--【答案】B 【解析】 【分析】利用向量的线性运算,结合平行四边形的性质,即可求得结论. 【详解】 如图,,则-+故选B . 【点睛】此题考查平面向量的基本定理及其意义,解题关键在于画出图形.10.已知非零向量a r 、b r 、c r ,在下列条件中,不能判定a r //b r的是( )A .a r //c r ,b r //c rB .2a c =r r ,3b c =rr C .5a b =-r r D .||2||a b =r r【答案】D 【解析】分析:根据平面向量的性质即可判断. 详解:A .∵a r ∥c b r r ,∥c r,∴a b P u u r r ,故本选项,不符合题意;B .∵a r =2c b rr,=3c r,∴a b P u u r r,故本选项,不符合题意; C .∵a r=﹣5b r ,∴a b P u u r r,故本选项,不符合题意; D .∵|a r|=2|b r |,不能判断a b P u u r r ,故本选项,符合题意.故选D .点睛:本题考查了平面向量,熟练掌握平面向量的基本性质的解题的关键.11.已知非零向量a r 、b r 和c r ,下列条件中,不能判定a b r rP 的是( )A .2a b =-r rB .a c =r r ,3b c =r rC .2a b c +=r r r ,a b c -=-r rrD .2a b =r r【答案】D 【解析】 【分析】根据平行向量的定义,符号相同或相反的向量叫做平行向量对各选项分析判断利用排除法求【详解】A 、2a b =-r r,两个向量方向相反,互相平行,故本选项错误; B 、a c =r r ,3b c =r r ,则a r ∥b r ∥c r,故本选项错误;C 、由已知条件知2a b =-r r ,3a c -=r r ,则a r ∥b r ∥c r,故本选项错误;D 、2a b =r r 只知道两向量模的数量关系,但是方向不一定相同或相反,a r 与b r 不一定平行,故本选项正确. 故选:D . 【点睛】本题考查了平面向量,主要是对平行向量的考查,熟记概念是解题的关键.12.规定:在平面直角坐标系中,如果点P 的坐标为(),m n ,向量OP u r可以用点P 的坐标表示为:(),OP m n =u r .已知()11,OA x y =u r ,()22,OB x y =u r ,如果12120x x y y ⋅+⋅=,那么OA u r 与OB u r互相垂直.在下列四组向量中,互相垂直的是( ) A .()()013,2019,3,1OC OD -==-u r u r B.))1,1,1,1OE OF =u r u rC.(()21,,82OG OH ⎛⎫= ⎪⎝⎭u r u rD.,OM+⎭u r【答案】A 【解析】 【分析】根据题意中向量垂直的性质对各项进行求解即可. 【详解】 A.()133201910-⨯-+⨯=,正确;B.))11112⨯+⨯=,错误;C.(21842+⨯=,错误;D.))2222⨯+=,错误; 故答案为:A . 【点睛】本题考查了向量垂直的问题,掌握向量互相垂直的性质以及判定是解题的关键.13.下列命题正确的是( )A .如果|a r |=|b r |,那么a r =b rB .如果a r 、b r 都是单位向量,那么a r =b rC .如果a r =k b r (k ≠0),那么a r ∥b rD .如果m =0或a r =0r ,那么m a r=0 【答案】C 【解析】 【分析】根据向量的定义和要素即可进行判断. 【详解】解:A .向量是既有大小又有方向,|a r |=|b r |表示有向线段的长度,a r =b r表示长度相等,方向相同,所以A 选项不正确;B .长度等于1的向量是单位向量,所以B 选项不正确;C . a r =k b r (k ≠0)⇔a r ∥b r,所以C 选项正确; D .如果m =0或a r =0r ,那么m a r =0r,不正确. 故选:C . 【点睛】本题主要考查向量的定义和要素,准备理解相关概念是关键.14.下列有关向量的等式中,不一定成立的是( )A .AB BA =-u u u r u u u rB .AB BA =uu u r uu rC .AB BC AC +=u u u r u u u r u u u rD .AB BC AB BC +=+u u u r u u u r u u u r u u u r【答案】D 【解析】 【分析】根据向量的性质,逐一判定即可得解. 【详解】A 选项,AB BA =-u u u r u u u r,成立;B 选项,AB BA =uu u r uu r,成立;C 选项,AB BC AC +=u u r u u r u u u r,成立;D 选项,AB BC AB BC +=+u u u r u u u r u u u r u u u r不一定成立;故答案为D. 【点睛】此题主要考查向量的运算,熟练掌握,即可解题.15.在下列关于向量的等式中,正确的是( ) A .AB BC CA =+u u u r u u u r u u u rB .AB BC AC =-u u u r u u u r u u u r C .AB CA BC =-u u u r u u u r u u u rD .0AB BC CA ++=u u u r u u u r u u u r r【答案】D 【解析】 【分析】根据平面向量的线性运算逐项判断即可. 【详解】AB AC CB =+u u u r u u u r u u u r,故A 选项错误; AB AC BC =-u u u r u u u r u u u r,故B 、C 选项错误; 0AB BC CA ++=u u u r u u u r u u u r r,故D 选正确. 故选:D. 【点睛】本题考查向量的线性运算,熟练掌握运算法则是关键.16.如图,向量OA u u u r 与OB uuu r 均为单位向量,且OA ⊥OB ,令n r =OA u u u r +OB uuu r,则||n v=( )A .1B 2C 3D .2【答案】B 【解析】根据向量的运算法则可得: n v()222OA OB +=u u u v u u u v 故选B.17.已知5a b =r r,下列说法中,不正确的是( )A .50a b -=r rB .a r 与b r 方向相同C .//a b r rD .||5||a b =r r【答案】A 【解析】 【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用. 【详解】A 、50a b -=r rr,故该选项说法错误B 、因为5a b =r r ,所以a r 与b r的方向相同,故该选项说法正确, C 、因为5a b =r r ,所以//a b r r,故该选项说法正确,D 、因为5a b =rr,所以||5||a b =r r;故该选项说法正确, 故选:A . 【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.18.已知非零向量a r 、b r ,且有2a b =-r r,下列说法中,不正确的是( ) A .||2||a b =r r ;B .a r ∥b r;C .a r 与b r方向相反; D .20a b +=r r.【答案】D 【解析】 【分析】根据平行向量以及模的知识求解即可.【详解】A.∵2a b =-r r,表明向量a r 与2b -r 是同一方向上相同的向量,自然模也相等,∴||2||a b =r r,该选项不符合题意错误;B. ∵2a b =-r r,表明向量a r 与2b -r 是同一方向上相同的向量,那么它们是相互平行的,虽然2b -r 与br 方向相反,但还是相互平行,∴a r ∥b r ,该选项不符合题意错误; C. ∵2a b =-r r,而2b -r 与b r 方向相反,∴a r 与b r 的方向相反,该选项不符合题意错误;D. ∵0只表示数量,不表示方向,而2a b +r r是两个矢量相加是带方向的,应该是02b a →→→+=,该选项符合题意正确;故选:D 【点睛】本题主要考查了平面向量的基本知识.19.如果a b c +=r r r ,3a b c -=r r r,且0c ≠r r ,下列结论正确的是A .=a b r rB .20a b +=r rC .a r 与b r方向相同D .a r 与b r方向相反【答案】D 【解析】 【分析】根据向量的性质进行计算判断即可. 【详解】解:将a b c +=r r r代入3a b c -=r r r ,计算得:-2a b =r r(方向相反).故选:D【点睛】本题考查了向量的性质,熟悉向量的性质是解题的关键.20.下列各式不正确的是( ).A .0a a -=r r rB .a b b a +=+r r r rC .如果()0a k b k =⋅≠r r ,那么b r 与a r 平行D .如果a b =r r ,那么a b =r r【答案】D 【解析】 【分析】根据向量的定义是规定了方向和大小的量,向量的运算法则及实数与向量乘积的意义判断各选项即可. 【详解】A.任意向量与它的相反向量的和都等于零向量,所以选项A 正确;B.向量的加法符合交换律,即a b b a +=+r r r r,所以选项B 正确;C.如果()0a k b k =≠r r g ,根据实数与向量乘积的意义可知:a r ∥b r ,所以选项C 正确;D.两个向量相等必须满足两个条件:长度相等且方向相同,如果a b =r r ,但a r 与b r方向不同,则a b ≠r r,所以D 选项错误.故选D. 【点睛】本题考查了向量的定义、运算及运算法则、实数与向量乘积的意义,明确定义及法则是解题的关键.。
初中数学向量的线性运算专项训练解析含答案(1)
初中数学向量的线性运算专项训练解析含答案(1)一、选择题1.如果向量a r 与单位向量e r 的方向相反,且长度为3,那么用向量e r表示向量a r 为( ) A .3a e =v vB .3a e =-v vC .3e a =v vD .3e a =-v v【答案】B 【解析】 【分析】根据平面向量的定义解答即可. 【详解】解:∵向量e r为单位向量,向量a r与向量e r方向相反, ∴3a e r r=-. 故选:B . 【点睛】本题考查平面向量的性质,解题的关键是灵活运用所学知识解决问题.2.在四边形ABCD 中,,,,其中与不共线,则四边形ABCD 是( ) A .平行四边形 B .矩形C .梯形D .菱形【答案】C 【解析】 【分析】利用向量的运算法则求出,利用向量共线的充要条件判断出,得到边AD ∥BC ,AD=2BC ,据梯形的定义得到选项.【详解】 解:∵,∴,∴AD ∥BC ,AD=2BC. ∴四边形ABCD 为梯形. 【点睛】本题考查向量的运算法则向量共线的充要条件、利用向量共线得到直线的关系、梯形的定义.3.如图,已知向量a r,b r,c r,那么下列结论正确的是( )A .a b c +=rrrB .b c a +=rr rC .a c b +=rr rD .a c b +=-r r r【答案】D 【解析】 【分析】 【详解】由平行四边形法则,即可求得: 解:∵CA AB CB +=u u u r u u u r u u u r, 即a c b +=-r r r 故选D .4.下列判断正确的是( )A .0a a -=r rB .如果a b =r r ,那么a b =r rC .若向量a r 与b r 均为单位向量,那么a b =r rD .对于非零向量b r,如果()0a k b k =⋅≠r r ,那么//a b r r【答案】D 【解析】 【分析】根据向量的概念、性质以及向量的运算即可得出答案. 【详解】A. -r ra a 等于0向量,而不是等于0,所以A 错误;B. 如果a b =r r,说明两个向量长度相等,但是方向不一定相同,所以B 错误;C. 若向量a r 与b 均为单位向量,说明两个向量长度相等,但方向不一定相同,所以C 错误;D. 对于非零向量b r,如果()0a k b k =⋅≠r r ,即可得到两个向量是共线向量,可得到//a b r r,故D 正确.故答案为D. 【点睛】本题考查向量的性质以及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.5.下列判断不正确的是( )A .如果AB CD =u u u r u u u r,那么AB CD =u u u r u u u rB .+=+C .如果非零向量a b(0)k k=坠r r,那么a r 与b r平行或共线D .AB BA 0+=u u u r u u u r【答案】D 【解析】 【分析】根据模的定义,可判断A 正确;根据平面向量的交换律,可判断B 正确;根据非零向量的知识,可确定C 正确;又由0AB BA +=u u u r u u u r r可判断D 错误【详解】A 、如果AB CD =u u u r u u u r,那么AB CD =u u u v u u u v ,故此选项正确;B 、a b b a +=+r r r r,故本选项正确;C 、如果非零向量a b(0)k k =坠r r ,那么a r 与b r平行或共线,故此选项正确;D 、0AB BA +=u u u r u u u r r,故此选项错误;故选:D . 【点睛】此题考查的是平面向量的知识,掌握平面向量相关定义是关键6.已知a r 、b r为非零向量,下列判断错误的是( )A .如果a r =3b r ,那么a r ∥b rB .||a r=||b r ,那么a r =b r 或a r =-b u u rC .0r的方向不确定,大小为0D .如果e r 为单位向量且a r =﹣2e r ,那么||a r=2【答案】B 【解析】 【分析】根据平面向量的性质解答即可. 【详解】解:A 、如果a r =3b r ,那么两向量是共线向量,则a r ∥b r,故A 选项不符合题意.B 、如果||a r =||b r ,只能判定两个向量的模相等,无法判定方向,故B 选项符合题意.C 、0r的方向不确定,大小为0,故C 选项不符合题意.D 、根据向量模的定义知,||a r=2|e r |=2,故D 选项不符合题意.故选:B . 【点睛】此题考查的是平面向量,掌握平面向量的性质是解决此题的关键.7.已知5AB a b =+u u u r r r ,28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,则( ).A .A 、B 、D 三点共线 B .A 、B 、C 三点共线 C .B 、C 、D 三点共线 D .A 、C 、D 三点共线【答案】A 【解析】 【分析】根据共线向量定理逐一判断即可. 【详解】解:∵28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,5AB a b =+u u u r r r∴()2835BD BC CD a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r, ∴AB u u u r 、BD u u u r是共线向量∴A 、B 、D 三点共线,故A 正确; ∵5AB a b =+u u u r r r ,28BC a b =-+u u u r r r∴不存在实数λ,使AB BC λ=u u u r u u u r ,即AB u u u r 、BC uuur 不是共线向量∴A 、B 、C 三点共线,故B 错误;∵28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ∴不存在实数λ,使BC CD λ=u u u r u u u r ,即BC uuu r 、CD uuur 不是共线向量∴B 、C 、D 三点共线,故C 错误;∵5AB a b =+u u u r r r ,28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,∴()52813AC AB BC a b a b a b =+=++-+=-+u u u r u u u r u u u r r r r r r r∴不存在实数λ,使AC CD λ=u u u r u u u r ,即AC u u u r 、CD uuur 不是共线向量∴A 、C 、D 三点共线,故D 错误; 故选A. 【点睛】此题考查的是共线向量的判定,掌握共线向量的定理是解决此题的关键.8.在平行四边形ABCD 中,AC 与BD 交于点M ,若设AB a =u u u r r ,AD b =u u u r r,则下列选项与1122a b -+rr 相等的向量是( ).A .MA u u u rB .MB u u u rC .MC u u u u rD .MD u u u u r【答案】D 【解析】 【分析】根据向量加法的平行四边形法则和平行四边形的性质逐一判断即可. 