高造斜弧线旋转导向系统
完成-混合旋转导向系统可产生更高造斜率与更平滑的井眼
混合旋转导向系统可产生更高造斜率与更平滑的井眼每个钻井工程师都梦想在更短的时间内——理想的一趟钻内——排除起钻的必要,实现更复杂的井身剖面与更平滑、更连续的井眼。
但是,传统的PDMs (容积式井下马达)和RSS (旋转导向系统)在钻井过程存在局限性。
行业的挑战与需求例如井下马达,能产生可靠的、狗腿度很高的井身剖面。
但是,由于在旋转钻进和滑动钻进中能更换钻杆,导致机械钻速低,井眼扭曲,并增加了卡钻的危险。
另外,相比PDMs ,在高机械钻速下,完全旋转的RSS 能产生更平滑的井眼,减少50%的钻进时间。
但是,传统的RSS 造斜率范围为6-8deg/100ft ,并且钻遇软地层或者有夹层的薄岩层时。
造斜率更低,井径扩大。
为了得到高造斜率下的井身剖面,RSS 用于直井和分支井,但是在造斜点和着陆点之间必须使用马达。
该过程要求至少使用3套井底钻具组合以及多次起钻操作。
为了减少风险,节省钻进时间,降低费用,钻工更倾向于使用质量高并且带有PDM 造斜与旋转功能的RSS 。
为了满足钻进非常规页岩和高难度地层的要求,斯伦贝谢公司开发了驱动射手(PowerDrive Archer )的高造斜率旋转导向系统(RSS )。
在单趟下入中,该系图1通过提高井眼质量和减少扭曲,该系统减少了卡钻的风险,良好的部署了套管、滑套以及完井设备统仅靠马达就能预先形成井身剖面。
通过提高井眼质量和减少扭曲,该系统减少了卡钻的风险,良好的部署了套管、滑套以及完井设备(如图1)。
相比其它RSS 系统,在造斜前,该系统能够实现裸眼侧钻,并且钻进更深,最大限度的扩大油层的暴露面积,提高油气生产潜能。
描述发展与部署高造斜率RSS在导向控制上有突破。
RSS系统自1990年起开始使用,但是RSS系统不能在非常规页岩中产生造斜率范围为8-12deg/100ft的井身剖面。
由于页岩钻井的快速发展,自2007年,斯伦贝谢公司开始开发新型RSS系统解决造斜率的问题。
旋转导向造斜能力工具介绍
旋转导向造斜能力工具介绍
旋转导向造斜能力工具是一种用于油气井钻井过程中的先进设备,它通过精确控制钻头的旋转方向和速度,实现对井眼轨迹的精确控制,从而提高钻井效率和安全性。
这种工具主要由以下几个部分组成:
1. 旋转导向系统:这是旋转导向造斜能力工具的核心部分,主要包括马达、减速器、轴承等部件。
马达负责提供动力,减速器将马达的高速旋转转换为低速高扭矩输出,轴承则承受钻头在钻井过程中产生的各种力和振动。
2. 传感器和控制系统:传感器用于实时监测钻头的位置、速度、振动等信息,将这些信息传输给控制系统。
控制系统根据这些信息,自动调整马达的转速和方向,以实现对钻头运动轨迹的精确控制。
3. 钻头:旋转导向造斜能力工具的钻头通常采用高强度、高耐磨性的材料制成,以保证在高压、高温、高磨蚀性的环境中正常工作。
钻头的形状和结构也经过特殊设计,以提高钻井效率和降低摩阻。
4. 钻井液循环系统:钻井液循环系统负责将钻井液从地面泵入井内,通过钻头喷出,形成高速射流,清洗井底并冷却钻头。
同时,钻井液还可以传递钻头受到的压力和振动,保护井壁稳定。
旋转导向造斜能力工具通过集成先进的旋转导向系统、传感器和控制系统、高性能钻头以及钻井液循环系统,实现了对井眼轨迹的精确控制,大大提高了钻井效率和安全性。
旋转导向系统和地质导向钻井简介
动态推靠式 Power Drive SRD
静态推靠式 Auto Trak RCLS
