2018高考物理押题 第12提 磁偏转与电偏转
磁偏转与电偏转问题在高考中的再现
e : 了 i R+  ̄ / R 一 .
3
2 0 1 3年 第 1 期
联立( 2 ) ( 3 ) ( 4 ) 式得 r = /R.
河北 理科教 学研 究
( 5 )
考试指 导
以 表 示 电场 强 度 尸 的大小 , 口表 示 粒 子在 电 场 中加 速 度 的大 小 , t 表
再 考虑粒 子 在 电 场 中 的运 动 , 设 电场 强 度 的大 小 为 , 粒 子 在 电 场 中做 类 平 抛 运
示 粒 子 在 电 场 中 由 P 点 运动到 Q 点 经 过 的时 间 , 则有
q E m a・
1
动, 设其加速度大小为 a , 由牛顿第二定律和 带 电粒 子在 电场 中的受 力公 式得
由以上各式 , 得 E:
( 6 )
( 2 ) 因粒子在 磁 场 中由 P点运 动到 p 点
1 1 1 2 4 题2 2 分) 空间中存 l
在 方 向垂直 于 纸 面 向里 的 匀强磁场 , 磁 感 应 强 度 为 带 电 量 为 +q , 质 量 为 m 的粒 子 , 在 P点 以某
与 C和 d点 , 由几 何 关 系 知, 线段a c , b e 和过 a , b两 点 的轨 迹 圆 弧 的两 条 半径 ( 未画 出) 围成一 正方形 ,
因此 a c=b c=r . ( 2 ) 图2
在磁 偏 转 中 , 变 化的 厂 洛 使 粒 子 做 匀 速 圆周运 动 , 其运 动规 律分 别从 周期 、 半径 两 个
. .
在 电偏 转 中 , 质 量 为 m, 电 荷 量 为 q的 粒 子 以速度 垂 直 射 人 电场 强 度 为 E 的匀
域, 若磁 感应强 度 的大小 为 , 不 计 重力 , 求 电场 强 图1 度 的大小 . 解析 : 粒子 在磁 场 中做 圆周 运动 , 设 圆周 的半径 为 r , 由牛 顿 第 二 定 律 和 洛 仑 兹 力 公
2018年高考物理夺冠金卷12(含答案详细解析)
2018年高考物理夺冠金卷121.伽利略是意大利伟大的科学家,他奠定了现代科学的基础,他的思想方法的核心是把实验和逻辑推理(包括数学推演)和谐的结合起来,根据此种方法伽利略发现的规律有A.质量是物体惯性大小的量度B.惯性定律C.自由落体运动是一种匀变速运动D.重的物体比轻的物体下落的快2.如图所示,是电阻R的I-U图象,图中α=45°,由此得出A.电阻R=0.5 ΩB.电阻R=2.0 ΩC.因I-U图象的斜率表示电阻的倒数,故RD.在R两端加上6.0 V的电压时,每秒通过电阻横截面的电荷量是2.0C3.小赵同学在研究某物体运动时,正确的画出了下面左图的运动轨迹图象,经判断轨迹为二次函数图像。
已知该物体在某方向做匀速直线运动,则下列关于物体可能的运动情况描述(图线),正确的是A. B. C. D.4.如图所示,质量为M的框架放在水平地面上,一轻质弹簧上端固定在框架上,下端拴一质量为m的小球,将小球向下拉动一段距离后释放,在小球向上运动的过程中,框架恰好没有跳起。
则下列说法正确的是A. 框架、弹簧、小球构成的系统始终处于平衡状态B. 当弹簧处于原长时,小球速度最大C. 只有弹力和重力做功,小球机械能守恒D.5.如图所示为一种变压器的实物图,根据其铭牌上所提供的信息,以下判断正确的是A. 这是一个升压变压器B. 原线圈的匝数比副线圈的匝数多C. 当原线圈输入交流电压220 V时,副线圈输出直流电压12 VD. 当原线圈输入交流电压220 V、副线圈接负载时,副线圈中电流比原线圈中电流小6.关于下列四幅图的说法正确的是()A. 甲图中A处能观察到大量的闪光点,B处能看到较多的闪光点,C处观察不到闪光点B. 丁图中1为α射线,它的电离作用很强可消除静电C. 乙图中处于基态的氢原子能吸收能量为10.4eV的光子而发生跃迁D. 丙图中用弧光灯照射原来就带电的锌板时,发现验电器的张角变大,说明锌板原来带负电7.如图所示,重球用细绳跨过轻小光滑滑轮与小球相连,细绳处于水平拉直状态。
2018全国Ⅰ卷高考压轴卷 理综物理(原卷版)
2018全国I卷高考压轴卷理科综合物理测试1. 三颗人造地球卫星A、B、C绕地球做匀速圆周运动,如图所示,已知m A=m B<m C,则对于三个卫星,下列说法错误的是......A. 运行线速度关系为v A>v B=v CB. 机械能关系为E A<E B<E CC. 已知万有引力常量G,现测得卫星A的周期T A和轨道半径r A可求得地球的平均密度D. 半径与周期的关系为2. 一正三角形导线框ABC(高度为a)从图示位置沿x轴正向匀速穿过两匀强磁场区域.两磁场区域磁感应强度大小均为B、方向相反、垂直于平面、宽度均为a.图乙反映感应电流I与线框移动距离x的关系,以逆时针方向为电流的正方向.图象正确的是()A. B. C. D.3. 如图所示,有一圆筒形绝热容器,用绝热且具有一定质量的活塞密封一定量的理想气体,不计活塞与容器之间的摩擦.开始时容器直立在水平桌面上,容器内气体处于状态a,然后将容器缓慢平放在桌面上,稳定后气体处于状态b.下列说法正确的是()A. 与a态相比,b态气体分子间作用力较小B. 与a态相比,b态气体的温度较低C. a、b两态的气体分子对活塞的压力相等D. a、b两态的气体分子在单位时间内撞击活塞的个数相等4. 在光电效应实验中,先后用频率相同但光强不同的两束光照射同一个光电管.若实验a中的光强大于实验b中的光强,实验所得光电流I与光电管两端所加电压U间的关系曲线分别以a、b表示,则下列图中可能正确的是()A. B. C. D.5. 下列说法中正确的是()A. 放射性元素的半衰期随温度和压强的变化而变化B. β衰变所释放的电子是原子核内的中子转化成质子时产生的C. 原子核在人工转变过程中,电荷数可能不守恒D. 比结合能越大表示原子核中核子结合得越松散,原子核越不稳定6. 如图为两列简谐横波t=0时刻的波形图,a沿x轴正方向传播,b沿x轴负方向传播,波速都是10m/s.下列说法正确的是(____)A.横波a的周期为0.4sB.x=2m处质点的振幅为1cmC.t=0时,x=1m处质点的位移为﹣1cmD.t=0时,x=1m处的质点向y轴负方向振动E.t=2.3s时,x=2m处的质点位移为﹣3cm7. 如图所示,为三个有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向外、向里和向外,磁场宽度均为L,在磁场区域的左侧边界处,有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直,现用外力F使线框以速度v匀速穿过磁场区域,以初始位置为计时起点,规定电流沿逆时针方向时的电动势E为正,外力F向右为正.则以下能反映感应电动势E和外力F随时间变化规律的图象是()A. B.C. D.8. 下列说法中正确的是(____)A.无论技术怎样改进,热机的效率都不能达到100%B.露珠呈球状是由于液体表面张力的作用C.能量耗散从能量转化的角度反映出自然界中的宏观过程具有方向性D.已知阿伏加德罗常数、某种气体的摩尔质量和密度,可以估算该种气体分子体积的大小E. “油膜法估测分子的大小”实验中,用一滴油酸酒精溶液的体积与浅盘中油膜面积的比值可估测油酸分子的直径9. 物理小组在一次探究活动中测量滑块与木板之间的动摩擦因数.实验装置如图甲所示,一表面粗糙的木板固定在水平桌面上,一端装有定滑轮:木板上有一滑块,其一端与穿过电磁打点计时器的纸带相连,另一端通过跨过定滑轮的细线与托盘连接.打点计时器使用的交流电源的频率为50HZ.开始实验时,在托盘中放入适量砝码,滑块开始做匀加速运动,在纸带上打出一系列点.(1)图乙给出的是实验中获取的一条纸带的一部分:0、1、2、3、4、5、6、7是计数点,每相邻两计数点间还有4个计时点(图中未标出),计数点间的距离如图所示.根据图中数据计算的加速度a=_____m/s2(保留两位有效数字).(2)为了测量动摩擦因数,下列物理量中还应测量的是_____.A.木板的长度LB.木板的质量m1C.滑块的质量m2D.托盘和砝码的总质量m3E.滑块运动的时间t(3)滑块与木板间的动摩擦因数μ=_______(用被测物理量的字母表示,重力加速度为g)10. 硅光电池是一种可将光能转换为电能的器件.某同学用左所示电路探究硅光电池的路端电压U与总电流I的关系.图中R0为已知定值电阻,电压表视为理想电压表.(1)请根据题电路图,用笔画线代替导线将图中的实验器材连接成实验电路.(2)若电压表V2的读数为U0,则I=____.(3)实验一:用一定强度的光照射硅光电池,调节滑动变阻器,通过测量得到该电池的U﹣I 曲线a,如图.由此可知电池内阻_____(填“是”或“不是”)常数,短路电流为______mA,电动势为____V.(4)实验二:减小实验一中光的强度,重复实验,测得U﹣I曲线b,如图.当滑动变阻器的电阻为某值时,若实验一中的路端电压为1.5V.则实验二中外电路消耗的电功率为___mW(计算结果保留两位有效数字).11. 如图所示,半径为L1=2m的金属圆环内上、下半圆各有垂直圆环平面的有界匀强磁场,磁感应强度大小均为B1=T.长度也为L1、电阻为R的金属杆ab,一端处于圆环中心,另一端恰好搭接在金属环上,绕着a端沿逆时针方向匀速转动,角速度为ω=rad/s.通过导线将金属杆的a端和金属环连接到图示的电路中(连接a端的导线与圆环不接触,图中的定值电阻R1=R,滑片P位于R2的正中央,R2的总阻值为4R),图中的平行板长度为L2=2m,宽度为d=2m.图示位置为计时起点,在平行板左边缘中央处刚好有一带电粒子以初速度v0=0.5m/s向右运动,并恰好能从平行板的右边缘飞出,之后进入到有界匀强磁场中,其磁感应强度大小为B2,左边界为图中的虚线位置,右侧及上下范围均足够大.(忽略金属杆与圆环的接触电阻、圆环电阻及导线电阻,忽略电容器的充放电时间,忽略带电粒子在磁场中运动时的电磁辐射的影响,不计平行金属板两端的边缘效应及带电粒子的重力和空气阻力)求:(1)在0~4s内,平行板间的电势差U MN;(2)带电粒子飞出电场时的速度;(3)在上述前提下若粒子离开磁场后不会第二次进入电场,则磁感应强度B2应满足的条件.12. 如图所示,一质量为m的小球C用轻绳悬挂在O点,小球下方有一质量为2m的平板车B静止在光滑水平地面上,小球的位置比车板略高,一质量为m的物块A以大小为v0的初速度向左滑上平板车,此时A、C 间的距离为d,一段时间后,物块A与小球C发生碰撞,碰撞时两者的速度互换,且碰撞时间极短,已知物块与平板车间的动摩擦因数为μ,重力加速度为g,若A碰C之前物块与平板车已达共同速度,求:(1)A、C间的距离d与v0之间满足的关系式;(2)要使碰后小球C能绕O点做完整的圆周运动,轻绳的长度l应满足什么条件?13. 如图所示,两端开口、粗细均匀的长直U形玻璃管内由两段水银柱封闭着长度为15cm的空气柱,气体温度为300K时,空气柱在U形管的左侧.(i)若保持气体的温度不变,从左侧开口处缓慢地注入25cm长的水银柱,管内的空气柱长为多少?(ii)为了使空气柱的长度恢复到15cm,且回到原位置,可以向U形管内再注入一些水银,并改变气体的温度,应从哪一侧注入长度为多少的水银柱?气体的温度变为多少?(大气压强P0=75cmHg,图中标注的长度单位均为cm)14. 一公园的湖面上修建了一个伸向水面的观景平台,如图所示为其竖直截面图,水平湖底上的P点位于观景平台右侧边缘正下方,观景平台下表面距湖底的高度为H=4m,在距观景平台右侧边缘正前方d=4m处有垂直湖面足够大的宣传布幕.在P点左侧l=3m处湖底上的Q点安装有一单色光光源(可视为点光源).已知水对该单色光的折射率n=,当水面与观景平台的下表面齐平时,只考虑在图中截面内传播的光,求:Ⅰ.该光源发出的光照射到布幕上的最高点距水面的高度h;Ⅱ.该光源发出的光能射出水面的最远位置距观景平台右侧的最远距离s.。
电子束的电偏转和磁偏转
张冉冉 2011021606电子束的电偏转和磁偏转● 实验目的:1.掌握电子束在外加电场和磁场作用下的偏转的原理和方式。
2.观察电子束的电偏转和磁偏转现象,测定电偏转灵敏度、磁偏转灵敏度、截止栅偏压。
● 实验原理: 1. 电偏转的观测电子束电偏转原理图如图(1)所示。
当加速后的电子以速度V 沿X 方向进入电场时,将受到电场力作用,作加速运动,电子穿出磁场后,则做匀速直线运动,最后打在荧光屏上。
其电偏转的距离D 与偏转电压V ,加速电压A V及示波管结构有关。
图(1)电子束电偏转原理为了反应电偏转的灵敏程度,定义 e D Vδ=(1)e δ称为电偏转灵敏度,用mm/V 为单位。
e δ越大,电偏转的灵敏度越高。
实验中D 从荧光屏上读出,记下V ,就可验证D 与V 的线性关系。
2.磁偏转原理电子束磁偏转原理如图(2)所示。
当加速后的电子以速度V 沿X 方向垂直射入磁场时,将会受到洛伦磁力作用,在均匀磁场B 内作匀速圆周运动,电子穿出磁场后,则做匀速直线运动,最后打在荧光屏上。
为了反映磁偏转的灵敏程度,定义m S lI δ= (2)m δ称为磁偏转灵敏,用mm/A 为单位。
m δ越大,表示磁偏转系统灵敏度越高。
实验中S 从荧屏上读出,测出I ,就可验证S 与I 的线性关系。
3.截止栅偏压原理示波管的电子束流通常通过调节负栅压GK U 来控制的,调节GK U 即调节“辉度调节”电位器,可调节荧光屏上光点的辉度。
GK U 是一个负电压,通常在-35~45之间。
负栅压越大,电子束电流越小,光点的辉度越暗。
使电子束流截止的负栅压0G K U 称为截止栅偏压。
图2磁偏转原●实验仪器:TH-EB型电子束实验仪,示波管组件,0~30V可调直流电源,多用表●实验步骤:1.准备工作。
2.电偏转灵敏度的测定。
3.磁偏转灵敏度的测定。
4.测定截止栅偏压。
●数据记录及实验数据处理:1.电偏转(800v=伏)A垂直电偏转灵敏度D-V曲线:电偏转(1000V=伏)A垂直电偏转:2. 2.磁偏转(800v=伏)磁场励磁线圈电阻R=210欧姆A磁偏转(1000v=伏)A注:偏移量D或S等于加电压时的光点坐标与0伏电压的光点坐标的差值。
2018年高考物理精准押题卷01(全国II卷)试卷+答案
2018 年高考精确押题卷01(全国 II卷)物理一、选择题: 14-18 题只有一项切合要求,19-21 题有多项切合题目要求。
14.如图甲所示是研究光电效应实验规律的电路。
当用强度必定的黄光照耀到光电管上时,测得电流表的示数随电压变化的图象如图乙所示。
以下说法正确的选项是()A.若改用红光照耀光电管,必定不会发生光电效应B.若照耀的黄光越强,饱和光电流将越大C.若用频次更高的光照耀光电管,则光电管中金属的逸出功增大D.若改用蓝光照耀光电管,图象与横轴交点在黄光照耀时的右边15. 以下图 , 在某游玩节目中, 选手需要借助悬挂在高处的绳索飞越对面的高台上。