【详解】解:∵在平行四边形ABCD 中, AB a =u u u r r ,AD b =u u u r r, ∴AC AB AD a b =+=+u u u r u u u r u u u r r r ,BD AD AB b a =-=-u u u r u u u r u u u r r r,M 分别为AC 、BD 的中点,∴()11112222a M AC ab A b =+==----u u u r u u u r r rr r ,故A 不符合题意;()11112222MB BD b a a b =-=--=-u u u r u u u r r rr r ,故B 不符合题意;()11112222a M AC a b C b =+=+=u u u u r u ur r u r rr ,故C 不符合题意;()11112222MD BD b a a b ==-=-+u u u u r u u u r r rr r ,故D 符合题意.故选D.【点睛】此题考查的是平行四边形的性质及向量的加、减法,掌握平行四边形的对角线互相平分和向量加法的平行四边形法则是解决此题的关键.9.□ABCD 中, -+等于( ) A .B .C .D .【答案】A 【解析】 【分析】在平行四边形中,两对对边平行且相等,以一对对边所在的线段构成向量,得到的向量要么相等,要么是相反向量,根据本题所给的两个向量来看,它们是一对相反向量,和为零向量,得到结果. 【详解】∵在平行四边形ABCD 中, 与 是一对相反向量,∴ = -∴-+=-+=,故选A . 【点睛】此题考查向量加减混合运算及其几何意义,解题关键在于得出与是一对相反向量.10.下列结论正确的是( ).A .2004cm 长的有向线段不可以表示单位向量B .若AB u u u r 是单位向量,则BA u u u r不是单位向量 C .若O 是直线l 上一点,单位长度已选定,则l 上只有两点A 、B ,使得OA u u u r 、OB uuu r是单位向量D .计算向量的模与单位长度无关 【答案】C 【解析】 【分析】根据单位向量的定义及意义判断即可. 【详解】A.1个单位长度取作2004cm 时,2004cm 长的有向线段才刚好表示单位向量,故选项A 不正确;B. AB u u u r是单位向量时,1AB =uu u r ,而此时1AB BA ==u u u r u u u r ,即BA u u u r 也是单位向量,故选项B不正确;C.单位长度选定以后,在l 上点O 的两侧各取一点A 、B ,使得OA u u u r 、OB u u u r都等于这个单位长度,这时OA u u u r 、OB uuu r都是单位向量,故选项C 正确;D.没有单位长度就等于没有度量标准,故选项D 不正确. 故选C. 【点睛】本题考查单位向量,掌握单位向量的定义及意义是解题的关键.11.已知一个单位向量e v ,设a v 、b v是非零向量,那么下列等式中正确的是( ).A .1a e a=r r r ;B .e a a =r r r ;C .b e b =r r r ;D .11a b a b=r r r r .【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】解:A 、左边得出的是a 的方向不是单位向量,故错误;B 、符合向量的长度及方向,正确;C 、由于单位向量只限制长度,不确定方向,故错误;D 、左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误.故选:B . 【点睛】本题考查了向量的性质.12.下列命题正确的是( ) A .如果|a r |=|b r |,那么a r =b rB .如果a r 、b r 都是单位向量,那么a r =b rC .如果a r =k b r (k ≠0),那么a r ∥b rD .如果m =0或a r =0r ,那么m a r=0 【答案】C 【解析】 【分析】根据向量的定义和要素即可进行判断. 【详解】解:A .向量是既有大小又有方向,|a r |=|b r |表示有向线段的长度,a r =b r表示长度相等,方向相同,所以A 选项不正确;B .长度等于1的向量是单位向量,所以B 选项不正确;C . a r =k b r (k ≠0)⇔a r ∥b r,所以C 选项正确; D .如果m =0或a r =0r ,那么m a r =0r,不正确. 故选:C . 【点睛】本题主要考查向量的定义和要素,准备理解相关概念是关键.13.下列条件中,不能判定a ∥b 的是( ).A . //a c r r ,//b c r rB .||3||a b =r rC . 5a b =-r rD .2a b =r r【答案】B 【解析】 【分析】根据平面向量的性质进行逐一判定即可. 【详解】解:A 、由//a c r r ,//b c r r 推知非零向量a r 、b r 、c r 的方向相同,则//a b r r,故本选项不符合题意.B 、由||3||a b =rr只能判定向量a r 、b r 的模之间的关系,不能判定向量a r 、b r的方向是否相同,故本选项符合题意.C 、由5a b =-r r 可以判定向量a r 、b r 的方向相反,则//a b r r,故本选项不符合题意. D 、由2a b =r r 可以判定向量a r 、b r 的方向相同,则//a b r r,故本选项不符合题意. 故选:B . 【点睛】本题考查的是向量中平行向量的定义,即方向相同或相反的非零向量a r 、b r叫做平行向量.14.下列说法中,正确的是( )A .如果k =0,a r 是非零向量,那么k a r =0B .如果e r 是单位向量,那么e r=1C .如果|b r |=|a r |,那么b r =a r 或b r =﹣a rD .已知非零向量a r ,如果向量b r =﹣5a r,那么a r ∥b r【答案】D 【解析】 【分析】根据平面向量的性质一一判断即可. 【详解】解:A 、如果k =0,a r 是非零向量,那么k a r =0,错误,应该是k a r =0r.B 、如果e r 是单位向量,那么e r=1,错误.应该是e r =1.C 、如果|b r|=|a r|,那么b r=a r或b r=﹣a r,错误.模相等的向量,不一定平行. D 、已知非零向量a r ,如果向量b r =﹣5a r ,那么a r ∥b r,正确. 故选:D . 【点睛】本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.15.如图,点C 、D 在线段AB 上,AC BD =,那么下列结论中,正确的是( )A .AC u u u r 与BD u u u r是相等向量 B .AD u u u r 与BD u u u r是平行向量 C .AD u u u r 与BD u u u r是相反向量 D .AD u u u r 与BC uuu r是相等向量【答案】B 【解析】 【分析】由AC=BD ,可得AD=BD ,即可得AD u u u r 与BD u u u r是平行向量,AD BC AC BD =-=-u u u r u u u r u u u r u u u r ,,继而证得结论. 【详解】 A 、∵AC=BD ,∴AC BD =-u u u r u u u r,该选项错误;B 、∵点C 、D 是线段AB 上的两个点, ∴AD u u u r 与BD u u u r是平行向量,该选项正确; C 、∵AC=BC , ∴AD ≠BD ,∴AD u u u r 与BD u u u r不是相反向量,该选项错误;D 、∵AC=BD , ∴AD=BC ,∴AD BC =-u u u r u u u r,,该选项错误; 故选:B . 【点睛】本题考查了平面向量的知识.注意掌握相等向量与相反向量的定义是解此题的关键.16.已知c r 为非零向量, 3a c =r r , 2b c =-r r,那么下列结论中错误的是( )A .//a b r rB .3||||2a b =r rC .a r 与b r方向相同 D .a r 与b r方向相反【答案】C 【解析】 【分析】根据平面向量的性质一一判断即可. 【详解】∵ 3a c =r r , 2b c =-r r∴3a b 2=-r r ,∴a r ∥b r ,32a b =-r ra r 与b r方向相反,∴A ,B ,D 正确,C 错误; 故选:C . 【点睛】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.17.如图,向量OA u u u r 与OB uuu r 均为单位向量,且OA ⊥OB ,令n r =OA u u u r +OB uuu r ,则||n v=( )A .1B 2C 3D .2【答案】B 【解析】根据向量的运算法则可得: n v ()222OA OB +=u u u v u u u v 故选B.18.已知5a b =r r,下列说法中,不正确的是( ) A .50a b -=rrB .a r与b r方向相同 C .//a b r rD .||5||a b =r r【答案】A 【解析】 【分析】根据平行向量以及模的定义的知识求解即可求得答案,注意掌握排除法在选择题中的应用. 【详解】A 、50a b -=r rr,故该选项说法错误B 、因为5a b =r r ,所以a r 与b r的方向相同,故该选项说法正确,C 、因为5a b =r r ,所以//a b r r,故该选项说法正确,D 、因为5a b =r r ,所以||5||a b =r r ;故该选项说法正确,故选:A . 【点睛】本题考查了平面向量,注意,平面向量既有大小,又由方向,平行向量,也叫共线向量,是指方向相同或相反的非零向量.零向量和任何向量平行.19.如果a b c +=r r r ,3a b c -=r r r,且0c ≠r r ,下列结论正确的是A .=a b r rB .20a b +=r rC .a r 与b r方向相同D .a r 与b r方向相反【答案】D 【解析】 【分析】根据向量的性质进行计算判断即可. 【详解】解:将a b c +=r r r 代入3a b c -=r r r , 计算得:-2a b =r r(方向相反).故选:D 【点睛】本题考查了向量的性质,熟悉向量的性质是解题的关键.20.下面四个命题中正确的命题个数为( ).①对于实数m 和向量a r、b r ,恒有()m a b ma mb -=-r r r r②对于实数m 、n 和向量a r,恒有()m n a ma na -=-r r r③若ma mb =r r (m 是实数)时,则有a b =r r④若ma na =r r (m 、n 是实数,0a ≠r r ),则有m n =A .1个B .2个C .3个D .4个 【答案】C【解析】【分析】根据平面向量的性质依次判断即可.【详解】 ①对于实数m 和向量a r 、b r ,恒有()m a b ma mb -=-r r r r ,正确;②对于实数m 、n 和向量a r ,恒有()m n a ma na -=-r r r ,正确;③若ma mb =r r (m 是实数)时,则有a b =r r ,错误,当m=0时不成立;④若ma na =r r (m 、n 是实数,0a ≠r r ),则有m n =,正确;故选C.【点睛】 本题考查平面向量知识,熟练掌握平面向量的基本性质是解决本题的关键.。
最新初中数学向量的线性运算基础测试题附答案
最新初中数学向量的线性运算基础测试题附答案一、选择题1.在平行四边形ABCD 中,AC 与BD 交于点M ,若设AB a =u u u r r ,AD b =u u u r r,则下列选项与1122a b -+rr 相等的向量是( ).A .MA u u u rB .MB u u u rC .MC u u u u rD .MD u u u u r【答案】D 【解析】 【分析】根据向量加法的平行四边形法则和平行四边形的性质逐一判断即可. 【详解】解:∵在平行四边形ABCD 中, AB a =u u u r r ,AD b =u u u r r, ∴AC AB AD a b =+=+u u u r u u u r u u u r r r ,BD AD AB b a =-=-u u u r u u u r u u u r r r,M 分别为AC 、BD 的中点,∴()11112222a M AC ab A b =+==----u u u r u u u r r rr r ,故A 不符合题意;()11112222MB BD b a a b =-=--=-u u u r u u u r r rr r ,故B 不符合题意;()11112222a M AC a b C b =+=+=u u u u r u ur r u r rr ,故C 不符合题意;()11112222MD BD b a a b ==-=-+u u u u r u u u r r rr r ,故D 符合题意.故选D.【点睛】此题考查的是平行四边形的性质及向量的加、减法,掌握平行四边形的对角线互相平分和向量加法的平行四边形法则是解决此题的关键.2.等腰梯形ABCD 中,对角线AC 与BD 相交于点P ,点E 、F 分别在两腰AD 、BC 上,EF 过点P 且EF ∥AB ,则下列等式正确的是 ( ) A .B .C .D .【答案】D 【解析】 【分析】根据相等向量的定义,依次分析选项,依据图示,大小相等,方向相同的向量即可得到答案.【详解】根据相等向量的定义,分析可得,A. 方向不同,错误,B. 方向不同,错误,C. 方向相反,错误,D. 方向相同,且大小都等于线段EF长度的一半,正确;故选D.【点睛】此题考查相等向量与相反向量,解题关键在于掌握其定义.3.□ABCD中, -+等于( )A.B.C.D.【答案】A【解析】【分析】在平行四边形中,两对对边平行且相等,以一对对边所在的线段构成向量,得到的向量要么相等,要么是相反向量,根据本题所给的两个向量来看,它们是一对相反向量,和为零向量,得到结果.【详解】∵在平行四边形ABCD中,与是一对相反向量,∴ = -∴ -+=- + =,故选A.【点睛】此题考查向量加减混合运算及其几何意义,解题关键在于得出与是一对相反向量.4.四边形ABCD中,若向量与是平行向量,则四边形ABCD ( )A.是平行四边形B.是梯形C.是平行四边形或梯形D.不是平行四边形,也不是梯形【答案】C【解析】【分析】根据题目中给的已知条件与是平行向量,可得AB与CD是平行的,且不确定与的大小,有一组对边平行的四边形可能是梯形或者平行四边形,故可得答案.【详解】根据题意可得AB与CD是平行的,且不确定与的大小,所以有一组对边平行的四边形可能是梯形或者平行四边形.故答案为:C.【点睛】此题考查平行向量,解题关键在于掌握平行向量的特征.5.已知向量,且则一定共线的三点是( )A .A 、B 、D B . A 、B 、CC .B 、C 、DD .A 、C 、D【答案】A 【解析】 【分析】证明三点共线,借助向量共线证明即可,故解题目标是验证由三点组成的两个向量共线即可得到共线的三点 【详解】解:由向量的加法原理知所以A 、B 、D 三点共线. 【点睛】本题考点平面向量共线的坐标表示,考查利用向量的共线来证明三点共线的,属于向量知识的应用题,也是一个考查基础知识的基本题型.6.下列等式正确的是( )A .AB u u u r +BC uuur =CB u u u r +BA u u u rB .AB u u u r﹣BC uuu r =AC u u u rC .AB u u u r +BC uuur +CD uuu r =DA u u u r D .AB u u u r +BC uuur ﹣AC u u u r =0r【答案】D 【解析】 【分析】根据三角形法则即可判断. 【详解】∵AB BC AC +=u u u r u u u r u u u r , ∴0AB BC AC AC AC +-=-=u u u u r u u u r u u u r u u u r u u u r r ,故选D . 【点睛】本题考查平面向量的三角形法则,解题的关键是熟练掌握三角形法则.7.如果向量a r 与单位向量e r方向相反,且长度为12,那么向量a r 用单位向量e r表示为( )A .12a e =rr B .2a e =r rC .12a e =-rr D .2a e =-r r【答案】C 【解析】由向量a r 与单位向量e r方向相反,且长度为12,根据向量的定义,即可求得答案. 解:∵向量a r 与单位向量e r方向相反,且长度为12, ∴12a e =-rr . 故选C .8.如图,在△ABC 中,中线AD 、CE 交于点O ,设AB a,BC k ==u u u r r u u u r r,那么向量AO uuu r用向量a b⋅r r 表示为( )A .12a b +rrB .2133a b +r rC .2233a b +r rD .1124a b +r r【答案】B 【解析】 【分析】利用三角形的重心性质得到: 23AO AD =;结合平面向量的三角形法则解答即可. 