邯郸市2020年初中文化学科素养数学测评卷

合集下载

河北省2020年中考数学试题(解析版)

河北省2020年中考数学试题(解析版)

6.如图 1,已知 ABC ,用尺规作它的角平分线.
如图 2,步骤如下,
第一步:以 B 为圆心,以 a 为半径画弧,分别交射线 BA , BC 于点 D , E ; 第二步:分别以 D , E 为圆心,以 b 为半径画弧,两弧在 ABC 内部交于点 P ;
第三步:画射线 BP .射线 BP 即为所求.
81012 变形得:
k
92 1112 1
k 8 10 12
9 19 1111111
8 10 12 8101012
8 10 12 10 .
故选:B.
【点睛】本题考查了平方差公式的应用,灵活运用平方差公式是解题的关键.
10.如图,将 ABC 绕边 AC 的中点 O 顺时针旋转 180°.嘉淇发现,旋转后的 CDA 与 ABC 构成平行四
7.若 a ¹ b ,则下列分式化简正确的是( )
A.
a2 a b2 b
B.
a2 a b2 b
【答案】D
C. a2 a b2 b
D.
1 2
a
a
1b b
2
【解析】
【分析】
根据 a≠b,可以判断各个选项中的式子是否正确,从而可以解答本题.
【详解】∵a≠b,

a b
2 2
a b
,选项
A
错误;
a b
∴a 0;
第二步:分别以
D

E
为圆心,大于
1 2
DE
的长为半径画弧,两弧在
ABC
内部交于点
P

∴ b 1 DE 的长; 2
第三步:画射线 BP .射线 BP 即为所求.
综上,答案为: a 0 ; b 1 DE 的长, 2

2020年河北省中考数学试卷-答案

2020年河北省中考数学试卷-答案

2020年河北省初中学业水平考试
数学答案解析
一、 1.【答案】D
【解析】在同一平面内,画已知直线的垂线,可以画无数条;故选:D . 【考点】在同一平面内,垂直于平行的特征 2.【答案】D 【解析】∵3
x 2x x =(0x ≠)
,32x x x ÷=,∴覆盖的是:÷.故选:D . 【考点】同底数幂的除法运算 3.【答案】C
【解析】①左边多项式,右边整式乘积形式,属于因式分解;②左边整式乘积,右边多项式,属于整式乘法;故答案选C .
【考点】因式分解的定义理解 4.【答案】D
【解析】第一个几何体的三视图如图所示:
第二个几何体的三视图如图所示:
观察可知这两个几何体的主视图、左视图和俯视图都相同,故选D . 【考点】几何体的三视图
()k k k
k k k ++⋅⋅⋅+=个(【考点】幂的运算 【答案】A
【解析】解:如图所示,过P 点作AB 的垂线PH ,
故18065115A ∠'︒-︒︒==.
120
360R
π
⨯⨯
=
【考点】全等三角形的性质和判定,三角形的外角,切线的性质,扇形面积的计算)设W=
作函数图像如下:
3
24
BC C =⨯(2)过A 点向BC 边作垂线,交BC 于点E ,。

河北省邯郸市2020年中考模拟考试数学试卷(6套 含答案)

河北省邯郸市2020年中考模拟考试数学试卷(6套 含答案)

