可控硅的基本工作原理及在调光器中的使用

合集下载

可控硅调光原理

可控硅调光原理

可控硅调光原理可控硅调光是一种广泛应用于照明系统中的调光技术。

它基于可控硅器件的特性,实现对灯光亮度的精确控制。

本文将介绍可控硅调光的原理以及其在照明系统中的应用。

一、可控硅调光原理可控硅是一种半导体器件,它具有触发、导通和关断三个状态。

在可控硅器件中,当控制电压大于器件的触发电压时,可控硅器件进入导通状态,灯光亮起;当控制电压小于器件的关断电压时,可控硅器件进入关断状态,灯光熄灭。

通过改变控制电压的大小和频率,可以实现对灯光亮度的调节。

在可控硅调光系统中,通常采用脉宽调制(PWM)的方式进行调光控制。

PWM调光是通过改变每个周期内的导通时间比例来控制灯光亮度的。

我们可以通过调整PWM信号的占空比来改变灯光的亮度。

当占空比较大时,灯光亮度较高;当占空比较小时,灯光亮度较低。

二、可控硅调光的应用可控硅调光技术在照明系统中有着广泛的应用。

首先,它可以用于家庭照明系统。

通过使用可控硅调光器件,我们可以根据需要调节灯光的亮度,营造出不同的光线环境。

在晚上,我们可以将灯光调暗,创造出温馨的氛围;在白天,我们可以将灯光调亮,提供足够的照明。

可控硅调光技术还可以应用于商业照明系统中。

比如商场、办公室等场所,可以根据不同的需求,调整灯光的亮度和色温,提供一个舒适、高效的工作环境。

同时,可控硅调光还可以实现节能的效果,通过调节灯光亮度,降低能耗,减少能源浪费。

可控硅调光技术还可以应用于舞台照明系统中。

在演出、表演等活动中,灯光的变化是非常重要的。

通过使用可控硅调光器件,我们可以实现对舞台灯光的精确控制,创造出丰富多样的光影效果,提升演出的艺术效果。

三、总结可控硅调光技术是一种灵活、高效的调光方式,它通过改变可控硅器件的导通时间比例,实现对灯光亮度的精确控制。

可控硅调光技术在照明系统中有着广泛的应用,包括家庭照明、商业照明和舞台照明等领域。

通过合理应用可控硅调光技术,我们可以实现节能减排、提升照明质量的目标。

期望在未来的发展中,可控硅调光技术能够得到更广泛的应用和推广。

双向可控硅调光电路原理

双向可控硅调光电路原理

双向可控硅调光电路原理1. 双向可控硅(Triac)简介双向可控硅是一种常用于交流电路中的半导体开关,它可以实现对交流电的调光控制。

Triac具有两个控制极,一个是主极,另一个是副极。

通过对两个控制极施加正弦波信号,Triac可以实现在每个交流周期内将电流进行截断。

(1)基本原理双向可控硅调光电路的基本原理是通过控制Triac的导通角来控制交流电的通断。

当Triac导通时,交流电可以通过,灯光亮度较高;当Triac截断时,交流电无法通过,灯光亮度较低。

通过改变控制Triac的导通角,可以实现对灯光的调光控制。

(2)控制电路控制电路主要由电阻、电容、双向可控硅、触发电压主机以及触发电压控制主机等组成。

控制电路的作用是接收外部控制信号,并将其转化为适合Triac控制的触发电压。

具体来说,当外部调光信号为低电平时,控制电路将触发电压控制主机输出低电平信号,使Triac截断;当外部调光信号为高电平时,控制电路将触发电压控制主机输出高电平信号,使Triac导通。

