结构化学课件第四章
合集下载
结构化学第四章 分子轨道理论

久期行列式
其中H aa = H bb
H aa H aa − H ab E2 = 1 − S ab
E1,E2 代入久期方程,得
基态能量 第一激发态能量
1 ψ1 = (φa + φb ) 2 + 2 S ab 归一化→ 1 ψ2 = (φa − φb ) 2 − 2S ab
η2 2 e2 e2 e2 ˆ − + H =− ∇ − 2m 4πε0ra 4πε0rb 4πε0 R
ˆ Hψ = E ψ
5
原子单位制(Atomic Unit)
(1) 单位长度 (2) 单位质量 (3) 单位电荷 (4) 单位能量 (5) 单位角动量 1a.u.= a0 = 0.529177A=52.9177pm 1a.u.= me =9.1095 × 10-28g 1a.u.= e
η2 d 2 ˆ ψ * Hψdτ ∫0 x( x − l )(− 2m dx 2 ) x( x − l )dx 10 h 2 = 2⋅ = < E >= l π 8ml 2 ψ *ψdτ ∫ x( x − l ) ⋅ x( x − l )dx
∫
l
∫
0
与一维势箱解法相比
ΔE 10 / π 2 ⋅ h 2 / 8ml 2 − h 2 / 8ml 2 10 = = ( 2 − 1)% = 1.3% 2 2 E h / 8ml π
i=1
m
利用ψ求变分积分,可得
E=
ˆ (∑ ciφi )H (∑ ciφi )dτ ∫
i =1
m
m
∂<E> ∂<E> ∂<E> = ...... = =0 = ∂c2 ∂cm ∂c1
结构化学课件第四章第一节

分子结构模型
80%
原子模型
原子是化学元素的最小单位,由 原子核和绕核运动的电子构成。
100%
分子模型
分子由两个或更多原子通过化学 键连接而成,是物质的基本单位 。
80%
空间构型
分子中原子在空间的排列方式, 包括线性、平面、立体等构型。
化学键类型及特点
01
02
03
离子键
由正负离子间的静电引力 形成,具有高熔点、硬而 脆等特点。
波尔模型
电子只能在一些特定的轨道上运动,在这些轨道上 运动的电子既不吸收能量,也不放出能量。
原子核外电子排布
电子层
核外电子经常出现的区域称电 子层。电子层可用n(n=1、2、 3…)表示,n=1表明第一层电 子层(K层),n=2表明第二电 子层(L层),依次n=3、4、5 时表明第三(M层)、第四(N 层)、第五(O层)。
04
配合物结构与性质
配合物组成和命名
配合物组成
配合物由中心原子(或离子)和 配体组成,中心原子通常是金属 元素,配体可以是无机或有机分 子或离子。
配合物命名
配合物的命名遵循一定的规则, 包括中心原子、配体和配位数的 标识,以及配合物类型的区分。
配合物空间构型和异构现象
配合物空间构型
配合物的空间构型取决于中心原子和 配体的排列方式,常见的空间构型有 直线型、平面三角形、四面体型等。
金属晶体
由金属阳离子和自由电子通过 金属键结合形成的晶体,具有 良好的导电性、导热性和延展 性。
晶体中粒子间作用力
离子键
正负离子之间的静电吸引力,作用力强,无方向 性和饱和性。
分子间作用力
分子间的相互作用力,包括范德华力和氢键等, 作用力较弱。
结构化学课件第四章第一节

任何一个可约表示,总可以找到合适的矩阵 S
经相似变换成相应的对角方块化矩阵,如:
r11 r12 0 0 0
S 1D Ri
S
D ' Ri
r21 0
0
r22 0 0
0 r33 0
0 0 r44
0
0
r45
0 0 0 r54 r55
此变换过程称,约化
特征标表
顶行,群的共轭类及其所含对称操作数
左列,群的各个不可约表示的符 号
按维数分成四种:一维,A和B;二维,E;三维,T 按主轴Cn的对称操作效果分成两种:对称为A;反对称为B 按垂直于主轴的C2或σv 对称操作效果分成两种:对称为1;反对称为2 按σh对称操作的效果分成两种:对称为′;反对称为〞 按 i 对称操作效果分成两种:对称为g;反对称为u
可约表示的特征标等于由其约化出的各不可约表示特征标的和
R ai i R
i
跑标 i 遍及各不可约表示