初三第一次模拟考试数学试题一、选择题(本大题共16题,1-8小题,9-16小题,每题3分,共40分) 1.如图,数轴上表示-2的相反数的点是( )A.点PB.点QC.点MD.点N 2.下列运算正确的是( )A.9=±3B. 532)(m m =C. 532a a a =⋅D.222)(y x y x +=+3.如图,AD 与BC 相交于点O,AB//CD,如果∠B =20°,∠D =40° ,那么∠BOD 为( ) A. 40° B.50° C.60° D.70°4.估计18-的值在( )A. 0到1之间B. 1到2之间C.2到3之间D. 3至4之间5.用配方法解一元二次方程0542=-+x x ,此方程可变形( ) A. 9)2(2=+x B. 9)2(2=-x C. 1)2(2=+x D. 1)2(2=-x6.下列各因式分解正确的是( )A.22)1(12-=-+x x xB.)2)(2()2(22+-=-+-x x xC.)2)(2(43-+=-x x x x xD.22)1(22++=+x x x 7.若a>b,则下列式子一定成立的是( ) A.0>+b a B. 0>-b a C.0>ab D.0>ba8.△ABC 中,已知AB=8,∠C=90°,∠A=30°,DE 是中位线,则DE 的长是( ) A. 4 B. 5 C.32 D. 2 9.若关于x 的一元一次不等式组⎩⎨⎧>-<-01a x x 无解,则a 的取值范围是( )A.1≥aB.1>aC. 1≤aD.1-<a10.已知点A ),(11y x ,B ),(22y x 是反比例函数xy 2=图像上的点,若210x x >>,则一定成立的是( )A.021>>y yB.210y y >> B.C.210y y >>D.120y y >>11.如图是王老师去公园锻炼及原路返回家的距离y (千米)与时间t (分钟)之间的函数图像,根据图像信息,下列说法正确的是( ) A. 王老师去时所用时间少于回家的时间B. B. 王老师在公园锻炼了40分钟C. 王老师去时走上坡路,回家时走下坡路D. D.王老师去时速度比回家时的速度慢12.如图,CD 是Rt △ABC 斜边AB 边上的高,将△BCD 沿CD 折叠,B 点恰好落在AB 的中点E 处,则∠A 等于( )A. 60°B.45°C. 30°D.25° 13.如图,在Rt △ABC中,∠C=90°,AC=4cm ,BC=6cm ,动点P 从点C 沿CA,以1cm/s 的速度向点A 运动,同时动点O 从点C 沿CB,以2cm/s 的速度向点B 运动,其中一个动点运动到终点时,另一个动点也停止运动。

河北省邯郸市2020年中考数学试卷(II)卷

河北省邯郸市2020年中考数学试卷(II)卷

河北省邯郸市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2016·聊城) -2的相反数是()A . 0B . 2C . -2D . 42. (2分) (2018九上·天台月考) 利用圆内接正多边形,可以设计出非常有趣的图案.下列图案中,是中心对称图形,但不是轴对称图形的是()A .B .C .D .3. (2分)上海原世博园区最大单体建筑“世博轴”,将被改造成为一个综合性的商业中心,该项目营业面积将达130000平方米,这个面积用科学记数法表示为()平方米A . 1.3×104B . 0.13×105C . 1.3×105D . 0.13×1064. (2分)某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有()A . 8B . 9C . 10D . 115. (2分)(2018·东营) 为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A . 众数是100B . 中位数是30C . 极差是20D . 平均数是306. (2分) (2017八上·夏津期中) 直线y=3x+6与两坐标轴围成的三角形的面积为()A . 6B . 12C . 3D . 247. (2分)下列方程中,有两个不等实数根的是()A . x2=3x-8B . x2+5x=-10C . 7x2-14x+7=0D . x2-7x=-5x+38. (2分) (2018八上·台州期中) 如图,已知∠1=∠2,则下列条件中,不能使△ABC≌△DBC成立的是()A . AB=CDB . AC=BDC . ∠A=∠DD . ∠ABC=∠DCB9. (2分)(2020·新疆) 四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图形的面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为()A .B .C .D .10. (2分) (2018九上·晋江期中) 如图是某商场一楼与二楼之间的手扶电梯示意图,其中AB、CD分别表示一楼、二楼地面的水平线,电梯坡面BC的坡度i=1:,则电梯坡面BC的坡角α为()A . 15°B . 30°C . 45°D . 60°11. (2分) (2019八下·长沙期末) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc >0;②2a+b=0;③若m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2 ,且x1≠x2 ,则x1+x2=2.其中,符合题意结论的个数为()A . 1B . 2C . 3D . 412. (2分)等腰梯形的下底是上底的3倍,高与上底相等,这个梯形的腰与下底所夹角的度数为().A . 30°B . 45°C . 60°D . 135°二、填空题 (共4题;共5分)13. (1分)(2016·广州) 分解因式:2a2+ab=________.14. (1分)(2019·徐汇模拟) 在Rt△ABC中,∠C=90°,AB=5,BC=3,则sinA=________.15. (1分) (2019九上·朝阳期中) 如图是测量玻璃管内径的示意图,点D正对10mm刻度线,点A正对30mm 刻度线,DE∥AB.若量得AB的长为6mm,则内径DE的长为________mm。

