人教版2018-2019学年七年级上学期数学第一次月考测试题及答案
部编人教版七年级数学上册第一次月考考试卷及参考答案
部编人教版七年级数学上册第一次月考考试卷及参考答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.32.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个3.下列结论成立的是()A.若|a|=a,则a>0 B.若|a|=|b|,则a=±bC.若|a|>a,则a≤0 D.若|a|>|b|,则a>b.4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.实效m,n在数轴上的对应点如图所示,则下列各式子正确的是()A .m n >B .||n m ->C .||m n ->D .||||m n <6.如下图,在下列条件中,能判定AB//CD 的是( )A .∠1=∠3B .∠2=∠3C .∠1=∠4D .∠3=∠47.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .8.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<< 9.若|abc |=-abc ,且abc ≠0,则||||b a c a b c ++=( ) A .1或-3 B .-1或-3 C .±1或±3 D .无法判断10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .3C .6D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是________.2.如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.3.分解因式:32x2x x-+=_________.4.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是________.5.若分式293xx--的值为0,则x的值为_______.6.关于x的分式方程721511x mx x-+=--有增根,则m的值为__________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)252x yx y-=⎧⎨--=⎩(2)3()2()7x y x yx y x y-=+⎧⎨-++=⎩2.若关于x的不等式组152(3)3()>22x xx a x+>-⎧⎨++⎩只有4个整数解,求a的取值范围.3.如图,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF(1)求证:∠DAF=∠F;(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED互余的角.4.如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.5.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图(2)求扇形统计图中m的值和E组对应的圆心角度数(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数6.某检修小组乘一辆汽车沿东西方向检修路,约定向东走为正,某天从A地出发到收工时行走记录(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6,求:(1)收工时检修小组在A地的哪一边,距A地多远?(2)若汽车耗油3升/每千米,开工时储存180升汽油,用到收工时中途是否需要加油,若加油最少加多少升?若不需要加油到收工时,还剩多少升汽油?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、B4、C5、C6、C7、B8、C9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、133、()2 x x1-.4、40°5、-36、4.三、解答题(本大题共6小题,共72分)1、(1)=13xy⎧⎨=-⎩;(2)=21xy⎧⎨=-⎩2、14 53a-<≤-3、(1)略;(2)与∠CED互余的角有∠ADE,∠CDE,∠F,∠FAD.4、(1)略;(2)4.5、略;m=40, 14.4°;870人.6、(1)收工时在A地的正东方向,距A地39km;(2)需加15升.。
人教版七年级上册数学《第一次月考》试卷及参考答案
人教版七年级上册数学《第一次月考》试卷及参考答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .32.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则下列方程组中正确的是( )A .()()1836024360x y x y ⎧+=⎪⎨-=⎪⎩B .()()1836024360x y x y ⎧+=⎪⎨+=⎪⎩C .()()1836024360x y x y ⎧-=⎪⎨-=⎪⎩D .()()1836024360x y x y ⎧-=⎪⎨+=⎪⎩3.已知|m -2|+(n -1)2=0,则关于x 的方程2m +x =n 的解是( )A .x =-4B .x =-3C .x =-2D .x =-14.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒5.如果a+b <0,并且ab >0,那么( )A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <06.在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(﹣1,1)B.(﹣1,﹣2) C.(﹣1,2)D.(1,2)7.下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm8.如图,△ABC≌△ADE,若∠B=70°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.45°C.35°D.25°9.若关于x的不等式mx- n>0的解集是15x<,则关于x的不等式()m n x n m>-+的解集是()A.23x>-B.23x<-C.23x<D.23x>10.一个正方形的边长如果增加2cm,面积则增加32cm2,则这个正方形的边长为()A.5cm B.6cm C.7cm D.8cm二、填空题(本大题共6小题,每小题3分,共18分)1.多项式 3x2+2 是______次______项式.2.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个.3.正五边形的内角和等于______度.4.已知,x y为实数,且22994y x x=--,则x y-=________.5.若方程组x y73x5y3+=⎧⎨-=-⎩,则()()3x y3x5y+--的值是________.6.已知|x|=3,则x的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:12433313412 x yx y++⎧=⎪⎪⎨--⎪-=⎪⎩2.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求a bm cdm+++的值.3.如图1,点E在直线AB上,点F在直线CD上,EG⊥FG.(1)若∠BEG+∠DFG=90°,请判断AB与CD的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG⊥FG保持不变,EG上有一点M,使∠MFG=2∠DFG,则∠BEG与∠MFD存在怎样的数量关系?并说明理由.(3)如图2,若移动点M,使∠MFG=n∠DFG,请直接写出∠BEG与∠MFD的数量关系.4.如图,在平面直角坐标系中,点A、C分别在x轴上、y轴上,CB//OA,OA=8,若点B的坐标为(a,b),且b444a a--.(1)直接写出点A、B、C的坐标;(2)若动点P从原点O出发沿x轴以每秒2个单位长度的速度向右运动,当直线PC把四边形OABC分成面积相等的两部分停止运动,求P点运动时间;(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.5.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)把条形统计图补充完整;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐?6.在十一黄金周期间,小明、小华等同学随家长共15人一同到金丝峡游玩,售票员告诉他们:大人门票每张100元,学生门票8折优惠.结果小明他们共花了1400元,那么小明他们一共去了几个家长、几个学生?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、B4、C5、A6、A7、B8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、二二2、23、5404、1-或7-.5、24.6、±3三、解答题(本大题共6小题,共72分)1、178 y7 x⎧=⎪⎪⎨⎪=-⎪⎩2、(1)a+b=0,cd=1,m=±2;(2)3或-13、(1)AB//CD,理由略;(2)∠BEG13+∠MFD=90°,理由略;(3)∠BEG+11n+∠MFD=90°.4、(1)A(8,0),B(4,4),C(0,4);(2)t=3;(3)存在;点Q坐标(0,12)或(0,−4)5、(1)1000;(2)图形见解析;(3)该校18000名学生一餐浪费的食物可供3600人食用一餐.6、10个家长,5个学生。
人教版七年级上册数学第一次月考考试(附答案)
人教版七年级上册数学第一次月考考试(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x °,∠2=y °,则可得到方程组为A .x y 50{x y 180=-+=B .x y 50{x y 180=++=C .x y 50{x y 90=++=D .x y 50{x y 90=-+=5.已知x是整数,当30x-取最小值时,x的值是( )A.5 B.6 C.7 D.86.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短7.明月从家里骑车去游乐场,若速度为每小时10km,则可早到8分钟,若速度为每小时8km,则就会迟到5分钟,设她家到游乐场的路程为xkm,根据题意可列出方程为()A.851060860x x-=-B.851060860x x-=+C.851060860x x+=-D.85108x x+=+8.如图,直线AB、CD、EF相交于点O,其中AB⊥CD,∠1:∠2=3:6,则∠EOD=()A.120° B.130° C.60° D.150°9.下面四个图形中,∠1=∠2一定成立的是( )A.B.C.D.10.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏B.盈利20元C.亏损10元D.亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a+1)2+|b+5|=b+5,且|2a-b-1|=1,则ab=___________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1的度数为__________.3.若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为____________. 4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S 2=9,S3=8,S4=10,则S=________.5.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要______cm.三、解答题(本大题共6小题,共72分)1.解方程组:23 328 x yx y-=⎧⎨+=⎩2.先化简,再求值:(x+2y)(x﹣2y)+(20xy3﹣8x2y2)÷4xy,其中x=2018,y=2019.3.如图,分别表示甲步行与乙骑自行车(在同一路上)行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题:(1)乙出发时,乙与甲相距千米;(2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为小时;(3)乙从出发起,经过小时与甲相遇;(4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?4.如图,四边形ABCD中,对角线AC、BD交于点O,AB=AC,点E是BD上一点,且AE=AD,∠EAD=∠BAC,(1)求证:∠ABD=∠ACD;(2)若∠ACB=65°,求∠BDC的度数.5.九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.6.小明某天上午9时骑自行车离开家,15时回家,他有意描绘了离家的距离与时间的变化情况(如图).(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)10时和13时,他分别离家多远?(3)他到达离家最远的地方是什么时间?离家多远?(4)11时到12时他行驶了多少千米?(5)他可能在哪段时间内休息,并吃午餐?(6)他由离家最远的地方返回时的平均速度是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、C5、A6、D7、C8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、20°.3、2或2 -34、205、316、10三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=⎩2、(x﹣y)2;1.3、(1)10;(2)1;(3)3;(4)不一样,理由略;4、(1)略;(2) 50°5、(1)50,18;(2)补全的条形统计图见解析;(3)108;(4)该校九年级学生中有300名学生对数学感兴趣.6、(1) 自变量是时间,因变量是距离;(2) 10时他距家10千米,13时他距家30千米;(3) 12:00时他到达离家最远的地方,离家30千米;(4)13千米;(5) 12:00~13:00休息并吃午餐;(6) 15千米/时。
人教版2018-2019学年七年级上学期数学第一次月考测试题及答案
2018-2019学年七年级(上)第一次月考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.﹣的绝对值为()A.B.3 C.﹣ D.﹣32.下列说法正确的个数是()①一个有理数不是整数就是分数;②一个有理数不是正有理数就是负有理数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1 B.2 C.3 D.43.如果a与2的和为0,那么a是()A.2 B.C.﹣ D.﹣24.下列算式正确的是()A.(﹣14)﹣5=﹣9 B.0﹣(﹣3)=3 C.(﹣3)﹣(﹣3)=﹣6 D.|5﹣3|=﹣(5﹣3)5.比较﹣2.4,﹣0.5,﹣(﹣2),﹣3的大小,下列正确的是()A.﹣3>﹣2.4>﹣(﹣2)>﹣0.5 B.﹣(﹣2)>﹣3>﹣2.4>﹣0.5C.﹣(﹣2)>﹣0.5>﹣2.4>﹣3 D.﹣3>﹣(﹣2)>﹣2.4>﹣0.56.我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为()A.5.4×102人B.0.54×104人C.5.4×106人D.5.4×107人7.下列各数中互为相反数的是()A.﹣与0.2 B.与﹣0.33 C.﹣2.25与2 D.5与﹣(﹣5)8.在0,﹣1,|﹣2|,﹣(﹣3),5,3.8,,中,正整数的个数是()A.1个B.2个C.3个D.4个9.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校 C.书店 D.不在上述地方10.一潜水艇所在的海拔高度是﹣60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔()A.﹣60米B.﹣80米C.﹣40米D.40米第1页(共13页)。
人教版七年级上册数学《第一次月考》考试题附答案
