重庆市中考数学复习第一轮考点系统复习第四章三角形第五节锐角三角函数及其应用精练课件

合集下载

中考总复习:锐角三角函数综合复习--知识讲解(提高)

中考总复习:锐角三角函数综合复习--知识讲解(提高)

中考总复习:锐角三角函数综合复习—知识讲解(提高)【考纲要求】1.理解锐角三角函数的定义、性质及应用,特殊角三角函数值的求法,运用锐角三角函数解决与直角三角形有关的实际问题.题型有选择题、填空题、解答题,多以中、低档题出现;2.命题的热点为根据题中给出的信息构建图形,建立数学模型,然后用解直角三角形的知识解决问题. 【知识网络】 【考点梳理】考点一、锐角三角函数的概念如图所示,在Rt △ABC 中,∠C =90°,∠A 所对的边BC 记为a ,叫做∠A 的对边,也叫做∠B 的邻边,∠B 所对的边AC 记为b ,叫做∠B 的对边,也是∠A 的邻边,直角C 所对的边AB 记为c ,叫做斜边.锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sin A a A c∠==的对边斜边;锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cos A bA c∠==的邻边斜边;锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tan A aA A b∠==∠的对边的邻边.同理sin B b B c ∠==的对边斜边;cos B aB c∠==的邻边斜边;tan B b B B a ∠==∠的对边的邻边.要点诠释:(1)正弦、余弦、正切函数是在直角三角形中定义的,反映了直角三角形边与角的关系,是两条线段的比值.角的度数确定时,其比值不变,角的度数变化时,比值也随之变化.(2)sinA ,cosA ,tanA 分别是一个完整的数学符号,是一个整体,不能写成,,,不能理解成sin 与∠A ,cos 与∠A ,tan 与∠A 的乘积.书写时习惯上省略∠A 的角的记号“∠”,但对三个大写字母表示成的角(如∠AEF),其正切应写成“tan ∠AEF ”,不能写成“tanAEF ”;另外,、、常写成、、.(3)任何一个锐角都有相应的锐角三角函数值,不因这个角不在某个三角形中而不存在.(4)由锐角三角函数的定义知:当角度在0°<∠A<90°之间变化时,,,tanA >0. 考点二、特殊角的三角函数值利用三角函数的定义,可求出0°、30°、45°、60°、90°角的各三角函数值,归纳如下: 要点诠释:(1)通过该表可以方便地知道0°、30°、45°、60°、90°角的各三角函数值,它的另一个应用就Ca bc是:如果知道了一个锐角的三角函数值,就可以求出这个锐角的度数,例如:若,则锐角.(2)仔细研究表中数值的规律会发现:sin0︒、、、、sin90︒的值依次为0、、、、1,而cos0︒、、、、cos90︒的值的顺序正好相反,、、的值依次增大,其变化规律可以总结为:当角度在0°<∠A<90°之间变化时,①正弦、正切值随锐角度数的增大(或减小)而增大(或减小)②余弦值随锐角度数的增大(或减小)而减小(或增大).考点三、锐角三角函数之间的关系如图所示,在Rt△ABC中,∠C=90°.(1)互余关系:,;(2)平方关系:;(3)倒数关系:或;(4)商数关系:.要点诠释:锐角三角函数之间的关系式可由锐角三角函数的意义推导得出,常应用在三角函数的计算中,计算时巧用这些关系式可使运算简便.考点四、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知的值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.考点五、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一角一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.考点六、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.例如:3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解. 考点七、解直角三角形相关的知识如图所示,在Rt △ABC 中,∠C =90°, (1)三边之间的关系:222a b c +=; (2)两锐角之间的关系:∠A+∠B =90°; (3)边与角之间的关系:sin cos a A B c ==,cos cos a A B c ==,cos sin b A B c==,1tan tan a A b B==. (4) 如图,若直角三角形ABC 中,CD ⊥AB 于点D ,设CD =h ,AD =q ,DB =p ,则由△CBD ∽△ABC ,得a 2=pc ;由△CAD ∽△BAC ,得b 2=qc ;由△ACD ∽△CBD ,得h 2=pq ;由△ACD ∽△ABC 或由△ABC 面积,得ab =ch .(5)如图所示,若CD 是直角三角形ABC 中斜边上的中线,则 ①CD =AD =BD =12AB ; ②点D 是Rt △ABC 的外心,外接圆半径R =12AB . (6)如图所示,若r 是直角三角形ABC 的内切圆半径,则2a b c abr a b c+-==++. 直角三角形的面积: ①如图所示,111sin 222ABC S ab ch ac B ===△.(h 为斜边上的高) ②如图所示,1()2ABC S r a b c =++△. 【典型例题】类型一、锐角三角函数的概念与性质【高清课堂:锐角三角函数综合复习 ID :408468 播放点:例2】1.(1)如图所示,在△ABC中,若∠C=90°,∠B=50°,AB=10,则BC的长为( ).A.10·tan50° B.10·cos50° C.10·sin50° D.10 sin50°(2)如图所示,在△ABC中,∠C=90°,sinA=35,求cosA+tanB的值.(3)如图所示的半圆中,AD是直径,且AD=3,AC=2,则sinB的值等于________.【思路点拨】(1)在直角三角形中,根据锐角三角函数的定义,可以用某个锐角的三角函数值和一条边表示其他边.(2)直角三角形中,某个内角的三角函数值即为该三角形中两边之比.知道某个锐角的三角函数值就知道了该角的大小,可以用比例系数k表示各边.(3)要求sinB的值,可以将∠B转化到一个直角三角形中.【答案与解析】(1)选B.(2)在△ABC,∠C=90°,3sin5 BCAAB==.设BC=3k,则AB=5k(k>0).由勾股定理可得AC=4k,∴4432 cos tan5315k kA Bk k+=+=.(3)由已知,AD是半圆的直径,连接CD,可得∠ACD=90°∠B=∠D,所以sinB=sinD=23 ACAD=.【总结升华】已知一个角的某个三角函数值,求同角或余角的其他三角函数值时,常用的方法是:利用定义,根据三角函数值,用比例系数表示三角形的边长;(2)题求cosA时,还可以直接利用同角三角函数之间的关系式sin2 A+cos2 A=1,读者可自己尝试完成.举一反三:【变式】(2015•乐山)如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.B.C.D.【答案】D【解析】过B点作BD⊥AC,如图,由勾股定理得,AB==,AD==2cosA===,故选:D.类型二、特殊角的三角函数值【高清课堂:锐角三角函数综合复习 例1】2.解答下列各题: (1)化简求值:tan 60tan 45sin 45sin 30sin 60cos30cos 45--++°°°°°°°;(2)在△ABC 中,∠C =90°,化简12sin cos A A -.【思路点拨】第(2)题可以先利用关系式sin 2 A+cos 2A =1对根号内的式子进行变形,配成完全平方的形式. 【答案与解析】解 (1)tan 60tan 45sin 45sin 30sin 60cos30cos 45--++°°°°°°°(2)∵12sin cos A A -2(sin cos )|sin cos |A A A A =-=-,∴12sin cos A A -cos sin (045)sin cos (4590)A A A A A A -<⎧=⎨-<<⎩°≤°°°.【总结升华】由第(2)题可得到今后常用的一个关系式:1±2sin αcos α=(sin α±cos α)2. 例如,若设sin α+cos α=t ,则21sin cos (1)2t αα=-. 举一反三:【高清课堂:锐角三角函数综合复习 ID :408468 播放点:例1】 【变式】若3sin 22α=,cos sin βα=,(2α,β为锐角),求2tan()3β的值. 【答案】∵3sin 22α,且2α为锐角, ∴2α=60°,α=30°. ∴12cos sin 22βα===, ∴β=45°. ∴23tan()tan 3033β==°. 3.(2015春•凉州区校级月考)如图,在锐角△ABC 中,AB=15,BC=14,S △ABC =84,求: (1)tanC 的值;(2)sinA 的值.【思路点拨】(1)过A 作AD ⊥BC 于点D ,利用面积公式求出高AD 的长,从而求出BD 、CD 、AC 的长,此时再求tanC 的值就不那么难了.(2)同理作AC 边上的高,利用面积公式求出高的长,从而求出sinA 的值. 【答案与解析】 解:(1)过A 作AD ⊥BC 于点D . ∵S △ABC =BC •AD=84, ∴×14×AD=84,∴AD=12. 又∵AB=14, ∴BD==9.∴CD=14﹣9=5. 在Rt △ADC 中,AC==13,∴tanC==;(2)过B 作BE ⊥AC 于点E . ∵S △ABC =AC •EB=84, ∴BE=,∴sin ∠BAC===.【总结升华】考查了锐角三角函数的定义,注意辅助线的添法和面积公式,以及解直角三角形公式的灵活应用. 举一反三:【变式】如图,AB 是江北岸滨江路一段,长为3千米,C 为南岸一渡口,为了解决两岸交通困难,拟在渡口C 处架桥.经测量得A 在C 北偏西30°方向,B 在C 的东北方向,从C 处连接两岸的最短的桥长为多少千米?(精确到)【答案】过点C 作CD ⊥AB 于点D.EABCCD 就是连接两岸最短的桥.设CD=x (千米). 在直角三角形BCD 中,∠BCD=45°,所以BD=CD=x.在直角三角形ACD 中,∠ACD=30°,所以AD=CD ×tan ∠ACD=x ·tan30°=x.因为AD+DB=AB ,所以x+x=3,x=≈答:从C 处连接两岸的最短的桥长约为. 类型三、解直角三角形及应用4.如图所示,D 是AB 上一点,且CD ⊥AC 于C ,:2:3ACD CDB S S =△△,4cos 5DCB ∠=, AC+CD =18,求tanA 的值和AB 的长. 【思路点拨】解题的基本思路是将问题转化为解直角三角形的问题,转化的目标主要有两个,一是构造可解的直角三角形;二是利用已知条件通过设参数列方程. 【答案与解析】解:作DE ∥AC 交CB 于E ,则∠EDC =∠ACD =90°.∵4cos 5CD DCE CE =∠=, 设CD =4k(k >0),则CE =5k ,由勾股定理得DE =3k .∵△ACD 和△CDB 在AB 边上的高相同,∴AD:DB =:2:3ACD CDB S S =△△.即553533AC DE k k ==⨯=. ∴44tan 55CD k A AC k ===.∵AC+CD =18, ∴5k+4k =18,解得k =2. ∴2241241AD AC CD k =+==.∴AB =AD+DB =AD+32AD =541. 【总结升华】在解直角三角形时,常用的等量关系是:勾股定理、三角函数关系式、相等的线段、面积关系等. 5.如图所示,山脚下有一棵树AB ,小华从点B 沿山坡向上走50 m 到达点D ,用高为的测角仪CD 测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB 的高(精确到).(参考数据:sin10°≈°≈°≈°≈°≈°≈ 【思路点拨】本题是求四边形一边长的问题,可以通过添加辅助线构造直角三角形来解. 【答案与解析】解:如图所示,延长CD 交PB 于F ,则DF ⊥PB . ∴DF =DB ·sinl5°≈50× CE =BF =DB ·cos15°≈50× ∴AE =CE ·tan10°≈× ∴≈答:树高约为. 【总结升华】一些特殊的四边形,可以通过切割补图形的方法将其转化为若干个直角三角形来解. 举一反三:【变式】如图所示,正三角形ABC 的边长为2,点D 在BC 的延长线上,CD =3.(1)动点P 在AB 上由A 向B 移动,设AP =t ,△PCD 的面积为y ,求y 与t 之间的函数关系式及自变量t 的取值范围;(2)在(1)的条件下,设PC =z ,求z 与t 之间的函数关系式. 【答案】解:(1)作PE ⊥BC 于E ,则BP =AB-AP =2-t(0≤t <2). ∵∠B =60°, ∴1133sin (2)2222PCD S CD PE CD BP B t ===-△, 即3333(02)42y t t =-+≤<. (2)由(1)不难得出,3(2)2PE t =-,1(2)2BE t =-. ∴112(2)(2)22EC BC BE t t =-=--=+. ∵22222231(2)(2)2444PC PE EC t t t t =+=-++=-+.∴224(02)z t t t =-+≤<.6.如图(1)所示,一架长4米的梯子AB 斜靠在与地面OM 垂直的墙ON 上,梯子与地面的倾斜角α为60°.(1)求AO 与BO 的长.(2)若梯子顶端A 沿NO 下滑,同时底端B 沿OM 向右滑行.①如图(2)所示,设A 点下滑到C 点,B 点向右滑行到D 点,并且AC:BD =2:3,试计算梯子顶端A 沿NO 下滑了多少米;②如图(3)所示,当A 点下滑到A ′点,B 点向右滑行到B ′点时,梯子AB 的中点P 也随之运动到P ′点,若∠POP ′=15°,试求AA ′的长.【思路点拨】(1)在直角△AOB 中,已知斜边AB ,和锐角∠ABO ,即可根据正弦和余弦的定义求得OA ,OB 的长;(2)△APO 和△P′A′O 都是等腰三角形,根据等腰三角形的两底角相等,即可求得∠PAO 的度数, 和∠P′A′O 的度数,在直角△ABO 和△A′B′O 中,根据三角函数即可求得OA 与OA′,即可求得AA′的长.【答案与解析】解:(1)Rt △AOB 中,∠O =90°,α=60°,∴∠OAB =30°.又AB =4米,∴OB =12AB =2米.OA =AB ·sin 60°=4×2=米). (2)①设AC =2x ,BD =3x ,在Rt △COD 中,OC =2x ,OD =2+3x ,CD =4,根据勾股定理:OC 2+OD 2=CD 2,∴2222)(23)4x x ++=.∴213(120x x +-=.∵x ≠0,∴13120x +-=.∴1213x =.24213AC x ==.即梯子顶端A 沿NO 下滑了2413米. ②∵点P 和点P ′分别是Rt △AOB 的斜边AB 与Rt △A ′OB ′的斜边A ′B ′的中点,∴PA =PO ,P ′A ′=P ′O .∴∠PAO =∠AOP ,∠P ′A ′O =∠A ′OP ′.∴∠P ′A ′O-∠PAO =∠POP ′=15°.∵∠PAO =30°,∴∠P ′A ′O =45°.∴A ′O =A ′B ′·cos 45°=42⨯=∴AA ′=OA-A ′O =米.【总结升华】解答本题的关键是理解题意.此题的妙处在于恰到好处地利用了直角三角形斜边上的中线等于斜边的一半,从而求出∠P′A′O=45°,让我们感受到了数学题真的很有意思,做数学题是一种享受.。