a i 第 i 个不可约表示在此可约表示中出现的次数
且有
ai
1 h
R
R i
R
1 h
L
nL
L
i
L
nL 共轭类 L 所含对称操作个数
5.4 对称性匹配函数的构造
对称性(在点群某对称操作下两个H原子动了),要组合改造。
组合两个H原子的1s, 1sa ,1sb , 点群各对称操作矩阵在该基下的特征标是:
C21
1sa 1sb
1sb 1sa
y
z 0 0 1 z z
914708-结构化学-第四章

(x‘, y’, z‘) 的变换, 可用下列矩阵方程表达:
x' a b c x
y'
d
e
f
y
z' g h i z
图形是几何形式 矩阵是代数形式
x ' ax by cz
y
'
dx
ey
fz
z ' gx hy iz
8
恒等元素 E 和恒等操作 Ê
此操作为不动动作,也称主操作或恒等操作。任何分 子都存在恒等元素。恒等操作对向量(x, y, z)不产生任何 影响。对应单位矩阵。
Cˆ64 Cˆ32
11
旋转操作是实动作,可以真实操作实现。 若将 z 轴选为旋转轴,旋转操作后新旧坐标间的关系为:
y
(x', y')
x'
x cos sin 0 x
α
(x, y)
y'
Cˆ
(
)
y
sin
z'
z 0
cos
0
0
y
1 z
x
x ' x cos y sin
3.存在一恒等元素 若AG, E G,则EA AE A E为恒等元素
4.每个存在逆元素 若AG,则必存在B G,且AB BA E B为A的逆元素,记作A1 B
37
4.2.2 群的乘法表
以NH3分子为例
c
b
y
x
a
1. 写出所有对称操作:表头,表列
C3v E C31 C32 a b c
一个Cn轴包含n个旋转操作 :
Cˆn
,
Cˆn2
,
Cˆn3
,
结构化学课件第四章

0 x 0 y 1 z
y ' C ( ) y sin
x z
1 0 y y
Cn轴通过原点和 z 轴重合的 k 次对称操作的表示矩阵为:
2 k n 2 k k Cn sin n 0 cos sin 2 k n 2 k cos n 0 0 0 1
Structural Chemistry
“点操作”。 对称操作和对称元素是两个相互联系的不同概念,
对称操作是借助于对称元素来实现,而一个对称元 素对应着一个或多个对称操作。
Structural Chemistry
第四章 分子的对称性
对称操作的矩阵表示: 各种操作相当于坐标变换。将向量(x,y,z)变为
(x ׳,y ׳,z)׳的变换,可用下列矩阵方程表达:
x'
a
b e h
c f i
x y z
y' d z' g
图形是几何形式 矩阵式代数形式
Structural Chemistry
第四章 分子的对称性
六种对称元素和对称操作
(1)恒等元素(E)和恒等操作 (2)旋转轴(Cn)和旋转操作
(3)镜面σ和反映操作
(4)对称中心(i)和反演操作
(5)像转轴(Sn)和旋转反映操作
操作:不改变分子中各原子间距离使
分子几何结构发生位移的一种动作。
对称操作:每次操作都能产生一个
和原来图形等价的图形,通过一次 或几次操作使图形完全复原。
对称元素:实现对称操作所依赖的几 何要素(点、线、面及组合)。
Structural Chemistry
第四章 分子的对称性
分子中的对称操作共有六类,与此相应的 对称元素也有六类。它们的符号差别仅仅是对 称操作符号头顶上多一个Λ形的抑扬符^,就像
结构化学课件第四章

40
3. 多原子分子红外光谱 多原子分子 外光谱
N原子分子有3N个自由度, 其中3个属于平动, 3个属于转 动(直线形分子为2个), 剩余3N-6个为振动自由度(直线形分子 为3N-5 5个). ) 每个振动自由度有 每个振动自由度有一种正则振动 种正则振动. 原则上, 任何复 杂振动都可以分解为正则振动的叠加, 但实际上, 多原子分子 振动光谱主要由经验规律解析. 不过, 计算机辅助复杂分子结 构分析专家系统近年来也取得了引人瞩目的进展. 一般说来, 伸缩振动频率大于弯曲振动频率, 重键振动频 率大于单键振动频率, 连接较轻的原子(如H)的化学键振动频 率较高.