一质量m的选手脚穿轮滑鞋以 v0的水平速度在水平川面M上抓住竖直的绳开始摇动, 选手可看作质点, 绳索的悬挂点到选手的距离L, 当绳摆到与竖直方向夹角θ 时,选手松开绳索, 选手松开绳索后持续运动到最高点时, 恰巧能够水平运动到水平传递带 A 点 , 不考虑空气阻力和绳的质量, 取重力加快度g. 以下说法中正确的选项是()A.选手摇动过程中机械能不守恒,松手后机械能守恒B. 选手松手时速度大小为v02 2 glC. 能够求出水平传递带A点相对水平面M的高度D. 不可以求出选手抵达水平传递带A点时速度大小16.以下图,用绳经过定滑轮牵引物块,使物块在水平面上从图示地点开始沿地面做匀速直线运动,若物块与地面间的动摩擦因数μ< 1,滑轮的质量及摩擦不计,则在物块运动过程中,以下判断中不正确的选项是 ( ).A.绳索拉力将保持不变B.绳索拉力将不停增大C.地面对物块的摩擦力不停减小D.物块对地面的压力不停减小17 据报导 , 美国国家航空航天局(NASA)初次在太阳系外发现“类地”行星Kepler - 186f. 若宇航员乘坐宇宙飞船抵达该行星, 进行科学观察:该行星自转周期为T; 宇航员在该行星“北极”距该行星地面邻近h 处自由开释一个小球 ( 引力视为恒力 ), 落地时间为t. 已知该行星半径为R,万有引力常量为G,则以下说法正确的选项是()A. 该行星的第一宇宙速度为2hR tB. 该行星的均匀密度为h2G Rt 23C. 假如该行星存在一颗同步卫星hT 2 R 2 , 其距行星表面高度为2t 22D. 宇宙飞船绕该星球做圆周运动的周期小于t 2Rh18. 动力小车沿倾角为α的斜面匀加快向下运动,小车支架上细线拉着一个小球,球与小车相对静止时,细线恰巧成水平,则以下选项正确的选项是()A 小车的加快度a =g/sin θ B. 小车的加快度为 a =gctnθC. 小车受的摩擦力为f=mg(sin θ +sin θ )D.小车所受的摩擦力与小球的牵引力相等19. 真空中有一竖直向上的匀强电场, 其场强盛小为 , 电场中的 A.B 两点固定着两个等量异号点电荷 + 、EQ- Q , A 、 B 两点的连线水平 , O 为其连线的中点 , c 、d 是两点电荷连线垂直均分钱上的两点 , Oc =Od , a 、 b 两点在两点电荷的连线上 , 且 = . 以下判断正确的选项是 ()Oa ObA. a 、 b 两点的电场强度同样B.c 点的电势比d 点的电势低C. 将电子从 a 点移到 c 点的过程中,电场力对电子做负功D. 将电子从 a 点移到 b 点时其电势能减小20. 以下图 , 虚线所围矩形地区 abcd 内充满磁感觉强度为 B. 方向垂直纸面向里的匀强磁场 ( 矩形边线上无磁场 ). 现从 ad 边的中点 O 处, 某一粒子以大小为 v 的速度垂直于磁场射入、方向与ad 边夹角为 45° 时 , 其轨迹恰巧与 ab 边相切。
热门考点09 带电粒子在磁场中的偏转问题-2018高考物理15大热门考点押题预测(原卷版)
带电粒子在磁场中的偏转问题一、内容概述带电粒子在磁场中受到洛伦兹力作用,由于洛伦兹力时刻与运动方向垂直,所以洛伦兹力不做功,粒子在洛伦兹力的作用下做圆周运动,对于粒子的运动一般建议按以下步骤做题:一画轨迹;二找圆心;三算半径其中算半径比较难一点,需要利用到几何关系比较常用的是勾股定理;三角形;以及正余玄函数来解。
由于磁场有边界,导致粒子运动的临界性,所以要挖掘出题中的临界条件,一般临界都出现在相切;最大;最小;刚好不出磁场这些词语中,要理解这些词语所代表的物理含义。
此类题的分析思路(1)圆心的确定带电粒子垂直进入磁场后,一定做圆周运动,其速度方向一定沿圆周的切线方向,因此圆心的位置必是两速度方向垂线的交点或某一速度方向的垂线与圆周上两点连线中垂线的交点,如图所示.(2)运动半径大小的确定一般先作入射点、出射点对应的半径,并作出相应的辅助三角形,然后利用三角函数求解出半径的大小.(3)运动时间的确定首先利用周期公式T =2πm qB ,求出运动周期T ,然后求出粒子运动的圆弧所对应的圆心角θ,其运动时间t =θ2πT.(4)圆心角的确定①带电粒子射出磁场的速度方向与射入磁场的速度方向间的夹角φ叫偏向角.偏向角等于圆心角即φ=α,如右图.②某段圆弧所对应的圆心角是这段圆弧弦切角的二倍,即α=2θ.二、典例分析:根据运动求半径典例1:如图所示,质量均为m,电荷量大小均为q的正、负离子均从磁场边界上的一点A以初速度v0射入到磁场中射入速度与磁场边界夹角为30°,然后分别从边界上的B点和C点射出,已知磁感应强度大小为B,方向垂直纸面向里,正、负离子重力不计.求:(1)AB、AC的长度;(2)正、负离子在磁场中运动时间之比.带电粒子在直边边界上的临界典例1、如图所示,在边长为2a的正三角形区域内存在方向垂直于纸面向里的匀强磁场,一个质量为m、电荷量为-q的带电粒子(重力不计)从AB边的中点O以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB边的夹角为60°,若要使粒子能从AC边穿出磁场,则匀强磁场磁感应强度B的大小需满足()A. B>B. B<C. B>D. B<典例2:(多选)如图所示,有一垂直于纸面向外的有界匀强磁场,磁场的磁感应强度为B,其边界为一边长为L的正三角形(边界上有磁场),A、B、C为三角形的三个顶点.今有一质量为m、电荷量为+q的粒子(不计重力),以速度v=从AB边上的某点P以既垂直于AB边又垂直于磁场的方向射入磁场,然后从BC边上某点Q射出.则()A.PB≤L B.PB≤LC.QB≤L D.QB≤L沿着半径进入圆形磁场典例1:如图所示为一圆形区域的匀强磁场,在O点处有一放射源,沿半径方向射出速率为v的不同带电粒子,其中带电粒子1从A点飞出磁场,带电粒子2从B点飞出磁场,不考虑带电粒子的重力,则()A.带电粒子1的比荷与带电粒子2的比荷之比为3∶1B.带电粒子1的比荷与带电粒子2的比荷之比为∶1C.带电粒子1与带电粒子2在磁场中运动时间之比为2∶1D.带电粒子1与带电粒子2在磁场中运动时间之比为1∶2典例2:(多选)如图所示,以O为圆心、MN为直径的圆的左半部分内有垂直纸面向里的匀强磁场,三个不计重力、质量相同、带电量相同的带正电粒子a、b和c以相同的速率分别沿aO、bO和cO方向垂直于磁场射入磁场区域,已知bO垂直MN,aO、cO和bO的夹角都为30°,a、b、c三个粒子从射入磁场到射出磁场所用时间分别为ta、tb、tc,则下列给出的时间关系可能正确的是()A. ta<tb<tc B. ta>tb>tcC. ta=tb<tc D. ta=tb=tc沿着任意方向进圆形磁场典例1、(多选)在直角坐标系xOy平面内有一磁场边界圆,半径为R,圆心在坐标原点O,圆内充满垂直该平面的匀强磁场,紧靠圆的右侧固定放置与y轴平行的弹性挡板,如图所示.一个不计重力的带电粒子以速度v0从A点沿负y方向进入圆内,刚好能垂直打在挡板B点上,若该粒子在A点速度v0向右偏离y轴60°角进入圆内,粒子与档板相碰时间极短且无动能损失,则该粒子()A.在B点上方与挡板第二次相碰B.经过时间第二次射出边界圆C.第二次与挡板相碰时速度方向与挡板成60°角D.经过时间第二次与挡板相碰典例2:(多选)如图所示,在半径为R的圆形区域内,有匀强磁场,磁感应强度为B,方向垂直于圆平面(未画出).一群比荷为的负离子体以相同速率v0(较大),由P点在圆平面内向不同方向射入磁场中,发生偏转后,又飞出磁场,则下列说法正确的是(不计重力)()A.离子飞出磁场时的动能一定相等B . 离子在磁场中运动半径一定相等C . 由Q 点飞出的离子在磁场中运动的时间最长D . 沿PQ 方向射入的离子飞出时偏转角最大三、总结归纳洛伦兹力作用下的圆周运动1.半径及周期质量为m 、带电荷量为q 、速率为v 的带电粒子,在磁感应强度为B 的匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,即qvB =mv2r ,可得半径公式r =mv qB ,再由T =2πr v 得周期公式T =2πm qB .2运动半径大小的确定一般先作入射点、出射点对应的半径,并作出相应的辅助三角形,然后利用三角函数求解出半径的大小.3运动时间的确定首先利用周期公式T =2πm qB ,求出运动周期T ,然后求出粒子运动的圆弧所对应的圆心角θ,其运动时间t =θ2πT.四、强化训练:1、在如图所示的虚线MN 上方存在着磁感应强度为B 的匀强磁场,磁场方向垂直纸面向外,纸面上有一直角三角形OPQ ,∠θ=90°,∠QOP =30°,两带电粒子a 、b 分别从O 、P 两点垂直于MN 同时射入磁场,恰好在Q 点相遇,则由此可知( )A . 带电粒子a 的速度一定比b 大B . 带电粒子a 的比荷一定比b 大C . 带电粒子a 的运动周期一定比b 大D . 带电粒子a 的轨道半径一定比b 大2、(多选)如图所示,第一象限内存在垂直纸面向里的匀强磁场,电荷量相等的a 、b 两粒子,分别从A 、O 两点沿x 轴正方向同时射入磁场,两粒子同时到达C 点,此时a 粒子速度恰好沿y 轴负方向,粒子间作用力、重力忽略不计,则a 、b 粒子( )A.分别带正、负电B.运动周期之比为2∶3C.半径之比为∶2D.质量之比为2∶3、(多选)在一个边界为等边三角形的区域内,存在一个方向垂直于纸面向里的匀强磁场,在磁场边界上的P点处有一个粒子源,发出比荷相同的三个粒子a、b、c(不计重力)沿同一方向进入磁场,三个粒子通过磁场的轨迹如图所示,用ta、tb、tc分别表示a、b、c通过磁场的时间,用ra、rb、rc分别表示a、b、c 在磁场中的运动半径,则下列判断正确的是()A. ta=tb>tc B. tc>tb>taC. rc>rb>ra D. rb>ra>rc4、如图所示,正三角形ABC边长2L,三角形内存在垂直纸面的匀强磁场,磁感应强度为B.从AB 边中点P垂直AB向磁场内发射一带电粒子,粒子速率为,该粒子刚好从BC边中点Q射出磁场.(1)求粒子的比荷;(2)若从P向磁场内各方向以相同速率发射同样粒子,求AC边上有粒子到达的区域长度s.5.如图所示为一金属筒的横截面,该圆筒的半径为R,内有匀强磁场,方向为垂直纸面向里,磁感强度为B,在相互平行的金属板AA′和CC′之间有匀强电场,一个质量为m(重力不计),带电量为q的电荷,在电场力的作用下,沿图示轨迹从P点无初速运动经电场加速进入圆筒内,在筒中它的速度方向偏转了60°,求:(1)该粒子带何种电荷?(2)粒子在筒内运动的时间.(3)两金属板间的加速电压.6.如图所示,在半径为R=的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度为B,圆形区域右侧有一竖直感光板MN,在圆顶点P处有一速率为v0的带正电的粒子平行于纸面进入磁场,已知粒子的质量为m,电荷量为q,粒子的重力不计.(1)若粒子对准圆心射入,求它在磁场中运动的时间;(2)若粒子对准圆心射入,且速率为v0,求它打到感光板MN上时速度的垂直分量7.一圆筒处于磁感应强度大小为B的匀强磁场中,磁场方向与筒的轴平行,筒的横截面如图所示.图中直径MN的两端分别开有小孔,筒绕其中心轴以角速度ω顺时针转动.在该截面内,一带电粒子从小孔M 射入筒内,射入时的运动方向与MN成30°角.当筒转过90°时,该粒子恰好从小孔N飞出圆筒.不计重力.若粒子在筒内未与筒壁发生碰撞,则带电粒子的比荷为()A.B.C.D.。
高中物理:磁偏转问题的特点与基本类型
垂直磁场方向进入有边界的匀强磁场区域的带电粒子,若只受洛伦兹力作用,它在磁场中做不足一个圆周的运动后,将离开磁场区域,出射速度的方向将发生偏转。
这就是磁偏转问题。
一、磁偏转运动的特点1.粒子的速度大小不变。
这是由于粒子在磁场中运动时的洛伦兹力提供向心力,粒子做匀速圆周运动。
2.粒子的入射速度方向、出射速度方向关于连接入、出射点的弦对称.即入射速度方向、出射速度方向与连接入、出射点的弦的夹角相等。
这与匀强磁场的边界是直线、曲线、折线无关。
由于粒子从进入到离开磁场,做圆周运动,它在入、出射点的速度方向垂直于轨迹圆在该点的切线方向。
因此,入射速度方向与连接这两点的弦的夹角是圆弧在该点的切线与圆弧所对弦形成的弦切角,出射速度方向与该弦的夹角是圆弧在该点的切线与弦形成的弦切角的对顶角,由几何关系可知,这两个弦切角都等于圆弧所对的圆心角之半,如图1所示。
3.粒子运动的偏转角等于入射速度方向与入、出射点连线(弦)夹角的2倍。
也就是说,无论磁场的边界是直线还是曲线,粒子运动偏转角只由入射速度方向决定。
图1中,设离子从A点射入磁场,从B点离开磁场,图中的实线圆弧,就是粒子在磁场中偏转的轨迹,θ角就是表示入射或出射速度方向的弦切角,α就是偏转角由几何关系可知。
4.轨迹圆弧所对应的弦的长度,由入射方向及圆弧的半径决定。
如图1所示,设圆弧半径为r,由几何关系可知,圆弧所对弦的长度AB与半径r的关系为:或。
因此,知道粒子的入射方向或偏转角和粒子轨迹的半径,可求出、入射点间的距离;若知道粒子的入射方向或偏转角及出、入射点间的距离,可求出粒子轨迹的半径。
5.轨迹半径由粒子的质量、电量及速度大小、磁场的磁感应强度共同决定。
对于垂直入射匀强电场区域的粒子在磁场中的圆周运动,由洛伦兹力公式及牛顿第二定律有:,解得:。
由于常将粒子的电量与质量的比值称为粒子的比荷,因此,也可以说,粒子的轨迹半径是由粒子的比荷、运动速度和磁场的磁感应强度共同决定。
【精品试卷】2018年高考物理精准押题卷02(全国II卷)试卷+答案
2018年高考精准押题卷02(全国II卷)物理一、选择题:14-17题只有一项符合要求,18-21题有多项符合题目要求。
14.如图甲所示,为氢原子能级图,大量处于n=4激发态的氢原子向低能级跃迁时能辐射出多种不同频率的光,若从n=3能级向n=2能级跃迁时辐射的光照射到如图乙所示的光电管的阴极k时,电流表刚好开始有示数,则()A.从n=4能级向n=3能级跃迁时辐射的光一定能使阴极K发生光电效应B.从n=2能级向n=1能级跃迁时辐射的光,能使阴极k发生光电效应,且光电子的最大初动能为8.31evC.逸出功为4.54ev的钨能吸收两个从n=4能级向n=2能级跃迁时辐射的光子而发生光电效应D.入射光的强度增大,逸出光电子的最大初动能也增大15如图所示,AB杆以恒定的角速度绕A点转动,并带动套在水平杆OC上的小环M运动,运动开始时,AB杆在竖直位置,则小环M的加速度将()A逐渐增大B先减小后增大C先增大后减小D逐渐减小16有一个正电子以速度0v 沿平行于极板方向擦着AB 板飞入电容器内,电容器内场强方向为竖直向上,如图所示,若采用改变电容器内场强方向为竖直向下,其他条件不变,假设电子刚好穿过板AB 飞出电容器。
则电子飞跃电容器的时间及极板长正确的是( )A 0022,v L t v L T == B 02v L T =0)221(v L t -=C 0v L T =0)221(v L t -= D 0022,2v L t v L T ==17我国“探月工程”计划,在2018年6月发射嫦娥4号卫星,卫星由地面发射后进入地月转移轨道,经多次变轨进入圆形工作轨道Ⅲ,并将实现人类探月探测器在月球背面的首次软着陆,下列说法中正确的是( )A.卫星在轨道Ⅲ上运行的速度比月球的第一宇宙速度大B.卫星在轨道Ⅲ上经过p 的加速度比在轨道Ⅰ上经过p 点时小C.卫星在轨道Ⅲ上运行周期比在轨道Ⅰ上短D.卫星在轨道Ⅳ上的机械能比在轨道Ⅱ上大18质量为m 的物体可沿竖直轨道AB 上下运动,物体下滑达到的最低位置为h,弹簧劲度系数为k,物体由最低位置第一次弹回的高度为H 。
2018年高考押题-物理
押题1 【物理】【电容器基本概念和基本计算】 【20191高考押题】先将一平行板电容器两极板接在直流电源上,然后断开电源,并且将两极板间的距离减少一半,则( )A. 两极板间的电压减小为原来的14,极板间电场强度减小原来的12B. 两极板间的电压减小为原来的12,极板间电场强度不变 C. 两极板间的电压增大为原来的2倍,极板间电场强度不变D. 两极板间的电压增大为原来的4倍,极板间电场强度增大为原来的2倍 【答案】B 【解析】由4πr SC kdε=可知,当两极板间距离减少一半时,电容器的电容C 变为原来的2倍,因为电容器最后从直流电源上断开,故Q 不变,根据Q CU =可知,两极板间电压变为原来的一半。
再由UE d=可知,电场强度E 不变,故答案为B 点拨:本题考查了电容器的电容公式4πr SC kdε=和QC U=,以及匀强电场的一个公式UE d=,需要根据公式里变量的变换,找到相关物理量的变换,从而找出正确的选项。