【详解】∵在△ABC 中,AD 是中线, BC b =u u u r r,∴11BD BC b 22==u u u r u u u r r.∴1b 2AD AB BD a =+=+u u u r u u u r u u u r r r又∵点O 是△ABC 的重心, ∴23AO AD =, ∴221AO AD a b 333==+u u u r u u u r r r .故选:B .【点睛】此题主要考查了平面向量与重心有关知识,根据重心知识得出23AO AD =是解题的关键.9.已知一点O 到平行四边形ABCD 的3个顶点A 、B 、C 的向量分别为、、,则向量等于 ( ) A .++ B .-+C .+-D .--【答案】B 【解析】 【分析】利用向量的线性运算,结合平行四边形的性质,即可求得结论. 【详解】 如图,,则-+故选B . 【点睛】此题考查平面向量的基本定理及其意义,解题关键在于画出图形.10.点C 在线段AB 上,且35AC AB =u u u r u u u r ,若AC mBC =u u u r u u u r,则m 的值等于( ).A .23B .32C .23-D .32-【答案】D 【解析】 【分析】根据已知条件即可得:25AC AB CB AB ==-u u u r u u u r u u u r u u u r ,从而得出:52AB BC =-u u u r u u ur ,再代入35AC AB =u u u r u u u r中,即可求出m 的值.【详解】解:∵点C在线段AB上,且35 AC AB=u u ur u u u r∴25AC ABCB AB==-u u u r u u u r u u u r u u u r∴5522CBAB BC==-u u u r u u u r u u u r∴55322335BC BC A CA B⎛⎫=-⎝==-⎪⎭u u u r u u u r u u u r u u u r故选D.【点睛】此题考查的是向量的运算,掌握共线向量的加法、减法和数乘法则是解决此题的关键. 11.已知e→为单位向量,ar=-3e→,那么下列结论中错误..的是()A.ar∥e→B.3a=rC.ar与e→方向相同D.ar与e→方向相反【答案】C【解析】【分析】由向量的方向直接判断即可.【详解】解:er为单位向量,av=3er-,所以av与er方向相反,所以C错误,故选C.【点睛】本题考查了向量的方向,是基础题,较简单.12.已知m、n是实数,则在下列命题中正确命题的个数是().①0m<,0a≠rr时,mar与ar的方向一定相反;②0m≠,0a≠rr时,mar与ar是平行向量;③0mn>,0a≠rr时,mar与nar的方向一定相同;④0mn<,0a≠rr时,mar与nar的方向一定相反.A.1个B.2个C.3个D.4个【答案】D【解析】【分析】根据向量关系的条件逐一判断即可.【详解】解:①因为0m <,1>0,0a ≠rr,所以ma r 与a r的方向一定相反,故①正确; ②因为0m ≠,1≠0,0a ≠rr,所以ma r 与a r是平行向量,故②正确;③因为0mn >,0a ≠rr,所以m 和n 同号,所以ma r 与na r的方向一定相同,故③正确; ④因为0mn <,0a ≠rr,所以m 和n 异号,所以ma r 与na r的方向一定相反,故④正确. 故选D. 【点睛】此题考查的是共线向量,掌握共线向量定理是解决此题的关键.13.下列说法中,正确的是( )A .如果k =0,a r 是非零向量,那么k a r =0B .如果e r 是单位向量,那么e r=1C .如果|b r |=|a r |,那么b r =a r 或b r =﹣a rD .已知非零向量a r ,如果向量b r =﹣5a r,那么a r ∥b r【答案】D 【解析】 【分析】根据平面向量的性质一一判断即可. 【详解】解:A 、如果k =0,a r 是非零向量,那么k a r =0,错误,应该是k a r =0r.B 、如果e r 是单位向量,那么e r=1,错误.应该是e r =1.C 、如果|b r|=|a r|,那么b r=a r或b r=﹣a r,错误.模相等的向量,不一定平行. D 、已知非零向量a r,如果向量b r=﹣5a r,那么a r∥b r,正确. 故选:D . 【点睛】本题主要考查平面向量,平行向量等知识,解题的关键是熟练掌握平面向量的基本知识.14.下列说法正确的是( )A .()0a a +-=r rB .如果a r 和b r 都是单位向量,那么a b =r rC .如果||||a b =r r ,那么a b =r rD .12a b =-r r (b r为非零向量),那么//a b r r【答案】D 【解析】 【分析】根据向量,单位向量,平行向量的概念,性质及向量的运算逐个进行判断即可得出答案. 【详解】解:A 、()a a +-r r等于0向量,而不是0,故A 选项错误;B 、如果a r 和b r都是单位向量,说明两个向量长度相等,但是方向不一定相同,故B 选项错误;C 、如果||||a b =r r,说明两个向量长度相等,但是方向不一定相同,故C 选项错误;D 、如果12a b =-r r (b r为非零向量),可得到两个向量是共线向量,可得到//a b r r ,故D选项正确. 故选:D. 【点睛】本题考查向量的性质及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.15.在矩形ABCD 中,下列结论中正确的是( )A .AB CD =u u u r u u u rB .AC BD =uuu r uu u rC .AO OD =u u u r u u u rD .BO OD =-u u u r u u u r【答案】C 【解析】 【分析】根据相等向量及向量长度的概念逐一进行判断即可. 【详解】相等向量:长度相等且方向相同的两个向量 .A. AB CD =-u u u r u u u r,故该选项错误; B. AC BD =u u u r u u u r,但方向不同,故该选项错误;C. 根据矩形的性质可知,对角线互相平分且相等,所以AO OD =u u u r u u u r,故该选项正确; D. BO OD =u u u r u u u r,故该选项错误;故选:C . 【点睛】本题主要考查相等向量及向量的长度,掌握相等向量的概念是解题的关键.16.下列有关向量的等式中,不一定成立的是( )A .AB BA =-u u u r u u u r B .AB BA =uu u r uu rC .AB BC AC +=u u u r u u u r u u u rD .AB BC AB BC +=+u u u r u u u r u u u r u u u r【答案】D 【解析】根据向量的性质,逐一判定即可得解. 【详解】A 选项,AB BA =-u u u r u u u r,成立;B 选项,AB BA =uu u r uu r,成立;C 选项,AB BC AC +=u u r u u r u u u r,成立;D 选项,AB BC AB BC +=+u u u r u u u r u u u r u u u r不一定成立;故答案为D. 【点睛】此题主要考查向量的运算,熟练掌握,即可解题.17.规定:在平面直角坐标系xOy 中,如果点P 的坐标为(,)m n ,向量OP uuu r可以用点P 的坐标表示为:(,)OP m n u u u v=.已知11(,OA x y =u u u v ),22(,)OB x y =u u u r ,如果12120x x y y +=,那么OA u u u r 与OB uuu r互相垂直.下列四组向量中,互相垂直的是( )A .(4,3)OC =-u u u r ;(3,4)OD =-u u u rB .(2,3)OE =-u u u r ; (3,2)OF =-u u u rC .OG =u u u r ;(OH =u u u rD .4)OM =u u u u r ;(2)ON =-u u u r【答案】D 【解析】 【分析】将各选项坐标代入12120x x y y +=进行验证即可. 【详解】解:A. 12121202124x x y y =--=-≠+,故不符合题意; B. 121266102x x y y =--=-≠+,故不符合题意; C. 12123012x x y y =-+=-≠+,故不符合题意; D. 1212880x x y y =-+=+,故符合题意; 故选D. 【点睛】本题考查新定义与实数运算,正确理解新定义的运算方法是解题关键.18.已知e r 是一个单位向量,a r 、b r是非零向量,那么下列等式正确的是( )A .a e a v v v =B .e b b =v v vC .1a e a=v v vD .11a b a b=v v v v 【答案】B 【解析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a 的方向不是单位向量,故错误;D. 左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误. 故答案选B. 【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.19.已知a r、b r、c r都是非零向量,下列条件中,不能判断//a b rr的是( )A .a b =r rB .3a b =rrC .//a c r r,//b c r rD .2,2a c b c ==-rrr r【答案】A 【解析】 【分析】根据平行向量的定义(两个向量方向相同或相反,即为平行向量)分析求解即可求得答案. 【详解】解:A 、||||a b =r r只能说明a r 与b r 的模相等,不能判定a r ∥b r ,故本选项符合题意;B 、3a b =r r 说明a r 与b r 的方向相同,能判定a r ∥b r ,故本选项不符合题意;C 、a r ∥c r ,b r ∥c r ,能判定a r ∥b r,故本选项不符合题意;D 、2a c =r r ,2b c =-r r 说明a r 与b r 的方向相反,能判定a r ∥b r ,故本选项不符合题意.故选:A . 【点睛】此题考查了平面向量的知识.此题难度不大,注意掌握平行向量与向量的模的定义是解此题的关键.20.下列判断不正确的是( )A .如果AB CD =u u u r u u u r,那么AB CD =u u u r u u u rB .+=+C .如果非零向量a b(0)k k=坠r r,那么a r 与b r平行或共线D .AB BA 0+=u u u r u u u r【答案】D 【解析】【分析】根据模的定义,可判断A 正确;根据平面向量的交换律,可判断B 正确;根据非零向量的知识,可确定C 正确;又由0AB BA +=u u u r u u u r r 可判断D 错误【详解】 A 、如果AB CD =u u u r u u u r ,那么AB CD =u u u v u u u v ,故此选项正确;B 、a b b a +=+r r r r ,故本选项正确;C 、如果非零向量a b(0)k k =坠r r ,那么a r 与b r 平行或共线,故此选项正确;D 、0AB BA +=u u u r u u u r r ,故此选项错误;故选:D .【点睛】此题考查的是平面向量的知识,掌握平面向量相关定义是关键。
最新初中数学向量的线性运算专项训练及答案
最新初中数学向量的线性运算专项训练及答案一、选择题1.下列命题正确的是( ) A .如果|a r |=|b r |,那么a r =b r B .如果a r 、b r 都是单位向量,那么a r =b r C .如果a r =k b r (k ≠0),那么a r ∥b r D .如果m =0或a r =0r ,那么m a r =0【答案】C【解析】【分析】根据向量的定义和要素即可进行判断.【详解】解:A .向量是既有大小又有方向,|a r |=|b r |表示有向线段的长度,a r =b r 表示长度相等,方向相同,所以A 选项不正确;B .长度等于1的向量是单位向量,所以B 选项不正确;C . a r =k b r (k ≠0)⇔a r ∥b r ,所以C 选项正确;D .如果m =0或a r =0r ,那么m a r =0r ,不正确.故选:C .【点睛】本题主要考查向量的定义和要素,准备理解相关概念是关键.2.若非零向量、满足|-|=||,则( )A .|2|>|-2|B .|2|<|-2|C .|2|>|2-|D .|2|<|2-|【答案】A【解析】【分析】 对非零向量、共线与否分类讨论,当两向量共线,则有,即可确定A 、C 满足;当两向量不共线,构造三角形,从而排除C ,进而解答本题.【详解】 解:若两向量共线,则由于是非零向量,且,则必有;代入可知只有A 、C 满足;若两向量不共线,注意到向量模的几何意义,故可以构造三角形,使其满足OB=AB=BC ; 令, ,则, ∴且; 又BA+BC>AC ∴∴.故选A.【点睛】 本题考查了非零向量的模,针对向量是否共线和构造三角形是解答本题的关键.3.已知a 、b 为非零向量,下列说法中,不正确的是( )A .()a a b b --=B .0a 0=C .如果1a b 2=,那么a //bD .如果a 2b =,那么a 2b =或a 2b =- 【答案】C【解析】【分析】根据非零向量的性质,一一判断即可;【详解】 解:A 、()a ab b --=r r r r ,正确;B 、0a 0⋅=r r ,正确;C 、如果1a b 2=,那么a //b ,错误,可能共线;D 、如果a 2b =,那么a 2b =或a 2b =-r ,正确; 故选C .【点睛】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.4.已知1,3a b ==r r ,而且b r 和a r 的方向相反,那么下列结论中正确的是( )A .3a b =r rB .3a b =-r rC .3b a =r rD .3b a =-r r .【答案】D【解析】【分析】根据平面向量的性质即可解决问题.【详解】 ∵1,3a b ==v v ,而且b v 和a v 的方向相反∴3b a v v =-.故选D .【点睛】本题考查平面向量的性质,解题的关键是熟练掌握基本知识.5.已知3a →=,2b =r ,而且b r 和a r 的方向相反,那么下列结论中正确的是( ) A .32a b→→=B .23a b →→=C .32a b →→=-D .23a b →→=- 【答案】D【解析】【分析】 根据3,2a b ==v v ,而且12,x x R ∈Q 和a v 的方向相反,可得两者的关系,即可求解.【详解】 ∵3,2a b ==v v ,而且12,x x R ∈Q 和a v 的方向相反∴32a b =-v v 故选D.【点睛】本题考查的是向量,熟练掌握向量的定义是解题的关键.6.点C 在线段AB 上,且35AC AB =u u u r u u u r ,若AC mBC =u u u r u u u r ,则m 的值等于( ). A .23 B .32 C .23- D .32- 【答案】D【解析】【分析】根据已知条件即可得:25AC AB CB AB ==-u u u r u u u r u u u r u u u r ,从而得出:52AB BC =-u u u r u u u r ,再代入35AC AB =u u u r u u u r 中,即可求出m 的值. 【详解】解:∵点C 在线段AB 上,且35AC AB =u u u r u u u r ∴25AC AB CB AB ==-u u u r u u u r u u u r u u u r ∴5522CB AB BC ==-u u u r u u u r u u u r ∴55322335BC B C A C A B ⎛⎫=- ⎝==-⎪⎭u u u r u u u r u u u r u u ur 故选D.【点睛】此题考查的是向量的运算,掌握共线向量的加法、减法和数乘法则是解决此题的关键. 7.已知AM 是ABC △的边BC 上的中线,AB a =u u u r r ,AC b =u u u r r ,则AM u u u u r 等于( ).A .()12a b -r rB .()12b a -r rC .()12a b +r rD .()12a b -+r r 【答案】C【解析】【分析】 根据向量加法的三角形法则求出:CB a b =-u u u r r r ,然后根据中线的定义可得:()12CM a b =-u u u u r r r ,再根据向量加法的三角形法则即可求出AM u u u u r . 