《中考大一轮数学复习》课件 锐角三角函数与解直角三角形

《中考大一轮数学复习》课件  锐角三角函数与解直角三角形

1 2
3
3
夯实基本
中考大一轮复习讲义◆ 数学
知已知彼
基础知识回顾 1. 锐角三角函数定义 若在 Rt△ABC 中,∠C=90°,∠A,∠B,∠C 的对边分别为 a,b,c,则 sinA=________,cosA =________,tanA=________. 温馨提示 ①锐角三角函数是在直角三角形中定义的. ②sinA,cosA,tanA 表示的是一个整体,是指两条线段的比,没有单位. ③锐角三角函数的大小仅与角的大小有关,与该角所处的直角三角形的大小无关. ④当 A 为锐角时,0<sinA<1,0<cosA<1,tanA>0. 2. 特殊角的三角函数值 α 30° 45° 60° sinα cosα tanα
1 2 3
5
夯实基本
中考大一轮复习讲义◆ 数学
知已知彼
4. 解直角三角形的应用中的相关概念 (1)仰角、俯角:如图①,在测量时,视线与水平线所成的角中,视线在水平线上方的角叫仰角, 在水平线下方的角叫俯角. (2)坡度(坡比)、坡角:如图②,坡面的高度 h 和________的比叫坡度(或坡比),即 i=tanα= h ,坡面与水平面的夹角 α 叫坡角. l
a 5 12 解析 sinA= = ,可设 a=5k,c=13k,根据勾股定理得 b=12k,所以 cosA= .故选 D. c 13 13
1 2
8
3
热点看台
中考大一轮复习讲义◆ 数学
快速提升
点对点训练 1. (2013·山东济南)已知直线 l1∥l2∥l3∥l4,相邻的两条平行直线间的距离均为 h,矩形 ABCD 的四个顶点分别在这四条直线上,放置方式如图所示,AB=4,BC=6,则 tanα的值等于( C )

考点20 锐角三角函数及其应用-备战2023届中考数学一轮复习考点梳理(解析版)

考点20 锐角三角函数及其应用-备战2023届中考数学一轮复习考点梳理(解析版)

考点20 锐角三角函数及其应用锐角三角函数及其应用是数学中考中比较重要的考点,其考察内容主要包括①正弦、余弦、正切三函数、②特殊角的三角函数值、③解直角三角形与其应用等。