2020年河北省邯郸市中考数学模拟试卷(原卷+解析卷)

2020年河北省邯郸市中考数学模拟试卷(原卷+解析卷)

试题解析一.选择题(共12小题)1.下列几个数中,属于无理数的数是()A.0.1B.√4C.πD.−3 4【解答】解:A.0.1是有限小数,属于有理数,故本选项不合题意;B.√4=2,是整数,属于有理数,故本选项不合题意;C.π是无理数,故本选项符合题意;D.−34是分数,属于有理数,故本选项不合题意.故选:C.2.花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可用科学记数法表示为()A.3.7×10﹣5克B.3.7×10﹣6克C.37×10﹣7克D.3.7×10﹣8克【解答】解:1克=1000毫克,将0.000037毫克用科学记数法表示为:3.7×10﹣8克.故选:D.3.数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,则a的值是()A.3B.4.5C.6D.18【解答】解:∵数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,∴9﹣a=2a﹣9,解得:a=6,故选:C.4.下列函数中,y是x的反比例函数的是()A.y=2x B.y=−23x﹣1C.y=22x−1D.y=﹣x【解答】解:A、y=2x是正比例函数,故本选项不符合题意.B、y是x的反比例函数,故本选项符合题意;C、y不是x的反比例函数,故本选项不符合题意;D、y=﹣x是正比例函数,故本选项不符合题意;故选:B.5.函数y =√x−1x的自变量x 的取值范围是( )A .x >1B .x ≥1C .x ≥1且x ≠0D .x ≤1【解答】解:根据题意得:x ﹣1≥0且x ≠0, 解得:x ≥1. 故选:B . 6.方程2x−3=12x+1的解为( )A .x =3B .x =2C .x =−53D .x =−12【解答】解:去分母得:4x +2=x ﹣3, 解得:x =−53,经检验x =−53是分式方程的解, 故选:C .7.已知二元一次方程组{x +y =12x +4y =9,则x 2−2xy+y 2x 2−y 2的值是( )A .﹣5B .5C .﹣6D .6【解答】解:{x +y =1①2x +4y =9②,②﹣①×2得,2y =7,解得y =72, 把y =72代入①得,72+x =1,解得x =−52,∴x 2−2xy+y 2x 2−y 2=(x−y)2(x+y)(x−y)=x−y x+y=−52−72−52+72=−6故选:C .8.若2m =a ,32n =b ,m ,n 为正整数,则23m +10n 的值等于( ) A .a 3b 2B .a 2b 3C .a 3+b 2D .3a +2b【解答】解:∵32n =b , ∴25n =b , ∴210n =b 2,∴23m +10n =(2m )3•210n =a 3b 2, 故选:A .9.A ,B 两地相距180km ,新修的高速公路开通后,在A ,B 两地间行驶的长途客车平均车速提高了50%,而从A 地到B 地的时间缩短了1h .若设原来的平均车速为xkm /h ,则根据题意可列方程为( ) A .180x −180(1+50%)x =1 B .180(1+50%)x −180x =1 C .180x−180(1−50%)x=1D .180(1−50%)x−180x=1【解答】解:设原来的平均车速为xkm /h ,则根据题意可列方程为:180x−180(1+50%)x=1.故选:A .10.由二次函数y =2(x ﹣3)2+1可知( ) A .其图象的开口向下 B .其图象的对称轴为x =﹣3C .其最大值为1D .当x <3时,y 随x 的增大而减小 【解答】解: ∵y =2(x ﹣3)2+1,∴抛物线开口向上,对称轴为x =3,顶点坐标为(3,1), ∴函数有最小值1,当x <3时,y 随x 的增大而减小, 故选:D .11.二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y =−ax 与正比例函数y =bx 在同一坐标系内的大致图象是( )A .B .C .D .