【详解】 解:∵AB a =u u u r r ,AC b =u u u r r ∴CB AB AC a b =-=-u u u r u u u r u u u r r r∵AM 是ABC △的边BC 上的中线∴()1122CM CB a b ==-u u u u r u u u r r r ∴()()1122AM AC CM b b b a a -=+=+=+u u u u r u u u r u u u r r r u r r r 故选C.【点睛】此题考查的是向量加法和减法,掌握向量加法的三角形法则是解决此题的关键. 8.已知在ABC ∆中,AB AC =,AD 是角平分线,点D 在边BC 上,设BC a =u u u r r ,AD b =u u u r r ,那么向量AC u u u r 用向量a r 、b r 表示为( )A .12a b +r rB .12a b r r -C .12a b -+r rD .12a b --r r 【答案】A【解析】试题分析:因为AB =AC ,AD 为角平分线,所以,D 为BC 中点,=12a b +r r .故选A .考点:平面向量,等腰三角形的三线合一.9.四边形ABCD 中,若向量与是平行向量,则四边形ABCD ( ) A .是平行四边形B .是梯形C .是平行四边形或梯形D .不是平行四边形,也不是梯形【答案】C【解析】【分析】 根据题目中给的已知条件与是平行向量,可得AB 与CD 是平行的,且不确定与的大小,有一组对边平行的四边形可能是梯形或者平行四边形,故可得答案. 【详解】根据题意可得AB 与CD 是平行的,且不确定与的大小,所以有一组对边平行的四边形可能是梯形或者平行四边形.故答案为:C.【点睛】此题考查平行向量,解题关键在于掌握平行向量的特征.10.如图,ABCD □对角线AC 与BD 相交于点O ,如果AB m =u u u r u r ,AD n =u u u r r ,那么下列选项中,与向量()12m n +u r r 相等的向量是( ).A .OA u u u rB .OB uuu rC .OC u u u rD .OD uuu r 【答案】C【解析】【分析】 由四边形ABCD 是平行四边形根据平行四边形法则,可求得BC AD n ==u u u r u u u r r ,然后由三角形法则,求得AC u u u r 与BD u u u r ,继而求得答案.【详解】∵四边形ABCD 是平行四边形,∴BC AD n ==u u u r u u u r r, ∴AC u u u r =AB BC m n +=+u u u r u u u r u r r ,=BD AD AB n m -=-u u u r u u u r u u u r r u r, ∴()11=-22OA AC m n =-+u u u r u u u r u r r ,()11=22OC AC m n =+u u u r u u u r u r r ()11=-22OB BD n m =--u u u r u u u r r u r ,()11=22OD BD n m =-u u u r u u u r r u r 故选:C .【点睛】 此题考查了平面向量的知识以及平行四边形的性质.注意掌握三角形法则与平行四边形法则的应用是解此题的关键.11.已知e →为单位向量,a r =-3e →,那么下列结论中错误..的是( ) A .a r ∥e →B .3a =rC .a r 与e →方向相同D .a r 与e →方向相反【答案】C【解析】【分析】 由向量的方向直接判断即可.【详解】解:e r 为单位向量,a v =3e r -,所以a v 与e r方向相反,所以C 错误,故选C.【点睛】本题考查了向量的方向,是基础题,较简单.12.下列说法不正确的是( )A .设e r 为单位向量,那么||1e =rB .已知a r 、b r 、c r 都是非零向量,如果2a c =r r ,4b c =-r r ,那么//a b r rC .四边形ABCD 中, 如果满足//AB CD ,||||AD BC =u u u r u u u r ,那么这个四边形一定是平行四边形D .平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解【答案】C【解析】【分析】根据单位向量的定义、平行向量的定义以及平行四边形的判定进行解答即可.【详解】解:A. 设e r 为单位向量,那么||1e =r,此选项说法正确; B. 已知a r 、b r 、c r 都是非零向量,如果2a c =r r ,4b c =-r r ,那么//a b r r ,此选项说法正确; C. 四边形ABCD 中, 如果满足//AB CD ,||||AD BC =u u u r u u u r ,即AD=BC ,不能判定这个四边形一定是平行四边形,此选项说法不正确;D. 平面内任意一个非零向量都可以在给定的两个不平行向量的方向上分解,此选项说法正确.故选:C .【点睛】本题考查的知识点是平面向量,掌握单位向量的定义、平行向量的定义以及平行四边形的判定方法是解此题的关键.13.已知点C 在线段AB 上,3AC BC =,如果AC a =u u u r r ,那么BA u u u r 用a r 表示正确的是( )A .34a rB .34a -rC .43a rD .43a -r 【答案】D【解析】【分析】根据平面向量的线性运算法则,即可得到答案.【详解】 ∵点C 在线段AB 上,3AC BC =,AC a =u u u r r ,∴BA=43AC , ∵BA u u u r 与AC u u u r 方向相反,∴BA u u u r =43a -r , 故选D.【点睛】 本题主要考查平面向量的运算,掌握平面向量的运算法则,是解题的关键.14.如图,向量OA u u u r 与OB uuu r 均为单位向量,且OA ⊥OB ,令n r =OA u u u r +OB uuu r ,则||n v =( )A .1B 2C 3D .2【答案】B【解析】根据向量的运算法则可得:n v =故选B. 15.已知a r ,b r 和c r 都是非零向量,下列结论中不能判定a r ∥b r 的是( )A .a r //c r ,b r //c rB .1,22a cbc ==r r r r C .2a b =r r D .a b =r r 【答案】D【解析】【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解.【详解】解:A.∵a r //c r ,b r //c r ,∴a r ∥b r,故本选项错误; B.∵1,22a c b c ==r r r r ∴a r ∥b r ,故本选项错误. C.∵2a b =r r ,∴a r ∥b r ,故本选项错误;D.∵a b =r r ,∴a r 与b r 的模相等,但不一定平行,故本选项正确;故选:D .【点睛】本题考查了平面向量,是基础题,熟记平行向量的定义是解题的关键. 16.设e r 为单位向量,2a =r ,则下列各式中正确的是( )A .2a e =r rB .a e a =r r rC .2a e =r rD .112a =±r 【答案】C【解析】 【分析】 根据e r 为单位向量,可知1e =r ,逐项进行比较即可解题.【详解】 解:∵e r 为单位向量,∴1e =r ,A 中忽视了向量的方向性,错误B 中忽视了向量的方向性,错误C 中,∵2a =r ,1e =r ,∴2a e =r r ,正确,D 中忽视了向量的方向性,错误故选C.【点睛】本题考查了向量的应用,属于简单题,熟悉向量的概念是解题关键.17.规定:在平面直角坐标系中,如果点P 的坐标为(m ,n ),向量OP uuu r 可以用点P 的坐标表示为:OP uuu r =(m ,n ).已知OA u u u r =(x 1,y 1),OB uuu r =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA u u u r 与OB uuu r 互相垂直,在下列四组向量中,互相垂直的是( )A .OC u u u r =(3,20190),OD uuu r=(﹣3﹣1,1)B .OE uuu r ﹣1,1),OF uuu r ,1)C .OG u u u r 12),OH u u u r )2,8)D .OM u u u u r ),ON u u u r 2,2) 【答案】A【解析】【分析】根据向量互相垂直的定义作答.【详解】 A 、由于3×(﹣3﹣1)+20190×1=﹣1+1=0,则OC u u u r 与OD uuu r 互相垂直,故本选项符合题意.B ﹣1+1)+1×1=2﹣1+1=2≠0,则OE uuu r 与OF uuu r 不垂直,故本选项不符合题意.C )2+12×8=4+4=8≠0,则OG u u u r 与OH u u u r 不垂直,故本选项不符合题意.D 2)×2=5﹣4+1=2≠0,则OM u u u u r 与ON u u u r 不垂直,故本选项不符合题意.故选:A .【点睛】 本题考查了平面向量,解题的关键是掌握向量垂直的定义.18.已知a r 、b r 、c r 都是非零向量,下列条件中,不能判断//a b r r 的是( )A .a b =r rB .3a b =r rC .//a c r r ,//b c r rD .2,2a c b c ==-r r r r【答案】A【解析】【分析】根据平行向量的定义(两个向量方向相同或相反,即为平行向量)分析求解即可求得答案.【详解】 解:A 、||||a b =r r 只能说明a r 与b r 的模相等,不能判定a r ∥b r ,故本选项符合题意;B 、3a b =r r 说明a r 与b r 的方向相同,能判定a r ∥b r ,故本选项不符合题意;C 、a r ∥c r ,b r ∥c r ,能判定a r ∥b r ,故本选项不符合题意;D 、2a c =r r ,2b c =-r r 说明a r 与b r 的方向相反,能判定a r ∥b r ,故本选项不符合题意.故选:A .【点睛】此题考查了平面向量的知识.此题难度不大,注意掌握平行向量与向量的模的定义是解此题的关键.19.已知a r 、b r 、c r 都是非零向量,如果2a c =r r ,2b c =-r r ,那么下列说法中,错误的是( )A .//a b r rB .a b =r rC .72BD = D .a r 与b r 方向相反【答案】C【解析】【分析】 利用相等向量与相反向量的定义逐项判断即可完成解答.【详解】解:已知2a c v v =,2b c -v v =,故a b vv ,是长度相同,方向相反的相反向量,故A ,B ,D 正确,向量之和是向量,C 错误,故选C.【点睛】本题主要考查的相等向量与相反向量,熟练掌握定义是解题的关键;就本题而言,就是正确运用相等向量与相反向量的定义判断A 、B 、D 三项结论正确.20.下面四个命题中正确的命题个数为( ). ①对于实数m 和向量a r 、b r ,恒有()m a b ma mb -=-r r r r②对于实数m 、n 和向量a r ,恒有()m n a ma na -=-r r r③若ma mb =r r (m 是实数)时,则有a b =r r ④若ma na =r r (m 、n 是实数,0a ≠r r ),则有m n = A .1个B .2个C .3个D .4个 【答案】C【解析】【分析】根据平面向量的性质依次判断即可.【详解】 ①对于实数m 和向量a r 、b r ,恒有()m a b ma mb -=-r r r r ,正确;②对于实数m 、n 和向量a r ,恒有()m n a ma na -=-r r r ,正确;③若ma mb =r r (m 是实数)时,则有a b =r r ,错误,当m=0时不成立;④若ma na =r r (m 、n 是实数,0a ≠r r ),则有m n =,正确;故选C.【点睛】 本题考查平面向量知识,熟练掌握平面向量的基本性质是解决本题的关键.。
初中数学向量的线性运算知识点训练及答案
初中数学向量的线性运算知识点训练及答案一、选择题1.已知a r 、b r为非零向量,下列判断错误的是( )A .如果a r =3b r ,那么a r ∥b rB .||a r=||b r ,那么a r =b r 或a r =-b u u rC .0r的方向不确定,大小为0D .如果e r 为单位向量且a r =﹣2e r ,那么||a r=2【答案】B 【解析】 【分析】根据平面向量的性质解答即可. 【详解】解:A 、如果a r =3b r ,那么两向量是共线向量,则a r ∥b r,故A 选项不符合题意.B 、如果||a r=||b r ,只能判定两个向量的模相等,无法判定方向,故B 选项符合题意.C 、0r的方向不确定,大小为0,故C 选项不符合题意.D 、根据向量模的定义知,||a r=2|e r |=2,故D 选项不符合题意.故选:B . 【点睛】此题考查的是平面向量,掌握平面向量的性质是解决此题的关键.2.在四边形ABCD 中,,,,其中与不共线,则四边形ABCD 是( ) A .平行四边形 B .矩形C .梯形D .菱形【答案】C 【解析】 【分析】利用向量的运算法则求出,利用向量共线的充要条件判断出,得到边AD ∥BC ,AD=2BC ,据梯形的定义得到选项.【详解】 解:∵,∴,∴AD ∥BC ,AD=2BC. ∴四边形ABCD 为梯形. 【点睛】本题考查向量的运算法则向量共线的充要条件、利用向量共线得到直线的关系、梯形的定义.3.若非零向量、满足|-|=||,则( )A.|2|>|-2|B.|2|<|-2|C.|2|>|2-|D.|2|<|2-|【答案】A【解析】【分析】对非零向量、共线与否分类讨论,当两向量共线,则有,即可确定A、C满足;当两向量不共线,构造三角形,从而排除C,进而解答本题.【详解】解:若两向量共线,则由于是非零向量,且,则必有;代入可知只有A、C满足;若两向量不共线,注意到向量模的几何意义,故可以构造三角形,使其满足OB=AB=BC;令,,则,∴且;又BA+BC>AC ∴∴.故选A.【点睛】本题考查了非零向量的模,针对向量是否共线和构造三角形是解答本题的关键.4.已知向量,且则一定共线的三点是( ) A.A、B、D B. A、B、C C.B、C、D D.A、C、D【答案】A【解析】【分析】证明三点共线,借助向量共线证明即可,故解题目标是验证由三点组成的两个向量共线即可得到共线的三点【详解】解:由向量的加法原理知所以A、B、D三点共线.【点睛】本题考点平面向量共线的坐标表示,考查利用向量的共线来证明三点共线的,属于向量知识的应用题,也是一个考查基础知识的基本题型.5.下列命题中,真命题的个数为( )①方向相同②方向相反③有相等的模④方向相同A .0B .1C .2D .3【答案】C 【解析】 【分析】直接利用向量共线的基本性质逐一核对四个命题得答案. 【详解】 解:对于①,若,则方向相同,①正确; 对于②,若,则方向相反,②正确; 对于③,若,则方向相反,但的模不一定,③错误; 对于④,若,则能推出的方向相同,但的方向相同,得到④错误. 所以正确命题的个数是2个,故选:C. 【点睛】本题考查命题的真假判断与应用,考查了向量共线的基本性质,是基础题.6.下列各式中错误的是( )A .()0a a r r+-=B .|AB BA |0+=u u u r u u u rC .()-=+-r r r ra b a bD .()()++=++r r r r r ra b c a b c【答案】A 【解析】 【分析】根据向量的运算法则和运算律判断即可. 【详解】解:A. ()0a a vv v +-=,故本选项错误,B ,C ,D ,均正确,故选:A. 【点睛】本题考查了向量的运算,熟练掌握运算法则和运算律是解题关键.7.下列判断正确的是( ) A .0a a -=r rB .如果a b =r r ,那么a b =r rC .若向量a r 与b 均为单位向量,那么a b =r rD .对于非零向量b r,如果()0a k b k =⋅≠r r ,那么//a b r r【答案】D 【解析】 【分析】根据向量的概念、性质以及向量的运算即可得出答案.【详解】A. -r ra a 等于0向量,而不是等于0,所以A 错误;B. 如果a b =r r,说明两个向量长度相等,但是方向不一定相同,所以B 错误;C. 若向量a r 与b r均为单位向量,说明两个向量长度相等,但方向不一定相同,所以C 错误;D. 对于非零向量b r,如果()0a k b k =⋅≠r r ,即可得到两个向量是共线向量,可得到//a b r r,故D 正确. 故答案为D. 【点睛】本题考查向量的性质以及运算,向量相等不仅要长度相等,还要方向相同,向量的运算要注意向量的加减结果都是一个向量.8.