初中的数学中点模型地构造及应用
中考数学复习几何模型专题讲解4---中点模型(解析版)
中考数学复习几何模型专题讲解专题4 4 中点模型中点模型名师点睛中点模型,提到中点,我们需要想到关于中点的以下知识点:①三角形中线平分三角形面积,等分点等分面积;②等腰三角形“三线合一”的性质;③直角三角形斜边上的中线等于斜边的一半;④三角形中位线平行且等于第三边的一半. 这四点使我们已经深入学习过的有关中点运用的知识点,今天重点在结合四点的基础上探究另外一种中点模型,我们简称“平中对模型”,即“平行线+中点+对顶角”构造全等或相似模型,与倍长中线法相通。
A B C D E A B C DEFE D C B A典题探究例题1. 如图,在△ABC 的两边AB 、AC 向形外作正方形ABDE 和ACFG ,取BE 、BC 、CG 的中点M 、Q 、N .求证:MQ =QN .【解答】证明:连接BG 和CE 交于O ,∵四边形ABDE和四边形ACFG是正方形,∴AB=AE,AC=AG,∠EAB=∠GAC,∴∠EAB+∠EAG=∠GAC+∠EAG,∴∠GAB=∠EAC,在△BAG和△EAC中,,∴△BAG≌△EAC(SAS),∴BG=CE.∵BE、BC、CG的中点M、Q、N,∴MQ=CE,QN=BG,∵BG=CE,∴QN=MQ.变式练习>>>>变式练习1. 如图,在△ACE中,点B是AC的中点,点D是CE的中点,点M是AE的中点,四边形BCGF和四边形CDHN都是正方形.求证:△FMH是等腰直角三角形.【解答】证明:连接MB、MD,设FM与AC交于点P,∵B、D、M分别是AC、CE、AE的中点,四边形BCGF和四边形CDHN都是正方形,∴MD∥AC,且MD=AC=BC=BF;。
专题 中点四大模型在三角形中的应用(知识解读)-中考数学(全国通用)
专题02 中点四大模型在三角形中应用(知识解读)【专题说明】线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行等的应用。
【方法技巧】模型1 :倍长中线法如图,在△ABC中,AD是BC边上的中线.当题中出现中线时,我们经常根据需要将AD延长,使延长部分和中线相等,这种方法叫做“倍长中线”.如下图:此时,易证△ACD≌EDB,进而得到AC=BE且AC//BE.模型2:平行线夹中点如图,AB//CD,点E是BC的中点.可延长DE交AB于点F.模型3:中位线如图,在△ABC中,点D是AB边的中点.可作另一边AC的中点,构造三角形中位线.如下图所示:由中位线的性质可得,DE//BC且DE=1/2BC.模型4:连接直角顶点,构造斜中定理【典例分析】【模型1 倍长中线法】【典例1】【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是.A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC =BF.【变式1-1】(1)在△ABC中,AB=5,AC=3,求BC边上的中线AD的取值范围.(2)受到(1)启发,请你证明下面的问题:如图,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.求证:BE+CF>EF.【变式1-2】如图,在△ABC中,已知:点D是BC中点,连接AD并延长到点E,连接BE.(1)请你添加一个条件使△ACD≌△EBD,并给出证明.(2)若AB=5,AC=3,求BC边上的中线AD的取值范围.【变式1-3】阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证明AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.(1)延长DE到F,使得EF=DE;(2)作CG⊥DE于G,BF⊥DE于F交DE的延长线于F;(3)过点C作CF∥AB交DE的延长线于F.【模型2 平行线夹中点】【典例2】如图,已知AB=12,AB⊥BC,垂足为点B,AB⊥AD,垂足为点A,AD=5,BC =10,点E是CD的中点,求AE的长.【变式2-1】如图,AB∥CD,∠BCD=90°,AB=1,BC=4,CD=3,取AD的中点E,连结BE,则BE=.【变式2-2】如图,公园有一条“Z”字形道路AB﹣BC﹣CD,其中AB∥CD,在E、M、F 处各有一个小石凳,且BE=CF,M为BC的中点,连接EM、MF,请问石凳M到石凳E、F的距离ME、MF是否相等?说出你推断的理由.【变式2-3】如图:已知AB∥CD,BC⊥CD,且CD=2AB=12,BC=8,E是AD的中点,①请你用直尺(无刻度)作出一条线段与BE相等;并证明之;②求BE的长.【模型3 中位线】【典例3】如图,△ABC中,AD平分∠BAC,E是BC中点,AD⊥BD,AC=7,AB=4,则DE的值为()A.1B.2C.D.【变式3-1】如图,在△ABC中,D,E,F分别是边AB,BC,CA的中点,若△DEF的周长为10,则△ABC的周长为.【变式3-2】如图,等边△ABC的边长是4,D,E分别为AB,AC的中点,延长BC至点F,使,连接CD和EF.(1)求证:CD=EF;(2)四边形DEFC的面积为.【变式3-3】如图,在平行四边形ABCD中,点E在BC的延长线上,CE=DE=2BC.CD 的中点为F,DE的中点为G,连接AF,FG.(1)求证:四边形AFGD为菱形;(2)连接AG,若BC=2,,求AG的长.【模型4 连接直角顶点,构造斜中定】【典例4】用三种方法证明:直角三角形斜边上的中线等于斜边的一半.已知:如图,∠BCA =90°,AD=DB.求证:CD=AB.【变式4-1】直角三角形斜边上的中线长为10,则该斜边长为()A.5B.10C.15D.20【变式4-2】如图,点E是△ABC内一点,∠AEB=90°,D是边AB的中点,延长线段DE 交边BC于点F,点F是边BC的中点.若AB=6,EF=1,则线段AC的长为()A.7B.C.8D.9【变式4-3】用两种方法证明“直角三角形斜边上的中线等于斜边的一半”.已知:如图1,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.求证:CD=AB.证法1:如图2,在∠ACB的内部作∠BCE=∠B,CE与AB相交于点E.∵∠BCE=∠B,∴.∵∠BCE+∠ACE=90°,∴∠B+∠ACE=90°.又∵,∴∠ACE=∠A.∴EA=EC.∴EA=EB=EC,即CE是斜边AB上的中线,且CE=AB.又∵CD是斜边AB上的中线,即CD与CE重合,∴CD=AB.请把证法1补充完整,并用不同的方法完成证法2.专题02 中点四大模型在三角形中应用(知识解读)【专题说明】线段中点是几何部分一个非常重要的概念,和后面学习的中线,中位线等概念有着密切的联系.在几何证明题中也屡次出现.那么,如果在题中遇到中点你会想到什么?等腰三角形三线合一;直角三角形斜边上的中线等于斜边的一半;还是中位线定理?今天我们重点探究“倍长中线”法以及平行线间夹中点时延长中线交平行的应用。
中考数学 精讲篇 考点系统复习 第四章 三角形 方法技巧突破(二) “中点”之六大模型
“中点”模型秘诀: 中点问题常用性质及常见辅助线作法
1.多个中点或“平行+中点”―联―想→构造中位线; 联想
2.直角+斜边中点――→直角三角形斜边中线的性质; 3.等腰+底边中点―联―想→等腰三角形三线合一;
联想 4.同一边遇垂直+中点――→垂直平分线性质; 5.中线或与中点有关线段―联―想→倍长中线构造全等; 6.圆+弦(弧)的中点―联―想→垂径定理.
如图,∠ABC=∠ADC=90°.M,N 分别是 AC,BD 的中点,AC=10,
BD=8,则 MN 为
( A)
A.3
B.4
C.5
D.6
【思路点拨】连接 MB,MD,利用直角三角形斜边上的中线等于斜边的一 半可证 MB=MD,再由 ND,根据等腰三角形“三线合一”性质,得 MN⊥BD,在 Rt△BMN 中,利用勾股定理即可求解.
7 中点,过点 D 作 DE⊥AB 交 BC 的延长线于点 E,则 CE 的长为__ 3 __.
【思路点拨】根据勾股定理易求得 AB=10,则 BD=5,易证△ABC∽△EBD, 则 BC∶BD=AB∶(BC+CE),从而求得 CE 的长.
5.如图,在△ABC 中,AB=AC.∠A=120°,BC=6 cm,AB,AC 的垂直 平分线分别为 ME 与 NF,交 BC 边于点 M,N,则 NM 的长为__22__cm.
证明:如解图,延长 FD 到 G,使 DG=DF,连接 CG. ∵AD 是 BC 边的中线,∴BD=CD. 在△BDF 和△CDG 中,
BD= CD,
∠BDF=∠CDG, DF= DG, ∴△BDF≌△CDG(SAS),∴BF=CG,∠BFD=∠G.