(3)调光原理当外部调光信号改变时,调光控制信号将通过控制电路传达给Triac,从而改变Triac的导通角,进而改变灯光的亮度。

也就是说,通过改变外部调光信号,即可实现对灯光亮度的调节。

3.优缺点- 控制灵敏度高:通过控制Triac导通角来控制灯光亮度,具有较高的调光精度和控制灵敏度。

-调光范围广:可根据不同的需求实现大范围的调光,满足不同场景的照明需求。

-结构简单:电路结构简单,成本低,易于实现。

然而,双向可控硅调光电路也存在一些限制:-电磁干扰:由于双向可控硅是通过接通交流电进行控制的,因此在一些灯光调光场景中可能会产生较大的电磁干扰。

-无功功率损耗:在调光过程中,双向可控硅会引入无功功率损耗,降低照明效率。

总结:双向可控硅调光电路通过控制Triac的导通角来实现照明灯光的调光控制。

它由双向可控硅和控制电路组成,通过控制电路接收外部调光信号,并将其转化为触发电压,进而改变Triac的导通角,从而实现对灯光亮度的调节。

可控硅调光方案

可控硅调光方案

可控硅调光方案可控硅调光方案是一种常用于灯光调节的技术方案,通过控制可控硅器件的导通角度来实现灯光的亮度调节。

本文将介绍可控硅调光方案的原理、应用以及其在照明系统中的优势。

一、可控硅调光原理可控硅调光方案是基于可控硅器件的特性而设计的。

可控硅器件是一种能够控制交流电流导通角度的半导体器件,通过控制其导通角度来控制负载电流大小,从而实现灯光的亮度调节。

可控硅的导通角度是通过控制器控制的,控制信号一般是脉冲信号,脉冲宽度越长,导通角度越大,负载电流越大,灯光亮度也就越大。

反之,脉冲宽度越短,导通角度越小,负载电流越小,灯光亮度也就越小。

二、可控硅调光方案的应用1. 家庭照明可控硅调光方案广泛应用于家庭照明中。

可控硅调光器可以与智能家居系统连接,通过手机APP或遥控器来调节灯光的亮度,实现灯光的个性化、智能化控制。

例如,在晚上观看电影时,可以将灯光调暗,营造出舒适的观影环境;而在需要较强光源的活动中,如读书、烹饪等,可以将灯光调亮以提供足够的照明。

2. 商业照明可控硅调光方案也在商业照明中得到广泛应用。

商业场所常常需要根据不同的使用需求调节灯光亮度,例如商场、餐厅、办公室等。

可控硅调光方案能够满足这些场所的需求,实现对灯光亮度的精确控制,优化照明效果,提高用户体验。

3.公共照明在公共照明领域,如街道照明、广场照明等,可控硅调光方案也被广泛应用。

通过控制灯光的亮度,可以提高照明效果并降低能耗。

例如,在夜间交通不繁忙时,可以将灯光调暗,节约能源;而在特殊活动或需要更强照明的情况下,可以将灯光调亮,提供更好的照明效果。

三、可控硅调光方案的优势1. 调光范围广可控硅调光方案的调光范围非常广,从完全关闭到最大亮度都可以进行精确控制。

这使得灯光可以适应不同环境和使用需求,提供更加舒适的照明体验。

2. 节能环保可控硅调光方案能够根据实际需求调整灯光亮度,避免了灯光长时间处于高亮度状态而造成的能源浪费。

通过合理调节灯光亮度,可控硅调光方案能够降低能耗,减少对电力资源的消耗,从而实现节能环保的目标。

可控硅工作原理及其应用新版

可控硅工作原理及其应用新版

可控硅工作原理及其应用新版可控硅(scr: silicon controlled rectifier)是可控硅整流器的简称。

可控硅有单向、双向、可关断和光控几种型别它具有体积小、重量轻、效率高、寿命长、控制方便等优点,被广泛用于可控整流、调压、逆变以及无触点开关等各种自动控制和大功率的电能转换的场合。

单向可控硅的工作原理单向可控硅原理可控硅是p1n1p2n2四层三端结构元件,共有三个pn结,分析原理时,可以把它看作由一个pnp管和一个npn管所组成当阳极a加上正向电压时,bg1和bg2管均处于放大状态。

此时,如果从控制极g输入一个正向触发讯号,bg2便有基流ib2流过,经bg2放大,其集电极电流ic2=β2ib2。

因为bg2的集电极直接与bg1的基极相连,所以ib1=ic2。

此时,电流ic2再经bg1放大,于是bg1的集电极电流ic1=β1ib1=β1β2ib2。

这个电流又流回到bg2的基极,表成正反馈,使ib2不断增大,如此正向馈迴圈的结果,两个管子的电流剧增,可控硅使饱和导通。

由于bg1和bg2所构成的正反馈作用,所以一旦可控硅导通后,即使控制极g的电流消失了,可控硅仍然能够维持导通状态,由于触发讯号只起触发作用,没有关断功能,所以这种可控硅是不可关断的。

由于可控硅只有导通和关断两种工作状态,所以它具有开关特性,这种特性需要一定的条件才能转化一、单向可控硅工作原理可控硅导通条件:一是可控硅阳极与阴极间必须加正向电压,二是控制极也要加正向电压。

以上两个条件必须同时具备,可控硅才会处于导通状态。

另外,可控硅一旦导通后,即使降低控制极电压或去掉控制极电压,可控硅仍然导通。

可控硅关断条件:降低或去掉加在可控硅阳极至阴极之间的正向电压,使阳极电流小于最小维持电流以下。

二、单向可控硅的引脚区分对可控硅的引脚区分,有的可从外形封装加以判别,如外壳就为阳极,阴极引线比控制极引线长。

从外形无法判断的可控硅,可用万用表r×100或r×1k 挡,测量可控硅任意两管脚间的正反向电阻,当万用表指示低阻值(几百欧至几千欧的範围)时,黑表笔所接的是控制极g,红表笔所接的是阴极c,余下的一只管脚为阳极a。

可控硅的工作原理及应用电路

可控硅的工作原理及应用电路

可控硅的工作原理及应用电路一、可控硅的基本工作原理可控硅,又称为可控整流二极管(SCR),是一种半导体器件,具有单向导通性的特点。

可控硅最基本的结构是由P型硅及N型硅构成的PN结,还通过额外的控制极(称为G极)控制导通与截止。

其基本工作原理如下:1.正向导通状态:当正向电压施加在可控硅的阳极和阴极之间时,若G极未施加正向信号,则可控硅处于截止状态;若G极施加正向信号,则电流开始流过可控硅,进入导通状态。

2.正向截止状态:当正向电压施加在可控硅的阳极和阴极之间时,若G极未施加正向信号,则可控硅处于截止状态,不导电;即使G极施加正向信号,只有当电压达到一定的阈值(称为触发电压)时,可控硅才能进入导通状态。