人教版七年级上册数学《第一次月考》考试题附答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .32.下列图形中,不是轴对称图形的是( )A .B .C .D .3.如图,∠ACD 是△ABC 的外角,CE 平分∠ACD ,若∠A=60°,∠B=40°,则∠ECD 等于( )A .40°B .45°C .50°D .55°4.若关于x 的不等式3x-2m ≥0的负整数解为-1,-2,则m 的取值范围是( )A .96m 2-≤<-B .96m 2-<≤-C .9m 32-≤<-D .9m 32-<≤- 5.已知x 是整数,当30x 取最小值时,x 的值是( )A .5B .6C .7D .86.下列说法中,错误的是( )A .不等式x <5的整数解有无数多个B .不等式x >-5的负整数解集有有限个C .不等式-2x <8的解集是x <-4D .-40是不等式2x <-8的一个解7.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40), B .(0)4, C .40)(-, D .(0,4)-8.满足方程组35223x y m x y m+=+⎧⎨+=⎩的x ,y 的值的和等于2,则m 的值为( ).A .2B .3C .4D .59.关于x 的不等式组0312(1)x m x x -<⎧⎨->-⎩无解,那么m 的取值范围为( ) A .m ≤-1 B .m<-1 C .-1<m ≤0 D .-1≤m<010.下列等式变形正确的是( )A .若﹣3x =5,则x =35B .若1132x x -+=,则2x+3(x ﹣1)=1 C .若5x ﹣6=2x+8,则5x+2x =8+6D .若3(x+1)﹣2x =1,则3x+3﹣2x =1二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是________.2.如果5的小数部分为a ,13的整数部分为b ,则5a b +-=______3.已知有理数a ,b 满足ab <0,a+b >0,7a+2b+1=﹣|b ﹣a|,则()123a b a b ⎛⎫++- ⎪⎝⎭ 的值为________. 4.如图,已知直线AB 、CD 、EF 相交于点O ,∠1=95°,∠2=32°,则∠BOE=________.5.若关于x 的方程2x m 2x 22x++=--有增根,则m 的值是________. 6.在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是________.三、解答题(本大题共6小题,共72分)1.解方程组:23328x y x y -=⎧⎨+=⎩2.先化简,再求值:(x +2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =2019.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.如图,//AC BD ,BC 平分ABD ∠,设ACB ∠为α,点E 是射线BC 上的一个动点.(1)若30α=︒时,且BAE CAE ∠=∠,求CAE ∠的度数;(2)若点E 运动到1l 上方,且满足100BAE ∠=︒,:5:1BAE CAE ∠∠=,求α的值;(3)若:()1BAE CAE n n ∠∠=>,求CAE ∠的度数(用含n 和α的代数式表示).5.某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m 名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图. 学生读书数量统计表阅读量/本学生人数 115 2a 3b 4 5(1)直接写出m 、a 、b 的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?6.某市出租车的收费标准是:行程不超过3千米起步价为10元,超过3千米后每千米增收1.8元.某乘客出租车x 千米.(1)试用关于x 的式子分情况表示该乘客的付费.(2)如果该乘客坐了8千米,应付费多少元?(3)如果该乘客付费26.2元,他坐了多少千米?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、C4、D5、A6、C7、A8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±32、13、0.4、53°5、0.6、-1或5三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=⎩2、(x﹣y)2;1.3、(1)S=ab﹣a﹣b+1;(2)矩形中空白部分的面积为2;4、(1)60°;(2)50°;(3)18021nα︒--或18021nα︒-+5、(1)m的值是50,a的值是10,b的值是20;(2)1150本.6、(1)当行程不超过3千米即x≤3时时,收费10元;当行程超过3千米即x>3时,收费为(8x+4.6)元.(2)乘客坐了8千米,应付费19元;(3)他乘坐了12千米.。
新人教版七年级数学上册第一次月考试题及参考答案(SY) 有理数精编测试题及参考答案
七年级数学上册第一次月考测试题(有理数)一、单选题1.﹣|﹣2023|的倒数是()A.2023B.12023C.−12023D.-20232.下列各数:-π,-|-9|,-(-1),-1.010020002…,-37, −19,其中既是负数又是有理数的个数是()A.2B.3C.4D.53.下列各组数中,互为相反数的一组是()A.-(-8)和|-8|B.-8和-8C.(-8)2和-82D.(-8)3和-834.以下结论正确的有()A.两个非0数互为相反数,则它们的商等于1B.几个有理数相乘,若负因数个数为奇数,则乘积为负数C.乘积是1的两个数互为倒数D.绝对值等于它本身的有理数只有15.有理数a,b,c在数轴上对应的点如图所示,则下列结论中正确的有()个①b<a ②|b+c|=b+c ③|a﹣c|=c﹣a ④﹣b<c<﹣A.A.1B.2C.3D.46.如图,数轴上的A,B两点所表示的数分别为a,b,则下列各数中,最大的是()A.abB.a+bC.a+b2D.a﹣b7.已知a2=25,|b|=7,且|a+b|=a+b,则a-b的值为()A.-12B.-2C.-2或-12D.2或128.如图,点O,A,B,C在数轴上的位置,O为原点,A与C相距1个单位长度,A和B到原点的距离相等,若点C所表示的数为a,则点B所表示的数为()A.-a-1B.-a+1C.a+1D.a-19.当2<a<3时,代数式|3﹣a|﹣|2﹣a|的结果是()A.﹣1B.1C.2a﹣5D.5﹣2a10.在数轴上,原点左边有一点M,从M对应着数m,有如下说法:①-m表示的数一定是正数. ②若|m|=8,则m=-8. ③在-m,1m ,m2,m中,最大的数是m2或-m. ④式子|m+1m|的最小值为2.其中正确的个数是()A.1B.2C.3D.411.我们常用的十进制数,如:2358=2×103+3×102+5×101+8,远古时期,人们通过在绳子上打结来记录数量,如图是一位母亲从右到左依次排列的绳子上打结,并采用七进制,如2183=2×73+1×72+8×71+3,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.1326B.510C.336D.8412.如图,在这个数据运算程序中,若开始输入的x的值为4,输出的结果是2,返回进行第二次运算则输出的是1…,则第2020次输出的结果是()A.﹣1B.-2C.-4D.-6二、填空题13.若a,b互为相反数,c,d互为倒数,m的绝对值为3,则m−(−1)+2023(a+b)2024−cd的值为_______.14.当x=_______时,式子(x+2)2+2023有最小值.15.若abc≠0,则a|a|+|b|b+c|c|−|abc|abc=_______.16.已知|a-1|+|b-2|=0,1ab +1(a+1)(b+1)+1(a+2)(b+2)+⋯+1(a+2011)(b+2011)=______.三、解答题17.计算(−612)+314+(−12)+2.75 25×34−(−25)×12+25×14482425÷(−48) (−130) ÷(13−110+16−25)(1)星期三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价每股多少元?(3)已知小明买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果小明在星期六收盘前将全部股票卖出,他的收益情况如何?20.阅读下面材料并完成填空,你能比较两个数20232024和20242023的大小吗?为了解决这个问题,先把问题一般化,即比较n n+1和(n+1)n的大小(n≥1的整数),然后,从分析这些简单情形入手,从中发现规律,经过归纳,猜想出结论.(1)通过计算,比较下列各组两个数的大小(在横线上填>,=,<号)①12__21; ②23__32; ③34__43; ④45__54; ⑤56__65;…(2)从第(1)小题的结果经过归纳,可以猜想,n n+1和(n+1)n的大小关系是什么?(3)根据上面归纳猜想得到的一般结论,可以猜想得到20232024___20242023(填>,=,<)21.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示5和2的两点之间的距离是________;表示-3和2两点之间的距离是_______; (2)如果|x+1|=2,那么x=________;(3)若|a-3|=4,|b+2|=3,且数a,b在数轴上表示的点分别是点A,点B,则A,B两点间的最大距离是_____,最小距离是______;(4)求代数式|x+1|+|x-1|的最小值,并写出此时x可取哪些整数值?(5)求代数式|x+2|+|x-3|+|x-5|的最小值.(6)若x表示一个有理数,则代数式8-2|x-3|-2|x-5|有最大值吗?若有,请求出最大值;若没有,请说明理由.22.如图,一个点从数轴上的原点开始,先向左移动3cm到达A点,再向右移动4cm到达B点,然后再向右移动到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置;(2)把点C到点A的距离记为CA,则CA=______cm.(3)若点A沿数轴以每秒3cm匀速向右运动,经过多少秒后点A到点C的距离为3cm?(4)若点A以每秒1cm的速度匀速向左移动,同时点B,点C分别以每秒4cm,9cm的速度匀速向右移动7cm.设移动时间为t秒,试探索:BA-CB的值是否会随着t的变化而改变?若变化,请说2明理由,若无变化,请直接写出BA-CB的值.参考答案一、选择题1-5 CBCCC 6-10 DCBDD 11-12 BB二、填空题13.3或-314.-215.2或-216.20122013三、解决问题17.-1,37.5,−1150,-10,32,518.-2b19(1)34.5(2)最高股价为35.5元,最低股价为26元.(3)889.520(1)12<21,23<32,34>43,45>54,56>65(2)由(1)可知,当n=1或2时,n n+1<(n+1)n ,当n≥3时,n n+1>(n+1)n(3)∵2007>3,2008>3∴20072008>2008200721(1)3,5(2)1或-3.(3)12,2(4)|x +1|+|x -1|的最小值为2,此时x 可取的整数值为:-1,0,1.(5)最小值是7.(6)当3≦x ≦5时,最大值为4.22(1)略(2)152(3)32, 72(4)不变,12.。
新人教版2018-2019学年(上)七年级第一次月考卷数学B卷附答案解析
新人教版2018-2019学年度(上)第一次月考卷七年级数学B 卷(考试时间:100分钟试卷满分:120分)第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(六盘水中考)大米包装袋上(10±0.1)kg 的标识表示此袋大米重()A.(9.9~10.1)kgB.10.1kgC .9.9kgD .10kg2.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画一条长15厘米的线段AB ,则AB 盖住的整数点有()A.13或14个B.14或15个C.15或16个D.16或17个3.若a 与-1互为相反数,则|a +2|等于()A .2B .-2C .3D .-34.某登山队离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6℃的低温和缺氧的情况下,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4℃,峰顶的温度为(结果保留整数)()A .-26℃B .-22℃C .-18℃D .22℃5.若a ,b 互为相反数(a ≠0,b ≠0),n 是自然数,则()A.a 2n 和b 2n 互为相反数B.a 2n +1和b 2n +1互为相反数C.a 2和b 2互为相反数D.a n 和b n 互为相反数6.(自贡中考)填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为()A .180B .182C .184D .1867.在如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2018次输出的结果为()A .6B .3 C.322018D.321009+3×10098.(德州中考)我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列.477万用科学记数法表示正确的是(C)A.4.77×105B.47.7×105C.4.77×106D.0.477×1069.对于由四舍五入得到的近似数8.8×104,下列说法正确的是()A.精确到十分位B.精确到个位C.精确到千位D.精确到万位10.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b.对于以下结论:甲:b -a <0;乙:a +b >0;丙:|a|<|b|;丁:ba>0.其中正确的是()A .甲乙B .丙丁C .甲丙D .乙丁第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)11.当x =2时,|x -2|有最小值,这个最小值为.12.上周五某股民小王买进某公司股票1000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元):星期一二三四五每股涨跌+4+4.5-1-2.5-6则在星期五收盘时,每股的价格是元.13.(黔南中考)已知C 23=3×21×2=3,C 35=5×4×31×2×3=10,C 46=6×5×4×31×2×3×4=15,…观察以上计算过程,寻找规律计算C 58=.14.一列数:-3,9,-27,81,则第10个数为(-3)10,第n 个数用n 表示为.15.观察下列等式:21=2,22=4,23=8,24=16,25=32;26=64,…根据这个规律,则21+22+23+24+25+…+22018的末尾数字是.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分20分)计算(1)(-2)3×8-8×(12)3+8×18;解:(2)(-3)2-16×5+16×(-32);解:(3)[1-(1-0.5×13)]×(-10+9);解:(4)-43÷(-32)-[(-23)3×(-32)+(-113)].解:17.(本题满分5分)已知数a ,b ,c ,d ,e ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求12ab+c +d 5+e 2的值.解:18.(本小题满分5分)若|x -2|与(y +7)2互为相反数,试求y x 的值.解:19.(本小题满分5分)在王明的生日宴会上,摆放着8个大盾牌,有7名同学藏在大盾牌后面,男同学盾牌前写的是一个正数,女同学盾牌前写的是一个负数,这8个盾牌如图,请说出盾牌后男、女同学各几个人.(-1)+(-5)-2+6(-2.5)+213312+(-278)0-(-2)7-86+(-6)-|42-30|解:20.(本小题满分8分)2017年国庆,全国从1日到7日放假七天,各地景区游人如织.其中广州白云山风景区,在9月30日的游客人数为0.9万人,接下来的七天中,每天的游客人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化(万人)+3.1+1.78-0.58-0.8-1-1.6-1.15(1)10月3日的人数为万人;(2)七天假期里,游客人数最多的是10月2日,达到万人;游客人数最少的是10月7日,达到万人;(3)请问白云山风景区在这八天内一共接待了多少游客?(结果精确到万位)解:21.(本题满分8分)(教材P48习题T11变式)(宜昌中考)(1)根据已知条件填空:①已知(-1.2)2=1.44,那么(-120)2=,(-0.012)2=;②已知(-3)3=-27,那么(-30)3=,(-0.3)3=;(2)观察上述计算结果我们可以看出:22.(本小题满分12分)(教材P43例4变式)观察下面三行数:2,-4,8,-16,…;①-1,2,-4,8,…;②3,-3,9,-15,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第9个数,计算这三个数的和.解:23.(本小题满分12分)a,b分别是数轴上两个不同点A,B所表示的有理数,且|a|=5,|b|=2,A,B两点在数轴上的位置如图所示:(1)试确定数a,b;(2)A,B两点相距多少个单位长度?(3)若C点在数轴上,C点到B点的距离是C点到A点距离的13,求C点表示的数;(4)点P从A点出发,先向左移动一个单位长度,再向右移动2个单位长度,再向左移动3个单位长度,再向右移动4个单位长度,依次操作2019次后,求P点表示的数.解:解析2018-2019学年度(上)第一次月考七年级数学B 卷(考试时间:100分钟试卷满分:120分)第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(六盘水中考)大米包装袋上(10±0.1)kg 的标识表示此袋大米重(A)A.(9.9~10.1)kgB.10.1kgC .9.9kgD .10kg2.数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画一条长15厘米的线段AB ,则AB 盖住的整数点有(C)A.13或14个B.14或15个C.15或16个D.16或17个3.若a 与-1互为相反数,则|a +2|等于(C)A .2B .-2C .3D .-34.某登山队离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6℃的低温和缺氧的情况下,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为-4℃,峰顶的温度为(结果保留整数)(A)A .-26℃B .-22℃C .-18℃D .22℃5.若a ,b 互为相反数(a ≠0,b ≠0),n 是自然数,则(B)A.a 2n 和b 2n 互为相反数B.a 2n +1和b 2n +1互为相反数C.a 2和b 2互为相反数D.a n 和b n 互为相反数6.(自贡中考)填在下面各正方形中四个数之间都有相同的规律,根据这种规律m 的值为(C)A .180B .182C .184D .1867.在如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2018次输出的结果为(B)A .6B .3 C.322018D.321009+3×10098.(德州中考)我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列.477万用科学记数法表示正确的是(C)A.4.77×105B.47.7×105C.4.77×106D.0.477×1069.