静态指向式 Geo-pilot
7.1 旋转导向系统简介
三、旋转导向系统的原理
斯伦贝谢公司的PowerDrive系统
7.1 旋转导向系统简介
三、旋转导向系统的原理
哈里伯顿斯派里森公司的Geo-Pilo系统
30' 40' 50' 60' 70' 80' 90' 2000' 年代
滑动导向
7.1 旋转导向系统简介
二、旋转导向钻井的主要优点
• 提高了机械钻速; • 增强了井眼清洁效果; • 增强了井眼轨迹控制精度和
灵活性; • 减少了起下钻次数; • 井眼规则、光滑; • 克服极限位移限制。
7.1 旋转导向系统简介
旋转导向、地质导向钻井简介
• 7.1 旋转导向系统简介 • 7.2 地质导向钻井简介
7.1 旋转导向系统简介
一、导向钻井的发展经过
旋转导向钻井技术是20世纪90年代初期发展起来的 一项钻井新技术,代表了钻井技术发展的最高水平。
LWD
斜 向 器
井 下 马
MWD
弯 外 壳 马
旋 革命性 转 进步
导
达 WLMWD 达 向
7.2 地质导向钻井简介
一、地质导向钻井的仪器系统组成
井下仪器 + 地面系统 + 上位机系地面接口箱
泵冲传感器 计算机
电阻率、伽玛接口箱
打印机
井下仪器串
电阻率短接
脉冲发生器 电子控制短节
电源系统短节 MWD电子测量短节 伽玛测量短节
7.2 地质导向钻井简介
旋转导向造斜能力工具介绍 -回复
旋转导向造斜能力工具介绍-回复什么是旋转导向造斜能力工具?旋转导向造斜能力工具是一种用于在石油和天然气钻井过程中实现井眼偏斜的工具。
它通过旋转方向的改变和摆动的运动来实现钻井井眼倾斜的目标。
这种工具通常由一系列旋转导向工具组成,包括导向翼、模块短节、固定尾节和导向电缆。
旋转导向造斜能力工具的工作原理:1. 导向翼:导向翼通过改变旋转方向来实现井眼的偏斜。
导向翼带有特殊的翼片,当工具旋转时,翼片会向外张开,使整个工具发生摆动运动。
通过控制翼片的摆动程度和空间角度,可以实现井眼的倾斜。
2. 模块短节:模块短节是旋转导向造斜能力工具中的关键部件。
它由多个独立的模块组成,每个模块都配有导向翼和连接机构。
当模块短节暴露在井眼中时,它们可以相互连接,并形成一个稳定的整体。
通过改变短节的数量和排列方式,可以调整井眼的倾斜程度。
3. 固定尾节:固定尾节是连接在模块短节后部的部件。
它通常由金属材料制成,并具有保持整个工具稳定的作用。
固定尾节的特殊形状可以帮助工具在钻进的过程中控制井眼的方向。
4. 导向电缆:导向电缆是连接在旋转导向造斜能力工具上的电器线,在钻进过程中传输控制指令和数据。
导向电缆通过与地面上的控制台通信,使钻井工程师能够实时监控工具的位置和状态,并做出相应的调整。
旋转导向造斜能力工具的应用范围:旋转导向造斜能力工具在石油和天然气钻井工程中具有广泛的应用。
以下是一些常见的应用场景:1. 建立水平井眼:在水平井眼中,旋转导向造斜能力工具可以通过控制翼片的旋转方向和摆动程度来使井眼偏斜,从而实现水平井眼的构建。
这可以提高井眼的排水能力和采油效果。
2. 侧向钻进:旋转导向造斜能力工具可以在垂直井眼中实现侧向钻进。
通过调整导向翼的摆动程度和空间角度,可以将钻头引导到目标油气层的侧向位置,增加钻探范围和采油效率。
3. 水平井段控制:在水平井眼中,旋转导向造斜能力工具可以实现水平段的控制。
通过控制导向翼的旋转和摆动,可以调整井眼的方向和轨迹,使其与目标油气层的位置保持一致。
旋转导向系统
谢谢观看
3.