∵AE=EF,∴∠EAF=∠EFA=∠BFD,
初中圆弧中点定理及应用
初中圆弧中点定理及应用的实际应用情况1. 应用背景初中数学中,圆弧中点定理是一个重要的几何定理,它揭示了圆弧上的中点与圆心、圆弧两端点之间的关系。
这个定理在解决与圆相关的问题时非常有用,尤其是在测量、建模、设计等实际应用中。
2. 应用过程圆弧中点定理的表述如下:定理:圆上任意两点与圆心的连线所夹的圆弧上的中点与圆心、圆弧两端点连线的中点三点共线。
应用圆弧中点定理的具体过程如下:1.已知一个圆和圆上的两点A、B,以及这两点与圆心O的连线。
2.连接OA和OB,得到两条线段。
3.找到线段OA和OB的中点M1和M2。
4.连接AM1和BM2,得到一条直线。
5.判断AM1BM2是否共线,即判断M1、O、M2是否在一条直线上。
6.如果M1、O、M2在一条直线上,则圆上的中点与圆心、圆弧两端点连线的中点共线。
3. 应用效果圆弧中点定理在实际应用中具有广泛的应用,下面将介绍一些具体的应用情况。
3.1 测量在测量中,圆弧中点定理可以用来确定一个圆的圆心位置。
假设我们需要测量一个圆的圆心位置,但是只能通过圆上的几个点来进行测量。
我们可以选择圆上的任意两点A、B,并通过这两点与圆心的连线来确定圆心位置。
根据圆弧中点定理,我们可以找到线段OA和OB的中点M1和M2,然后连接AM1和BM2,如果M1、O、M2在一条直线上,那么这条直线就是圆的直径,圆心就在直线的中点上。
3.2 建模在建模中,圆弧中点定理可以用来确定一个圆的直径。
假设我们需要根据一些已知的点来建立一个圆的模型,但是只能通过这些点来确定圆的直径。
我们可以选择圆上的任意两点A、B,并通过这两点与圆心的连线来确定圆的直径。
根据圆弧中点定理,我们可以找到线段OA和OB的中点M1和M2,然后连接AM1和BM2,如果M1、O、M2在一条直线上,那么这条直线就是圆的直径。
3.3 设计在设计中,圆弧中点定理可以用来确定一个圆的中点。
假设我们需要在一个圆上设计一个凸起的装饰物,并使得这个装饰物与圆心和圆弧两端点连线的中点共线。
2024中考数学核心几何模型重点突破专题01 线段的中点模型(含解析)
2024中考数学核心几何模型重点突破专题01线段的中点模型模型分析【理论基础】如图,已知点M 是线段AB 的中点⇒AB BM AM 21==【模型变式1】双中点求和型如图已知点M 是线段AB 上任意一点,点C 是AM 的中点,点D 是BM 的中点⇒AB CD 21=【证明】点C 是AM 的中点,点D 是BM 的中点MB MD AM CM 21,21==∴MD CM CD +=AB MB AM CD 212121=+=∴AB CD 21=∴【模型变式2】双中点求差型如图点M 是线段AB 延长线上任意一点,点C 是线段AM 的中点,点D 是线段BM 的中点⇒AB CD 21=【证明】点C 是线段AM 的中点,点D 是线段BM 的中点MB MD AM CM 21,21==∴MDCM CD -=)(212121MB AM MB AM CD -=-=∴AB CD 21=∴【模型总结】两中点之间的线段,等于原线段的一半。
典例分析【例1】已知线段AB=10cm ,点C 是直线AB 上一点,BC=4cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是()A .7cm B .3cm C .7cm 或3cm D .5cm【例2】如图,点C 是线段AB 上一点,AC <CB ,M 、N 分别是AB 和CB 的中点,8AC =,5NB =,则线段MN =__________.【例3】如图,已知点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点.(1)若20,8AB BC ==,求MN 的长;(2)若,8AB a BC ==,求MN 的长;(3)若,AB a BC b ==,求MN 的长;(4)从(1)(2)(3)的结果中能得到什么结论?模型演练一、单选题1.(2021·内蒙古·中考真题)已知线段4AB =,在直线AB 上作线段BC ,使得2BC =.若D 是线段AC 的中点,则线段AD 的长为()A .1B .3C .1或3D .2或32.点C 在线段AB 上,下列条件中不能确定点C 是线段AB 中点的是()A .AC BC =B .AC BC AB +=C .2AB AC =D .12BC AB =3.如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则BD 的长为()A .6cmB .7cmC .8cmD .9cm4.如图,C ,D 是线段AB 上的两点,E 是AC 的中点,F 是BD 的中点,若EF =8,CD =4,则AB 的长为()A .10B .12C .16D .18二、填空题5.如图,点D 是线段AB 的中点,C 是线段AD 的中点,若AB =8cm ,则CD =___cm .6.在直线上取A ,B ,C 三点,使得AB =9cm ,BC =4cm ,如果O 是线段AC 的中点,则线段OA 的长为_____.7.如图所示,B 、C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 的中点,若MN =7cm ,BC =3cm ,则AD 的长为_____cm .8.如图,C ,D 两点将线段AB 分为三部分,AC ∶CD ∶DB =3∶4∶5,且AC =6.M 是线段AB 的中点,N 是线段DB 的中点.则线段MN 的长为____________.三、解答题9.(2022·安徽·宣城市第六中学一模)如图所示,已知C ,D 是线段AB 上的两个点,点M 、N 分别为AC 、BD 的中点(1)若AB =16cm ,CD =6cm ,求AC +BD 的长和M ,N 的距离;(2)如果AB =m ,CD =n ,用含m ,n 的式子表示MN 的长10.已知线段AB 如图所示,延长AB 至C ,使BC =AB ,反向延长AB 至D ,使AD =BC .点M 是CD 的中点,点N 是AD 的中点.(1)依题意补全图形;(2)若AB 长为10,求线段MN 的长度.11.已知点B 、D 在线段AC 上,(1)如图,若20AC =,8AB =,点D 为线段AC 的中点,求线段BD 的长度;(2)如图,若1134BD AB CD ==,AE BE =,13EC =,求线段AC 的长度.12.如图,点C 为线段AB 上一点,AB =30,且AC -BC =10.(1)求线段AC 、BC 的长.(2)点P 从A 点出发,以1个单位/秒的速度在线段AB 上向B 点运动,设运动时间为t 秒(20t <),点D 为线段PB 的中点,点E 为线段PC 的中点,若CD =25DE ,试求点P 运动时间t 的值.(3)若点D 为直线AB 上的一点,线段AD 的中点为E ,且12AD BD CE -=,求线段AD 的长.13.如图,线段AB =20,BC =15,点M 是AC 的中点.(1)求线段AM 的长度;(2)在CB 上取一点N ,使得CN :NB =2:3.求MN 的长.14.如图,点C 在线段AB 上,8,6AC cm CB cm ==,点,M N 分别是AC BC ,的中点.()1求线段MN 的长;()2若C 为线段AB 上任一点,满足AC CB a +=,其它条件不变,猜想MN 的长度,并说明理由;()3若C 在线段AB 的延长线上,且满足,,AC BC b M N -=分别为AC BC ,的中点,猜想MN 的长度,请画出图形,写出你的结论,并说明理由;()4请用一句简洁的话,描述你发现的结论.参考答案与详细解析典例分析【例1】已知线段AB=10cm ,点C 是直线AB 上一点,BC=4cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是()A .7cmB .3cmC .7cm 或3cmD .5cm【答案】D【分析】先根据题意画出图形,再利用线段的中点定义求解即可.【解析】解:根据题意画图如下:∵10,4AB cm BC cm ==,M 是AC 的中点,N 是BC 的中点,∴1115222MN MC CN AC BC AB cm =+=+==;∵10,4AB cm BC cm ==,M 是AC 的中点,N 是BC 的中点,∴1115222MN MC CN AC BC AB cm =-=-==.故选:D .【例2】如图,点C 是线段AB 上一点,AC <CB ,M 、N 分别是AB 和CB 的中点,8AC =,5NB =,则线段MN =__________.【答案】4【分析】根据中点的性质可得BC 的长,根据线段的和差可得AB 的长,根据中点的性质可得BM 的长,再根据线段的和差可得MN 的长.【解析】由N 是CB 的中点,NB =5,得:BC =2NB =10.由线段的和差,得:AB =AC +BC =8+10=18.∵M 是AB 的中点,∴1118922MB AB ==⨯=,由线段的和差,得:MN =MB -NB =9-5=4,故答案为:4.【例3】如图,已知点,,A B C 在同一直线上,,M N 分别是,AC BC 的中点.(1)若20,8AB BC ==,求MN 的长;(2)若,8AB a BC ==,求MN 的长;(3)若,AB a BC b ==,求MN 的长;(4)从(1)(2)(3)的结果中能得到什么结论?【答案】(1)10;(2)12a ;(3)12a ;(4)线段MN 的长度等于线段AB 的一半,与B 点的位置无关.