而且,因为锐角三角函数的性质的特点,出题时除了会单独出题以外,还常和四边形、圆、网格图形等结合考察。

特别是三角函数的应用,是近几年中考填空压轴题常考题型。

学生在复习这块考点时,需要付出更多的努力,已达到熟练掌握这块考点的要求。

一、锐角三角函数的定义及其性质二、特殊角的三角函数值三、解直角三角形四、解直角三角形的应用考向一:锐角三角函数的定义及其性质一.锐角三角函数的定义:在Rt △AABC 中,∠C=90°,AB=c ,BC=a ,AC=b则:∠A 正弦:;ACBabc∠A余弦:;∠A正切:;二.锐角三角函数的函数关系当∠A+∠B=90°时,有以下两种关系:(1).同角三角函数的关系:;(2)互余两角的三角函数的关系:;1.如图,在Rt△ABC中,∠C=90°,AB=5,AC=3,则cos B的值为( )A.B.C.D.【分析】先根据勾股定理计算出BC,再根据三角函数的定义,即可得解.【解答】解:根据勾股定理可得,则cos B==.故选:B.2.Rt△ABC中,∠C=90°,AC=1,BC=2,tan A的值为( )A.B.C.D.2【分析】根据勾股定理求出AB的值,代入正切公式即可得到答案;【解答】解:∵∠C=90°,AC=1,BC=2,∴.故选:D.3.在Rt△ABC中,∠C=90°,sin A=,BC=6,则AC=( )A.10B.8C.5D.4【分析】在Rt△ABC中,利用锐角三角函数的定义求出AB,再根据勾股定理进行计算即可解答.【解答】解:在Rt△ABC中,∠C=90°,sin A=,BC=6,∴sin A===,∴AB=10,∴AC===8.故选:B.4.已知0°<θ<45°,则下列各式中正确的是( )A.cosθ<B.tanθ>1C.sinθ>cosθD.sinθ<tanθ【分析】根据逐项进行判断即可.【解答】解:A.由于一个锐角的余弦值随着锐角的增大而减小,而0°<θ<45°,所以cosθ>cos60°,即cosθ>,因此选项A不符合题意;B.由于一个锐角的正切值随着锐角的增大而增大,而所以tanθ<tan45°,即tanθ<1,因此选项B不符合题意;C.由于cosθ=sin(90°﹣θ),而0°<θ<45°,即45°<90°﹣θ<90°,所以sinθ<sin(90°﹣θ),即sinθ<cosθ,因此选项C不符合题意;D.由于sinθ=,tanθ=,而锐角的邻边小于斜边,所以sinθ<tanθ,因此选项D符合题意.故选:D.5.如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,则下列结论中不正确的是( )A.a2+b2=c2B.sin B=cos A C.tan A=D.sin B=【分析】根据直角三角形的边角关系逐项进行判断即可.【解答】解:在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c,由勾股定理可得a2+b2=c2,因此选项A不符合题意;由锐角三角函数的定义可得sin B==cos A,因此选项B不符合题意;由锐角三角函数的定义可知,tan A=,因此选项C符合题意;由于sin2A+cos2A=()2+()2===1,因此选项D不符合题意;故选:C.考向二:特殊角的三角函数值特殊角的三角函数值表αsinαcosαtanα30°45°60°1.下列三角函数中,值为的是( )A.cos45°B.tan30°C.sin5°D.cos60°【分析】根据特殊锐角三角函数值逐项进行判断即可.【解答】解:A.由于cos45°=,因此选项A不符合题意;B.由于tan30°=,因此选项B不符合题意;C.sin5°<sin30°,即sin5°<,因此选项C不符合题意;D.由于cos60°=sin30°=,因此选项D符合题意;故选:D.2.计算tan45°+tan30°cos30°的值为( )A.B.1C.D.2【分析】根据特殊角三角函数值,可得实数的运算,根据实数的运算,可得答案.【解答】解:原式=1+×=1+=,故选:C.3.4sin260°的值为( )A.3B.1C.D.【分析】根据特殊角的三角函数值计算即可得出答案.【解答】解:.故选:A.4.若sin(x+15°)=,则锐角x= 45 °.【分析】根据特殊角的三角函数值,即可解答.【解答】解:∵sin(x+15°)=,∴x+15°=60°,解得:x=45°,故答案为:45.5.计算:tan60°﹣sin245°+tan45°﹣2cos30°= .【分析】直接利用特殊角的三角函数值代入,进而得出答案.【解答】解:原式=﹣()2+1﹣2×=﹣+1﹣=.故答案为:.6.在△ABC中,,则△ABC的形状是 等边三角形 .【分析】非负数的和为0,则每个加数都等于0,求得相应的三角函数,进而求得∠A,∠B的度数.根据三角形的内角和定理求得∠C的度数.【解答】解:由题意得:2cos A﹣1=0,﹣tan B=0,解得cos A=,tan B=,∴∠A=60°,∠B=60°.∴∠C=180°﹣60°﹣60°=60°,∴△ABC是等边三角形.故答案为:等边三角形.7.计算:.【分析】根据特殊角三角函数值的混合计算法则求解即可.【解答】解:=====.考向三:解直角三角形解直角三角形相关:三边关系:在Rt△ABC中,∠C=90°两锐角关系:AB=c,BC=a,AC=b边与角关系:,,,锐角α是a、b的夹角面积:1.如图,在边长相同的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点P.则tan∠APD的值是( )A.2B.1C.0.5D.2.5【分析】连接格点AE,BE.根据题图和勾股定理先判断△ABE的形状,再求出∠APD的正切,利用平行线的性质可得结论.【解答】解:如图,连接格点AE,BE.由网格和勾股定理可求得;,,,∴BE2+AE2=AB2,∴△ABE是直角三角形.在Rt△ABE中,.∵BE∥CD,∴∠APD=∠ABE,∴tan∠APD=2,故选:A.2.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若tan∠BDC =,则BC的长是( )A.6cm B.5cm C.4cm D.2cm【分析】设CD为xcm,则有AD为(8﹣x)cm,根据垂直平分线得到AD=BD,根据得到BC,最后根据勾股定理即可得到答案.【解答】解:设CD为xcm,则有AD为(8﹣x)cm,∵AB的垂直平分线MN交AC于D,∴AD=BD=8﹣x,∵,∴,∴,∵∠C=90°,∴,解得:x1=3,x2=﹣12(不符合题意舍去),∴,故答案为:C.3.如图,在Rt△ABC中,∠CAB=90°,sin C=,AC=8,BD平分∠CBA交AC边于点D.求:(1)线段AB的长;(2)tan∠DBA的值.【分析】(1)先解Rt△ABC,得出sin C==,设出AB=3k,则BC=5k,由BC2﹣AB2=AC2,得出方程(5k)2﹣(3k)2=82,解方程求出k的值,进而得到AB;(2)过D点作DE⊥BC于E,设AD=x,则CD=8﹣x.根据角平分线的性质得出DE=AD=x,利用HL 证明Rt△BDE≌Rt△BDA,得到BE=BA=6,那么CE=BC﹣BE=4.然后在Rt△CDE中利用勾股定理得出DE2+CE2=CD2,即x2+42=(8﹣x)2,解方程求出x的值,即为AD的长,再根据正切函数的定义即可求解.【解答】解:(1)∵在Rt△ABC中,∠CAB=90°,∴sin C==,BC2﹣AB2=AC2,∴可设AB=3k,则BC=5k,∵AC=8,∴(5k)2﹣(3k)2=82,∴k=2(负值舍去),∴AB=3×2=6;(2)过D点作DE⊥BC于E,设AD=x,则CD=8﹣x.∵BD平分∠CBA交AC边于点D,∠CAB=90°,∴DE=AD=x.在Rt△BDE与Rt△BDA中,,∴Rt△BDE≌Rt△BDA(HL),∴BE=BA=6,∴CE=BC﹣BE=5×2﹣6=4.在Rt△CDE中,∵∠CED=90°,∴DE2+CE2=CD2,∴x2+42=(8﹣x)2,解得x=3,∴AD=3,∴tan∠DBA===.4.如图,⊙O是△ABC的外接圆,点D在BC延长线上,且满足∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若AC是∠BAD的平分线,sin B=,BC=4,求⊙O的半径.【分析】(1)连接OA,OC与AB相交于点E,如图,由OA=OC,可得∠OAC=∠OCA,根据圆周角定理可得,由已知∠CAD=∠B,可得∠AOC=2∠CAD,根据三角形内角和定理可得∠OCA+∠CAO+∠AOC=180°,等量代换可得∠CAO+∠CAD=90°,即可得出答案;(2)根据角平分线的定义可得∠BAC=∠DAC,由已知可得∠BAC=∠B,根据垂径定理可得,OC⊥AB,BE=AE,在Rt△BEC中,根据正弦定理可得sin B===,即可算出CE的长度,根据勾股定理可算出BE=的长度,设⊙O的半径为r,则CE=OC﹣CE=r﹣,在Rt△AOE中,OA2=OE2+AE2,代入计算即可得出答案.【解答】证明:(1)连接OA,OC与AB相交于点E,如图,∵OA=OC,∴∠OAC=∠OCA,∵,∴,∵∠CAD=∠B,∴∠AOC=2∠CAD,∵∠OCA+∠CAO+∠AOC=180°,∴2∠CAO+2∠CAD=180°,∴∠CAO+∠CAD=90°,∴∠OAD=90°,∵OA是⊙O的半径,∴AD是⊙O的切线;解:(2)∵AC是∠BAD的平分线,∴∠BAC=∠DAC,∵∠CAD=∠B,∴∠BAC=∠B,∴OC⊥AB,BE=AE,在Rt△BEC中,∵BC=4,∴sin B===,∴CE=,∴BE===,设⊙O的半径为r,则CE=OC﹣CE=r﹣,在Rt△AOE中,OA2=OE2+AE2,r2=(r﹣)2+,解得:r=.5.如图,△ABC中,AB=AC=6cm,BC=8cm,点P从点B出发,沿线段BC以2cm/s的速度向终点C运动,点Q从点C出发,沿着C→A→B的方向以3cm/s的速度向终点B运动,P,Q同时出发,设点P运动的时间为t(s),△CPQ的面积为S(cm2).(1)sin B= ;(2)求S关于t的函数关系式,并直接写出自变量t的取值范围.【分析】(1)过点A作AD⊥BC,垂足为D,利用等腰三角形的三线合一性质求出BD的长,再利用勾股定理求出AD的长即可解答;(2)分两种情况,当0<t≤1时,当1<t<2时.【解答】解:(1)过点A作AD⊥BC,垂足为D,∵AB=AC=6cm,AD⊥BC,∴BD=BC=4cm,在Rt△ABD中,AB=6cm,BD=4cm,∴AD==2,∴sin B==;故答案为:.(2)过点Q作QE⊥BC,垂足为E,∵AB=AC,∴∠B=∠C,∴sin B=sin C=,分两种情况:当0<t≤1时,由题意得:CQ=3t,BP=2t,∴CP=BC﹣BP=8﹣2t,在Rt△CQE中,QE=CQ sin C=3t•=t,∴S=CP•QE=•(8﹣2t)•t=4t﹣t2=﹣t2+4t,当1<t<2时,由题意得:CA+AQ=3t,BP=2t,∴CP=BC﹣BP=8﹣2t,BQ=AB+AC﹣(CA+AQ)=12﹣3t,在Rt△BQE中,QE=BQ sin B=(12﹣3t)•=4﹣t,∴S=CP•QE=•(8﹣2t)•(4﹣t)=,∴S=.考向四:解直角三角形的应用解直角三角形的应用:仰角和俯角仰角:在视线与水平线所成的角中,视线在水平线上方的叫仰角.俯角:视线在水平线下方的叫俯角坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作坡度和坡角坡度越大,坡角越大,坡面越陡1. 在实际测量高度、宽度、距离等问题中,常结合平面几何知识构造直角三角形,利用三角函数或相似三角形来解决问题,常见的构造的基本图形有如下几种:(1)不同地点看同一点,如图①(2)同一地点看不同点,如图②(3)利用反射构造相似,如图③2. 常用结论:1.在山坡上植树,要求两棵树间的坡面距离是3,测得斜坡的倾斜角为27°,则斜坡上相邻两棵树的水平距离是( )A.3sin27°B.3cos27°C.D.3tan27°【分析】根据坡角的定义、余弦的概念列式计算即可.【解答】解:如图,过点A作AB⊥BC于B,∴∠ABC=90°,cos∠BAC=,∵AC=3,∠BAC=27°,∴AB=AC cos∠BAC=3cos27°;故选:B.2.如图,在天定山滑雪场滑雪,需从山脚下A处乘缆车上山顶B处,缆车索道与水平线所成的∠BAC=α,若山的高度BC=800米,则缆车索道AB的长为( )A.800sinα米B.800cosα米C.米D.米【分析】利用直角三角形的边角关系定理列出关系式即可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,sin BAC=,∴AB=.∵∠BAC=α,BC=800米,∴AB=(米).故选:C.3.如图,为了估算某河流的宽度,在该河流的对岸选取一点A,在近岸取点D,C,使得A、D、C在一条直线上,且与河流的边沿垂直,测得CD=15m,然后又在垂直AC的直线上取点B,并量得BC=30m,若cos B=,则该河流的宽AD为 25 m.【分析】根据三角形函数的定义可得AB的长,利用勾股定理可得AC的长,由线段的和差关系可得答案.【解答】解:∵∠C=90°,BC=30m,cos B==,∴AB=50m,∴AC==40(m),∵CD=15m,∴AD=AC﹣CD=25(m),故答案为:25.4.某古村落为方便游客泊车,准备利用长方形晒谷场长60m一侧,规划一个停车场,已知每个停车位需确保有如长5.5m,宽2.5m的长方形AEDF供停车,如图平行四边形ABCD是其中一个停车位,所有停车位都平行排列,∠ABD为60°,则每个体车位的面积大约为 17 m2(结果保留整数),这个晒谷场按规划最多可容纳 20 个停车位.()【分析】由题意,在Rt△ABF中,由直角三角形的边角关系得出AB,BF的长,讲而可以解决问题.【解答】解:由题意,在Rt△ABF中,∠AFB=90°,∠ABF=60°,AF=2.5m,∴AB===≈2.94(m),∴BF=AB≈1.47(m),∴BD=DF+BF≈5.5+1.47=6.97(m),∵CD=AB≈2.94m,∴S平行四边形ABDC=BD•AF≈6.97×2.5≈17 (m2),∴每个停车位的面积大约为17m2;∵60÷2.94≈20.4,∴这个晒谷场按规划最多可容纳20个停车位.故答案为:17;20.5.夏秋季节,许多露营爱好者晚间会在湖边露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E处(EF⊥BF),使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,幕布宽AC=AD=2m,CD⊥AB 于点O,支杆AB与树干EF的横向距离BF=2.2m.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)(1)天晴时打开“天幕”,若∠CAE=140°,求遮阳宽度CD.(2)下雨时收拢“天幕”,∠CAE由140°减小到90°,求点E下降的高度.【分析】(1)根据在Rt△AOD中,,先算出OD的长,再根据AD=2OD即可得到答案;(2)过点E作EH⊥AB于H,在Rt△AHE中,,得,当∠CAE=140°时和当∠CAE=90°时,分别求出AH的值,作差即可得到答案.【解答】解:(1)∵∠CAE=140°,AC=AD,AO⊥CD,∴,CD=2DO,在Rt△AOD中,,即,解得:OD≈1.88m,∴CD=2OD≈3.76m,答:遮阳宽度CD约为3.76m;(2)如图,过点E作EH⊥AB于H,∴∠BHE=90°,∵AB⊥BF,EF⊥BF,∴∠ABF=∠EFB=90°,∴∠ABF=∠EFB=∠BHE=90°,∴EH=BF=2.2m,在Rt△AHE中,,∴,当∠CAE=140°时,∠EAO=70°,m,当∠CAE=90°时,∠EAO=45°,AH=2.2m,2.2﹣0.8=1.4m,答:点E下降的高度为1.4m.6.近几年中学生近视的现象越来越严重,为响应国家的号召,某公司推出了如图1所示的护眼灯,其侧面示意图(台灯底座高度忽略不计)如图2所示,其中灯柱BC=18cm,灯臂CD=31cm,灯罩DE=24cm,BC⊥AB,CD、DE分别可以绕点C、D上下调节一定的角度.经使用发现:当∠DCB=140°,且ED∥AB时,台灯光线最佳.求此时点D到桌面AB的距离.(精确到0.1cm,参考数值:cos50°≈0.77,cos50°≈0.64,tan50°≈1.19)【分析】根据题意,作出合适的辅助线,然后根据锐角三角函数,即可得到DF的长,再根据FG=CB,即可求得DG的长,从而可以解答本题.【解答】解:过点D作DG⊥AB,垂足为G,过点C作CF⊥DG,垂足为F,如右图所示,∵CB⊥AB,FG⊥AB,CF⊥FG,∴∠B=∠BGF=∠GFC=90°,∴四边形BCFG为矩形,∴∠BCF=90°,FG=BC=18cm,又∵∠DCB=140°,∴∠DCF=50°,∵CD=31cm,∠DFC=90°,∴DF=CD•sin50°≈31×0.77=23.87(cm),∴DG≈23.87+18≈41.9(cm),答:点D到桌面AB的距离约为41.9cm.1.(2022•扬州)在△ABC中,∠C=90°,a、b、c分别为∠A、∠B、∠C的对边,若b2=ac,则sin A的值为 . .【分析】根据勾股定理和锐角三角函数的定义解答即可.【解答】解:在△ABC中,∠C=90°,∴c2=a2+b2,∵b2=ac,∴c2=a2+ac,等式两边同时除以ac得:=+1,令=x,则有=x+1,∴x2+x﹣1=0,解得:x1=,x2=(舍去),当x=时,x≠0,∴x=是原分式方程的解,∴sin A==.故答案为:.2.(2022•荆州)如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在OB上,OC:BC=1:2,连接AC,过点O作OP∥AB交AC的延长线于P.若P(1,1),则tan∠OAP的值是( )A.B.C.D.3【分析】根据OP∥AB,证明出△OCP∽△BCA,得到CP:AC=OC:BC=1:2,过点P作PQ⊥x轴于点Q,根据∠AOC=∠AQP=90°,得到CO∥PQ,根据平行线分线段成比例定理得到OQ:AO=CP:AC=1:2,根据P(1,1),得到PQ=OQ=1,得到AO=2,根据正切的定义即可得到tan∠OAP的值.【解答】解:如图,过点P作PQ⊥x轴于点Q,∵OP∥AB,∴△OCP∽△BCA,∴CP:AC=OC:BC=1:2,∵∠AOC=∠AQP=90°,∴CO∥PQ,∴OQ:AO=CP:AC=1:2,∵P(1,1),∴PQ=OQ=1,∴AO=2,∴tan∠OAP===.故选:C.3.(2022•天津)tan45°的值等于( )A.2B.1C.D.【分析】根据特殊角的三角函数值,进行计算即可解答.【解答】解:tan45°的值等于1,故选:B.4.(2022•荆门)计算:+cos60°﹣(﹣2022)0= ﹣1 .【分析】先化简各式,然后再进行计算即可解答.【解答】解:+cos60°﹣(﹣2022)0=﹣+﹣1=0﹣1=﹣1,故答案为:﹣1.5.(2022•金华)计算:(﹣2022)0﹣2tan45°+|﹣2|+.【分析】直接利用零指数幂的性质以及特殊角的三角函数值、绝对值的性质、算术平方根分别化简,进而计算得出答案.【解答】解:原式=1﹣2×1+2+3=1﹣2+2+3=4.6.(2022•贵港)如图,在4×4网格正方形中,每个小正方形的边长为1,顶点为格点,若△ABC的顶点均是格点,则cos∠BAC的值是( )A.B.C.D.【分析】延长AC到D,连接BD,由网格可得AD2+BD2=AB2,即得∠ADB=90°,可求出答案.【解答】解:延长AC到D,连接BD,如图:∵AD2=20,BD2=5,AB2=25,∴AD2+BD2=AB2,∴∠ADB=90°,∴cos∠BAC===,故选:C.7.(2022•广西)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC 是( )A.12sinα米B.12cosα米C.米D.米【分析】直接根据∠A的正弦可得结论.【解答】解:Rt△ABC中,sinα=,∵AB=12米,∴BC=12sinα(米).故选:A.8.(2022•宜宾)如图,在矩形纸片ABCD中,AB=5,BC=3,将△BCD沿BD折叠到△BED位置,DE 交AB于点F,则cos∠ADF的值为( )A.B.C.D.【分析】利用矩形和折叠的性质可得BF=DF,设BF=x,则DF=x,AF=5﹣x,在Rt△ADF中利用勾股定理列方程,即可求出x的值,进而可得cos∠ADF.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,AB∥CD,AD=BC=3,AB=CD=5,∴∠BDC=∠DBF,由折叠的性质可得∠BDC=∠BDF,∴∠BDF=∠DBF,∴BF=DF,设BF=x,则DF=x,AF=5﹣x,在Rt△ADF中,32+(5﹣x)2=x2,∴x=,∴cos∠ADF=,故选:C.9.(2022•广元)如图,在正方形方格纸中,每个小正方形的边长都相等,A、B、C、D都在格点处,AB 与CD相交于点P,则cos∠APC的值为( )A.B.C.D.【分析】把AB向上平移一个单位到DE,连接CE,则DE∥AB,由勾股定理逆定理可以证明△DCE为直角三角形,所以sin∠APC=sin∠EDC即可得答案.【解答】解:把AB向上平移一个单位到DE,连接CE,如图.则DE∥AB,∴∠APC=∠EDC.在△DCE中,有EC==,DC==2,DE==5,∵EC2+DC2=DE2,故△DCE为直角三角形,∠DCE=90°.∴cos∠APC=cos∠EDC==.故选:B.10.(2022•陕西)如图,AD是△ABC的高.若BD=2CD=6,tan C=2,则边AB的长为( )A.3B.3C.3D.6【分析】利用三角函数求出AD=6,在Rt△ABD中,利用勾股定理可得AB的长.【解答】解:∵2CD=6,∴CD=3,∵tan C=2,∴=2,∴AD=6,在Rt△ABD中,由勾股定理得,AB=,故选:D.11.(2022•常州)如图,在四边形ABCD中,∠A=∠ABC=90°,DB平分∠ADC.若AD=1,CD=3,则sin∠ABD= .【分析】过点D作DE⊥BC,垂足为E,如图,由已知∠A=∠ABC=90°,可得AD∥BC,由平行线的性质可得∠ADB=∠CBD,根据角平分线的定义可得∠ADB=∠CDB,则可得CD=CB=3,根据矩形的性质可得AD=BE,即可得CE=BC﹣BE,在Rt△CDE中,根据勾股定理DE=,在Rt△ADB中,根据勾股定理可得,根据正弦三角函数的定义进行求解即可得出答案.【解答】解:过点D作DE⊥BC,垂足为E,如图,∵∠A=∠ABC=90°,∴AD∥BC,∴∠ADB=∠CBD,∵DB平分∠ADC,∴∠ADB=∠CDB,∴CD=CB=3,∵AD=BE=1,∴CE=BC﹣BE=3﹣1=2,在Rt△CDE中,DE===,∵DE=AB,在Rt△ADB中,==,∴sin∠ABD==.故答案为:.12.(2022•齐齐哈尔)在△ABC中,AB=3,AC=6,∠B=45°,则BC= 3+3或3﹣3 .【分析】利用分类讨论的思想方法,画出图形,过点A作AD⊥BC于点D,利用勾股定理解答即可.【解答】解:①当△ABC为锐角三角形时,过点A作AD⊥BC于点D,如图,∵AB=3,∠B=45°,∴AD=BD=AB•sin45°=3,∴CD==3,∴BC=BD+CD=3+3;②当△ABC为钝角三角形时,过点A作AD⊥BC交BC延长线于点D,如图,∵AB=3,∠B=45°,∴AD=BD=AB•sin45°=3,∴CD==3,∴BC=BD﹣CD=3﹣3;综上,BC的长为3+3或3﹣3.13.(2022•连云港)如图,在6×6正方形网格中,△ABC的顶点A、B、C都在网格线上,且都是小正方形边的中点,则sin A= .【分析】先构造直角三角形,然后即可求出sin A的值.【解答】解:设每个小正方形的边长为a,作CD⊥AB于点D,由图可得:CD=4a,AD=3a,∴AC===5a,∴sin∠CAB===,故答案为:.14.(2022•长春)如图是长春市人民大街下穿隧道工程施工现场的一台起重机的示意图,该起重机的变幅索顶端记为点A,变幅索的底端记为点B,AD垂直地面,垂足为点D,BC⊥AD,垂足为点C.设∠ABC =α,下列关系式正确的是( )A.sinα=B.sinα=C.sinα=D.sinα=【分析】根据直角三角形的边角关系进行判断即可.【解答】解:在Rt△ABC中,∠ACB=90°,∠ABC=α,由锐角三角函数的定义可知,sinα=sin∠ABC=,故选:D.15.(2022•沈阳)如图,一条河的两岸互相平行,为了测量河的宽度PT(PT与河岸PQ垂直),测量得P,Q两点间距离为m米,∠PQT=α,则河宽PT的长为( )A.m sinαB.m cosαC.m tanαD.【分析】根据垂直定义可得PT⊥PQ,然后在Rt△PQT中,利用锐角三角函数的定义进行计算即可解答.【解答】解:由题意得:PT⊥PQ,∴∠APQ=90°,在Rt△APQ中,PQ=m米,∠PQT=α,∴PT=PQ•tanα=m tanα(米),∴河宽PT的长度是m tanα米,故选:C.16.(2022•福建)如图所示的衣架可以近似看成一个等腰三角形ABC,其中AB=AC,∠ABC=27°,BC=44cm,则高AD约为( )(参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.51)A.9.90cm B.11.22cm C.19.58cm D.22.44cm【分析】根据等腰三角形性质求出BD,根据角度的正切值可求出AD.【解答】解:∵AB=AC,BC=44cm,∴BD=CD=22cm,AD⊥BC,∵∠ABC=27°,∴tan∠ABC=≈0.51,∴AD≈0.51×22=11.22cm,故选:B.17.(2022•六盘水)“五一”节期间,许多露营爱好者在我市郊区露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E 处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=2m,BF=3m.(1)天晴时打开“天幕”,若∠α=65°,求遮阳宽度CD(结果精确到0.1m);(2)下雨时收拢“天幕”,∠α从65°减少到45°,求点E下降的高度(结果精确到0.1m).(参考数据:sin65°≈0.90,cos65°≈0.42,tan65°≈2.14,≈1.41)【分析】(1)根据对称性得出AD=2m,再根据锐角三角函数求出OD,即可求出答案;(2)过点E作EH⊥AB于H,得出EH=BF=3m,再分别求出∠α=65°和45°时,AH的值,即可求出答案.【解答】解:(1)由对称知,CD=2OD,AD=AC=2m,∠AOD=90°,在Rt△AOD中,∠OAD=α=65°,∴sinα=,∴OD=AD•sinα=2×sin65°≈2×0.90=1.80m,∴CD=2OD=3.6m,答:遮阳宽度CD约为3.6米;(2)如图,过点E作EH⊥AB于H,∴∠BHE=90°,∵AB⊥BF,EF⊥BF,∴∠ABF=∠EFB=90°,∴∠ABF=∠EFB=∠BHE=90°,∴EH=BF=3m,在Rt△AHE中,tan a=,∴AH=,当∠α=65°时,AH=≈≈1.40m,当∠α=45°时,AH==3,∴当∠α从65°减少到45°时,点E下降的高度约为3﹣1.40=1.6m.18.(2022•盐城)2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA是垂直于工作台的移动基座,AB、BC为机械臂,OA=1m,AB=5m,BC=2m,∠ABC =143°.机械臂端点C到工作台的距离CD=6m.(1)求A、C两点之间的距离;(2)求OD长.(结果精确到0.1m,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈2.24)【分析】(1)过点A作AE⊥CB,垂足为E,在Rt△ABE中,由AB=5m,∠ABE=37°,可求AE和BE,即可得出AC的长;(2)过点A作AF⊥CD,垂足为F,在Rt△ACF中,由勾股定理可求出AF,即OD的长.【解答】解:(1)如图,过点A作AE⊥CB,垂足为E,在Rt△ABE中,AB=5m,∠ABE=37°,∵sin∠ABE=,cos∠ABE=,∴=0.60,=0.80,∴AE=3m,BE=4m,∴CE=6m,在Rt△ACE中,由勾股定理AC==3≈6.7m.(2)过点A作AF⊥CD,垂足为F,∴FD=AO=1m,∴CF=5m,在Rt△ACF中,由勾股定理AF==2m.∴OD=2≈4.5m.1.(2022•滨州)在Rt△ABC中,若∠C=90°,AC=5,BC=12,则sin A的值为 .【分析】根据题意画出图形,进而利用勾股定理得出AB的长,再利用锐角三角函数关系,即可得出答案.【解答】解:如图所示:∵∠C=90°,AC=5,BC=12,∴AB==13,∴sin A=.故答案为:.2.(2022•湖州)如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.【分析】根据勾股定理求AC的长,根据正弦的定义求sin A的值.【解答】解:∵∠C=90°,AB=5,BC=3,∴AC===4,sin A==.答:AC的长为4,sin A的值为.3.(2022•广东)sin30°= .【分析】熟记特殊角的三角函数值进行求解即可得出答案.【解答】解:sin30°=.故答案为:.4.(2022•绥化)定义一种运算:sin(α+β)=sinαcosβ+cosαsinβ,sin(α﹣β)=sinαcosβ﹣cosαsinβ.例如:当α=45°,β=30°时,sin(45°+30°)=×+×=,则sin15°的值为 .【分析】把15°看成是45°与30°的差,再代入公式计算得结论.【解答】解:sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=×﹣×=﹣=.故答案为:.5.(2022•张家界)计算:2cos45°+(π﹣3.14)0+|1﹣|+()﹣1.【分析】根据特殊锐角三角函数值,零指数幂,绝对值以及负整数指数幂的性质进行计算即可.【解答】解:原式==.6.(2022•岳阳)计算:|﹣3|﹣2tan45°+(﹣1)2022﹣(﹣π)0.【分析】先化简各式,然后再进行计算即可解答.【解答】解:|﹣3|﹣2tan45°+(﹣1)2022﹣(﹣π)0=3﹣2×1+1﹣1=3﹣2+1﹣1=1.7.(2022•通辽)如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则cos∠ADC的值为( )A.B.C.D.【分析】由格点构造直角三角形,由直角三角形的边角关系以及圆周角定理可得答案.【解答】解:∵AB为直径,∴∠ACB=90°,又∵点A,B,C都在格点上,∴∠ADC=∠ABC,在Rt△ABC中,cos∠ABC====cos∠ADC,故选:B.8.(2022•乐山)如图,在Rt△ABC中,∠C=90°,BC=,点D是AC上一点,连结BD.若tan∠A=,tan∠ABD=,则CD的长为( )A.2B.3C.D.2【分析】过D点作DE⊥AB于E,由锐角三角函数的定义可得5DE=AB,再解直角三角形可求得AC的长,利用勾股定理可求解AB的长,进而求解AD的长.【解答】解:过D点作DE⊥AB于E,∵tan∠A==,tan∠ABD==,∴AE=2DE,BE=3DE,∴2DE+3DE=5DE=AB,在Rt△ABC中,tan∠A=,BC=,∴,解得AC=,∴AB=,∴DE=1,∴AE=2,∴AD=,∴CD=AC﹣AD=,故选:C.9.(2022•泸州)如图,在平面直角坐标系xOy中,矩形OABC的顶点B的坐标为(10,4),四边形ABEF是菱形,且tan∠ABE=.若直线l把矩形OABC和菱形ABEF组成的图形的面积分成相等的两部分,则直线l的解析式为( )A.y=3x B.y=﹣x+C.y=﹣2x+11D.y=﹣2x+12【分析】分别求出矩形OABC和菱形ABEF的中心的坐标,利用待定系数法求经过两中心的直线即可得出结论.【解答】解:连接OB,AC,它们交于点M,连接AE,BF,它们交于点N,则直线MN为符合条件的直线l,如图,∵四边形OABC是矩形,∴OM=BM.∵B的坐标为(10,4),∴M(5,2),AB=10,BC=4.∵四边形ABEF为菱形,BE=AB=10.过点E作EG⊥AB于点G,在Rt△BEG中,∵tan∠ABE=,∴,设EG=4k,则BG=3k,∴BE==5k,∴5k=10,∴k=2,∴EG=8,BG=6,∴AG=4.∴E(4,12).∵B的坐标为(10,4),AB∥x轴,∴A(0,4).∵点N为AE的中点,∴N(2,8).设直线l的解析式为y=ax+b,∴,解得:,∴直线l的解析式为y=﹣2x+12,故选:D.10.(2022•益阳)如图,在Rt△ABC中,∠C=90°,若sin A=,则cos B= .【分析】根据三角函数的定义即可得到cos B=sin A=.【解答】解:在Rt△ABC中,∠C=90°,∵sin A==,∴cos B==.故答案为:.11.(2022•西宁)在Rt△ABC中,∠C=90°,AC=1,BC=,则cos A= .【分析】根据勾股定理求出AB,再根据锐角三角函数的定义求出cos A即可.【解答】解:由勾股定理得:AB===,所以cos A===,故答案为:.12.(2022•通辽)如图,在矩形ABCD中,E为AD上的点,AE=AB,BE=DE,则tan∠BDE= ﹣1 .【分析】用含有AB的代数式表示AD,再根据锐角三角函数的定义进行计算即可.【解答】解:∵四边形ABCD是矩形,∴∠A=90°,∵AB=AE,设AB=a,则AE=a,BE==a=ED,∴AD=AE+DE=(+1)a,在Rt△ABD中,tan∠BDE===﹣1,故答案为:﹣1.13.(2022•张家界)我国魏晋时期的数学家赵爽在为天文学著作《周髀算经》作注解时,用4个全等的直角三角形和中间的小正方形拼成一个大正方形,这个图被称为“弦图”,它体现了中国古代数学的成就.如图,已知大正方形ABCD的面积是100,小正方形EFGH的面积是4,那么tan∠ADF= .【分析】根据两个正方形的面积可得AD=10,DF﹣AF=2,设AF=x,则DF=x+2,由勾股定理得,x2+(x+2)2=102,解方程可得x的值,从而解决问题.【解答】解:∵大正方形ABCD的面积是100,∴AD=10,∵小正方形EFGH的面积是4,∴小正方形EFGH的边长为2,∴DF﹣AF=2,设AF=x,则DF=x+2,由勾股定理得,x2+(x+2)2=102,解得x=6或﹣8(负值舍去),∴AF=6,DF=8,∴tan∠ADF=,故答案为:.14.(2022•金华)一配电房示意图如图所示,它是一个轴对称图形.已知BC=6m,∠ABC=α,则房顶A 离地面EF的高度为( )A.(4+3sinα)m B.(4+3tanα)m C.(4+)m D.(4+)m【分析】过点A作AD⊥BC于点D,利用直角三角形的边角关系定理求得AD,.用AD+BE即可表示出房顶A离地面EF的高度.【解答】解:过点A作AD⊥BC于点D,如图,∵它是一个轴对称图形,∴AB=AC,∵AD⊥BC,∴BD=BC=3m,在Rt△ADB中,∵tan∠ABC=,∴AD=BD•tanα=3tanαm.∴房顶A离地面EF的高度=AD+BE=(4+3tanα)m,故选:B.15.(2022•枣庄)北京冬奥会开幕式的巨型雪花状主火炬塔的设计,体现了环保低碳理念.如图所示,它的主体形状呈正六边形.若点A,F,B,D,C,E是正六边形的六个顶点,则tan∠ABE= .【分析】由正六边形的性质得AB=BC=AC,BE垂直平分AC,再由等边三角形的性质得∠ABC=60°,则∠ABE=∠ABC=30°,即可得出结论.【解答】解:如图,连接AB、BC、AC、BE,∵点A,F,B,D,C,E是正六边形的六个顶点,∴AB=BC=AC,BE垂直平分AC,∴△ABC是等边三角形,∴∠ABC=60°,∵BE⊥AC,∴∠ABE=∠ABC=30°,∴tan∠ABE=tan30°=,故答案为:.16.(2022•绵阳)如图,测量船以20海里每小时的速度沿正东方向航行并对某海岛进行测量,测量船在A 处测得海岛上观测点D位于北偏东15°方向上,观测点C位于北偏东45°方向上.航行半个小时到达B 点,这时测得海岛上观测点C位于北偏西45°方向上,若CD与AB平行,则CD= (5﹣5) 海里(计算结果不取近似值).【分析】过点D作DE⊥AB,垂足为E,根据题意可得:AB=10海里,∠FAD=15°,∠FAC=45°,∠FAB=90°,∠CBA=45°,从而可得∠DAC=30°,∠CAB=45°,进而利用三角形内角和定理求出∠ACB=90°,然后在Rt△ACB中,利用锐角三角函数的定义求出AC的长,设DE=x海里,再在Rt△ADE 中,利用锐角三角函数的定义求出AE的长,在Rt△DEC中,利用锐角三角函数的定义求出EC,DC的长,最后根据AC=5海里,列出关于x的方程,进行计算即可解答.【解答】解:如图:过点D作DE⊥AB,垂足为E,由题意得:AB=20×=10(海里),∠FAD=15°,∠FAC=45°,∠FAB=90°,∠CBA=90°﹣45°=45°,∴∠DAC=∠FAC﹣∠FAD=30°,∠CAB=∠FAB﹣∠FAC=45°,∴∠ACB=180°﹣∠CAB﹣∠CBA=90°,在Rt△ACB中,AC=AB•sin45°=10×=5(海里),设DE=x海里,在Rt△ADE中,AE===x(海里),∵DC∥AB,∴∠DCA=∠CAB=45°,在Rt△DEC中,CE==x(海里),DC===x(海里),∵AE+EC=AC,∴x+x=5,∴x=,∴DC=x=(5﹣5)海里,故答案为:(5﹣5).17.(2022•荆门)如图,一艘海轮位于灯塔P的北偏东45°方向,距离灯塔100海里的A处,它沿正南方向以50海里/小时的速度航行t小时后,到达位于灯塔P的南偏东30°方向上的点B处,则t= (1+) 小时.【分析】根据题意可得:∠PAC=45°,∠PBA=30°,AP=100海里,然后在Rt△APC中,利用锐角三角函数的定义求出AC,PC的长,再在Rt△BCP中,利用锐角三角函数的定义求出BC的长,从而求出AB的长,最后根据时间=路程÷速度,进行计算即可解答.【解答】解:如图:由题意得:∠PAC=45°,∠PBA=30°,AP=100海里,在Rt△APC中,AC=AP•cos45°=100×=50(海里),PC=AP•sin45°=100×=50(海里),在Rt△BCP中,BC===50(海里),∴AB=AC+BC=(50+50)海里,∴t==(1+)小时,故答案为:(1+).18.(2022•桂林)如图,某雕塑MN位于河段OA上,游客P在步道上由点O出发沿OB方向行走.已知∠AOB=30°,MN=2OM=40m,当观景视角∠MPN最大时,游客P行走的距离OP是 20 米.【分析】先证OB是⊙F的切线,切点为E,当点P与点E重合时,观景视角∠MPN最大,由直角三角形的性质可求解.【解答】解:如图,取MN的中点F,过点F作FE⊥OB于E,以直径MN作⊙F,∵MN=2OM=40m,点F是MN的中点,∴MF=FN=20m,OF=40m,∵∠AOB=30°,EF⊥OB,∴EF=20m,OE=EF=20m,∴EF=MF,又∵EF⊥OB,∴OB是⊙F的切线,切点为E,∴当点P与点E重合时,观景视角∠MPN最大,此时OP=20m,故答案为:20.19.(2022•内江)如图所示,九(1)班数学兴趣小组为了测量河对岸的古树A、B之间的距离,他们在河边与AB平行的直线l上取相距60m的C、D两点,测得∠ACB=15°,∠BCD=120°,∠ADC=30°.(1)求河的宽度;(2)求古树A、B之间的距离.(结果保留根号)【分析】(1)过点A作AE⊥l,垂足为E,设CE=x米,则DE=(x+60)米,先利用平角定义求出∠ACE =45°,然后在Rt△AEC中,利用锐角三角函数的定义求出AE的长,再在Rt△ADE中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答;(2)过点B作BF⊥l,垂足为F,CE=AE=BF=(30+30)米,AB=EF,先利用平角定义求出∠BCF =60°,然后在Rt△BCF中,利用锐角三角函数的定义求出CF的长,进行计算即可解答.【解答】解:(1)过点A作AE⊥l,垂足为E,设CE=x米,∵CD=60米,∴DE=CE+CD=(x+60)米,∵∠ACB=15°,∠BCD=120°,∴∠ACE=180°﹣∠ACB﹣∠BCD=45°,在Rt△AEC中,AE=CE•tan45°=x(米),在Rt△ADE中,∠ADE=30°,。