重要价值
重要价值
旋转导向系统
全球超过40%的定向井采用旋转导向系统钻成,其优势在于能够实时控制井下钻进方向,实现类似于“3D版 贪吃蛇”的钻具运行轨迹调整,从而一趟钻贯穿分布在“三维”区域内的目标地层——甚至可以让直径0.2米的 钻头在0.7米的薄油层中横向或斜向稳定穿行,实现一趟钻“横向”移动1000米的长距离作业。这种精准制导, 对降低开发成本、最大化开发油气田资源具有重要价值。
旋转导向系统
在钻柱旋转钻进时,随钻实时完成导向功能的导向式钻井系统
01 研发历史03 主要源自类目录02 技术特点 04 重要价值
基本信息
旋转导向系统(RSS)是在钻柱旋转钻进时,随钻实时完成导向功能的一种导向式钻井系统,是20世纪90年 代以来定向钻井技术的重大变革。RSS钻进时具有摩阻与扭阻小、钻速高、成本低、建井周期短、井眼轨迹平滑、 易调控并可延长水平段长度等特点,被认为是现代导向钻井技术的发展方向。
研发历史
研发历史
2008年,在“国家863计划”的支持下,中国海油旗下控股公司中海油田服务股份有限公司,开始自主研发 旋转导向钻井和随钻测井两套系统,历经艰辛探索,终于突破技术瓶颈,形成了具备自主知识产权的商标、系统 技术和装备体系。
2014年11月18日,中海油服自主研发的旋转导向钻井和随钻测井系统首次联合完成海上作业。这标志着我 国在油气田钻井、测井尖端技术领域打破了国际垄断,有望大幅降低国内油气田开发成本,并为中海油服参与国 际高端油田技术服务市场竞争增添重量级砝码。
主要分类
主要分类
旋转导向钻井技术简介
WE MUST DO BETTER
㈠、AutoTrak旋Trak是旋转 系统组成: 导向钻井系统的代表产品,它 是基于推靠钻头的偏置原理来 导向的,其可变径稳定器的伸 缩块装在不旋转套筒上, AutoTrak旋转闭环钻井系统由 地面与井下的双向通讯系统( 地面监控计算机、解码系统及 钻井液脉冲信号发生装置)、 导向系统(AutoTrak工具)和 LWD(随钻测井)组成(图l)。
2、工作原理:AutoTrak RClS 工作原理:AutoTrak 系统的井下偏置导向工具由不 旋转外套和旋转心轴两大部分 通过上下轴承连接形成一可相 对转动的结构。 对转动的结构。旋转心轴上接 钻柱,下接钻头, 钻柱,下接钻头,起传递钻压 扭矩和输送钻井液的作用。 、扭矩和输送钻井液的作用。 不旋转外套上设置有井下CPU 不旋转外套上设置有井下CPU 控制部分和支撑翼肋( 、控制部分和支撑翼肋(右图 )。
图2
AutoTrak RCLS结构示意图
WE MUST DO BETTER
导向工具的执行机构有一不旋转导向套,中轴 从导向套中间穿过与钻头连接,带动钻头随钻 柱一起旋转,导向套与中轴通过轴承连接。当 周向均布的三个支撑冀肋分别以不同液压力支 撑于井壁时,将使不旋转外套不随钻柱旋转, 同时,井壁的反作用力将对井下偏置导向工具 产生一个偏置合力。通过控制三个支撑翼肋的 支出液压力的大小,可控制偏置力的大小和方 向,以控制导向钻井。液压力的大小由井下CPU 控制井下控制系统来调整。井下CPU在下井前, 预置了井眼轨迹数据。井下工作时,可将MWD测 量的井眼轨迹信息或LWD测量的地层信息与设计 数据进行对比,自动控制液压力,也可根据接 收到的地面指令调整设计参数,控制液压力, 以实现导向钻进。导向套内还有各种传感器, 可测量井斜角、方位角及工具的工作状态。(右 图是:井下偏置导向工具的导向原理示意图 )
旋转导向工具导向模块部件组成及原理
旋转导向工具导向模块部件组成及原理摘要:本文主要对旋转导向钻井工具研发的关键技术之一导向模块的研究情况作了简要介绍,并对目前导向模块的机械设计结构、供电、通讯、控制系统的工作原理、非接触供电部分的试验设计做了详细的说明,确定了存在的技术难点及下一步我们要主攻的研究方向。
关键词:旋转导向工具导向模块非接触供电电磁感应定向控制一、旋转导向结构旋转导向钻井工具由双向通讯系统、MWD随钻测井系统以及导向系统三部分组成。
导向系统是其主要执行机构,是能否实现定向自动控制的重要部件。
导向头设计结构,如图1所示。
图1:导向头结构图导向头从结构上分为旋转轴和不旋转导向外套两大部分。
旋转轴从导向套中间穿过与钻头连接,带动钻头与钻柱一起旋转,导向套与旋转轴之间镶有金刚石耐磨片的硬质合金滑动轴承,以保证相对转动时产生较小的磨损。