3
4
4.2 分子光谱
分子光谱与原子光谱有许多不同之处, 谱线数目多且比 较密集. 一组吸收峰形成一个谱带, 各谱带之间有较大距离; 几个谱带又组成 组,成为 个谱带系,各谱带系之间的距 几个谱带又组成一组,成为一个谱带系,各谱带系之间的距 离更大. 这种特点与分子内部运动复杂性有关.分子中至少有两 个核 除电子相对于核的运动外 还有各核在平衡位置附近 个核,除电子相对于核的运动外,还有各核在平衡位置附近 的微小振动和分子整体绕质心的转动(分子平动能级间隔太 小, 可视为连续能级).
8
双原子分子的转动光谱
将分子的转动与振动(及电子运动) 近似分开,意味着分子转动时核间距不变. 这种模型称为刚性转子,它大大简化了分 子转动的数学处理. 设两原子的质量分别为m1、m2, 距质心 O的距离分别为r1、r2 ( r1与r2之和等于平 衡核间距r, 即 r1+r2=r).
9
双 原 子 分 子 的 刚 性 转 子 模 型
13
刚性转子没有拉伸势能,总能量等于动能
Schrödinger方程为
结构化学第四章分子对称性

X射线晶体学需要制备晶体样品,通过X射线照射晶 体并记录衍射数据,再通过计算机软件分析衍射数 据,最终得到分子的晶体结构。
X射线晶体学对于理解分子结构和性质具有重要意义 ,尤其在化学、生物学和材料科学等领域中广泛应 用。
分子光谱方法
分子光谱方法是研究分子对称 性的另一种实验方法。通过分 析光谱数据,可以确定分子的 振动、转动和电子等运动状态 ,从而推断出分子的对称性。
04
分子的点群
点群的分类
80%
按照对称元素类型分类
分子点群可按照对称元素类型进 行分类,如旋转轴、对称面、对 称中心等。
100%
按照对称元素组合分类
分子点群可按照对称元素的组合 进行分类,如Cn、Dn、Sn等。
80%
按照分子形状分类
分子点群可按照分子的形状进行 分类,如线性、平面、立体等。
点群的判断方法
分子没有对称元素,如 NH3。
分子有一个对称元素, 如H2O。
分子有两个对称元素, 如CO2。
分子有多个对称元素, 如立方烷。
02
分子的对称性
对称面和对称轴
对称面
将分子分成左右两部分的面。
对称轴
将分子旋转一定角度后与原分子重合的轴。
对称中心
• 对称中心:通过分子中心点,将分子分成互为镜像的两部分。
具有高对称性的分子往往表现出较弱的磁性,因为它们具有较低的轨道和自旋分 裂能。相反,对称性较低的分子可能表现出较强的磁性,因为它们的轨道和自旋 分裂能较高。
对称性与化学反应活性
总结词
分子对称性对化学反应活性也有重要影响,可以通过对称性 分析来预测和解释分子的化学反应行为。
详细描述
具有高对称性的分子往往具有较低的反应活性,因为它们的 电子云分布较为均匀,难以发生化学反应。相反,对称性较 低的分子可能具有较高的反应活性,因为它们的电子云分布 较为不均匀,容易发生化学反应。
X射线晶体学对于理解分子结构和性质具有重要意义 ,尤其在化学、生物学和材料科学等领域中广泛应 用。
分子光谱方法
分子光谱方法是研究分子对称 性的另一种实验方法。通过分 析光谱数据,可以确定分子的 振动、转动和电子等运动状态 ,从而推断出分子的对称性。
04
分子的点群
点群的分类
80%
按照对称元素类型分类
分子点群可按照对称元素类型进 行分类,如旋转轴、对称面、对 称中心等。
100%
按照对称元素组合分类
分子点群可按照对称元素的组合 进行分类,如Cn、Dn、Sn等。
80%
按照分子形状分类
分子点群可按照分子的形状进行 分类,如线性、平面、立体等。
点群的判断方法