中考数学【锐角三角函数】考点专项复习教案(含例题、习题、答案)

中考数学【锐角三角函数】考点专项复习教案(含例题、习题、答案)

8.
cos 60°= 1 ,tan 30°=
2
,∴cos 60°-tan 30°≠0,
∴(cos 60°-tan 30°)0=1, 解:原式= 例7 分析
2 +1
3
十+2
2 =3 2 +1.
1 32
1 计算 2
-(π -3.14)0-|1-tan 60°|-
3. 3 +1+ 3 +2=10.
第二十八章
本章小结 小结 1 本章概述
锐角三角函数
锐角三角函数、解直角三角形,它们既是相似三角形及函数的继 续,也是继续学习三角形的基础.本章知识首先从工作和生活中经常 遇到的问题人手, 研究直角三角形的边角关系、 锐角三角函数等知识, 进而学习解直角三角形,进一步解决一些简单的实际问题.只有掌握 锐角三角函数和直角三角形的解法, 才能继续学习任意角的三角函数 和解斜三角形等知识, 同时解直角三角形的知识有利于培养数形结合 思想,应牢固掌握. 小结 2 本章学习重难点 【本章重点】 通过实例认识直角三角形的边角关系,即锐角三 角函数(sin A,cos A,tan A),知道 30°,45°,60°角的三角函数 值,会运用三角函数知识解决与直角三角形有关的简单的实际问题. 【本章难点】 综合运用直角三角形的边边关系、边角关系来解 决实际问题. 【学习本章应注意的问题】 在本章的学习中,应正确掌握四种三角函数的定义,熟记特殊角 的三角函数值,要善于运用方程思想求直角三角形的某些未知元素, 会运用转化思想通过添加辅助线把不规则的图形转化为规则的图形 来求解, 会用数学建模思想和转化思想把一些实际问题转化为数学模 型,从而提高分析问题和解决问题的能力.
.
tan 60°=
解:原式=8-1-
专题 3 锐角三角函数与相关知识的综合运用 【专题解读】 锐角三角函数常与其他知识综合起来运用,考查 综合运用知识解决问题的能力. 例 8 如图 28-124 所示,在△ABC 中,AD 是 BC 边上的高,E 为 AC 边的中点,BC=14,AD=12,sin B =4.