对于由四舍五入得到的近似数8.8×104,下列说法正确的是(C)A.精确到十分位B.精确到个位C.精确到千位D.精确到万位10.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b.对于以下结论:甲:b -a <0;乙:a +b >0;丙:|a|<|b|;丁:ba>0.其中正确的是(C)A .甲乙B .丙丁C .甲丙D .乙丁第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)11.当x =2时,|x -2|有最小值,这个最小值为0.12.上周五某股民小王买进某公司股票1000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元):星期一二三四五每股涨跌+4+4.5-1-2.5-6则在星期五收盘时,每股的价格是34元.13.(黔南中考)已知C 23=3×21×2=3,C 35=5×4×31×2×3=10,C 46=6×5×4×31×2×3×4=15,…观察以上计算过程,寻找规律计算C 58=56.14.一列数:-3,9,-27,81,则第10个数为(-3)10,第n 个数用n 表示为(-3)n .15.观察下列等式:21=2,22=4,23=8,24=16,25=32;26=64,…根据这个规律,则21+22+23+24+25+…+22018的末尾数字是6.三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分20分)计算(1)(-2)3×8-8×(12)3+8×18;解:原式=-8×8-8×18+8×18=-64.(2)(-3)2-16×5+16×(-32);解:原式=9-56+16×(-9)=9-56-96=203.(3)[1-(1-0.5×13)]×(-10+9);解:原式=[1-(1-12×13)]×(-10+9)=(1-56)×(-1)=-16.(4)-43÷(-32)-[(-23)3×(-32)+(-113)].解:原式=-64÷(-32)-[-827×(-9)-113]=2-(83-113)=2-(-1)=3.17.(本题满分5分)已知数a ,b ,c ,d ,e ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,求12ab+c +d 5+e 2的值.解:因为a ,b 互为倒数,所以ab =1.因为c ,d 互为相反数,所以c +d =0.因为e 的绝对值为2,所以e =±2.所以e 2=(±2)2=4.所以12ab +c +d 5+e 2=12+0+4=412.18.(本小题满分5分)若|x -2|与(y +7)2互为相反数,试求y x 的值.解:由题意,得|x -2|+(y +7)2=0,因为|x -2|≥0,(y +7)2≥0,所以|x -2|=(y +7)2=0.解得x =2,y =-7,所以y x =(-7)2=49.19.(本小题满分5分)在王明的生日宴会上,摆放着8个大盾牌,有7名同学藏在大盾牌后面,男同学盾牌前写的是一个正数,女同学盾牌前写的是一个负数,这8个盾牌如图,请说出盾牌后男、女同学各几个人.(-1)+(-5)-2+6(-2.5)+213312+(-278)0-(-2)7-86+(-6)-|42-30|解:由题意,知(-1)+(-5)=-6<0,(-2.5)+213=-16<0,0-(-2)=2>0,6+(-6)=0,-2+6=4>0,312+(-278)=58>0,7-8=-1<0,-|42-30|=-12<0.因为8个盾牌上共有3个正数,4个负数,所以有3名男同学,4名女同学.20.(本小题满分8分)2017年国庆,全国从1日到7日放假七天,各地景区游人如织.其中广州白云山风景区,在9月30日的游客人数为0.9万人,接下来的七天中,每天的游客人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化(万人)+3.1+1.78-0.58-0.8-1-1.6-1.15(1)10月3日的人数为5.2万人;(2)七天假期里,游客人数最多的是10月2日,达到5.78万人;游客人数最少的是10月7日,达到0.65万人;(3)请问白云山风景区在这八天内一共接待了多少游客?(结果精确到万位)解:0.9+4+5.78+5.2+4.4+3.4+1.8+0.65=26.13≈26(万).答:白云山风景区在这八天内一共接待了约26万游客.21.(本题满分8分)(教材P48习题T11变式)(宜昌中考)(1)根据已知条件填空:①已知(-1.2)2=1.44,那么(-120)2=14__400,(-0.012)2=0.000__144;②已知(-3)3=-27,那么(-30)3=-27__000,(-0.3)3=-0.027;(2)观察上述计算结果我们可以看出:①当底数的小数点向左(右)每移动一位,它的平方的幂的小数点向左(右)移动两位;②当底数的小数点向左(右)每移动一位,它的立方的幂的小数点向左(右)移动三位.22.(本小题满分12分)(教材P43例4变式)观察下面三行数:2,-4,8,-16,…;①-1,2,-4,8,…;②3,-3,9,-15,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行数的第9个数,计算这三个数的和.解:(1)第①行数的规律是21,-22,23,-24,25…(2)第②行每一个数是第①行每个数除以-2得到的;第③行每个数是第①行每个数加1得到的.(3)2×(-2)8+2×(-2)8÷(-2)+2×(-2)8+1=2×(-2)8-(-2)8+2×(-2)8+1=(2-1+2)×(-2)8+1=3×28+1=3×256+1=768+1=769.23.(本小题满分12分)a,b分别是数轴上两个不同点A,B所表示的有理数,且|a|=5,|b|=2,A,B两点在数轴上的位置如图所示:(1)试确定数a,b;(2)A,B两点相距多少个单位长度?(3)若C点在数轴上,C点到B点的距离是C点到A点距离的13,求C点表示的数;(4)点P从A点出发,先向左移动一个单位长度,再向右移动2个单位长度,再向左移动3个单位长度,再向右移动4个单位长度,依次操作2019次后,求P点表示的数.解:(1)因为|a|=5,|b|=2,所以a=5或-5,b=2或-2.由数轴可知,a<b<0,所以a=-5,b=-2.(2)-2-(-5)=3.答:A,B两点相距3个单位长度.(3)①若C点在B点的右侧,则CB=13CA=13(CB+AB).所以CB =12AB =32.所以点C 表示的数为-2+32=-12;②若C 点在A ,B 点之间,则CB =13CA =13(AB -CB).所以CB =14AB =34.所以点C 表示的数为-2-34=-112.综上,C 点表示的数为-12或-114.(4)-5-1+2-3+4-5+6-7+…-2017+2018-2019=-1015.答:P 点表示的数为-1015.。
人教版七年级上册数学第一次月考试题(带答案)
人教版七年级上册数学第一次月考试题(带答案)一、填空题(每空1分,共20分)1. 计算:27÷3=____ 9 ________2. 25+13=____ 38 ________3. 69-18=____ 51 ________4. 8×6=____ 48 ________5. 49÷7=____ 7 ________6. 18×3=____ 54 ________7. 5×(6+8)=____ 70 ________8. (15+8)×6=____ 138 ________9. 7+42-9=____ 40 ________10. (20-5)×3=____ 45 ________11. 3.4+2.9=____ 6.3 ________12. 2.5-1.8=____ 0.7 ________13. 4.6×2=____ 9.2 ________14. (3.2+1.1)×2=____ 8.6 ________15. 5×(6.7-3.2)=____ 16.75 ________16. 4.5+2.3-1.1=____ 5.7 ________17. 9.7-1.2+3.5=____ 12.0 ________18. 7.9×4.5=____ 35.55 ________19. 8.25÷0.3=____ 27.5 ________20. 35÷(-7)=____ -5 ________二、选择题(每题2分,共20分)21. 下列不是整数的是( )A. 0B. -1C. 1D. 222. 数字0的相反数是( )A. 0B. -1C. 1D. 无法确定23. 两个正整数的和是( )A. 0B. 正整数C. 负整数D. 零24. 两个整数的积是负数,则这两个整数的符号是( )A. 相同B. 不同C. 必定为正D. 必定为负25. 下列数中,正数的个数大于负数的数有( )A. -1,-2,3B. -2,-3,-4C. -1,4,5D. -3,5,626. 下列运算正确的是( )A. -2+3=5B. 4+6=-2C. -3-4=-7D. -9-2=-1127. 两个负整数相加,和的符号为( )A. 正B. 负C. 0D. 无法确定28. (3+5)×(-2)的结果是( )A. 16B. 8C. -16D. -829. -3×4的结果是( )A. -12B. 12C. 0D. 无法确定30. 一个数和它的相反数的和等于( )A. 0B. 正数C. 负数D. 1三、解答题(共60分)31. 用方框中的数字填空:![31](31.png)32. 将下列图形中的图形B旋转180°,即将箭头指向自己,可以得到哪个图形?![32](32.png)33. 将下列各数填入上方的小圆圈内。
部编人教版七年级数学上册第一次月考考试【及参考答案】
部编人教版七年级数学上册第一次月考考试【及参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,12.2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确..的是( )A .签约金额逐年增加B .与上年相比,2019年的签约金额的增长量最多C . 签约金额的年增长速度最快的是2016年D .2018年的签约金额比2017年降低了22.98%3.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5 B .﹣8 C .﹣2 D .54.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是( )A .45°B .60°C .75°D .85°5.两条直线被第三条直线所截,就第三条直线上的两个交点而言形成了“三线八角”.为了便于记忆,同学们可仿照图用双手表示“三线八角”(两大拇指代表被截直线,食指代表截线).下列三幅图依次表示( )A .同位角、同旁内角、内错角B .同位角、内错角、同旁内角C .同位角、对顶角、同旁内角D .同位角、内错角、对顶角6.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <32 8.某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( )A .10℃B .6℃C .﹣6℃D .﹣10℃9.下列说法:① 平方等于64的数是8;② 若a ,b 互为相反数,ab ≠0,则1a b=-;③ 若a a -=,则3()a -的值为负数;④ 若ab ≠0,则a b a b +的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为( )A .0个B .1个C .2个D .3个10.下列几何体中,是圆柱的为( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.已知关于x ,y 的二元一次方程组2321x y k x y +=⎧⎨+=-⎩的解互为相反数,则k 的值是_________.3.定义一种新运算“※”,规定x ※y =2ax by +,其中a 、b 为常数,且1※2=5,2※1=3,则2※3=____________.4.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x)°,则x =________.5.分解因式:4ax 2-ay 2=_____________.6.如图是利用直尺和三角板过已知直线l 外一点P 作直线l 的平行线的方法,其理由是__________.三、解答题(本大题共6小题,共72分)1.解方程:(1)()1236365x x --=+ (2)0.80.950.30.20.520.3x x x ++-=+2.解不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,把它的解集在数轴上表示出来,并写出其整数解.3.如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m 或n 的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.4.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、C5、B6、C7、B8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、-13、114、40或805、a (2x+y )(2x-y )6、同位角相等,两直线平行.三、解答题(本大题共6小题,共72分)1、(1)209-;(2)13x =. 2、32x -<≤,x 的整数解为﹣2,﹣1,0,1,2.3、(1)矩形的周长为4m ;(2)矩形的面积为33.4、(1)证明略;(2)∠AED +∠D =180°,略;(3)110°5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)饮用水和蔬菜分别为200件和120件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960。
2018-2019学年度数学第一次月考试题(含答案)
2018-2019学年度数学第一次月考试题(含答案)D参考答案及评分意见一、选择题(本大题共10小题,每小题4分,满分40分)1--5 C D C A B; 6--10 C A B D A二、填空题(本大题共4小题,每小题5分,满分20分)11.(-5,-3) 12.-1 13. x=4 14.y 1=y 2>y 3三、(本大题共2小题,每小题8分,满分16分)15. 由题意得+c =642+b•4+c =1 ……………3分解这个方程组得c=1b=-4, ……………7分 所以所求二次函数的解析式是y=x 2-4x+1; ……………8分16.(参考) 解:(1)移项,得, ……………1分二次项系数化为1,得, ……………2分配方,得, ……………4分即……………6分∴或,∴,……………8分四、(本大题共2小题,每小题8分,满分16分)17. 解:由题意,得=(-4)2-4(m -)=0,即16-4m+2=0,解得m =.……………4分当m =时,方程有两个相等的实数根x1=x2=2.……………8分18. 解:设AB为x m,则BC为(50-2x)m. ……………1分x(50-2x)=300.……………4分解得x1=10,x2=15.……………6分当x=10时,AD=BC=50-2x=30>25,不合题意,舍去;当x=15时,AD=BC=50-2x=20<25. ……………7分答:AB的长15 m.……………8分五、(本大题共2小题,每小题10分,满分20分)19.解:(1)设这两年该市推行绿色建筑面积的年平均增长率为x,……………1分950(1+x)2=1862.……………4分解得,x1=0.4,x2=-2.4(舍去),……………6分所以这两年该市推行绿色建筑面积的年平均增长率为40%. ……………8分(2)1862(1+40%)=2606.8.∵2606.8>2400,∴2018年我市能完成计划目标.所以如果2018年仍保持相同的年平均增长率,2018年该市能完成计划目标………10分.20.解:(1)由图象可知:B(2,4)在二次函数y 2=ax 2图象上, ∴4=a·22.∴a = 1.则y 2=x 2. ……………4分又∵A(-1,n)在二次函数y 2=x 2图象上, ∴n =(-1)2.∴n =1.则A(-1,1).又∵A ,B 两点在一次函数y 1=kx +b 图象上,∴4=2k +b.1=-k +b ,解得b =2.k =1,则y 1=x +2.∴一次函数解析式为y 1=x +2,二次函数解析式为y 2=x 2. ……………8分(2)根据图象可知:当-1<x<2时,y 1>y 2. ……………10分六、(本题满分12分)21.(1)∵二次函数y=-x 2 +2x+m 的图象与x 轴的一个交点为A (3,0),∴-9+2×3+m=0,解得:m=3; ……………2分(2)∵二次函数的解析式为:y=-x 2 +2x+3,∴当y=0时,-x 2 +2x+3=0,解得:x=3或x=-1,∴B(-1,0);……………6分(3)如图,连接BD、AD,过点D 作DE⊥AB,∵当x=0时,y=3,∴C(0,3),若S △ABD =S △ABC ,则可得OC=DE=3,∴当y=3时,-x 2 +2x+3=3,解得:x=0或x=2,∴点D的坐标为(2,3). (12)分七、(本题满分12分)22.解:(1)10或18元(6分)(2)14元。
人教版七年级数学上册第一次月考测试题(含答案)