押题2【物理】【带电粒子在电场中加速和在匀强磁场中做圆周运动的基本规律】 【20191高考押题】如图,一带电粒子从静止开始经过加速电场加速,进入一匀强磁场,做匀速圆周运动;现在将加速电场的电压、磁感应强度都增加为原来的4倍,那么同一带电粒子进入上述电场和磁场后,其在磁场中的轨迹半径变为原来的( )A. 12B. 1倍C.2倍D.4倍 【答案】A【解析】设质子的质量数和电荷数分别为,q m ,对于任意粒子,在加速电场中,由动能定理得:得v =① 在磁场中应满足 2v qvB m r=②由①②式联立求解得匀速圆周运动的半径r ,对于同一粒子,加速电场的电压、磁感应强度都增加为原来的4倍,则轨迹半径应变为原来的12故答案为A【点拨】本题考查了带电粒子在加速电场中的运动2102qU mv =-,在匀强磁场中的圆周运动2v qvB m r=,属于基本题型。
押题3【物理】【考查变压器的相关知识】 【20191高考押题】有一理想变压器,其中原副线圈匝数分别为12,n n ,,其中2n 匝数可以调动,先按照左图接法,121500,500n n ==,再按照右图接法,11500n =,1R 变为原来的2倍,预使两种接法的电流表读数相同,右图接法中2n 应为多少匝,(电流表为理想电表,交流电源输出的有效值稳定不变)( ) A. 750 B.2250C.3000D.4500【答案】B【解析】电路如左图所示时 根据变压器原副边电压关系:121n UU n =副副线圈中的电流: 121111U n UI R n R ==副电路如右图所示时根据变压器原副边电压关系: 212n UU n '=副副线圈中的电流:12121U n UI R n R =='副2要使两次电流表读数相同,则 2111212n U n Un R n R ='g 故212222502n n n '== 故答案为B【点拨】本题考查了理想变压器中原副线圈的电压关系,在做本题时,要分清两种情况下哪边是原线圈,哪边是副线圈,属于基本题型。
全国高考2018届高三考前押题卷(十二)理综物理试卷
全国高考2018届高三考前押题卷(十二)理综物理试卷本试卷共26页,38题(含选考题)。
全卷满分300分。
考试用时150分钟。
★祝考试顺利★ 注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
二、选择题,本题共8小题,每小题6分,共48分。
在每小题给出的四个选项中,第14-18题只有一项符合题目要求。
第19-21题有多项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分。
14.伽利略在对自由落体运动的研究过程中,开创了如下框图所示的一套科学研究方法,其中方框2和4中的方法分别是()A.实验检验,数学推理B.数学推理,实验检验C.提出假设,实验检验D.实验检验,合理外推15.如图所示,“嫦娥三号”的环月轨道可近似看成是圆轨道,观察“嫦娥三号”在环月轨道上的运动,发现每经过时间t 通过的弧长为l ,该弧长对应的圆心角为θ弧度.已知万有引力常量为G ,则月球的质量是()A. tG l 32θB. tGl 23θC. 23t G l θD. 32l G t θ16.如右下图所示,质量均为m 的两个小球A 、B(可视为质点)固定在轻杆的两端,将其放入光滑的半球形碗中,杆的长度等于碗的半径,当杆与两球组成的系统处于平衡状态时,杆对小球A 的作用力大小为()A.33mg B.23mg c. 332mg D.2mg17.如图所示,两个垂直于纸面的匀强磁场方向相反,磁感应强度的大小均为B ,磁场区域的宽度均为a.高度为a 的正三角形导线框ABC 从图示位置沿x 轴正方向匀速穿过两磁场区域,以逆时针方向为电流的正方向,在下列图形中能正确描述感应电流I 与线框移动距离x 关系的是()18.一理想变压器原、副线圈的匝数比为44:1,原线圈输入电压的变化规律如图甲所示,副线圈所接电路如图乙所示,P 为滑动变阻器的触头,下列说法正确的是()A.副线圈输出电压的有效值为220VB.副线圈输出电压的频率为100HzC.P 向左移动时,变压器的输入功率增加D.P 向左移动时,变压器原、副圈的电流都减小19.目前,在居室装修中经常用到花岗岩、大理石等装饰材料,这些材料都不同程度地含有放射性元素,下列有关放射性元素的说法中正确的是()A. β射线与γ射线一样都是电磁波,但穿透本领远比γ射线弱B.氡的半衰期为3.8天,4个氡原子核经过7.6天后就一定只剩下1个氡原子核C.U 23592衰变成20682Pb 要经过8次α衰变和6次β衰变D.放射性元素发生β衰变时所释放的电子是原子核内的中子转化为质子时产生的20.测定电子的电荷量的实验装置示意图如右下图所示。
2018高考物理押题卷及详解
2018高考物理考前模拟卷河南省信阳高级中学陈庆威 2018.05.22一、选择题(1-4题单选,5-8题多选,共48分)1.下列说法中正确的是( )A.氢原子吸收一个光子跃迁到激发态后,在向低能级跃迁时放出光子的频率一定等于入射光子的频率B.234 90Th(钍)核衰变为234 91Pa(镤)核时,衰变前234 90Th核质量等于衰变后234 91Pa核与β粒子的总质量C.α粒子散射实验的结果证明原子核是由质子和中子组成的D.分别用X射线和绿光照射同一金属表面都能发生光电效应,则用X射线照射时光电子的最大初动能较大2.图1甲是一台小型发电机的构造示意图,线圈逆时针转动,产生的电动势e随时间t变化的正弦规律图象如图乙所示.发电机线圈的内阻不计,外接灯泡的电阻为12 Ω,则( )图1A.在t=0.01 s时刻,穿过线圈的磁通量为零B.电压表的示数为6 2 VC.灯泡消耗的电功率为3 WD.若其他条件不变,仅将线圈转速提高一倍,则线圈电动势的表达式e=122sin 100πt(V)3.入冬以来,雾霾天气频发,发生交通事故的概率比平常高出许多,保证雾霾中行车安全显得尤为重要;在雾天的平直公路上,甲、乙两汽车同向匀速行驶,乙在前,甲在后.某时刻两车司机听到警笛提示,同时开始刹车,结果两车刚好没有发生碰撞.图2所示为两车刹车后匀减速运动的v-t图象,以下分析正确的是( )图2A.甲刹车的加速度的大小为0.5 m/s 2B.两车刹车后间距一直在减小C.两车开始刹车时的距离为87.5 mD.两车都停下来后相距12.5 m4.在光滑水平面上,质量为m 的小球A 正以速度v 0匀速运动.某时刻小球A 与质量为3m 的静止小球B 发生正碰,两球相碰后,A 球的动能恰好变为原来的14.则碰后B 球的速度大小是( )A.v 02B.v 06C.v 02或v 06D.无法确定 5.已知某卫星在赤道上空轨道半径为r 1的圆形轨道上绕地运行的周期为T ,卫星运行方向与地球自转方向相同,赤道上某城市的人每三天恰好五次看到卫星掠过其正上方,假设某时刻,该卫星在A 点变轨进入椭圆轨道(如图3),近地点B 到地心距离为r 2.设卫星由A 到B 运动的时间为t ,地球自转周期为T 0,不计空气阻力,则( )图3A.T =38T 0B.t =(r 1+r 2)T 4r 1r 1+r 22r 1C.卫星在图中椭圆轨道由A 到B 时,机械能增大D.卫星由图中圆轨道进入椭圆轨道过程中,机械能不变6.(2017·河北石家庄二模)如图4所示,一带电小球自固定斜面顶端A 点以某速度水平抛出,落在斜面上B 点.现加上竖直向下的匀强电场,仍将小球自A 点以相同速度水平抛出,落在斜面上C 点.不计空气阻力,下列说法正确的是( )图4A.小球带正电B.小球所受电场力可能大于重力C.小球两次落在斜面上所用的时间不相等D.小球两次落在斜面上的速度大小相等7.如图5所示,在光滑绝缘的水平面上叠放着两个物块A 和B ,A 带负电、质量为m 、电荷量为q ,B 不带电、质量为2m ,A 和B 间的动摩擦因数为0.5.初始时A 、B 处于静止状态,现将大小为F =mg 的水平恒力作用在B 上,g 为重力加速度.A 、B 处于水平向里的磁场之中,磁感应强度大小为B 0.若A 、B 间的最大静摩擦力等于滑动摩擦力,物块B 足够长,则下列说法正确的是( )图5A.水平力作用瞬间,A 的加速度大小为g2B.A 做匀加速运动的时间为m qB 0C.A 的最大速度为mg qB 0D.B 的最大加速度为g8.(2017·三湘名校联盟三模)如图6甲所示,为测定物体冲上粗糙斜面能达到的最大位移x 与斜面倾角θ的关系,将某一物体每次以不变的初速率v 0沿足够长的斜面向上推出,调节斜面与水平方向的夹角θ,实验测得x 与斜面倾角θ的关系如图乙所示,g 取10 m/s 2,根据图象可求出( )图6A.物体的初速率v 0=3 m/sB.物体与斜面间的动摩擦因数μ=0.75C.取不同的倾角θ,物体在斜面上能达到的位移x 的最小值x min =1.44 mD.当θ=45°时,物体达到最大位移后将停在斜面上 二、实验题(共14分)9.(6分)在“探究弹力和弹簧伸长的关系”时,某同学把两根弹簧如图7甲连接起来进行探究.图7(1)某次测量如图乙所示,指针示数为________ cm.(2)在弹性限度内,将50 g的钩码逐个挂在弹簧下端,得到指针A、B的示数L A和L B如表.用表中数据计算弹簧Ⅰ的劲度系数为________ N/m(重力加速度g=10 m/s2).由表中数据________(填“能”或“不能”)计算出弹簧Ⅱ的劲度系数.10.(9分)实验室中准备了下列器材:A.待测干电池(电动势约为1.5 V,内阻约为1.0 Ω)B.电流表A1(满偏电流1.5 mA,内阻为10 Ω)C.电流表A2(量程0~0.60 A,内阻约为0.10 Ω)D.电压表V(量程0~15 V,内阻约为10 kΩ)E.滑动变阻器R1(0~20 Ω,2 A)F.滑动变阻器R0(0~100 Ω,1 A)G.电阻箱R3:最大阻值为999.9 Ω,允许通过的最大电流是0.6 AH.开关一个,导线若干(1)若要将电流表A1改装成量程为1.5 V的电压表,需给该电流表串联一个_______ Ω的电阻.(2)为了测量电池的电动势和内阻,小明按图8(a)设计好了测量的电路图,在图(a)中,甲是________,乙是__________.(填器材前面的序号)(3)为了能较为准确地进行测量和操作方便,图(a)所示的测量电路中,滑动变阻器应选________.(填器材前面的序号)(4)图(b)为小明根据图(a)的测量电路测得的实验数据作出的I1-I2图线(I1为电表乙的示数,I2为电表甲的示数),由该图线可得:被测干电池的电动势E=_______ V,内阻r=_______Ω.(均保留两位小数)图8三、计算题(共28分)11.(14分)(2017·重庆适应性测试)如图9所示,两个长度为L、质量为m的相同长方体形物块1和2叠放在一起,置于固定且正对的两光滑薄板间,薄板间距也为L,板底部有孔正好能让最底层的物块通过并能防止物块2翻倒,质量为m的钢球用长为R的轻绳悬挂在O 点.将钢球拉到与O点等高的位置A(拉直)静止释放,钢球沿圆弧摆到最低点时与物块1正碰后静止,物块1滑行一段距离s(s>2L)后停下.又将钢球拉回A点静止释放,撞击物块2后钢球又静止.物块2与物块1相碰后,两物块以共同速度滑行一段距离后停下.重力加速度为g,绳不可伸长,不计物块之间的摩擦,求:图9(1)物块与地面间的动摩擦因数;(2)两物块都停下时物块2滑行的总距离.12.(18分)(2018·河南九校质量测评)如图10所示,区域Ⅰ内有与水平方向成45°角的匀强电场E1,区域宽度为d1,区域Ⅱ内有正交的有界匀强磁场B和匀强电场E2,区域宽度为d2,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m、带电荷量为q的微粒在区域Ⅰ左边界的P点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q点穿出,其速度方向改变了60°,重力加速度为g,求:图10(1)区域Ⅰ和区域Ⅱ电场强度E1、E2的大小;(2)区域Ⅱ内磁感应强度B的大小;(3)微粒从P运动到Q的时间.选修3-3(15分)13.下列说法中正确的是( )A.布朗运动是指液体或气体中悬浮微粒的无规则运动B.气体的温度升高,每个气体分子运动的速率都增大C.一定量100 ℃的水变成100 ℃的水蒸气,其分子之间的势能增加D.只要能减弱气体分子热运动的剧烈程度,气体的温度就可以降低E.空调机作为制冷机使用时,将热量从温度较低的室内送到温度较高的室外,所以制冷机的工作不遵守热力学第二定律14.(9分)如图11所示,一细U型管两端开口,用两段水银柱封闭了一段空气柱在管的底部,初始状态时气体温度为280 K,管的各部分尺寸如图所示,图中封闭空气柱长度L1=20 cm.其余部分长度分别为L2=15 cm,L3=10 cm,h1=4 cm,h2=20 cm;现使气体温度缓慢升高,取大气压强为p0=76 cmHg,求:图11(1)气体温度升高到多少时右侧水银柱开始全部进入竖直管;(2)气体温度升高到多少时右侧水银柱与管口相平.选修3-4(15分)15.(2018·河南豫南九校质量测评)如图12所示是一玻璃球体,其半径为R,O为球心,AB 为水平直径,M点是玻璃球的最高点.来自B点的光线BD从D点射出,出射光线平行于AB,已知∠ABD=30°,光在真空中的传播速度为c,则( )图12A.此玻璃的折射率为 3B.光线从B 到D 需用时3RcC.若增大∠ABD ,光线不可能在DM 段发生全反射现象D.若减小∠ABD ,从AD 段射出的光线均平行于ABE.若∠ABD =0°,则光线从A 点射出,传播方向不变,光速增大16.(9分)一列简谐横波图象如图13所示,t 1时刻的波形如图中实线所示,t 2时刻的波形如图中虚线所示,已知Δt =t 2-t 1=0.5 s.图13(1)求这列波的可能的波速表达式;(2)若波沿x 轴负方向传播,且3T <Δt <4T ,则波速为多大? (3)若波速v =68 m/s ,则波向哪个方向传播.2018高考物理考前模拟卷参考答案1.D2.C [在t =0.01 s 的时刻,电动势为零,则线圈平面位于中性面,穿过线圈的磁通量最大,选项A 错误;电动势的最大值为E m =6 2 V ,电压表测量的为有效值,故示数为E =622V=6 V ,选项B 错误;灯泡消耗的功率P =E 2R =6212W =3 W ,选项C 正确;周期为0.02 s ,瞬时电动势表达式为e =E m sin(2πTt )=62sin 100πt (V).转速提高一倍后,ω=2πn ,角速度变为原来的2倍,最大值变成12 2 V ,表达式应为e =122sin 200πt (V),选项D 错误.]3.D [在v -t 图象中斜率表示加速度,所以甲的加速度大小为:a 甲=2525 m/s 2=1 m/s 2,乙的加速度大小为:a 乙=1530 m/s 2=0.5 m/s 2,A 错误;两车刚好没有发生碰撞,说明在t =20s 时,即v 甲=v 乙,两车在同一位置,此时v 甲=v 0甲-a 甲t =(25-1×20) m/s=5 m/s ,所以速度相等前,间距减小,速度相等后,间距增大,B 错误;两车开始刹车时的距离:x =x 甲-x 乙=⎝⎛⎭⎪⎫25×20 m-12×1×202 m -⎝⎛⎭⎪⎫15×20 m-12×0.5×202 m =100 m ,C 错误;t=20 s 时,两车速度v 甲=v 乙=5 m/s ,又在同一位置,则两车都停下来后相距:x ′=x 乙后-x 甲后=522×0.5 m -522×1m =12.5 m.D 正确.] 4.A [两球相碰后A 球的速度大小变为原来的12,相碰过程中满足动量守恒,以v 0的方向为正方向,若假设后A 速度方向不变,则mv 0=12mv 0+3mv 1,可得B 球的速度v 1=v 06,因B 在前,A 在后,则A 球在后的速度应小于B 球在前的速度,假设不成立,因此A 球一定反向运动,即mv 0=-12mv 0+3mv 1,可得v 1=v 02,因此A 正确,B 、C 、D 错误.]5.AB [根据题意有:2πT ·3T 0-2πT 0·3T 0=5·2π,得T =38T 0,所以A 正确;由开普勒第三定律有⎣⎢⎡⎦⎥⎤12(r 1+r 2)3(2t )2=r 13T 2,得t =(r 1+r 2)T4r 1r 1+r 22r 1,所以B 正确;卫星在椭圆轨道中运行时,机械能是守恒的,所以C 错误;卫星从圆轨道进入椭圆轨道过程中在A 点需点火减速,卫星的机械能减小,所以D 错误.]6.CD [设斜面倾角为θ,落点与抛出点间距离为l ,小球在水平方向上以速度v 0匀速运动:l cos θ=v 0t ,竖直方向上从静止开始做匀加速直线运动:l sin θ=12at 2,解得l =2v 02sin θa cos 2θ,可见a 越小落点越远,故小球带负电荷,受到竖直向上的电场力,且电场力应小于重力,否则小球将沿水平方向匀速运动或向上做类平抛运动,故A 、B 错误.