结构化学课件第七章.
合集下载
《结构化学》课件
《结构化学》ppt课件
contents
目录
• 结构化学简介 • 原子结构与性质 • 分子的电子结构与性质 • 晶体结构与性质 • 结构化学实验结构化学的定义
总结词
结构化学是一门研究物质结构与 性质之间关系的科学。
详细描述
结构化学主要研究原子的排列方 式、电子分布和分子间的相互作 用,以揭示物质的基本性质和行 为。
晶体的电导率、热导率等性质取决于其内 部结构,不同晶体在这些方面表现出不同 的特性。
晶体的力学性质
晶体材料的应用
晶体的硬度、韧性等力学性质与其内部原 子排列密切相关,这些性质决定了晶体在 不同工程领域的应用价值。
晶体材料广泛应用于电子、光学、激光、 半导体等领域,如单晶硅、宝石等。了解 晶体的性质是实现这些应用的关键。
分子的选择性
分子的选择性是指分子在化学反应中对反应物的选择性和对产物的选择性。选择性强的分 子可以在特定条件下优先与某些反应物发生反应,产生特定的产物。
04
晶体结构与性质
晶体结构的基础知识
晶体定义与分类
晶体是由原子、分子或离子在空 间按一定规律重复排列形成的固 体物质。根据晶体内部原子、分 子或离子的排列方式,晶体可分 为七大晶系和14种空间点阵。
电子显微镜技术
• 总结词:分辨率和应用 • 电子显微镜技术是一种利用电子显微镜来观察样品的技术。相比光学显微镜,
电子显微镜具有更高的分辨率和更大的放大倍数,因此可以观察更细微的结构 和组分。 • 电子显微镜技术的分辨率一般在0.1~0.2nm左右,远高于光学显微镜的分辨 率(约200nm)。因此,电子显微镜可以观察到更小的晶体结构、病毒、蛋 白质等细微结构。 • 电子显微镜技术的应用范围很广,例如在生物学领域中,可以用于观察细胞、 病毒、蛋白质等生物样品的结构和形态;在环境科学领域中,可以用于观察污 染物的分布和形态;在材料科学领域中,可以用于观察金属、陶瓷、高分子等 材料的表面和断口形貌等。
contents
目录
• 结构化学简介 • 原子结构与性质 • 分子的电子结构与性质 • 晶体结构与性质 • 结构化学实验结构化学的定义
总结词
结构化学是一门研究物质结构与 性质之间关系的科学。
详细描述
结构化学主要研究原子的排列方 式、电子分布和分子间的相互作 用,以揭示物质的基本性质和行 为。
晶体的电导率、热导率等性质取决于其内 部结构,不同晶体在这些方面表现出不同 的特性。
晶体的力学性质
晶体材料的应用
晶体的硬度、韧性等力学性质与其内部原 子排列密切相关,这些性质决定了晶体在 不同工程领域的应用价值。
晶体材料广泛应用于电子、光学、激光、 半导体等领域,如单晶硅、宝石等。了解 晶体的性质是实现这些应用的关键。
分子的选择性
分子的选择性是指分子在化学反应中对反应物的选择性和对产物的选择性。选择性强的分 子可以在特定条件下优先与某些反应物发生反应,产生特定的产物。
04
晶体结构与性质
晶体结构的基础知识
晶体定义与分类
晶体是由原子、分子或离子在空 间按一定规律重复排列形成的固 体物质。根据晶体内部原子、分 子或离子的排列方式,晶体可分 为七大晶系和14种空间点阵。
电子显微镜技术
• 总结词:分辨率和应用 • 电子显微镜技术是一种利用电子显微镜来观察样品的技术。相比光学显微镜,
电子显微镜具有更高的分辨率和更大的放大倍数,因此可以观察更细微的结构 和组分。 • 电子显微镜技术的分辨率一般在0.1~0.2nm左右,远高于光学显微镜的分辨 率(约200nm)。因此,电子显微镜可以观察到更小的晶体结构、病毒、蛋 白质等细微结构。 • 电子显微镜技术的应用范围很广,例如在生物学领域中,可以用于观察细胞、 病毒、蛋白质等生物样品的结构和形态;在环境科学领域中,可以用于观察污 染物的分布和形态;在材料科学领域中,可以用于观察金属、陶瓷、高分子等 材料的表面和断口形貌等。
结构化学(共10张PPT)
化学物理
物理化学
化学键
结构与化学键
原子轨道 电
分子轨道
子 因
成键力 素
分子、晶体的立体结构
键 键 对 连原 角 长 称 接子
性 形间 式
几何因素
结构化学的核心问题
子力学理论
周公度《结构化学习基础题解析》(第四版),北京大学出版社
分子结构的化学键理论 学习过程中,正确理解和处理好模型、概念、方法、结论之间的关系。
实际意义。然后再去研究中间的推导过程,不要迷失
在繁复的数学处理中。
4 教材及主要参考
1.周公度《结构化学基础》(第四版),北京大学 出版社, 2.周公度《结构化学习基础题解析》(第四版),北 京大学出版社 3.东北师范大学等 《结构化学》,高等教育出 版社,2003 4.徐光宪《物质结构》(第二版),科学出版社,
晶体结构的点阵理论
电子结构; 几何结构 周公度《结构化学习基础题解析》(第四版),北京大学出版社
分子、晶体的立体结构
一条主线: 结构-性质-应用
结构化学课程的特点
抽象性(微观理论,结构实验)
综合性(学科交叉,数理方程,现代实验)
开放性(新理论,新方法,内容的拓展)
3 结构化学的学习方法
学习过程中,正确理解和处理好模型、概念、
东北师范大学等 《结构化学》,高等教育出版社,2003
综合性(学科交叉,数理方程,现代实验)
晶体结构的点阵理论 分子、晶体的立体结构
抽象性(微观理论,结构实验)
晶体结构的点阵理论
抽象性(微观理论,结构实验)
分子结构的化学键理论
两个要素: 晶体结构的点阵理论
周公度《结构化学习基础题解析》(第四版),北京大学出版社 分子结构的化学键理论
物理化学
化学键
结构与化学键
原子轨道 电
分子轨道
子 因
成键力 素
分子、晶体的立体结构
键 键 对 连原 角 长 称 接子
性 形间 式
几何因素
结构化学的核心问题
子力学理论
周公度《结构化学习基础题解析》(第四版),北京大学出版社