人教版七年级数学上册第一次月考测试题(含答案)一、选择题(每小题3分,共30分1.下列四组数中:①﹣1和﹣1;②﹣1和1;③0和0;④﹣和﹣1 ,互为倒数的是()A. ①②B. ②③C. ①③④D. ①④2.下列计算正确的是( )A. a2+a3=a5B. a6÷a2=a3C. (a2)3=a6D. 2a×3a=6a3.如图,表示互为相反数的两个点是()A. M与QB. N与PC. M与PD. N与Q4.已知:与是同类项,则代数式的值是()A. B. C. D.5.据报道2018年前4月,50城市土地出让金合计达到11882亿,比2017年同期的7984亿上涨幅度达到48.8%.其中数值11882亿可用科学记数法表示为()A. B. C. D.6.有理数,在数轴上的位置如图所示,则下列代数式值是负数的是()A. a+bB.C. a-bD.7.下列计算正确的是()A. a2+a3=a5B. (-2x2y)3=-6x6y3C. (a-b)(-a-b)=a2-b2D. 2x2(- xy)=- x3y8.整式的系数是()A. -3B. 3C.D.9.一个长方体模型的长、宽、高分别是4a(cm),3a(cm),a(cm),某种油漆每千克可漆面积为(cm),则漆这个模型表面需要的油漆是()千克.A. B. C. D. 3810.下面四个整式中,不能表示图中阴影部分面积的是()A. x2+5xB. (x+3)(x+2)﹣2xC. 3(x+2)+x2D. x(x+3)+6二、填空题(每小题4分,共28分)11.用“ < ”、“ > ”或“ = ”连接:________ .12.用“★”定义新运算:对于任意有理数、都有★,例如7★4==17,那么★(★2)= .13.当________时,与是同类项.14.若,,且,那么的值是.15.绝对值不大于4的整数有________ .16.有三个连续的奇数,中间的一个是,则这三个数的和为________.17.一个正方体的平面展开图如图,已知正方体相对两个面上的数互为相反数,则2a﹣3b=________.三、解答题(一)(每小题6分,共18分)18.(1)计算:;(2)先化简,再求值:,其中,.19.当a,b在数轴上如图示的位置时,计算代数式的值.20.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的总成绩是多少?平均成绩是多少?四、解答题(二)(每小题8分,共24分)21.如图是一个圆环,外圆与内圆的半径分别是R和r.(1).直接写出圆环的面积(用含R、r的代数式表示);(2).当R=5、r=3 时,求圆环的面积(结果保留π).22.若|a|=5,|b|=3,(1)若ab>0,求a+b的值;(2)若|a+b|=a+b,求a-b的值.23.已知五个数分别为:(1)在数轴上表示下列各数,并按从小到大的顺序用“ ”把这些数连接起来;(2)选择哪三个数相乘可得到最大乘积?乘积最大的是多少?五、解答题(三)(每小题10分,共20分)24.已知a,b互为倒数,c,d互为相反数,|m|=3.根据已知条件请回答:(1)ab=________,c+d=________,m=________,=________.(2)求:+ab+ ﹣的值.25.有依次排列的3个数:6,8,3,对任意相邻的两个数,都用左边的数减去右边的数,所得之差写在两个数之间,可产生一个新数串①:6,−2,8,5,3,这称作第一次操作;对数串①进行同样的操作后也可产生一个新的数串②:6,8,−2,−10,8,3,5,2,3……依次操作下去.(1)数串①的所有数之和为________,数串②的所有数之和为________.(2)第3次操作以后所产生的数串③为6,________,8,10,−2,8,−10,−18,8,5,3,-2,5,3,2,−1,3.所有数之和为________.(3)请列式计算:操作第2020次产生的新数串的所有数字之和是多少?答案一、选择题(每小题3分,共30分)1.【答案】D2.【答案】C3.【答案】C4.【答案】B5.【答案】A6.【答案】C7.【答案】D8.【答案】A9.【答案】A10.【答案】A二、填空题(每小题4分,共28分)11.【答案】12.【答案】2613.【答案】214.【答案】15.【答案】±4,±3,±2,±1,016.【答案】6n+317.【答案】-12三、解答题(一)(每小题6分,共18分)18.【答案】(1)解:原式. (2)解:原式当,时,原式.19.【答案】解:由数轴得a=2,b=-1,原式=5ab2+3a2b-3a2b+2ab2,=7ab2;当a=2,b=-1,原式=7×2×(-1)2=14.20.【答案】(1)解:最高分为80+12=92分,最低分为80-10=70分(2)解:低于80分的同学有5位,所占百分比为×100%=50%(3)解:8-3+12-7-10-3-8+1+0+10=31-31=0,∴10名同学的总成绩是80×10=800分,平均成绩是800÷10=80分.四、解答题(二)(每小题8分,共24分)21.【答案】(1)解:环形的面积=πR2﹣πr2(2)解:当R=5,r=3时,原式=25π﹣9π=16π22.【答案】(1)解:∵|a|=5,|b|=3,∴a=±5,b=±3,若ab>0,则a=−5,b=−3或a=5,b=3,①a=−5,b=−3时,a+b=−5−3=−8.②a=5,b=3时,a+b=5+3=8.(2)解:若|a+b|=a+b,则a+b⩾0可得a=5,b=−3或a=5,b=3,①a=5,b=−3时,a−b=5+3=8.②a=5,b=3时,a−b=5−3=2.五、解答题(三)(每小题10分,共20分)24.【答案】(1)1;0;±3;﹣1(2)解:当m=3时,原式=+1+0﹣(﹣1)=3,当m=﹣3时,原式=+1+0﹣(﹣1)=1.25.【答案】(1)20;23(2)−2;26(3)解:由(1)(2)可知其规律为:操作第n次产生的新数串的所有数字之和是(6+8+3)+3n,∴操作第2020次产生的新数串的所有数字之和是(6+8+3)+3×2020=6077,答:操作第2020次产生的新数串的所有数字之和是6077.。
人教版七年级上册数学第一次月考试卷含答案
七年级上册数学第一次月考测试卷一、单选题1.给出下列各数:﹣1,0,﹣3.05,﹣π,+2,﹣12,4,其中负数有()A.1个B.2个C.3个D.4个2.如果零上7℃记作+7℃,则零下7℃记作()A.﹣7° B.﹣7℃ C.+7° D.+7℃3.下列表示“相反意义的量”的一组是()A.向东走和向西走B.盈利100元和支出100元C.水位上升2米和水位下降2米D.黑色与白色4.下列各数中,既是分数又是正数的是()A.1 B.﹣313C.0 D.2.255.下面是小强、小方、小丽和小燕4位同学所画的数轴,其中正确的是()A.B.C.D.6.下列说法正确的是()A.0不可以是负数但可以是正数B.﹣3和0都是整数C.不是正数的数一定是负数,不是负数的数一定是正数D.0℃表示没有温度7.数轴上与﹣3距离3个单位的数是()A.﹣6 B.0 C.﹣6和0 D.6和9 8.下列各组数中,互为相反数的一组是()A.﹣1与﹣|﹣1| B.2与﹣1 2C.﹣(﹣1)与﹣|﹣1| D.(﹣2)3与﹣239.绝对值小于100的所有有理数的和与它的积的差是()A.10000 B.5050C.0 D.数据过大,无法计算10.下列说法中,正确的是()A.若|a|<|b|,则a<b B.若a<b,则|a|<|b|C.若a>0,b>0,则|a|>|b| D.a<b<0,则|a|>|b| 11.如图,M、P、N分别是数轴上的三点,点M和点N表示的有理数之和为零.其中点P满足|(﹣3)+★|=3,“★”代表P,那么P点表示的数应该是()A.6 B.3 C.0 D.0和6二、填空题12.如果盈利500元记作+500元,则﹣500元表示_____元.13.﹣434的相反数是_____,它的倒数是_____,它的绝对值是_____.14.若a,b互为相反数,m,n互为倒数,则(a+b)×mn﹣2mn+2=_____.15.2018年,遵义市全市普通高中招生计划数为48380人,保留两个有效数字,用科学记数法表示为_____.16.若(a+2018)2+|2017﹣b|=0,则(a+b)2019=_____;三、解答题17.把下列各数填在相应集合的括号内:+15,﹣3,﹣12,﹣0.9,0.81,227,﹣113,101,0.整数集合:{ …}负数集合:{ …}分数集合:{ …}非负数集合:{ …}18.计算题(1)64+(﹣36)+(﹣64)﹣4×(﹣9)(2)(23﹣34+512﹣16)×(﹣12)19.把下列各数在数轴上(直线已画出)表示,并按从小到大的顺序用“<”连接起来.﹣12,0,34,﹣22,π,﹣|﹣3.14|,﹣(﹣2.5)20.如图,数轴上三点A ,B ,C 分别表示有理数a ,b ,c ,化简|a ﹣b |﹣|b ﹣c |+|a +c |.21.(1)已知a 是绝对值最小的有理数,b 和c 的倒数都是它本身,b <c .求a +b +c ﹣ab ﹣bc ﹣ac 的值.(2)a ,b 互为倒数,c 和d 互为相反数.求ab ﹣dc﹣2c ﹣2d 的值.22.“白水如绵,不用弓弹花自散;红雪如锦,何须梭织天生成.”我爱多彩贵州.今年“五一”期间,黄果树瀑布及周边景区,又一次迎来旅游高峰,据统计4月28日游客总人数达70万人.现将4月29日到5月5日游客人数统计如表.(“+”为当日增加人数,“﹣”为当日减少人数,单位:万人).(1)补全表中数据.(2)计算4月29日至5月5日,7日间景区共接待游客多少人?(3)请你估算一下,今年“五一”期间,黄果树瀑布及周边景区旅游总收入.通过大数据,谈谈你的感想(计算数据基本合理,其他言之有理即可).23.“中欧班列”是指按照固定车次线路条件开行,往来于中国与欧洲及“一带一路”沿线各国的集装箱国际铁路联运班列.其中从我国义乌到亚欧国家的一趟班列近似直线(东西方向),若某班列从我国某城市出发(规定向东为正,向西为负),下面记录数据分别为每一天的行程(单位:km):﹣1008,1100,﹣976,1010,﹣872,946.问6天后,此班列在该城市什么方向?距离多远?共计行程多少千米?24.如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;②小猫逮住老鼠时的“位置”恰好在,求时间t.25.阅读材料(1)绝对值的几何意义是表示数轴上的点到原点的距离,如|﹣2|=2,|x|=2,x=+2或﹣2,特别地|x﹣1|=2表示“x”到“1”的距离是2,就是x﹣1=2或x﹣1=﹣2,所以x=3或﹣1;同理,当|x+1|=2,表示“x”到“﹣1”的距离是2,就是x+1=2或x+1=﹣2,所以x=﹣3或+1;根据以上说明,求下列各式中x的值.①|x|=1 ②|x﹣2|=2 ③|x+1|=3(2)由(1)可知,|a|=a或﹣a,|b|=b或﹣b,|c|=c或﹣c,若abc≠0,求a b ca b c++的值.(3)若abcd ≠0,直接写出a b c da b c d +++的值.参考答案1.D【解析】【分析】根据负数是小于0的数找出即可.【详解】负数有:﹣1,﹣3.05,﹣π,﹣12,故选:D.【点睛】本题考查了负数的定义,是基础题,熟记概念是解题的关键.2.B【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对,若增加表示为正,则减少表示为负.【详解】如果零上7℃记作+7℃,那么零下7℃记作﹣7℃,故选:B.本题主要考查正数和负数的知识点,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.3.C【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【详解】A、“向东走和向西走是方向相反,不是相反意义的量,故本选项错误;B、“盈利100元”与“支出100元”是不是表示相反意义的量,故本选项错误;C、水位上升 2 米和水位下降 2 米是表示相反意义的量,故本选项正确;D、黑色与白色是颜色相反,是不具有相反或相同的意义的量,故本选项错误.故选:C.【点睛】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.4.D【解析】根据大于零的分数是正分数,可得答案.【详解】A、是正整数,故A错误;B、是负分数,故B错误;C、既不是正数也不是负数,故C错误;D、是正分数,故D正确;故选:D.【点睛】本题考查了有理数,大于零的分数是正分数,注意0既不是正数也不是负数,0是整数.5.B【解析】【分析】根据数轴的特点,从左到右越来越大,单位长度是确定的,可以判断哪个选项是正确的.【详解】∵数轴从左到右越来越大,∴选项A和选项C错误,选项B正确,∵数轴的单位长度是确定的,∴选项D错误,故选:B.【点睛】本题考查数轴,解答本题的关键是明确数轴的特点,利用数轴的知识解答.6.B【解析】【分析】利用有理数的性质判断即可.【详解】A、0不可以是负数也不可以是正数,不符合题意;B、﹣3和0都是整数,符合题意;C、不是正数的数不一定是负数,不是负数的数不一定是正数,不符合题意;D、0℃表示温度为0,不符合题意,故选:B.【点睛】此题考查了有理数的分类及性质,弄清有理数的性质是解本题的关键.7.C【解析】【分析】根据题意和数轴的特点,可以求得数轴上与﹣3距离3个单位的数,分该点在-3的右边和左边两种情况求解即可.【详解】数轴上与﹣3距离3个单位的数是:﹣3+3=0或﹣3﹣3=﹣6,故选:C.【点睛】本题考查数轴两点间的距离及分类讨论的数学思想,解答本题的关键是明确数轴的特点,求出相应的数据.8.C【解析】【分析】利用相反数,绝对值,倒数的定义以及乘方的意义判断即可.【详解】A、﹣1=﹣|﹣1|=﹣1,相等,不符合题意;B、2与﹣12互为负倒数,不符合题意;C、﹣(﹣1)=1与﹣|﹣1|=﹣1,互为相反数,符合题意;D、(﹣2)3=﹣23=﹣8,相等,不符合题意,故选:C.【点睛】此题考查了有理数的乘方,相反数,倒数以及绝对值,熟练掌握各自的性质是解本题的关键.9.C【解析】【分析】根据0与任何数相乘的积为0,互为相反数的两数的和为0,得绝对值小于100的所有有理数的和与它的积,相减得结论.【详解】∵0的绝对值小于100,所以绝对值小于100的有理数的积为0;∵互为相反数的两数的绝对值相等,互为相反数的两数的和为0,所以小于100的所有有理数除0外都成互为相反数的对出现,所以它们的和为0;绝对值小于100的所有有理数的和与它的积的差是:0﹣0=0.故选:C.【点睛】本题考查了绝对值的意义与0与有理数相乘的积.解决本题的关键是知道:0与任何实数相乘的积为0,互为相反数的两数的绝对值相等,互为相反数的两数的和为0.10.D【解析】【分析】根据绝对值的定义即可求出答案.【详解】A.若a=0,b=﹣7,则|a|<|b|,但a>b,故A错误;B.若a=﹣3,b=2,则a<b,但|a|>|b|,故B错误;C.若a=1,b=﹣2,则a>0,b>0,但|a|>|b|,故C错误;D. 若a<b<0,则|a|>|b|,故D正确.故选:D.【点睛】本题考查绝对值的定义,解题的关键是熟练运用绝对值的定义,本题属于基础题型.11.D【解析】【分析】根据绝对值的意义即可得到结论.【详解】∵|(﹣3)+★|=3,∴(﹣3)+★=±3,∴★=0或6,故选:D.【点睛】本题考查了数轴,绝对值,熟记绝对值的意义是解题的关键.12.亏损500.【解析】【分析】根据正负数的意义即可求出答案.【详解】由题意可知:﹣500元表示亏损500元,故答案为:亏损500.【点睛】本题考查了相反意义的量,解题的关键是正确理解正负数的意义,为了区分相反意义的量,我们把其中一种意义的量规定为正的,那么与它相反意义的量规定为负的.本题属于基础题型.13.434﹣419434.【解析】【分析】根据相反数、倒数及绝对值的定义解答即可. 【详解】﹣434的相反数是:434,它的倒数是:﹣419,它的绝对值是:434,故答案为434,﹣419,434.【点睛】本题考查了相反数、倒数及绝对值的定义,熟知相反数、倒数及绝对值的定义是和解决问题的关键.14.0【解析】【分析】根据a,b互为相反数,m,n互为倒数,可以求得所求式子的值,本题得以解决.【详解】∵a,b互为相反数,m,n互为倒数,∴a+b=0,mn=1,∴(a+b)×mn﹣2mn+2=0×mn﹣2×1+2=0﹣2+2=0,故答案为:0.【点睛】本题考查了相反数、倒数的意义,有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.15.:4.8×104.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于48 380的整数位有5位,所以可以确定n=5﹣1=4,有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【详解】48 380人,保留两个有效数字,用科学记数法表示为4.8×104.故答案为:4.8×104.【点睛】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.16.-1【解析】【分析】根据非负数的性质即可得到结论.【详解】∵(a+2018)2+|2017﹣b|=0,∴a+2018=0,2017﹣b=0,∴a=﹣2018,b=2017,∴(a+b)2019=﹣1.故答案为:﹣1.【点睛】本题考查了非负数的性质,熟练掌握非负数的性质是解题的关键.17.详见解析【解析】【分析】根据有理数的分类即可求出答案.【详解】解:整数集合:+15,﹣3,101,0负数集合:﹣3,﹣,﹣0.9,﹣1分数集合:﹣,﹣0.9,0.81,,﹣1非负数集合:+15,0.81,,101,0【点睛】本题考查有理数的分类,解题的关键是正确理解有理数的分类,本题属于基础题型.18.(1)0;(2)-2【解析】【分析】1)原式先计算乘法运算,再计算加减运算即可求出值;(2)原式利用乘法分配律计算即可求出值.【详解】解:(1)原式=64﹣64﹣36+36=0;(2)原式=﹣8+9﹣5+2=﹣2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.﹣22<﹣|3.14|<﹣12<0<34<﹣(﹣2.5)<π.【解析】【分析】把各个数表示在数轴上,最后根据在数轴上表示的有理数的比较方法,用“<”连接各数.【详解】解:∵﹣22=﹣4,﹣|﹣3.14|=﹣3.14,﹣(﹣2.5)=2.5,∴在数轴上表示为:∴﹣22<﹣|3.14|<﹣<0<<﹣(﹣2.5)<π.【点睛】本题考查了数轴上表示有理数,相反数、绝对值的化简及有理数大小的比较方法.题目相对简单.注意在数轴上表示的数一定是题目给出的数据,不能是经过化简后的数据.20.2b.【解析】【分析】根据数轴,可以判断a、b、c的正负情况,从而可以判断a﹣b、b﹣c、a+c的正负情况,从而可以解答本题.【详解】解:由数轴可得,﹣3<a<0<b<3<c,∴a﹣b<0,b﹣c<0,a+c>0,∴|a﹣b|﹣|b﹣c|+|a+c|=b﹣a﹣(c﹣b)+a+c=b﹣a﹣c+b+a+c=2b.【点睛】本题考查数轴、绝对值,解答本题的关键是明确数轴的特点,利用数形结合的思想解答.21.(1)1;(2)2【解析】【分析】利用相反数,倒数,以及绝对值的代数意义判断即可.【详解】解:(1)根据题意得:a=0,b=﹣1,c=1,则原式=0﹣1+1﹣0+1﹣0=1;(2)根据题意得:ab=1,c+d=0,则原式=1﹣(﹣1)﹣0=2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.