再由l cos θ=v 0t 可以看出,落点越远时间越长,C 正确.由动能定理有mal sin θ=12mv 2-12mv 02,又l =2v 02sin θa cos 2θ,得v =v 01+4tan 2θ,故D 正确.]7.BC [F 作用在B 上瞬间,假设A 、B 一起加速,则对A 、B 整体有F =3ma =mg ,对A 有F f A =ma =13mg <μmg =12mg ,假设成立,因此A 、B 共同做加速运动,加速度为g3,A 选项错误;A 、B 开始运动后,整体在水平方向上只受到F 作用,做匀加速直线运动,对A 分析,B 对A 有水平向左的静摩擦力F f A 静作用,由F f A 静=mg3知,F f A 静保持不变,但A 受到向上的洛伦兹力,支持力F N A =mg -qvB 0逐渐减小,最大静摩擦力μF N A 减小,当F f A 静=μF N A 时,A 、B 开始相对滑动,此时有mg 3=μ(mg -qv 1B 0),v 1=mg 3qB 0,由v 1=at 得t =mqB 0,B 正确;A 、B 相对滑动后,A 仍受到滑动摩擦力作用,继续加速,有F f A 滑=μ(mg -qv AB 0),速度增大,滑动摩擦力减小,当滑动摩擦力减小到零时,A 做匀速运动,有mg =qv 2B 0,得最大速度v 2=mgqB 0,C 选项正确;A 、B 相对滑动后,对B 有F -F f A 滑=2ma B ,F f A 滑减小,则a B 增大,当F f A 滑减小到零时,a B 最大,有a B =F 2m =g2,D 选项错误.]8.BC [当斜面倾角θ=90°时,物体对斜面无压力,也无摩擦力,物体做竖直上抛运动,根据匀变速直线运动规律有02-v 02=-2gx ,根据题图乙可得此时x =1.80 m ,解得初速率v 0=6 m/s ,选项A 错.当斜面倾角θ=0°时即为水平,物体在运动方向上只受到摩擦力作用,则有μmgx =12mv 02,根据题图乙知此时x =2.40 m ,解得μ=0.75,选项B 对.物体沿斜面上滑,由牛顿第二定律可知加速度a =g sin θ+μg cos θ=g (sin θ+μcos θ).v 02=2ax =2g (sin θ+μcos θ)x ,得当sin θ+μcos θ最大时,即tan θ=1μ,θ=53°时,x 取最小值x min ,解得x min =1.44 m ,C 项正确.当θ=45°时,因mg sin 45°>μmg cos 45°,则物体达到最大位移后将返回,D 项错误.] 9.(1)16.00 (2)12.5 能解析 (1)刻度尺读数读到最小刻度的下一位,指针示数为16.00 cm.(2)由表格中的数据可知,当弹力的变化量ΔF =0.5 N 时,弹簧Ⅰ形变量的变化量为Δx =4.00 cm ,根据胡克定律知:k 1=ΔF Δx =0.50.04 N/m =12.5 N/m ;结合L A 和L B 示数的变化,可以得出弹簧Ⅱ形变量的变化量,结合弹力变化量,根据胡克定律能求出弹簧Ⅱ的劲度系数. 10.(1)990 (2)C B (3)E (4)1.47(1.46~1.48均正确) 0.76(0.74~0.78均正确)解析 (1)电流表的内阻为10 Ω;满偏电压为U m =1.5×10-3×10 V=1.5×10-2 V ;若改装为量程为1.5 V 的电压表,则应串联的电阻为R =1.5-1.5×10-21.5×10-3 Ω=990 Ω.(2)根据题意可知,乙为电流表B 与电阻箱结合作为电压表使用,甲为电流表C ,作为电流表使用.(3)滑动变阻器选择阻值较小的E.(4)由闭合电路欧姆定律可得I 1(R 3+R A )=E -(I 1+I 2)·r ,变形得I 1=E R 3+R A +r -r R 3+R A +r I 2;由数学知识可得:题图(b)中的|k |=r R 3+R A +r ;b =E R 3+R A +r ;由题图(b)可知b =1.46(单位为mA);|k |=⎪⎪⎪⎪⎪⎪1.1-1.40.5-0.1×10-3=0.75×10-3;故解得E =1.47 V ,r =0.76 Ω.11.(1)R L +s (2)s -L 2 解析 (1)设钢球与物块1碰撞前的速率为v 0,根据机械能守恒定律,有mgR =12mv 02,可得v 0=2gR钢球与物块1碰撞,设碰后物块1速度为v 1,根据动量守恒定律,有 mv 0=mv 1,联立解得v 1=2gR设物块与地面间的动摩擦因数为μ,物块1碰撞获得速度后滑行至停下,由动能定理,有-2μmgL -μmg (s -L )=0-12mv 12 联立解得μ=RL +s(2)设物块2被钢球碰后的速度为v 2,物块2与物块1碰撞前速度为v 3,根据机械能守恒定律、动量守恒定律和动能定理,有v 2=v 1=2gR ,-μmg (s -L )=12mv 32-12mv 22设物块1和物块2碰撞后的共同速度为v 4,两物块一起继续滑行距离为s 1,根据动量守恒定律和动能定理,有 mv 3=2mv 4,-2μmgs 1=0-12×2mv 42可得s 1=12L 设物块2滑行的总距离为d ,根据题意,有 d =s -L +s 1=s -L 2. 12.解析 (1)微粒在区域Ⅰ内水平向右做直线运动,则在竖直方向上有qE 1sin 45°=mg解得E 1=2mgq微粒在区域Ⅱ内做匀速圆周运动,则在竖直方向上有mg =qE 2解得E 2=mg q(2)设微粒在区域Ⅰ内水平向右做直线运动的加速度为a ,离开区域Ⅰ时速度为v ,在区域Ⅱ内做匀速圆周运动的半径为R ,则 a =qE 1cos 45°m=g v 2=2ad 1(或qE 1cos 45°·d 1=12mv 2)R sin 60°=d 2qvB =m v 2R解得B =mqd 23gd 12. (3)微粒在区域Ⅰ内做匀加速运动,t 1=2d 1g .在区域Ⅱ内做匀速圆周运动的圆心角为60°,又T =2πm Bq, 则t 2=T 6=πd 2323gd 1 解得t =t 1+t 2=2d 1g +πd 2323gd 1. 13. ACD [布朗运动是液体或气体中悬浮微粒的无规则运动,而不是分子的运动,故A 对.温度升高,气体分子的平均动能增大,但不是每个气体分子的速率都增大,故B 错.一定量100 ℃的水变成100 ℃的水蒸气,虽然温度没有升高,但此过程必须吸热,而吸收的热量使分子之间的距离增大,分子势能增加,故C 对.温度是分子热运动的平均动能的标志,故D 对.由热力学第二定律知,热量不可能从低温物体传到高温物体而不产生其他影响,空调机作为制冷机使用时,消耗电能,将热量从温度较低的室内送到温度较高的室外,故E 错.]14.(1)630 K (2)787.5 K解析 (1)设U 型管的横截面积是S ,以封闭气体为研究对象,其初状态:p 1=p 0+h 1=(76+4) cmHg =80 cmHg ,V 1=L 1S =20S当右侧的水银全部进入竖直管时,水银柱的高度:h =h 1+L 3=(4+10) cm =14 cm ,此时左侧竖直管中的水银柱也是14 cm气体的状态参量:p 2=p 0+h =(76+14) cmHg =90 cmHg ,V 2=L 1S +2L 3S =20S +2×10S =40S 由理想气体状态方程得:p 1V 1T 1=p 2V 2T 2 代入数据得:T 2=630 K(2)水银柱全部进入右管后,产生的压强不再增大,所以左侧的水银柱不动.右侧水银柱与管口相平时,气体的体积:V 3=L 1S +L 3S +h 2S =20S +10S +20S =50S由盖—吕萨克定律:V 2T 2=V 3T 3代入数据得:T 3=787.5 K.15.ABE16.解析 (1)由题图知λ=8 m ,当波沿x 轴正方向传播时:Δt =nT +T 4, v 正=λT=4(4n +1) m/s (n =0,1,2,…). 当波沿x 轴负方向传播时:Δt =nT +34T , v 负=λT=4(4n +3) m/s (n =0,1,2,…). (2)明确了波的传播方向,并限定3T <Δt <4T ,则Δt =334T , 解得T =215 s ,则v 1=λT=60 m/s. (3)Δt 时间内波传播的距离x =v Δt =68×0.5 m=34 m =414λ,故波沿x 轴正方向传播.。
专题12电磁感应-2018年高考题和高考模拟题物理分项版汇编含解析
2018年全真高考+名校模拟物理试题分项解析1、如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下.一边长为的正方形金属线框在导轨上向左匀速运动,线框中感应电流i随时间t变化的正确图线可能是()A.B.C.D.【来源】2018年普通高等学校招生全国统一考试物理(全国II卷)【答案】 D第一过程从①移动②的过程中左边导体棒切割产生的电流方向是顺时针,右边切割磁感线产生的电流方向也是顺时针,两根棒切割产生电动势方向相同所以,则电流为,电流恒定且方向为顺时针,再从②移动到③的过程中左右两根棒切割磁感线产生的电流大小相等,方向相反,所以回路中电流表现为零,然后从③到④的过程中,左边切割产生的电流方向逆时针,而右边切割产生的电流方向也是逆时针,所以电流的大小为,方向是逆时针点睛:根据线圈的运动利用楞次定律找到电流的方向,并计算电流的大小从而找到符合题意的图像.2、如图,导体轨道OPQS固定,其中PQS是半圆弧,Q为半圆弧的中心,O为圆心.轨道的电阻忽略不计.OM是有一定电阻.可绕O转动的金属杆.M端位于PQS上,OM与轨道接触良好.空间存在半圆所在平面垂直的匀强磁场,磁感应强度的大小为B,现使OQ位置以恒定的角速度逆时针转到OS位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B增加到B'(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM的电荷量相等,则等于()A.B.C.D. 2【来源】2018年全国普通高等学校招生统一考试物理(新课标I卷)【答案】 B【解析】本题考查电磁感应及其相关的知识点.过程I回路中磁通量变化△Φ1=BπR2,设OM的电阻为R,流过OM的电荷量Q1=△Φ1/R.过程II回路中磁通量变化△Φ2=(B’-B)πR2,流过OM的电荷量Q2=△Φ2/R.Q2= Q1,联立解得:B’/B=3/2,选项B正确.【点睛】此题将导体转动切割磁感线产生感应电动势和磁场变化产生感应电动势有机融合,经典中创新.11、(多选)如图所示,竖直放置的形光滑导轨宽为L,矩形匀强磁场Ⅰ、Ⅱ的高和间距均为d,磁感应强度为B、质量为m的水平金属杆由静止释放,进入磁场Ⅰ和Ⅱ时的速度相等、金属杆在导轨间的电阻为R,与导轨接触良好,其余电阻不计,重力加速度为g、金属杆()A. 刚进入磁场Ⅰ时加速度方向竖直向下B. 穿过磁场Ⅰ的时间大于在两磁场之间的运动时间C. 穿过两磁场产生的总热量为4mgdD. 释放时距磁场Ⅰ上边界的高度h可能小于【来源】2018年全国普通高等学校招生统一考试物理(江苏卷)【答案】 BC点睛:本题以金属杆在两个间隔磁场中运动时间相等为背景,考查电磁感应的应用,解题的突破点是金属棒进入磁场Ⅰ和Ⅱ时的速度相等,而金属棒在两磁场间运动时只受重力是匀加速运动,所以金属棒进入磁场时必做减速运动.12、(多选)如图(a),在同一平面内固定有一长直导线PQ和一导线框R,R在PQ的右侧.导线PQ中通有正弦交流电流i,i的变化如图(b)所示,规定从Q到P为电流的正方向.导线框R 中的感应电动势A. 在时为零B. 在时改变方向C. 在时最大,且沿顺时针方向D. 在时最大,且沿顺时针方向【来源】2018年全国普通高等学校招生统一考试物理(全国III卷)【答案】 AC点睛此题以交变电流图象给出解题信息,考查电磁感应及其相关知识点.解答此题常见错误主要有四方面:一是由于题目以交变电流图象给出解题信息,导致一些同学看到题后,不知如何入手;二是不能正确运用法拉第电磁感应定律分析判断;三是不能正确运用楞次定律分析判断,陷入误区.13、(多选)如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路.将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态.下列说法正确的是()A. 开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动B. 开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向C. 开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向D. 开关闭合并保持一段时间再断开后的瞬间,小磁针的N极朝垂直纸面向外的方向转动【来源】2018年全国普通高等学校招生统一考试物理(新课标I卷)【答案】 AD【点睛】此题中套在一根铁芯上的两个线圈,实际上构成一个变压器.1、如图所示,PQ、MN是放置在水平面内的光滑导轨,GH是长度为L、电阻为r的导体棒,其中点与一端固定的轻弹簧连接,轻弹簧的劲度系数为k.导体棒处在方向向下、磁感应强度为B的匀强磁场中.图中E是电动势为E、内阻不计的直流电源,电容器的电容为C.闭合开关,待电路稳定后,下列选项正确的是A. 导体棒中电流为B. 轻弹簧的长度增加C. 轻弹簧的长度减少D. 电容器带电量为【来源】【全国百强校】福建省厦门市外国语学校2018届高三下学期5月适应性考试(最后压轴模拟)理综物理试题【答案】 D【点睛】电路稳定后电容器相当于断路,根据欧姆定律求导体棒中的电流,由Q=CU求电容器的带电量、2、超导体的电阻为零,现有一个本来无电流的固定的超导体圆环如图所示,虚线为其轴线,在其右侧有一个条形永磁体,当永磁体从右侧远处沿轴线匀速穿过该圆环直至左侧远处的过程中,下列I-t图所反映的电流情况合理的是哪个?假设磁体中心刚好处于圆环中心为零时刻,从右向左看逆时针电流规定为正方向( )A. AB. BC. CD. D【来源】【全国百强校】湖北省荆州中学2018届高三全真模拟考试(二)理综物理试题【答案】 A3、如图甲所示,在倾角a=370的光滑平行导轨上,有一长度恰等于导轨宽度的均匀导体棒AB,平行于斜面底边CD由静止释放.导轨宽度L=10cm,在AB以下距离AB为x1的区域内有垂直于导轨的匀强磁场,该区域面积S=0.3m2,匀强磁场的磁感应强度随时间变化的规律如图乙所示,导体棒AB在t=1s时进入磁场区域,并恰好做匀速直线运动,已知导体棒AB的电阻r等于电阻R=6Ω,导轨足够长,重力加速度g=10m/s2,则A. 异体棒AB在磁场外运动时没有感应电流产生B. 位移x1为3mC. 导体棒AB进入磁场后感应电动势为0.6VD. 