如图,ABCD Y 中,E 是BC 的中点,设AB a,AD b ==u u u r r u u u r r ,那么向量AE u u u r 用向量a br r 、表示为( )A .12a b +r rB .12a b -r rC .12a b -+rrD .12a b --r r【答案】A 【解析】 【分析】根据AE AB BE =+u u u r u u u r u u u r ,只要求出BE u u u r即可解决问题. 【详解】解:Q 四边形ABCD 是平行四边形,AD BC AD BC ∴∥,=, BC AD b ∴==u u u r u u u r r , BE CE Q =, 1BE b 2∴=u u u r r ,AE AB BE,AB a =+=u u u r u u u r u u u r u u u r r Q ,1AE a b 2∴=+u u u r r r ,故选:A. 【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.9.□ABCD 中, -+等于( ) A .B .C .D .【答案】A 【解析】 【分析】在平行四边形中,两对对边平行且相等,以一对对边所在的线段构成向量,得到的向量要么相等,要么是相反向量,根据本题所给的两个向量来看,它们是一对相反向量,和为零向量,得到结果. 【详解】∵在平行四边形ABCD 中, 与 是一对相反向量,∴ = -∴-+=-+=,故选A . 【点睛】此题考查向量加减混合运算及其几何意义,解题关键在于得出与是一对相反向量.10.已知a r、b r和c r都是非零向量,在下列选项中,不能判定//a b rr 的是( ) A .2a b =r rB .//a c r r,//b c r rC .||||a b =r rD .12a c =r r ,2bc =r r【答案】C 【解析】 【分析】由方向相同或相反的非零向量叫做平行向量,对各选项分析判断. 【详解】A 选项:由2a b =rr,可以推出//a b rr.本选项不符合题意;B 选项:由//a c r r ,//b c r r ,可以推出//a b rr .本选项不符合题意;C 选项:由||||a b =r r ,不可以推出//a b r r.本选项符合题意;D 选项:由12a c =r r ,2bc =r r,可以推出//a b r r .本选项不符合题意;故选:C . 【点睛】考查了平面向量,解题关键是熟记平行向量的定义.11.若a v =2e v,向量b v和向量a v方向相反,且|b v|=2|a v|,则下列结论中不正确的是( )A .|a v |=2B .|b v|=4 C .b v =4e vD .a v=12b v -【答案】C 【解析】 【分析】 根据已知条件可以得到:b v=﹣4e v,由此对选项进行判断.【详解】A 、由a v =2e v 推知|a v |=2,故本选项不符合题意.B 、由b v =-4e v推知|b v |=4,故本选项不符合题意.C 、依题意得:b v =﹣4e v,故本选项符合题意.D 、依题意得:a v=-12b v,故本选项不符合题意. 故选C . 【点睛】考查了平面向量,注意:平面向量既有大小,又有方向.12.若点O 为平行四边形的中心,14AB m =u u u r r ,26BC m =u u u r r,则2132m m -r r 等于( ).A .AO u u u rB .BO uuu rC .CO uuu rD .DO u u u r 【答案】B 【解析】 【分析】根据向量加法的平行四边形法则和平行四边形的性质逐一判断即可. 【详解】解:∵在平行四边形ABCD 中, 14AB m =u u u r r ,26BC m =u u u r r, ∴1246B m C AC AB m =+=+u u u r u u u r u u u r u u r u u r ,1246BD BA BC AC m m =+==-+u u u r u u u r u u u r u u u r u u r u u r,M 分别为AC 、BD 的中点,∴122312AO AC m m =+=u u u r u u u u u r r u u r,故A 不符合题意;211322BO BD m m ==-u u u r u u u r u u r u u r,故B 符合题意;122312CO AC m m ==---u u u r u u uu u r r u u r ,故C 不符合题意;121232DO BD m m =-=-u u u r u u ur u u r u u r ,故D 不符合题意.故选B.此题考查的是平行四边形的性质及向量的加、减法,掌握平行四边形的对角线互相平分和向量加法的平行四边形法则是解决此题的关键.13.已知m 、n 是实数,则在下列命题中正确命题的个数是( ). ①0m <,0a ≠rr时,ma r 与a r的方向一定相反; ②0m ≠,0a ≠rr时,ma r 与a r是平行向量; ③0mn >,0a ≠rr时,ma r 与na r的方向一定相同; ④0mn <,0a ≠rr时,ma r 与na r的方向一定相反. A .1个 B .2个C .3个D .4个【答案】D 【解析】 【分析】根据向量关系的条件逐一判断即可. 【详解】解:①因为0m <,1>0,0a ≠rr,所以ma r 与a r的方向一定相反,故①正确; ②因为0m ≠,1≠0,0a ≠rr,所以ma r 与a r是平行向量,故②正确;③因为0mn >,0a ≠r r ,所以m 和n 同号,所以ma r 与na r 的方向一定相同,故③正确; ④因为0mn <,0a ≠r r ,所以m 和n 异号,所以ma r 与na r 的方向一定相反,故④正确.故选D. 【点睛】此题考查的是共线向量,掌握共线向量定理是解决此题的关键.14.已知非零向量a r 、b r 、c r ,在下列条件中,不能判定a r //b r的是( )A .a r //c r ,b r //c rB .2a c =r r ,3b c =r rC .5a b =-r rD .||2||a b =r r【答案】D 【解析】分析:根据平面向量的性质即可判断. 详解:A .∵a r ∥c b r r ,∥c r,∴a b P u u r r ,故本选项,不符合题意;B .∵a r =2c b r r ,=3c r,∴a b P u u r r ,故本选项,不符合题意;C .∵a r=﹣5b r ,∴a b P u u r r ,故本选项,不符合题意;D .∵|a r|=2|b r |,不能判断a b P u u r r ,故本选项,符合题意.点睛:本题考查了平面向量,熟练掌握平面向量的基本性质的解题的关键.15.下列关于向量的运算中,正确的是 A .a b b a -=-r r r r; B .2()22a b a b --=-+r r r r; C .()0a a +-=r r; D .0a a +=r r.【答案】B 【解析】 【分析】根据向量的运算法则进行计算. 【详解】A. (),a b b a A ---vv v v =所以错误;B. ()222a b a b B ---v vv v =+,所以正确; C. ()0a a -rv v +=,C 所以错误;D.向量与数字不能相加,所以D 错误. 故选B. 【点睛】本题考查的是向量,熟练掌握向量是解题的关键.16.如果向量a r 与单位向量e r 的方向相反,且长度为3,那么用向量e r 表示向量a r为( )A .3a e =v vB .3a e =-v vC .3e a =v vD .3e a =-v v【答案】B 【解析】 【分析】根据平面向量的定义解答即可. 【详解】解:∵向量e r为单位向量,向量a r与向量e r方向相反, ∴3a e r r=-. 故选:B . 【点睛】本题考查平面向量的性质,解题的关键是灵活运用所学知识解决问题.17.已知a r ,b r 为非零向量,如果b r =﹣5a r ,那么向量a r 与b r的方向关系是( ) A .a r∥b r,并且a r 和b r方向一致 B .a r ∥b r ,并且a r 和b r方向相反 C .a r 和b r方向互相垂直D .a r 和b r之间夹角的正切值为5【解析】 【分析】根据平行向量的性质解决问题即可. 【详解】∵已知a r ,b r 为非零向量,如果b r =﹣5a r, ∴a r ∥b r ,a r 与b r的方向相反, 故选:B . 【点睛】本题考查了平面向量,熟记向量的长度和方向是解题关键.18.已知a r =3,b r =5,且b r 与a r 的方向相反,用a r表示b r 向量为( ) A .35b a =r r B .53b a =r r C .35b a =-r r D .53b a =-r r【答案】D 【解析】 【分析】根据a r =3,b r =5,且b r 与a r 的方向相反,即可用a r 表示b r 向量.【详解】a r=3,b r =5,b r =53a r ,b r 与a r的方向相反, ∴5.3b a =-r r故选:D. 【点睛】考查了平面向量的知识,注意平面向量的正负表示的是方向.19.已知e r 是一个单位向量,a r 、b r是非零向量,那么下列等式正确的是( )A .a e a v v v =B .e b b =v v vC .1a e a=v v vD .11a b a b=v v v v 【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】A. 由于单位向量只限制长度,不确定方向,故错误;B. 符合向量的长度及方向,正确;C. 得出的是a 的方向不是单位向量,故错误;D. 左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误. 故答案选B. 【点睛】本题考查的知识点是平面向量,解题的关键是熟练的掌握平面向量.20.如图,在△ABC 中,中线AD 、CE 交于点O ,设AB a,BC k ==u u u r r u u u r r ,那么向量AO uuu r用向量a b r r 表示为( )A .12a b +r rB .2133a b +r rC .2233a b +r rD .1124a b +r r【答案】B 【解析】 【分析】利用三角形的重心性质得到: 23AO AD =;结合平面向量的三角形法则解答即可. 【详解】∵在△ABC 中,AD 是中线, BC b =u u u r r, ∴11BD BC b 22==u u u r u u u r r .∴1b 2AD AB BD a =+=+u u u r u u u r u u u r r r又∵点O 是△ABC 的重心,∴23AO AD =,∴221AO AD a b 333==+u u u r u u u r r r .故选:B .【点睛】此题主要考查了平面向量与重心有关知识,根据重心知识得出23AO AD=是解题的关键.。
初中数学向量的线性运算专项训练及答案(1)
初中数学向量的线性运算专项训练及答案(1)一、选择题1.在平行四边形ABCD 中,AC 与BD 交于点M ,若设AB a =u u u r r ,AD b =u u u r r,则下列选项与1122a b -+rr 相等的向量是( ).A .MA u u u rB .MB u u u rC .MC u u u u rD .MD u u u u r【答案】D 【解析】 【分析】根据向量加法的平行四边形法则和平行四边形的性质逐一判断即可. 【详解】解:∵在平行四边形ABCD 中, AB a =u u u r r ,AD b =u u u r r, ∴AC AB AD a b =+=+u u u r u u u r u u u r r r ,BD AD AB b a =-=-u u u r u u u r u u u r r r,M 分别为AC 、BD 的中点,∴()11112222a M AC ab A b =+==----u u u r u u u r r rr r ,故A 不符合题意;()11112222MB BD b a a b =-=--=-u u u r u u u r r rr r ,故B 不符合题意;()11112222a M AC a b C b =+=+=u u u u r u ur r u r rr ,故C 不符合题意;()11112222MD BD b a a b ==-=-+u u u u r u u u r r rr r ,故D 符合题意.故选D.【点睛】此题考查的是平行四边形的性质及向量的加、减法,掌握平行四边形的对角线互相平分和向量加法的平行四边形法则是解决此题的关键.2.□ABCD 中, -+等于( ) A .B .C .D .【答案】A 【解析】 【分析】在平行四边形中,两对对边平行且相等,以一对对边所在的线段构成向量,得到的向量要么相等,要么是相反向量,根据本题所给的两个向量来看,它们是一对相反向量,和为零向量,得到结果.【详解】∵在平行四边形ABCD 中, 与 是一对相反向量,∴ = -∴-+=-+=,故选A . 【点睛】此题考查向量加减混合运算及其几何意义,解题关键在于得出与 是一对相反向量.3.已知平行四边形ABCD ,O 为平面上任意一点.设=,=,=,=,则( ) A .+++= B .-+-= C .+--= D .--+=【答案】B 【解析】 【分析】根据向量加法的平行四边形法则,向量减法的几何意义,以及相反向量的概念即可找出正确选项. 【详解】根据向量加法的平行四边形法则及向量减法的几何意义,即可判断A,C,D 错误;;而 ;∴B 正确. 故选B. 【点睛】此题考查向量加减混合运算及其几何意义,解题关键在于掌握运算法则.4.在矩形ABCD 中,如果AB u u u r 3BC uuu r 模长为1,则向量(AB u u u r +BC uuur +AC u u u r )的长度为( ) A .2 B .4C 31D 31【答案】B 【解析】 【分析】先求出AC AB BC =+u u u r u u u r u u u r ,然后2AB BC AC AC ++=u u u r u u u r u u u r u u u r,利用勾股定理即可计算出向量(AB u u u r +BC uuur +AC u u u r )的长度为 【详解】|||1||22|||2|224AB BC AC AC AB BCAB BC AC AC AB BC AC AC ==∴===+∴++=++==⨯=∴u u u r u u u r Q u u u ru u u r Q u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r故选:B. 【点睛】考查了平面向量的运算,解题关键是利用矩形的性质和三角形法则.5.如果向量a r 与单位向量e r方向相反,且长度为12,那么向量a r 用单位向量e r表示为( )A .12a e =rr B .2a e =r rC .12a e =-rr D .2a e =-r r【答案】C 【解析】由向量a r 与单位向量e r方向相反,且长度为12,根据向量的定义,即可求得答案. 解:∵向量a r 与单位向量e r方向相反,且长度为12,∴12a e =-rr .故选C .6.已知233m a b =-r r r ,1124n b a =+r r r ,那么4m n -r r等于( )A .823a b -r rB .443a b r r -C .423a b -r rD .843a b -r r 【答案】A 【解析】根据向量的混合运算法则求解即可求得答案,注意解题需细心.解:∵233m a b =-r r r ,1124n b a =+r r r , ∴4m n -r r =2112834()32232433a b b a a b b a a b --+=---=-rr r r r r r r r r .故选A .7.若AB u u u r是非零向量,则下列等式正确的是( )A .AB BA =u u u r u u u r ;B .AB BA u u u v u u u v =;C .0AB BA +=u u u r u u u r;D .0AB BA +=u u u r u u u r.【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,本题根据向量的长度及方向易得结果 【详解】 ∵AB u u u r是非零向量, ∴AB BA =u u u v u u u v 故选B 【点睛】此题考查平面向量,难度不大8.下列判断不正确的是( )A .如果AB CD =u u u r u u u r,那么AB CD =u u u r u u u rB .+=+C .