分子没有对称元素,如 NH3。
分子有一个对称元素, 如H2O。
分子有两个对称元素, 如CO2。
分子有多个对称元素, 如立方烷。
02
分子的对称性
对称面和对称轴
对称面
将分子分成左右两部分的面。
对称轴
将分子旋转一定角度后与原分子重合的轴。
对称中心
• 对称中心:通过分子中心点,将分子分成互为镜像的两部分。
具有高对称性的分子往往表现出较弱的磁性,因为它们具有较低的轨道和自旋分 裂能。相反,对称性较低的分子可能表现出较强的磁性,因为它们的轨道和自旋 分裂能较高。
对称性与化学反应活性
总结词
分子对称性对化学反应活性也有重要影响,可以通过对称性 分析来预测和解释分子的化学反应行为。
详细描述
具有高对称性的分子往往具有较低的反应活性,因为它们的 电子云分布较为均匀,难以发生化学反应。相反,对称性较 低的分子可能具有较高的反应活性,因为它们的电子云分布 较为不均匀,容易发生化学反应。
结构化学基础(第4版)第4章课件

( 4 )旋转反映操作 ˆ ˆ ˆ ˆ ˆ S n ( z ) = C n ( z )σ h = C n ( z )σ xy ⎛ 2π ⎜ cos n ⎜ ˆ ( z ) = ⎜ sin 2π Sn ⎜ n ⎜ ⎜ ⎜ 0 ⎝ 2π − sin n 2π cos n 0 ⎞ 0⎟ ⎟⎛ 1 0 ⎟⎜ 0 ⎟⎜ 0 1 ⎟⎜ 0 0 ⎝ ⎟ 1⎟ ⎠ ⎛ 2π ⎜ cos n 0 ⎞ ⎜ ⎟ ⎜ 2π 0 ⎟ = ⎜ sin n ⎟ ⎜ − 1⎠ ⎜ ⎜ 0 ⎝ 2π − sin n 2π cos n 0 ⎞ 0 ⎟ ⎟ ⎟ 0 ⎟ ⎟ ⎟ − 1⎟ ⎠
2 2
( 2)反演操作 :
x → − x; y → − y; z → − z
0 ⎞⎛ x ⎞ ⎛ x⎞ ⎛− x⎞ ⎛−1 0 ⎟⎜ ⎟ ⎟ ⎜ ⎜ ⎟ ⎜ ˆ ⎜ y ⎟ = ⎜ − y ⎟ = ⎜ 0 − 1 0 ⎟⎜ y ⎟ i ⎜ z⎟ ⎜−z⎟ ⎜ 0 0 − 1 ⎟⎜ z ⎟ ⎠⎝ ⎠ ⎠ ⎝ ⎝ ⎠ ⎝ 0 ⎞ ⎛−1 0 ⎟ ⎜ ˆ = ⎜ 0 −1 0 ⎟ i ⎜ 0 0 − 1⎟ ⎠ ⎝ ( 3)反映操作 : 对xy平面有 x → x; y → y; z → − z ⎛ x ⎞ ⎛ x ⎞ ⎛ 1 0 0 ⎞⎛ x ⎞ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ˆ σ xy ⎜ y ⎟ = ⎜ y ⎟ = ⎜ 0 1 0 ⎟⎜ y ⎟ ⎜ z ⎟ ⎜ − z ⎟ ⎜ 0 0 − 1 ⎟⎜ z ⎟ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎛ 1 0 0⎞ ⎛ − 1 0 0⎞ ⎛1 0 0 ⎞ ⎟ ⎜ ⎟ ⎟ ⎜ ⎜ ˆ ˆ ˆ 即σ xy = ⎜ 0 1 0 ⎟;同理σ yz = ⎜ 0 1 0 ⎟;σ xz = ⎜ 0 − 1 0 ⎟ ⎜ 0 0 1⎟ ⎜ 0 0 1⎟ ⎜ 0 0 − 1⎟ ⎠ ⎝ ⎠ ⎠ ⎝ ⎝
2 2
( 2)反演操作 :
x → − x; y → − y; z → − z