在前2s内电路中产生的内能为0.15J【来源】黑龙江省齐齐哈尔市2018届高三第三次模拟考试理综物理试题【答案】 B【解析】A. 导体棒没有进入磁场区域时穿过回路的磁感应强度不断增大,闭合回路的磁通量发生变化,回路产生感应电流,故A错误;B. 导体棒没有进入磁场前, 由牛顿第二定律得:mg sinα=ma, 解得:a=6m/s2, 导体棒进入磁场前做初速度为零的匀加速直线运动, 则,故B正确;C. 导体棒进入磁场时的速度:v=at=6×1=6m/s,由图 2 所示图象可知,导体棒进入磁场后磁场的磁感应强度 B =2T ,感应电动势:,故 C 错误;4、如图所示,间距为L 的足够长的平行金属导轨固定在斜面上,导轨一端接入阻值为R 的定值电阻,t=0时,质量为m 的金属棒由静止开始沿导轨下滑,t=T 时,金属棒的速度恰好达到最大值vm ,整个装置处于垂直斜面向下、磁感应强度为B 的匀强磁场中,已知金属棒与导轨间的动摩擦因数为μ,金属棒在运动过程中始终与导轨垂直且接触良好,金属棒及导轨的电阻不计,下列说法正确的是( )A. 2Tt =时,金属棒的速度大小为2m v B. 0~T 的过程中,金属棒机械能的减少量等于R 上产生的焦耳热 C. 电阻R 在0~2T 内产生的焦耳热小于2T~T 内产生的焦耳热 D. 金属棒0~2T 内机械能的减少量大于2T~T 内机械能的减少量 【来源】普通高等学校2018届高三招生全国统一考试模拟试题(二)理科综合物理试题 【答案】 C【解析】A 项:速度达到最大值m v 前金属棒做加速度减小的加速运动,故相同时间内速度的增加量减小,所以2Tt =时,金属棒的速度大于2m v ,故A 错误; B 项:由能量守恒, 0T ~的过程中,金属棒机械能的减小等于R 上产生的焦耳热和金属棒与导轨间摩擦生热之和,故B 错误;C 项: 02T ~内金属棒的位移小于2TT ~的位移,金属棒做加速运动,其所受安培力增大,所以2TT ~内金属棒克服安培力做功更多,产生的电能更多,电阻R 上产生的焦耳热更多,故C 正确; D 项:2T T ~内的位移比02T ~内的位移大,故2TT ~内滑动摩擦力对金属棒做功多,由功能关系得f W Q E +=∆,2TT ~内金属棒机械能的减小量更多,故D 错误. 点晴:解决本题关键理解导体棒克服安培力做功等整个回路中产生的焦耳热,注意导体棒与导轨间还有摩擦产生热量,综合功能关系即可求解.5、如图,两同心圆环A 、B 置于同一水平面上,其中B 为均匀带负电绝缘环,A 为导体环、当B 绕环心转动时,导体环A 产生顺时针电流且具有扩展趋势,则B 的转动情况是()A. 顺时针加速转动B. 顺时针减速转动C. 逆时针加速转动D. 逆时针减速转动【来源】【全国百强校】北京市北京大学附中中学高三4月模拟仿真预测理科综合物理试题 【答案】 A6、两根足够长的平行光滑导轨竖直固定放置,顶端接一电阻R ,导轨所在平面与匀强磁场垂直.将一金属棒与下端固定的轻弹簧的上端拴接,金属棒和导轨接触良好,重力加速度为g ,如图所示.现将金属棒从弹簧原长位置由静止释放,则( )A. 金属棒在最低点的加速度小于gB. 回路中产生的总热量等于金属棒重力势能的减少量C. 当弹簧弹力等于金属棒的重力时,金属棒下落速度最大D. 金属棒在以后运动过程中的最大高度一定低于静止释放时的高度【来源】北京市人大附中2017-2018学年下学期高二第一次月考物理试卷【答案】 AD考点:能量守恒定律;楞次定律【名师点睛】本题运用力学的方法分析金属棒的运动情况和受力情况及功能关系,金属棒的运动情况:先向下做加速运动,后向下做减速运动,当重力、安培力与弹簧的弹力平衡时,速度最大、此题的难点是运用简谐运动的对称性分析金属棒到达最低点时的加速度与g的关系.7、如图甲所示,一对间距为l=20cm的平行光滑导轨放在水平面上,导轨的左端接R=1Ω的电阻,导轨上垂直放置一导体杆,整个装置处在磁感应强度大小为B=0.5T的匀强磁场中,磁场方向垂直导轨平面向下.杆在沿导轨方向的拉力F作用下做初速为零的匀加速运动.测得力F与时间t的关系如图乙所示.杆及两导轨的电阻均可忽略不计,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触,则杆的加速度大小和质量分别为( )A. 20m/s2 0.5kgB. 20m/s2 0.1kgC. 10m/s2 0.5kgD. 10m/s2 0.1kg【来源】【全国校级联考】百校联盟2018年高考名师猜题保温金卷物理试题(5月26日下午)【答案】 D【解析】导体杆在轨道上做初速度为零的匀加速直线运动,用v表示瞬时速度,t表示时间,则杆切割磁感线产生的感应电动势为:,闭合回路中的感应电流为,由安培力公式和牛顿第二定律得:,由以上三式得,在乙图线上取两点,,,代入联立方程得:,,选项D正确.故选D.点睛:对于电磁感应问题研究思路常常有两条:一条从力的角度,重点是分析安培力作用下导体棒的平衡问题,根据平衡条件列出方程;另一条是能量,分析涉及电磁感应现象中的能量转化问题,根据动能定理、功能关系等列方程求解、8、如图甲所示,导体棒MN置于水平导轨上,PQ之间有阻值为R的电阻,PQNM所为的面积为S,不计导轨和导体棒的电阻.导轨所在区域内存在沿竖直方向的磁场,规定磁场方向竖直向上为正,在0~2t0时间内磁感应强度的变化情况如图乙所示,导体棒MN始终处于静止状态.下列说法正确的是A. 在0~t0和t0~2t0内,导体棒受到导轨的摩擦力方向相同B. 在t0~2t0内,通过电阻R的电流方向为P到QC. 在0~t0内,通过电阻R的电流大小为D. 在0~2t0内,通过电阻R的电荷量为【来源】河北省石家庄2018届高三教学质量检测(二)理科综合物理试题【答案】 DC、由图乙所示图象,应用法拉第电磁感应定律可得,在内感应电动势:,感应电流为,故C错误;D、由图乙所示图象,应用法拉第电磁感应定律可得,在内通过电阻R的电荷量为;故D正确;故选D.【点睛】由楞次定律判断出导体棒的运动趋势,然后判断摩擦力方向;由楞次定律求出感应电流方向;由法拉第电磁感应定律求出感应电动势,然后由欧姆定律求出感应电流;然后由电流定义式求出电荷量.9、(多选)水平桌面上固定着两相距为L=1m的足够长的平行金属导轨,导轨右端接电阻R=1Ω,在导轨间存在无数宽度相同的有界匀强磁场区域,磁感应强度为B=1T,方向竖直向下,任意两个磁场区域之间有宽为s0=0.3的无场区,金属棒CD质量为m=0.1kg,电阻为r=1Ω.水平置于导轨上,用绝缘水平细线通过定滑轮与质量也为m的物体A相连.金属棒CD从距最左边磁场区域左边界s=0.4m处由静止释放,运动过程中CD棒始终保持与导轨垂直,在棒穿过两磁场区域的过程中,通过电阻R的电流变化情况相同,且导体棒从进入磁场开始通过每个区域的时间均相同,重力加速度为g=10m/s2,不计其他电阻、摩擦力.则下列说法正确的是(图中并未把所有磁场都画出)A. 金属棒每次进入磁场时的速度为2m/s,离开磁场时速度均为1m/sB. 每个磁场区域的宽度均为d=0.8mC. 导体棒在每个区域运动的时候电阻R上产生的电热为1.3JD. 从进入磁场开始时,电流的有效值为 A【来源】【全国百强校】河北省衡水中学2018届高三第十六次模拟考试理科综合物理试题【答案】 AB,解得,由,解得,即离开磁场I时的速度为,A正确;因为通过每个区域的时间相同,故通过磁场区域和通过无磁区域的时间相等,为,对金属棒;对物体A:,又知道,,联立解得,解得,B正确;导体棒的电阻和R相等,并且两者串联在电场中,故两者产生的热量相等,根据能量守恒定律可得经过每一个磁场区域时有,解得,C错误;导体棒经过一个磁场区和一个无磁区为一个周期,则在这个周期内,通过磁场时,有电流产生,其余时间无电流产生,根据有效值的定义可知,解得,D错误、10、(多选)一个细小金属圆环,在范围足够大的磁场中竖直下落,磁感线的分布情况如图,其中沿圆环轴线的磁场方向始终竖直向上.开始时圆环的磁通量为要,圆环磁通量随下落高度变化关系为(k为比例常数,k>0).金属圆环在下落过程中的环面始终保持水平,速度越来越大,最终稳定为某一数值,称为收尾速度.该金属环的收尾速度为v,已知金属圆环的电阻为R,忽略空气阻力,关于该情景,以下结论正确的有A. 金属圆环速度稳定后,Δt时间内,金属圆环产生的平均感应电动势大小为B. 金属圆环速度稳定后金属圆环的热功率C. 金属圆环的质量D. 金属圆环速度稳定后金属圆环的热功率【来源】【全国百强校】福建省厦门双十中学2018届高三考前热身考试(最后一卷)理综物理试题【答案】 AD11、(多选)如图所示,在同一水平面内有两根足够长的光滑水平金属导轨,间距为20cm,电阻不计,其左端连接一阻值为10 Ω的定值电阻.两导轨之间存在着磁感应强度为1 T的匀强磁场,磁场边界虚线由多个正弦曲线的半周期衔接而成,磁场方向如图所示.一接入电阻阻值为10 Ω的导体棒AB在外力作用下以10 m/s的速度匀速向右运动,交流电压表和交流电流表均为理想电表,则A. 电压表的示数是1 VB. 电流表的示数是 AC. 导体棒运动到图示虚线CD位置时,电流表示数为零D. 导体棒上消耗的热功率为0.1 W【来源】【全国百强校】福建省厦门市外国语学校2018届高三下学期5月适应性考试(最后压轴模拟)理综物理试题【答案】 AD【点睛】根据公式E=BLv求解电动势的最大值、交流电压表及交流电流表测量的是有效值,根据有效值的定义求出,根据求解导体棒上消耗的热功率、12、(多选)如图甲所示,是间距为的足够长的光滑平行金属导轨,导轨平面与水平面夹角为,在虚线下方的导轨平面内存在垂直于导轨平面向上的匀强磁场,导轨电阻不计,长为的导体棒垂直放置在导轨上,导体棒电阻;右侧连接一电路,已知灯泡的规格是“”,定值电阻,.在时,将导体棒从某一高度由静止释放,导体棒的速度—时间图象如图乙所示,其中段是直线,段是曲线.若导体棒沿导轨下滑时,导体棒达到最大速度,并且此时灯泡已正常发光,假设灯泡的电阻恒定不变,重力加速度,则下列说法正确的是()A.B. 匀强磁场的磁感应强度大小为2 TC. 导体棒的质量为D. 从导体棒静止释放至速度达到最大的过程中,通过电阻的电荷量为l C【来源】湖北省黄冈中学2018届高三5月第三次模拟考试理综物理试题【答案】 AC点睛:本题是电磁感应与力学知识的综合,一方面要理解速度图象斜率的物理意义,知道斜率等于加速度,运用牛顿第二定律求解斜面倾角的正弦值;另一方面抓住安培力既与电磁感应有联系,又与力学知识有联系,熟练推导出安培力与速度的关系,由平衡条件和动力学方程进行解答、。
高考物理三轮复习练习选择题带电粒子的电偏转和磁偏转
热点9 带电粒子的电偏转和磁偏转 (建议用时:20分钟) 1.(2019·河南郑州高三模拟)如图所示,在边长为L 的正方形ABCD阴影区域内存在垂直纸面的匀强磁场,一质量为m 、电荷量为q (q <0)的带电粒子以大小为v 0的速度沿纸面垂直AB 边射入正方形,若粒子从AB边上任意点垂直射入,都只能从C 点射出磁场,不计粒子重力的影响.下列说法正确的是( )A .此匀强磁场的方向可能垂直纸面向外B .此匀强磁场的磁感应强度大小为2m v 0qLC .此匀强磁场区域的面积为πL 24D .此匀强磁场区域的面积为(π-2)L 222.(多选)如图所示,矩形的四个顶点分别固定有带电荷量均为q的正、负点电荷,水平直线AC 将矩形分成面积相等的两部分,B为矩形的重心.一质量为m 的带正电微粒(重力不计)沿直线AC 从左向右运动,到A 点时的速度为v 0,到B 点时的速度为 5v 0.取无穷远处的电势为零,则( )A .微粒在A 、C 两点的加速度相同B .微粒从A 点到C 点的过程中,电势能先减小后增大C .A 、C 两点间的电势差为U AC =4m v 20qD .微粒最终可以返回B 点,其速度大小为 5v 03.(多选)如图所示,半径为R 的圆形区域内存在垂直于纸面向里的匀强磁场,现有比荷大小相等的甲、乙两粒子,甲以速度v 1从A 点沿直径AOB 方向射入磁场,经过t 1时间射出磁场,射出磁场时的速度方向与初速度方向间的夹角为60°;乙以速度v 2从距离直径AOB 为R 2的C点平行于直径AOB 方向射入磁场,经过t 2时间射出磁场,其轨迹恰好通过磁场的圆心.不计粒子受到的重力,则( )A .两个粒子带异种电荷B .t 1=t 2C .v 1∶v 2=3∶1D .两粒子在磁场中轨迹长度之比l 1∶l 2=3∶14.(多选)(2019·威海高三质量检测)在一次南极科考中,科考人员使用磁强计测定地磁场的磁感应强度.其原理如图所示,电路中有一段长方体的金属导体,它长、宽、高分别为a 、b 、c ,放在沿y 轴正方向的匀强磁场中,导体中电流沿x 轴正方向,大小为I .已知金属导体单位体积中的自由电子数为n ,电子电荷量为e ,自由电子做定向移动可视为匀速运动,测得金属导体前后两个侧面间电压为U ,则( )A .金属导体的前侧面电势较低B .金属导体的电阻为U IC .自由电子定向移动的速度大小为I neabD .磁感应强度的大小为necU I5.一带负电的小球以一定的初速度v 0竖直向上抛出,达到的最大高度为h 1;若加上水平方向的匀强磁场,且保持初速度仍为v 0,小球上升的最大高度为h 2;若加上水平方向的匀强电场,且保持初速度仍为v 0,小球上升的最大高度为h 3;若加上竖直向上的匀强电场,且保持初速度仍为v 0,小球上升的最大高度为h 4,如图所示.不计空气阻力,则( )A .h 1=h 3B.h 1<h 4 C .h 2与h 3无法比较 D.h 2<h 46.(多选)(2019·青州高三模拟)如图所示直角坐标系xOy ,P (a ,-b )为第四象限内的一点,一质量为m 、电荷量为q 的负电荷(电荷重力不计)从原点O 以初速度v 0沿y 轴正方向射入.第一次在整个坐标系内加垂直纸面向内的匀强磁场,该电荷恰好能通过P 点;第二次保持y >0区域磁场不变,而将y <0区域磁场改为沿x 轴方向的匀强电场,该电荷仍通过P 点( )A .匀强磁场的磁感应强度B =2am v 0q (a 2+b 2)B .匀强磁场的磁感应强度B =2am v 0q a 2+b 2C .电荷从O 运动到P ,第二次所用时间一定短些D .电荷通过P 点时的速度,第二次与x 轴负方向的夹角一定小些7.(多选)(2019·德州二模)磁流体发电机是一种把物体内能直接转化为电能的低碳环保发电机,如图所示为其原理示意图,平行金属板C 、D 间有匀强磁场,磁感应强度为B ,将一束等离子体(高温下电离的气体,含有大量带正电和带负电的微粒)水平喷入磁场,两金属板间就产生电压.定值电阻R 0的阻值是滑动变阻器最大阻值的一半,与开关S 串联接在C 、D 两端,已知两金属板间距离为d ,喷入气流的速度为v ,磁流体发电机的电阻为r (R 0<r <2R 0).则滑动变阻器的滑片P 由a 端向b 端滑动的过程中( )A .电阻R 0消耗功率最大值为B 2d 2v 2R 0(R 0+r )2B .滑动变阻器消耗功率最大值为B 2d 2v 2R 0+rC .金属板C 为电源负极,D 为电源正极D .发电机的输出功率先增大后减小8.(2019·济宁二模)质谱仪可以测定有机化合物分子结构,现有一种质谱仪的结构可简化为如图所示,有机物的气体分子从样品室注入离子化室,在高能电子作用下,样品气体分子离子化或碎裂成离子.若离子化后的离子带正电,初速度为零,此后经过高压电源区、圆形磁场室(内为匀强磁场)、真空管,最后打在记录仪上,通过处理就可以得到离子比荷(q m),进而推测有机物的分子结构.已知高压电源的电压为U ,圆形磁场区的半径为R ,真空管与水平面夹角为θ,离子进入磁场室时速度方向指向圆心.则下列说法正确的是( )A .高压电源A 端应接电源的正极B .磁场室的磁场方向必须垂直纸面向里C .