(1)80,115,135,125,110,100,85.(2)4月29日至5月5日,7日间景区共接待游客750万人;(3)60亿元.感想:旅游是绿色产业,投入少收入巨大.所以当地应该努力改善生态环境,大力发展旅游事业.【解析】【分析】(1)根据每天的人数变化可直接求出每天的旅游人数;(2)分别计算出每天的旅游人数,求和即可;(3)自己预估人均消费,计算当地景点大致收入,然后写出感想即可.【详解】解:(1)4月29日人数为:70+10=80(万人),4月30日人数为:80+35=115(万人),5月1日人数为:115+20=135(万人),5月2日人数为:135﹣10=125(万人),5月3日人数为:125﹣15=110(万人),5月4日人数为:110﹣10=100(万人),5月5日人数为:100﹣15=85(万人);故答案为:80,115,135,125,110,100,85.(2)80+115+135+125+110+100+85=750(万人),答:4月29日至5月5日,7日间景区共接待游客750万人;(3)若每人在黄果树瀑布周边景区平均旅游消费800元,则黄果树瀑布及周边景区旅游收入为:800×7500000=6000000000(元)=60亿元.感想:旅游是绿色产业,投入少收入巨大.所以当地应该努力改善生态环境,大力发展旅游事业.【点睛】本题考查了正负数的意义及有理数的加减运算.题目难度不大.解决(3)需自己预估数据.23.6天后,此班列在该城市东边,距离200km,共计行程5912km.【解析】【分析】根据题意,可以求得题目中数据的和和它们的绝对值的和,从而可以解答本题.【详解】解:(﹣1008)+1100+(﹣976)+1010+(﹣872)+946=200(km),|﹣1008|+1100+|﹣976|+1010+|﹣872|+946=5912(km),答:6天后,此班列在该城市东边,距离200km,共计行程5912km.【点睛】本题考查正数和负数,解答本题的关键是明确正负数在题目中的实际意义.24.(1)4;(2)①12﹣2t;②原点【解析】【分析】(1)根据相反数的意义,求出“原点”到两点的距离,在利用该距离求得“原点”的位置即可;(2)①根据两点的距离直接表示即可;②利用到点的距离相等时,小猫逮到老鼠,列出关于t的方程,求出t的值,再求出该位置即可.【详解】解:(1)根据相反数的意义,可知“原点”到两点的距离分别为:(10+2)÷2=6,∴“原点”表示的数为:﹣2+6=4,故答案为:4;(2)①老鼠在移动过程中与点A之间的距离为:7﹣t,小猫在移动过程中与点A之间的距离为:12﹣2t;②根据题意,得:7﹣t=12﹣2t,解得:t=5,此时小猫逮到老鼠的位置是:5﹣5=0,即在原点,故答案为:原点.【点睛】本题主要考查相反数与数轴的综合应用,解决第(2)小题的②时,能利用小猫逮到老鼠时,它们的位置距离点A相等列出方程式关键.25.(1)①,x=±1;②x=4或0,③x=2或﹣2;(2)±1,或±3.(3)±2,±4,0.【解析】【分析】(1)根据绝对值的意义进行计算即可;(2)(2)对a、b、c进行讨论,即a、b、c同正、同负、两正一负、两负一正,然后计算a b ca b c++得结果;(3)根据abcd≠0,得出共有5种情况,然后分别进行化简即可.【详解】解:(1)①|x|=1,x=±1;②|x﹣2|=2,x﹣2=2或x﹣2=﹣2,所以x=4或0,③|x+1|=3,x+1=3或x﹣1=﹣3,所以x=2或﹣2,(2)当abc≠0时,①a,b,c三个都是负数时,a b ca b c++=﹣1﹣1﹣1=﹣3;②a,b,c三个都是正数时,a b ca b c++=1+1+1=3;③a,b,c两负一正,a b ca b c++=﹣1﹣1+1=﹣1;④a,b,c两正一负,a b ca b c++=﹣1+1+1=1.故a b ca b c++的值为±1,或±3.(3)①若a,b,c,d有一个负数,三个正数,则a b c da b c d+++=﹣1+3=2;②若a,b,c,d有二个负数,二个正数,则a b c da b c d+++=﹣2+2=0;③若a,b,c,d有三个负数,一个正数,则a b c da b c d+++═﹣3+1=﹣2;④若a,b,c,d有四个负数,则a b c da b c d+++═﹣4;⑤若a,b,c,d有四个正数,则a b c da b c d+++═4;故a b c da b c d+++的值为:±2,±4,0.【点睛】本题考查了有理数的加法、绝对值的化简,解决本题的关键是对a、b、c、d的分类讨论.注意xx=±1(x>0,结果为1,x<0,结果为﹣1).七年级上册数学第一次月考测试卷一、单选题1.给出下列各数:﹣1,0,﹣3.05,﹣π,+2,﹣12,4,其中负数有()A.1个B.2个C.3个D.4个2.如果零上7℃记作+7℃,则零下7℃记作()A.﹣7° B.﹣7℃ C.+7° D.+7℃3.下列表示“相反意义的量”的一组是()A.向东走和向西走B.盈利100元和支出100元C.水位上升2米和水位下降2米D.黑色与白色4.下列各数中,既是分数又是正数的是()A.1 B.﹣313C.0 D.2.255.下面是小强、小方、小丽和小燕4位同学所画的数轴,其中正确的是()A.B.C.D.6.下列说法正确的是()A.0不可以是负数但可以是正数B.﹣3和0都是整数C.不是正数的数一定是负数,不是负数的数一定是正数D.0℃表示没有温度7.数轴上与﹣3距离3个单位的数是()A.﹣6 B.0 C.﹣6和0 D.6和98.下列各组数中,互为相反数的一组是()A.﹣1与﹣|﹣1| B.2与﹣1 2C.﹣(﹣1)与﹣|﹣1| D.(﹣2)3与﹣239.绝对值小于100的所有有理数的和与它的积的差是()A.10000 B.5050C.0 D.数据过大,无法计算10.下列说法中,正确的是()A.若|a|<|b|,则a<b B.若a<b,则|a|<|b|C.若a>0,b>0,则|a|>|b| D.a<b<0,则|a|>|b| 11.如图,M、P、N分别是数轴上的三点,点M和点N表示的有理数之和为零.其中点P满足|(﹣3)+★|=3,“★”代表P,那么P点表示的数应该是()A.6 B.3 C.0 D.0和6二、填空题12.如果盈利500元记作+500元,则﹣500元表示_____元.13.﹣434的相反数是_____,它的倒数是_____,它的绝对值是_____.14.若a,b互为相反数,m,n互为倒数,则(a+b)×mn﹣2mn+2=_____.15.2018年,遵义市全市普通高中招生计划数为48380人,保留两个有效数字,用科学记数法表示为_____.16.若(a+2018)2+|2017﹣b|=0,则(a+b)2019=_____;三、解答题17.把下列各数填在相应集合的括号内:+15,﹣3,﹣12,﹣0.9,0.81,227,﹣113,101,0.整数集合:{ …} 负数集合:{ …} 分数集合:{ …} 非负数集合:{ …}18.计算题(1)64+(﹣36)+(﹣64)﹣4×(﹣9)(2)(23﹣34+512﹣16)×(﹣12)19.把下列各数在数轴上(直线已画出)表示,并按从小到大的顺序用“<”连接起来.﹣12,0,34,﹣22,π,﹣|﹣3.14|,﹣(﹣2.5)20.如图,数轴上三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|b﹣c|+|a+c|.21.(1)已知a是绝对值最小的有理数,b和c的倒数都是它本身,b<c.求a+b+c﹣ab﹣bc﹣ac的值.(2)a,b互为倒数,c和d互为相反数.求ab﹣dc﹣2c﹣2d的值.22.“白水如绵,不用弓弹花自散;红雪如锦,何须梭织天生成.”我爱多彩贵州.今年“五一”期间,黄果树瀑布及周边景区,又一次迎来旅游高峰,据统计4月28日游客总人数达70万人.现将4月29日到5月5日游客人数统计如表.(“+”为当日增加人数,“﹣”为当日减少人数,单位:万人).(1)补全表中数据.(2)计算4月29日至5月5日,7日间景区共接待游客多少人?(3)请你估算一下,今年“五一”期间,黄果树瀑布及周边景区旅游总收入.通过大数据,谈谈你的感想(计算数据基本合理,其他言之有理即可).23.“中欧班列”是指按照固定车次线路条件开行,往来于中国与欧洲及“一带一路”沿线各国的集装箱国际铁路联运班列.其中从我国义乌到亚欧国家的一趟班列近似直线(东西方向),若某班列从我国某城市出发(规定向东为正,向西为负),下面记录数据分别为每一天的行程(单位:km):﹣1008,1100,﹣976,1010,﹣872,946.问6天后,此班列在该城市什么方向?距离多远?共计行程多少千米?24.如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;②小猫逮住老鼠时的“位置”恰好在,求时间t.25.阅读材料(1)绝对值的几何意义是表示数轴上的点到原点的距离,如|﹣2|=2,|x|=2,x=+2或﹣2,特别地|x﹣1|=2表示“x”到“1”的距离是2,就是x﹣1=2或x﹣1=﹣2,所以x=3或﹣1;同理,当|x+1|=2,表示“x”到“﹣1”的距离是2,就是x+1=2或x+1=﹣2,所以x=﹣3或+1;根据以上说明,求下列各式中x的值.①|x|=1 ②|x﹣2|=2 ③|x+1|=3(2)由(1)可知,|a|=a或﹣a,|b|=b或﹣b,|c|=c或﹣c,若abc≠0,求a b ca b c++的值.(3)若abcd≠0,直接写出a b c da b c d+++的值.数学学习——了解每道题中蕴含的规律对于很多中学生来讲,数学似乎都是他们的“硬伤”。
人教版七年级数学上册第一次月考测试题(含答案)
人教版七年级数学上册第一次月考测试题(含答案)暂无明显的格式错误和有问题的段落。
1.一种大米的质量标识为“(50±0.5)千克”,则下列各袋大米中质量不合格的是()A。
50.千克 B。
50.3千克 C。
49.7千克 D。
49.1千克2.在-4,2,-1,3这四个数中,比-2小的数是()A。
-4 B。
2 C。
-1 D。
33.计算(-3)+5的结果等于()A。
2 B。
-2 C。
8 D。
-84.下列运算错误的是()A。
(-2)×(-3)×5=30B。
(-3)×(-2)×(-4)=-24C。
(-5)×(-2)×(-4)=-40D。
(-6)×(-5)×(-4)=1205.若-3、5、a的积是一个负数,则a的值可以是()A。
-15 B。
-2 C。
0 D。
16.式子-2-(-3)+(+1)-(-4)写成和的形式()A。
-2+(+3)+(+1)+(-4)B。
-2+(-3)+(+1)+(-4)C。
-2+(+3)+(+1)+(+4)D。
-2+(-3)+(+1)+(+4)7.观察下列一组数:1、-2、3、-4、5、-6、7、-8、…,则第101个数是()A。
100 B。
-100 C。
101 D。
-1018.用-a表示的数一定是()A。
负数 B。
正数或负数 C。
负整数 D。
以上全不对9.若a是最小的自然数,b是最大的负整数,c是倒数等于它本身的数,则a+b+c等于()A。
0 B。
-2 C。
1 D。
-110.若a,b在数轴上的位置如图所示,那么a,b,-a,-b的大小关系为()A。
a>b>-b>-a B。
-a<b<-b<aC。
-b>a>b>-a D。
-a<-b<a<b11.向指定方向变化用正数表示,向指定方向的相反方向变化用负数表示,“体重减少1.5kg”换一种说法可以叙述为“体重增加____kg”。
人教版2018-2019学年七年级(上)第一次月考数学试卷(解析版)
参考答案与试题解析
一、单项选择(本大题共 10 题,每题 3 分,共 30 分.) 1.【分析】根据有理数的定义求解.
【解答】解:在π,﹣2,0.3,﹣ ,0.1010010001 这五个数中,有理数的个数为﹣2,0.3,﹣ , 0.1010010001. 故选:D. 【点评】本题考查了有理数:整数和分数统称为有理数. 2.【分析】根据题意,知绝对值最小的即为最接近标准的足球. 【解答】解:|﹣0.8|<|+0.9|<|+2.5|<|﹣3.6|, 故选:C. 【点评】此题要正确理解题意,能够正确比较绝对值的大小. 3.【分析】把标准体重记作 0 千克,增加记作“+”,下降记作“﹣”. 【解答】解:体重增加了﹣2 千克表示体重减少了 2 千克. 故选:B. 【点评】本题是考查正、负数的意义及其应用,属于基础知识. 4.【分析】根据有理数的分类进行判断即可.有理数包括:整数(正整数、0 和负整数)和分数(正 分数和负分数). 【解答】解:A、正确; B、有理数是整数与分数的统称,故选项正确; C、正确; D、有理数又可分为正有理数和负有理数和 0,故选项错误. 故选:D. 【点评】本题考查了实数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非 负数的定义与特点. 注意整数和正数的区别,注意 0 是整数,但不是正数. 5.【分析】先设此点表示的数为 x,再根据数轴上距离的定义进行解答即可. 【解答】解:设在数轴上,与表示数 1 的点的距离是 2 的点表示的数是 x, 则|x﹣1|=2,
5.(3 分)在数轴上,与表示数 1 的点的距离是 2 的点表示的数是( )
A.﹣1
B.3
C.±2
D.﹣1 或 3
6.(3 分)下列四个算式中,正确的是( )
人教版2018-2019学年七年级上册第一次月考数学试卷(含答案)
2018-2019学年七年级(上)第一次月考数学试卷一、选择题1.若﹣a=2,则a等于()A.2 B.C.﹣2 D.2.两个非零有理数的和为零,则它们的商是()A.0 B.﹣1 C.1 D.不能确定3.在有理数中有()A.最大的数 B.最小的数C.绝对值最小的数D.不能确定4.若x=(﹣3)×,则x的倒数是()A.﹣ B.C.﹣2 D.25.在﹣2与1.2之间有理数有()A.2个B.3 个 C.4 个 D.无数个6.在﹣1,1.2,﹣2,0,﹣(﹣2),﹣23中,负数的个数有()A.2个B.3个C.4个D.5个7.有理数a、b在数轴上的对应的位置如图所示:则()A.﹣a<﹣b B.﹣b<a C.b=a D.﹣a>b8.在﹣5,﹣,﹣3.5,﹣0.01,(﹣2)2,(﹣22)各数中,最大的数是()A.﹣22B.﹣C.﹣0.01 D.(﹣2)29.已知(1﹣m)2+|n+2|=0,则(m+n)2013的值为()A.﹣1 B.1 C.2 013 D.﹣2 01310.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)=;④(﹣4)÷×(﹣2)=16.其中正确的个数()A.4个B.3个C.2个D.1个11.下列等式不成立的是()A.(﹣3)3=﹣33 B.﹣24=(﹣2)4 C.|﹣3|=|3| D.(﹣3)100=310012.已知|a|=5,|b|=8,且满足a+b<0,则a﹣b的值为()A.﹣13 B.13 C.3或13 D.13或﹣13二、填空题13.肥料口袋上标有50kg±0.5kg表示什么意思.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是.15.若|x+2|与|y﹣3|互为相反数,则x+y= ,x y= .16.用“☆”定义新运算:对于任意有理数a、b,都有a b=b2﹣a﹣1,例如:74=42﹣7﹣1=8,那么(﹣5)(﹣3)= .三.解答题17.计算题:(1)22﹣5×+|﹣2|;( 2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(3)+(﹣)﹣(﹣)+(﹣)﹣(+);(4)﹣9÷3+(﹣)×12+32;( 5)(﹣48)+(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(6)﹣23﹣×[2﹣(﹣3)2]+(﹣32).18.把下列各数分别填入相应的集合里.﹣23,﹣|﹣|,0,,﹣(﹣3.14),2006,﹣(+5),+1.88,(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)分数集合:{ …}.19.规定一种运算: =ad﹣bc,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算的值.20.已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.21.气象统计资料表明:海拔高度每增加100 米,气温降低大约0.6℃.小明和小亮为考证地方教材中星斗山海拔高度,国庆期间他们两个进行实地测量,小明在山下一个海拔高度为1020米的小山坡上测得的气温为14℃,小亮在星斗山顶峰的最高位置测得的气温为2℃,那么你知道星斗山顶峰的海拔高度是多少米吗?请列式计算.22.小明从文斗中学出发,先向西走2千米到达A村,继续向西走3千米到达B村,然后向东走10千米到C村,后回到学校.(1)以学校为原点,向东为正,用1厘米表示1千米在数轴上表示出,A,B.C三个村庄的位置;(2)小明一共走了多少千米?(3)若D村与A,B,C在一条线上,D到C村有1千米.那么D到B村有多少千米?23.20袋小麦以每袋450千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:﹣6,4,3,﹣2,﹣3,1,0,5,8,﹣5,与标准质量相比较,(1)这20袋小麦总计超过或不足多少千克?(2)20袋小麦总质量是多少千克?(3)有几袋是非常标准的?一、选择题1.若﹣a=2,则a等于()A.2 B.C.﹣2 D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣a=2,则a等于﹣2,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.两个非零有理数的和为零,则它们的商是()A.0 B.﹣1 C.1 D.不能确定【考点】有理数的乘法;有理数的加法;有理数的除法.【分析】根据互为相反数的两数的和等于0判断出这两个数是互为相反数,再根据异号得负解答.【解答】解:∵两个非零有理数的和为零,∴这两个数互为相反数,∴它们的商是负数.故选B.【点评】本题考查了有理数的除法,有理数的加法,判断出这两个数互为相反数是解题的关键.3.在有理数中有()A.最大的数 B.最小的数C.绝对值最小的数D.不能确定【考点】绝对值;有理数.【分析】根据有理数的知识和绝对值的性质作出正确地判断即可.【解答】解:没有最大的有理数也没有最小的有理数,绝对值最小的数是0,故选C【点评】本题主要考查了绝对值和有理数的知识,解题的关键是掌握有理数的有关知识以及绝对值的性质.4.