0 ⎞⎛ x ⎞ ⎛ x⎞ ⎛− x⎞ ⎛−1 0 ⎟⎜ ⎟ ⎟ ⎜ ⎜ ⎟ ⎜ ˆ ⎜ y ⎟ = ⎜ − y ⎟ = ⎜ 0 − 1 0 ⎟⎜ y ⎟ i ⎜ z⎟ ⎜−z⎟ ⎜ 0 0 − 1 ⎟⎜ z ⎟ ⎠⎝ ⎠ ⎠ ⎝ ⎝ ⎠ ⎝ 0 ⎞ ⎛−1 0 ⎟ ⎜ ˆ = ⎜ 0 −1 0 ⎟ i ⎜ 0 0 − 1⎟ ⎠ ⎝ ( 3)反映操作 : 对xy平面有 x → x; y → y; z → − z ⎛ x ⎞ ⎛ x ⎞ ⎛ 1 0 0 ⎞⎛ x ⎞ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ˆ σ xy ⎜ y ⎟ = ⎜ y ⎟ = ⎜ 0 1 0 ⎟⎜ y ⎟ ⎜ z ⎟ ⎜ − z ⎟ ⎜ 0 0 − 1 ⎟⎜ z ⎟ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎛ 1 0 0⎞ ⎛ − 1 0 0⎞ ⎛1 0 0 ⎞ ⎟ ⎜ ⎟ ⎟ ⎜ ⎜ ˆ ˆ ˆ 即σ xy = ⎜ 0 1 0 ⎟;同理σ yz = ⎜ 0 1 0 ⎟;σ xz = ⎜ 0 − 1 0 ⎟ ⎜ 0 0 1⎟ ⎜ 0 0 1⎟ ⎜ 0 0 − 1⎟ ⎠ ⎝ ⎠ ⎠ ⎝ ⎝
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
旋转反映
Iˆ
(旋转反演
n
C
n
)
映轴 I
(反轴
n
)
旋转是真操作, 其它对称操作为虚操作.
(1)恒等元素E 和恒等操作
即分子旋转 360°不变化的操作,存在于每个分子中。这个元 素似乎不重要,但此条件对群论机制和分子分类却是必要的。
恒等操作的矩阵表示
经恒等操作后,点(x,y,z)坐标仍不变
旧坐标
新坐标
(2)旋转操作和旋转轴
对称元素: 旋转轴
分子绕轴旋转 Cn1, Cn2, Cn3,.,Cnk,.,Cnn1, Cnn 度角后与原
对称操作: 旋转
分子重合,此轴也称为 n 重旋
转轴,简写为Cn。
1 0 0 x x'
旋转操作:将图形绕某一直线旋 转一定角度的操作。
0
1
0 y y'
0 0 1 z z'
F
B
F
F
旋转角度按逆时 针方向转动
n 指图形完全复原旋转基转角 的次数,称为轴次。 旋转轴就是依据轴次命名的。 n 次旋转轴的记号为Cn。
分子中若有多个旋转轴,轴次最高的 称为主轴,其余的为非主轴。
主轴的方向定义为分子的 z 方向。
(2)旋转操作和旋转轴
BF3分子
有一个 C3 轴,主轴 有一个 C2 轴,非主轴 旋转操作是实动作,可以真实操作实现。
分子对称性:指分子的几何图形中(原
子骨架、分子轨道空间形状)有相互等同 的部分,而这些等同部分互相交换以后, 与原来的状态相比,不发生可辨别的变化, 即交换前后图形复原。
研究分子对称性的意义
• 能简明的表达分子的构型 • 可简化分子构型的测定工作 • 帮助正确地了解分子的性质 • 指导化学合成工作 • 简化计算工作量
C3 C3
C33
C3 xcosysinzz'
(2)旋转操作和旋转轴
360 n
(2)旋转操作和旋转轴
• 对称轴是分子中一条特定的直线,其相应的操作是 把分子图形以直线为轴旋转某个角度,能产生分子 的等价图形。
• 按照能使分子完全复原时绕轴旋转的最少次数,可 将对称轴分为:
Cnn 表示绕该轴旋转2π,相当于分子不动,Cnn=E
(2)旋转操作和旋转轴
基转角α:能够使分子复原的最小旋转角度。
——杨振宁
对称:
一个物体包含若干等同部分,对应部分相等。
对称性特点:物体上存在若干个相等的部分,或可以划
分为若干个相等的部分。如果把这些相等部分对换一下, 就好像没有动过一样(即物体复原),或者说这些相等部 分都是有规律重复出现的。
x' a b c x y' d e f y z' g h i z
对称操作和对称元素是两个相互联系的不同概念, 对称操作是借助于对称元素来实现,而一个对称元 素对应着一个或多个对称操作。