【分析】(1)先求解,AC 再利用中点的含义求解,,MC NC 再利用线段的差可得答案;(2)先利用含a 的代数式,AC 再利用中点的含义,用含a 的代数式,,MC NC 再利用线段的差可得答案;(3)先利用含,a b 的代数式,AC 再利用中点的含义,用含,a b 的代数式,,MC NC 再利用线段的差可得答案;(4)由(1)(2)(3)总结出结论即可.【解析】解:(1)20,8AB BC ==,,M N 分别是,AC BC 的中点,1128,14,4,22AB BC AC MC AC NC BC ∴+======14410.MN MC NC ∴=-=-=(2),8AB a BC ==,,M N 分别是,AC BC 的中点,1118,4,4,222AB BC AC a MC AC a NC BC ∴+==+==+==1144.22MN MC NC a a ∴=-=+-=(3),AB a BC b ==,,M N 分别是,AC BC 的中点,11111,,,22222AB BC AC a b MC AC a b NC BC b ∴+==+==+==1111.2222MN MC NC a b b a ∴=-=+-=(4)由(1)(2)(3)的结果中可得:线段MN 的长度等于线段AB 的一半,与B 点的位置无关.模型演练一、单选题1.(2021·内蒙古·中考真题)已知线段4AB =,在直线AB 上作线段BC ,使得2BC =.若D 是线段AC 的中点,则线段AD 的长为()A .1B .3C .1或3D .2或3【答案】C【分析】先分C 在AB 上和C 在AB 的延长线上两种情况,分别画出图形,然后运用中点的定义和线段的和差进行计算即可.【解析】解:如图:当C 在AB 上时,AC =AB -BC =2,∴AD =12AC =1如图:当C 在AB 的延长线上时,AC =AB +BC =6,∴AD =12AC =3故选C .2.点C 在线段AB 上,下列条件中不能确定点C 是线段AB 中点的是()A .AC BC=B .AC BC AB +=C .2AB AC =D .12BC AB =【答案】B【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A 、C 、D 都可以确定点C 是线段AB 中点.【解析】解:A 、AC =BC ,则点C 是线段AB 中点;B 、AC +BC =AB ,则C 可以是线段AB 上任意一点;C 、AB =2AC ,则点C 是线段AB 中点;D 、BC =12AB ,则点C 是线段AB 中点.故选:B .3.如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则BD的长为()A.6cm B.7cm C.8cm D.9cm 【答案】B【分析】利用线段和的定义和线段中点的意义计算即可.【解析】∵AB=AC+BC,且AB=10,BC=4,∴AC=6,∵D是线段AC的中点,∴AD=DC=12AC=3,∴BD=BC+CD=4+3=7,故选B.4.如图,C,D是线段AB上的两点,E是AC的中点,F是BD的中点,若EF=8,CD=4,则AB的长为()A.10B.12C.16D.18【答案】B【分析】由已知条件可知,EC+FD=EF-CD=8-4=4,又因为E是AC的中点,F是BD的中点,则AE+FB=EC+FD,故AB=AE+FB+EF可求.【解析】解:由题意得,EC+FD=EF-CD=8-4=4,∵E是AC的中点,F是BD的中点,∴AE=EC,BF=DF∴AE+FB=EC+FD=4,∴AB=AE+FB+EF=4+8=12.故选:B.二、填空题5.如图,点D是线段AB的中点,C是线段AD的中点,若AB=8cm,则CD=___cm.【答案】2【分析】由点D是线段AB的中点,C是线段AD的中点,可得14CD AB,即可求得答案.【解析】解:∵点D是线段AB的中点,∴12AD AB=,∵C是线段AD的中点,∴12CD AD=,∴1182cm44CD AB==⨯=,故答案为:2.6.在直线上取A,B,C三点,使得AB=9cm,BC=4cm,如果O是线段AC的中点,则线段OA的长为_____.【答案】2.5cm或6.5cm【分析】分两种情况:①当点C在线段AB上时,②当点C在线段AB的延长线上时,线求出AC,根据线段中点的定义求出OA.【解析】解:分两种情况:①当点C在线段AB上时,∵AB=9cm,BC=4cm,∴AC=AB-BC=9-4=5cm,∵O是线段AC的中点,∴1 2.52OA AC cm==;②当点C在线段AB的延长线上时,∵AB=9cm,BC=4cm,∴AC=AB+BC=9+4=13cm,∵O是线段AC的中点,∴1 6.52OA AC cm==;故答案为:2.5cm或6.5cm.7.如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD的中点,若MN=7cm,BC=3cm,则AD的长为_____cm.【答案】11【分析】由已知条件可知,MN=MB+CN+BC,又因为M是AB的中点,N是CD中点,则AB+CD=2(MB+CN),故AD=AB+CD+BC可求.【解析】解:∵MN=MB+BC+CN,MN=7cm,BC=3cm,∴MB+CN=7﹣3=4cm,∵M是AB的中点,N是CD的中点,∴AB=2MB,CD=2CN,∴AD=AB+BC+CD=2(MB+CN)+BC=2×4+3=11cm.故答案为:11.8.如图,C,D两点将线段AB分为三部分,AC∶CD∶DB=3∶4∶5,且AC=6.M是线段AB的中点,N是线段DB的中点.则线段MN的长为____________.【答案】7【分析】先根据已知条件求出CD,DB的长,再根据中点的定义求出BM,BN的长,进而可求出MN的长.【解析】解:∵AC∶CD∶DB=3∶4∶5,且AC=6,∴CD=6÷3×4=8,∴DB=6÷3×5=10,∴AB=6+8+10=24,∵M是线段AB的中点,∴MB=12AB=12×24=12,∵N是线段BD的中点,∴NB=12DB=12×10=5,∵MN=MB-NB,∴MN=12-5=7.故答案为:7.三、解答题9.(2022·安徽·宣城市第六中学一模)如图所示,已知C,D是线段AB上的两个点,点M、N分别为AC、BD的中点(1)若AB=16cm,CD=6cm,求AC+BD的长和M,N的距离;(2)如果AB=m,CD=n,用含m,n的式子表示MN的长【答案】(1)10cm ;11cm ;(2)2m n +.【分析】(1)根据AC +BD =AB -CD 列式进行计算即可求解,根据中点定义求出AM +BN 的长度,再根据MN =AB -(AM +BN )代入数据进行计算即可求解;(2)根据(1)的求解,把AB 、CD 的长度换成m 、n 即可【解析】(1)∵AB =16cm ,CD =6cm ,∴AC +BD =AB -CD =10cm ,∴MN =AB -(AM +BN )=AB -12(AC +BD )=16-5=11(cm );(2)∵AB =m ,CD =n ,∴AC +BD =AB -CD =m -n ,∴MN =AB -(AM +BN )=AB -12(AC +BD )=m -12(m -n )=2m n +.10.已知线段AB 如图所示,延长AB 至C ,使BC =AB ,反向延长AB 至D ,使AD =BC .点M 是CD 的中点,点N 是AD 的中点.(1)依题意补全图形;(2)若AB 长为10,求线段MN 的长度.【答案】(1)见解析(2)线段MN 的长度为10.【分析】(1)根据题意画出图形;(2)由图,根据线段中点的意义,根据线段的和与差进一步解决问题.【解析】(1)解:补全图形如图所示:;(2)解:由题意知可知AD =AB =BC ,且AB =10,∴AD =AB =BC =10,即CD =30,∵点M 是CD 的中点,点N 是AD 的中点,∴DM =12CD =15,DN =12AD =5,∴MN =DM -DN =10,∴线段MN 的长度为10.11.已知点B 、D 在线段AC 上,(1)如图,若20AC =,8AB =,点D 为线段AC 的中点,求线段BD 的长度;(2)如图,若1134BD AB CD ==,AE BE =,13EC =,求线段AC 的长度.【答案】(1)2;(2)16.【分析】(1)由20AC =,点D 为线段AC 的中点,求得AD=DC=10,由8AB =,可求BD=AD-AB=2;(2)由1134BD AB CD ==,推出34AB BD CD BD ==,,由AE BE =,可用BD 表示3=2AE BE BD =,表示EC=132BD =13,求出2BD =,再求AE=3=可求,AC=AE+EC=16.【解析】(1)∵20AC =,点D 为线段AC 的中点,∴AD=DC=11201022AC =⨯=,∵8AB =,∴BD=AD-AB=10-8=2;(2)∵1134BD AB CD ==,∴34AB BD CD BD ==,,∵AE BE =,∴13=22AE BE AB BD ==,∵EC=313422BE BD DC BD BD BD BD ++=++==13,∴2BD =,∴AE=33=2322BD ⨯=,∴AC=AE+EC=3+13=16.12.如图,点C 为线段AB 上一点,AB =30,且AC -BC =10.(1)求线段AC 、BC 的长.(2)点P 从A 点出发,以1个单位/秒的速度在线段AB 上向B 点运动,设运动时间为t 秒(20t <),点D 为线段PB 的中点,点E 为线段PC 的中点,若CD =25DE ,试求点P 运动时间t 的值.(3)若点D 为直线AB 上的一点,线段AD 的中点为E ,且12AD BD CE -=,求线段AD 的长.