三个可伸缩翼肋布置在导向套中,由地面大控制闭环或地下小控制闭环控制其伸缩量以进行方位和井斜的控制。
二、导向头各部件组成与工作原理(一)导向头各部件组成导向头部分由初级电路模块、非接触供电及通讯模块、次级电路及近钻头井斜工具面测量模块、液压模块等组成。
其中初级电路模块、非接触供电的内套部分和中心轴一起旋转,而非接触供电的外套部分、次级电路及近钻头井斜工具面测量模块、液压模块置于不旋转导向套中。
1.初级电路模块包括信号解调电路、信号与能量载波调制电路。
它用于接收上部泥浆发电机向下传递的电能及地面给出的命令信号给出的轨迹井斜方位信号并经过处理后输出。
再通过信号与能量载波调制电路与命令信号、轨迹井斜方位信号进行相应的调制,输出给非接触供电及通讯模块。
2.非接触供电及通讯模块信号与电能的共同传递还会带来信号调制和双向同步传输能量与信号的问题。
信号调制的关键是如何进行优化调制以达到最小的错码率。
双向同时传输的主要问题是在一条通路上如何进行下传150W交流电能的同时上传控制信号。
这些方面都需要进行深入的理论研究及实验。
新型旋转导向工具在页岩气开发中的应用
4结语
总 而 言之 , 与 国外 先进 技术 相 比较 , 我 国旋 转导 向工具发
还 没有一定 的规 模 , 因此 , 需要各 界专 家进行深入 量 。二是 , 增加 作业效 率 。这 种导 向工具可 以很好 的完成 垂直 展的 比较晚 , 研究 , 并 且借鉴 国外先进 技术 , 结 合我 国实际情 况, 发展符合 国 段、 水 平 段以 及造斜 段 的钻 进 , 最大 限度 的 降低滑 动 钻进 以及 的速率 , 节 约 了钻 进时 间 , 一 般都是 连续 内情况 的具 有知识 产权的新技 术 ,
为 了可 以提 高 页岩 气 开采 的效 率 , 开始 逐渐使 用水平 井 等 , 传 系统 以及 容积 式马达 共 同组成 , 是属 于 周期性 导 向技术 , 也就
统 的旋转 导 向工 具 已经逐渐 不 能满足 发展 的 需求 , 因此 , 就 需 是 可 以使 用随 钻测量 系统 的正脉 冲遥 测设 备在 井 内部 产 生一 要 不 断研 究成 本低 以及效 率高 的新 型旋转 导向 工具 , 促 进 页岩
定的 压力 波动 来实现 周 期性 容积 式马 达的 流量 控制 。在 进行 气开 发 的效 率。 本文 主要研 究 了新 型旋 转导 向工 具在 页岩 气 钻柱旋 转 的时 候 , 马达 外壳 角位 置 与压 力脉 冲是 同步 的 , 从而 开发 中的应用 。 可以 很好 地控 制流体 体 积 , 精确 测量 出 钻头 的速 度 , 也就 是弯
关键 词 : 新 型旋转 导向工具 ; 页岩 气; 水平 井
石油工程技术 旋转导向工具发展概述
旋转导向工具发展概述本文对我国在井眼轨迹控制技术方面取得的进展进行了总结,重点在导向结构、实现功能和应用推广方面做了分析;在总结国外旋转导向工具技术并结合机械工程的新材料新技术发展基础上,提出井眼轨迹控制工具将向复合式工具技术的方向发展,其中工具的心轴、轴承的材料和结构以及工具的智能化研究将是未来的发展方向,而恶劣环境下的井下钻井机器人将是研究的最终目标。
一、国内旋转导向工具发展现状近年来,国内也在积极进行井眼轨迹控制工具即旋转导向技术的研究工作,并在理论研究和原理样机方面取得了较多的研究成果,但距离工业规模化应用还有一定距离。
二、推靠式旋转导向工具目前,国内的动态推靠式旋转导向工具主要以调制式旋转导向工具为主,西安石油大学与中石化胜利钻井工艺研究院合作,研发了调制式旋转导向钻井工具MRST。
整个工具配备了以钻井液为液压介质的液压系统,工具内有上、下涡轮发电机驱动的稳定平台。
该平台在下部电机的电气参数调控作用下,可以在高速旋转工具外壳内独立旋转,调节液压盘阀钻井液分流系统的上盘阀位置,对钻井液分流,在工具内外压差作用下推动翼肋伸缩产生偏置。
工具原理结构如图1所示。
1—上轴承保护器;2—测控稳定平台;3—下轴承保护器;4—液压盘阀分流系统;5—偏置单元;6—钻井液过滤装置;7—下涡轮发电机;8—上涡轮发电机。
图1动态推靠式工具原理结构图国内典型的静态推靠式旋转导向工具主要由驱动轴、不旋转外套、导向机构和密封系统等构成,其中导向机构由可独立伸出或缩回的翼肋和液压缸组成,翼肋在液压缸的作用下产生推靠力。