中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)

中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)

中考数学复习《锐角三角函数及其实际应用》经典题型及测试题(含答案)命题点分类集训命题点1 特殊角的三角函数值【命题规律】1.考查内容:主要考查 30°,45°,60°角的正弦,余弦,正切值的识记、正余弦的转换及由三角函数值求出角度. 2.考查形式:①三类特殊角的三角函数值识记;②与非负性结合,通过三角函数值求角度;③正弦余弦、正切余切之间的相互转化,判断关系式是否成立;④在实数运算中涉及三类特殊角的三角函数值运算(具体试题见实数的运算部分).【命题预测】特殊角的三角函数值作为识记内容在实数运算中考查的可能性比较大,而单独考查也会出现.1. sin 60°的值等于( ) A . 12B .22 C . 32D . 3 1. C2. 下列式子错误..的是( ) A . cos 40°=sin 50° B . tan 15°·tan 75°=1 C . sin 225°+cos 225°=1 D . sin 60°=2sin 30°2. D 【解析】逐项分析如下:选项 逐项分析正误 A cos40°=sin(90°-40°)=sin50° √ B tan15°·tan75°=1tan75°×tan75°=1√ C sin 2A +cos 2A =1√ D∵sin60°=32,2sin30°=2×12=1,∴sin60°≠2sin30° ×3. 已知α,β均为锐角,且满足|sin α-12|+(tan β-1)2=0,则α+β=________.3. 75° 【解析】由于绝对值和算术平方根都是非负数,而这两个数的和又为零,于是它们都为零.根据题意,得|sin α-12|=0,(tan β-1)2=0,则sin α =12,tan β =1,又因为α、β均为锐角,则α=30°,β=45°,所以α+β=30°+45°=75°. 命题点2 直角三角形的边角关系【命题规律】1.考查内容:在直角三角形中,三边与两个锐角之间关系的互化.2.考查形式:已知一边及某锐角的三角函数值,求其他量,或结合直角坐标系求锐角三角函数值.【命题预测】直角三角形的边角关系是解直角三角形实际应用问题的基础,值得关注.4. 如图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A . 34B . 43C . 35D . 454. D 【解析】如解图,过点A 作AB ⊥x 轴于点B ,∵A (4,3),∴OB =4,AB =3,∴OA =32+42=5,∴cos α=OB OA =45.5. 在Rt △ABC 中,∠C =90°,sin A =45,AC =6 cm .则BC 的长度为( )A . 6 cmB . 7 cmC . 8 cmD . 9 cm5. C 【解析】∵sin A =BC AB =45,∴设BC =4a ,则AB =5a ,AC =(5a )2-(4a )2=3a ,∴3a =6,即a =2,故BC =4a =8 cm.6. 已知:如图,在锐角△ABC 中,AB =c ,BC =a ,AC =b ,AD ⊥BC 于D. 在Rt △ABD 中,sin ∠B =ADc ,则AD =c sin ∠B ;在Rt △ACD 中,sin ∠C =________,则AD =________. 所以c sin ∠B =b sin ∠C ,即bsin B =csin C , 进一步即得正弦定理:asin A =b sin B =c sin C.(此定理适合任意锐角三角形) 参照利用正弦定理解答下题:在△ABC 中,∠B =75°,∠C =45°,BC =2,求AB 的长.6. 解:∵sin C =AD AC =ADb ,∴AD =b sin C ,由正弦定理得:BC sin A =ABsin C ,∵∠B =75°, ∠C =45°, ∴∠A =60°, ∴2sin 60°=ABsin 45°,∴AB =2×22÷32=263.命题点3 锐角三角函数的实际应用【命题规律】1.考查内容:主要考查利用几何建模思想,将实际问题抽象为几何中的直角三角形的有关问题,并根据直角三角形的边角关系解决实际问题.2.考查形式:①仰角、俯角问题;②方位角问题;③坡度、坡角问题;④测量问题等.【命题预测】锐角三角函数的实际应用是将实际问题转化为几何问题并加以解决的数学建模题型,是全国命题的趋势.7. 小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB 的长度相等,小明将PB 拉到PB′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D 的高度为1米,则旗杆PA 的高度为( )A .11-sin α B . 11+sin α C . 11-cos α D . 11+cos α7. A 【解析】在Rt △PCB ′中,sin α=PCPB ′,∴PC =PB ′·sin α,又∵B ′D =AC =1,则PB ′·sin α+1=P A ,而PB ′=P A ,∴P A =11-sin α.8. 如图①是小志同学书桌上的一个电子相框,将其侧面抽象为如图②所示的几何图形,已知BC =BD =15 cm ,∠CBD =40°,则点B 到CD 的距离为________cm (参考数据:sin 20°≈0.342,cos 20°≈0.940,sin 40°≈0.643,cos 40°≈0.766.结果精确到0.1 cm ,可用科学计算器).8. 14.1 【解析】如解图 ,过点B 作BE ⊥CD 于点E ,∵BC =BD =15 cm ,∠CBD =40°,∴∠CBE =20°,在Rt △CBE 中,BE =BC ·cos ∠CBE ≈15×0.940=14.1(cm).第8题图 第9题图 第10题图9. 如图,一艘渔船位于灯塔P 的北偏东30°方向,距离灯塔18海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东55°方向上的B 处,此时渔船与灯塔P 的距离约为________海里.(结果取整数.参考数据:sin 55°≈0.8,cos 55°≈0.6,tan 55°≈1.4)9. 11 【解析】∵∠A =30°,∴PM =12PA =9海里.∵∠B =55°, sin B =PM PB ,∴0.8=9PB ,∴PB ≈11海里.10. 如图,在一次数学课外实践活动中,小聪在距离旗杆10 m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1 m ,则旗杆高BC 为__________m .(结果保留根号)10. 103+1 【解析】如解图,过点A 作AE ⊥BC ,垂足为点E ,则AE =CD =10 m ,在Rt △AEB 中,BE =AE·tan 60°=10×3=10 3 m ,∴BC =BE +EC =BE +AD =(103+1)m . 11. 如图,大楼AB 右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B 、C 、E 在同一水平直线上),已知AB =80 m ,DE =10 m ,求障碍物B 、C 两点间的距离.(结果精确到0.1 m ,参考数据:2≈1.414,3≈1.732)11. 解:如解图,过点D 作DF ⊥AB ,垂足为点F ,则四边形FBED 为矩形,∴FD =BE ,BF =DE =10,FD ∥BE ,由题意得:∠FDC =30°,∠ADF =45°,∵FD ∥BE , ∴∠DCE =∠FDC =30°, 在Rt △DEC 中,∠DEC =90°,DE =10,∠DCE =30°, ∵tan ∠DCE =DE CE ,∴CE =10tan 30°=103,在Rt △AFD 中,∠AFD =90°,∠ADF =∠FAD =45°, ∴FD =AF ,又∵AB =80,BF =10,∴FD =AF =AB -BF =80-10=70,∴BC =BE -CE =FD -CE =70-103≈52.7(m ). 答:障碍物B 、C 两点间的距离约为52.7 m .12.某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面AC 的坡度为1∶ 3. (1)求新坡面的坡角α;(2)天桥底部的正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.12. 解:(1)∵新坡面AC 的坡度为1∶3,∴tan α=13=33, ∴α=30°.答:新坡面的坡角α的度数为30°.(2)原天桥底部正前方8米处的文化墙PM 不需要拆除. 理由如下:如解图所示,过点C 作CD ⊥AB ,垂足为点D , ∵坡面BC 的坡度为1∶1, ∴BD =CD =6米,∵新坡面AC 的坡度为1∶3, ∴CD ∶AD =1∶3, ∴AD =63米,∴AB =AD -BD =(63-6)米<8米,故正前方的文化墙PM 不需拆除. 答:原天桥底部正前方8米处的文化墙PM 不需要拆除.13.如图,某无人机于空中A 处探测到目标B ,D ,从无人机A 上看目标B ,D 的俯角分别为30°,60°,此时无人机的飞行高度AC 为 60 m ,随后无人机从A 处继续水平飞行30 3 m 到达A′处. (1)求A ,B 之间的距离;(2)求从无人机A′上看目标D 的俯角的正切值.13. 解:(1)如解图,过点D 作DE ⊥AA′于点E ,由题意得,AA ′∥BC ,∴∠B =∠FAB =30°, 又∵AC =60 m ,在Rt △ABC 中,sin B =AC AB ,即12=60AB,∴AB =120 m .答:A ,B 之间的距离为120 m .(2)如解图,连接A′D ,作A′E ⊥BC 交BC 延长线于E , ∵AA ′∥BC ,∠ACB =90°, ∴∠A ′AC =90°,∴四边形AA′EC 为矩形, ∴A ′E =AC =60 m , 又∵∠ADC =∠FAD =60°, 在Rt △ADC 中,tan ∠ADC =AC CD ,即5=60CD,∴CD =20 3 m ,∴DE =DC +CE =AA′+DC =303+203=50 3 m , ∴tan ∠AA ′D =tan ∠A ′DE =A′E DE =60503=235,答:从无人机A′上看目标D 的俯角的正切值为235.中考冲刺集训一、选择题1.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是( )A . 斜坡AB 的坡度是10° B . 斜坡AB 的坡度是tan 10°C . AC =1.2tan 10° 米D . AB = 1.2cos 10°米第1题图 第2题图 第3题图2.如图,以O 为圆心,半径为1的弧交坐标轴于A ,B 两点,P 是AB ︵上一点(不与A ,B 重合),连接OP ,设∠POB=α,则点P 的坐标是( )A . (sin α,sin α)B . (cos α,cos α)C . (cos α,sin α)D . (sin α,cos α)3.一座楼梯的示意图如图所示,BC 是铅垂线,CA 是水平线,BA 与CA 的夹角为θ.现要在楼梯上铺一条地毯,已知CA =4米,楼梯宽度1米,则地毯的面积至少需要( )A . 4sin θ 米2B . 4cos θ 米2C . (4+4tan θ) 米2 D . (4+4tan θ) 米24.如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是( )A . 12B . 1C . 3D . 2第4题图 第5题图 第6题图5.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆底端D 到大楼前梯坎底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i =1∶3,则大楼AB 的高度约为(精确到0.1米,参考数据:2≈1.41,3≈1.73,6≈2.45)( )A . 30.6B . 32.1C . 37.9D . 39.46. 如图,钓鱼竿AC 长6 m ,露在水面上的鱼线BC 长3 2 m ,某钓鱼者想看看鱼钩上的情况,把鱼竿AC 转到AC′的位置,此时露在水面上的鱼线B ′C ′为3 3 m ,则鱼竿转过的角度是( )A . 60°B . 45°C . 15°D . 90°二、填空题7. 如图,点A(3,t)在第一象限,射线OA 与x 轴所夹的锐角为α,tan α=32,则t 的值是________.第7题图 第8题图 第9题图8. 如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD =45°,∠MBC=30°,则警示牌的高CD为______米.(结果精确到0.1米,参考数据:2≈1.41,3≈1.73) 9. 如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:3≈1.73)三、解答题10. 如图,在数学活动课中,小敏为了测量校园内旗杆CD的高度,先在教学楼的底端A点处,观测到旗杆顶端C的仰角∠CAD=60°,然后爬到教学楼上的B处,观测到旗杆底端D的俯角是30°. 已知教学楼AB高4米.(1)求教学楼与旗杆的水平距离AD;(结果保留根号......)(2)求旗杆CD的高度.11. 图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40 cm,与水平面所形成的夹角∠OAM为75°,由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1 cm.温馨提示:sin75°≈0.97,cos75°≈0.26,3≈1.73).12. 阅读材料:关于三角函数还有如下的公式:sin (α±β)=sin αcos β±cos αsin β tan (α±β)=tan α±tan β1∓tan α tan β利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,例如:tan 75°=tan (45°+30°)=tan 45°+tan 30°1-tan 45°tan 30°=1+331-1×33=2+ 3 根据以上阅读材料,请选择适当的公式计算下列问题: (1)计算sin 15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度,已知李三站在离纪念碑底7米的C 处,在D 点测得纪念碑碑顶的仰角为75°,DC 为 3 米,请你帮助李三求出纪念碑的高度.答案与解析:1. B第2题解图2. C 【解析】如解图,过点P 作PC ⊥OB 于点C ,则在Rt △OPC 中,OC =OP ·cos ∠POB =1×cos α=cos α,PC =OP ·sin ∠POB =1×sin α=sin α,即点P 的坐标为(cos α,sin α).3. D 【解析】在Rt △ABC 中,∠BAC =θ,CA =4米,∴BC =CA ·tan θ=4tan θ.地毯长为(4+4tan θ)米,宽为1米,其面积为(4+4tan θ)×1=(4+4tan θ)米2.4. D 【解析】如解图,将AB 平移到PE 位置,连接QE, 则PQ =210,PE =22,QE =42,∵△PEQ 中,PE 2+QE 2=PQ 2,则∠PEQ =90°,∴tan ∠QMB =tan ∠P =QEPE=2.第4题解图第5题解图5. D 【解析】如解图,设AB 与DC 的延长线交于点G ,过点E 作EF ⊥AB 于点F ,过点B 作BH ⊥ED 于点H ,则可得四边形GDEF 为矩形.在Rt △BCG 中,∵BC =12,i BC =BG CG =33,∴∠BCG =30°,∴BG =6,CG =63,∴BF =FG -BG =DE -BG =15-6=9,∵∠AEF =α=45°,∴AF =EF =DG =CG +CD =63+20,∴AB =BF +AF =9+20+63≈39.4(米).6. C 【解析】∵sin ∠CAB =BC AC =326=22,∴∠CAB ′=45°,∵sin ∠C ′AB ′=B ′C ′AC ′=336=32,∴∠C ′AB ′=60°,∴∠CAC ′=60°-45°=15°,即鱼竿转过的角度是15°.第7题解图7. 92【解析】如解图,过点A 作AB ⊥x 轴于点B.∵点A(3,t)在第一象限,∴OB =3,AB =t ,在11 Rt △ABO 中,tan α=AB OB =t 3=32,解得t =92. 8. 2.9 【解析】在Rt △AMD 中,DM =tan ∠DAM ×AM =tan 45°×4=4米,在Rt △BMC 中,CM =tan ∠MBC ×BM =tan 30°×12=4 3 米,故CD =CM -DM =43-4≈2.9米.9. 208 【解析】在Rt △ABD 中,BD =AD·tan ∠BAD =90×tan 30°=303,在Rt △ACD 中,CD =AD·tan ∠CAD =90×tan 60°=903,BC =BD +CD =303+903=1203≈208(米).10. 解:(1)∵在教学楼B 点处观测旗杆底端D 处的俯角是30°,∴∠ADB =30°,在Rt △ABD 中,∠BAD =90°,∠ADB =30°,AB =4(米),∴AD =AB tan ∠ADB =4tan 30°=43(米). 答:教学楼与旗杆的水平距离是4 3 米.(也可先求∠ABD =60°,利用tan 60°去计算得到结论)(2)∵在Rt △ACD 中,∠ADC =90°,∠CAD =60°,AD =4 3 米,∴CD =AD·tan 60°=43×3=12(米).答:旗杆CD 的高度是12米.11. 解:∵tan ∠OBC =tan 30°=OC BC =33, ∴OC =33BC , ∵sin ∠OAC =sin 75°=OC OA≈0.97, ∴33BC 40≈0.97, ∴BC ≈67.1(cm ).12. 解:(1)sin 15°=sin (45°-30°)=sin 45°cos 30°-cos 45°sin 30° =22×32-22×12 =6-24. (2)在Rt △BDE 中,∠BDE =75°,DE =CA =7,tan ∠BDE =BE DE ,即tan 75°=BE 7=2+3, ∴ BE =14+73,又∵AE =DC =3,∴AB =BE +AE =14+73+3=14+83(米),答:纪念碑的高度是(14+83)米.。