如果非零向量a b(0)k k=坠r r,那么a r 与b r平行或共线D .AB BA 0+=u u u r u u u r【答案】D 【解析】 【分析】根据模的定义,可判断A 正确;根据平面向量的交换律,可判断B 正确;根据非零向量的知识,可确定C 正确;又由0AB BA +=u u u r u u u r r可判断D 错误 【详解】A 、如果AB CD =u u u r u u u r,那么AB CD =u u u v u u u v ,故此选项正确;B 、a b b a +=+r r r r,故本选项正确;C 、如果非零向量a b(0)k k =坠r r ,那么a r 与b r平行或共线,故此选项正确;D 、0AB BA +=u u u r u u u r r,故此选项错误;故选:D . 【点睛】此题考查的是平面向量的知识,掌握平面向量相关定义是关键9.D 、E 、F 分别是△ABC 三边AB 、BC 、CA 的中点,则下列等式不成立的是( ) A .+ =B .++=0C .+=D .+=【答案】C【分析】由加法的三角形法则化简求解即可. 【详解】由加法的三角形法则可得, + =, ++= , +=,+=故选:B. 【点睛】此题考查向量的加法及其几何意义,解题关键在于掌握平面向量的加法法则.10.已知a r、b r和c r都是非零向量,在下列选项中,不能判定//a b rr 的是( )A .2a b =rrB .//a c r r,//b c r rC .||||a b =rrD .12a c =r r ,2bc =r r【答案】C 【解析】 【分析】由方向相同或相反的非零向量叫做平行向量,对各选项分析判断. 【详解】A 选项:由2a b =r r ,可以推出//a b r r.本选项不符合题意;B 选项:由//a c r r ,//b c r r ,可以推出//a b r r.本选项不符合题意;C 选项:由||||a b =r r ,不可以推出//a b rr .本选项符合题意;D 选项:由12a c =r r ,2bc =r r ,可以推出//a b r r .本选项不符合题意; 故选:C . 【点睛】考查了平面向量,解题关键是熟记平行向量的定义.11.已知a r、b r、c r都是非零向量,下列条件中,不能判断//a b rr的是( )A .a b =r rB .3a b =rrC .//a c r r,//b c r rD .2,2a c b c ==-rrr r【解析】 【分析】根据平行向量的定义(两个向量方向相同或相反,即为平行向量)分析求解即可求得答案. 【详解】解:A 、||||a b =r r只能说明a r 与b r 的模相等,不能判定a r ∥b r,故本选项符合题意; B 、3a b =r r说明a r 与b r 的方向相同,能判定a r ∥b r,故本选项不符合题意;C 、a r ∥c r ,b r ∥c r ,能判定a r ∥b r,故本选项不符合题意;D 、2a c =r r ,2b c =-r r 说明a r 与b r 的方向相反,能判定a r ∥b r ,故本选项不符合题意.故选:A . 【点睛】此题考查了平面向量的知识.此题难度不大,注意掌握平行向量与向量的模的定义是解此题的关键.12.已知m 、n 是实数,则在下列命题中正确命题的个数是( ). ①0m <,0a ≠rr时,ma r 与a r的方向一定相反; ②0m ≠,0a ≠rr时,ma r 与a r是平行向量; ③0mn >,0a ≠rr时,ma r 与na r的方向一定相同; ④0mn <,0a ≠rr时,ma r 与na r的方向一定相反. A .1个 B .2个C .3个D .4个【答案】D 【解析】 【分析】根据向量关系的条件逐一判断即可. 【详解】解:①因为0m <,1>0,0a ≠rr,所以ma r 与a r的方向一定相反,故①正确; ②因为0m ≠,1≠0,0a ≠rr,所以ma r 与a r是平行向量,故②正确;③因为0mn >,0a ≠rr,所以m 和n 同号,所以ma r 与na r的方向一定相同,故③正确; ④因为0mn <,0a ≠r r ,所以m 和n 异号,所以ma r 与na r 的方向一定相反,故④正确.故选D. 【点睛】此题考查的是共线向量,掌握共线向量定理是解决此题的关键.13.已知非零向量a r 、b r 、c r ,在下列条件中,不能判定a r //b r的是( )A .a r //c r ,b r //c rB .2a c =r r ,3b c =rr C .5a b =-r rD .||2||a b =r r【解析】分析:根据平面向量的性质即可判断. 详解:A .∵a r ∥c b r r ,∥c r,∴a b P u u r r ,故本选项,不符合题意;B .∵a r =2c b r r ,=3c r,∴a b P u u r r ,故本选项,不符合题意;C .∵a r=﹣5b r ,∴a b P u u r r,故本选项,不符合题意; D .∵|a r|=2|b r |,不能判断a b P u u r r ,故本选项,符合题意.故选D .点睛:本题考查了平面向量,熟练掌握平面向量的基本性质的解题的关键.14.如图,在平行四边形ABCD 中,如果AB a =u u u r r ,AD b =u u u r r ,那么a b +rr 等于( )A .BD u u u rB .AC u u u rC .DB u u u rD .CA u u u r【答案】B 【解析】 【分析】由四边形ABCD 是平行四边形,可得AD=BC ,AD ∥BC ,则可得BC b =u u u r r,然后由三角形法则,即可求得答案. 【详解】解:∵四边形ABCD 是平行四边形, ∴AD=BC ,AD ∥BC , ∵AD b =u u u r r , ∴BC b =u u u r r,∵AB a =u u u rr,∴a b +r r =AB u u ur +BC uuu r =AC u u u r . 故选B .15.如图,点C 、D 在线段AB 上,AC BD =,那么下列结论中,正确的是( )A .AC u u u r 与BD u u u r是相等向量B .AD u u u r 与BD u u u r是平行向量C .AD u u u r 与BD u u u r是相反向量 D .AD u u u r 与BC uuu r是相等向量【答案】B 【解析】 【分析】由AC=BD ,可得AD=BD ,即可得AD u u u r 与BD u u u r是平行向量,AD BC AC BD =-=-u u u r u u u r u u u r u u u r ,,继而证得结论. 【详解】 A 、∵AC=BD ,∴AC BD =-u u u r u u u r,该选项错误;B 、∵点C 、D 是线段AB 上的两个点, ∴AD u u u r 与BD u u u r是平行向量,该选项正确; C 、∵AC=BC , ∴AD ≠BD ,∴AD u u u r 与BD u u u r不是相反向量,该选项错误; D 、∵AC=BD , ∴AD=BC ,∴AD BC =-u u u r u u u r ,,该选项错误; 故选:B . 【点睛】本题考查了平面向量的知识.注意掌握相等向量与相反向量的定义是解此题的关键.16.下列有关向量的等式中,不一定成立的是( )A .AB BA =-u u u r u u u r B .AB BA =uu u r uu rC .AB BC AC +=u u u r u u u r u u u rD .AB BC AB BC +=+u u u r u u u r u u u r u u u r【答案】D 【解析】 【分析】根据向量的性质,逐一判定即可得解. 【详解】A 选项,AB BA =-u u u r u u u r,成立;B 选项,AB BA =uu u r uu r,成立;C 选项,AB BC AC +=u u u r u u u r u u u r,成立;D 选项,AB BC AB BC +=+u u u r u u u r u u u r u u u r不一定成立;故答案为D. 【点睛】此题主要考查向量的运算,熟练掌握,即可解题.17.已知a r ,b r 和c r 都是非零向量,下列结论中不能判定a r ∥b r的是( )A .a r //c r ,b r //c rB .1,22a cbc ==r r r rC .2a b =r rD .a b =r r【答案】D 【解析】 【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解. 【详解】解:A.∵a r //c r ,b r //c r ,∴a r ∥b r,故本选项错误;B.∵1,22a c b c ==r r r r ∴a r ∥b r,故本选项错误.C.∵2a b =r r ,∴a r ∥b r,故本选项错误;D.∵a b =r r ,∴a r 与b r的模相等,但不一定平行,故本选项正确;故选:D . 【点睛】本题考查了平面向量,是基础题,熟记平行向量的定义是解题的关键.18.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,设OA a =u u u r r ,OB b =u u u r r,下列式子中正确的是( )A .DC a b =+u u u r r rB .DC a b =-u u u r r r; C .DC a b =-+u u u r r rD .DC a b =--u u u r r r.【答案】C 【解析】 【分析】由平行四边形性质,得DC AB =u u u r u u u r ,由三角形法则,得到OA AB OB +=u u u r u u u r u u u r,代入计算即可得到答案. 【详解】解:∵四边形ABCD 是平行四边形, ∴DC AB =u u u r u u u r,∵OA a =u u u r r ,OB b =u u u r r,在△OAB 中,有OA AB OB +=u u u r u u u ru u u r , ∴AB OB OA b a a b =-=-=-+u u u r u u u r u u u r rr rr, ∴DC a b =-+u u u rr r; 故选择:C. 【点睛】此题考查了平面向量的知识以及平行四边形的性质.注意掌握平行四边形法则与三角形法则的应用是解此题的关键.19.已知向量a r和b r都是单位向量,那么下列等式成立的是( )A .a b =r rB .2a b +=r rC .0a b -=r rD .a b =rr【答案】D 【解析】 【分析】根据向量a r和b r都是单位向量,,可知|a r|=|b r|=1,由此即可判断. 【详解】解:A 、向量a r和b r都是单位向量,但方向不一定相同,则a b =rr不一定成立,故本选项错误.B 、向量a r和b r都是单位向量,但方向不一定相同,则2a b +=rr不一定成立,故本选项错误.C 、向量a r和b r都是单位向量,但方向不一定相同,则0a b -=rr不一定成立,故本选项错误.D 、向量a r和b r都是单位向量,则|a r|=|b r|=1,故本选项正确. 故选:D . 【点睛】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键20.已知3a →=,2b =r ,而且b r 和a r的方向相反,那么下列结论中正确的是( )A .32a b →→= B .23a b →→=C .32a b →→=-D .23a b →→=-【答案】D 【解析】 【分析】根据3,2a b ==v v ,而且12,x x R ∈Q 和a v的方向相反,可得两者的关系,即可求解.【详解】∵3,2a b ==v v ,而且12,x x R ∈Q 和a v的方向相反∴32 a b =-v v故选D.【点睛】本题考查的是向量,熟练掌握向量的定义是解题的关键.。
新初中数学向量的线性运算经典测试题及答案解析(1)
新初中数学向量的线性运算经典测试题及答案解析(1)一、选择题1.在ABCD Y 中,AC 与BD 相交于点O ,AB a =u u u r r ,AD b =u u u r r ,那么OD uuu r等于( )A .1122a b +r rB .1122a b --r rC .1122a b -r rD .1122a b -+r r【答案】D 【解析】 【分析】由四边形ABCD 是平行四边形,可得12OD BD =u u u r u u u r ,,又由BD BA AD =+u u u r u u u r u u u r,即可求得OD uuu r的值.【详解】解:∵四边形ABCD 是平行四边形,∴OB=OD=12BD , ∴12OD BD =u u u r u u u r ,∵BD BA AD a b =+=-+u u u r u u u r u u u r r r , ∴12OD BD =u u u r u u u r =111()222a b a b -+=-+r r r r故选:D . 【点睛】此题考查了向量的知识.解题时要注意平行四边形法则的应用,还要注意向量是有方向的.2.已知向量,若与共线,则( )A .B .C .D .或【答案】D 【解析】 【分析】 要使与,则有=,即可得知要么为0,要么,即可完成解答. 【详解】解:非零向量与共线的充要条件是当且仅当有唯一一个非零实数,使=,即;与任一向量共线.故答案为D.【点睛】本题考查了向量的共线,即=是解答本题的关键.3.在矩形ABCD 中,如果AB u u u r 3BC uuu r 模长为1,则向量(AB u u u r +BC uuur +AC u u u r ) 的长度为( )A .2B .4C 31D 31【答案】B 【解析】 【分析】先求出AC AB BC =+u u u r u u u r u u u r ,然后2AB BC AC AC ++=u u u r u u u r u u u r u u u r,利用勾股定理即可计算出向量(AB u u u r +BC uuur +AC u u u r )的长度为 【详解】22||3,||1||(3)122|||2|224AB BC AC AC AB BCAB BC AC AC AB BC AC AC ==∴=+==+∴++=++==⨯=∴u u u r u u u r Q u u u ru u u r u u u r u u u rQ u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r故选:B. 【点睛】考查了平面向量的运算,解题关键是利用矩形的性质和三角形法则.4.已知5AB a b =+u u u r r r ,28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,则( ).A .A 、B 、D 三点共线 B .A 、B 、C 三点共线 C .B 、C 、D 三点共线 D .A 、C 、D 三点共线【答案】A 【解析】 【分析】根据共线向量定理逐一判断即可. 【详解】解:∵28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r ,5AB a b =+u u u r r r∴()2835BD BC CD a b a b a b =+=-++-=+u u u r u u u r u u u r r r r r r r, ∴AB u u u r 、BD u u u r是共线向量∴A 、B 、D 三点共线,故A 正确; ∵5AB a b =+u u u r r r ,28BC a b =-+u u u r r r∴不存在实数λ,使AB BC λ=u u u r u u u r ,即AB u u u r 、BC uuur 不是共线向量∴A 、B 、C 三点共线,故B 错误;∵28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r∴不存在实数λ,使BC CD λ=u u u r u u u r ,即BC uuu r 、CD uuur 不是共线向量∴B 、C 、D 三点共线,故C 错误;∵5AB a b =+u u u r r r ,28BC a b =-+u u u r r r ,()3CD a b =-u u u r r r , ∴()52813AC AB BC a b a b a b =+=++-+=-+u u u r u u u r u u u r r r r r r r∴不存在实数λ,使AC CD λ=u u u r u u u r ,即AC u u u r 、CD uuur 不是共线向量∴A 、C 、D 三点共线,故D 错误; 故选A. 【点睛】此题考查的是共线向量的判定,掌握共线向量的定理是解决此题的关键.5.已知AM 是ABC △的边BC 上的中线,AB a =u u u r r,AC b =u u u r r ,则AM u u u u r 等于( ).A .