分子结构的化学键理论 学习过程中,正确理解和处理好模型、概念、方法、结论之间的关系。
实际意义。然后再去研究中间的推导过程,不要迷失
在繁复的数学处理中。
4 教材及主要参考
1.周公度《结构化学基础》(第四版),北京大学 出版社, 2.周公度《结构化学习基础题解析》(第四版),北 京大学出版社 3.东北师范大学等 《结构化学》,高等教育出 版社,2003 4.徐光宪《物质结构》(第二版),科学出版社,
晶体结构的点阵理论
电子结构; 几何结构 周公度《结构化学习基础题解析》(第四版),北京大学出版社
分子、晶体的立体结构
一条主线: 结构-性质-应用
结构化学课程的特点
抽象性(微观理论,结构实验)
综合性(学科交叉,数理方程,现代实验)
开放性(新理论,新方法,内容的拓展)
3 结构化学的学习方法
学习过程中,正确理解和处理好模型、概念、
东北师范大学等 《结构化学》,高等教育出版社,2003
综合性(学科交叉,数理方程,现代实验)
晶体结构的点阵理论 分子、晶体的立体结构
抽象性(微观理论,结构实验)
晶体结构的点阵理论
抽象性(微观理论,结构实验)
分子结构的化学键理论
两个要素: 晶体结构的点阵理论
周公度《结构化学习基础题解析》(第四版),北京大学出版社 分子结构的化学键理论
第七章分子动力学和 - 南开大学结构化学精品课程网站 孙宏伟
《量子化学与分子力学/分子模拟》 第七章 分子动力学和Monte Carlo模拟
•
Nankai University
3. 动力学数据回放
• • • • • 打开p6-md.hin,系统提示如右 Compute选择Molecular Dynamics 选playback 按Proceed开始回放 如按Sanpshots, 可选择回放的时间范围(如二 者一致则选定某个时间) 动力学模拟时已存有p6-md.csv,记录的是 各时间下的Ekin, Epot Etot,可直接用来画图 如需要监视动力学过程中键长(距离)、键角 等的变化,可选择相应原子,SelectName Selection, “Other”填上名字如L1 Compute选择Molecular Dynamics 选playback,Average,将L1纳入平均的数据 按Proceed开始回放,结束后p6-md.csv中有 需要的数据 《量子化学与分子力学/分子模拟》
7.1.5 实例1 多肽的动力学
1. 构建多肽,优化
• • • • • • • 选择AMBER力场 Database选择Amino Acids 选Beta Sheet, 单击Ser六次,构建六肽 Database选择Make Zwitterion添加端 基,构建六肽两性离子 Compute选择Geometry Optimization 优化结束,E=166.20 kcal/mol 保存为p6.hin
Nankai University
《量子化学与分子力学/分子模拟》 第七章 分子动力学和Monte Carlo模拟
MD 淬火动力学构象搜索 1. 选择力场,构建分子 2. 设置分子动力学参数 3. 设置保存的文件(Snapshots) 4. 设置监视的内容 5. 开始运行,监视内容保存为CSV文件。 6. 运行结束,使用回放功能(playback)观看结果 7. 选择储存的数据进行优化。 8. 总结结果。
•
Nankai University
3. 动力学数据回放
• • • • • 打开p6-md.hin,系统提示如右 Compute选择Molecular Dynamics 选playback 按Proceed开始回放 如按Sanpshots, 可选择回放的时间范围(如二 者一致则选定某个时间) 动力学模拟时已存有p6-md.csv,记录的是 各时间下的Ekin, Epot Etot,可直接用来画图 如需要监视动力学过程中键长(距离)、键角 等的变化,可选择相应原子,SelectName Selection, “Other”填上名字如L1 Compute选择Molecular Dynamics 选playback,Average,将L1纳入平均的数据 按Proceed开始回放,结束后p6-md.csv中有 需要的数据 《量子化学与分子力学/分子模拟》
7.1.5 实例1 多肽的动力学
1. 构建多肽,优化
• • • • • • • 选择AMBER力场 Database选择Amino Acids 选Beta Sheet, 单击Ser六次,构建六肽 Database选择Make Zwitterion添加端 基,构建六肽两性离子 Compute选择Geometry Optimization 优化结束,E=166.20 kcal/mol 保存为p6.hin
Nankai University
《量子化学与分子力学/分子模拟》 第七章 分子动力学和Monte Carlo模拟
MD 淬火动力学构象搜索 1. 选择力场,构建分子 2. 设置分子动力学参数 3. 设置保存的文件(Snapshots) 4. 设置监视的内容 5. 开始运行,监视内容保存为CSV文件。 6. 运行结束,使用回放功能(playback)观看结果 7. 选择储存的数据进行优化。 8. 总结结果。
结构化学 课件 第七章
OP矢量r=ua+vb+wc=3a+2b+3c, 所以,P点阵点指标为323
直线点阵指标 [uvw]
OQ矢量 r =ua+vb+wc=1a+2b+1c, 直线点阵MN与OQ平行或重合,所以,MN直线点阵指标为[121]
平面点阵指标(h*k*l* )
(h*k*l*)=(010)
(111)晶面
相互平行的一族平面点阵, 其(h*k*l*)相同:
矩形框中内容为一个结构基元,可抽象为一个点阵点.安 放点阵点的位置是任意的,但必须保持一致,这就得到点阵:
三维周期性结构与空间点阵
下列晶体结构如何抽象成点阵?