【答案】(1)20,10;(2)14t =或6t =;(3)AD 的长为:1609或160.【分析】(1)由30AC BC +=,10AC BC -=,再两式相加,即可得到AC ,再求解BC 即可;(2)以A 为原点画数轴,再利用数轴及数轴上线段的中点知识分别表示,,,,,A C B P D E 对应的数,由CD =25DE ,利用数轴上两点之间的距离公式建立绝对值方程,解方程可得答案;(3)以A 为原点画数轴,分三种情况讨论,当D 在A 的左侧,当D 在线段AB 上,当D 在B 的右侧,利用数轴与数轴上线段的中点知识,结合数轴上两点之间的距离分别表示,,AD BD CE ,再利用1,2AD BD CE -=建立方程,解方程即可得到答案.【解析】解:(1)AB =30,30AC BC ∴+=①又AC -BC =10②,①+②得:240,AC =20AC ∴=,10.BC ∴=(2)如图,以A 为原点画数轴,则,,,,A P C B 对应的数分别为:0,,20,30t ,点D 为线段PB 的中点,D ∴对应的数为:()1130+15,22t t =+点E 为线段PC 的中点,E ∴对应的数为:()1120+10,22t t =+1115205,22CD t t ∴=+-=-11111510151052222DE t t t ⎛⎫=+-+=+--= ⎪⎝⎭,CD =25DE ,1255,25t ∴-=152,2t ∴-=1522t ∴-=或152,2t -=-解得:14t =或6t =.由20t <,经检验:14t =或6t =都符合题意.(3)如图,以A 为原点画数轴,设D 对应的数为m ,当D 在A 的左侧时,AD BD -<0,12AD BD CE ∴-≠,舍去,当D 在AB 上时,线段AD 的中点为E ,E ∴对应的数为:()110,22m m +=此时E 在AC 上,,30,AD m BD m ∴==-120,2CE m =-1,2AD BD CE -=()113020,22m m m ⎛⎫∴--=- ⎪⎝⎭123010,4m m ∴-=-940,4m ∴=160,9m ∴=1609AD ∴=,当D 在B 的右侧时,如图,同理:,30,AD m BD m ==-120,2CE m =-1,2AD BD CE -=()113020,22m m m ∴--=-12060,2m ∴-=120602m ∴-=或12060,2m -=-解得:80m =-(舍去),160,m =160AD ∴=,综上:AD 的长为:1609或160.13.如图,线段AB =20,BC =15,点M 是AC 的中点.(1)求线段AM 的长度;(2)在CB 上取一点N ,使得CN :NB =2:3.求MN 的长.【答案】(1)52;(2)172【分析】(1)根据图示知AM =12AC ,AC =AB ﹣BC ;(2)根据已知条件求得CN =6,然后根据图示知MN =MC +NC .【解析】解:(1)线段AB =20,BC =15,∴AC =AB ﹣BC =20﹣15=5.又∵点M 是AC 的中点.∴AM =12AC =12×5=52,即线段AM 的长度是52.(2)∵BC =15,CN :NB =2:3,∴CN =25BC =25×15=6.又∵点M 是AC 的中点,AC =5,∴MC =12AC =52,∴MN =MC +NC =172,即MN 的长度是172.14.如图,点C 在线段AB 上,8,6AC cm CB cm ==,点,M N 分别是AC BC ,的中点.()1求线段MN 的长;()2若C 为线段AB 上任一点,满足AC CB a +=,其它条件不变,猜想MN 的长度,并说明理由;()3若C 在线段AB 的延长线上,且满足,,AC BC b M N -=分别为AC BC ,的中点,猜想MN 的长度,请画出图形,写出你的结论,并说明理由;()4请用一句简洁的话,描述你发现的结论.【答案】()17cm ;()22aMN =,证明解解析;()32bMN =,证明见解析;()4见解析【分析】()1根据“点M 、N 分别是AC 、BC 的中点”,先求出MC 、CN 的长度,再利用MN CM CN =+即可求出MN 的长度即可;()2当C 为线段AB 上一点,且M ,N 分别是AC ,BC 的中点,则存在12MN a =;()3点在AB 的延长线上时,根据M 、N 分别为AC 、BC 的中点,即可求出MN 的长度;()4根据前面的结果解答即可.【解析】解:()1,M N 分别是,AC BC 的中点,8,6AC cm CB cm ==11,22MC AC CN BC ∴==()12MN MC CN AC BC =+=+Q ()18672MN cm \=+=()22aMN =,M N 分别是,AC BC 的中点11,22MC AC CN BC ∴==又MN MC CN =+Q ()122a MN AC BC ∴=+=()32bMN =∵AC BC b -=,∴C 在点B 的右边,如图示:,M N 分别是,AC BC 的中点,AC BC b -=11,22MC AC NC BC ∴==又NM MC NC =-()122b MN AC BC ∴=-=()4只要满足点C 在线段AB 所在直线上,点M N ,分别是AC BC ,的中点.那么MN 就等于AB 的一半。
重要的几何模型之中点模型(二)(学生版)-2024年中考数学常见几何模型
重要的几何模型之中点模型(二)中点模型是初中数学中一类重要模型,它在不同的环境中起到的作用也不同,主要是结合三角形、四边形、圆的运用,在各类考试中都会出现中点问题,有时甚至会出现在压轴题当中,我们不妨称之为“中点模型”,它往往涉及到平分、平行、垂直等问题,因此探寻这类问题的解题规律对初中几何的学习有着十分重要的意义。
常见的中点模型:①垂直平分线模型;②等腰三角形“三线合一”模型;③“平行线+中点”构造全等或相似模型(与倍长中线法类似);④直角三角形斜边中点模型;⑤中位线模型;⑥中点四边形模型。
本专题就中点模型的后三类模型进行梳理及对应试题分析,方便掌握。
模型1:直角三角形斜边中线模型定理:直角三角形斜边上的中线等于斜边的一半.如图1,若AD为Rt△ABC斜边上的中线,则:(1)AD=1BC=BD=DC;(2)△ABD,△ACD为等腰三角形;(3)∠ADB=2∠C,∠ADC=2∠B.2图1图2拓展:如图2,在由两个直角三角形组成的图中,M为中点,则(1)AM=MD;(2)∠AMD=2∠ABD.模型运用条件:连斜边上的中线(出现斜边上的中点时)1(2023·江苏盐城·统考中考真题)如图,在Rt△ABC中,CD为斜边AB上的中线,若CD=2,则AB=.2(2023·江苏扬州·统考中考真题)如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,过点D作DE ⊥BC,垂足为点E,连接CD,若CD=5,BC=8,则DE=.3(2023·河南新乡·统考三模)如图,点O为菱形ABCD的对角线AC,BD的交点,过点C作CE⊥AB于点E,连接OE,若OD=3,OE=2,则菱形ABCD的面积为.4(2023上·四川成都·九年级校考期中)如图,四边形ABCD中,∠ABC=∠ADC=90°,∠BAD=45°,连接AC、BD.M是AC的中点,连接BM、DM.若AC=10,则△BMD的面积为.5(2023·江苏常州·中考真题)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.66(2023·辽宁鞍山·校考三模)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A,B的对应点分别是D,E,点F是边AC的中点,连接BF,BE,FD,则下列说法不正确的是()A.BE=BCB.∠DFC=90°C.DG=3GFD.四边形BFDE是平行四边形模型2:中位线模型三角形的中位线定理:三角形的中位线平行于三角形的第三边,并且等于第三边的一半。
初中数学中点模型
初中数学中点模型
中点模型是初中数学中的一个重要概念,它在解决几何问题时经常被使用。
中点模型指的是利用线段的中点来研究线段的性质和几何图形的性质的模型。
其基本思想是:在一个线段上找到中点,从而将原本的线段分成两个相等的部分,这两个部分之间具有一些特殊的性质。
中点模型可以应用于多种几何问题,如证明线段的平分线垂直于线段、证明三角形的垂心、证明四边形的对角线相等等。
此外,中点模型还可以用来求解一些有趣的几何题目,如如何用直线把正方形分成相等的两部分、如何用直线把正六边形分成相等的三部分等。
在学习中点模型时,学生需要掌握线段的中点的定义和性质,了解如何利用中点模型解决几何问题,同时还需要掌握一些基本的几何定理和推理方法。
通过练习和实践,学生可以逐渐掌握中点模型的应用技巧,提高几何证明和问题解决的能力。
- 1 -。
初中数学模型专题1:双中点模型