国内企业或研究单位在该类工具的研发中投入较多,如:中海油研发出了自主的静态推靠式旋转导向钻井系统Welleader,能够实现井斜自动闭环控制,导向力可以实现32级强度和240级方向控制,最大转速180r/min,工具耐温达150℃。
该工具已在渤海湾完成了试验工作,具备了海上作业的能力,实钻造斜率约每30m井段造斜6.5°,但是仍处于初步应用阶段。
斯伦贝谢旋转导向PowerV 原理简介
54 7࣪ ᄝᇕPowerVၮ؏一. PowerV 简介和应用范围旋转导向系统的产品名称,它只是斯伦贝PowerV是斯伦贝谢公司发明的一种旋转导向系统旋转导向系统谢旋转导向系统PowerDrive家族中的一员。
所谓旋转导向系统,是指让钻柱在旋转钻进过程中实现过去只有传统泥浆马达才能实现的准确增斜、稳斜、降斜或者纠方位功能,但相对于泥浆马达,PowerDrive有非常明显的优点,稍后进行比较。
旋转导向系统广泛用于使用泥浆马达进行滑动钻进时比较困难的深井、大斜度井、大位移井、水平井、分枝井(包括鱼刺井),以及易发生粘卡的情况。
二. 旋转导向系统PowerDrive的优点1. 反映和降低了所钻井段的真正狗腿度,使井眼更加平滑。
例如:用泥浆马达打30米井段,滑动钻进15米,转动钻进15米,井斜角增加4度,得到平均狗腿度4度/30米。
实际上,转钻15米井斜角几乎没有变化,这15米的实际狗腿度是零;而4度的井斜角变化是由滑钻15米产生的,这15米的实际狗腿度是8度/30米。
而用PowerV在同一设置下打出的每一米都是同样均匀和平滑的,减少了井眼轨迹的不均匀度,从而减少了在起下钻和钻进过程中钻具实际所受的拉力和扭矩,减少了以后下套管和起下完井管串的难度。
2. 使用PowerV钻出的井径很规则。
而使用传统泥浆马达在滑动井段的井径扩大很多,而转动井段的井径基本不扩大。
这种井径的忽大忽小为是井下事故的隐患,也不利于固井时水泥量的计算。
3. 由于PowerV钻具组合中的所有部分都在不停的旋转,大大降低了卡钻的机会。
而使用传统泥浆马达在滑动钻进时除钻头外,其它钻具始终贴在下井壁上,容易造成卡钻。
4. 在钻进过程中,由于PowerV组合中的所有钻具都在旋转,这有利于岩屑的搬移,大大减少了形成岩屑床的机会,从而更好的清洁井眼。
这对于大斜度井、大位移井、水平井意义很大。
5. 由于PowerV钻具组合一直在旋转,特别有利于水平井、大斜度井和3000米以下深井中钻压的传递,可以使用更高的钻压和转盘转速,有利于提高机械钻速。
旋转导向系统介绍
旋转导向系统介绍一、概述随着科学技术的发展,石油钻井的勘探仪器的信息化、自动化有了长远的进步,从20世纪80年代后期,在国际上开始研究旋转导向钻井技术,到90年代初期多家公司形成了商业化技术并最终实现了信息化和自动化钻井,旋转导向钻井技术作为目前发展的前沿钻井技术之一,代表着世界钻井技术发展的最高水平。
旋转导向钻井技术可以自动、灵活地调整井斜和方位,大大提高钻井速度和钻井安全性,精确控制井眼轨迹,完全适合目前开发特殊油藏的超深井、高难定向井、水平井、大位移井、智能井等特殊工艺井导向钻井的需要,极大的降低了石油勘探、钻井的成本。
目前该项技术主要被斯伦贝谢、贝克休斯和哈里伯顿公司所垄断,而国内旋转钻井技术仅处于初级阶段,未实现商业化。
二、系统组成1-固定钻铤 2-悬挂脉冲器 3-电池短节 4-测斜探管 5-无磁钻铤 6-无线接收短节7-无线发射短节 8-转换接头 9-旋转导向工具 10-钻头旋转导向钻井系统实质上是一个井下闭环变径稳定器与测量传输仪器(MWD/LWD)联合组成的工具系统。
同时配有地面—井下双向通讯系统,可根据井下传来的数据,在不起钻的情况下从地面发出指令改变井眼轨迹。
旋转自动导向闭环钻井系统包括由井下导向工具、MWD系统、地面监控系统组成,实现了全井闭环控制的双向通讯。
1. 井下导向工具导向工具采用推靠式,外壳不旋转,三个支腿(支撑力不低于2.5t)可独立控制;导向工具采用涡轮发电机供电(功率400-500W),发电机的交流电进行整流后,一部分为导向工具主控电路供电,另一部分再逆变为交流电通过无线方式传输到外壳中的执行电路;导向工具需要计算自身井斜及高边,以便控制支腿,停泵再开泵后,各支腿恢复到停泵前的状态;导向工具通过无线发射短节及无线接收短节向MWD系统索取仪器的方位信息后,根据地面指令调整三个支腿的收缩状态以实现导向功能。