3.反向阻断状态:当反向电压施加在可控硅的阳极和阴极之间时,可控硅处于完全截止状态,不导电。

二、可控硅的应用电路可控硅由于其可控性和高功率特点,广泛应用于各种控制电路和电力电子器件中。

以下是一些常见的可控硅应用电路:1. 灯光控制电路可控硅可以用来控制灯光的亮度,常见的应用是使用可控硅作为调光器。

这种电路通过控制可控硅的导通角度来改变交流电路中的功率,从而达到调节灯光亮度的目的。

2. 电动机控制电路可控硅可以用来控制电动机的启动和停止,常见的应用是使用可控硅作为电动机的触发器。

通过控制可控硅的导通时间,可以控制电动机的转速和转向。

3. 直流电源电路可控硅可以用来控制直流电源的电压和电流输出,常见的应用是使用可控硅作为直流电源的调节器。

通过控制可控硅的导通角度和触发时间,可以实现直流电源的稳压和稳流功能。

4. 温度控制电路可控硅可以用来控制温度传感器和加热器之间的电流流动,常见的应用是使用可控硅作为温度控制电路的关断开关。

通过控制可控硅的导通角度和触发时间,可以实现温度的精确控制。

5. 电化学电源电路可控硅可以用来控制电化学电源中的电流输出,常见的应用是使用可控硅作为电化学电源的控制器。

通过控制可控硅的导通角度和触发时间,可以实现电化学过程的精确控制。

可控硅调光原理

可控硅调光原理

可控硅调光原理引言可控硅调光是一种常见的调光技术,广泛应用于家庭、商业以及工业领域。

本文将深入探讨可控硅调光原理,包括其工作原理、优势和应用场景等。

可控硅调光的工作原理可控硅调光通过改变导通角来控制电灯的亮度。

其具体工作原理如下:1.当可控硅接收到控制信号时,通过调整触发脉冲的时间点来改变电流的导通时间,从而控制电灯的亮度。

2.可控硅的控制信号一般为脉冲宽度调制(PWM)信号,即通过调整脉冲的宽度来控制亮度的变化。

3.当调光器输出的PWM信号的宽度为0时,电流无法通过可控硅,电灯处于关闭状态;当PWM信号的宽度为100%时,电流可以完全通过可控硅,电灯处于最大亮度状态。

4.调光器可以通过调整脉冲的宽度,实现电灯的不同时刻、不同亮度的控制。

可控硅调光的优势可控硅调光具有以下优势:1.高效节能:相比传统的调光方式,可控硅调光技术能够更加精确地控制亮度,从而减少能量的浪费。

通过调整灯光亮度,可以根据不同需求来平衡照明效果和能耗。

2.响应速度快:可控硅调光器的响应速度非常快,一般可以在微秒级别进行响应。

这使得可控硅调光在需要快速调整亮度的场景中非常适用,如舞台灯光控制等。

3.调光范围广:可控硅调光技术可以实现从关闭到最大亮度的无级调光,非常适用于不同需求下的灯光控制。

4.寿命长:可控硅调光器由电子元件组成,没有机械部件,因此寿命相对较长,可靠性高。

可控硅调光的应用场景可控硅调光技术在各个领域都有广泛的应用,下面列举了几个常见的应用场景:1.家庭照明:可控硅调光可以为家庭照明提供灵活的亮度调节,根据不同需求创造出温馨、舒适的照明环境。

2.商业照明:商业场所需要根据不同活动如展示、会议等调整照明亮度,可控硅调光技术可以满足这些需求,提供合适的照明效果。

3.舞台灯光控制:舞台灯光需要精确的亮度和颜色调控,在舞台表演、演唱会等场合中,可控硅调光技术是非常常用的选择。

4.工业照明:工厂、仓库等工业场所需要高强度的照明,并在需要时进行调光。

可控硅调光电路工作的原理

可控硅调光电路工作的原理

分析下可控硅调光电路工作的原理
上面是一个双向可控硅的调光电路
昨天有一个朋友不是太明白,所以我就写一个工作原理说明。

一接通电源,220V经过灯泡VR4 R19对C23充电,由于电容二端电压是不能突变的,充电需要一定时间的,充电时间由VR4和R19大小决定,越小充电越快,越大充电越慢。

当C23上电压充到约为33V左右的时候,DB1导通,可控硅也导通,可控硅导通后,灯泡中有电流流过,灯泡就亮了,随着DB1导通,C23上电压被完全放掉,DB1又截止。

可控硅也随之截止,灯泡熄灭,C23上又进行刚开始一样的循环,因为时间短人眼有暂留的现象,所以灯泡看起来是一直亮的。

充放电时间越短,灯泡就越亮,HE HE,反之,R20 C24能保护可控硅,如果用在阻性负载上可以省掉.如果是用在感性负载,比如说电动机上就要加上去,这个电路也可以用于电动机调速上,当然是要求不高的情况下。