初中数学几何模型模型1 双中点模型模型展现类型:双中点型模型特点:点C 是线段AB 上任意一点,点的中点分别是线段BC AC P ,P 2,1 点C 是线段AB 延长线上任意一点,点的中点分别是线段BC AC P ,P 2,1 结论:AB p p 2121 双中点和型结论: P 1P 2=12AB证明:∵点P ₁,P ₂分别是线段AC,BC 的中点,∴P 1C =12AC,P 2C =12BC (中点的性质),∵ P ₁P ₂=P ₁C+P ₂C,∴P 1P 2=12AC +12BC =12AB.双中点差型结论: P 1P 2=12AB证明:∵点P ₁,P ₂分别是线段AC,BC 的中点,∴P 1C =12AC,P 2C =12BC,∵ P ₁P ₂=P ₁C-P ₂C,∴P 1P 2=12AC −12BC =12AB.巧学巧记 简记:“一半,一半又一半”.基础模型怎么用1.找模型共线的三个点组成的三条线段中,已知两条线段的中点时,考虑用“双中点模型”2.用模型中点将线段平分,利用线段的 12倍关系转换,是解决问题的关键例1 如图,A,B,C三点在同一直线上,点P₁,P₂分别为线段AB,BC的中点,(双中点)且AB=6,BC=4,则线段P₁P₂的长为( )(中点组成的线段)A.2B.4C.5D.6思路点拨:已知双中点P₁,P₂,且点B在线段AC上,则用双中点和型即可求解.例2 如图,已知点C是线段AB上一点,AC<BC,点M和N分别是AB和BC的中点,MN=4,BC=10,( 双中点)则线段AB的长为( )(已知双中点产生的新线段长,逆向考虑模型的应用)A.18B.10C.8D.5思路点拨:已知双中点M,N,且点B在线段AC的延长线上,则用双中点差型即可求解.例3 已知线段AB=4,在线段AB所在直线上作线段BC,使得BC=2,若点D是线段AB的中点,点E是线段BC的中点,则线段DE的长为( )(双中点)A.1B.2C.1或3D.1或2思路点拨:点C位置不确定,需分两种情况讨论:①点C在线段AB内;②点C在线段AB外.。
初中数学中点模型归纳总结
初中数学中点模型归纳总结中点模型是初中数学中一个重要的概念,常用于几何图形的证明和计算中。
通过对中点模型的归纳总结,可以更好地理解和运用这一概念。
本文将分别从数轴中点、线段中点和三角形中点三个方面进行归纳总结。
一、数轴中点数轴中点是指数轴上离两个点距离相等的点。
在数轴上,如果A、B两个点的坐标分别为a和b,那么它们的中点的坐标可以通过以下公式计算:中点坐标 = (a + b) / 2通过这个公式,我们可以很方便地求解两个点的中点坐标。
同时,我们还可以推广到三个点的情况:三点中点坐标 = (a + b + c) / 3这个公式也可以以类似的方式计算。
二、线段中点线段中点是指线段上距离两个端点相等的点。
在线段AB上,如果A、B两个点的坐标分别为(x1,y1)和(x2,y2),那么它们的中点的坐标可以通过以下公式计算:中点坐标 = ((x1 + x2) / 2, (y1 + y2) / 2)通过这个公式,我们可以计算出线段AB的中点坐标。
同样地,我们还可以推广到三维空间中的情况:三维空间中点坐标 = ((x1 + x2 + x3) / 3, (y1 + y2 + y3) / 3, (z1 + z2 +z3) / 3)这个公式在三维几何场景中也能帮助我们求解线段的中点坐标。
三、三角形中点三角形中点是指连接三角形三个顶点与对边中点的线段所构成的三个线段的交点。
三角形的三个中点分别是三边中点、三角形重心和三角形外心。
下面我们分别来介绍它们的特点和计算方法。
1. 三边中点:连接三角形三个顶点与对边中点的线段的交点,分别记为M1、M2、M3。
这三个点构成的线段M1M2、M2M3和M3M1分别平分三角形的三条边,且交于三角形的重心G。
2. 三角形重心:三角形重心是连接三角形三个顶点与对边中点的线段的交点,记为G。
三角形的重心是三条中线的交点,其中中线是连接三角形的一个顶点与对边中点的线段。
3. 三角形外心:三角形外心是三角形三边垂直平分线的交点,记为O。
初中数学的中点模型地构造及的应用
中点模型的构造及应用一、遇到以下情况考虑中点模型:任意三角形或四边形中点或与中点有关的线段出现两个或三个中点考虑三角形中线定理已知直角三角形斜边中点,可以考虑构造斜边中线已知等边、等腰三角形底边中点,可以考虑与顶角连接用“三线合一”有些题目不直接给出中点,我们可以挖掘其中隐含中点,比如等腰三角形、等边三角形、直角三角形、平行四边形、圆中圆心是直径中点等可以出现中点的图形通常考虑用中点模型三角形中线的交点称为重心,它把中线分的线段比为2:1二、中点模型辅助线构造方法分类(一)倍长中线法(构造全等三角形,八字全等)当已知条件中出现中线时,常常将此中线倍长构造全等三角形解决问题。
如图,在∆ABC中,D为BC中点,延长AD到E使AD=DE,连接BE,则有:∆ADC ≌∆EDB。
作用:转移线段和角。
(二)倍长类中线法(与中点有关线段,构造全等三角形,八字全等)当已知条件中出现类中线时,常常将此类中线倍长构造全等三角形解决问题。
如图,在∆ABC中,D为BC中点,延长ED到F使ED=DF,连接CF,则有:∆BED ≌∆CFD。
作用:转移线段和角。
(三)直角三角形斜边中线法当已知条件中同时出现直角三角形和中点时,常构造直角三角形斜边中线,然后再利用直角三角形斜边的中线性质解决问题。
如下图,在Rt ∆ABC 中,A C B 90∠=︒,D 为AB 中点,则有:12CD AD BD AB ===(四)等腰三角形三线合一当出现等腰三角形时,常隐含有底边中点,将其与顶角连接,可构成三线合一。
在∆ABC 中:(1)AC=BC ;(2)CD 平分ACB ∠;(3)AD=BD ,(4)CD AB ⊥ “知二得二”:比如由(2)(3)可得出(1)(4).也就是说,以上四条语句,任意选择两个作为条件,就可以推出剩下两条。
(五)中位线法当已知条件中同时出现两个及以上中点时,常考虑构造中位线;或出现一个中点,要求证明平行线段或线段倍分关系时也常考虑构造中位线。
初中数学八大几何模型归纳
初中数学几何模型总结归纳1.中点模型【模型1】倍长1、倍长中线;2、倍长类中线;3、中点遇平行线延长相交ABCD E ABC DEFEDCBA【模型2】遇多个中点,构造中位线1、直接连接中点;2、连对角线取中点再相连GABCDEFABCD E【例1】在菱形ABCD 和正三角形BEF 中,∠ABC =60°,G 是DF 的中点,连接GC 、GE . (1)如图1,当点E 在BC 边上时,若AB =10,BF =4,求GE 的长;(2)如图2,当点F 在AB 的延长线上时,线段GE 、GC 有怎样的数量和位置关系,写出你的猜想,并给予证明;(3)如图3,当点F 在CB 的延长线上时,(2)问中的关系还成立吗?写出你的猜想,并给予证明.图3图2图1ACDEFGDEFGCDEGABBFCBA【解答】(1)延长EG 交CD 于点H 易证明△CHG ≌△CEG ,则GE =HBEGCFAD(2)延长CG 交AB 于点I ,易证明△BCE ≌△FIE ,则△CEI 是等边三角形,GE =3GC 错误!未找到引用源。
,且GE ⊥GCF(3)EJ【例2】如图,在菱形ABCD 中,点E 、F 分别是BC 、CD 上一点,连接DE 、EF ,且AE =AF ,∠DAE =∠BAF .(1)求证:CE =CF ; (2)若∠ABC =120°,点G 是线段AF 的中点,连接DG 、EG ,求证:DG ⊥EG .GFE DC BAE H GF EDCBA【解答】(1)证明△ABE ≌△ADF 即可;(2)延长DG 与AB 相交于点H ,连接HE ,证明△HBE ≌△EFD 即可【例3】如图,在凹四边形ABCD 中,AB =CD ,E 、F 分别为BC 、AD 的中点,BA 交EF 延长线于G 点,CD 交EF 于H 点,求证:∠BGE =∠CHE . 【解答】取BD 中点可证,如图所示:JA BCDE F GH2.角平分线模型【模型1】构造轴对称【模型2】角平分线遇平行构等腰三角形【例4】如图,平行四边形ABCD 中,AE 平分∠BAD 交BC 边于E ,EF ⊥AE 交边CD 于F 点,交AD 边于H ,延长BA 到G 点,使AG =CF ,连接GF .若BC =7,DF =3,EH =3AE ,则GF 的长为_______.HGFEDCBA【解答】延长FE 、AB 交于点I ,易得CE =CF ,BA =BE ,设CE =x ,则BA =CD =3+x ,BE =7-x , 3+x =7-x ,x =2,AB =BE =5,AE =,作AJ ⊥BC ,连接AC ,求得GF =AC =3JIAB CDEFGH3.手拉手模型【条件】OA =OB ,OC =OD ,∠AOB =∠COD【结论】△OAC ≌△OBD ,∠AEB =∠AOB =∠COD (即都是旋转角);OE 平分∠AEDDC EBAOOABEC D 导角核心图形:八字形CBAO【例5】(2014重庆市A 卷)如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,且2DE CE ,连接BE .过点C 作CF ⊥BE ,垂足是F ,连接OF ,则OF 的长为________.FABCOEDDE CBA【例6】如图,△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D ,点E 在AC 边上,连接BE ,AG ⊥BE于F ,交BC 于点G ,求∠DFG . GFE DCBAABC【答案】45°【例7】(2014重庆B 卷)如图,在边长为ABCD 中,E 是AB 边上一点,G 是AD 延长线一点,BE =DG ,连接EG ,CF ⊥EG 交EG 于点H ,交AD 于点F ,连接CE 、BH .若BH =8,则FG=_____________.HGDE CBAFABE G【答案】4.