2. MWD系统MWD系统通过脉冲器将测斜数据上传的同时,需要根据井下导向工具要求将导向信息同时上传到地面,并为井下导向工具提供仪器的方位参数以便于导向工具调整支腿状态。
国内外七大公司旋转导向技术盘点
贪吃蛇技术哪家强?国内外七大公司旋转导向技术盘点旋转导向钻井技术已经逐渐成为定向井、水平井钻井的主要工具,但主流技术依然以国外油服产品为主。
在多年持续攻关下,国产自主创新技术现已取得多项重大突破,国内外技术差距正在逐步缩小。
当前,油气勘探开发过程正面临的挑战日益严峻。
在资源品质劣质化、勘探目标多元化、开发对象复杂化等愈发恶劣的勘探开发大环境下,我国油气勘探开发领域正在由常规油气资源向“三低”、深层及超深层、深水及超深水等非常规资源拓展。
而作为油气资源勘探开发过程中的关键环节,现有的钻井技术在应对上述挑战时却略显勉强。
中石油经研院石油科技研究所总结出了“未来10年极具发展潜力的20项油气勘探开发新技术”(点击查看:颠覆传统!未来十年这些油气勘探开发新技术最具潜力),其中,“智能钻井技术”位列其中。
未来的智能钻井主要由智能钻机、智能导向钻井系统、现场智能控制平台、远程智能控制中心组成。
智能导向钻井系统主要利用随钻数据的实时获取、传输与处理,通过井下控制元件对钻进方向进行智能调控,从而提高钻井效率和储层钻遇率。
作为页岩气开发的“芯片”式技术,旋转导向钻井尚且年轻,但实际上从上世纪90年代起,国际各大油服公司便相继实现了旋转导向系统的现场应用。
经过20余年的技术发展,油服巨头均取得了阶段性进展,并形成了各自的核心技术体系(点击查看:五大油服的旋转导向系统大比拼)。
目前的主流旋转导向技术主要来自几大国际油服巨头,并基本形成了两大发展方向:一是以贝克休斯AutoTrak系统为代表的不旋转外筒式闭环自动导向钻井系统,这类系统以精确的轨迹控制和完善的地质导向技术为特点,适用于开发难度高的特殊油藏导向钻井作业;二是以斯伦贝谢PowerDrive系统为代表的全旋转自动导向钻井系统,这类系统以同样精确的轨迹控制和特有的位移延伸钻井能力为特点,适用于超深、边缘油藏的开发方案中的深井、大位移井的导向钻井作业。
01. 各大油服核心技术对比大宗商品价格暴跌给服务公司的定价和付款时间表带来了下行压力。
AutoTrak Curve 旋转导向系统
5°/ 30m 常规RSS
15°/ 30m
3 © 2013 Baker Hughes Incorporated. All Rights Reserved.
致力于非常规能源钻井,让每趟钻更平滑、更省时
井轨更光滑、钻速更快
精确导向
保证准确命中靶点
4 © 2012 Baker Hughes Incorporated. All Rights Reserved. 34882
新一代 旋转导向钻井系统:AutoTrak Curve ™
常规钻井马达
脉冲器/ 发电机
特点
MWD
方位伽玛
技术效益
近钻头井斜
导向头
增斜能力 15° / 30m 近钻头井斜和方位伽玛
可用一套BHA完成增斜段和水平段 精确的井眼几何和地质定位
一体化的钻具组合
最大限度地不占用钻机时间
更坚固的设计、 更简单的电子组件
不同点3:源于AutoTrak
• 最大造斜率15°/100’ • 耐受大颗粒泥浆堵漏剂 • 提供近钻头自然伽马测井 • 可选择停泵测斜 • 可以与普通马达配合使用 • 与休斯钻头一体化使用
泥浆脉冲/供电
井斜、方位测量
8 (C) 2011, Baker Hughes Incorporated
近钻头自然伽马
近钻头井斜
导向单元
不同点4:Baker Hughes技术
• 导向系统的衬套转速更慢 • 与休斯钻头一体化使用 • 进尺显著提高 • 井眼更平滑,轨迹更精确
9 © 2012 Baker Hughes Incorporated. All Rights Reserved. 34882
数据: 工具时间和进尺
时间
旋转导向技术的发展及其在沙特阿美市场上的应用
旋转导向技术的发展及其在沙特阿美市场上的应用旋转导向钻井技术是现代导向钻井技术的发展方向,本文叙述了旋转导向技术的产生背景,发展历程和技术原理及系统组成。
近年来国内钻井技术团队与沙特阿美开展全方位的合作,中国旋转导向技术得到了沙特阿美公司的高度认可,成为中国钻井技术在中东地区抢占高端技术研发制高点。