2024年中考数学一轮复习考点精讲课件—锐角三角形及其应用

2024年中考数学一轮复习考点精讲课件—锐角三角形及其应用

【详解】解:∵ tan − 3 + 2cos − 3 =0,
∴ tan − 3 = 0, 2cos − 3
2
= 0,
∴ tan = 3,2cos − 3 = 0,
∴ ∠ = 60°,cos =
3
,∠
2
= 30°,
在△ 中,∠ = 180° − 60° − 30° = 90°,且∠ ≠ ∠,
−2

考点一 锐角三角函数
题型09 求特殊角的三角函数值
3
【例9】(2023·山东淄博·统考一模)在实数 2,x0(x≠0),cos30°, 8中,有理数的个数是(
A.1个
B.2个
C.3个
D.4个
【变式9-1】(2023·广东潮州·二模)计算|1 − tan60°|的值为(
A.1 − 3
B.0
C. 3 − 1
3
∴tan∠ABE=tan30°= 3 ,
3
故答案为: 3 .

考点一 锐角三角函数
题型05 已知正弦值求边长
3
【例5】(2022·云南昆明·官渡六中校考一模)在△ 中,∠ = 90°,若 = 100, sin = 5,则的长是


500
3
A.
503
5
B.
C.60
D.80
【变式5-1】(2023·广东佛山·校联考模拟预测)如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,
∠A的邻边
斜边
cos A =
b
c
正切
tanA =
∠A的对边
∠A的邻边
tan A =
a
b
3. 锐角三角函数的关系:

2023年九年级中考数学一轮复习:锐角三角函数(含答案)

2023年九年级中考数学一轮复习:锐角三角函数(含答案)

2023年中考数学一轮复习:锐角三角函数(含答案)一、单选题1.如图,在ABC 中, 45B ∠=︒ , 30C ∠=︒ ,分别以 A 、 B 为圆心,大于12AB 的长为半径画弧,两弧相交于点 D 、 E .作直线 DE ,交 BC 于点 M ;同理作直线 FG 交 BC 于点 N ,若 6AB = ,则 MN 的长为( )A .1B 3C .3D .232.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则sin∠OMN 的值为( )A .12B .1C .2 D 33.如图,在 Rt ABC 中, 9053C AB BC ∠=︒==,, ,则 sin B 的值为( )A .45B .34C .35D .43二、填空题4.cos60︒ = .5.两块等腰直角三角形纸片 AOB 和 COD 按图1所示放置,直角顶点重合在点O 处,210AB = , 4CD = .保持纸片 AOB 不动,将纸片 COD 绕点O 逆时针旋转 α()090α<<︒ .当BD 与 CD 在同一直线上(如图2)时, α 的正切值等于 .6.在 ABC ∆ 中, 903016ACB A AB ︒︒∠=∠==,, ,点 P 是斜边 AB 上一点,过点 P 作PQ AB ⊥ ,垂足为 P ,交边 AC (或边 CB )于点 Q ,设 AP x = ,当 APQ ∆ 的面积为 3时, x 的值为 .三、综合题7.如图,在直角三角形ABC 中,∠C =90°,∠A =30°,AC =4,将∠ABC 绕点A 逆时针旋转60°,使点B 落在点E 处,点C 落在点D 处.P 、Q 分别为线段AC 、AD 上的两个动点,且AQ =2PC ,连接PQ 交线段AE 于点M .(1)AQ = ,∠APQ 为等边三角形;(2)是否存在点Q ,使得∠AQM 、∠APQ 和∠APM 这三个三角形中一定有两个三角形相似?若存在请求出AQ 的长;若不存在请说明理由; (3)AQ = ,B 、P 、Q 三点共线.8.(1)计算:3tan30°-(cos60°)-1+8 cos45°+()1tan 60-︒(2)先化简,再求代数式 221(1)122x x x --÷++ 的值,其中x=4cos30°-tan45° 9.如图,AB 是∠O 的直径,点P 在∠O 上,且PA =PB ,点M 是∠O 外一点,MB 与∠O 相切于点B ,连接OM ,过点A 作AC OM 交∠O 于点C ,连接BC 交OM 于点D .(1)求证:MC是∠O的切线;(2)若152OB=,12BC=,连接PC,求PC的长.10.如图,在∠ABC中,过点C作CD//AB,E是AC的中点,连接DE并延长,交AB于点F,连接AD,CF.(1)求证:四边形AFCD是平行四边形;(2)若AB=6,∠BAC=60°,∠DCB=135°,求AC的长.11.如图,∠ABC内接于∠O,AB是∠O的直径,∠O的切线AP与OC的延长线相交于点P,∠P=∠BCO.(1)求证:AC=PC;(2)若AB=6 3,求AP的长.12.(12744 sin603233-︒-(2)先化简,再求值:342111xxx x-⎛⎫+-÷⎪--⎝⎭,其中22x=.13.如图,以AB为直径作O,过点A作O的切线AC,连接BC,交O于点D,点E是BC边的中点,连结AE.(1)求证: 2AEB C ∠=∠ ; (2)若 5AB = , 3cos 5B =,求 DE 的长. 14.(1)计算: 2cos 45sin 30tan 45︒︒︒+⋅ . (2)求二次函数 21212y x x =++ 图象的顶点坐标. 15. 如图,直线y =-x +b 与反比例函数 3y x=-的图象相交于点A (a ,3),且与x 轴相交于点B .(1) 求a 、b 的值;(2) 若点P 在x 轴上,且∠AOP 的面积是∠AOB 的面积的12,求点P 的坐标. 16.如图, PA 、 PB 为O 的切线,A 、B 为切点,点C 为半圆弧的中点,连 AC 交 PO于E 点.(1)求证: PB PE = ; (2)若 3tan 5CPO ∠=,求 sin PAC ∠ 的值. 17.(120313213(202248)64---⨯--().(2)先化简,再求值:2243()22ab a ba b a b b a a b---⨯÷+-+,代入你喜欢的a ,b 值求结果. 18.矩形AOBC 中,OB =4,OA =3,分别以OB ,OA 所在直线为x 轴,y 轴,建立如图所示的平面直角坐标系,F 是BC 边上一个动点(不与B ,C 重合),过点F 的反比例函数 ky x= (k >0)的图象与边AC 交于点E.(1)当点F 为边BC 的中点时,求点E 的坐标; (2)连接EF ,求∠EFC 的正切值.19.如图1,已知矩形ABCD 中,AB=6,BC=8,O 是对角线AC 的中点,点E 从A 点沿AB 向点B运动,运动过程中连接OE ,过O 作OF∠OE 交BC 于F ,连接EF ,(1)当点E 与点A 重合时,如图2,求 tan OEF ∠ 的值;(2)运动过程中, tan OEF ∠ 的值是否与(1)中所求的值保持不变,并说明理由; (3)当EF 平分∠OEB 时,求AE 的长.20.如图1,已知二次函数()20y ax bx c a =++>的图象与x 轴交于点()10A -,、()20B ,,与y 轴交于点C ,且2tan OAC ∠=.(1)求二次函数的解析式;(2)如图2,过点C 作CD x 轴交二次函数图象于点D ,P 是二次函数图象上异于点D 的一个动点,连接PB 、PC ,若PBCBCDSS=,求点P 的坐标;(3)如图3,若点P 是二次函数图象上位于BC 下方的一个动点,连接OP 交BC 于点Q.设点P 的横坐标为t ,试用含t 的代数式表示PQ OQ 的值,并求PQOQ的最大值. 21.如图1,四边形 ABCD 内接于O , BD 为直径, AD 上存在点E ,满足AE CD = ,连结 BE 并延长交 CD 的延长线于点F , BE 与 AD 交于点G.(1)若 DBC α∠= ,请用含 α 的代数式表列 AGB ∠ . (2)如图2,连结 ,CE CE BG = .求证; EF DG = . (3)如图3,在(2)的条件下,连结 CG , 2AG = . ①若 3tan 2ADB ∠=,求 FGD 的周长. ②求 CG 的最小值.22.如图,直线364y x =+分别与x 轴、y 轴交于点A 、B ,点C 为线段AB 上一动点(不与A 、B 重合),以C 为顶点作OCD OAB ∠=∠,射线CD 交线段OB 于点D ,将射线OC 绕点O 顺时针旋转90︒交射线CD 于点E ,连接BE .(1)证明:CD ODDB DE=;(用图1) (2)当BDE 为直角三角形时,求DE 的长度;(用图2) (3)点A 关于射线OC 的对称点为F ,求BF 的最小值.(用图3)23.如图,在二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象与x 轴交于A ,B两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D.其对称轴与线段BC 交于点E ,与x 轴交于点F.连接AC ,BD.(1)求A ,B ,C 三点的坐标(用数字或含m 的式子表示),并求 OBC ∠ 的度数; (2)若 ACO CBD ∠=∠ ,求m 的值;(3)若在第四象限内二次函数 2221y x mx m =-+++ (m 是常数,且 0m > )的图象上,始终存在一点P ,使得 75ACP ∠=︒ ,请结合函数的图象,直接写出m 的取值范围.24.如图,已知 AB 是O 的直径,点 E 是O 上异于 A , B 的点,点 F 是 EB 的中点,连接 AE , AF , BF ,过点 F 作 FC AE ⊥ 交 AE 的延长线于点 C ,交 AB 的延长线于点 D , ADC ∠ 的平分线 DG 交 AF 于点 G ,交 FB 于点 H .(1)求证: CD 是 O 的切线;(2)求 sin FHG ∠ 的值; (3)若 GH 42=, HB 2= ,求 O 的直径.25.如图,在平面直角坐标系中,二次函数 ()240y ax bx a =++≠ 的图象经过 ()3,0A - ,()4,0B 两点,且与 y 轴交于点 C .点 D 为 x 轴负半轴上一点,且 BC BD = ,点 P ,Q 分别在线段 AB 和 CA 上.(1)求这个二次函数的表达式.(2)若线段 PQ 被 CD 垂直平分,求 AP 的长. (3)在第一象限的这个二次函数的图象上取一点 G ,使得 GCBGCASS= ,再在这个二次函数的图象上取一点 E (不与点 A , B , C 重合),使得 45GBE ∠=︒ ,求点 E 的坐标.参考答案1.【答案】A【解析】【解答】如解图,连接AM、AN,由作法可知,DE、FG分别为线段AB、AC的垂直平分线,∴AM=BM,AN=CN.∵∠B=45°,∠C=30°,∴∠BAM=45°,∠CAN=30°.∴∠AMB=∠AMC=90°.∴∠MAN=90°−∠C−∠CAN=30°.∵AB= 6,∴AM= 3,∴MN=AM·tan30°=1,故答案为:A.【分析】利用线段垂直平分线的性质得到AM=BM,AN=CN,∠BAM=45°,∠CAN=30°.求得∠MAN=90°−∠C−∠CAN=30°,利用特殊角的三角函数值即可求解。

数学中考一轮复习:三角函数-锐角三角函数要点集锦

数学中考一轮复习:三角函数-锐角三角函数要点集锦

初中数学锐角三角函数要点集锦考点考纲要求分值考向预测锐角三角函数要点1. 理解正弦、余弦、正切的定义及计算公式;2. 能够推导并掌握特殊角的三角函数值;3. 能够理解与锐角三角函数有关的公式。

3~5分主要考查为利用三角函数的定义求值,利用特殊角的三角函数值进行计算,难度不大,分值也不高,理解定义是解决问题的关健。

一、锐角三角函数基本定义:在Rt△ABC中,∠C=90°,我们把∠A的对边与斜边的比叫做∠A的正弦,记作sin A;把∠A的邻边与斜边的比叫做∠A的余弦,记作cos A;把∠A的对边与邻边的比叫做∠A 的正切,记作tan A。

即:sinA=;cosA=;tanA=。

锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数。

ABCabc对边邻边斜边【随堂练习】(贵阳)在Rt△ABC中,∠C=90°,AC=12,BC=5,则sinA的值为()A. B. C. D.思路分析:首先画出图形,进而求出AB的长,再利用锐角三角函数求出即可。