这个电路的优点是元件少,成本低,性价比高,缺点是,对电源干扰比较大,噪声大,驱动电动机时候在较小的时候可能会发热比较大。

led可控硅调光原理

led可控硅调光原理

led可控硅调光原理
LED可控硅调光原理是一种通过改变LED灯的电压和电流来控制其亮度的技术。

可控硅是一种电子器件,具有较高的电阻和电流控制能力。

在LED可控硅调光系统中,通过调节可控硅器件的触发角来控制电流的导通时间,从而改变LED的亮度。

调光系统通常包括一个控制器和一个可控硅器件。

控制器可以接收来自用户的命令或调节信号,并通过调节可控硅器件的触发脉冲来控制LED的亮度。

可控硅器件是由触发电路和控制电路组成的,触发电路通过接收控制信号来调整触发脉冲的角度,从而改变LED电流的导通时间。

当控制器接收到调光信号时,它将根据信号的大小和方向来控制可控硅器件的触发脉冲。

触发脉冲的占空比定义了可控硅器件的导通时间。

当触发脉冲的占空比较低时,可控硅器件导通时间较短,LED的电流较小,亮度较暗;当触发脉冲的占空比较高时,可控硅器件导通时间较长,LED的电流较大,亮度较亮。

调光系统还可以通过调整电压来控制LED的亮度。

LED的亮度与其电压成正比。

通过改变可控硅器件的电压,可以调节LED的电压,从而改变LED的亮度。

调光系统通常提供多个预设亮度模式或连续调光模式,用户可以根据需要选择合适的亮度。

总之,LED可控硅调光原理是通过调节可控硅器件的触发脉
冲和电压来控制LED的亮度。

这种调光方式被广泛应用于各种照明系统和LED显示屏中,可以实现灯光的亮度调节和场景切换,提高照明效果和能耗管理。

led可控硅调光驱动电源原理

led可控硅调光驱动电源原理

led可控硅调光驱动电源原理
LED可控硅调光驱动电源原理主要基于可控硅(Silicon Controlled Rectifier,
简称SCR)的特性。

可控硅是一种半导体器件,具有三个极:阳极(A)、阴极(C)和控
制极(G)。

在LED驱动电源中,可控硅主要用于调整输出电压以实现LED的调光功能。

可控硅调光原理如下:
1. 当控制极(G)施加正向电压时,可控硅导通,阳极(A)与阴极(C)之间的电压
差减小,从而降低了LED的亮度。

2. 调整控制极(G)的电压大小,可以改变可控硅的导通程度,进而改变LED的亮度。

3. 通过加入阻尼电阻(damping resistor)可以解决可控硅调光与LED兼容性问题。

阻尼电阻在可控硅导通和截止过程中,消耗部分能量,降低LED驱动电路的电压波动,使LED工作更加稳定。

4. 为了实现平滑的调光效果,还可以采用相位补偿电路。

相位补偿电路可以调整可控硅的导通角度,使LED驱动电源输出电压随控制极电压的变化而平滑地调整。

5. 常见的可控硅调光驱动电源设计基于AC-DC电源芯片,如MT7920等。

加入相位补
偿电路和其他相关元件,经过PCB板级实现,验证电路能正常工作。

综上所述,LED可控硅调光驱动电源原理是通过控制可控硅的导通程度,改变输出电压以
实现LED的调光。

在设计过程中,需要考虑阻尼电阻、相位补偿电路等因素,以实现稳定且平滑的调光效果。

可控硅的工作原理

可控硅的工作原理

可控硅的工作原理可控硅(SCR)是一种半导体器件,广泛应用于电力电子领域。

它具有可控性强、耐压能力高、寿命长等优点,在各种电力控制和调节系统中发挥着重要作用。

那么,可控硅的工作原理是怎样的呢?接下来,我们将详细介绍可控硅的工作原理。

可控硅是一种四层结构的双极型半导体器件,它由P型半导体、N型半导体和P型半导体三个P-N结组成。

当在P型半导体端加上一个正向电压,而在N型半导体端加上一个负向电压时,P-N结处形成一个耗尽层。

在这种情况下,可控硅处于封锁状态,只有当加在P型半导体端的电压达到一定的触发电压时,才能使可控硅进入导通状态。

当触发电压作用于可控硅时,耗尽层迅速消失,使得P-N结处形成导通通道,电流开始流过可控硅。

此时,可控硅处于导通状态,只有当电流减小到一定程度或者电压减小到零时,可控硅才能恢复到封锁状态。

这种特性使得可控硅能够实现电流和电压的控制,从而实现对电力的精确调节。

可控硅的工作原理可以用一个开关的概念来形象地描述。

当开关处于关闭状态时,电流无法通过;而当开关处于打开状态时,电流可以自由通过。

可控硅就像是一个可控的电流开关,通过控制触发电压和电流大小,可以实现对电力的精确控制。

除了在电力控制系统中的应用,可控硅还被广泛应用于交流电调速、电炉温度控制、电焊机、电动机启动等领域。

它的工作原理简单清晰,结构稳定可靠,因此受到了广泛的关注和应用。

总的来说,可控硅的工作原理是基于P-N结的特性和触发电压的控制,通过控制电流和电压的大小,实现对电力的精确调节。

它在电力电子领域发挥着重要作用,为各种电力控制系统的稳定运行提供了有力支持。

希望通过本文的介绍,读者对可控硅的工作原理有了更清晰的认识。

可控硅的基本工作原理及在调光器中的使用

可控硅的基本工作原理及在调光器中的使用

可控硅的基本工作原理及在调光器中的使用可控硅(Silicon Controlled Rectifier,SCR)是一种半导体器件,也被称为晶闸管。

它具有开关功能,可在高压、高电流条件下进行控制。

可控硅的主要应用之一是在调光器中,用于控制灯光的亮度。

可控硅的基本工作原理是基于PN结的特性。

PN结是由P型半导体和N型半导体组成的结构。

当一个正向电压施加在PN结上时,电子从N型区域流向P型区域,同时空穴从P型区域流向N型区域。

这种流动导致PN结上形成一个导电通道,使电流能够通过。

然而,在可控硅中,除了PN结外,还有一个控制电极(称为门极)。

当门极施加一个正向电压时,可控硅处于导通状态,电流可以流过。

当门极施加一个负向电压时,可控硅处于阻断状态,电流无法通过。

在调光器中,可控硅的使用可以实现灯光的亮度调节。

调光器通常由可控硅、触发器电路和控制电路组成。

触发器电路用于产生一个脉冲信号,用于控制可控硅的导通和阻断。

当脉冲信号施加在可控硅的门极上时,可控硅处于导通状态,电流可以流过。

而当脉冲信号消失时,可控硅处于阻断状态,电流无法通过。

控制电路用于调节脉冲信号的频率和宽度,从而控制灯光的亮度。

通过改变脉冲信号的频率,可以实现灯光的快速闪烁或缓慢变化。

通过改变脉冲信号的宽度,可以实现灯光的亮度调节。

调光器中的可控硅通常需要额外的保护电路,以防止过电流和过热。

过电流保护电路可以监测电流的大小,并在超过设定值时切断电源。

过热保护电路可以监测可控硅的温度,并在温度过高时切断电源。

除了在调光器中的应用,可控硅还广泛用于电力控制、电机控制和电子系统中。

它具有可靠性高、成本低、体积小的优点,因此被广泛应用于各种领域。

总结起来,可控硅是一种半导体器件,基于PN结的特性实现了开关功能。

在调光器中,可控硅通过控制门极电压的方式实现灯光的亮度调节。

它需要与触发器电路和控制电路配合使用,并且通常需要额外的保护电路。

可控硅不仅在调光器中有广泛应用,还在电力控制、电机控制和电子系统中发挥重要作用。

可控硅工作原理及应用

可控硅工作原理及应用

可控硅工作原理及应用可控硅,又称为双向可控硅(thyristor),是一种电子器件,其工作原理是通过施加控制电压来控制电流的通断。

可控硅的应用非常广泛,常见于电力控制系统、直流有源功率因数校正器、电调速器等领域。

以下将详细介绍可控硅的工作原理和应用。

一、可控硅的工作原理可控硅是一种双极管三极结设备,其主要由P型半导体阳极、N型半导体阴极和控制极(门极)组成。

其工作原理可分为四个阶段,即不导通(停止)状态、触发状态、导通状态和关断状态。

1.不导通(停止)状态:当可控硅未施加控制电压时,处于不导通状态。

在这种状态下,控制极和阳极之间形成一个反向偏置,使得硅控整流器阻止从阴极到阳极的电流流动。

2.触发状态:当施加正向电压至可控硅的控制极时,即控制电压达到了触发电压,可控硅进入触发状态。

在这种状态下,根据电流流动的方向,设备可以分为正向触发可控硅和负向触发可控硅。

正向触发可控硅的触发电流方向与电流流动方向一致,而负向触发可控硅的触发电流方向相反。

在触发状态下,可控硅进入导通状态。

3.导通状态:一旦可控硅进入触发状态,控制电流可以作为驱动电流,使得可控硅从不导通状态变为导通状态。

在导通状态下,可控硅的阳极和阴极之间的电压变得极低,几乎可忽略不计。

4.关断状态:当可控硅在导通状态下,去除控制电压时,设备会进入关断状态。

在这种状态下,无论电压的极性如何,可控硅都将不导通。

二、可控硅的应用1.交流电控制系统:由于可控硅具有可控导通和关断特性,可通过控制电流的触发来控制交流电,应用于电焊机、灯光调光装置、磁悬浮列车等交流电控制系统中。