Mn
(简单立方)
Li Na K Cr Mo W…
(体心立方)
以上每一个原子都是一个结构基元,都可以抽象成一个点阵点.
例:Ni Pd Pt Cu Ag Au ……
净含一个点阵点的平面格子是素格子,多于一个点 阵点者是复格子;平面素格子、复格子的取法都有 无限多种. 所以需要规定一种 “正当平面格子”标准.
正当平面格子的标准
1. 平行四边形 2. 对称性尽可能高 3. 含点阵点尽可能少 平面格子净含点阵点数:顶点为1/4;棱心为 1/2;格内为1. 正当平面格子有4种形状,5种型式(其中矩 形有带心与不带心两种型式):
面心立方是一种常见 的金属晶体结构,其 中每个原子都是一个 结构基元,都可被抽 象成一个点阵点.
CsCl型晶体结构
CsCl型晶体中A、B是不同的原子,不能都被抽象为点阵 点. 否则,将得到错误的体心立方点阵!这是一种常见的错误:
体心立方虽不违反点阵定义,却不是CsCl型晶体的点阵! 试将此所谓的“点阵”放回晶体,按“点阵”上所示的矢量,对 晶体中的原子平移,原子A与B将互换,晶体不能复原!
结构化学 第7章:晶体结构与性质2 英文课件
Point groups
Point groups are a way of classifying molecules in terms of their internal symmetry. Molecules can have many symmetry operations that result into indistinguishable configurations. Different collections of symmetry operations are organized into groups. These 11 groups were developed by Schoenflies.
2. vertical (v) if it contains the principal axis. Examples: ammonia, with the plane going through one H atom. Ammonia has three v axes.
3. dihedral (d) if it bisects angles formed by C2 axes. Example: staggered ethane. The principal axis is a C3 axis going through the
Linear molecules have a C containing the molecular axis. The principal axis is the axis of rotation of highest order.
6
Reflection and symmetry plane
Reflection in the xz plane transforms x,y,z into x,-y,z.
(完整版)结构化学 第七章
D16 2h
p
21 n
21 m
21 aC 52hP21 c空间群属单斜晶系
7个晶系
14种空间点阵型式 32个点群(宏观对称性) 230个空间群(微观对称性)
§7.4 晶体的X射线衍射
当X射线与原子中束缚较紧的内层电子相撞时,光子把能 量全部转给电子,电子将在其平衡位置发生受迫振动, 不断被加速或被减速,而且振动频度与入射X射线的相同。 这个电子本身又变成了一个新电磁波源,向四周辐射电 磁波,形成X射线波。这些散射波之间符合振动方向相同, 频率相同,位相差恒定的光的干涉条件, 可以发生干涉 作用,故称之为相干散射。
金刚石滑移面(d)与对角线滑移面(n)的滑移方向相同, 只是 滑移量不同而已。
1/2a
++
+
0
1
2
+a +
(b)
轴线滑移面a
5
4
a
3
aa
2
1´
1
(a) 轴线滑移面 a
b
b
(b) 对角滑移面 n (c) 菱形滑移面d
虚线圈表示不存在
虚线圈表示在镜面下方 虚线圈表示在镜面下方
§ 7.2.3 晶胞
1. 晶胞: 晶体结构的基本重复单元称为晶胞
32个点群符号的说明:(见P276 表8.2.4)
SchÖnflies记号 国际记号 简化记号 对应的三个位
C4v
4mm
4mm
c a a+b
D2h
222 m m m 2/mmm a b c
Oh
432
m3m
a a+b+c a+b
mm
在某一方向出现的旋转轴或反轴是指与这一方向平行的旋 转轴或反轴, 而在某一方向出现的镜面则是指与该方向垂 直的镜面, 如果在某一方向同时出现旋转轴或反轴与镜面 时, 国际记号中用分数形式来表示,将n或n 记在分子位置, 将m记在分母位置。
结构化学
绪论
3 学习结构化学的方法