答案:解:如图所示:∵∠C=90°,AC=12,BC=5,∴AB===13,则sinA==,故选:D。

三角函数角度αsinαcosαtanα30°45° 160°【重要提示】1. 各三角函数值可通过直角三角形性质及勾股定理求出边长从而求出比值;2. 锐角三角函数值的取值范围及增减情况:①∠A的正弦函数、余弦函数的取值范围是:0<sinA<1,0<cosA<1,即任意锐角的正弦、余弦值都大于0而小于1;而正切是两直角边的比,所以∠A的正切函数取值范围是:tanA>0,即任意锐角的正切值都大于0。

②当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大);正切值随着角度的增大(或减小)而增大(或减小)。

三、同角、互余两角的锐角三角函数值的关系:1. 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值;即:。

中考数学一轮考点复习:三角形(考点解读+考题精析)

中考数学一轮考点复习:三角形(考点解读+考题精析)

三角形考点解读1、了解三角形的有关概念,并探索其性质。

会证三角形全等2、能运用有关三角形的知识解决问题。

3、重点、易错点分析:4、通过证明线段或角相等来考虑三角形的性质和判定;运用勾股定理解决实际问题,三角形中重要线段的性质和判定。

确定边长的取值范围时,容易忽略是不是能构成三角形;等腰三角形注意解的不唯一性。

考题解析1.如图,已知△ABC,AB=AC,∠A=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E、F.给出以下四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;=S△ABC④S四边形AEPF上述结论始终正确的有()A.①②③B.①③C.①③④D.①②③④【考点】KY:三角形综合题.【分析】连接AP,判断出△APE≌△CPF,可得①③结论正确,同理证明△APF ≌△BPE,即可得到④正确;【解答】解:连接AP,EF,∵AB=AC,∠A=90°,∴AP⊥BC,∴∠APC=90°,∴∠APF +∠CPF=90°,∵∠EPF=∠APE +∠APF=90°,∴∠APE=∠CPF ,在等腰直角三角形ABC 中,AP ⊥BC ,∴∠BAP=∠CAP=∠C=45°,AP=CP ,在△APE 和△CPF 中, ∴△APE ≌△CPF ,∴S △APE =S △CPF ,AE=CF ,PE=PF ,∵∠EPF=90°,∴△EPF 是等腰直角三角形;即:①③正确;同理:△APF ≌△BPE ,∴S △APF =S △BPE ,∴S 四边形AEPF =S △APE +S △APF =S △ABC ,即:④正确;∵△△EPF 是等腰直角三角形,∴EF=PE ,当PE ⊥AB 时,AP=EF ,而PE 不一定垂直于AB , ∴AP 不一定等于EF ,∴②错误;故选C .2.如图,在△ABC 中,∠C=90°,AC=BC=4,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE=CF ,连接DE 、DF 、EF .在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF 不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生变化;④点C、E、D、F四点在同一个圆上,且该圆的面积最小为4π.其中错误结论的个数是()个.A.1 B.2 C.3 D.4【考点】KY:三角形综合题.【分析】①正确.连接CD.只要证明△ADE≌△CDF(SAS),即可解决问题.②错误.当E、F分别为AC、BC中点时,四边形CEDF为正方形.=××4×4=4,为定值.③错误.四边形CEDF的面积=S△ABC④错误.以EF为直径的圆的面积的最小值=π•(•2)2=2π.【解答】解:连接CD,如图1,∵∠C=90°,AC=BC=4,∵△ABC是等腰直角三角形,∴∠A=∠B=45°,∵D为AB的中点,∴CD⊥AB,CD=AD=BD,∴∠DCB=∠B=45°,∴∠A=∠DCF,在△ADE和△CDF中,∴△ADE≌△CDF(SAS),∴ED=DF,∠CDF=∠ADE,∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=90°,即∠EDF=90°,∴△DFE是等腰直角三角形,所以①正确;当E、F分别为AC、BC中点时,如图2,则AE=CE=CF=BF,DE=AE=CE,∴CE=CF=DE=DF,而∠ECF=90°,∴四边形CDFE是正方形,所以②错误;∵△ADE≌△CDF,∴S△ADE=S△CDF,∴S四边形CEDF =S△CDE+S△CDF=S△CDE+S△ADE=S△ADC=S△ABC=××4×4=4,所以③错误;∵△CEF和△DEF都为直角三角形,∴点C、D在以EF为直径的圆上,即点C、E、D、F四点在同一个圆上,∵△DEF是等腰直角三角形,∴EF=DE,当DE⊥AC时,DE最短,此时DE=AC=2,∴EF的最小值为2,∴以EF为直径的圆的面积的最小值=π•(•2)2=2π,所以④错误;故选C.3.在正方形网格中,△ABC的位置如图所示,则cosB的值为()A.B.C.D.【考点】KQ:勾股定理;T1:锐角三角函数的定义.【分析】先设小正方形的边长为1,然后找个与∠B有关的RT△ABD,算出AB 的长,再求出BD的长,即可求出余弦值.【解答】解:设小正方形的边长为1,则AB=4,BD=4,∴cos∠B==.故选B.4.如图,△ABC、△ADE中,C、E两点分别在AD、AB上,且BC与DE相交于F点,若∠A=90°,∠B=∠D=30°,AC=AE=1,则四边形AEFC的周长为何()A.2 B.2 C.2+D.2+【考点】KQ:勾股定理;KJ:等腰三角形的判定与性质;KO:含30度角的直角三角形.【分析】根据三角形的内角和得到∠AED=∠ACB=60°,根据三角形的外角的性质得到∠B=∠EFB=∠CFD=∠D,根据等腰三角形的判定得到BE=EF=CF=CD,于是得到四边形AEFC的周长=AB+AC.【解答】解:∵∠A=90°,∠B=∠D=30°,∴∠AED=∠ACB=60°,∵∠AED=∠B+∠EFB=∠ACD=∠∠CFD+∠D=60°,∴∠EFB=∠CFD=30°,∴∠B=∠EFB=∠CFD=∠D,∴BE=EF=CF=CD,∴四边形AEFC的周长=AB+AC,∵∠A=90°,AE=AC=1,∴AB=AB=,∴四边形AEFC的周长=2.故选B.5.如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.48【考点】KQ:勾股定理.【分析】根据已知条件得到AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=3,由已知条件得到∠BAE=90°,根据勾股定理得到BE==2,于是得到结论.【解答】解:∵S1=3,S3=9,∴AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD,AE=CD=3,∵∠ABC+∠DCB=90°,∴∠AEB+∠ABC=90°,∴∠BAE=90°,∴BE==2,∵BC=2AD,∴BC=2BE=4,∴S2=(4)2=48,故选D.6.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6【考点】KR:勾股定理的证明.【分析】观察图形可知,小正方形的面积=大正方形的面积﹣4个直角三角形的面积,利用已知(a+b)2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.【解答】解:如图所示:∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选:C.7.如图,要测定被池塘隔开的A,B两点的距离.可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E,连接ED.现测得AC=30m,BC=40m,DE=24m,则AB=()A.50m B.48m C.45m D.35m【考点】KX:三角形中位线定理.【分析】根据中位线定理可得:AB=2DE=48m.【解答】解:∵D是AC的中点,E是BC的中点,∴DE是△ABC的中位线,∴DE=AB,∵DE=24m,∴AB=2DE=48m,故选B.8.如图,E是△ABC中BC边上的一点,且BE=BC;点D是AC上一点,且AD= AC,S△ABC=24,则S△BEF﹣S△ADF=()A.1 B.2 C.3 D.4【考点】K3:三角形的面积.【分析】过D作DG∥AE交CE于G,根据已知条件得到CG=3EG,求得AE=DG,CE=CG,求出S△ABD=S△ABC=6.由EC=2BE,S△ABC=24,得到S△ABE=S△ABC=8,于是得到结论.【解答】解:过D作DG∥AE交CE于G,∵AD=AC,∴CG=3EG,∴AE=DG,CE=CG,∵EC=2BE,∴BE=2EG,∴EF=DG,∴AF=DG,∴EF=AF,=24,∵S△ABC∴S △ABD =S △ABC =6.∵EC=2BE ,S △ABC =24,∴S △ABE =S △ABC =8,∵S △ABE ﹣S △ABD =(S △ABF +S △BEF )﹣(S △ADF +S △ABF )=S △BEF ﹣S △ADF ,即S △BEF ﹣S △ADF =S △ABE ﹣S △ABD =8﹣6=2.故选B .9.如图,在Rt △ABC 中,BC=2,∠BAC=30°,斜边AB 的两个端点分别在相互垂直的射线OM 、ON 上滑动,下列结论:①若C 、O 两点关于AB 对称,则OA=2;②C 、O 两点距离的最大值为4;③若AB 平分CO ,则AB ⊥CO ;④斜边AB 的中点D 运动路径的长为; 其中正确的是 ①② (把你认为正确结论的序号都填上).【考点】KY :三角形综合题.【分析】①先根据直角三角形30°的性质和勾股定理分别求AC 和AB ,由对称的性质可知:AB 是OC 的垂直平分线,所以OA=AC ;②当OC 经过AB 的中点E 时,OC 最大,则C 、O 两点距离的最大值为4;③如图2,当∠ABO=30°时,易证四边形OACB 是矩形,此时AB 与CO 互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.【解答】解:在Rt△ABC中,∵BC=2,∠BAC=30°,∴AB=4,AC==2,①若C、O两点关于AB对称,如图1,∴AB是OC的垂直平分线,则OA=AC=2;所以①正确;②如图1,取AB的中点为E,连接OE、CE,∵∠AOB=∠ACB=90°,∴OE=CE=AB=2,当OC经过点E时,OC最大,则C、O两点距离的最大值为4;所以②正确;③如图2,当∠ABO=30°时,∠OBC=∠AOB=∠ACB=90°,∴四边形AOBC是矩形,∴AB与OC互相平分,但AB与OC的夹角为60°、120°,不垂直,所以③不正确;④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的,则:=π,所以④不正确;综上所述,本题正确的有:①②;故答案为:①②.10.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为18.【考点】KD:全等三角形的判定与性质.【分析】作辅助线;证明△ABM≌△ADN,得到AM=AN,△ABM与△ADN的面积相等;求出正方形AMCN的面积即可解决问题.【解答】解:如图,作AM⊥BC、AN⊥CD,交CD的延长线于点N;∵∠BAD=∠BCD=90°∴四边形AMCN为矩形,∠MAN=90°;∵∠BAD=90°,∴∠BAM=∠DAN;在△ABM与△ADN中,,∴△ABM≌△ADN(AAS),∴AM=AN(设为λ);△ABM与△ADN的面积相等;∴四边形ABCD的面积=正方形AMCN的面积;由勾股定理得:AC2=AM2+MC2,而AC=6;∴2λ2=36,λ2=18,故答案为:18.11.如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC于点D,若AB=6,AC=9,则△ABD的周长是15.【考点】KG:线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质得到DB=DC ,根据三角形的周长公式计算即可.【解答】解:∵DE 是BC 的垂直平分线,∴DB=DC ,∴△ABD 的周长=AB +AD +BD=AB +AD +DC=AB +AC=15,故答案为:15.12.在边长为4的等边三角形ABC 中,D 为BC 边上的任意一点,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则DE +DF= 2 . 【考点】KK :等边三角形的性质.【分析】作AG ⊥BC 于G ,根据等边三角形的性质得出∠B=60°,解直角三角形求得AG=2,根据S △ABD +S △ACD =S △ABC 即可得出DE +DF=AG=2. 【解答】解:如图,作AG ⊥BC 于G ,∵△ABC 是等边三角形,∴∠B=60°,∴AG=AB=2,连接AD ,则S △ABD +S △ACD =S △ABC ,∴AB•DE +AC•DF=BC•AG ,∵AB=AC=BC=4,∴DE +DF=AG=2, 故答案为:2.三.解答题(共7小题)13.已知△ABC ,AB=AC ,D 为直线BC 上一点,E 为直线AC 上一点,AD=AE ,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=20°,β=10°,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.【考点】KY:三角形综合题.【分析】(1)①先利用等腰三角形的性质求出∠DAE,进而求出∠BAD,即可得出结论;②利用等腰三角形的性质和三角形的内角和即可得出结论;(2)①当点E在CA的延长线上,点D在线段BC上,同(1)的方法即可得出结论;②当点E在CA的延长线上,点D在CB的延长线上,同(1)的方法即可得出结论.【解答】解:(1)①∵AB=AC,∠ABC=60°,∴∠BAC=60°,∵AD=AE,∠ADE=70°,∴∠DAE=180°﹣2∠ADE=40°,∴α=∠BAD=60°﹣40°=20°,∴∠ADC=∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC﹣∠ADE=10°,故答案为:20,10;②设∠ABC=x,∠AED=y,∴∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β=β+x+β,∴α=2β;(2)①当点E在CA的延长线上,点D在线段BC上,如图1设∠ABC=x,∠ADE=y,∴∠ACB=x,∠AED=y,在△ABD中,x+α=β﹣y,在△DEC中,x+y+β=180°,∴α=2β﹣180°,②当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°﹣2β.14.问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.【考点】KY:三角形综合题;KD:全等三角形的判定与性质.【分析】迁移应用:①如图②中,只要证明∠DAB=∠CAE,即可根据SAS解决问题;②结论:CD=AD+BD.由△DAB≌△EAC,可知BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD= AD+BD,即可解决问题;拓展延伸:①如图3中,作BH⊥AE于H,连接BE.由BC=BE=BD=BA,FE=FC,推出A、D、E、C四点共圆,推出∠ADC=∠AEC=120°,推出∠FEC=60°,推出△EFC是等边三角形;②由AE=5,EC=EF=2,推出AH=HE=2.5,FH=4.5,在Rt△BHF中,由∠BFH=30°,可得=cos30°,由此即可解决问题.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BFH=30°,∴=cos30°,∴BF==3.15.已知:△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE,BD交于点O,AE与DC交于点M,BD与AC交于点N.(1)如图1,求证:AE=BD;(2)如图2,若AC=DC,在不添加任何辅助线的情况下,请直接写出图2中四对全等的直角三角形.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)根据全等三角形的性质即可求证△ACE≌△BCD,从而可知AE=BD;(2)根据条件即可判断图中的全等直角三角形;【解答】解:(1)∵△ACB和△DCE都是等腰直角三角形,∠ACB=∠DCE=90°,∴AC=BC,DC=EC,∴∠ACB+∠ACD=∠DCE+∠ACD,∴∠BCD=∠ACE,在△ACE与△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,(2)∵AC=DC,∴AC=CD=EC=CB,△ACB≌△DCE(SAS);由(1)可知:∠AEC=∠BDC,∠EAC=∠DBC∴∠DOM=90°,∵∠AEC=∠CAE=∠CBD,∴△EMC≌△BCN(ASA),∴CM=CN,∴DM=AN,△AON≌△DOM(AAS),∵DE=AB,AO=DO,∴△AOB≌△DOE(HL)16.在△ABC中,∠ABM=45°,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图1,若AB=3,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF=∠CEF.【考点】KD:全等三角形的判定与性质;KQ:勾股定理.【分析】(1)先由AM=BM=ABcos45°=3可得CM=2,再由勾股定理可得AC的长;(2)延长EF到点G,使得FG=EF,证△BMD≌△AMC得AC=BD,再证△BFG≌△CFE可得BG=CE,∠G=∠E,从而得BD=BG=CE,即可得∠BDG=∠G=∠E.【解答】解:(1)∵∠ABM=45°,AM⊥BM,∴AM=BM=ABcos45°=3×=3,则CM=BC﹣BM=5﹣3=2,∴AC===;(2)延长EF到点G,使得FG=EF,连接BG.由DM=MC,∠BMD=∠AMC,BM=AM,∴△BMD≌△AMC(SAS),∴AC=BD,又CE=AC,因此BD=CE,由BF=FC,∠BFG=∠EFC,FG=FE,∴△BFG≌△CFE,故BG=CE,∠G=∠E,所以BD=CE=BG,因此∠BDG=∠G=∠E.17.如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.【考点】KD:全等三角形的判定与性质.【分析】欲证明AC∥BD,只要证明∠A=∠B,只要证明△DEB≌△CFA即可.【解答】证明:∵DE⊥AB,CF⊥AB,∴∠DEB=∠AFC=90°,∵AE=BF,∴AF=BE,在△DEB和△CFA中,,△DEB≌△CFA,∴∠A=∠B,∴AC∥DB.18.如图,直角△ABC中,∠A为直角,AB=6,AC=8.点P,Q,R分别在AB,BC,CA边上同时开始作匀速运动,2秒后三个点同时停止运动,点P由点A出发以每秒3个单位的速度向点B运动,点Q由点B出发以每秒5个单位的速度向点C运动,点R由点C出发以每秒4个单位的速度向点A运动,在运动过程中:(1)求证:△APR,△BPQ,△CQR的面积相等;(2)求△PQR面积的最小值;(3)用t(秒)(0≤t≤2)表示运动时间,是否存在t,使∠PQR=90°?若存在,请直接写出t的值;若不存在,请说明理由.【考点】KY :三角形综合题.【分析】(1)先利用锐角三角函数表示出QE=4t ,QD=3(2﹣t ),再由运动得出AP=3t ,CR=4t ,BP=3(2﹣t ),AR=4(2﹣t ),最后用三角形的面积公式即可得出结论;(2)借助(1)得出的结论,利用面积差得出S △PQR =18(t ﹣1)2+6,即可得出结论;(3)先判断出∠DQR=∠EQP ,用此两角的正切值建立方程求解即可.【解答】解:(1)如图,在Rt △ABC 中,AB=6,AC=8,根据勾股定理得,BC=10,sin ∠B===,sin ∠C=,过点Q 作QE ⊥AB 于E ,在Rt △BQE 中,BQ=5t ,∴sin ∠B==,∴QE=4t ,过点Q 作QD ⊥AC 于D ,在Rt △CDQ 中,CQ=BC ﹣BQ=10﹣5t ,∴QD=CQ•sin ∠C=(10﹣5t )=3(2﹣t ),由运动知,AP=3t ,CR=4t ,∴BP=AB ﹣AP=6﹣3t=3(2﹣t ),AR=AC ﹣CR=8﹣4t=4(2﹣t ),∴S △APR =AP•AR=×3t ×4(2﹣t )=6t (2﹣t ),S △BPQ =BP•QE=×3(2﹣t )×4t=6t (2﹣t ),S △CQR =CR•QD=×4t ×3(2﹣t )=6t (2﹣t ),∴S △APR =S △BPQ =S △CQR ,∴△APR ,△BPQ ,△CQR 的面积相等;(2)由(1)知,S △APR =S △BPQ =S △CQR =6t (2﹣t ),∵AB=6,AC=8,∴S △PQR =S △ABC ﹣(S △APR +S △BPQ +S △CQR )=×6×8﹣3×6t (2﹣t )=24﹣18(2t ﹣t 2)=18(t ﹣1)2+6,∵0≤t ≤2,∴当t=1时,S △PQR 最小=6;(3)存在,由(1)知,QE=4t ,QD=3(2﹣t ),AP=3t ,CR=4t ,AR=4(2﹣t ), ∴BP=AB ﹣AP=6﹣3t=3(2﹣t ),AR=AC ﹣CR=8﹣4t=4(2﹣t ),过点Q 作QD ⊥AC 于D ,作QE ⊥AB 于E ,∵∠A=90°,∴四边形APQD 是矩形,∴AE=DQ=3(2﹣t ),AD=QE=4t ,∴DR=|AD ﹣AR |=|4t ﹣4(2﹣t )|=|4(2t ﹣2)|,PE=|AP ﹣AE |=|3t ﹣3(2﹣t )|=|3(2t ﹣2)|∵∠DQE=90°,∠PQR=90°,∴∠DQR=∠EQP ,∴tan ∠DQR=tan ∠EQP ,在Rt △DQR 中,tan ∠DQR==, 在Rt △EQP 中,tan ∠EQP==,∴, ∴16t=9(2﹣t ),∴t=.19.问题原型:如图①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.将边AB 绕点B顺时针旋转90°得到线段BD,连结CD.过点D作△BCD的BC边上的高DE,易证△ABC≌△BDE,从而得到△BCD的面积为.初步探究:如图②,在Rt△ABC中,∠ACB=90°,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.用含a的代数式表示△BCD的面积,并说明理由.简单应用:如图③,在等腰三角形ABC中,AB=AC,BC=a.将边AB绕点B顺时针旋转90°得到线段BD,连结CD.直接写出△BCD的面积.(用含a的代数式表示)【考点】KD:全等三角形的判定与性质;R2:旋转的性质.【分析】初步探究:如图②,过点D作BC的垂线,与BC的延长线交于点E,由垂直的性质就可以得出△ABC≌△BDE,就有DE=BC=a.进而由三角形的面积公式得出结论;简单运用:如图③,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,由等腰三角形的性质可以得出BF=BC,由条件可以得出△AFB≌△BED就可以得出BF=DE,由三角形的面积公式就可以得出结论.【解答】解:初步探究:△BCD的面积为.理由:如图②,过点D作BC的垂线,与BC的延长线交于点E.∴∠BED=∠ACB=90°.∵线段AB绕点B顺时针旋转90°得到线段BE,∴AB=BD,∠ABD=90°.∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°.∴∠A=∠DBE.在△ABC和△BDE中,,∴△ABC≌△BDE(AAS)∴BC=DE=a.=BC•DE∵S△BCD=;∴S△BCD简单应用:如图③,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,∴∠AFB=∠E=90°,BF=BC=a.∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD.∵线段BD是由线段AB旋转得到的,∴AB=BD.在△AFB和△BED中,,∴△AFB≌△BED(AAS),∴BF=DE=a.=BC•DE,∵S△BCD=•a•a=a2.∴S△BCD∴△BCD的面积为.。