邻边相等对角互补模型【模型1】【条件】如图,四边形ABCD 中,AB =AD ,∠BAD +∠BCD =∠ABC +∠ADC =180° 【结论】AC 平分∠BCDEB【模型2】【条件】如图,四边形ABCD 中,AB =AD ,∠BAD =∠BCD =90° 【结论】① ∠ACB =∠ACD =45°; ② BC +CDABCECB【例8】如图,矩形ABCD 中,AB =6,AD =5,G 为CD 中点,DE =DG ,FG ⊥BE 于F ,则DF 为_____.F ABCEDGG DE【例9】如图,正方形ABCD 的边长为3,延长CB 至点M ,使BM =1,连接AM ,过点B 作BN ⊥AM ,垂足为N ,O 是对角线AC 、BD 的交点,连结ON ,则ON 的长为__________. OMN DCBA【例10】如图,正方形ABCD 的面积为64,△BCE 是等边三角形,F 是CE 的中点,AE 、BF 交于点G ,则DG 的长为___________. GFEABCDEC【答案】45.半角模型【模型1】【条件】如图,四边形ABCD 中,AB =AD ,∠BAD +∠BCD =∠ABC +∠ADC =180°,∠EAF =12∠BAD , 点E 在直线BC 上,点F 在直线CD 上 【结论】BE 、DF 、EF 满足截长补短关系FEDCBA【模型2】【条件】如图,在正方形ABCD 中,已知E 、F 分别是边BC 、CD 上的点,且满足∠EAF =45°,AE 、AF 分别与对角线BD 交于点M 、N . 【结论】①BE +DF =EF ; ② ABE ADF AEF S S S ∆∆∆+=;③AH =AB ;④2ECF C AB ∆=;⑤BM 2+DN 2=MN 2;⑥△ANM ∽△DNF ∽△BEM ∽△AEF ∽△BNA ∽△DAM (由AO :AH =AO :AB =1:可得到△ANM 和△AEF 相似比为1)⑦AMN MNFE S S ∆=四边形;⑧△AOM ∽△ADF ;△AON ∽△ABE ;⑨△AEN 为等腰直角三角形,∠AEN =45°,△AFM 为等腰直角三角形,∠AFM =45°;⑩A 、M 、F 、D 四点共圆,A 、B 、E 、N 四点共圆,M 、N 、F 、C 、E 五点共圆.H NM FEDCBA【模型2变形】【条件】在正方形ABCD 中,已知E 、F 分别是CB 、DC 延长线上的点,且满足∠EAF =45° 【结论】BE +EF =DFFEDCB A【模型2变形】【条件】在正方形ABCD 中,已知E 、F 分别是BC 、CD 延长线上的点,且满足∠EAF =45° 【结论】DF +EF =BEAB C DEF【例11】如图,△ABC 和△DEF 是两个全等的等腰直角三角形,∠BAC =∠EDF =90°,△DEF 的顶点E与△ABC 的斜边BC 的中点重合,将△DEF 绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,射线EF 与线段AB 相交于点G ,与射线CA 相交于点Q .若AQ =12,BP =3,则PG =__________.Q PGD FECBA【解答】连接AE ,题目中有一线三等角模型和半角模型设AC =x ,由△BPC ∽△CEQ 得BP CE =BE CQ , 3/(22x )=22x /(x +12),解得x =12 设PG =y ,由AG 2+BP 2=PG 2得32+(12-3-x )2=x 2,解得x =5【例12】如图,在菱形ABCD 中,AB =BD ,点E 、F 在AB 、AD 上,且AE =DF .连接BF 与DE 交于点G ,连接CG 与BD 交于点H ,若CG =1,则S 四边形BCDQ =__________.HGFED CB A【解答】346.一线三等角模型【条件】∠EDF =∠B =∠C ,且DE =DF 【结论】△BDE ≌△CFDFEDCBA【例13】如图,正方形ABCD 中,点E 、F 、G 分别为AB 、BC 、CD 边上的点,EB =3,GC =4,连接EF 、FG 、GE 恰好构成一个等边三角形,则正方形的边为__________.GA B CDEF【解答】如图,构造一线三等角模型,△EFH ≌△FGI 则BC =BF +CF =HF -BH +FI -CI =GI -BH +HE -CI =733IH F ED C B A G7.弦图模型【条件】正方形内或外互相垂直的四条线段 【结论】新构成了同心的正方形LK JIHGFECDB AHG FEDCBA【例14】如图,点E 为正方形ABCD 边AB 上一点,点F 在DE 的延长线上,AF =AB ,AC 与FD 交于点G ,∠F AB 的平分线交FG 于点H ,过点D 作HA 的垂线交HA 的延长线于点I .若AH =3AI ,FH =22,则DG =__________.I H AGFEDCB【解答】1742【例15】如图,△ABC 中,∠BAC =90°,AB =AC ,AD ⊥BC 于点D ,点E 是AC 中点,连接BE ,作AG ⊥BE 于F ,交BC 于点G ,连接EG ,求证:AG +EG =BE .FE CGDBABC【解答】过点C 作CH ⊥AC 交AG 的延长线于点H ,易证8.最短路径模型【两点之间线段最短】 1、将军饮马Q2、费马点【垂线段最短】【两边之差小于第三边】【例16】如图,矩形ABCD 是一个长为1000米,宽为600米的货场,A 、D 是入口,现拟在货场内建一个收费站P ,在铁路线BC 段上建一个发货站台H ,设铺设公路AP 、DP 以及PH 之长度和为l ,求l 的最小值.【解答】3500600 ,点线为最短.【例17】如图,E 、F 是正方形ABCD 的边AD 上的两个动点,满足AE =DF,连接CF 交BD 于G ,连接BE 交AG 于H ,若正方形的边长为2,则线段DH 长度的最小值为______________________.【解答】如图,取AB 中点P ,连接PH 、PD ,易证PH ≥PD -PH 即DH ≥15-.【例18】如图所示,在矩形ABCD 中,AB =4,AD =24,E 是线段AB 的中点,F 是线段BC 上的动点,△BEF 沿直线EF 翻折到△EF B ',连接B D ',B D '最短为________________.【解答】4【例19】如图1,□ABCD 中,AE ⊥BC 于E ,AE =AD ,EG ⊥AB 于G ,延长GE 、DC 交于点F ,连接AF .(1)若BE =2EC ,AB =13,求AD 的长;(2)求证:EG =BG +FC ;(3)如图2,若AF =25,EF =2,点M 是线段AG 上一动点,连接ME ,将△GME 沿ME 翻折到△ME G ',连接G D ',试求当G D '取得最小值时GM 的长.图1 图2 备用图【解答】(1)3(2)如图所示(3)当DG ′最小时D 、E 、G '三点共线解得43173-=+'=MN N G GMEH【练习1】如图,以正方形的边AB为斜边在正方形内作直角三角形ABE,∠AEB=90°,AC、BD交于O.已知AE、BE的长分别为3、5,求三角形OBE的面积.【解答】25【练习2】问题1:如图1,在等腰梯形ABCD 中,AD∥BC,AB=BC=CD,点M,N分别在AD,CD上,∠MBN21∠ABC,试探究线段MN,AM,CN有怎样的数量关系?请直接写出你的猜想;问题2:如图2,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M,N分别在DA,CD延长线,若∠MBN=12∠ABC仍然成立,请你进一步探究线段MN,AM,CN又有怎么样的关量关系?写出你的猜想,并给予证明。
与中点有关的初中数学模型
与中点有关的初中数学模型
中点是初中数学中一个非常重要的概念和工具,它在数学中具有
广泛的应用和重要意义。
首先,中点是指一条线段的中点,它的位置一般表示为M,可以通过利用线段的两个端点A和B,通过求中点的方法得到。
具体的方法就是通过对线段的长度进行平分,即将线段的长度除以2,在线段上从一个端点出发,沿着线段的方向向前移动刚好一半的距离,就可以找到
中点了。
中点不仅如此,它还可以帮助我们理解和解决许多数学问题。
比如,在平面几何中,我们可以利用中点将一个线段平分并找到中垂线,进而推导出直角三角形的勾股定理;在向量和解析几何中,我们可以
利用中点求两点之间的距离和方向角;在统计学中,中点可以帮助我
们进行频率分布和直方图的绘制,从而更好地理解数据的分布情况等等。
除此之外,中点还可以应用于实际问题中,例如在电路中,电路
中点是一个重要的概念,对于电路的设计和分析都有重要的帮助和意义;在交通运输中,中点可以帮助我们规划路线,优化交通线路的布
局等。
综上所述,中点是一个广泛应用的数学概念和工具,它不仅是初
中数学知识体系中重要组成部分,更是在实际生活和其他学科中具有
着重要意义和广泛应用的数学工具。
因此,我们要高度重视中点相关的数学模型的学习和掌握,进一步提高自己的数学素养和应用能力。
初中数学的中点模型地构造及的应用
(一)倍长中线法(构造全等三角形,八字全等) 当已知条件中出现中线时,常常将此中线倍长构造全等三角形解决问题。 如图,在 ABC中,D 为 BC中点,延长 AD 到 E 使 AD=DE,连接 BE,则有:
ADC≌ EDB。作用:转移线段和角。
(二)倍长类中线法(与中点有关线段,构造全等三角形,八字全等) 当已知条件中出现类中线时,常常将此类中线倍长构造全等三角形解决问
(五)中位线法 当已知条件中同时出现两个及以上中点时, 常考虑构造中位线; 或出现一个
中点,要求证明平行线段或线段倍分关系时也常考虑构造中位线。 如图,在 ABC中,D,E分别是 AB、 AC边中点,则有 DE BC , DE = 1 BC 。 2
三、练习
(一)倍长中线法 1.( 2014 秋 ?津南区校级期中) 已知:在△ ABC中, AD 是 BC边上的中线, E 是 AD 上一点,且 BE= AC,延长 BE交 AC于 F,求证: AF= EF.