2.直流有源功率因数校正器:由于可控硅具有快速开关特性,可根据负载的变化,在适当的时间打开或关闭可控硅,从而调整直流电源的输出电压,实现有源功率因数的校正。

3.电调速器:可控硅的导通电流和导通角可以通过控制电流的触发来调节。

通过改变可控硅的导通时间和关断时间,可以实现电机的调速。

4.整流器:可控硅可以控制交流电到直流电的转换,常见于电力系统中的整流器装置。

可控硅器件的工作原理

可控硅器件的工作原理

可控硅器件的工作原理
可控硅器件的工作原理是依靠外加正向电压使pn结正向导通,由于pn结的击穿电场作用在导通后的反向偏压上,使其成为具有两个电极的电子器件。

当外加正向电压超过某一数值时,电流将由一个方向流向另一个方向;反之则电流为零。

可控硅是由两个PN结加正向电压而形成的PNP型半导体器件,其工作过程是将输入的直流电压变为控制信号,然后驱动可控硅导通和关断。

在电流的控制下,使被控制电路中的交流功率开关元件按预定方向动作。

当接通或切断一定数量的电流后,由于PN结正向导通的交替变化而产生热量而使温度升高;同时由于漏源极之间存在一定的电阻值,因此会产生一定的反向电动势将多余的电能消耗掉;最后通过调节触发角的大小就可以达到对负载进行调制的目的。

可控硅工作原理

可控硅工作原理

可控硅工作原理
可控硅(也称为晶闸管)是一种半导体器件,可以控制电流通过的能力。

它的工作原理是基于PN结和P型和N型半导体材料之间的正向偏置电压。

当正向偏置电压施加在PN结上时,P型区域内的电子被注入到N型区域,同时N型区域内的空穴从P型区域注入。

这导致了PN结区域的电荷重新组合,形成一个低电阻的通路。

当一个控制电压(通常称为晶极电压)施加在可控硅的控制极上时,它会启动一个称为"生成模式"的过程。

在这个模式下,晶极电压使得PN结区域内的电流增加,形成空间电荷区,将整个设备切换为导通状态。

一旦可控硅处于导通状态,它会继续导电,直到其中的电流降低到一个被称为保持电流的阈值以下,或者施加在晶极上的控制电压降到零。

当保持电流以下时,可控硅会重新进入"封锁状态",其中电流无法通过。

可以通过施加一个反向偏置电压在可控硅上恢复其正常工作。

可控硅的这种工作原理使其在控制高功率和高电压应用方面非常有用,如电机控制、电源调节和交流电压调节。

可控硅的原理和应用

可控硅的原理和应用

可控硅的原理和应用说起可控硅,这东西听起来挺高大上的,其实啊,它就是我们生活中无处不在的一个小小半导体器件,全名叫可控硅整流元件,也有人叫它晶闸管。

你可别小看它,它可是有三个PN结的四层结构呢,就像个复杂的四层小楼房,里面住着阳极(A)、阴极(K)和控制极(G)这三个“居民”。

可控硅这家伙,工作原理挺有意思的。

你得先给它阳极加个正向电压,就像给它喂了点“开胃菜”。

然后呢,再给它控制极一个正向触发电压,就像按下了启动按钮,它就开始工作了。

这一触发,就像是给电路世界里的一个开关,打开了通往无限可能的大门。

记得我第一次学可控硅的时候,看着那些复杂的电路图和符号,简直是一头雾水。

不过呢,后来慢慢琢磨,发现它其实就是个“智能开关”。

你想啊,电流在它这里,就像水流在管道里,可控硅就是那个能控制水流开关和流量的阀门。

可控硅的应用啊,那可真是多了去了。

比如说在电力控制方面,它能实现交流电的无触点控制,就像个电力世界的魔术师,用小电流就能控制大电流,让电力系统运行得更加高效和稳定。

家用电器里,它可是个常客,调光灯、调速风扇、空调、电视机、电冰箱、洗衣机这些设备的控制电路里,都有它的身影。

它就像一个细心的管家,帮你调节设备的亮度、速度和电压,让你的生活更加舒适和便捷。

工业控制方面,可控硅也是功不可没。

在自动化生产线上,它控制着电机的启动、停止和调速等操作,就像个工业世界的指挥官。

在温度控制系统中,它调节着加热元件的功率输出,实现温度的精确控制,就像个精准的温控大师。

还有啊,可控硅还有一些特殊的种类,比如逆导可控硅、快速恢复可控硅、光控可控硅等等。

它们各自有着独特的本领,适用于不同的场景。

比如快速恢复可控硅,它的关断时间特别短,能在高频应用中大展身手。

光控可控硅呢,则是通过光信号来触发导通,适用于需要电气隔离的场合,安全性特别高。

记得有一次,我在一个工厂里看到他们用可控硅来控制一个大功率电机。

那个电机体积庞大,运转起来震耳欲聋。

最新-可控硅的基本工作原理及在调光器中的使用精品

最新-可控硅的基本工作原理及在调光器中的使用精品

最新-可控硅的基本工作原理及在调光器中的使用精品可控硅的基本工作原理及在调光器中的使用篇一:可控硅调光原理及问题可控硅调光原理及问题时间:2019-11-19202644来源:作者:1前言如今,照明已成为一项主流技术。