2024年中考数学一轮专题速练:锐角三角函数及其应用

2024年中考数学一轮专题速练:锐角三角函数及其应用

2024年中考数学一轮专题速练:锐角三角函数及其应用一、选择题(本大题共10道小题)1. (2022·温州模拟)一个长方体木箱放置在斜面上,其端点A落在水平地面上,相关数据如图所示,则木箱端点C距地面m的高度是( )A. B.C. D.2. (2022安徽宣城市第六中学)如图,在边长为4的正方形ABCD中,点E是CD边上的一点,点F是点D关于直线AE对称的点,连接AF、BF,若tan∠ABF=2,则DE的长是( )A.1B.65C.43D.533. (2023•济宁)一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B 处.灯塔C在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C 的距离是( )A.15海里B.20海里C.30海里D.60海里4. (2023•深圳)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT 的长)可以表示为( )A.200tan70°米B.米C.200sin 70°米D.米5. (2023•重庆)如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比)i=1:0.75,山坡坡底C点到坡顶D点的距离CD=45m,在坡顶D点处测得居民楼楼顶A点的仰角为28°,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)( )A.76.9mB.82.1mC.94.8mD.112.6m6. (2023•黔西南州)如图,某停车场入口的栏杆AB,从水平位置绕点O 旋转到A ′B ′的位置,已知AO 的长为4米.若栏杆的旋转角∠AOA ′=α,则栏杆A 端升高的高度为( )A.米B.4sin α米C.米D.4cos α米7. (2023•沙坪坝区校级一模)碧津公园坐落在江北机场旁,它是一个风景秀丽、优美如画的公园.园中的碧津塔是一座八角塔,每个角挂有一个风铃,被评为重庆市公园最美景点.重庆一中某数学兴趣小组,想测量碧津塔的高度,他们在点C 处测得碧津塔顶部A 处的仰角为45o ,再沿着坡度为i=1:2.4的斜坡CD 向上走了5.2米到达点D,此时测得碧津塔顶部A 的仰角为37o ,碧津塔AB 所在平台高度EF 为0.8米.A 、B 、C 、D 、E 、F 在同一平面内,则碧津塔AB 的高约为( )米(参考数据:sin370.6︒≈,cos370.8︒≈,tan370.75)︒≈A.20.8B.21.6C.23.2D.248. (2023•重庆)如图,垂直于水平面的5G 信号塔AB 建在垂直于水平面的悬崖边B 点处,某测量员从山脚C 点出发沿水平方向前行78米到D 点(点A,B,C 在同一直线上),再沿斜坡DE 方向前行78米到E 点(点A,B,C,D,E 在同一平面内),在点E 处测得5G 信号塔顶端A 的仰角为43°,悬崖BC 的高为144.5米,斜坡DE 的坡度(或坡比)i =1:2.4,则信号塔AB 的高度约为( )(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A.23米B.24米C.24.5米D.25米9. (2021·武汉模拟)如图,把n 个边长为1的正方形拼接成一排,求得tan ∠BA 1C =1,tan∠BA 2C =13 ,tan ∠BA 3C =17 ,…,依此规律写出tan ∠BA 7C =1n ,则n =( )A.40B.41C.42D.4310. (2023•沙坪坝区校级一模)小林在放学路上,看到隧道上方有一块宣传“重庆--行千里,致广大”竖直标语牌CD.他在A 点测得标语牌顶端D 处的仰角为42o ,由A 点沿斜坡AB 下到隧道底端B 处(B,C,D 在同一条直线上),AB=10m,坡度为i=1:,隧道高6.5m(即BC=6.5m,则标语牌CD 的长为( )m(结果保留小数点后一位).(参考数据:sin420.67︒≈,cos420.74︒≈,tan420.90︒≈,3 1.73)≈A.4.3B.4.5C.6.3D.7.8二、填空题(本大题共8道小题)11. (2021·眉山)如图所示,△ABC 的顶点是正方形网格的格点,则sin A 的值为____.12. (2022安徽淮南)如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α=______.13. (2022安徽合肥)如图,在等腰△ABO 中,AO =AB,OB =6,以OB 为半径作⊙O 交AB 于点C,若BC =4,则cosA =_______14. (2023•济宁)如图,小明在距离地面30米的P 处测得A 处的俯角为15°,B 处的俯角为60°.若斜面坡度为1:,则斜坡AB 的长是 米.15. (2022·南山模拟)如图,一条光线照在坡度为1:的斜坡上,被坡面上的平面镜反射成与地面平行的直线,求这条光线与坡面的夹角α .16. (2023•滨城区一模)如图,为测量旗杆AB 的高度,在水平地面CB 的C 处用测角仪测得旗杆顶端A 的仰角为60o ,在三楼窗台D 处测得旗杆顶端A 的仰角为30o ,已知CD=9.6m,则旗杆AB 的高度为 .17. (2021·咸阳模拟)如图,有一块四边形的铁板余料ABCD,经测量,AB =50 cm,BC =108cm,CD =60 cm,且tan B =tan C =43,若要从这块余料中裁出顶点M,N 在边BC 上且面积最大的矩形PQMN,则该矩形的面积为____cm 2.18. (2023•泰安)如图,某校教学楼后面紧邻着一个山坡,坡上面是一块平地.BC ∥AD,BE ⊥AD,斜坡AB 长26m,斜坡AB 的坡比为12:5.为了减缓坡面,防止山体滑坡,学校决定对该斜坡进行改造.经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.如果改造时保持坡脚A 不动,则坡顶B 沿BC 至少向右移 m 时,才能确保山体不滑坡.(取tan50°=1.2)三、解答题(本大题共6道小题)19. (2023•盐城)如图,在△ABC 中,∠C =90°,tanA,∠ABC 的平分线BD 交AC 于点D,CD=3,求AB 的长?20. (2022北京房山)已知:如图,在四边形ABCD中,AB//DC,AC⊥BD,垂足为M,过点A作AE⊥AC,交CD的延长线于点E.(1)求证:四边形ABDE是平行四边形;4,求BD的长.(2)若AC=8,sin∠ABD=521. (2023年江西中考数学四模试题)如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)(1)求DE与水平桌面(A B所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).22. (2023•徐州)小红和爸爸绕着小区广场锻炼.如图,在矩形广场ABCD边AB的中点M处有一座雕塑.在某一时刻,小红到达点P处,爸爸到达点Q处,此时雕塑在小红的南偏东45°方向,爸爸在小红的北偏东60°方向,若小红到雕塑的距离PM=30m,求小红与爸爸的距离PQ.(结果精确到1m,参考数据: 1.41, 1.73, 2.45)23. (2023年安徽省阜阳市太和县九年级第二次调研模拟预测试题)如图是某品牌自行车的最新车型实物图和简化图,它在轻量化设计、刹车、车篮和座位上都做了升级.A为后胎中心,经测量车轮半径AD为30cm,中轴轴心C到地面的距离CF为30cm,座位高度最低刻度为155cm,此时车架中立管BC长为54cm,且∠BCA=71°.(参考数据:sin71°≈0.95,cos71°≈0.33,tan71°≈2.88)(1)求车座B到地面的高度(结果精确到1cm);(2)根据经验,当车座B'到地面的距离B'E'为90cm时,身高175cm的人骑车比较舒适,此时车架中立管BC拉长的长度BB'应是多少?(结果精确到1cm)24. (2021·凉山州)王刚同学在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸大树AB的高度.他在点C处测得大树顶端A的仰角为45°,再从点C出发沿斜坡走210 m到达斜坡上D点,在点D处测得树顶端A的仰角为30°,若斜坡CF的坡比为i=1:3(点E,C,B在同一水平线上).(1)求王刚同学从点C到点D的过程中上升的高度;(2)求大树AB的高度(结果保留根号).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档