若离子化后的两同位素X 1、X 2(X 1质量大于X 2质量)同时进入磁场室后,出现图中的轨迹Ⅰ和Ⅱ,则轨迹Ⅰ一定对应X 1D .若磁场室内的磁感应强度大小为B ,当记录仪接收到一个明显的信号时,与该信号对应的离子比荷q m =2U tan 2θ2B 2R 2热点9 带电粒子的电偏转和磁偏转1.解析:选D.若保证所有的粒子均从C 点离开此区域,则由左手定则可判断匀强磁场的方向应垂直纸面向里,A 错误;由A 点射入磁场的粒子从C 点离开磁场,结合题图可知该粒子的轨道半径应为R =L ,则由qB v 0=m v 20R ,可解得B =m v 0qL ,B 错误;由几何关系可知匀强磁场区域的面积应为S =2×(14πL 2-12L 2)=(π-2)L 22,C 错误,D 正确. 2.解析:选AC.由场强叠加原理和对称性可知,A 、C 两点的场强大小相等、方向相同,故由牛顿第二定律可知,微粒在A 、C 两点的加速度相同,A 正确;由电场的性质可知,沿直线AC 电势逐渐降低,根据电场力做功W =qU 可知,电场力对该微粒一直做正功,故微粒从A 点到C 点的过程中电势能一直在减小,B 错误;由对称性可知U AB =U BC ,故由动能定理可得qU AB =12m v 2B -12m v 2A ,同理可得qU BC =12m v 2C -12m v 2B ,以上两式联立并代入数据求解可得v C =3v 0,故qU AC =12m v 2C -12m v 2A ,解得U AC =4m v 20q,C 正确;由于B 点电势为零,故微粒从B 点沿直线AC 运动到无穷远处的过程中,电场力做功为零,所以微粒到无穷远处的速度与微粒在B 点时的速度相同,仍为5v 0,故粒子不会返回B 点,D 错误.3.解析:选AC.根据左手定则判断可得,甲粒子带正电,乙粒子带负电,选项A 正确;分别对甲、乙粒子作图,找出其做匀速圆周运动的圆心和半径以及圆心角,则有:r 甲=3R ,r 乙=R ,θ甲=π3,θ乙=2π3,根据q v B =m v 2r 可得:v =qBr m ,所以v 1v 2=r 甲r 乙=31,选项C 正确;根据t =θ2πT 可得:t 1t 2=θ甲θ乙=12,选项B 错误;粒子在磁场中的轨迹长度为l =v t ,所以l 1l 2=v 1t 1v 2t 2=32,选项D 错误. 4.解析:选AD.根据左手定则(注意电子带负电)可知电子打在前侧面,即前侧面带负电,电势较低,A 正确;电流方向为从左向右,而题中U 表示的是导体前后两个侧面的电压,故导体的电阻不等于U I ,B 错误;在t 时间内通过bc 横截面的电荷量为q =n (bc v t )e ,又I =nbc v te t=nbc v e ,解得v =I nbce①,C 错误;因为当金属导体中自由电子定向移动时受洛伦兹力作用向前侧面偏转,使得前后两侧面间产生电势差,当电子所受的电场力与洛伦兹力平衡时,前后两侧面间产生恒定的电势差.因而可得eU b =Be v ②,联立①②式可得B =necU I,D 正确. 5.解析:选A.甲图,由竖直上抛运动的规律得h 1=v 202g;丙图,当加上电场时,在竖直方向上有v 20=2gh 3,所以h 1=h 3,A 项正确;乙图中,洛伦兹力改变速度的方向,当小球在磁场中运动到最高点时,小球有水平速度,设此时小球的动能为E k ,则由能量守恒定律得mgh 2+E k =12m v 20,又12m v 20=mgh 1,所以h 1>h 2,h 3>h 2,C 项错误;丁图,因小球带负电,所受电场力方向向下,则h 4一定小于h 1,B 项错误;由于无法明确电场力做功的多少,故无法确定h 2和h 4之间的关系,D 项错误.6.解析:选AC.第一次在整个坐标系内加垂直纸面向内的匀强磁场,该电荷恰好能通过P 点;粒子做匀速圆周运动,由几何作图得(a -R )2+b 2=R 2,解得R =a 2+b 22a ,由q v B =m v 2R 解得匀强磁场的磁感应强度B =2am v 0q (a 2+b 2),故A 正确,B 错误;第二次保持y >0区域磁场不变,而将y <0区域磁场改为沿x 轴方向的匀强电场,该电荷仍通过P 点,粒子先做匀速圆周运动,后做类平抛运动,运动时间t 2=12T +b v 0;第一次粒子做匀速圆周运动,运动时间t 1=12T +QP ︵v 0,弧长大于b ,所以t 1>t 2,即第二次所用时间一定短些,故C 正确;电荷通过P 点时的速度,第一次与x 轴负方向的夹角为α,则有tan α=R 2-b 2b =a 2-b 22ab;第二次与x 轴负方向的夹角为θ,则有tan θ=b 2R -R 2-b 2=a 2b,所以有tan θ>tan α,电荷通过P 点时的速度,第二次与x 轴负方向的夹角一定大些,故D 错误.7.解析:选ACD.根据左手定则判断两金属板的极性,离子在运动过程中同时受电场力和洛伦兹力,二力平衡时两板间的电压稳定.由题图知当滑片P 位于b 端时,电路中电流最大,电阻R 0消耗功率最大,其最大值为P 1=I 2R 0=E 2R 0(R 0+r )2=B 2d 2v 2R 0(R 0+r )2,故A 正确;将定值电阻归为电源内阻,由滑动变阻器的最大阻值2R 0<r +R 0,则当滑动变阻器连入电路的阻值最大时消耗功率最大,最大值为P =2B 2d 2v 2R 0(r +3R 0)2,故B 错误;因等离子体喷入磁场后,由左手定则可知正离子向D 板偏,负离子向C 板偏,即金属板C 为电源负极,D 为电源正极,故C 正确;等离子体稳定流动时,洛伦兹力与电场力平衡,即Bq v =q E d,所以电源电动势为E =Bd v ,又R 0<r <2R 0,所以滑片P 由a 向b 端滑动时,外电路总电阻减小,期间某位置有r =R 0+R ,由电源输出功率与外电阻关系可知,滑片P 由a 向b 端滑动的过程中,发电机的输出功率先增大后减小,故D 正确.8.解析:选D.正离子在电场中加速,可以判断高压电源A 端应接负极,同时根据左手定则知,磁场室的磁场方向应垂直纸面向外,A 、B 均错误;设离子通过高压电源后的速度为v ,由动能定理可得qU =12m v 2,离子在磁场中偏转,则q v B =m v 2r ,联立计算得出r =1B 2mU q,由此可见,质量大的离子的运动轨迹半径大,即轨迹 Ⅱ 一定对应X 1,C 错误;离子在磁场中偏转轨迹如图所示,由几何关系可知r=Rtan θ2,可解得qm=2U tan2θ2B2R2,D正确.。
2018高考物理真题分类解析专题10 磁场
专题十、磁场1.<2018高考上海物理第13题)如图,足够长的直线ab靠近通电螺线管,与螺线管平行。
用磁传感器测量ab上各点的磁感应强度B,在计算机屏幕上显示的大致图像是答案:C解读:通电螺线管外部中间处的磁感应强度最小,所以用磁传感器测量ab上各点的磁感应强度B,在计算机屏幕上显示的大致图像是C。
b5E2RGbCAP 2.<2018高考安徽理综第15题)图中a,b,c,d为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示。
一带正电的粒子从正方形中心O点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是p1EanqFDPwA.向上 B.向下C.向左 D.向右【答案】B【解读】在O点处,各电流产生的磁场的磁感应强度在O点叠加。
d、b电流在O点产生的磁场抵消,a、c电流在O点产生的磁场合矢量方向向左,带正电的粒子从正方形中心O点沿垂直于纸面的方向向外运动,由左手定则可判断出它所受洛伦兹力的方向是向下,B选项正确。
DXDiTa9E3d3. <2018全国新课标理综II第17题)空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R,磁场方向垂直于横截面。
一质量为m、电荷量为q<q>0)的粒子以速率v0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°。
不计重力。
该磁场的磁感应强度大小为RTCrpUDGiTA. B.C. D.答案.A【命题意图】本题考查带电粒子在匀强磁场中的运动及其相关知识点,意在考查考生应用力学、电学知识分析解决问题的能力。
5PCzVD7HxA【解题思路】画出带电粒子运动轨迹示意图,如图所示。
设带电粒子在匀强磁场中运动轨迹的半径为r,根据洛伦兹力公式和牛顿第二定律,qv0B=m,解得r=mv0/qB。
由图中几何关系可得:tan30°=R/r。
联立解得:该磁场的磁感应强度B=,选项A正确。
2018届高考物理一轮复习第十章磁场第7讲:“电偏转”和“磁偏转”(答案)
2018届高考物理一轮复习第十章磁场第7讲:“电偏转”和“磁偏转”(参考答案)一、知识清单 1. 【答案】 二、例题精讲 2. 【答案】 C【解析】 带电粒子在匀强磁场中做匀速圆周运动,O 为圆心,故Oa =Ob =r =mv 0qB,① 带电粒子在匀强电场中做类平抛运动,故Ob =v 0t =Oa =qE 2m t 2=2mv 20qE,②由①②得EB =2v 0,故选项C 对.3. 【答案】AC【解析】 质子在只有电场存在时,动能由E k 变为5E k ,由动能定理可知电场力做功为:W =eEd =5E k -E k ,解得:E =4E ked,由此可判断,答案项A 正确,B 错误。
质子在只有磁场存在时,质子做匀速圆周运动,由题意可知,运动半径为d ,由半径公式有:r =d =mv eB ,设质子进入磁场时的速度为v ,则速度为:v = 2mE km,以上两式联立得:B = 2mE ked,以答案项C 正确,答案项D 错误。
三、例题精讲4. 【答案】 (1)E cos θv 0 (2)sin θθ【解析】 (1)设虚线宽度为d ,离子在电场中做类平抛运动,有v y =v 0tan θ,v y =qEmt ,且t =d v 0,当改用匀强磁场时,离子做匀速圆周运动,有qv 0B =mv 20r ,轨道半径r =d sin θ=mv 0qB ,联立得:B =E cos θv 0。
(2)离子在电场中运动的时间t 1=dv 0,离子在磁场中运动的时间t 2=rθv 0=dθv 0sin θ,解得:t 1t 2=sin θθ。
5. 【答案】(1)qhmv E 220= (2) 02v v =x 轴45° (3)qh mvB 0=【解析】(1)粒子在电场、磁场中运动的轨迹如图所示。
设粒子从P 1到P 2的时间为t ,电场强度的大小为E ,粒子在电场中的加速度为a ,由牛顿第二定律及运动学公式有qE = ma ① v 0t = 2h ② h at =221 ③ 由①、②、③式解得qhmv E 220= ④(2)粒子到达P 2时速度沿x 方向的分量仍为v 0,以v 1表示速度沿y 方向分量的大小,v 表示速度的大小,θ表示速度和x 轴的夹角,则有ah v 221= ⑤2021v v v += ⑥1tan v v =θ ⑦ 由②、③、⑤式得v 1=v 0 ⑧ 由⑥、⑦、⑧式得02v v = ⑨ ︒=45θ ⑩(3)设磁场的磁感应强度为B ,在洛仑兹力作用下粒子做匀速圆周运动,由牛顿第二定律rv m qvB 2= ⑾r 是圆周的半径。
2018年高考物理原创押题预测卷错误答案汇总
2018年高考物理原创押题预测卷错误答案汇总1.押题卷01(新课标1卷)原来都静止在同一匀强磁场中放射性元素原子核的衰变示意图,运动方向都与磁场方向垂直。
图中a、b分别表示各粒子的运动轨迹,大小圆的半径之比是45:1。
下列说法中不正确的是A.磁场方向一定为垂直纸面向里B.这可能是发生了β衰变U发生衰变C.这可能是23892U发生衰变D.这可能是23490原答案选择:C错误原因:题目错误,应改为下列说法不正确的是。
A选项由于位置粒子速度,所以磁场方向无法判断。
B选项β衰变轨迹内切,α衰变轨迹外切,故为α衰变,C,D选项,由于大小圆半径之比为45:1,由于动量相同,半径比等于电荷量反比,所以衰变粒子的质子数为92,故本题正确答案唯一,选择C。
2.押题卷01(新课标3卷)(6分)1.某同学要测量一节干电池的电动势和内电阻。
除干电池外,老师还提供了电压表V、电流表A,滑动变阻器R、开关、导线等。
(1)该同学发现电流表A的量程太大,其他器材都合适,于是他从实验室里找到了电流表G(量程3 mA,内阻R g=l00 Ω)与定值电阻R1=0.5 Ω并联,实际上是进行了电表的改装,则他改装后的电流表对应的量程是______A。
(保留两位有效数字)(2)请帮该同学画出适当的实验原理图。
(3)该同学利用上述实验原理图测得数据,以电流表G的读数为横坐标,以电压表V 的读数为纵坐标绘出了如图所示的图线,根据图线可求出电源的电动势为____V,电源内阻为Ω(保留两位有效数字)。
原答案:错误原因:答案错误,有争议,本题由于电流表是改装后得到的电流表,所以电流表内阻已知,电流表内阻已知,要与被测电阻直接串联到一起,本题由于要测电源电动势和内阻,所以应将电流表直接与电源串联在一起,位于干路中,而答案是将电流表放在之路上,故笔者认为答案错误。
押题卷02(新课标1卷).如图所示,半径为R的圆内有方向与xOy平面平行的匀强电场,在坐标原点O固定了一个23892U核,在发生α衰变,生成了Th核。
2018大二轮高考总复习物理文档:第12讲 电磁感应问题 含答案
第12讲 电磁感应问题一、明晰一个网络,理清电磁感应问题二、“三个定则”和“一个定律”的比较(2)因动而生电(v 、B →I )→右手定则;(3)因电而受力(I 、B →F 安)→左手定则;(4)因磁而生电(Φ、B →I )→楞次定律.三、掌握法拉第电磁感应定律及其应用1.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与Φ、ΔΦ的大小没有必然联系.(2)ΔΦ仅由B 变化引起时,E =n S ΔB Δt ;ΔΦ仅由S 变化引起时,E =n B ΔS Δt. 2.应用E =n ΔΦΔt时应注意的几个问题 (1)由于磁通量有正负之分,计算磁通量的变化量时一定要规定磁通量的正方向.正向的磁通量增加与反向的磁通量减少产生的感应电流的方向相同.(2)公式E =n ΔΦΔt 是求解回路某段时间内平均电动势的最佳选择,若ΔΦΔt为恒量,则产生恒定的感应电动势,此时平均电动势等于瞬时电动势.(3)用公式E =nS ΔB Δt求感应电动势时,S 为线圈在磁场范围内垂直磁场方向的有效面积. 3.关于感应电荷量q 的一个常用结论通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 总有关,与时间长短无关.推导如下:q =I -Δt =n ΔΦR 总Δt ·Δt =n ΔΦR 总.高频考点1 楞次定律和法拉第电磁感应定律的应用1.“三定则、一定律”的应用2.求感应电动势的两种方法(1)E =n ΔΦΔt,用来计算感应电动势的平均值. (2)E =BL v 或E =12BL 2ω,主要用来计算感应电动势的瞬时值. 3.判断感应电流方向的两种方法(1)利用右手定则,即根据导体在磁场中做切割磁感线运动的情况进行判断.(2)利用楞次定律,即根据穿过回路的磁通量的变化情况进行判断.4.楞次定律中“阻碍”的四种表现形式(1)阻碍原磁通量的变化——“增反减同”.(2)阻碍相对运动——“来拒去留”.(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”.(4)阻碍原电流的变化(自感现象)——“增反减同”.1-1. (2017·全国卷Ⅲ)如图,在方向垂直于纸面向里的匀强磁场中有一U 形金属导轨,导轨平面与磁场垂直.