标签:旋转导向技术;钻井技术;沙特阿美近年来,为满足实际油气田勘探开发的需要,需要在钻井井眼轨迹控制上不断创新和优化,尤其是在水平井、大位移井、水平分支井、薄油层水平井等方面,所以钻井工具所面临的地层条件日益复杂,为达到提高产能的目的,就需要切实在井眼轨迹控制职工加强旋转导向钻井技术的应用,其自上世纪问世以来,得到了不断的发展,国家也为之加大了投入力度,使得旋转导向钻井技术水平得到了有效的提升,尤其是在關键技术方面取得了一定的帮助。
1 旋转导向钻井技术发展背景新产生的一系列定向钻井新技术提高了定向钻井的效率。
应用比例逐年增加的普通定向井是目前的一种常规技术。
因为水平井和分段压裂技术的进步使页岩气革命风潮继续在全球范围内产生影响,水平井和定向井钻井的工作量也因为非常规资源开发和老油田挖潜的继续推动而增加。
为了满足不同油藏在开发过程中的需求,国外在多分支井钻井技术上实现了系列化和标准化。
并且降低了勘探开发成本及提高采收率。
多分支井根据国际上不同的程度及结构被分为6个等级。
目前其中6级分支井技术以其压力完整性、液力封隔性和可选择性再进入的特点等广泛应用于美国煤层气的开采。
钻井的井眼轨迹随着近年来向深部、复杂地层勘探的发展,以及非常规油气的开发比如低渗油藏、页岩气、煤层气等被提出了很多新的要求,尤其是大位移钻井、水平井、薄油层钻水平井、水平分支井技术等。
越来越复杂的井眼轨迹要求被提出来了希望获得更大的产能,暴露更多的储层,为了提高钻井效率、降低昂贵的钻井成本和减少钻井井下作业的各种风险,旋转导向技术在钻井行业应运而生。
旋转导向测斜系统的研究
旋转导向测斜系统的研究随着现代科学技术的不断进步,各种精密仪器的应用越来越广泛。
而在石油工业中,为了确保钻井作业的安全和实现高效,需要应用各种测井技术,为此,旋转导向测斜系统应运而生。
旋转导向测斜系统是一种利用陀螺仪、测斜仪、方向传感器等多种传感器测量井眼轨迹参数的设备。
旋转导向测斜系统的研究将会从以下几个方面进行阐述。
1. 系统原理旋转导向测斜系统的主体是由陀螺仪、测斜仪和方向传感器组成的。
其中,陀螺仪是用来定位系统位置的,它能够通过测量系统的角度变化和旋转速度,来推算井下设备移动的轨迹和位置。
而测斜仪和方向传感器则是用来测量井眼的倾斜角度和方向。
系统的整个信息传递过程都是通过数据线传输到地面的电脑终端上,通过专门的软件处理,来实现对井眼轨迹的精准测量和分析。
2. 技术难点旋转导向测斜系统的研究必须要克服以下几个技术难点。
(1)计算误差问题:陀螺仪在进行位置定位时,会受到很多因素的影响,例如未知外力干扰等。
这些因素都会导致测量误差,因此,需要采用合适的数学模型和计算方法,来填补误差造成的空缺。
(2)数据传输问题:井下环境非常恶劣,数据传输存在严重的干扰和噪声,因此需要采用可靠的通讯技术,来实现数据的无线传输。
(3)修复问题:在实际应用中,可能会出现系统硬件损坏或呈现故障状态,这时需要在最短时间内对设备进行修复,避免影响钻井作业的进行。
3. 应用场景旋转导向测斜系统的应用范围非常广泛。
一般来说,它主要应用于以下场景。
(1)定向钻井:在地质勘探和采油过程中,需要通过定向钻井技术来实现井眼轨迹的控制和调整,旋转导向测斜系统就可以发挥重要作用。
(2)水平井钻进:水平井钻进是提高采油效率的一种技术手段,旋转导向测斜系统可以帮助实现水平井的准确钻进。
(3)井壁评价:测量井壁的物性参数,对于钻井安全和钻进效率的提高有着重要的作用,旋转导向测斜系统可以通过对井壁倾斜度和方向的测量,为井壁评价提供准确数据。
4. 优化方向为提高旋转导向测斜系统的测量精度和稳定性,需要在以下几个方向进行优化。
国内外七大公司旋转导向技术盘点
贪吃蛇技术哪家强?国内外七大公司旋转导向技术盘点旋转导向钻井技术已经逐渐成为定向井、水平井钻井的主要工具,但主流技术依然以国外油服产品为主。
在多年持续攻关下,国产自主创新技术现已取得多项重大突破,国内外技术差距正在逐步缩小。
当前,油气勘探开发过程正面临的挑战日益严峻。
在资源品质劣质化、勘探目标多元化、开发对象复杂化等愈发恶劣的勘探开发大环境下,我国油气勘探开发领域正在由常规油气资源向“三低”、深层及超深层、深水及超深水等非常规资源拓展。
而作为油气资源勘探开发过程中的关键环节,现有的钻井技术在应对上述挑战时却略显勉强。