精彩文案
实用标准文档
5.( 2017?贵阳 ,24)(1)阅读理解:如图①,在四边形 ABCD中, AB∥DC,E 是 BC的中点,若 AE 是∠ BAD的平分线,试判断 AB,AD,DC之间的等量关系. 解决此问题可以用如下方法: 延长 AE交 DC的延长线于点 F,易证△ AEB≌△ FEC, 得到 AB=FC,从而把 AB, AD, DC转化在一个三角形中即可判断. AB、AD、DC之间的等量关系为 ____________; ( 2)问题探究:如图②,在四边形 ABCD中, AB∥ DC, AF 与 DC 的延长线交于 点 F,E 是 BC的中点,若 AE 是∠ BAF的平分线,试探究 AB,AF,CF之间的等量 关系,并证明你的结论. ( 3)问题解决:如图③, AB∥CF, AE 与 BC 交于点 E,BE:EC= 2:3,点 D 在 线段 AE 上,且∠ EDF=∠ BAE,试判断 AB、 DF、CF 之间的数量关系,并证明你 的结论.
初中中点问题5大模型
初中中点问题常见五大模型1、中点、中线——想倍长(构造八字全等形)2、中点+等腰——三线合一3、中点+平行——延长构造8字形4、中点对直角——斜边中线定理5、双中点及以上——中位线例1:如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为()A.2B.3C.5D.3技巧:有中点,有平行,延长构造8字形练习:如图,AB∥CD,∠BCD=90°,AB=1,BC=CD=2,E为AD上的中点,则BE的长度是多少?5A.3B.3C.5D.2练习2:已知,点O是平行四边形ABCD两条对角线的交点,点P是AC所在直线上的一个动点(点P不与点A、C重合),分别过点A、C向直线BP作垂线,垂足分别为E、F.点O为AC的中点,求证:OE=OF技巧:①有中点,有平行,延长构造8字形②斜边中点对直角,一半等腰必出现例2、如图,在△ABC中,BD、CE是高,G、F分别是BC、DE的中点,连接GF,求证:GF⊥DE.技巧:连中线,出等腰例3:已知:如图,在四边形ABCD中,∠C=90°,E、F分别为AB、AD的中点,BC=4,CD=3,求EF的长度技巧:①题出双中点,就想中位线②勾股定理例4、如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC,BD的中点,∠ABD=20°∠BDC=70°,求∠PMN的度数.例6、如图,在四边形ABC D中,M、N分别是AD、BC的中点,若AB=6,CD=4,求MN 取值范围1、“中点+平行”问题有中点,有平行,延长构造8字形2、共斜边问题连中点,出等腰3“双中点或多中点”问题题出双中点,就想中位线未得中位线,再找一中点,构造中位线。
初中数学《几何辅助线秘籍》中点模型地构造(倍长中线法;构造中位线法)
开场:1•行礼;2•晨读;3•检查作业;4•填写表格
为BC边上中点,FA的延长线交DE于点G,求证:①DE二2AF;©FG丄DE.
7•如图所示,在RfABC中,zBAC二90°,点D为BC的中点,点E、F分别为AB、AC上的点,且ED丄FD.以线段BE、EF、FC为边能否构成一个三角形?若能,该三角形是锐角三角形、直角三角形,或者是钝角三角形?
C
8•四边形ABCD是矩形,E是BC边上的中点〃ABE沿着直线AE翻折,点B落在点F处,直线AF与直线CD 交于点G,请探究线段AB、AG、GC之间的关系.
2•已知,如图,四边形ABCD中,AC、BD相交于点0,且AC二BD,E、F分别是AD、BC的中点,EF分别交AC、BD于点M、N.求证:OM二0N.
3.BD、CE分别是的MBC外角平分线,过A作AF丄BD,AG丄CE,垂足分别是F、G,易证
FG二1
(AB+BC+AC)。
2
(1)若BD、CE分别是MBC的内角平分线,FG与MBC三边有怎样的数量关系?画出图形
3•如图“ABC中,AB二BC.ABC二90°,点E、F分别在AB、AC上,且AE二EF,点0、M分别为AF、CE的中点•求证:(1)OM二2CE;(2)OB二肿OM.
4.如图,/DBC二zBCE二90°,M为DE的中点,求证:MB二MC.
hr
教
学
后
记
学生签名:家长签名:。
初中数学几何秘籍讲解教案
初中数学几何秘籍讲解教案教学目标:1. 让学生掌握几何辅助线的基本添加方法和技巧。
2. 培养学生解决几何问题的逻辑思维能力和创新解题思维。
3. 提高学生在中考几何题目的得分率。
教学内容:1. 中点模型的构造2. 角平分模型的构造3. 弦图的构造及应用4. 图形的三大变换5. 梯形、圆的辅助线添加教学过程:一、导入(5分钟)1. 引导学生回顾已学的几何知识和解题方法。
2. 提问:同学们在解决几何题目时,有没有遇到过困难?有没有发现某些题目有特定的解题思路?3. 引入本节课的主题:几何辅助线秘籍,讲解如何添加辅助线来解决几何问题。
二、中点模型的构造(15分钟)1. 讲解中点的概念和性质。
2. 引导学生通过添加中点来解决几何问题,如:三角形的中线、中位线等。
3. 举例说明中点模型在解决几何题目中的应用。
三、角平分模型的构造(15分钟)1. 讲解角平分线的概念和性质。
2. 引导学生通过添加角平分线来解决几何问题,如:角平分线上的点到角两边的距离相等、角平分线与平行线的关系等。
3. 举例说明角平分模型在解决几何题目中的应用。
四、弦图的构造及应用(15分钟)1. 讲解弦图的概念和性质。
2. 引导学生通过添加弦图来解决几何问题,如:圆的弦长、圆的半径等。
3. 举例说明弦图在解决几何题目中的应用。
五、图形的三大变换(15分钟)1. 讲解平移、旋转、翻转的概念和性质。
2. 引导学生通过添加图形的三大变换来解决几何问题。
3. 举例说明图形的三大变换在解决几何题目中的应用。
六、梯形、圆的辅助线添加(15分钟)1. 讲解梯形、圆的辅助线添加方法。
2. 引导学生通过添加梯形、圆的辅助线来解决几何问题。
3. 举例说明梯形、圆的辅助线在解决几何题目中的应用。
七、总结与反思(10分钟)1. 让学生回顾本节课所学的内容,总结几何辅助线的基本添加方法和技巧。
2. 引导学生反思在解决几何题目时,如何灵活运用辅助线和解题思路。
教学评价:1. 课后作业:布置一些有关几何辅助线的问题,让学生独立解决。
北京初中数学几何中点模型的构造及应用
北京初中数学几何中点模型的构造及应用利用中点添加中线、中位线、倍长中线及等腰(边)三角形、直角三角形的性质巧解几何综合题。
[要领提示]:中点中线中位线,等腰三角连中线倍长中线类中线,构造全等好条件;求证垂直又相等,等腰直角斜中线。
[范例解析][尝试应用]图2ABCDE F图3ABCDEF图1FE DCBA[中考链接]1、已知△ABC 和△ADE 是等腰直角三角形,∠ACB =∠ADE =90°,点F 为BE 中点,连结DF 、CF .(1)如图1, 当点D 在AB 上,点E 在AC 上,请直接写出此时线段DF 、CF 的数量关系和位置关系(不用证明);(2)如图2,在(1)的条件下将△ADE 绕点A 顺时针旋转45°时,请你判断此时(1)中的结论是否仍然成立,并证明你的判断;(3)如图3,在(1)的条件下将△ADE 绕点A 顺时针旋转90°时,若AD =1,AC=CF 的长(直接写出结果).2、在ABCD 中,A DBC ∠=∠,过点D 作DE DF =,且EDF ABD =∠,连接EF ,EC ,N 、P 分别为EC ,BC 的中点,连接NP . (1)如图1,若点E 在DP 上,EF 与DC 交于点M ,试探究线段NP 与线段NM 的数量关系及ABD ∠与MNP ∠满足的等量关系,请直接写出你的结论;(2)如图2,若点M 在线段EF 上,当点M 在何位置时,你在(1)中得到的结论仍然成立,写出你确定的点M 的位置,并证明(1)中的结论.ABCDEFNPP NMFE DCBA3、问题:如图1, 在Rt △ABC 中,90C ∠=︒,30ABC ∠=︒,点D 是射线CB 上任意一点,△ADE 是等边三角形,且点E 在ACB ∠的内部,连接BE .探究线段BE 与DE 之间的数量关系. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明. (1) 当点D 与点C 重合时(如图2),请你补全图形.由BAC∠的度数为 ,点E 落在 ,容易得出BE 与DE 之间的数量关系为 ; (2) 当点D 在如图3的位置时,请你画出图形,研究线段BE 与DE 之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.DB CAABC (D )图3图24、在△ABC 中,D 为BC 边的中点,在三角形内部取一点P ,使得∠ABP =∠ACP .过点P 作PE ⊥AC 于点E ,PF ⊥AB 于点F .(1)如图1,当AB =AC 时,判断的DE 与DF 的数量关系,直接写出你的结论; (2)如图2,当AB ≠AC ,其它条件不变时,(1)中的结论是否发生改变?请说明理由.图1 图2AEFPB D CCE AD F P 图1D EBCA5、如图,D是△ABC中AB边的中点,△BCE和△ACF都是等边三角形,M、N分别是CE、CF的中点.(1)求证:△DMN是等边三角形;(2)连接EF,Q是EF中点,CP⊥EF于点P.6、已知:△ABC,△DEF都是等边三角形,M是BC与EF的中点,连接AD,BE.(1)如图1,当EF与BC在同一条直线上时,直接写出AD与BE的数量关系和位置关系;(2)△ABC固定不动,将图1中的△DEF绕点M顺时针旋转α(o0≤α≤o90)角,如图2所示,判断(1)中的结论是否仍然成立,若成立,请加以证明;若不成立,说明理由;(3)△ABC固定不动,将图1中的△DEF绕点M旋转α(o0≤α≤o90)角,作DH⊥B C于点H.设BH=x,线段AB,BE,ED,DA所围成的图形面积为S.当A B=6,DE=2时,求S关于x的函数关系式,并写出相应的x的取值范围.图1图2备用图图1B图2B7.点P 是矩形ABCD 对角线AC 所在直线上的一个动点(点P 不与点A ,C 重合),分别过点A ,C 向直线BP 作垂线,垂足分别为点E ,F ,点O 为AC 的中点.(1)如图1,当点P 与点O 重合时,请你判断OE 与OF 的数量关系; (2)当点P 运动到如图2所示位置时,请你在图2中补全图形并通过证明判断(1)中的结论是否仍然成立;(3)若点P 在射线OA 上运动,恰好使得∠OEF =30°时,猜想此时线段CF ,AE ,OE 之间有怎样的数量关系,直接写出结论不必证明.8. 