结构化学课程是在学过高等数学,普通物理,无机化 学,分析化学等课程的基础上,进一步讲授微观物质的运 动规律。由于该课程需要的数理基础知识多,概念又比较 抽象,所以,初学者在开始学习时常有雾里看花,无所适 从之感。针对结构化学课程的特点,必须探索出适合自己 的学习方法,作为学习结构化学普遍性的学习原则,应注 意以下几点。
2.2.3 新材料、新药的合成
7
结构化学精品课程
绪论
2.2.1 反应机理的研究
反应机理研究是一个既古老而又有很多问题尚不清楚 的学科。美国 R.Hoffmann 和日本 Kenich Fukui分别提出 了分子轨道对称守恒原理和提出前线轨道理论,为此他们 获得了1981 年诺贝尔化学奖。由李远哲教授等创立的交叉 分子束反应是研究微观反应机理的重要实验手段,为此他 们获得了1986年诺贝尔化学奖。
3.3 广泛联系无机、有机、物化中遗留的问题
由于该课程涉及的数理公式多,概念抽象,很容易使初学者 感到枯燥、无味,失去学习的兴趣。因此,在学习过程中必须广 泛联系无机、有机、物化中遗留的问题,用结构化学的观点、知 识分析解决这些问题是提高学习兴趣的有效方法。
全满、半满的稳定性: 例如:
各种效应:
离域效应、量子力学隧道效应、红移效应、取代基团的定位效应
14
结构化学精品课程
绪论
超导材料: YBa2Cu3O7的结构 (Y:Ba:Cu=1:2:3规则)
以钙钛矿型结构为基本单元, 通过原子的空缺、置换、位移变 形、堆叠组合等多种型式,可以 描述多种氧化物超导相的结构. 例如,钇钡铜氧高温超导体就是 一种缺氧钙钛矿型三倍超格子结 构,属正交晶系.
15
Cu O Ba Y
结构化学课件.ppt
发展简史:
“物质结构”这门学科是在十九世纪末叶逐步发 展起来的。当时由于生产力的不断提高,实验技术 有了很大的发展。有一些物理学家观察到许多现象, 用当时已经非常成熟、理论体系已经非常完整的经 典物理学理论无法加以说明,甚或与其推论完全相 反。最主要的发现有:电子的发现、元素的天然放 射现象的发现、黑体辐射现象的规律的发现等。这 就迫使人们对经典物理学的体系提出革命性的见解, 并逐步发展新的理论体系。
量子力学基础知识、原子的结构和性质、分子 的结构和性质、化学键理论、晶体化学、研究结构 的实验方法等。
结构化学是在原子、分子水平上研究物质分子构 型与组成的相互关系,以及结构和各种运动的相互影 响的化学分支学科。它是阐述物质的微观结构与其宏 观性能的相互关系的基础学科。
结构化学是一门直接应用多种近代实验手段测定 分子静态、动态结构和静态、动态性能的实验科学。 它要从各种已知化学物质的分子构型和运动特征中, 归纳出物质结构的规律性;还要从理论上说明为什么 原子会结合成为分子,为什么原子按一定的量的关系 结合成为数目众多的、形形色色的分子,以及在分子 中原子相互结合的各种作用力方式,和分子中原子相 对位置的立体化学特征;结构化学还要说明某种元素 的原子或某种基团在不同的微观化学环境中的价态、 电子组态、配位特点等结构特征。
当对很多个别具体对象进行测量后,再总结成 规律。当然这些测试方法的原理,也是以量子理论 为基础的。其中有一种称做原子参数图示方法或键 参数函数方法,可以总结出对冶金、化工等科学技 术上有实际意义的规律。这些规律对于发展化学健 理论也有其价值。
两条途径中,前者主要是量子化学的主要内容, 后者主要是物理测试方法等的内容。当然这两部分 内容彼此间还是有密切联系的。前者的基本理论都 是来源于实践,在由实践总结成基本理论时,归纳 法也起了很重要的作用。后者又依靠前者作为理论 基础,在由基本理论指导新实验技术的建立和发展 时,演绎法也有重要的作用。
结构化学第七章课件
Laue方程的推导
a (cos -cos0 )= h h为整数 即在入射角为0 时,在方向产
生衍射。
直线点阵上衍射圆锥的形成
Laue 方程组: 对于空间点阵,应同时满足以下三式,
h、k、l为整数(但并不都是互质整数)--衍射指标。
Laue 方程把衍射方向和晶胞参数联系在一起。
Laue方程组决定了衍射方向的分立性,因为空间点阵的 衍射方向是以三个互不平行的直线点阵为轴的的三组圆 锥面的共交线,所以只有某些特定方向上才会出现衍射。
h k l=nh* nk* nl* 才能产生反射。 如果某一晶面(h*k*l*)产生n级衍射,则可把其看作是晶 面(nh*nk*nl*)的一级衍射。晶面(h*k*l*)的面间距为d, 则晶面(nh*nk*nl*)的面间距就是d/n,于是Bragg方程可 写成:
2 (dh*k*l*)/n sinn = 即:2 dhkl sin =
d hkl
a h2 k2 l2
正交晶系
dh*k*l*
1 ( h* )2 ( k )2 (l )2
abc
六方晶系
dh*k*l*
1
4( h*2
hk 3a2
k
2
)
l 2 c2
Bragg方程表明,晶面指标为(h*k*l*)的晶面只对某些
角的入射线产生反射。可以证明,对于这些晶面,只有 衍射方向hkl和晶面指标(h*k*l*)满足:
1. 宏观对称元素和对称操作 晶体的理想外形在宏观表现出来的对称性
对称元素 旋转轴 (n或n) 反映面 (m) 对称中心 (i)
反轴 ( n )
对称操作
旋转 L() =2/n
反映 M 反演 I
旋转反演L()I
结构化学课件第七章
1 ( 1 4 ) 2 1 ( 2 5 ) 2 1 ( 3 6 ) 2
a1g,a*1g eg,e*g
3dxy 3dxy 3dyz
t1u,t*1u
t2g
配位化合物分子轨道能级图 M ML6
t*1u a*g
6L
np
ns (n-1)d
e*g t2g eg
Δo
不同电子组态的 LFSE 的数值( Δo ) d电子 数目 HS (弱场) e*g LFSE LS (强场) e*g LFSE
t2g
t2g
0
1 2
0
0.4 0.8
0
0.4 0.8
3
4 5
1.2
0.6 0
1.2
1.6 2.0
6
7 8 9 10
0.4
0.8 1.2 0.6 0
2.4
1.8 1.2 0.6 0
4. 配位化合物的热力学稳定性
●配位化合物的稳定性常用稳定常数来表示。 在水溶液中金属离子和水结合在一起,形成水合离子,加入配位体 L
时,发生置换 H2O 的反应,逐级平衡常数为:
M(H2O)n + L ……
M(H2O)Ln-1 + L
M(H2O)n-1L + H2O
K1=
[M(H2O)n-1L] [M(H2O)n][L]
: s,p x,p y,p z,d x : d xy,d yz,d xz
2
y2
,d z 2
配位体L按能与中心原子生 成σ键或π键轨道分别组合 成新的群轨道,使与M的 中心原子轨道及配体的群轨道 原子轨道对称性匹配。 设处在x,y,z 3个正向的L的σ轨道分别是σ1、σ2、σ3 ,负向的σ4、σ5、σ6 。 这些轨道组成和中心原子σ 轨道对称性匹配的群轨道(如下表) 。而中心原子 的各个轨道以及和它对称性匹配的配位体群轨道的图形如上图。 由于M的dxy,dyz,dxy轨道的极大值方向正好和L的σ轨道错开,基本不受影响, 是非键轨道。M的6个轨道和6 个配位体轨道组合得到12个离域分子轨道,一 半为成键轨道,一半为反键轨道。
a1g,a*1g eg,e*g
3dxy 3dxy 3dyz
t1u,t*1u
t2g
配位化合物分子轨道能级图 M ML6
t*1u a*g
6L
np
ns (n-1)d
e*g t2g eg
Δo
不同电子组态的 LFSE 的数值( Δo ) d电子 数目 HS (弱场) e*g LFSE LS (强场) e*g LFSE
t2g
t2g
0
1 2
0
0.4 0.8
0
0.4 0.8
3
4 5
1.2
0.6 0
1.2
1.6 2.0
6
7 8 9 10
0.4
0.8 1.2 0.6 0
2.4
1.8 1.2 0.6 0
4. 配位化合物的热力学稳定性
●配位化合物的稳定性常用稳定常数来表示。 在水溶液中金属离子和水结合在一起,形成水合离子,加入配位体 L
时,发生置换 H2O 的反应,逐级平衡常数为:
M(H2O)n + L ……
M(H2O)Ln-1 + L
M(H2O)n-1L + H2O
K1=
[M(H2O)n-1L] [M(H2O)n][L]
: s,p x,p y,p z,d x : d xy,d yz,d xz
2
y2
,d z 2
配位体L按能与中心原子生 成σ键或π键轨道分别组合 成新的群轨道,使与M的 中心原子轨道及配体的群轨道 原子轨道对称性匹配。 设处在x,y,z 3个正向的L的σ轨道分别是σ1、σ2、σ3 ,负向的σ4、σ5、σ6 。 这些轨道组成和中心原子σ 轨道对称性匹配的群轨道(如下表) 。而中心原子 的各个轨道以及和它对称性匹配的配位体群轨道的图形如上图。 由于M的dxy,dyz,dxy轨道的极大值方向正好和L的σ轨道错开,基本不受影响, 是非键轨道。M的6个轨道和6 个配位体轨道组合得到12个离域分子轨道,一 半为成键轨道,一半为反键轨道。
结构化学课件7
共五十九页
图 7.19 腺嘌呤和胸腺嘧啶生成由两个(liǎnɡ ɡè)氢键联结的互补对的示意图
共五十九页
图 7.20 胞嘧啶和鸟嘌呤生成(shēnɡ chénɡ)三个氢键联结的互补对的示意图
共五十九页
氢键(qīnɡ jiàn)
共五十九页
HF
HCl HBr HI
沸点/℃
19.9 -85.0 -66.7 -
共五十九页
4、氢键对物质性质(xìngzhì)的影响:
氢键广泛存在,如水、醇、酚、酸、羧酸、氨、胺。 氨基酸、蛋白质、碳水化合物等许多化合物都存在氢键。 氢键对物质的影响也是多方面的。
(1)对物质熔、沸点的影响。 分子间形成氢键使物质的熔沸点升高。如图7-32。
这是由于(yóuyú)要使液体气化或使固体液化都需要能 量去破坏分子间氢键的缘故。
35.4
极化率Biblioteka 小大色散作
用
弱
强
沸
点
低
高
HF的沸点反常的高?