若x=(﹣3)×,则x的倒数是()A.﹣ B.C.﹣2 D.2【考点】有理数的乘法;倒数.【分析】先求出x的值,再根据倒数的定义即可求出x的倒数.【解答】解:∵x=(﹣3)×=﹣,∴x的倒数是﹣2,故选C.【点评】此题主要考查了有理数的乘法和倒数的定义,两数相乘,同号得正,异号得负,并把绝对值相乘.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.5.在﹣2与1.2之间有理数有()A.2个B.3 个 C.4 个 D.无数个【考点】有理数.【分析】根据有理数分为整数与分数,判断即可得到结果.【解答】解:在数轴上﹣2与1.2之间的有理数有无数个.故选D.【点评】此题考查了数轴,熟练掌握有理数的定义是解答本题的关键.6.在﹣1,1.2,﹣2,0,﹣(﹣2),﹣23中,负数的个数有()A.2个B.3个C.4个D.5个【考点】相反数;正数和负数.【分析】注意﹣(﹣2)=2,﹣23=﹣8,指出所有的负数即可.【解答】解:负数有﹣1,﹣2,﹣23,一共有3个,故答案为:B.【点评】本题考查了有理数的分类,本题比较简单,明确有理数分为正数、负数和0即可做出正确判断.7.有理数a、b在数轴上的对应的位置如图所示:则()A.﹣a<﹣b B.﹣b<a C.b=a D.﹣a>b【考点】数轴.【分析】根据数轴可以得到a、0、b的关系,从而可以解答本题.【解答】解:由数轴可得,a<﹣1<0<b<1,∴﹣a>﹣b,故选项A错误,﹣b>a,故选项B错误,a<b,故选项C错误,﹣a>b,故选项D正确,故选D.【点评】本题考查数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.8.在﹣5,﹣,﹣3.5,﹣0.01,(﹣2)2,(﹣22)各数中,最大的数是()A.﹣22B.﹣C.﹣0.01 D.(﹣2)2【考点】有理数大小比较.【分析】根据正数大于一切负数即可解答.【解答】解:(2)2=4,(﹣22)=﹣2,∴最大的数是(﹣2)2,故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.9.已知(1﹣m)2+|n+2|=0,则(m+n)2013的值为()A.﹣1 B.1 C.2 013 D.﹣2 013【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列方程求出m、n的值,再代入代数式进行计算即可得解.【解答】解:由题意得,1﹣m=0,n+2=0,解得m=1,n=﹣2,所以,(m+n)2013=(1﹣2)2013=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.下列计算①(﹣1)×(﹣2)×(﹣3)=6;②(﹣36)÷(﹣9)=﹣4;③×(﹣)÷(﹣1)=;④(﹣4)÷×(﹣2)=16.其中正确的个数()A.4个B.3个C.2个D.1个【考点】有理数的除法;有理数的乘法.【分析】根据有理数的乘法和除法法则分别进行计算即可.【解答】解:①(﹣1)×(﹣2)×(﹣3)=﹣6,故原题计算错误;②(﹣36)÷(﹣9)=4,故原题计算错误;③×(﹣)÷(﹣1)=,故原题计算正确;④(﹣4)÷×(﹣2)=16,故原题计算正确,正确的计算有2个,故选:C.【点评】此题主要考查了有理数的乘除法,关键是注意结果符号的判断.11.下列等式不成立的是()A.(﹣3)3=﹣33 B.﹣24=(﹣2)4 C.|﹣3|=|3| D.(﹣3)100=3100【考点】有理数的乘方;绝对值.【分析】根据有理数的乘方分别求出即可得出答案.【解答】解:A:(﹣3)3=﹣33,故此选项正确;B:﹣24=﹣(﹣2)4,故此选项错误;C:|﹣3|=|3|=3,故此选项正确;D:(﹣3)100=3100,故此选项正确;故符合要求的为B,故选:B.【点评】此题主要考查了有理数的乘方运算,熟练掌握有理数乘方其性质是解题关键.12.已知|a|=5,|b|=8,且满足a+b<0,则a﹣b的值为()A.﹣13 B.13 C.3或13 D.13或﹣13【考点】有理数的减法;绝对值.【专题】分类讨论.【分析】根据绝对值的意义及a+b<0,可得a,b的值,再根据有理数的减法,可得答案.【解答】解:由|a|=5,|b|=8,且满足a+b<0,得a=5,或a=﹣5,b=﹣8.当a=﹣5,b=﹣8时,a﹣b=﹣5﹣(﹣8)=﹣5+8=3,当a=5,b=﹣8时,a﹣b=5﹣(﹣8)=5+8=13,故选:D.【点评】本题考查了有理数的减法,分类讨论是解题关键,以防漏掉.二、填空题13.肥料口袋上标有50kg±0.5kg表示什么意思净含量最大不超过50kg+0.5kg,最少不低于50kg ﹣0.5kg..【考点】正数和负数.【分析】意思是净含量最大不超过50kg+0.5kg,最少不低于50kg﹣0.5kg.【解答】解:由题意可知:“50kg±0.5kg”表示净含量的浮动范围为上下0.5kg,即含量范围在(50+0.5)=50.5kg到(50﹣0.5)=49.5kg之间.即:它表示净含量的浮动范围为上下5kg,最多重50.5kg,最少重49.5kg;故答案为:净含量最大不超过50kg+0.5kg,最少不低于50kg﹣0.5kg.【点评】此题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.在数轴上,点A所表示的数为2,那么到点A的距离等于3个单位长度的点所表示的数是﹣1和5 .【考点】数轴.【分析】点A所表示的数为2,到点A的距离等于3个单位长度的点所表示的数有两个,分别位于点A的两侧,分别是﹣1和5.【解答】解:2﹣3=﹣1,2+3=5,则A表示的数是:﹣1或5.故答案为:﹣1或5.【点评】本题考查了数轴的性质,理解点A所表示的数是2,那么点A距离等于3个单位的点所表示的数就是比2大3或小3的数是关键.15.若|x+2|与|y﹣3|互为相反数,则x+y= 1 ,x y= ﹣8 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质列出算式,求出x、y的值,计算即可.【解答】解:由题意得,|x+2|+|y﹣3|=0,则x+2=0,y﹣3=0,解得,x=﹣2,y=3,则x+y=1,x y=﹣8,故答案为:1;﹣8.【点评】本题考查的是相反数的概念和非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.16.用“☆”定义新运算:对于任意有理数a、b,都有a b=b2﹣a﹣1,例如:74=42﹣7﹣1=8,那么(﹣5)(﹣3)= 13 .【考点】有理数的混合运算.【专题】新定义.【分析】利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(﹣5)(﹣3)=9﹣(﹣5)﹣1=9+5﹣1=13.故答案为:13.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三.解答题17.(2015秋•利川市校级月考)计算题:(1)22﹣5×+|﹣2|;( 2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(3)+(﹣)﹣(﹣)+(﹣)﹣(+);(4)﹣9÷3+(﹣)×12+32;( 5)(﹣48)+(﹣2)3﹣(﹣25)×(﹣4)+(﹣2)2;(6)﹣23﹣×[2﹣(﹣3)2]+(﹣32).【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方及绝对值运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式利用减法法则变形,计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=4﹣1+2=5;(2)原式=4.3+4﹣2.3﹣4=2;(3)原式=﹣﹣﹣+=﹣;(4)原式=﹣3+6﹣8+9=4;(5)原式=﹣48﹣8﹣100+4=﹣156+4=﹣152;(6)原式=﹣8+1﹣9=﹣16.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.把下列各数分别填入相应的集合里.﹣23,﹣|﹣|,0,,﹣(﹣3.14),2006,﹣(+5),+1.88,(1)正数集合:{ ,﹣(﹣3.14),2006,+1.88 …};(2)负数集合:{ ﹣23,﹣|﹣|,﹣(+5)…};(3)整数集合:{ ﹣23,0,2006,﹣(+5)…};(4)分数集合:{ ﹣|﹣|,,﹣(﹣3.14),+1.88 …}.【考点】有理数.【分析】按照有理数分类即可求出答案.【解答】解:故答案为:正数:,﹣(﹣3.14),2006,+1.88;负数:﹣23,﹣|﹣|,﹣(+5);整数:﹣23,0,2006,﹣(+5);分数:﹣|﹣|,,﹣(﹣3.14),+1.88;【点评】本题考查有理数的分类,属于基础题型.19.规定一种运算: =ad﹣bc,例如=2×5﹣3×4=﹣2,请你按照这种运算的规定,计算的值.【考点】有理数的混合运算.【专题】新定义.【分析】根据新运算得出1×0.5﹣(﹣3)×(﹣2),算乘法,最后算减法即可.【解答】解:=1×0.5﹣(﹣3)×(﹣2)=0.5﹣6=﹣5.5.【点评】本题考查了有理数的混合运算的应用,能根据新运算得出1×0.5﹣(﹣3)×(﹣2)是解此题的关键.20.已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.【考点】倒数;相反数;绝对值.【专题】计算题.【分析】根据相反数,绝对值,倒数的概念和性质求得a与b,c与d及x的关系或值后,代入代数式求值.【解答】解:∵a,b互为相反数,∴a+b=0,∵c,d互为倒数,∴cd=1,∵|x|=1,∴x=±1,当x=1时,a+b+x2﹣cdx=0+(±1)2﹣1×1=0;当x=﹣1时,a+b+x2+cdx=0+(±1)2﹣1×(﹣1)=2.【点评】本题主要考查相反数,绝对值,倒数的概念及性质.(1)相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;(2)倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;(3)绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.21.气象统计资料表明:海拔高度每增加100 米,气温降低大约0.6℃.小明和小亮为考证地方教材中星斗山海拔高度,国庆期间他们两个进行实地测量,小明在山下一个海拔高度为1020米的小山坡上测得的气温为14℃,小亮在星斗山顶峰的最高位置测得的气温为2℃,那么你知道星斗山顶峰的海拔高度是多少米吗?请列式计算.【考点】有理数的混合运算.【分析】根据题意,可以知道顶峰的温度与小明所在位置的温差,从而可以求得顶峰的高度.【解答】解:由题意可得,星斗山顶峰的海拔高度是:1020+(14﹣2)÷0.6×100=1020+12÷0.6×100=1020+2000=3020(米),即星斗山顶峰的海拔高度是3020米.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.22.小明从文斗中学出发,先向西走2千米到达A村,继续向西走3千米到达B村,然后向东走10千米到C村,后回到学校.(1)以学校为原点,向东为正,用1厘米表示1千米在数轴上表示出,A,B.C三个村庄的位置;(2)小明一共走了多少千米?(3)若D村与A,B,C在一条线上,D到C村有1千米.那么D到B村有多少千米?【考点】数轴.【分析】(1)数轴三要素:原点,单位长度,正方向.依此表示出家以及A、B、C三个村庄的位置;(2)距离相加的和即为所求;(3)分两种情况:①D村在C村左边时;②D村在C村右边时;分别计算即可.【解答】解:(1)如图所示:(2)2+3+10=15,即小明一共走了15千米;(3)分两种情况:①D村在C村左边时,则C、D村表示的数分别是5千米、4千米,4﹣(﹣2﹣3)=4+5=9(千米);②D村在C村右边时,则C、D村表示的数分别是5千米、6千米,6﹣(﹣2﹣3)=6+5=11(千米);综上所述:D到B村有9千米或11千米.【点评】本题考查的是数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.23.20袋小麦以每袋450千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:﹣6,4,3,﹣2,﹣3,1,0,5,8,﹣5,与标准质量相比较,(1)这20袋小麦总计超过或不足多少千克?(2)20袋小麦总质量是多少千克?(3)有几袋是非常标准的?【考点】正数和负数.【分析】(1)将各数据相加即可求出20袋小麦是不足或超过;(2)将(1)中的数据与20袋标准小麦总量相加即可求出答案;(3)记数为0时,小麦重量非常标准.【解答】解:(1)﹣6+4+3﹣2﹣3+1+0+5+8﹣5=5,这20袋小麦总计超过5千克;(2)20袋小麦总质量是:20×450+5=9005;(3)只有一袋非常标准,由于该袋小麦与标准质量相比较为0;【点评】本题考查正负数的意义,属于基础题型。
人教版七年级数学上册第一次月考测试题(含答案)
人教版七年级数学上册第一次月考测试题(含答案)考试时间:100分钟一、单选题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.﹣8的相反数是()A.8 B.18C.18-D.-82.在数轴上与表示3-的点距离等于5的点所表示的数是()A.1 B.2和8 C.8-D.8-和23.下列关于有理数的分类正确的是()A.有理数分为正有理数和负有理数B.有理数分为整数、正分数和负分数C.有理数分为正有理数、0、分数D.有理数分为正整数、负整数、分数4.两个非零有理数的和为零,则它们的商是()A.0B.1-C.1D.不能确定5.实数a,b在数轴上的对应点的位置如图所示,把a,b,-a,-b,0按照从小到大的顺序排列,正确的是()A.a<-a<0<b<-b B.-b<a<0<b<-a C.-a<a<0<-b<b D.-b<a<0<-a<b 6.如果a与1互为相反数,则|a+2|等于()A.2 B.-2 C.1 D.-17.在12,2,4,-2这四个数中,互为相反数的是()A.12与2 B.2与-2 C.-2与12D.-2与48.如果m的相反数是最大的负整数,n的相反数是它本身,则m n+的值为()A.1 B.0 C.2 D.-19.已知A,B两点在数轴上表示的数是-5,1,在数轴上有一点C,满足AB=2BC,则C点表示的数为( )A.-2 B.0 C.4 D.-2或410.给出下列说法:①0是整数;②﹣2是负分数;③4.2不是正数;④自然数一定是正数;⑤负分数一定是负有理数,其中正确的说法有()A .1个B .2个C .3个D .4个二、填空题(每小题3分,共15分) 11.比较大小:47____________611.12.数轴上点A 所对应的数是3,点B 所对应的数是-4,那么A 、B 两点间的距离是_______. 13.点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是____________和___________.14.如图,在单位长度是1的数轴上,点A 和点C 所表示的两个数互为相反数,则点B 表示的数是______.15.如图,在数轴上点A 表示数1,现将A 沿x 轴作如下移动:第一次点A 向左移动3个单位长度到点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,按照这种规律移动下去,则点13A ,点14A 之间的长度是_______.三、解答题(本大题共3小题,共75分)16.(10分)把下列各数填入相应的大括号内(将各数用逗号分开)6,-3,2.4,34 ,0,-3.14,29,+2,-312,-1.414,-17,23.正数:{ } 非负整数:{ } 整数:{ } 负分数:{ }17.(9分)检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A 地出发,到收工时行程记录为(单位:千米):+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A 地的哪边?距A 地多远?(2)若每千米耗油0.3升,从A 地出发到收工时,共耗油多少升?18.(8分)化简下列各数:(1)﹣(﹣100); (2) | - 11|+| - 2|; (3)+(﹣2.8); (4) | - 5| + | 0 | - | - 2|.19.(10分)(1)在数轴上表示下列各数: 113,2,,0,1,223---(2)如图所乐,指出点A 、B 、C 、E 、F 所表示的数.20.(9分)已知点O 为数轴的原点,点A ,B 在数轴上,AO =10,AB =8,且点A 表示的数比点B 表示的数小,则点B 表示的数是多少?21.(9分)若1002y x =-+,试问,当x 为何值时,y 有最大值,最大值是多少?22.(10分)如图,A,B,C三点在数轴上,点A表示的数为-10,点B表示的数为14,点C到点A和点B之间的距离相等.(1)求A,B两点之间的距离;(2)求C点对应的数;(3)甲、乙分别从A,B两点同时相向运动,甲的速度是每秒运动1个单位长度,乙的速度是每秒运动2个单位长度,求相遇点D对应的数.23.(10分)已知数轴上三点A,O,B对应的数分别为-3,0,2,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=________;(2)当x=________时,点P到点A、点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是________.(4)若点P到点A,点B,点O的距离之和最小,则此距离之和最小为______题号 1 2 3 4 5 6 7 8 9 10答案 A D B B D C B A D B 11.> 12.7 13.4 -4 14.﹣2 15.4216.正数:{6,2.4,29,+2,23…}非负整数:{6,0,+2 …}整数:{6,-3,0,+2,-17 …}负分数:{-34,-3.14,-312,-1.414 …}17.解:(1)+8﹣9+4﹣7﹣2﹣10+11﹣3+7﹣5=﹣6千米,故收工时,检修工在A 地西边,距A 地6千米;(2)|+8|+|﹣9|+|+4|+|﹣7|+|﹣2|+|﹣10|+|+11|+|﹣3|+|+7|+|﹣5| =8+9+4+7+2+10+11+3+7+5 =66,0.3×66=19.8(升).18.(1)100;(2)13;(3)-2.8;(4)3 19.解:(1)如下图数轴所示:(2)点A 表示0,点B 表示52-,点C 表示52,点E 表示-1,点F 表示3.20.解:∵AO =10, ∴点A 表示的数为±10,∵AB =8,且点A 表示的数比点B 表示的数小, ∴点B 表示的数是-2或18. 21.解:因为20x +≥,所以2x +有最小值,且当2x =-时,2x +的最小值是0, 所以当2x =-时,y 有最大值,y 的最大值是100. 22.解:(1)14-(-10)=24所以A ,B 两点之间的距离为24个单位长度. (2)设C 点对应的数是x. 则x-(-10)=14-x 解得:x=2所以C 点对应的数是2; (3)设相遇的时间是t 秒, 则t+2t=24 解得:t=8所以甲走了8个单位长度到D 点.所以相遇点D对应的数为-223.解:(1)320.5,2x-+==-故答案为:-0.5;(2)由题意得,|x+3|+|x-2|=6,解得,x=2.5或x=-3.5;故答案为:x=2.5或x=-3.5;(3)∵点P到点A,点B的距离之和最小,∴点P在点A与点B之间,因此-3≤x≤2,故答案为:-3≤x≤2;(4)∵点P到点A,点B,点O的距离之和最小,∴点P在点O时,点P到点A,点B,点O的距离之和最小,此时,这个最小距离为AB的长,即为5,故答案为:5。