手电筒、交通信号灯和车灯比比皆是,各个国家正在推动用灯替换以主电源供电的住宅、商业和工业应用中的白炽灯和荧光灯。

换用高能效照明后,实现的能源节省量将会非常惊人。

仅在中国,据政府*估计,如果三分之一的照明市场转向产品,他们每年将会节省1亿度的用电量,并可减少2900万吨的二氧化碳排放量。

然而,仍有一个障碍有待克服,那就是调光问题。

白炽灯使用简单、低成本的前沿可控硅调光器就可以很容易地实现调光。

因此,这种调光器随处可见。

固态照明替换灯要想真正获得成功的话,就必须能够使用现有的控制器和线路实现调光。

白炽灯泡就非常适合进行调光。

具有讽刺意味的是,正是它们的低效率和随之产生的高输入电流,才是调光器工作良好的主要因素。

白炽灯泡中灯丝的热惯性还有助于掩盖调光器所产生的任何不稳定或振荡。

在尝试对灯进行调光的过程中遇到了大量问题,常常会导致闪烁和其他意想不到的情况。

要想弄清原因,首先有必要了解可控硅调光器的工作原理、灯技术以及它们之间的相互关系。

2可控硅调光的原理图1所示为典型的前沿可控硅调光器,以及它所产生的电压和电流波形。

图1前沿可控硅调光器电位计2调整可控硅()的相位角,当2超过的击穿电压时,可控硅会在每个电压前沿导通。

当可控硅电流降到其维持电流()以下时,可控硅关断,且必须等到2在下个半周期重新充电后才能再次导通。

灯泡灯丝中的电压和电流与调光信号的相位角密切相关,相位角的变化范围介于0度(接近0度)到180度之间。

3调光存在的问题用于替换标准白炽灯的灯通常包含一个阵列,确保提供均匀的光照。

这些以串联方式连接在一起。

每个的亮度由其电流决定,的正向电压降约为34,通常介于28到42之间。

灯串应当由恒流电源提供驱动,必须对电流进行严格控制,以确保相邻灯之间具有高匹配度。

可控硅应用调光原理介绍

可控硅应用调光原理介绍

可控硅应用调光原理介绍Ⅰ. 调光原理介绍:1. 典型的可控硅调光器原理(据说是市面 90%的调光器原理):其基本原理陈述如下:当 220VAC 电压加可控硅 U1 两端时,由于 R2,R,C3,组成的 RC 充电电路有一个充电时间,电容上的电压是从 0V 开始充电的,并且可控硅 U1 的驱动极串联有一个 DIAC(双向触发二极管,一般是 30V 左右),因此可控硅可靠截止,此时 C3 上的电压慢慢上升,上升到30V 时,DIAC 触发导通,U1 驱动极导通,可控硅可靠导通,那么此时可控硅两端的电压瞬间变为零,C3 通过 R,R2 迅速放电,当 C3 电压跌落到 30V 以下时 DIAC 截止,那么可控硅如果通过的电流大于其保持电流,U1 继续导通,这个是可控硅基本特性,如果低于保持电流将会截止,那么下一个周期重复上门的讲述;其中非常关键的参数有:A.可控硅的保持电流,目前市面上的一般是 7MA 到 75MA(驱动电流则是 7MA 到 100MA),导通后可控硅回路的电流必须要大于这个值才能导通,否则会关断;B.RC 充电回路,我们知道,C 这个值一般是定死的,那么相位是如何调节的呢,就是通过调R,R 越大充电时间越长,那么导通时间也越长,那么导通角度也会变得越大,反之导通角度越小。

目前市面上的可控硅一般可以将相位角调节到 120 度,也就是说可以将 180 度的正弦波切掉 120 度角,只剩下 60 度角波形通过;2.可控硅带不同负载的情形:当可控硅能正常运行的时候,负载不同回路会有什么不同表现呢?FILTER/电容//电阻/RDAMPER串联负载,回路电流受到RDAMPER 和 FILTER 电感阻尼,电流被大大降低,由于有电感的存在,电流先上升后才降落,这种电路就是 SSL2101 的实际使用电路模型,实测波形如右图所示;下面重点讲述关键参数设计方法,主PWM 部分为普通的单级PFC 电气结构,类似于 FAN7527,工作在 DCM 模式,能够实现功率因数,与一般电源控制芯片很大的不同的地方,芯片集成了三个很重要的控制部分:可控硅电流回路保持电路设计;DAMPER 回路设计;线性调光系统设计;1. 保持回路设计:保持回路电路部分如下主要由 RSBLEED,RWBLEED,WEAK BLEEDER CONTROL 电路组成,WEAK BLEEDER 回路的主要任务是检测整个回路电流,如果电流少于一定值(也就是根据可控硅设定的保持电流大小而定),RWBLEED 导通,开始拉电流保持可控硅导通,具体工作时序可以参看如下图:四个阶段分析:T1 阶段,由于可控硅没有导通,也就是切相阶段,STRONG BLEEDER ON TIME,开始拉电流;T2 阶段,由于可控硅导通,TRIAC ON TIME,这个阶段只要回路里面的电流大于设定值,那么STRONG BLEEDER&WEAK BLEEDER 是关断的;T3 阶段,可控硅仍然导通,但是如果回路里面的电流少于设定值,WEAK BLEEDER ON TIME,继续保持可控硅导通;T4 阶段,可控硅导通,但是一旦 STRONG BLEEDER 侦测到输入电压低于 54V,由于 WEAKBLEEDER 电阻太大(一般为 20K 以上),那么 STRONG BLEEDER(一般为 4K 以内)开始拉电流,继续保证可控硅导通2. DAMPER 回路设计为什么要用 RDAMPER 电阻,RDAMPER 电阻不仅可以抗击回路开通瞬间的冲击电流,还可以防止回路中 CBUFFER 电容充电过快而可控硅意外截止,导致不断重启,但是 CBUFFER选取也有要求,必须折中,先参考如下波形图:A. CBUFFER 电容太小,会导致开通瞬间电容很快充电,然而后面的PWM 还没有建立,直接导致可控硅保持电流不够,从而导致可控硅关断,就出现上面的左边波形,不断关断重启现象;B. CBUFFER 电容是不是越大越好呢,不,电容越大,导致电容上存储的能量越多,就会导致下半个切相波形到来之前,CBUFFER 电容放电不及时,电容上存在一定电压,从而导致可控硅不能正常切相;所以 CBUFFER 电容的大小是要根据实际情况而定,由经验值定最佳;那么 RDAMPER 电阻是不是随意选取呢?不A. 大的RDAMPER 会导致两个不好的结果-低效率:大电阻导致消耗在电阻上的功率过大,整机效率偏低;-闪烁:大电阻导致回路充电电流过小,保持电流不够,从而产生闪烁;B.小的RDAMPER 会导致两个不好的结果-大的冲击电流;-环路的震荡,不断重启,见上图;所以RDAMPER 的取值要考虑到功耗和环路的稳定性折中。

可控硅的工作原理(带图)

可控硅的工作原理(带图)

可控硅的工作原理(带图)可控硅的工作原理(带图)一.可控硅是可控硅整流器的简称。

它是由三个PN结四层结构硅芯片和三个电极组成的半导体器件。

图3-29是它的结构、外形和图形符号。

可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。

当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看出PN结处于反向,具有类似二极管的反向特性。

当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。

但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。

加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。

此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。

可控硅一旦导通,控制极便失去其控制作用。

就是说,导通后撤去栅极电压可控硅仍导通,只有使器件中的电流减到低于某个数值或阴极与阳极之间电压减小到零或负值时,器件才可恢复到关闭状态。

图3-30是可控硅的伏安特性曲线。

图中曲线I为正向阻断特性。

无控制极信号时,可控硅正向导通电压为正向转折电压(U B0);当有控制极信号时,正向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。