对称操作的矩阵表示:
各种操作相当于坐标变换。将向量(x,y,z)变为 (x ׳,y ׳,z)׳的变换,可用下列矩阵方程表达:
360
n 图形是几何形式 矩阵式代数形式
六种对称元素和对称操作
(1)恒等元素(E)和恒等操作 (2)旋转轴(Cn)和旋转操作 (3)镜面σ和反映操作 (4)对称中心(i)和反演操作 (5)像转轴(Sn)和旋转反映操作 (6)反轴(In)和旋转反演操作
对称操作与对称元素
对称操作
对称元素
恒等操作 Cˆ n
旋转 ˆ
旋转轴
反映 ˆi
镜面 i
反演 Sˆ n
对称中心 S n
操作:不改变分子中各原子间距离使 分子几何结构发生位移的一种动作。
对称元素: 旋转轴 对称操作: 旋转
对称操作:每次操作都能产生一个
和原来图形等价的图形,通过一次 1 0 0 x
x'
或几次操作使图形完全复原。
0 1 0 y y'
对称元素:实现对称操作所依赖的几
何要素(点、线、面及组合)。 0 0 1 z z '
旋转轴:旋转操作所依据的几何元
素是一条直线,称为旋转对称轴。
(2)旋转操作和旋转轴
Cn 轴:将分子图形以直线为轴旋转某个角度能产生分子的 等价图形。
n 次旋转轴
单重(次)轴(C1) 二重(次)轴(C2) 三重(次)轴(C3)
…
…
n 重(次)轴(Cn)
旋转轴能生成 n 个旋转操作,记为:
Cnn 表 示 绕 该 轴 旋 转 2π , 相 当 于 分 子 不 动 , Cnn=E
在所有智慧的追求中,很 难找到其他例子能够在深刻的 普遍性与优美简洁性方面与对 称性原理相比。
—— 李政道
对称在科学界开始产生重要的影响始于 19世纪。发展到近代,我们已经知道这个观 念是晶体学、分子学、原子学、原子核物理 学、化学、粒子物理学等现代科学的中心观 念。近年来,对称更变成了决定物质间相互 作用的中心思想(所谓相互作用,是物理学 的一个术语,意思就是力量,质点跟质点之 间之力量)。
第四章 分子的对称性
对称是几何形状、系统、方程及其他实际上
或概念上之客体的一种特征-典型地有,物 件的一半为其另一半的镜射。
球 面 对 称
几何上的对称 逻辑中的对称 生物学中的对称 化学中的对称 艺术和工艺的对称 (如:建筑学/陶器/被褥/地毯/音乐) 文学中的对称 通讯中的对称 心理上的对称
山
秀
山
秀
水
明
水
明
处
处
处
处
明
山
明
山
秀
水
秀
水
静
清
泉
水
山
塘
上
里
山
塘
泉
水
静
清
对称是自然界中普遍存在的一种性质,因而常常 被认为是最平凡、最简单的现象。然而, 对称又具 有最深刻的意义。科学家、艺术家、哲学家从各种
角度研究和赞美对称,“完美的对称”、“可怕的 对称”、“神秘的对称”,这些说法都表明了对称
性在人类心灵中引起的震撼。
C3独立动作有三个:C3C3,C32,E
自我突破,突破自我。 地拖拖地 牙刷刷牙 茶煲煲茶 关公公关 气喘喘气 改变的环境影响人类的活动,活动的人类影响 环境的改变。
小巷残月凝天空,亲人故土乡情浓。 笑声犹在空怀旧,憔心客愁满苍穹。 穹苍满愁客心憔,旧怀空在犹声笑。 浓情乡土故人亲,空天凝月残巷小。
分子中的对称操作共有六类,与此相应的 对称元素也有六类。它们的符号差别仅仅是对 称操作符号头顶上多一个Λ形的抑扬符^,就像 算符那样。在不会引起误解的场合,抑扬符^常 常省略。
点
对 称 中 心
对称元素
线
对 称 轴
面
组合
对 称 面
象 转 轴
或
ቤተ መጻሕፍቲ ባይዱ
反 轴
对于分子等有限物体,在进行操作时,分子中 至少有一个点是不动的,故分子的对称操作叫 “点操作”。