在矩形ABCD 中,将对角线CA 绕点C 逆时针旋转得到CE ,连接AE ,取AE 的中点F ,连接BF ,DF . (1)若点E 在CB 的延长线上,如图1.①依题意补全图1;②判断BF 与DF 的位置关系并加以证明;(2)若点E 在线段BC 的下方,如果∠ACE =90°,∠ACB =28°,AC =6,请写出求BF 长的思路.(可以..不写出计算结果.......)图1备用图 A B C D A B C D9.在正方形ABCD 中,点P 是射线CB 上一个动点,连接PA ,PD ,点M ,N 分别为BC ,AP 的中点,连接MN 交PD 于点Q .(1)如图1,当点P 与点B 重合时,QPM V 的形状是_____________________; (2)当点P 在线段CB 的延长线上时,如图2. ①依题意补全图2;②判断QPM V 的形状,并加以证明;(3)点P '与点P 关于直线AB 对称,且点P '在线段BC 上,连接AP ',若点Q 恰好在直线AP '上,正方形ABCD 的边长为2,请写出求此时BP 长的思路.(可以不写出计算结果)NA DC图1 图2 图3[求证垂直又相等,等腰直角斜中线]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标准实用文案大全中点模型的构造及应用一、遇到以下情况考虑中点模型:✍任意三角形或四边形中点或与中点有关的线段✍出现两个或三个中点考虑三角形中线定理✍已知直角三角形斜边中点,可以考虑构造斜边中线✍已知等边、等腰三角形底边中点,可以考虑与顶角连接用“三线合一” ✍有些题目不直接给出中点,我们可以挖掘其中隐含中点,比如等腰三角形、等边三角形、直角三角形、平行四边形、圆中圆心是直径中点等可以出现中点的图形通常考虑用中点模型✍三角形中线的交点称为重心,它把中线分的线段比为2:1二、中点模型辅助线构造方法分类(一)倍长中线法(构造全等三角形,八字全等)当已知条件中出现中线时,常常将此中线倍长构造全等三角形解决问题。
如图,在?ABC中,D为BC中点,延长AD到E使AD=DE,连接BE,则有:?ADC≌?EDB。
作用:转移线段和角。
(二)倍长类中线法(与中点有关线段,构造全等三角形,八字全等)当已知条件中出现类中线时,常常将此类中线倍长构造全等三角形解决问题。
如图,在?ABC中,D为BC中点,延长ED到F使ED=DF,连接CF,则有:?BED≌?CFD。
作用:转移线段和角。
标准实用文案大全(三)直角三角形斜边中线法当已知条件中同时出现直角三角形和中点时,常构造直角三角形斜边中线,然后再利用直角三角形斜边的中线性质解决问题。
如下图,在Rt?ABC中,ACB90???,D为AB中点,则有:12CDADBDAB???(四)等腰三角形三线合一当出现等腰三角形时,常隐含有底边中点,将其与顶角连接,可构成三线合一。
在?ABC:(1)AC=BC2)CD平分ACB?3)AD=BD4)CDAB?“知二得二”:比如由(2)(3)可得出(1)(4).也就是说,以上四条语句,任意选择两个作为条件,就可以推出剩下两条。
(五)中位线法当已知条件中同时出现两个及以上中点时,常考虑构造中位线;或出现一个中点,要求证明平行线段或线段倍分关系时也常考虑构造中位线。
如图,在?ABC中,D,E分别是AB、AC边中点,则有DEBC,1DEBC2=。
三、练习(一)倍长中线法1.(2014秋?津南区校级期中)已知:在△ABC中,AD是BC边上的中线,E是AD上一点,且BE=AC,延长BE交AC于F,求证:AF=EF.标准实用文案大全2.(2017?湘潭)如图,在?ABCD中,DE=CE,连接AE并延长交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB=2BC,∠F=36°.求∠B的度数3.(2017江西萍乡,15)如图,在△ABC中,CD是AB边上的中线,E是CD的中点,过点C作AB的平行线交AE的延长线于点F,连接BF.(1)求证:CF=AD;(2)若CA=CB,试判断四边形CDBF的形状,并说明理由.4.(2014?鄂尔多斯)如图1,在?ABCD中,点E是BC边的中点,连接AE 并延长,交DC的延长线于点F.且∠AEC=2∠ABE.连接BF、AC.(1)求证:四边形ABFC的是矩形;(2)在图1中,若点M是BF上一点,沿AM折叠△ABM,使点B恰好落在线段DF上的点B′处(如图2),AB=13,AC=12,求MF的长.标准实用文案大全5.(2017?贵阳,24)(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB ≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为____________;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF 之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.(二)倍长类中线法1.(2016秋?江都区期中)已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.标准实用文案大全2.(2017?重庆,24)在△ABM中,∠ABM=45°,AM⊥BM,垂足为M,点C 是BM延长线上一点,连接AC.(1)如图1,若AB32 ,BC=5,求AC的长;(2)如图2,点D是线段AM上一点,MD=MC,点E是△ABC外一点,EC =AC,连接ED并延长交BC于点F,且点F是线段BC的中点,求证:∠BDF =∠CEF.3.(2017?山西,17)已知:如图,在?ABCD中,延长AB至点E,延长CD 至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.(三)直角三角形斜边中线法1.(2016?乌鲁木齐,9)如上图,在Rt△ABC中,点E在AB上,把这个直角三角形沿CE折叠后,使点B恰好落到斜边AC的中点O处,若BC=3,则折痕CE的长为()A.3B. 23C. 33D.62.(2015?乌鲁木齐,9)如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是()A31?(,) B. 3(1,-)C. 32?(2,)D. 3(2,-2)标准实用文案大全3.(2017?新疆,22)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积4.(2017?北京,22)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.(1)求证:四边形BCDE为菱形;(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.5.(2015北京东城,23)如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA,BC的平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AC=2DE,求sin∠CDB的值(四)等腰三角形三线合一1.(2017?荆州)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°标准实用文案大全2.(2017?陕西,9)如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O 的半径为5,若点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为()A.5B.532C. 52D. 533.(2017?呼和浩特,18)如图,等腰三角形ABC中,BD,CE分别是两腰上的中线.(1)求证:BD=CE;(2)设BD与CE相交于点O,点M,N分别为线段BO和CO的中点,当△ABC的重心到顶点A的距离与底边长相等时,判断四边形DEMN的形状,无需说明理由.(五)中位线法1.(2015?郑州)如图,D是△ABC内一点,BD⊥CD,AD=12,BD=8,CD =6,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.14B.18C.20D.222.(2013?乌鲁木齐,15)如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为________..3.(2017?遵义)如图,△ABC的面积是12,点D、E、F、G分别是BC、AD、BE、CE的中点,则△AFG的面积是()A.4.5B.5C.5.5D.6标准实用文案大全4.(2017?天津,17)如图,正方形ABCD和正方形EFCG的边长分别为3和1,点F,G分别在边BC,CD上,P为AE的中点,连接PG,则PG的长为______..5.(2014春?硚口区期末)如图,已知△ABC的中线BD、CE相交于点O、M、N分别为OB、OC的中点.(1)求证:MD和NE互相平分;(2)若BD⊥AC,EM=22,OD+CD=7,求△OCB的面积.6.(2017?云南,20)如图,△ABC是以BC为底的等腰三角形,AD是边BC 上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF 的面积S.7.(2017?长春)【再现】如图①,在△ABC中,点D,E分别是AB,AC的中点,可以得到:DE∥BC,且1DEBC2 (不需要证明)【探究】如图②,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA的中点,判断四边形EFGH的形状,并加以证明.【应用】在(1)【探究】的条件下,四边形ABCD中,满足什么条件时,四边形EFGH是菱形?你添加的条件是:__________..(只添加一个条件)(2)如图③,在四边形ABCD中,点E,F,G,H分别是AB,BC,CD,DA 的中点,对角线AC,BD相交于点O.若AO=OC,四边形ABCD面积为5,则阴影部分标准实用文案大全图形的面积和为______.8.(2015?巴东县模拟)如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点.(1)求证:四边形EGFH是菱形;(2)若AB=54,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积.。