当控制极电流大到一定程度时,就不再出现正向阻断状态了。

曲线Ⅱ为导通工作特性。

可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。

若阳极电压减小(或负载电阻增加),致使阳极电流小于维持电流I H时,可控硅从导通状态立即转为正向阻断状态,回到曲线I状态。

曲线Ⅲ为反向阻断特性。

当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(只有很小的漏电流)。

只有反向电压达到击穿电压时,电流才突然增大,若不加限制器件就会烧毁。

正常工作时,外加电压要小于反向击穿电压才能保证器件安全可靠地工作。

可控硅的重要特点是:只要控制极中通以几毫安至几十毫安的电流就可以触发器件导通,器件中就可以通过较大的电流。

可控硅调光方案

可控硅调光方案

可控硅调光方案引言可控硅调光方案是一种用于调节灯光亮度的技术方案。

它基于可控硅器件,通过调节电流的通断来控制灯光的亮度。

可控硅调光方案广泛应用于照明系统、舞台灯光系统和室内装饰等领域,在提供舒适照明环境的同时,也能节约能源。

本文将介绍可控硅调光方案的基本原理、硬件实现和应用案例,并对其优缺点进行评估。

1. 可控硅调光的基本原理可控硅调光方案基于可控硅器件的特性来实现灯光亮度的调节。

可控硅器件属于半导体器件,具有单向导电性和可控性。

其通过改变触发角来控制通断,从而实现对电路中负载的供电调节。

可控硅调光方案基本原理如下: 1. 可控硅器件通过施加触发信号来使其导通,通电状态下电压降较低,电流通过传递到负载。

2. 可控硅器件关闭触发信号时,器件从导通状态转变为截止状态,电压降较高,电流不再通过。

通过不断改变触发角的大小,可控硅器件的通断周期不断变化,从而实现对电路中负载的供电调节。

2. 可控硅调光的硬件实现可控硅调光方案的硬件实现主要包括三部分:可控硅器件、控制电路和负载。

2.1 可控硅器件可控硅器件是可控硅调光方案的核心组件,常用的可控硅器件有单向可控硅(TRIAC)和双向可控硅(BTRIAC)。

它们具有高灵敏度、低功耗和长寿命等特点,能够满足调光需求。

2.2 控制电路控制电路用于控制可控硅器件的触发信号。

常用的控制电路包括零点触发电路和调相触发电路。

零点触发电路通过检测电压的过零点来触发可控硅器件,从而实现对灯光的调光控制。

调相触发电路则通过控制触发角来实现灯光亮度的调节。

在实际应用中,根据实际需求选择适合的控制电路。

2.3 负载负载是可控硅调光方案中所要控制的灯具。

负载可以是各种类型的照明设备,如白炽灯、荧光灯、LED灯等。

根据负载的不同,可需要相应的电源适配器和线路连接。

3. 可控硅调光的应用案例可控硅调光方案广泛应用于各个领域,包括家庭照明、商业照明和舞台灯光等。

3.1 家庭照明可控硅调光方案在家庭照明中被广泛应用,通过调节灯光亮度,可以为不同的场景提供适合的光照环境,并带来更好的用户体验。

可控硅的调压与应用原理

可控硅的调压与应用原理

可控硅的调压与应用原理1. 引言可控硅是一种应用广泛的电子器件,被广泛应用于交流电调压和开关控制领域。

它具有简单、可靠、高效的特点,在电力工业、电子电气设备以及家用电器等领域都有广泛的应用。

本文将介绍可控硅的调压原理以及在各个领域的应用。

2. 可控硅的调压原理可控硅是一种具有三个电极的半导体器件,其中包括主极(又称阳极)、控制极(又称阴极)和触发极。

通过控制极对可控硅的电子特性进行操控,可以实现对电流的控制。

可控硅具有半导体二极管和开关的特性,当控制极施加正向电压时,可控硅进入导通状态;当控制极施加反向电压或不施加电压时,可控硅处于截止状态。

可控硅的调压原理根据施加到控制极上的触发电压来实现调整交流电源的输出电压。

当触发电压达到一定阈值时,控制极将导通,并将交流电源的电流通过。

通过调整触发电压的大小和时机,可以控制交流电源输出的电压大小。

3. 可控硅的应用3.1 交流电调压可控硅在交流电调压中起到了关键作用。

它可以通过调整触发电压的大小和时机,实现对交流电源输出电压的精确控制。

在电力工业中,可控硅广泛应用于电网调压控制、变压器调压装置等领域,以提供稳定可靠的电力供应。

3.2 电子电气设备可控硅也被广泛应用于电子电气设备中,作为调压和开关控制的核心器件。

例如,可控硅被用作电炉、电焊机、UPS电源等设备的调压模块,以确保设备的稳定工作。

3.3 家用电器在家用电器领域,可控硅也具有很大的应用潜力。

例如,可控硅可以用于电灯的调光控制,通过调整触发电压,实现灯光的亮度调节。

此外,可控硅还可以用于家用电器的开关控制,提高设备的智能化水平。

4. 可控硅的优势和不足可控硅作为一种电子器件具有以下优势: - 简单可靠:可控硅的结构简单、成本低廉,同时工作稳定可靠; - 调压精度高:可控硅可以实现对交流电源输出电压的精确调整; - 适应性强:可控硅可以适应不同的负载特性,具有很高的适应性。

然而,可控硅也存在一些不足之处: - 快速开关:可控硅的控制速度有限,无法进行高速开关操作; - 占用空间:可控硅的体积相对较大,需要一定的空间来容纳。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可控硅的基本工作原理及在调光器中的使用
可控硅是可控硅整流元件的简称,是一种具有三个PN 结的四层结构的大功率半导体器件,一般由两晶闸管反向连接而成。