()12a b -r rB .()12b a -r rC .()12a b +r rD .()12a b -+r r【答案】C 【解析】 【分析】根据向量加法的三角形法则求出:CB a b =-u u u r rr ,然后根据中线的定义可得:()12CM a b =-u u u u r r r ,再根据向量加法的三角形法则即可求出AM u u u u r .【详解】解:∵AB a =u u u r r,AC b =u u u r r ∴CB AB AC a b =-=-u u u r u u u r u u u r r r∵AM 是ABC △的边BC 上的中线 ∴()1122CM CB a b ==-u u u u r u u u r r r∴()()1122AM AC CM b b b a a -=+=+=+u u u u r u u u r u u u r r r u r r r故选C.【点睛】此题考查的是向量加法和减法,掌握向量加法的三角形法则是解决此题的关键.6.若点O 为平行四边形的中心,14AB m =u u u rr,26BC m =u u u rr,则2132m m -r r等于( ). A .AO u u u rB .BO uuu rC .CO uuu rD .DO u u u r【答案】B 【解析】 【分析】根据向量加法的平行四边形法则和平行四边形的性质逐一判断即可. 【详解】解:∵在平行四边形ABCD 中, 14AB m =u u u r r ,26BC m =u u u r r, ∴1246B m C AC AB m =+=+u u u r u u u r u u u r u u r u u r ,1246BD BA BC AC m m =+==-+u u u r u u u r u u u r u u u r u u r u u r,M 分别为AC 、BD 的中点,∴122312AO AC m m =+=u u u r u u u u u r r u u r,故A 不符合题意;211322BO BD m m ==-u u u r u u u r u u r u u r,故B 符合题意;122312CO AC m m ==---u u u r u u uu u r r u u r ,故C 不符合题意;121232DO BD m m =-=-u u u r u u ur u u r u u r ,故D 不符合题意.故选B.【点睛】此题考查的是平行四边形的性质及向量的加、减法,掌握平行四边形的对角线互相平分和向量加法的平行四边形法则是解决此题的关键.7.已知m 、n 是实数,则在下列命题中正确命题的个数是( ). ①0m <,0a ≠rr时,ma r 与a r的方向一定相反; ②0m ≠,0a ≠rr时,ma r 与a r是平行向量; ③0mn >,0a ≠rr时,ma r 与na r的方向一定相同; ④0mn <,0a ≠rr时,ma r 与na r的方向一定相反. A .1个 B .2个C .3个D .4个【答案】D 【解析】 【分析】根据向量关系的条件逐一判断即可. 【详解】解:①因为0m <,1>0,0a ≠rr,所以ma r 与a r的方向一定相反,故①正确; ②因为0m ≠,1≠0,0a ≠rr,所以ma r 与a r是平行向量,故②正确;③因为0mn >,0a ≠rr,所以m 和n 同号,所以ma r 与na r的方向一定相同,故③正确; ④因为0mn <,0a ≠rr,所以m 和n 异号,所以ma r 与na r的方向一定相反,故④正确. 故选D. 【点睛】此题考查的是共线向量,掌握共线向量定理是解决此题的关键.8.对于非零向量a r 、b r ,如果2|a r |=3|b r |,且它们的方向相同,那么用向量a r表示向量b r正确的是( ) A .b r =32a r B .b r =23a r C .b r =﹣32a r D .b r =-23a r【答案】B 【解析】 【分析】根据已知条件得到非零向量a r 、b r的模间的数量关系,再结合它们的方向相同解题.【详解】∵2|a r|=3|b r |,∴|b r|23=|a r |. 又∵非零向量a r 与b r的方向相同,∴23b a =r r .故选B . 【点睛】本题考查了平面向量的知识,即长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向.9.四边形ABCD 中,若向量与是平行向量,则四边形ABCD ( )A .是平行四边形B .是梯形C .是平行四边形或梯形D .不是平行四边形,也不是梯形【答案】C 【解析】 【分析】根据题目中给的已知条件与是平行向量,可得AB 与CD 是平行的,且不确定与的大小,有一组对边平行的四边形可能是梯形或者平行四边形,故可得答案.【详解】根据题意可得AB 与CD 是平行的,且不确定与的大小,所以有一组对边平行的四边形可能是梯形或者平行四边形. 故答案为:C.【点睛】此题考查平行向量,解题关键在于掌握平行向量的特征.10.下列判断错误的是( ) A .0•=0a vvB .如果a r +b r =2c r ,a r -b r =3c r ,其中0c ≠r r ,那么a r ∥b rC .设e r 为单位向量,那么|e r |=1D .如果|a r |=2|b r |,那么a r =2b r 或a r =-2b r【答案】D 【解析】 【分析】根据平面向量的定义、向量的模以及平行向量的定义解答. 【详解】A 、0•=0a vv ,故本选项不符合题意. B 、由a v +b v=2c v,a v -b v=3c v 得到:a v=52c v ,b v =﹣12c v ,故两向量方向相反,a v ∥b v ,故本选项不符合题意.C 、e v 为单位向量,那么|e v|=1,故本选项不符合题意.D 、由|a v|=2|b v|只能得到两向量模间的数量关系,不能判断其方向,判断错误,故本选项符合题意. 故选D . 【点睛】考查了平面向量,需要掌握平面向量的定义,向量的模以及共线向量的定义,难度不大.11.已知e →为单位向量,a r=-3e →,那么下列结论中错误..的是( ) A .a r ∥e →B .3a =rC .a r与e →方向相同D .a r与e →方向相反【答案】C 【解析】 【分析】由向量的方向直接判断即可. 【详解】解:e r 为单位向量,a v =3e r -,所以a v 与e r方向相反,所以C 错误, 故选C. 【点睛】本题考查了向量的方向,是基础题,较简单.12.下列有关向量的等式中,不一定成立的是( )A .AB BA =-u u u r u u u r B .AB BA =uu u r uu rC .AB BC AC +=u u u r u u u r u u u rD .AB BC AB BC +=+u u u r u u u r u u u r u u u r【答案】D 【解析】 【分析】根据向量的性质,逐一判定即可得解. 【详解】A 选项,AB BA =-u u u r u u u r,成立;B 选项,AB BA =uu u r uu r,成立;C 选项,AB BC AC +=u u u r u u u r u u u r,成立;D 选项,AB BC AB BC +=+u u u r u u u r u u u r u u u r不一定成立;故答案为D. 【点睛】此题主要考查向量的运算,熟练掌握,即可解题.13.如图,在平行四边形ABCD 中,设AB a =rr,AD b =r r ,那么向量OC r可以表示为. ( )A .1122a b +r rB .1122r r a b -C .1122a b -+rrD .1122a b --rr【答案】A 【解析】 【分析】利用平行四边形的性质以及平面向量的加法与减法运算法则解题即可.【详解】 由题意可得()()1111122222OC AC AD AB a b a b ==+=+=+r rr r r r r r【点睛】本题主要考察平面向量的加法与减法运算,掌握平行四边形法则是解题的关键.14.已知c r 为非零向量, 3a c =r r , 2b c =-r r,那么下列结论中错误的是( )A .//a b r rB .3||||2a b =r rC .a r 与b r方向相同 D .a r 与b r方向相反【答案】C 【解析】 【分析】根据平面向量的性质一一判断即可. 【详解】∵ 3a c =r r , 2b c =-r r∴3a b 2=-r r ,∴a r ∥b r ,32a b =-r ra r 与b r方向相反,∴A ,B ,D 正确,C 错误; 故选:C . 【点睛】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.15.已知a r ,b r 为非零向量,如果b r =﹣5a r ,那么向量a r 与b r的方向关系是( )A .a r ∥b r ,并且a r 和b r 方向一致B .a r ∥b r ,并且a r 和b r 方向相反C .a r 和b r 方向互相垂直D .a r 和b r 之间夹角的正切值为5【答案】B 【解析】 【分析】根据平行向量的性质解决问题即可. 【详解】∵已知a r ,b r 为非零向量,如果b r =﹣5a r , ∴a r ∥b r ,a r 与b r的方向相反,故选:B . 【点睛】本题考查了平面向量,熟记向量的长度和方向是解题关键.16.如图,向量OA u u u r 与OB uuu r 均为单位向量,且OA ⊥OB ,令n r =OA u u u r +OB uuu r,则||n v=( )A .1B 2C 3D .2【答案】B 【解析】根据向量的运算法则可得: n v ()222OA OB +=u u u v u u u v 故选B.17.已知a r =3,b r =5,且b r 与a r 的方向相反,用a r表示b r 向量为( ) A .35b a =r r B .53b a =r r C .35b a =-r r D .53b a =-r r【答案】D 【解析】 【分析】根据a r =3,b r =5,且b r 与a r 的方向相反,即可用a r表示b r 向量.【详解】a r=3,b r =5,b r =53a r ,b r 与a r的方向相反, ∴5.3b a =-r r故选:D. 【点睛】考查了平面向量的知识,注意平面向量的正负表示的是方向.18.已知非零向量a r 、b r 和c r ,下列条件中,不能判定a b r rP 的是( )A .2a b =-r rB .a c =r r ,3b c =r rC .2a b c +=r r r ,a b c -=-r rrD .2a b =r r【答案】D 【解析】 【分析】根据平行向量的定义,符号相同或相反的向量叫做平行向量对各选项分析判断利用排除法求【详解】A 、2a b =-r r,两个向量方向相反,互相平行,故本选项错误; B 、a c =r r ,3b c =r r ,则a r ∥b r ∥c r,故本选项错误;C 、由已知条件知2a b =-r r ,3a c -=r r ,则a r ∥b r ∥c r,故本选项错误;D 、2a b =r r 只知道两向量模的数量关系,但是方向不一定相同或相反,a r 与b r 不一定平行,故本选项正确. 故选:D . 【点睛】本题考查了平面向量,主要是对平行向量的考查,熟记概念是解题的关键.19.已知a r、b r、c r都是非零向量,下列条件中,不能判断//a b rr的是( )A .a b =r rB .3a b =rrC .//a c r r,//b c r rD .2,2a c b c ==-rrr r【答案】A 【解析】 【分析】根据平行向量的定义(两个向量方向相同或相反,即为平行向量)分析求解即可求得答案. 【详解】解:A 、||||a b =r r只能说明a r 与b r 的模相等,不能判定a r ∥b r ,故本选项符合题意;B 、3a b =r r 说明a r 与b r 的方向相同,能判定a r ∥b r ,故本选项不符合题意;C 、a r ∥c r ,b r ∥c r ,能判定a r ∥b r,故本选项不符合题意;D 、2a c =r r ,2b c =-r r 说明a r 与b r 的方向相反,能判定a r ∥b r ,故本选项不符合题意.故选:A . 【点睛】此题考查了平面向量的知识.此题难度不大,注意掌握平行向量与向量的模的定义是解此题的关键.20.下列命题正确的是( ) A .如果|a r |=|b r |,那么a r =b rB .如果a r 、b r 都是单位向量,那么a r =b rC .如果a r =k b r (k ≠0),那么a r ∥b rD .如果m =0或a r =0r ,那么m a r=0【答案】C 【解析】【分析】根据向量的定义和要素即可进行判断.【详解】解:A .向量是既有大小又有方向,|a r |=|b r |表示有向线段的长度,a r =b r 表示长度相等,方向相同,所以A 选项不正确;B .长度等于1的向量是单位向量,所以B 选项不正确;C . a r =k b r (k ≠0)⇔a r ∥b r ,所以C 选项正确;D .如果m =0或a r =0r ,那么m a r =0r ,不正确. 故选:C .【点睛】本题主要考查向量的定义和要素,准备理解相关概念是关键.。
最新初中数学向量的线性运算专项训练及解析答案
最新初中数学向量的线性运算专项训练及解析答案一、选择题1.规定:在平面直角坐标系中,如果点P 的坐标为(),m n ,向量OP u r可以用点P 的坐标表示为:(),OP m n =u r .已知()11,OA x y =u r ,()22,OB x y =u r ,如果12120x x y y ⋅+⋅=,那么OA u r与OB u r互相垂直.在下列四组向量中,互相垂直的是( )A .()()013,2019,3,1OC OD -==-u r u r B .()()21,1,21,1OE OF -=+u r u rC .()()2138,,2,82OG OH ⎛⎫=- ⎪⎝⎭u r u rD .()252,2,52,OM⎛⎫+- ⎪ ⎪⎭u r【答案】A 【解析】 【分析】根据题意中向量垂直的性质对各项进行求解即可. 【详解】 A.()133201910-⨯-+⨯=,正确;B.()()2121112-⨯++⨯=,错误;C.()21382812242⨯-+⨯=+,错误; D.()()25252222+⨯-+⨯=,错误; 故答案为:A . 【点睛】本题考查了向量垂直的问题,掌握向量互相垂直的性质以及判定是解题的关键.2.在中,已知是边上一点,,则( )A .B .C .D .【答案】A 【解析】 【分析】根据A ,B ,D 三点共线得出入的值,即可完成解答. 【详解】解:在∆ABC 中,已知D 是AB 边上一点,若=2,,则,∴,故选A.【点睛】本题考查了平面向量的基本定理,识记定理内容并灵活应用是解答本题的关键.3.如图,已知向量a r,b r,c r,那么下列结论正确的是( )A .a b c +=rrrB .b c a +=rr rC .a c b +=rr rD .a c b +=-r r r【答案】D 【解析】 【分析】 【详解】由平行四边形法则,即可求得: 解:∵CA AB CB +=u u u r u u u r u u u r, 即a c b +=-r r r 故选D .4.如果向量a r 与单位向量e r方向相反,且长度为12,那么向量a r 用单位向量e r表示为( )A .12a e =rr B .2a e =r rC .12a e =-rr D .2a e =-r r【答案】C 【解析】由向量a r 与单位向量e r方向相反,且长度为12,根据向量的定义,即可求得答案. 解:∵向量a r 与单位向量e r方向相反,且长度为12,∴12a e =-rr .故选C .5.若AB u u u r是非零向量,则下列等式正确的是( )A .AB BA =u u u r u u u r ;B .AB BA u u u v u u u v =;C .0AB BA +=u u u r u u u r;D .0AB BA +=u u u r u u u r.【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,本题根据向量的长度及方向易得结果 【详解】 ∵AB u u u r是非零向量, ∴AB BA =u u u v u u u v 故选B 【点睛】此题考查平面向量,难度不大6.计算45a a -+r r的结果是( )A .aB .a rC .a -D .a -r【答案】B 【解析】 【分析】按照向量之间的加减运算法则解题即可 【详解】-4a+5a=a v v v ,所以答案为B 选项 【点睛】本题主要考查了向量的加减法,熟练掌握相关概念方法是关键7.