原因:存在氢键。
HF分子中,共用电子对强烈偏向电负性大的F原子
一侧。在几乎裸露的H原子核与HF分子中F原子的
某一孤对电子之间产生的吸引作用称为氢键。 共五十九页
除了分子间氢键外,还有分子内氢键。例如(lìrú):
硝酸的分子内氢键使其溶沸点降 低。
共五十九页
2、氢键 的特点: (qīnɡ jiàn)
(1)氢键具有(jùyǒu)方向性。它是指Y原子与X-Y形成氢键 时,尽可能使氢键的方向与X-H键轴在同一条直线上,这 样可使X与Y的距离最远,两原子电子云间的斥力最小,因 此形成的氢键愈强,体系愈稳定。
(2)氢键具有饱和性。它是指每一个X-H只能与一个Y原
图 7.19 腺嘌呤和胸腺嘧啶生成由两个(liǎnɡ ɡè)氢键联结的互补对的示意图
共五十九页
图 7.20 胞嘧啶和鸟嘌呤生成(shēnɡ chénɡ)三个氢键联结的互补对的示意图
共五十九页
氢键(qīnɡ jiàn)
共五十九页
HF
HCl HBr HI
沸点/℃
19.9 -85.0 -66.7 -
共五十九页
4、氢键对物质性质(xìngzhì)的影响:
氢键广泛存在,如水、醇、酚、酸、羧酸、氨、胺。 氨基酸、蛋白质、碳水化合物等许多化合物都存在氢键。 氢键对物质的影响也是多方面的。
(1)对物质熔、沸点的影响。 分子间形成氢键使物质的熔沸点升高。如图7-32。
这是由于(yóuyú)要使液体气化或使固体液化都需要能 量去破坏分子间氢键的缘故。
35.4
极化率Biblioteka 小大色散作
用
弱
强
沸
点
低
高
HF的沸点反常的高?
原因:存在氢键。
HF分子中,共用电子对强烈偏向电负性大的F原子
一侧。在几乎裸露的H原子核与HF分子中F原子的
某一孤对电子之间产生的吸引作用称为氢键。 共五十九页
除了分子间氢键外,还有分子内氢键。例如(lìrú):
硝酸的分子内氢键使其溶沸点降 低。
共五十九页
2、氢键 的特点: (qīnɡ jiàn)
(1)氢键具有(jùyǒu)方向性。它是指Y原子与X-Y形成氢键 时,尽可能使氢键的方向与X-H键轴在同一条直线上,这 样可使X与Y的距离最远,两原子电子云间的斥力最小,因 此形成的氢键愈强,体系愈稳定。
(2)氢键具有饱和性。它是指每一个X-H只能与一个Y原
结构化学《结构化学》第7章 第1讲(7.1)6.1 《结构化学》第7章第1讲
17
diamond
18
3)在金属 Mg 结 构 中 , 若 将 两 个 Mg 原子都抽象为 点阵点,连接 两个点阵点的 矢量平移不能 使点阵复原, 如 图 7.1.6b 所 示。
19
11. CsCl和NaCl的点阵点和结构基元 CsCl和NaCl都是由正负两种离子交替排列形成晶 体,这时每个点阵点代表由两种离子共同组成的结 构基元。 若将Cs和Cl都作为结构基元,则因组成不同,周 围环境不同,连接不同离子间的矢量平移不能使点 阵复原。
例如在图7.1.4g中Cl和Na原子的坐标参数分别为:
Cl: 0,0,0; 1/2,1/2,0; 1/2,0,1/2; 0,1/2,1/2.
Na: 1/2,0,0; 0,1/2,0; 0,0,1/2; 1/2,1/2,1/2.
22
23
11
Na
Cu
12
Mg
Diamond
13
Graphite_hP
Graphite_hR
14
NaCl
15
9. 什么是晶胞、素晶胞、复晶胞 在三维周期结构中,周期结构重复的单元一般是 平行六面体,称为晶胞。 含有一个结构基元的晶胞,称为素晶胞。 含有2个或2个以上结构基元的晶胞,称为复晶胞。
16
10. 为什么金属Po、Na、Cu的结构基元由1个原子 组成,而金属Mg和金刚石却由2个原子组成?
21
14. 晶胞的两个基本要素 1)晶胞的大小和形状,即晶胞参数a、b、c; 2)晶胞内部各个原子的坐标参数(x,y,z)。 有了这两方面数据,就可确定晶体的空间结构。
15. 原子在晶胞中的坐标参数(x,y,z)
是指由晶胞原点指向原子的矢量r,用基矢a、b、
c来表达:
diamond
18
3)在金属 Mg 结 构 中 , 若 将 两 个 Mg 原子都抽象为 点阵点,连接 两个点阵点的 矢量平移不能 使点阵复原, 如 图 7.1.6b 所 示。
19
11. CsCl和NaCl的点阵点和结构基元 CsCl和NaCl都是由正负两种离子交替排列形成晶 体,这时每个点阵点代表由两种离子共同组成的结 构基元。 若将Cs和Cl都作为结构基元,则因组成不同,周 围环境不同,连接不同离子间的矢量平移不能使点 阵复原。
例如在图7.1.4g中Cl和Na原子的坐标参数分别为:
Cl: 0,0,0; 1/2,1/2,0; 1/2,0,1/2; 0,1/2,1/2.