人教版七年级上册数学第一次月考试卷(附答案)
人教版七年级上册数学第一次月考试卷(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知m,n为常数,代数式2x4y+mx|5-n|y+xy化简之后为单项式,则m n的值共有()A.1个B.2个C.3个D.4个2.2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确..的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%3.已知:20n是整数,则满足条件的最小正整数n为( )A.2 B.3 C.4 D.54.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A.2xx y+-B.22yxC.3223yxD.222()yx y-5.如图所示,点P到直线l的距离是()A.线段PA的长度 B.线段PB的长度C .线段PC 的长度D .线段PD 的长度6.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A .两点之间线段最短B .点到直线的距离C .两点确定一条直线D .垂线段最短7.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .28.若2()(3)6x a x x mx +-=-- 则m等于( )A .-2B .2C .-1D .19.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )10.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.3.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.4.若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是________.5.多项式2213383x kxy y xy --+-中,不含xy 项,则k 的值为________. 6.设4x 2+mx+121是一个完全平方式,则m=________三、解答题(本大题共6小题,共72分)1.(1)解方程组:425x y x y -=⎧⎨+=⎩(2)解不等式:2132x x ->-2.已知关于x 的方程()()122k x k x +=--中,求当k 取什么整数值时,方程的解是整数.3.已知:如图,∠1=∠2,∠3=∠E .求证:AD ∥BE .4.如图,四边形ABCD 中,对角线AC 、BD 交于点O ,AB =AC ,点E 是BD 上一点,且AE =AD ,∠EAD =∠BAC,(1)求证:∠ABD =∠ACD ;(2)若∠ACB=65°,求∠BDC的度数.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2) 由表达式你能求出降价前每千克的土豆价格是多少?试求降价前y与x之间的关系式(3) 降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、D5、B6、D7、C8、D9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、如果两个角互为对顶角,那么这两个角相等3、43 32a≤≤4、2m≤-5、1 96、±44三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)x>125.2、k=−3或−1或−4或0或−6或2.3、略4、(1)略;(2) 50°5、()117、20;()22次、2次;()372;()4120人.6、(1) 5元(2) 0.5元/千克; y=12x+5(0≤x≤30);(3)他一共带了45千克土豆.。
七年级(上)第一次月考数学试卷 (含答题卡)
七年级(上)第一次月考数学试卷一、选择题:(本题共9小题,每小题2分,共18分)1.(2分)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.2.(2分)﹣5的倒数是()A.B.﹣C.﹣5D.53.(2分)下面给出的四个图中,表示数轴正确的是()A.B.C.D.4.(2分)比﹣3小2的数是()A.﹣1B.﹣5C.5D.15.(2分)下列说法正确的是()A.﹣5是相反数B.互为相反数的两个数的和一定为0C.π的相反数是﹣3.14D.正数与负数的互为相反数6.(2分)将(+5)﹣(+2)﹣(﹣3)+(﹣9)写成省略加号的和的形式,正确的是()A.﹣5﹣2+3﹣9B.5﹣2﹣3﹣9C.5﹣2+3﹣9D.(+5)(+2)(﹣3)(﹣9)7.(2分)下列说法正确的是()①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④有理数不是正数就是负数.A.1个B.2个C.3个D.4个8.(2分)已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A.|a|<1<|b|B.1<﹣a<b C.1<|a|<b D.﹣b<a<﹣1 9.(2分)下列比较大小正确的是()A.﹣<﹣B.﹣(﹣21)<+(﹣21)C.﹣|﹣10|>8D.﹣|﹣7|=﹣(﹣7)二、填空题:(本题共14小题,每空1分,共24分)10.(2分)﹣2的相反数的是,倒数是.11.(2分)水位上升3米,记做+3米,水位下降2米,记作;如果运进粮食3吨记作+3吨,那么﹣4吨表示.12.(2分)化简:﹣(﹣5)=,﹣|﹣4|=.13.(1分)绝对值不大于4的所有正整数的和为.14.(1分)数轴上A点表示的数是﹣2,那么同一数轴上与A点相距3个单位的点表示的数是.15.(3分)比较两个数的大小:(1)0﹣1.8;(2);(3).16.(6分)直接写出答案:(1)|﹣3|﹣(﹣2)=(2)20﹣(﹣13)=(3)(﹣7)+(﹣16)=(4)8×0×(﹣49)=(5)42××2=(6)﹣9﹣1=.17.(1分)在0、﹣2、1、这四个数中,最大数与最小数的和是.18.(1分)若|x﹣3|+|y+2|=0,则x+y的值为.19.(1分)用科学记数法表示360000=.20.(1分)点A从原点出发,先向右移动6个单位,再向左移动5个单位,则此时点A表示的数为.21.(1分)若a和b互为相反数,c和d互为倒数,则的值是.22.(1分)观察下列数据,按某种规律在横线上填上适当的数:1,,,,,,…23.(1分)如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示﹣1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示﹣2的点重合…),则数轴上表示﹣2017的点与圆周上表示数字的点重合.三、解答题:(本大题共4小题,共60分)24.(8分)在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,﹣(﹣1),﹣1.5,0,﹣|﹣2|,﹣3;按照从小到大的顺序排列为.25.(36分)计算:(1)(﹣2)+(﹣3)﹣(+1)﹣(﹣6);(2)﹣﹣(﹣)+(﹣)(3)(﹣4)×2.15×(﹣2.5)(4)(﹣24)×(﹣+﹣)(5)(﹣32)÷4×(﹣8)(6)(﹣81)÷×÷(﹣16)26.(6分)对于有理数a、b,定义运算:a⊗b=a×b+(a+b),计算(﹣3)⊗4的值.27.(8分)为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):,﹣3,﹣4,+7,﹣5,+8,+3,﹣8.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.3升/千米,这天下午汽车共耗油多少升?2018-2019学年江苏省徐州市铜山县马坡中学七年级(上)第一次月考数学试卷参考答案与试题解析一、选择题:(本题共9小题,每小题2分,共18分)1.(2分)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.【解答】解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C.2.(2分)﹣5的倒数是()A.B.﹣C.﹣5D.5【解答】解:∵(﹣5)×(﹣)=1,∴﹣5的倒数是﹣.故选:B.3.(2分)下面给出的四个图中,表示数轴正确的是()A.B.C.D.【解答】解:(A)没有单位长度和原点,故A错误;(B)单位长度不一致,故B错误;(D)没有正方向,故D错误;故选:C.4.(2分)比﹣3小2的数是()A.﹣1B.﹣5C.5D.1【解答】解:﹣3﹣2=﹣5.故选:B.5.(2分)下列说法正确的是()A.﹣5是相反数B.互为相反数的两个数的和一定为0C.π的相反数是﹣3.14D.正数与负数的互为相反数【解答】解:A、应为﹣5是5的相反数,故本选项错误;B、互为相反数的两个数的和一定为0正确,故本选项正确;C、应为π的相反数是﹣π,故本选项错误;D、正数与负数是互为相反数错误,例如:+2与﹣1,故本选项错误.故选:B.6.(2分)将(+5)﹣(+2)﹣(﹣3)+(﹣9)写成省略加号的和的形式,正确的是()A.﹣5﹣2+3﹣9B.5﹣2﹣3﹣9C.5﹣2+3﹣9D.(+5)(+2)(﹣3)(﹣9)【解答】解:原式=(+5)+(﹣2)+(+3)+(﹣9)=5﹣2+3﹣9,故选:C.7.(2分)下列说法正确的是()①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④有理数不是正数就是负数.A.1个B.2个C.3个D.4个【解答】解:同号两数相乘,积为正,故①错误;异号两数相乘,积取负号,故②正确;不等于0的互为相反数的两数相乘,积一定为负,故③错误;有理数不是正数就是负数,还有0,故④错误;即正确的有1个,故选:A.8.(2分)已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A.|a|<1<|b|B.1<﹣a<b C.1<|a|<b D.﹣b<a<﹣1【解答】解:根据实数a,b在数轴上的位置,可得a<﹣1<0<1<b,∵1<|a|<|b|,∴选项A错误;∵1<﹣a<b,∴选项B正确;∵1<|a|<|b|,∴选项C正确;∵﹣b<a<﹣1,∴选项D正确.故选:A.9.(2分)下列比较大小正确的是()A.﹣<﹣B.﹣(﹣21)<+(﹣21)C.﹣|﹣10|>8D.﹣|﹣7|=﹣(﹣7)【解答】解:A、﹣<﹣;B、﹣(﹣21)=21>+(﹣21)=﹣21;C、﹣|﹣10|=﹣10<8;D、﹣|﹣7|=﹣7<﹣(﹣7)=7.故选:A.二、填空题:(本题共14小题,每空1分,共24分)10.(2分)﹣2的相反数的是2,倒数是﹣.【解答】解:﹣2的相反数的是2,倒数是﹣.故答案为:2;﹣.11.(2分)水位上升3米,记做+3米,水位下降2米,记作﹣2米;如果运进粮食3吨记作+3吨,那么﹣4吨表示运出粮食4吨.【解答】解:水位上升3米,记做+3米,水位下降2米,记作﹣2米;如果运进粮食3吨记作+3吨,那么﹣4吨表示运出粮食4吨;故答案为:﹣2米;运出粮食4吨12.(2分)化简:﹣(﹣5)=5,﹣|﹣4|=﹣4.【解答】解:﹣(﹣5)=5;﹣|﹣4|=﹣4.故答案为:5;﹣4.13.(1分)绝对值不大于4的所有正整数的和为6.【解答】解:因为绝对值不大于4的所有正整数为1、2、3,1+2+3=6,故答案为:614.(1分)数轴上A点表示的数是﹣2,那么同一数轴上与A点相距3个单位的点表示的数是1或﹣5.【解答】解:设同一数轴上与A点相距3个单位的点表示的数是x,则|x+2|=3,解得x=1或x=﹣5.故答案为:1或﹣5.15.(3分)比较两个数的大小:(1)0>﹣1.8;(2)<;(3)>.【解答】解:(1)零大于负数,得0>﹣1.8;(2)两个负数比较大小,绝对值大的数反而小,得<;(3)正数大于负数,得>,故答案为:>,<,>.16.(6分)直接写出答案:(1)|﹣3|﹣(﹣2)=5(2)20﹣(﹣13)=33(3)(﹣7)+(﹣16)=﹣23(4)8×0×(﹣49)=0(5)42××2=﹣14(6)﹣9﹣1=﹣10.【解答】解:(1)原式=3+2=5,故答案为:5;(2)原式=20+13=33,故答案为:33;(3)原式=﹣(7+16)=﹣23,故答案为:﹣23;(4)原式=0,故答案为:0;(5)原式=﹣14,故答案为:﹣14;(6)原式=﹣10,故答案为:﹣10.17.(1分)在0、﹣2、1、这四个数中,最大数与最小数的和是﹣1.【解答】解:在有理数0、﹣2、1、中,最大的数是1,最小的数是﹣2;它们的和为﹣2+1=﹣1.18.(1分)若|x﹣3|+|y+2|=0,则x+y的值为1.【解答】解:∵|x﹣3|+|y+2|=0,∴x﹣3=0,y+2=0,∴x=3,y=﹣2,∴x+y的值为:3﹣2=1,故答案为:1.19.(1分)用科学记数法表示360000= 3.6×105.【解答】解:用科学记数法表示360000=3.6×105.故答案为:3.6×105.20.(1分)点A从原点出发,先向右移动6个单位,再向左移动5个单位,则此时点A表示的数为1.【解答】解:由题意可得,0+6﹣5=1,故答案为:1.21.(1分)若a和b互为相反数,c和d互为倒数,则的值是﹣2016.【解答】解:根据题意得a+b=0、cd=1,则原式=0﹣2016=﹣2016,故答案为:﹣2016.22.(1分)观察下列数据,按某种规律在横线上填上适当的数:1,,,,,﹣,…【解答】解:∵1,,,,,∴要填入的数据是﹣.故答案为:﹣.23.(1分)如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位,在圆的4等分点处分别标上0、1、2、3,先让圆周上表示数字0的点与数轴上表示﹣1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示﹣2的点重合…),则数轴上表示﹣2017的点与圆周上表示数字0的点重合.【解答】解:由图可知,每4个数为一个循环组依次循环,∵2017÷4=504…1,∴表示﹣2017的点是第505个循环组的第1个数0重合,故答案为:0.三、解答题:(本大题共4小题,共60分)24.(8分)在数轴上表示下列各数,并用“<”号把它们按照从小到大的顺序排列.3,﹣(﹣1),﹣1.5,0,﹣|﹣2|,﹣3;按照从小到大的顺序排列为﹣3<﹣|﹣2|<﹣1.5<0<﹣(﹣1).【解答】解:如图所示:,则﹣3<﹣|﹣2|<﹣1.5<0<﹣(﹣1).故答案是:﹣3<﹣|﹣2|<﹣1.5<0<﹣(﹣1).25.(36分)计算:(1)(﹣2)+(﹣3)﹣(+1)﹣(﹣6);(2)﹣﹣(﹣)+(﹣)(3)(﹣4)×2.15×(﹣2.5)(4)(﹣24)×(﹣+﹣)(5)(﹣32)÷4×(﹣8)(6)(﹣81)÷×÷(﹣16)【解答】解:(1)原式=(﹣2)+(﹣3)+(﹣1)+6=﹣6+6=0;(2)原式=+﹣﹣=1﹣=;(3)原式=4×2.5×2.15=10×2.15=21.5;(4)原式=18﹣4+15=29;(5)原式=32÷4×8=64;(6)原式=81×××16=1296.26.(6分)对于有理数a、b,定义运算:a⊗b=a×b+(a+b),计算(﹣3)⊗4的值.【解答】解:∵a⊗b=a×b+(a+b),∴(﹣3)⊗4=(﹣3)×4+(﹣3+4)=(﹣12)+1=﹣11.27.(8分)为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):,﹣3,﹣4,+7,﹣5,+8,+3,﹣8.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.3升/千米,这天下午汽车共耗油多少升?【解答】解:(1)﹣3+(﹣4)+7+(﹣5)+8+3+(﹣8)=﹣2(千米).答:最后一名老师送到目的地时,小王距出车地点的距离是2千米;(2)0.3×(3+4+7+5+8+3+8)=0.3×38=11.4(升).答:这天下午汽车共耗油11.4升.2018-2019学年江苏省徐州市铜山县马坡中学七年级(上)第一次月考数学试卷答题卡一、选择题:(本题共9小题,每小题2分,共18分)(请用2B铅笔填涂)二、填空题:(本题共14小题,每空1分,共24分)(请在各试题的答题区内作答)三、解答题:(本大题共4小题,共60分)(请在各试题的答题区内作答)。
2018~2019学年七年级数学第一次月考试卷