中石油经研院石油科技研究所总结出了“未来10年极具发展潜力的20项油气勘探开发新技术”(点击查看:颠覆传统!未来十年这些油气勘探开发新技术最具潜力),其中,“智能钻井技术”位列其中。
未来的智能钻井主要由智能钻机、智能导向钻井系统、现场智能控制平台、远程智能控制中心组成。
智能导向钻井系统主要利用随钻数据的实时获取、传输与处理,通过井下控制元件对钻进方向进行智能调控,从而提高钻井效率和储层钻遇率。
作为页岩气开发的“芯片”式技术,旋转导向钻井尚且年轻,但实际上从上世纪90年代起,国际各大油服公司便相继实现了旋转导向系统的现场应用。
经过20余年的技术发展,油服巨头均取得了阶段性进展,并形成了各自的核心技术体系(点击查看:五大油服的旋转导向系统大比拼)。
目前的主流旋转导向技术主要来自几大国际油服巨头,并基本形成了两大发展方向:一是以贝克休斯AutoTrak系统为代表的不旋转外筒式闭环自动导向钻井系统,这类系统以精确的轨迹控制和完善的地质导向技术为特点,适用于开发难度高的特殊油藏导向钻井作业;二是以斯伦贝谢PowerDrive系统为代表的全旋转自动导向钻井系统,这类系统以同样精确的轨迹控制和特有的位移延伸钻井能力为特点,适用于超深、边缘油藏的开发方案中的深井、大位移井的导向钻井作业。
01. 各大油服核心技术对比大宗商品价格暴跌给服务公司的定价和付款时间表带来了下行压力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
稳定性及效益表现 1.在实验条件下单次循环可达1000小时无故障; 2.投入市场后在22个月里共钻进300万英尺(914400m),并 不断增长; 3.超过470口井得以成功运用;
4.累计节省作业时间超过25个月;
5.在部分井中,效率可以提高60%; 6.累计为客户节省超过5800万美元。
实例
在Lee County,Texas,鹰滩页岩开发项目中,三段式8-1/2开发井使用
弧线旋转导向系统(AutoTrak Curve RSS)
常规旋转导向系统在钻进过程中,具有井壁光滑,提 高机械效率,便于后期完井作业等作用。 基于AutoTrak 技术的新一代弧线旋转导向系统 AutoTrak Curve RSS,在具有常规导向系统的功能外还具 有自己的新特点。
弧线旋转导向系统的特点
工具一到井场可以立即使用而不需要现场编程。 (4)同时也可以和普通马达配合使用,对大颗粒的堵漏 材料的耐受能力强。
(5)导向系统的衬套选装旋 转更加缓慢,能够有效减小扭 转振动。 (6)可以与休斯钻头一体化使用,进尺显著,井轨迹更加
光滑精确,有效减少摩阻以及 卡钻的风险,便于后期完井作 业。
4.相比常规导向马达和旋转导向系统,具有更高的工作效 率 。
AutoTrak Curve 旋转导向系统+马达+PDC钻头钻具组合,相比其他BHA平 均每口井节省了7.3天。同时造斜效率提高50%,低于24小时起钻无事故。 在整个钻进过程中实现了一套工具完钻的成绩。下图该项目施工井效率对 比
常规导向系统 钻具组合
使用AutoTrak Curve RSS钻具组 合
1 更高的造斜率
(1)相比常规旋转导向系统的造斜率一般为(8°10°)/30m最大造斜率可达 15°/30m,使造斜段更深, 增长储层段部分,经济效益更高。 (2)高造斜率可以在单趟作业的情况下更为有效地实 现竖直井段-造斜段-水平段。实现快速着陆,减少施工
周期,避免潜在风险,提高作业效率。
造斜 更深
弧线旋转导向系统的特点
3.操作更加简便,工作更加安全,效益更高 (1)既可以通过泵控制装置手动对井下工具快速发送指 令,也可以通过地面发送指令系统灵活地进行操作。 (2)同时可以选择性的安装电池,即使在接立柱(或者 单根)也可以进行停泵测斜,提高作业效率。 (3)工具结实,单块式设计,电子元件相对减少确保稳 定性,在作业中可以减少钻井趟数,降低起下钻潜在风险。
储层段更长
节约施工作业时间,提高有效钻遇率,提高经济效益
弧线旋转导向系统的特点
2.更精确的井轨迹控制能力 在地面上能够精确控制钻具,即使在薄层也能严格地按 照设计钻进,同时也可以快速改变轨迹以钻至更优的目的 层。工作中的实时方位伽马和近钻头井斜使地质导向更加 有效,提高识别地层的敏感性,确保在目的层段(例如 “甜点”构造)。