已知3a →=,2b =r ,而且b r 和a r的方向相反,那么下列结论中正确的是( )A .32a b →→= B .23a b →→=C .32a b →→=-D .23a b →→=-【答案】D 【解析】 【分析】根据3,2a b ==v v ,而且12,x x R ∈Q 和a v的方向相反,可得两者的关系,即可求解.【详解】∵3,2a b ==v v ,而且12,x x R ∈Q 和a v的方向相反 ∴32a b =-v v 故选D.【点睛】本题考查的是向量,熟练掌握向量的定义是解题的关键.8.下列说法正确的是().A.一个向量与零相乘,乘积为零B.向量不能与无理数相乘C.非零向量乘以一个负数所得向量比原向量短D.非零向量乘以一个负数所得向量与原向量方向相反【答案】D【解析】【分析】根据平面向量的定义和性质进行判断.【详解】解:A. 一个向量与零相乘,乘积为零向量.故本选项错误;B. 向量可以与任何实数相乘.故本选项错误;C. 非零向量乘以一个负数所得向量的方向与原向量相反,但不一定更短.故本选项错误;D. 非零向量乘以一个负数所得向量与原向量方向相反.故本选项正确.故答案是:D.【点睛】考查了平面向量的知识,属于基础题,掌握平面向量的性质和相关运算法则即可解题.9.已知平行四边形ABCD,O为平面上任意一点.设=,=,=,=,则()A.+++=B.-+-=C.+--=D.--+=【答案】B【解析】【分析】根据向量加法的平行四边形法则,向量减法的几何意义,以及相反向量的概念即可找出正确选项.【详解】根据向量加法的平行四边形法则及向量减法的几何意义,即可判断A,C,D错误;;而;∴B正确.故选B.【点睛】此题考查向量加减混合运算及其几何意义,解题关键在于掌握运算法则.10.下列关于向量的运算中,正确的是 A .a b b a -=-r r r r; B .2()22a b a b --=-+r r r r; C .()0a a +-=r r; D .0a a +=r r.【答案】B 【解析】 【分析】根据向量的运算法则进行计算. 【详解】A. (),a b b a A ---vv v v =所以错误;B. ()222a b a b B ---v vv v =+,所以正确; C. ()0a a -rv v +=,C 所以错误;D.向量与数字不能相加,所以D 错误. 故选B. 【点睛】本题考查的是向量,熟练掌握向量是解题的关键.11.已知点C 是线段AB 的中点,下列结论中,正确的是( )A .12CA AB =u u u r u u u rB .12CB AB =u u u r u u u rC .0AC BC u u u r u u u r+=D .0AC CB +=u u u r u u u r r【答案】B 【解析】根据题意画出图形,因为点C 是线段AB 的中点,所以根据线段中点的定义解答.解:A 、12CA BA =u u u r u u u r,故本选项错误;B 、12CB AB =u u u r u u u r,故本选项正确;C 、0AC BC +=u u u r u u u r r,故本选项错误;D 、AC CB AB +=u u u r u u u r u u u r,故本选项错误.故选B .12.下列命题正确的是( )A .如果|a r |=|b r |,那么a r =b rB .如果a r 、b r 都是单位向量,那么a r =b rC .如果a r =k b r (k ≠0),那么a r ∥b rD .如果m =0或a r =0r ,那么m a r=0【解析】 【分析】根据向量的定义和要素即可进行判断. 【详解】解:A .向量是既有大小又有方向,|a r |=|b r |表示有向线段的长度,a r =b r表示长度相等,方向相同,所以A 选项不正确;B .长度等于1的向量是单位向量,所以B 选项不正确;C . a r =k b r (k ≠0)⇔a r ∥b r,所以C 选项正确; D .如果m =0或a r =0r ,那么m a r =0r,不正确. 故选:C . 【点睛】本题主要考查向量的定义和要素,准备理解相关概念是关键.13.已知c r 为非零向量, 3a c =r r , 2b c =-r r,那么下列结论中错误的是( )A .//a b r rB .3||||2a b =r rC .a r 与b r方向相同 D .a r 与b r方向相反【答案】C 【解析】 【分析】根据平面向量的性质一一判断即可. 【详解】∵ 3a c =r r , 2b c =-r r∴3a b 2=-r r ,∴a r ∥b r ,32a b =-r ra r 与b r方向相反,∴A ,B ,D 正确,C 错误; 故选:C . 【点睛】本题考查平面向量,解题的关键是熟练掌握基本知识,属于中考常考题型.14.已知点C 在线段AB 上,3AC BC =,如果AC a =u u u r r ,那么BA u u u r 用a r表示正确的是( )A .34a rB .34a -rC .43a rD .43a -r【答案】D 【解析】根据平面向量的线性运算法则,即可得到答案. 【详解】∵点C 在线段AB 上,3AC BC =,AC a =u u u r r,∴BA=43AC , ∵BA u u u r 与AC u u ur 方向相反, ∴BA u u u r =43a -r ,故选D. 【点睛】本题主要考查平面向量的运算,掌握平面向量的运算法则,是解题的关键.15.已知a r =3,b r =5,且b r 与a r 的方向相反,用a r表示b r 向量为( ) A .35b a =r r B .53b a =r r C .35b a =-r r D .53b a =-r r【答案】D 【解析】 【分析】根据a r =3,b r =5,且b r 与a r 的方向相反,即可用a r 表示b r 向量.【详解】a r=3,b r =5,b r =53a r ,b r 与a r的方向相反, ∴5.3b a =-r r故选:D. 【点睛】考查了平面向量的知识,注意平面向量的正负表示的是方向.16.已知非零向量a r 、b r ,且有2a b =-r r,下列说法中,不正确的是( ) A .||2||a b =r r ;B .a r ∥b r;C .a r 与b r方向相反; D .20a b +=r r.【答案】D 【解析】 【分析】根据平行向量以及模的知识求解即可.【详解】A.∵2a b =-r r,表明向量a r 与2b -r 是同一方向上相同的向量,自然模也相等,∴||2||a b =r r,该选项不符合题意错误;B. ∵2a b =-r r,表明向量a r 与2b -r 是同一方向上相同的向量,那么它们是相互平行的,虽然2b -r 与br 方向相反,但还是相互平行,∴a r ∥b r ,该选项不符合题意错误; C. ∵2a b =-r r,而2b -r 与b r 方向相反,∴a r 与b r 的方向相反,该选项不符合题意错误;D. ∵0只表示数量,不表示方向,而2a b +r r是两个矢量相加是带方向的,应该是02b a →→→+=,该选项符合题意正确;故选:D 【点睛】本题主要考查了平面向量的基本知识.17.已知一个单位向量e v ,设a v 、b v是非零向量,那么下列等式中正确的是( ).A .1a e a=r r r ;B .e a a =r r r ;C .b e b =r r r ;D .11a b a b=r r r r .【答案】B 【解析】 【分析】长度不为0的向量叫做非零向量,向量包括长度及方向,而长度等于1个单位长度的向量叫做单位向量,注意单位向量只规定大小没规定方向,则可分析求解. 【详解】解:A 、左边得出的是a 的方向不是单位向量,故错误;B 、符合向量的长度及方向,正确;C 、由于单位向量只限制长度,不确定方向,故错误;D 、左边得出的是a 的方向,右边得出的是b 的方向,两者方向不一定相同,故错误.故选:B .【点睛】本题考查了向量的性质.18.已知非零向量a r 、b r 和c r,下列条件中,不能判定a b r r P 的是( )A .2a b =-r rB .a c =r r ,3b c =r rC .2a b c +=r r r ,a b c -=-r rr D .2a b =r r【答案】D 【解析】【分析】根据平行向量的定义,符号相同或相反的向量叫做平行向量对各选项分析判断利用排除法求【详解】A 、2a b =-r r,两个向量方向相反,互相平行,故本选项错误; B 、a c =r r ,3b c =r r ,则a r ∥b r ∥c r,故本选项错误;C 、由已知条件知2a b =-r r ,3a c -=r r ,则a r ∥b r ∥c r,故本选项错误;D 、2a b =r r 只知道两向量模的数量关系,但是方向不一定相同或相反,a r 与b r不一定平行,故本选项正确. 故选:D . 【点睛】本题考查了平面向量,主要是对平行向量的考查,熟记概念是解题的关键.19.设e r为单位向量,2a =r ,则下列各式中正确的是( )A .2a e =r rB .a e a=rr r C .2a e =r r D .112a =±r【答案】C 【解析】 【分析】根据e r为单位向量,可知1e =r ,逐项进行比较即可解题.【详解】解:∵e r为单位向量,∴1e =r,A 中忽视了向量的方向性,错误B 中忽视了向量的方向性,错误C 中,∵2a =r ,1e =r, ∴2a e =r r,正确,D 中忽视了向量的方向性,错误故选C. 【点睛】本题考查了向量的应用,属于简单题,熟悉向量的概念是解题关键.20.已知AM 是ABC △的边BC 上的中线,AB a =u u u r r,AC b =u u u r r ,则AM u u u u r 等于( ).A .()12a b -r rB .()12b a -r rC .()12a b +r rD .()12a b -+r r【答案】C 【解析】 【分析】根据向量加法的三角形法则求出:CB a b =-u u u r rr ,然后根据中线的定义可得:()12CM a b =-u u u u r r r ,再根据向量加法的三角形法则即可求出AM u u u u r .【详解】解:∵AB a =u u u r r,AC b =u u u r r ∴CB AB AC a b =-=-u u u r u u u r u u u r r r∵AM 是ABC △的边BC 上的中线 ∴()1122CM CB a b ==-u u u u r u u u r r r∴()()1122AM AC CM b b b a a -=+=+=+u u u u r u u u r u u u r r r u r r r故选C.【点睛】此题考查的是向量加法和减法,掌握向量加法的三角形法则是解决此题的关键.。
初三物理平面向量练习题
初三物理平面向量练习题一、选择题1. 下列哪个物理量是矢量?()A. 质量B. 速度C. 温度D. 时间2. 若向量a = (3, 4),则向量a的模长为()A. 3B. 4C. 5D. 73. 两个向量相加,下列说法正确的是()A. 一定满足三角形法则B. 一定满足平行四边形法则C. 可以用三角形法则或平行四边形法则D. 无法确定4. 下列哪个向量与向量a = (2, 3)共线?()A. (4, 6)B. (4, 5)C. (1, 2)D. (3, 2)二、填空题1. 向量a = (4, 6),则向量a的单位向量是__________。
2. 若向量a与向量b的夹角为60°,|a| = 5,|b| = 4,则向量a与向量b的点积是__________。
3. 已知向量a = (2, 3),向量b = (4, 5),则2a 3b=__________。
4. 若向量a = (x, y),向量b = (3, 2),且a与b共线,则x =__________,y =__________。
三、解答题1. 已知向量a = (2, 3),向量b = (4, 1),求向量a + 2b。
2. 已知向量a = (5, 4),求与向量a共线且模长为3的向量。
3. 已知向量a = (6, 8),向量b = (4, 2),求向量a与向量b 的夹角。
4. 已知向量a = (3, 4),向量b = (5, 2),求向量a与向量b 的夹角平分线上的单位向量。
5. 已知向量a = (2, 1),向量b = (4, 3),求向量a与向量b 的夹角,并判断它们是否垂直。
6. 已知向量a = (x, y),向量b = (3, 2),且a与b垂直,求x 和y的关系式。
四、判断题1. 若两个向量的模相等,则这两个向量一定相等。
()2. 向量的点积为零时,这两个向量一定垂直。
()3. 任何向量与零向量的点积都为零。
()4. 向量的模长乘以它的单位向量等于原向量。
中考数学模拟试题平面上的向量
中考数学模拟试题平面上的向量在高中数学学习中,向量是一个重要的概念。
它在平面几何、代数学和物理学等多个学科中都有广泛的应用。
本文将介绍中考数学模拟试题中与平面上的向量相关的题目和解决方法。
题目一:已知向量AB = (-3,2),向量AC = (4,1),求向量BC的坐标。
解析:根据向量的减法公式,可以得知向量BC = vector(CB) = vector(BA) + vector(AC)。
将向量的坐标进行相加得到BC = (-3,2) + (4,1) = (1,3)。
因此,向量BC的坐标为(1,3)。
题目二:向量的数量积计算问题。
已知向量OA = (-2,3),OB = (1,-4),求OA与OB的数量积。
解析:向量的数量积定义为两个向量的坐标分量对应相乘再相加。
根据定义,OA与OB的数量积为OA·OB = (-2)(1) + (3)(-4) = -2 - 12 = -14。
因此,OA与OB的数量积为-14。
题目三:证明平行四边形性质。
已知四边形ABCD是平行四边形,证明向量AB与向量CD平行。
解析:平行四边形性质表明平行四边形的对边是平行的。
要证明向量AB与向量CD平行,需要证明它们的斜率相等。
首先,根据向量的定义,向量AB = vector(BA) = (-2,3)。
同样地,向量CD = vector(DC) = (x2 - x1, y2 - y1),其中(x1, y1)和(x2, y2)分别是直线CD上两个点的坐标。
由于平行四边形ABCD,可以推导出平行四边形的两个对边的顶点坐标之间满足以下关系:x1 = x2 + p,y1 = y2 + q,其中p和q为常数。
将这些关系代入向量CD的定义中,得到向量CD = (x2 - (x2 + p), y2 - (y2 + q)) = (-p, -q)。
由此可知,向量AB = (-2,3)与向量CD = (-p, -q)的斜率相等,即它们平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三中考向量练习题1
1.下列关于向量的等式中,正确的是( )
A .a b b a +=+ ;
B . ()0a a +-= ;
C .2()2a b a b -=- ;
D .AB BC CA += . 2.如果平行四边形ABCD 对角线AC 与BD 交于O ,AB a = ,BC b =
,那么下列向量中与
向量1()2
a b -
相等的是……………………………………( )
A .AO ;
B .BO ;
C .C O ;
D .DO .
3.若CD 是非零向量,则下列等式中,正确的是……………………………………( ) (A )+CD 0=DC ;(B
)+
0=;(C
)=
;(D
=
-4.化简:=-+AD BC AB ___________.
5.若向量b 与单位向量e 的方向相同,且1||||2
b e =
,则b =_____.(用e 表示)
6.已知向量AB AD 3
2-
=,AC AE 3
2-
=
6=
= .
7.如图,在△ABC 中,点D 是边BC 的中点,设a AB = , b AC = ,用a 、b 的线性组合表示AD 是 .
8.如图,在A B C △中,A D 是边
B C 上中线,设向量 如果用向量a ,b 表示向量AD ,那么AD
= 。
9.在四边形ABCD 中,E 是AB 边的中点,设a AB =,b AD =,那么
用a 、b 表示DE 为 .
10.如图梯形ABCD 中,AB//CD 。
AC 交BD 于点O ,AB=2CD .已
知AB 、AD ,如用AB 、AD 表示CO ,那么CO =___________.
11.如图,D 是射线AB 上一点,过点D 作DE ∥AC ,交∠BAC 平分线于点E ,过点D 作 DF ⊥AE ,垂足为F ,DF 交AC 于点G .
(1)按要求在所给图中将图形补全,然后判断四边形ADEG 的形状,并证明你的结论; (2)标出有向线段AD 、AF 、AG ,记向量a AD =、b AF =,
试用b a 、
表示向量AG 。
BC AB a =
B A C
D
B。