金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是()A.PQRS中沿顺时针方向,T中沿逆时针方向B.PQRS中沿顺时针方向,T中沿顺时针方向C.PQRS中沿逆时针方向,T中沿逆时针方向D.PQRS中沿逆时针方向,T中沿顺时针方向解析:金属杆PQ向右运动,穿过PQRS的磁通量增加,由楞次定律可知,PQRS中产生逆时针方向的电流.这时因为PQRS中感应电流的作用,依据楞次定律可知,T中产生顺时针方向的感应电流.故只有D项正确.答案:D1-2.现将电池组、滑动变阻器、带铁芯的线圈A、线圈B、电流计及开关按如图所示连接.下列说法中正确的是()A.开关闭合后,线圈A插入或拔出线圈B都会引起电流计指针偏转B.线圈A插入线圈B中后,开关闭合和断开的瞬间电流计指针均不会偏转C.开关闭合后,滑动变阻器的滑片P匀速滑动,会使电流计指针静止在中央零刻度D.开关闭合后,只有滑动变阻器的滑片P加速滑动,电流计指针才能偏转解析:开关闭合后,线圈A插入或拔出线圈B都会引起穿过线圈B的磁通量的变化,从而使电流计指针偏转,选项A正确;线圈A插入线圈B中后,开关闭合和断开的瞬间,线圈B的磁通量会发生变化,电流计指针会偏转,选项B错误;开关闭合后,滑动变阻器的滑片P无论匀速滑动还是加速滑动,都会导致线圈A的电流变化,使线圈B的磁通量变化,电流计指针都会发生偏转,选项C、D错误.答案:A1-3.(多选) (2016·全国甲卷)法拉第圆盘发电机的示意图如图所示,铜圆盘安装在竖直的铜轴上,两铜片P、Q分别与圆盘的边缘和铜轴接触,关于流过电阻R的电流,下列说法正确的是()A .若圆盘转动的角速度恒定,则电流大小恒定B .若从上往下看,圆盘顺时针转动,则电流沿a 到b 的方向流动C .若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D .若圆盘转动的角速度变为原来的2倍,则电流在R 上的热功率也变为原来的2倍解析:由电磁感应定律得E =Bl 0+ωl 2=Bl 2ω2,I =E R,故ω一定时,电流大小恒定,选项A 正确.由右手定则知圆盘中心为等效电源正极,圆盘边缘为负极,电流经外电路从a 经过R 流到b ,选项B 正确;圆盘转动方向不变时,等效电源正负极不变,电流方向不变,故选项C 错误,P =E 2R =B 2l 4ω24R,角速度加倍时功率变成4倍,选项D 错误,故选AB . 答案:AB1-4.(多选)电吉他中电拾音器的基本结构如图所示,磁体附近的金属弦被磁化,因此弦振动时,在线圈中产生感应电流,电流经电路放大后传送到音箱发出声音,下列说法正确的有( )A .选用铜质弦,电吉他仍能正常工作B .取走磁体,电吉他将不能正常工作C .增加线圈匝数可以增大线圈中的感应电动势D .弦振动过程中,线圈中的电流方向不断变化解析:铜质弦为非磁性材料,不能被磁化,选用铜质弦,电吉他不能正常工作,A 项错误;若取走磁体,金属弦不能被磁化,其振动时,不能在线圈中产生感应电动势,电吉他不能正常工作,B 项对;由E =n ΔΦΔt可知,C 项正确;弦振动过程中,穿过线圈的磁通量大小不断变化,由楞次定律可知,线圈中感应电流方向不断变化,D 项正确.答案:BCD高频考点2 电磁感应的图象问题2-1.(多选) (2017·济宁市高三模拟)如图所示,在水平面内有两个光滑金属“V”字型导轨,空间中存在垂直于水平面的匀强磁场,其中导轨bac 固定不动,用外力F 使导轨edf 向右匀速运动,导轨间接触始终良好,从图示位置开始计时,下列关于回路中的电流I 的大小和外力F 的大小随时间的变化关系正确的是( )解析:设导轨运动的过程中切割的有效长度为L ,产生的电动势为E =BL v ,由图知,回路的周长与L 成正比,即S =kL ,设单位长度的电阻为R 0,总电阻为kLR 0,可求电流I =BL v kLR 0=B v kR 0,所以A 正确,B 错误;导轨做匀速运动,所以合外力等于零,即F =F 安=BIL ,电流I 不变,切割的有效长度L 随时间均匀增大,所以C 错误,D 正确.答案:AD2-2. (多选)(2017·第一次全国大联考卷Ⅰ)如图所示,两条足够长的光滑平行金属导轨竖直放置,两导轨上端接有电阻R (其余电阻不计),虚线MM ′和NN ′之间有垂直于导轨平面向外的匀强磁场,磁场的磁感应强度为B 1,虚线NN ′和PP ′之间也有垂直于导轨平面向外的匀强磁场,磁场的磁感应强度为B 2(B 1>B 2).现将质量为m 的金属杆ab ,从MM ′上方某处由静止释放,金属杆在下落的过程中与导轨保持良好接触,且始终保持水平,已知ab 棒到达NN ′和PP ′之前已经匀速运动.则ab 棒从MM ′运动到PP ′这段时间内的v –t 图可能正确的是( )解析:导体棒ab 到MM ′切割磁感线时,若安培力大于重力,导体棒做加速度减小的减速运动,若安培力等于重力,导体棒一直做匀速运动,若安培力小于重力,则做加速度减小的加速运动;当导体棒ab 到NN ′时,由于磁感应强度减小,安培力变小,会小于重力,导体棒做加速度减小的加速运动.可知BC 正确,AD 错误.答案:BC2-3.(多选)(2017·第一次全国大联考卷Ⅰ)如图所示,粗细均匀的矩形金属导体方框abcd 固定于匀强磁场中,磁场方向垂直线圈所在平面,磁感应强度B 随时间t 变化的规律如图所示.以垂直于线圈所在平面向里为磁感应强度B 的正方向,则下列关于ab 边的热功率P 、ab 边受到的安培力F (以向右为正方向)随时间t 变化的图象中正确的是( )解析:根据法拉第电磁感应定律:E =n ΔΦΔt =n ΔB ΔtS 可知,产生的感应电动势大小不变,所以感应电流大小也不变,ab 边热功率P =I 2R ,恒定不变,A 正确,B 错误;根据安培力公式F =BIL ,因为电流大小,ab 边长度不变,安培力与磁感应强度成正比,根据左手定则判定方向,可知C 错误,D 正确.答案:AD2-4.(多选)(2017·全国卷Ⅱ)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1 m 、总电阻为0.005 Ω的正方形导线框abcd 位于纸面内,cd 边与磁场边界平行,如图(a)所示.已知导线框一直向右做匀速直线运动,cd 边于t =0时刻进入磁场.线框中感应电动势随时间变化的图线如图(b)所示(感应电流的方向为顺时针时,感应电动势取正).下列说法正确的是( )A .磁感应强度的大小为0.5 TB .导线框运动速度的大小为0.5 m/sC .磁感应强度的方向垂直于纸面向外D .在t =0.4 s 至t =0.6 s 这段时间内,导线框所受的安培力大小为0.1 N解析:导线框匀速进入磁场时速度v =L t =0.10.2m/s =0.5 m/s ,选项B 正确;由E =BL v ,得B =E L v =0.010.1×0.5T =0.2 T ,选项A 错误;由右手定则可确定磁感应强度方向垂直于纸面向外,选项C 正确;导线框所受安培力F =BLI =BL E R =0.2×0.1×0.010.005N =0.04 N ,选项D 错误.答案:BC电磁感应图象问题解题“五步曲”和解题技巧(1)解题“五步曲” 第一步—明确图象的种类:是B -t 图、I -t 图、v -t 图、F -t 图或是E -t 图等↓第二步—分析电磁感应的具体过程:明确运动分成几个阶段根据磁通量的变化特征或切割特点分析↓第三步—写出函数方程:结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等写出函数方程 ↓第四步—进行数学分析:根据函数方程进行数学分析,例如分析斜率的变化、截距等 ↓ 第五步—得结果:画图象或判断图象(2)应用排除法解决电磁感应中的图象类选择题首先根据物理量大小或方向变化等特点对题中给出的四个图象分类,然后定性地分析电磁感应过程中物理量的变化趋势(增大或减小)、变化快慢,特别是用物理量的方向排除错误选项,最为简捷有效高频考点3 电磁感应中的电路和动力学问题(2017·枣庄模拟)如图(a)所示,平行长直金属导轨水平放置,间距L =0.4 m .导轨右端接有阻值R =1 Ω的电阻.导体棒垂直放置在导轨上,且接触良好,导体棒及导轨电阻均不计,导轨间正方形区域abcd 内有方向竖直向下的匀强磁场,bd 连线与导轨垂直,长度也为L .从0时刻开始,磁感应强度B 的大小随时间t 变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s 后刚好进入磁场,若使棒在导轨上始终以速度v =1 m/s 做直线运动,求:(1)棒进入磁场前,回路中的电动势E ;(2)棒在运动过程中受到的最大安培力F ,以及棒通过三角形abd 区域时电流i 与时间t 的关系式.[审题流程]【解析】 (1)正方形磁场的面积为S ,则S =L 22=0.08 m 2.在棒进入磁场前,回路中的感应电动势是由于磁场的变化而产生的.由B -t 图象可知ΔB Δt=0.5 T/s ,根据 E =n ΔΦΔt,得回路中的感应电动势 E =ΔB ΔtS =0.5×0.08 V =0.04 V . (2)当导体棒通过bd 位置时感应电动势、感应电流最大,导体棒受到的安培力最大.此时感应电动势E ′=BL v =0.5×0.4×1 V =0.2 V回路中感应电流I ′=E ′R =0.21A =0.2 A 导体棒受到的安培力F =BI ′L =0.5×0.2×0.4 N =0.04 N当导体棒通过三角形abd 区域时,导体棒切割磁感线的有效长度l =2v (t -1)(1 s ≤t ≤1.2 s)感应电动势e =Bl v =2B v 2(t -1)=(t -1)V感应电流i =e R=(t -1)A(1 s ≤t ≤1.2 s). 【答案】 (1)0.04 V (2)0.04 N i =(t -1)A(1 s ≤t ≤1.2 s)电磁感应中的力、电问题应抓住的“两个对象”3-1. (2017·天津卷)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R .金属棒ab 与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下.现使磁感应强度随时间均匀减小,ab 始终保持静止,下列说法正确的是( )A .ab 中的感应电流方向由b 到aB .ab 中的感应电流逐渐减小C .ab 所受的安培力保持不变D .ab 所受的静摩擦力逐渐减小解析:A 错:根据楞次定律,ab 中感应电流方向由a 到b .B 错:根据E =ΔB Δt ·S ,因为ΔB Δt恒定,所以E 恒定,根据I =E R +r知,回路中的感应电流恒定.C 错:根据F =BIl ,由于B 减小,安培力F 减小.D 对:根据平衡条件,静摩擦力f =F ,故静摩擦力减小.答案:D3-2.(多选)(2017·第一次全国大联考卷Ⅲ)如图甲所示,一宽为l 的匀强磁场B 区域,磁场方向垂直于纸面向里.一个边长为a (l >a )的正方形导线框ABCD 位于纸面内,以垂直于磁场边界的恒定速度v 通过该磁场区域,导线框电阻为R ,在运动过程中,线框有一条边始终与磁场区域的边界平行.取它刚进入磁场的时刻t =0,线框中感应电流随时间变化的规律I –t 图象如图乙所示,则( )A .在第1 s 内,线框中感应电流为逆时针方向,大小恒定为0.3 AB .在第2 s 内,穿过线框的磁通量最大,感应电流大小恒定为0.6 AC .在第3 s 内,线框中感应电流方向为顺时针方向,大小恒定为0.3 AD .在第1 s 内,线框中C 点电势高于D 点电势,感应电流大小为0解析:在第1 s 内,线框向磁场中运动,穿过线框的磁通量均匀增加,感应电流为逆时针方向(取为正方向),电流大小恒定I =Ba v R=0.3 A ,选项A 正确;在第2 s 内,整个线框在磁场中运动,穿过线框的磁通量最大且不变,没有感应电流,选项B 错误;在第3 s 内,线框从磁场中出来,磁通量均匀减小,感应电流为顺时针方向(为负方向),大小恒定I =Ba v R=0.3 A ,选项C 正确;在第1 s 内,由楞次定律判断出线框中感应电流方向沿逆时针方向,则C 点电势低于D 点电势,选项D 错误.答案:AC高频考点4 应用动力学和能量观点解决电磁感应问题(2017·中原名校联考)如图甲所示,在水平桌面上固定着两根相距L =20 cm 、相互平行的无电阻轨道P 、Q ,轨道一端固定一根电阻r =0.02 Ω的导体棒a ,轨道上横置一根质量m =40 g 、电阻可忽略不计的金属棒b ,两棒相距也为L =20 cm.该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中.开始时,磁感应强度B 0=0.10 T .设棒与轨道间的最大静摩擦力等于滑动摩擦力,g =10 m/s 2.(1)若保持磁感应强度B 0的大小不变,从t =0时刻开始,给b 棒施加一个水平向右的拉力,使它由静止开始做匀加速直线运动.此拉力F 的大小随时间t 变化关系如图乙所示.求b 棒做匀加速运动的加速度及b 棒与导轨间的滑动摩擦力.(2)若从t =0开始,磁感应强度B 随时间t 按图丙中图象所示的规律变化,求在金属棒b 开始运动前,这个装置释放的热量是多少?[审题流程]【解析】 (1)由图象可得到拉力F 与t 的大小随时间变化的函数表达式为F =F 0+ΔFΔt t=0.4+0.1t当b 棒匀加速运动时,根据牛顿第二定律有: F -f -F 安=ma ,F 安=B 0IL I =E r =B 0L v r v =at所以F 安=B 20L 2art联立可解得F =f +ma +B 20L 2art代入数据可解得a =5 m/s 2,f =0.2 N .(2)当磁感应强度均匀增大时,闭合电路中有恒定的感应电流I ,以b 棒为研究对象,它受到的安培力逐渐增大,静摩擦力也随之增大,当磁感应强度增大到b 所受安培力F 与最大静摩擦力f 相等时开始滑动.感应电动势:E =ΔBΔt L 2=0.02 VI =Er=1 A 棒b 将要运动时,有f =B t IL 所以B t =fIL=1 T根据B t =B 0+ΔBΔt t =0.1+0.5t ,得:t =1.8 s回路中产生焦耳热为:Q =I 2rt =12×0.02×1.8 J =0.036 J . 【答案】 (1)5 m/s 2 0.2 N (2)0.036 J巧用流程解决电磁感应、力、电综合问题4-1.(多选)(2017·河南省天一高三联考)如图所示,在匀强磁场的上方有一质量为m 、半径为R 的细导线做成的圆环,圆环的圆心与匀强磁场的上边界的距离为h .将圆环由静止释放,圆环刚进入磁场的瞬间和完全进入磁场的瞬间,速度均为v .已知匀强磁场的磁感应强度为B ,导体圆环的电阻为r ,重力加速度为g ,则下列说法正确的是( )A .圆环刚进入磁场的瞬间,速度v =2g (h -R )B .圆环进入磁场的过程中,电阻产生的热量为2mgRC .圆环进入磁场的过程中,通过导体横截面的电荷量为πBR 2rD .圆环进入磁场的过程做的是匀速直线运动解析:圆环从图示位置开始运动到刚进入磁场时,下落的高度为h -R ,根据自由落体运动的规律得到v 2=2g (h -R ),解得v =2g (h -R ),故选项A 正确;圆环刚进入磁场的瞬间和完全进入磁场的瞬间,速度相等,根据功能关系可以知道重力做的功,大小为2mgR ,故选项B 正确;圆环进入磁场的过程中,通过导体某个横截面的电荷量为q =I ·Δt =E r ·Δt =ΔΦr =B πR 2r ,故选项C 正确;圆环进入磁场的过程中,受到的安培力F =B 2L 2v r ,随有效长度L发生改变,圆环受力不能平衡,因此圆环不可能做匀速直线运动,故选项D 错误.答案:ABC4-2.