Na: 1/2,0,0; 0,1/2,0; 0,0,1/2; 1/2,1/2,1/2.
22
23
11
Na
Cu
12
Mg
Diamond
13
Graphite_hP
Graphite_hR
14
NaCl
15
9. 什么是晶胞、素晶胞、复晶胞 在三维周期结构中,周期结构重复的单元一般是 平行六面体,称为晶胞。 含有一个结构基元的晶胞,称为素晶胞。 含有2个或2个以上结构基元的晶胞,称为复晶胞。
16
10. 为什么金属Po、Na、Cu的结构基元由1个原子 组成,而金属Mg和金刚石却由2个原子组成?
21
14. 晶胞的两个基本要素 1)晶胞的大小和形状,即晶胞参数a、b、c; 2)晶胞内部各个原子的坐标参数(x,y,z)。 有了这两方面数据,就可确定晶体的空间结构。
15. 原子在晶胞中的坐标参数(x,y,z)
是指由晶胞原点指向原子的矢量r,用基矢a、b、
c来表达:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 八面体场的分裂能Δo
●八面体场的分裂能Δo的大小随不同的配位体和中心原子的性质而异。 ●根据光谱数据可测得分裂能Δo的数值,并可得下面的经验规则:
(1)对同一种金属原子(M),不同配体的分裂能大小次序为: CO,CN->NO22->en>NH3>py>H2O>F->OH->Cl->Br- 上面的中性CO是强配体,原因在于π 键的形成是影响分裂能大小的重要 因素,dxy,dyz,dxz 等t2g 轨道虽不能和配位体L形成σ 键,但条件合适时 可形成π 键。 t2g* CO和CN-通过分子 的π*轨道和M的t2g eg* eg* π* 轨道形成π键,扩大 了Δo ,是强场配位 Δo Δo 体。图左边表示轨 t2g 道叠加,由有电子 t2g 的d轨道向空轨道提 供电子,形成配键。 M ML L 右边表示能级图。 强场配位体扩大了Δo
MLn + H2O
Kn =
[MLn] [M(H2O)Ln-1][L]
生成 MLn 的总反应的平衡常数即为MLn 的稳定常数 K(或 β)
M(H2O)n + nL
MLn + nH2O
K=
[MLn] [M(H2O)n][L]n
=K1 . K2 …Kn
6.2 配位场理论 1. ML6八面体的分子轨道
大多数六配位化合物呈正八面体或变形八面体的结构,如TiF63-, Fe(CN)64-,V(H2O)62+,Co(NH3)63+,Ni(H2O)62+。 在ML6 正八面
体配位化合物中,M原子处在对称中心的位置,呈Oh 点群对称性。
设中心原子M处在直角 坐标系原点,6个 配位体位 于坐标轴上。按M和L组成 的分子轨道是σ 轨道还是π 轨道,将M的轨道进行分 组,得:
L L
为207, 2NH3 262pm
- pK
乙二胺(en)和二 价过渡金属离子在水溶 液中的逐级稳定常数K1, K2,K3分别代表en 置 换 [M(H2O)]62+中的 2,4,6个 H2O 分子,形 成1,2,3个en与 M 螯合 的离子,其 pK值如右 图所示 10
8
6 4 K1 K2 K3 Mn2+ Fe2+ Co2+ Ni2+ Cu2+ Zn2+
ML6八面体场的分子轨道
M
4s
cL M
1 ( 1 2 3 4 5 6 ) 6
表
示
3d x 2 y 2
3d z 2
4px 4py 4pz
1 ( 1 2 4 5 ) 2 1 (2 3 2 6 1 2 4 5 ) 2 3
1 ( 1 4 ) 2 1 ( 2 5 ) 2 1 ( 3 6 ) 2
a1g,a*1g eg,e*g
3dxy 3dxy 3dyz
t1u,t*1u
t2g
配位化合物分子轨道能级图 M ML6
t*1u a*g
6L
np
ns (n-1)d
e*g t2g eg
Δo
¶ /pm ë ¾ Ó ° ë × À
90 80 70 60 50
(a)
Ca+2 Zn+2 0 1
2
V+2 Ti+2
3 4
Mn+2 Cr+2
5 6
Co+2 Fe+2
7 8
Cu+2
9
Ni+2
10
n
实际上,由于 LFSE 的影响, HS 型 出 现 向 下 双 峰 , LS 型出现向下单峰,这 是 LFSE 的 能 量 效 应 对微观结构的影响。 八 面 体 配 位 时 , HS 态 的 半 径 比 LS 态 的 半径大。
(3) Δo值可分为配位体的贡献(f)和中心离子的贡献(g)的乘积。 即: Δo = f × g JÖrgensen 给出八面体场的 f 和 g 的数值如下表。 八面体场的 f 值 和 g 值 f 值 Br- SCN- Cl- F- 尿素 HAc 0.72 0.73 0.78 0.9 0.92 0.94 C2O42- H2O NCS- py NH3 en 0.99 1.00 1.02 1.23 1.25 1.28 g 值(单位:1000cm-1 ) Mn2+ Ni2+ Co2+ V2+ Fe3+ Cr3+ 8.0 8.7 9 Ru2+ Mn4+ Mo3+ 20 23 24.6 27.0 30 32 习题P325:1,3,4