它的功能不仅是整流,还可以用作无触点开关的快速接通或切断;实现将直流电变成交流电的逆变;将一种频率的交流电变成另一种频率的交流电等等。

可控硅和其它半导体器件一样,有体积小、效率高、稳定性好、工作可靠等优点。

它的出现,使半导体技术从弱电领域进入了强电领域,成为工业、农业、交通运输、军事科研以至商业、民用电器等方面争相采用的元件。

目前可控硅在自动控制、机电应用、工业电气及家电等方面都有广泛的应用。

可控硅从外形上区分主要有螺旋式、平板式和平底式三种。

螺旋式应用较多。

可控硅有三个极----阳极(A)、阴极(C)和控制极(G),管芯是P型导体和N型导体交迭组成的四层结构,共有三个PN 结,与只有一个PN结的硅整流二极管在结构上迥然不同。

可控硅的四层结构和控制极的引入,为其发挥“以小控大”的优异控制特性奠定了基础。

可控硅应用时,只要在控制极加上很小的电流或电压,就能控制很大的阳极电流或电压。

目前已能制造出电流容量达几百安培以至上千安培的可控硅元件。

一般把5安培以下的可控硅叫小功率可控硅,50安培以上的可控硅叫大功率可控硅。

我们可以把从阴极向上数的第一、二、三层看面是一只NPN型号晶体管,而二、三、四层组成另一只PNP型晶体管。

其中第二、第三层为两管交迭共用。

可画出图1的等效电路图。

当在阳极和阴极之间加上一个正向电压E,又在控制极G和阴极C之间(相当BG2的基一射间)输入一个正的触发信号,BG2将产生基极电流Ib2,经放大,BG2将有一个
应用举例:
可控硅在实际应用中电路花样最多的是其栅极触发回路,概括起来有直流触发电路,交流触发电路,相位触发电路等等。

1、直流触发电路:
如图2是一个电视机常用的过压保护电路,当E+电压过高时A点电压也变高,当它高于稳压管DZ的稳压值时DZ道通,可控硅D受触发而道通将E+短路,使保险丝RJ熔断,从而起到过压保护的作用。

2、相位触发电路:
相位触发电路实际上是交流触发电路的一种,如图3,这个电路的方法是利用RC回路控制触发信号的相位。

当R值较少时,RC时间常数较少,触发信号的相移A1较少,因此负载获得较大的电功率;当R值较大时,RC时间常数较大,触发信号的相移A2较大,因此负载获得较少的电功率。

这个典型的电功率无级调整电路在日常生活中有很多电气产品中都应用它。

可控硅主要参数有:
1、额定通态平均电流
在一定条件下,阳极---阴极间可以连续通过的50赫兹正弦半波电流的平均值。

2、正向阻断峰值电压
在控制极开路未加触发信号,阳极正向电压还未超过导能电压时,可以重复加在可控硅两端的正向峰值电压。

可控硅承受的正向电压峰值,不能超过手册给出的这个参数值。

3、反向阴断峰值电压
当可控硅加反向电压,处于反向关断状态时,可以重复加在可控硅两端的反向峰值电压。

使用时,不能超过手册给出的这个参数值。

4、控制极触发电流
在规定的环境温度下,阳极---阴极间加一定电压,使可控硅从关断状态转为导通状态所需要的最小控制极电流和电压。

5、维持电流
在规定温度下,控制极断路,维持可控硅导通所必需的最小阳极正向电流。

采用可控硅技术对照明系统进行控制具有:电压调节速度快,精度高,可分时段实时调整,有稳压作用,采用电子元件,相对来说体积小、重量轻、成本低。

但该调压方式存在一致命缺陷,由于斩波,使电压无法实现正弦波输出,还会出现大量谐波,形成对电网系统谐波污染,危害极大,不能用在有电容补偿电路中。

(现代照明设计要求规定,照明系统中功率因数必须达到0.9以上,而气体放电灯的功率因数在一般在0.5以下,所以都设计用电容补偿功率因数)在国外发达国家,已有明文规定对电气设备谐波含量的限制,在国内,北京、上海、广州等大城市,已对谐波含量超标的设备限制并入电网使用。

采用可控硅技术对照明系统进行照度控制时,可通过加装滤波设备来有效降低谐波污染。

近年来,许多新型可控硅元件相继问世,如适于高频应用的快速可控硅,可以用正或负的触发信号控制两个方向导通的双向可控硅,可以用正触发信号使其导通,用负触发信号使其关断的可控硅等等。

应用介绍------可控硅在调光器中的应用:
可控硅调光器是目前舞台照明、环境照明领域的主流设备。

在照明系统中使用的各种调光器实质上就是一个交流调压器,老式的变压器和变阻器调光是采用调节电压或电流的幅度来实现的,如下图所示。

u1是未经调压的220V交流电的波形,经调压后的电压波形为u2,由于其幅度小于u1,使灯光变暗。

在这种调光模式中,虽然改变了正弦交流电的幅值,但并未改变其正弦波形的本质。

与变压器、电阻器相比,可控硅调光器有着完全不同的调光机理,它是采用相位控制方法来实现调压或调光的。

对于普通反向阻断型可控硅,其闸流特性表现为当可控硅加上正向阳极电压的同时又加上适当的正向控制电压时,可控硅就导通;这一导通即使在撤去门极控制电压后仍将维持,一直到加上反向阳极电压或阳极电流小于可控硅自身的维持电流后才关断。

普通的可控硅调光器就是利用可控硅的这一特性实现前沿触发相控调压的。

在正弦波交
流电过零后的某一时刻t1(或某一相位角wt1),在可控硅控制极上加一触发脉冲,使可控硅导通,根据前面介绍过的可控硅开关特性,这一导通将维持到正弦波正半周结束。

因此在正弦波的正半周(即0~p区间)中,0~wt1范围可控硅不导通,这一范围称为控制角,常用a表示;而在wt1~p间可控硅导通,这一范围称为导通角,常用j表示。

同理在正弦波交流电的负半周,对处于反向联接的另一个可控硅(对两个单向可控硅反并联或双向可控硅而言)在t2时刻(即相位角wt2)施加触发脉冲,使其导通。

如此周而复始,对正弦波每半个周期控制其导通,获得相同的导通角。

如改变触发脉冲的施加时间(或相位),即改变了导通角j(或控制角a)的大小。

导通角越大调光器输出的电压越高,灯就越亮。

从上述可控硅调光原理可知,调光器输出的电压波形已经不再是正弦波了,除非调光器处在全导通状态,即导通角为180°(或p)。

正是由于正弦波被切割、波形遭受破坏,会给电网带来干扰等问题……
好的调光设备应采取必要措施,努力降低使用可控硅技术后产生的干扰。

相关文档
最新文档