(2017·第二次全国大联考卷Ⅱ)如图,水平边界的匀强磁场上方5 m 处有一个边长1 m 的正方形导线框从静止开始下落,已知线框质量为1 kg ,电阻为R =10 Ω,磁感应强度为B =1 T ,当线框的cd 边刚进入磁场时(1)求线框中产生的感应电动势大小; (2)求cd 两点间的电势差大小;(3)若线框此时加速度等于0,则线框电阻应该变为多少欧姆. 解析:(1)cd 边刚进入磁场时,线框速度:v =2gh 线框中产生的感应电动势:E =BL v =BL 2gh =10 V(2)此时线框中电流:I =ERcd 切割磁感线相当于电源,cd 两点间的电势差即路端电压:u =I ×34R =7.5 V(3)安培力:F =BIL =B 2L 22ghR根据牛顿第二定律:mg -F =ma由a =0,解得电阻R 满足:R =B 2L 22ghmg =1 Ω答案:(1)10 V (2)7.5 V (3)1 Ω杆+导轨模型杆+导轨模型是电磁感应中的常见模型,选择题和计算题均有考查.该模型以单杆或双杆在导体轨道上做切割磁感线运动为情境,综合考查电路、动力学、功能关系等知识.考生在处理该模型时,要以导体杆切割磁感线的速度为主线,由楞次定律、法拉第电磁感应定律和欧姆定律分析电路中的电流,由牛顿第二定律分析导体杆的加速度及速度变化,由能量守恒分析系统中的功能关系.分析杆+导轨模型要注意两点:一是加速度为零的临界条件对应的力学关系式,二是双导体杆运动时是一根导体杆切割磁感线还是两根杆切割磁感线.单杆+电阻+导轨模型如图所示,相距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面的夹角为θ,N 、Q 两点间接有阻值为R 的电阻.整个装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向下.将质量为m 、阻值也为R 的金属杆cd 垂直放在导轨上,杆cd 由静止释放,下滑距离x 时达到最大速度.重力加速度为g ,导轨电阻不计,杆与导轨接触良好.求:(1)杆cd 下滑的最大加速度和最大速度; (2)上述过程中,杆上产生的热量.[思路点拨] (1)金属杆受重力作用下滑产生感应电动势→产生感应电流→金属杆受安培力→合外力变化→由牛顿第二定律列式分析.(2)金属杆受重力作用下滑→重力势能减少、动能增加、内能增加→由能量守恒定律列式分析.【解析】 (1)设杆cd 下滑到某位置时速度为v ,则杆产生的感应电动势E =BL v ,回路中的感应电流I =ER +R杆所受的安培力F =BIL根据牛顿第二定律有mg sin θ-B 2L 2v2R=ma当速度v =0时,杆的加速度最大,最大加速度a =g sin θ,方向沿导轨平面向下 当杆的加速度a =0时,速度最大,最大速度v m =2mgR sin θB 2L 2,方向沿导轨平面向下.(2)杆cd 从开始运动到达到最大速度过程中,根据能量守恒定律得 mgx sin θ=Q 总+12m v 2m又Q 杆=12Q 总所以Q 杆=12mgx sin θ-m 3g 2R 2sin 2θB 4L 4.【答案】 (1)g sin θ 2mgR sin θB 2L 2 (2)12mgx sin θ-m 3g 2R 2sin θB 4L 4杆+导轨+电阻四种模型双杆+导轨模型(1)如图1所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度为B的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计,导轨间的距离为l ,两根质量均为m 、电阻均为R 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直.在t =0时刻,两杆都处于静止状态.现有一与导轨平行,大小恒为F 的力作用于金属杆甲上,使金属杆在导轨上滑动,试分析金属杆甲、乙的收尾运动情况.(2)如图2所示,两根足够长的固定平行金属导轨位于同一水平面内,导轨上横放着两根导体棒ab 和cd ,构成矩形回路.在整个导轨平面内都有竖直向上的匀强磁场,设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度.若两导体棒在运动中始终不接触,试定性分析两棒的收尾运动情况.[思路点拨] (1)金属杆甲运动产生感应电动势→回路中有感应电流→乙受安培力的作用做加速运动→可求出某时刻回路中的总感应电动势→由牛顿第二定律列式判断.(2)导体棒ab 运动,回路中有感应电流→分析两导体棒的受力情况→分析导体棒的运动情况即可得出结论.【解析】(1)设某时刻甲和乙的速度大小分别为v1和v2,加速度大小分别为a1和a2,受到的安培力大小均为F1,则感应电动势为E=Bl(v1-v2)①感应电流为I=E2R②对甲和乙分别由牛顿第二定律得F-F1=ma1,F1=ma2③当v1-v2=定值(非零),即系统以恒定的加速度运动时,a1=a2④解得a1=a2=F2m⑤可见甲、乙两金属杆最终水平向右做加速度相同的匀加速运动,速度一直增大.(2)ab棒向cd棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,回路中产生感应电流.ab棒受到与运动方向相反的安培力作用做减速运动,cd棒则在安培力作用下做加速运动,在ab棒的速度大于cd棒的速度时,回路中总有感应电流,ab棒继续减速,cd棒继续加速.两棒达到相同速度后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v水平向右做匀速运动.【答案】见解析三大观点解决双杆模型单杆+电容器(或电源)+导轨模型如图1所示,在竖直向下的磁感应强度为B 的匀强磁场中,两根足够长的平行光滑金属轨道MN 、PQ 固定在水平面内,相距为L .一质量为m 的导体棒ab 垂直于MN 、PQ 放在轨道上,与轨道接触良好.轨道和导体棒的电阻均不计.(1)如图2所示,若轨道左端M 、P 间接一电动势为E 、内阻为r 的电源和一阻值为R 的电阻.闭合开关S ,导体棒从静止开始运动.求经过一段时间后,导体棒所能达到的最大速度的大小.(2)如图3所示,若轨道左端M 、P 间接一电容器,电容器的电容为C ,导体棒在水平向右的恒力F 的作用下从静止开始运动.求导体棒运动过程中的加速度的大小.【解析】 (1)闭合开关后,导体棒ab 产生的电动势与电阻R 两端的电压相等时,导体棒ab 达到最大速度v 2,I =E R +r,U =IR ,U =BL v 2解得v 2=ERBL (R +r ).(2)导体棒ab 向右加速运动,在极短时间Δt 内,导体棒的速度变化Δv ,根据加速度的定义a =ΔvΔt,导体棒产生的电动势变化ΔE =BL Δv ,电容器增加的电荷量Δq =C ΔE =CBL Δv根据电流的定义I =ΔqΔt ,解得I =CBLa导体棒ab 受到的安培力F 安=BIL =B 2L 2Ca 根据牛顿第二定律得F -F 安=ma 解得a =Fm +CB 2L 2.【答案】 见解析杆+电容器(或电源)+导轨四种模型。
2018海南省高考压轴卷物理含答案
绝密★启用前2018海南高考压轴卷物 理注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题:本题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在人类对微观世界进行探索的过程中,科学实验起到了非常重要的作用.下列说法符合历史事实的是( ) A .β射线是原子核内一个中子转化成一个质子的过程中产生的 B .贝克勒尔通过对天然放射现象的研究,发现了原子中存在原子核 C .结合能越大,原子核越稳定D .一个核反应过程中,质量亏损为Δm ,该反应所释放的能量为ΔE=21ΔmC 22.做平抛运动的物体初速度大小为v 0,末速度大小为v ,则物体飞行的时间为 ( )A. v -v 0gB. v 2-v 20gC. v 2-v 202gD. v 2-v 20g3.如图所示,三个粗细均匀完全相同的圆木A 、B 、C 堆放在水平地面上,处于静止状态,每个圆木的质量为m ,截面的半径为R ,三个截面圆心连线构成的等腰三角形的顶角∠O 1=120°,若在地面上的两个圆木刚好要滑动,设最大静摩擦力等于滑动摩擦力,不考虑圆木之间的摩擦,重力加速度为g ,则( ) A .圆木间的弹力为12mgB .每个圆木对地面的压力为32mgC .地面上的每个圆木受到地面的作用力为32mgD .地面与圆木间的动摩擦因数为324.我国“蛟龙号”深潜器经过多次试验,终于在2012年6月24日以7 020 m 深度创下世界最新纪录(国外最深不超过6 500 m).预示着可以征服全球99.8%的海底世界.假设在某次试验时,深潜器内的显示屏上显示出了深潜器从水面开始下潜到最后返回水面这10 min内的深度图像(a)和速度图像(b),如图所示,则有( )A.(a)图中h3代表本次下潜的最大深度,应为60 mB.全过程中最大加速度是0.025 m/s2C.超重现象应发生在3-4 min和6-8 min的时间段内D.整个深潜器在8-10 min时间段内机械能守恒5.我国成功发射了“神舟十号”载人飞船,假设飞船绕地球做匀速圆周运动,下列说法正确的是( )A. 飞船的运行速度小于地球的第一宇宙速度B. 若知道飞船运动的周期和轨道半径,再利用万有引力常量,就可算出地球的密度C. 若宇航员从船舱中慢慢“走”出并离开飞船,飞船速率将减小D. 若有两个这样的飞船在同一轨道上,相隔一段距离一前一后沿同一方向绕行,只要后一飞船向后喷气加速,则两飞船一定能实现对接6.图中a、b、c、d为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018高考物理押题 第12提 磁偏转与电偏转
【知识要点】
洛仑兹力与电场力的比较 1、与带电粒子运动状态的关系
带电粒子在电场中所受到的电场力的大小和方向,与其运动状态无关。
但洛伦兹力的大小和方向,则与带电粒子本身运动的速度紧密相关。
2、决定大小的有关因素
电荷在电场中所受到的电场力 F = qE ,与两个因素有关:本身电量的多少和电场的强弱。
运动电荷在磁场中所受到的磁场力,与四个因素有关:本身电量的多少、运动速度 v 的大小、速度 v 的方向与磁感应强度 B 方向间的关系 、磁场的磁感应强度B . 3、方向的区别
电荷所受电场力的方向,一定与电场方向在同一条直线上( 正电荷同向,负电荷反向 ),但洛伦兹力的方向则与磁感应强度的方向垂直。
一.热身训练
例题1.如图所示,在虚线范围内,用场强为E 的匀强电场可使初速度为v 0
的某种正离子偏转θ角.在同样宽度范围内,若改用匀强磁场(方向垂直纸面向外),使该离子通过该区域并使偏转角度也为θ,则磁感应强度为多少?离子穿过电场和磁场的时间之比为多少?
1.B =
0V E cosθ,θ
θsin 二、讲练平台
例题2.某空间存在着一个变化的电场和一个变化的磁场,电场方向向右(如图(a )中由B 到C 的方向),电场变化如图(b)中E -t 图象,磁感应强度变化如图(c )中B-t 图象.在A 点,从t =1 s (即1 s )开始,每隔2 s ,有一个相同的带电粒子(重力不计)沿AB 方向(垂直于
BC )以速度v 射出,恰能击中C 点,若BC AC 2=且粒子在AC 间运动的时间小于1 s ,求
(1)图线上E 0和B 0的比值,磁感应强度B 的方向.
(2)若第1个粒子击中C 点的时刻已知为(1+Δt )s,那么第2个粒子击中C 点的时刻是
多少?
解析:(1)
3400=B E v ,磁场方向垂直纸面向外;(2)第2个粒子击中C 点的时刻为(2+3π·v
d
2) 例题3.(04全国理综)空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为
+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示。
该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直,如图中Q 点箭头所示。
已知P 、Q 间的距离为l 。
若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点。
不计重力。
求:
(1)电场强度的大小。
(2)两种情况中粒子由P 运动到Q 点所经历的时间之差。
解析:(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的
初速度,R 表示圆周的半径,则有 qv 0B=m R v 2
①
由于粒子在Q 点的速度垂直它在p 点时的速度,可知粒子由P 点到Q 点的轨迹为41
圆周,故有
2l R =
②
以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有
qE=ma ③
221E at R =
④
R=v 0t E ⑤
由以上各式,得
m q
lB E 22
= ⑥ (2)因粒子在磁场中由P 点运动到Q 点的轨迹为41
圆周,故运动经历的时间t E 为圆周运动周期T 的41,即有 t E =41
T ⑦
B
E
v (a)
(b)
(c)
a b
而
02v R T π=
⑧
由⑦⑧和①式得
qB m
t E 2π=
⑨
由①⑤ 两式得
qB m
t E =
⑩
qB m
t t E R )
12
(
-=-π
【益智演练】
1、带电粒子以初速度V 0从a 点进入匀强磁场,如图。
运动中经过b 点,oa=ob ,若撤去磁场加一个与y 轴平行的匀强电场,仍以V 0从a 点进入电场,粒子仍能通过b 点,那么电场强度E 与磁感强度B 之比E/B 为( )
A 、V 0
B 、1
C 、2V 0
D 、2
V
2.三个带正电的粒子a 、b 、c (不计重力)以相同动量水平射入正交电磁场中轨迹如图所示,则可知它们的质量ma 、mb 、mc 大小次序为______________,三个粒子中动能增
加的是____________粒子。
(第2题图) (第3题图) 3、如图所示为电视机显像管的偏转线圈的示意图,线圈中心O 处的黑点表示电子枪射出的电子,它的方向由纸内垂直指
向纸外,当偏转线圈中的电流方向如图所示时,电子束应
(C
A.向左偏转
B.向上偏转
C.向下偏转
D.不偏转
4、在图中虚线所围区域内,存在电场强度为E 的匀强电场和磁感应强度为B 的匀强磁场.已知从左方水平射入的电子,穿过这区域时未发生偏转.设电子重力可忽略不计,则在这区域中的E 和B 的方向可能是 ( ) A.E 竖直向上,B 垂直纸面向外 B.E 竖直向上,B 垂直纸面向里
C.E 、B 都沿水平方向,并与电子运行方向相同
D.E 竖直向上,B 竖直向下
5、如图所示.在边界为
、
狭长区域内,匀强磁场的磁感应强度为
,方向垂直纸而
向里,磁场区域宽度为
.电子以不同的速率
从边界
的
处沿垂直磁场方向射入磁场,
入射方向与
的夹角为
.已知电子的质量为 ,带电量为 .为使电子能从另一边界
射出,电子的速率应满足什么条件?(不计重力)
射出。
电子的速率应满足什么条件?(不计重力)
6、如图所示,abcd 是一个正方形的盒子,在cd 边的中点有一小孔e .盒
子中存在着沿ad 方向的匀强电场,场强大小为E .一粒子源不断地从a 处的小孔沿ad 方向向盒内发射相同的带电粒子,粒子的初速度为v 0,经电场作用后恰好从e 处的小孔射出.现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B (图中未画出),粒子仍恰好从e 孔射出.(带电粒子的重力、粒子之间的相互作用力均可忽略). (1)所加的磁场方向如何?
(2)电场强度E 与磁感应强度B 的比值为多大? 解析:(1)垂直纸面向外;(2)
05E
v B
=。