eg*
eg* Δo t2g* p
Cl - 、 F - 等的 p 轨道 和M的d轨道形成π 键,缩小了 Δo ,是 弱场配体。图左边 表示轨道叠加,由 有电子的轨道向空 轨道提供电子,形 成配键。右边表示 能级图。
Δo t2g
t2g
M 弱场配位体缩小了Δo ML L
★只看配位体L中直接配位的单个原子, Δo值随原子序数增大而减少, 次序为: C>N>O>F>S>Cl>Br>I
σ
t1u
a1g
因L电负性较高而能级低,电子进入成键轨道,相当于配键。M的电子 安排在t2g和e*g轨道上 。这样,3 个非键轨道t2g 与2个反键轨道e*g 所形成的 5 个轨道,提供安排中心金属离子的d 电子。把5 个轨道分成两组:3个低 的t2g ,2个高的e*g 。 t2g 和e*g 间的能级间隔称为分裂能Δo ,它和晶体场理 论中t2g 和eg 间的Δo 相当。
-Δ
2.8 2.4 2 1.6 1.2 0.8 0.4 0
0 1 2 3 4 5 6 7 8 9 10
弱场 强场
n
不同电子组态的 LFSE 值
1. 离子水化热和MX2的点阵能
●第一系列过渡金属二价离子由Ca2 + (3d0 )到Zn2+ (3d10),由于3d 电 子层受核吸引增大,水化热(由气态阳离子变为水合阳离子放出的热量, 负值)理应循序增加 (放热量增加),但实际上由于受LFSE的影响形成 双突起曲线,它是按弱场情况变化的。 ● 第一系列过渡金 属元素的卤化物, 从CaX2 到ZnX2 , (X=Cl , Br , I ), 点阵能(由离子 变成离子晶体放 出的热量,负值) 随 d 电子数变化也 有类似的双突起 的情况。
2
0
若干 M(en)n2+ 的 pK 值
★ 上图可见, Cu2+ 具有反常的最高 K1,K2值和最低的 K3值,这是由于 Jahn-Teller 效应使 [Cu(en)]32+ 明显 地不稳定造成的。 原因:当 1 个或 2 个 en 和 Cu2+结合时,可以形成键长较短的强 Cu—N 键;而当 3 个 en 和 Cu2+ 结合时,则因 Jahn-Teller 效应 必定有 2 个 en 和 Cu 以弱Cu—N键结合。
: s,p x,p y,p z,d x : d xy,d yz,d xz
2
y2
,d z 2
配位体L按能与中心原子生 成σ键或π键轨道分别组合 成新的群轨道,使与M的 中心原子轨道及配体的群轨道 原子轨道对称性匹配。 设处在x,y,z 3个正向的L的σ轨道分别是σ1、σ2、σ3 ,负向的σ4、σ5、σ6 。 这些轨道组成和中心原子σ 轨道对称性匹配的群轨道(如下表) 。而中心原子 的各个轨道以及和它对称性匹配的配位体群轨道的图形如上图。 由于M的dxy,dyz,dxy轨道的极大值方向正好和L的σ轨道错开,基本不受影响, 是非键轨道。M的6个轨道和6 个配位体轨道组合得到12个离域分子轨道,一 半为成键轨道,一半为反键轨道。
(2) 对一定的配位体, Δo值随M不同而异,其大小的次序为: Pt4+>Ir3+>Pd4+>Rh3+>Mo3+>Ru3+>Co3+>Cr3+>Fe3+>V2+ >Co2+>Ni2+ > Mn2+ ★中心离子的价态对Δo影响很大,价态高, Δo大。例如Mn2+对H2O 的Δo值 为 7800 cm-1 ,而Mn3+为21000 cm-1 。 ★中心离子所处的周期数也影响Δo值。第二、第三系列过渡金属离子的Δo 值均比同族第一系列过渡金属离子大。例如:Co(NH3)63+ 为23000 cm-1, Rh(NH3)63+ 为34000 cm-1,Ir(NH3)63+ 为41000 cm-1。
第七章
簇合物与团簇
由三个以上原子的多面体或笼为核心,外连一组外围原子或配体
价键理论
按杂化轨道理论,用共价配键和电价配键解释配位化合物的性质
晶体场理论
中心离子(M)和配体(L)依靠类似离子晶体中正负离子的静电作用而结合。 当L接近M时,依据M在n个L构成的晶体场中d 轨道能级分裂,解释配位化合 物的各种性质。
12.0 Rh3+ 14.0 Tc4+ 17.4 Ir3+
乙醇
0.97
CN-
1.7
Co3+18.2源自Pt4+36
3. 配位场稳定化能与配位化合物的性质
若选取t2g和 e*g能级的权重平均值作为能级的零点,即 2E(e*g )+3E(t2g)=0
而
E (e*g )-E(t2g)= Δo
由此,可得e*g的能级为 0.6 Δo ,t2g的能级为 –0.4Δo 。 这个能级零点也就作为中心离子M处在球形场中未分裂的d轨 道的能级。 ●配位场稳定化能(LFSE-Ligand Field Stabilified Energy):配 位化合物中d电子填入上述的轨道后,若不考虑成对能,能级 降低的总值称为LFSE 。 ★ LFSE不同,配位化合物的性质不同。