2018—2019学年度第一学期第一次月考七年级数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1、下面的几何体中,属于棱柱的有()A.1个B.2个 C.3个D.4个2、把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为()A.富B.强C.文D.民3、用一个平面去截一个正方体,截面的形状不可能是()A.梯形B.五边形C.六边形D.七边形4、下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A. B. C. D.5、中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入1000元记作+1000元,那么-600元表示( )A.收入600元 B.支出600元 C.收入400元 D.支出400元6、下面所画数轴正确的是( )7、5的相反数是( )A .-5B .5C .-15 D.158、若绝对值相等的两个数在数轴上的对应点的距离为6,则这两个数为( )A .+6和-6B .-3和+3C .-3和+6D .-6和+39、若两个有理数的和为负数,那么这两个有理数( )A .一定都是负数B .一正一负,且负数的绝对值大C .一个为零,另一个为负数D .至少有一个是负数10、已知|x |=3,y =2,而且x <y ,则x -y 等于( )A .1B .-5C .1或-5D .5二、填空题(本大题共6小题,每小题4分,共24分)11、一个平面去截球,截面的形状一定是. 12、在-6,-23,0,-35,2.5这5个数中,负数有________个.13、小明写作业时不慎将墨水滴在数轴上,墨迹盖住部分的整数共有________个.14、在数轴上距原点3个单位长度的点表示的数是___________.15、谜语:正看三条边,侧看三条边,上看圆圈圈,就是没直边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年七年级(上)第一次月考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.﹣的绝对值为( )A .B .3C .﹣D .﹣32.下列说法正确的个数是( )①一个有理数不是整数就是分数;②一个有理数不是正有理数就是负有理数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A .1B .2C .3D .43.如果a 与2的和为0,那么a 是( )A .2B .C .﹣D .﹣24.下列算式正确的是( )A .(﹣14)﹣5=﹣9B .0﹣(﹣3)=3C .(﹣3)﹣(﹣3)=﹣6D .|5﹣3|=﹣(5﹣3)5.比较﹣2.4,﹣0.5,﹣(﹣2),﹣3的大小,下列正确的是( )A .﹣3>﹣2.4>﹣(﹣2)>﹣0.5B .﹣(﹣2)>﹣3>﹣2.4>﹣0.5C .﹣(﹣2)>﹣0.5>﹣2.4>﹣3D .﹣3>﹣(﹣2)>﹣2.4>﹣0.56.我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为( )A .5.4×102人B .0.54×104人C .5.4×106人D .5.4×107人7.下列各数中互为相反数的是( )A .﹣与0.2B .与﹣0.33C .﹣2.25与2D .5与﹣(﹣5)8.在0,﹣1,|﹣2|,﹣(﹣3),5,3.8,,中,正整数的个数是( ) A .1个 B .2个 C .3个 D .4个9.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在( )A .家B .学校C .书店D .不在上述地方10.一潜水艇所在的海拔高度是﹣60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔( )A .﹣60米B .﹣80米C .﹣40米D .40米11.下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.①② B.①③ C.①②③D.①②③④12.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则m2﹣cd+值为()A.﹣3 B.3 C.﹣5 D.3或﹣5二、填空题(共5小题,每小题4分,满分20分)13.的倒数是,的相反数是.14.如果向西走6米记作﹣6米,那么向东走10米记作;如果产量减少5%记作﹣5%,那么20%表示.15.|x|=7,则x= ;|﹣x|=7,则x= .16.已知P是数轴上的一点﹣4,把P点向左移动3个单位后再向右移1个单位长度,那么P点表示的数是.17.观察下列数据,按某种规律在横线上填上适当的数:1,,,,,,…三、解答题(共6小题,满分64分)18.计算:(1)﹣6﹣(﹣2)2;(2 )﹣3×(﹣2)+3﹣8;(3)(+﹣)×(﹣24)(4)﹣0.5+(﹣15)﹣(﹣17)﹣|﹣12|(5)﹣32÷(﹣3)2+3×(﹣6)(6)﹣12004+(﹣1)5×(﹣)÷﹣|﹣2|19.画一条数轴,在数轴上表示﹣1.5,2,﹣2,﹣,2.5,0,并比较它们的大小关系.20.已知|a|=7,|b|=3,且a<b,求a+b的值.21.淮海中学图书馆上周借书记录如下:(超过100册记为正,少于100册记为负).星期一星期二星期三星期四星期五+23 0 ﹣17 +6 ﹣12(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?22.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为a 升/千米,则这次养护共耗油多少升?23.观察下列等式:,,,将以上三个等式两边分别相加得:.(1)猜想并写出: = .(2)直接写出下列各式的计算结果: = ;(3)探究并计算:.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.﹣的绝对值为()A.B.3 C.﹣ D.﹣3【考点】绝对值.【分析】根据当a是负有理数时,a的绝对值是它的相反数﹣a,可得答.【解答】解:﹣的绝对值等于,故选:A.【点评】此题主要考查了绝对值,关键是掌握①当a是正有理数时,a的绝对值是它本身a;②当a 是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.下列说法正确的个数是()①一个有理数不是整数就是分数;②一个有理数不是正有理数就是负有理数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1 B.2 C.3 D.4【考点】有理数.【分析】根据有理数的分类,可得答案.【解答】解析:①整数和分数统称为有理数,所以①正确;②有理数包括正有理数、负有理数和零,所以②不正确;③整数包括正整数、负整数和零,所以③不正确;④分数包括正分数和负分数,所以④正确,故选B.【点评】本题考查了有理数,利用了有理数的分类.3.如果a与2的和为0,那么a是()A.2 B.C.﹣ D.﹣2【考点】相反数.【分析】根据互为相反数的两个数的和为0解答.【解答】解:∵a与2的和为0,∴a=﹣2.故选D.【点评】本题考查了相反数的定义,是基础题.4.下列算式正确的是()A.(﹣14)﹣5=﹣9 B.0﹣(﹣3)=3 C.(﹣3)﹣(﹣3)=﹣6 D.|5﹣3|=﹣(5﹣3)【考点】有理数的减法;绝对值.【分析】根据有理数的减法运算法则和绝对值的性质对各选项分析判断利用排除法求解.【解答】解:A、(﹣14)﹣5=﹣19,故本选项错误;B、0﹣(﹣3)=0+3=3,故本选项正确;C、(﹣3)﹣(﹣3)=﹣3+3=0,故本选项错误;D、|5﹣3|=2,﹣(5﹣3)=﹣2,故本选项错误.故选B.【点评】本题考查了有理数的减法,绝对值的性质,熟记运算法则和性质并准确计算是解题的关键.5.比较﹣2.4,﹣0.5,﹣(﹣2),﹣3的大小,下列正确的是()A.﹣3>﹣2.4>﹣(﹣2)>﹣0.5 B.﹣(﹣2)>﹣3>﹣2.4>﹣0.5C.﹣(﹣2)>﹣0.5>﹣2.4>﹣3 D.﹣3>﹣(﹣2)>﹣2.4>﹣0.5【考点】有理数大小比较.【专题】数形结合.【分析】先把各数化简再在数轴上表示出来,根据数轴的性质便可直观解答.【解答】解:﹣(﹣2)=2,各点在数轴上表示为:由数轴上各点的位置可知,﹣(﹣2)>﹣0.5>﹣2.4>﹣3.故选C.【点评】由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.6.我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为()A.5.4×102人B.0.54×104人C.5.4×106人D.5.4×107人【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将540万用科学记数法表示为5.4×106.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.下列各数中互为相反数的是()A.﹣与0.2 B.与﹣0.33 C.﹣2.25与2 D.5与﹣(﹣5)【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:﹣2.25与2互为相反数,故选:C.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.8.在0,﹣1,|﹣2|,﹣(﹣3),5,3.8,,中,正整数的个数是()A.1个B.2个C.3个D.4个【考点】有理数.【分析】先计算|﹣2|=2,﹣(﹣3)=3,然后确定所给数中的正整数.【解答】解:∵|﹣2|=2,﹣(﹣3)=3,∴0,﹣1,|﹣2|,﹣(﹣3),5,3.8,,中,正整数为|﹣2|,﹣(﹣3),5.故选C.【点评】本题考查了有理数:整数和分数统称为有理数.9.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在()A.家B.学校 C.书店 D.不在上述地方【考点】坐标确定位置.【专题】应用题.【分析】以家为坐标原点建立坐标系,根据题意即可确定小明的位置.【解答】解:根据题意:小明从家出来向北走了50米,又向北走了﹣70米,即向南走了20米,而学校在家南边20米.故此时,小明的位置在学校.故选B.【点评】本题考查了类比点的坐标及学生的解决实际问题的能力和阅读理解能力,画出平面示意图能直观地得到答案.10.一潜水艇所在的海拔高度是﹣60米,一条海豚在潜水艇上方20米,则海豚所在的高度是海拔()A.﹣60米B.﹣80米C.﹣40米D.40米【考点】正数和负数.【专题】计算题.【分析】根据正负数具有相反的意义,由已海豚所在的高度是海拔多少米实际就是求﹣60与20的和.【解答】解:由已知,得﹣60+20=﹣40.故选C.【点评】此题考查的是正负数的意义,关键是要明确所求为﹣60与20的和.11.下列说法正确的是()①0是绝对值最小的有理数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④两个数比较,绝对值大的反而小.A.①② B.①③ C.①②③D.①②③④【考点】绝对值;相反数;有理数大小比较.【分析】根据绝对值的意义对①④进行判断;根据相反数的定义对②③进行判断.【解答】解:0是绝对值最小的有理数,所以①正确;相反数大于本身的数是负数,所以②正确;数轴上在原点两侧且到原点的距离相等的数互为相反数,所以③错误;两个负数比较,绝对值大的反而小,所以④错误.故选A.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.也考查了相反数.12.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则m2﹣cd+值为()A.﹣3 B.3 C.﹣5 D.3或﹣5【考点】代数式求值.【分析】由题意得a+b=0,cd=1,m=±2,由此可得出代数式的值.【解答】解:由题意得:a+b=0,cd=1,m=±2代数式可化为:m2﹣cd=4﹣1=3故选B.【点评】本题考查代数式的求值,根据题意得出a+b=0,cd=1,m=±2的信息是关键.二、填空题(共5小题,每小题4分,满分20分)13.的倒数是,的相反数是.【考点】倒数;相反数.【分析】此题根据倒数、相反数的定义即可求出结果.【解答】解:的倒数是:;的相反数是.故填:﹣,.【点评】此题考查了倒数、相反数的定义,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.相反数的定义:只有符号不同的两个数互为相反数.14.如果向西走6米记作﹣6米,那么向东走10米记作+10 ;如果产量减少5%记作﹣5%,那么20%表示产量增加20% .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以如果向西走6米记作﹣6米,那么向东走10米记作+10;∵产量减少5%记作﹣5%,∴20%表示产量增加20%.故答案为+10,产量增加20%.【点评】本题考查了正数与负数:正数与负数可表示相反意义的量.15.|x|=7,则x= ±7 ;|﹣x|=7,则x= ±7 .【考点】绝对值.【分析】根据绝对值的性质解答即可.【解答】解:|x|=7,则x=±7;|﹣x|=7,则x=±7,故答案为:±7;±7【点评】本题考查了绝对值,主要利用了互为相反数的两个数的绝对值相等.16.已知P是数轴上的一点﹣4,把P点向左移动3个单位后再向右移1个单位长度,那么P点表示的数是﹣6 .【考点】数轴.【分析】根据向左为减,向右为加的原则列式得出移动后点P所表示的数.【解答】解:﹣4﹣3+1=﹣6,则P点表示的数是﹣6;故答案为:﹣6.【点评】本题考查了数轴,比较简单,根据数轴上的点右边的比左边的大,利用数形结合的思想解决此题.17.观察下列数据,按某种规律在横线上填上适当的数:1,,,,, ﹣ ,… 【考点】规律型:数字的变化类. 【专题】规律型. 【分析】分子是从1开始的连续奇数,分母是相应序数的平方,并且正、负相间,然后写出即可.【解答】解:∵1,,,,,∴要填入的数据是﹣.故答案为:﹣. 【点评】本题是对数字变化规律的考查,确定从分子、分母和正反情况三个方面考虑求解是解题的关键.三、解答题(共6小题,满分64分)18.计算:(1)﹣6﹣(﹣2)2;(2 )﹣3×(﹣2)+3﹣8;(3)(+﹣)×(﹣24)(4)﹣0.5+(﹣15)﹣(﹣17)﹣|﹣12|(5)﹣32÷(﹣3)2+3×(﹣6)(6)﹣12004+(﹣1)5×(﹣)÷﹣|﹣2|【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算减法运算即可得到结果;(2)原式先计算乘法运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式利用减法法则变形,计算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣6﹣4=﹣10;(2)原式=6+3﹣8=1;(3)原式=﹣9﹣4+18=5;(4)原式=﹣0.5﹣15+17﹣12=﹣10.5;(5)原式=﹣1﹣18=﹣19;(6)原式=﹣1+﹣2=﹣2.5.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.画一条数轴,在数轴上表示﹣1.5,2,﹣2,﹣,2.5,0,并比较它们的大小关系.【考点】有理数大小比较;数轴.【分析】把各个数在数轴上画出表示出来,根据数轴上的数右边的数总是大于左边的数,即可把各个数按由大到小的顺序“<”连接起来.【解答】解:﹣2<﹣1.5<﹣<0<2<2.5.【点评】此题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.20.已知|a|=7,|b|=3,且a<b,求a+b的值.【考点】有理数的加法;绝对值.【分析】利用绝对值的代数意义,以及a小于b求出a与b的值,即可确定出a+b的值.【解答】解:∵|a|=7,|b|=3,且a<b,∴a=﹣7,b=3或﹣3,则a+b=﹣4或﹣10.【点评】此题考查了有理数的加法,以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.21.淮海中学图书馆上周借书记录如下:(超过100册记为正,少于100册记为负).星期一星期二星期三星期四星期五+23 0 ﹣17 +6 ﹣12(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?【考点】有理数的加减混合运算;正数和负数.【专题】计算题.【分析】(1)根据题意得出算式100+(﹣12),求出即可;(2)求出(+6)﹣(﹣17)的值即可;(3)求出+23、0、﹣17、+6、﹣12的平均数,再加上100即可.【解答】解:(1)100+(﹣12)=88(册),答:上星期五借出88册书;(2)[100+(+6)]﹣[100+(﹣17)]=23(册),答:上星期四比上星期三多借出23册;(3)100+[(+23)+0+(﹣17)+(+6)+(﹣12)]÷5=100(册),答:上周平均每天借出100册.【点评】本题考查了有理数的混合运算和正数、负数等知识点,解此题的关键是根据题意列出算式,题目比较典型.22.(10分)(2016秋•庆云县月考)高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为a 升/千米,则这次养护共耗油多少升?【考点】有理数的加减混合运算.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧;(2)求出每个记录点得记录数据,绝对值最大的数对应的点就是所求的点;(3)所走的路程是这组数据的绝对值的和,然后乘以a,即可求得耗油量.【解答】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16=+15千米.则在出发点的东边15千米的地方;(2)最远处离出发点有17千米;(3)(17+9+7+15+3+11+6+8+5+16)a=97a(升).答:这次养护共耗油97a升.【点评】本题考查了有理数的加减运算,以及正负数表示一对具有相反意义的量.23.观察下列等式:,,,将以上三个等式两边分别相加得:.(1)猜想并写出: = ﹣.(2)直接写出下列各式的计算结果: = ;(3)探究并计算:.【考点】有理数的混合运算.【专题】规律型.【分析】(1)归纳总结得到一般性结果即可;(2)利用得出的规律变形,计算即可得到结果;(3)利用拆项法则变形,计算即可得到结果.【解答】解:(1)=﹣;(2)原式=1﹣+﹣+…+﹣=1﹣=;(3)原式=(﹣+﹣+…+﹣)=(﹣)=.故答案为:(1)﹣;(2).【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。