【解答】解:∵二次函数y =ax 2+bx +c 的图象开口方向向下, ∴a <0,对称轴在y 轴的左边, ∴x =−b2a <0, ∴b <0,∴反比例函数y =−a x的图象在第一三象限, 正比例函数y =bx 的图象在第二四象限, 故选:D .12.由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色下列说法正确的是( )A .两个转盘转出蓝色的概率一样大B .如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性变小了C .先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率不同D .游戏者配成紫色的概率为16【解答】解:A 、A 盘转出蓝色的概率为12、B 盘转出蓝色的概率为13,此选项错误;B 、如果A 转盘转出了蓝色,那么B 转盘转出蓝色的可能性不变,此选项错误;C 、由于A 、B 两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;D 、画树状图如下:由于共有6种等可能结果,而出现红色和蓝色的只有1种, 所以游戏者配成紫色的概率为16,故选:D .二.填空题(共6小题)13.若点(m +3,﹣4)和点(﹣4,n +1)关于x 轴对称,则m +n = ﹣4 . 【解答】解:∵点(m +3,﹣4)和点(﹣4,n +1)关于x 轴对称, ∴m +3=﹣4,n +1=4, 解得:m =﹣7,n =3, 则m +n =﹣4. 故答案为:﹣4.14.分解因式:4m 2﹣16n 2= 4(m +2n )(m ﹣2n ) . 【解答】解:原式=4(m +2n )(m ﹣2n ). 故答案为:4(m +2n )(m ﹣2n )15.已知:y =y 1+y 2,y 1与x 2成正比例,y 2与x 成反比例,且x =1时,y =3;x =﹣1时,y =1,则x =−12时,y = −32 . 【解答】解:∵y 1与x 2成正比例, ∴y 1=ax 2成正比例, ∵y 2与x 成反比例, ∴y 2=bx ∵y =y 1+y 2, ∴y =ax 2+bx,∵x =1时,y =3;x =﹣1时,y =1, ∴{3=a +b 1=a −b ,解得{a =2b =1,∴y =2x 2+1x ,则x =−12时,y =2×14−2=−32. 故答案为:−32.16.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数会比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有 (2m +3) 人(用含有m 的代数式表示)【解答】解:∵设会弹古筝的有m 人,则会弹钢琴的人数为:m +10, ∴该班同学共有:m +m +10﹣7=2m +3, 故答案为:(2m +3). 17.观察下面的变形规律:11×2=1−12,12×3=12−13,13×4=13−14,……(1)若n 为正整数,请你猜想:1n(n+1)=1n−1n+1;(2)求和:11×2+12×3+13×4+⋯+12019×2020= 20192020.【解答】解:(1)若n 为正整数,1n(n+1)=1n−1n+1,故答案为:1n −1n+1;(2)11×2+12×3+13×4+⋯+12019×2020=1−12+12−13+13−14+⋯+12019−12020 =1−12020 =20192020, 故答案为:20192020.18.某公司在农村租用了720亩闲置土地种植了乔木型、小乔木型和灌木型三种茶树.为达到最佳种植收益,要求种植乔木型茶树的面积是小乔木型茶树面积的2倍,灌木型茶树的面积不得超过乔木型茶树面积的75倍,但种植乔木型茶树的面积不得超过270亩.到茶叶采摘季节时,该公司聘请当地农民进行采摘,每人每天可以采摘0.4亩乔木型茶叶,或者采摘0.5亩小乔木型茶叶,或者采摘0.6亩灌木型茶叶,若该公司聘请一批农民恰好20天能采摘完所有茶叶,则种植乔木型茶树的面积是 260 亩.【解答】解:设种植小乔木型茶树x 亩,则种植乔木型茶树2x 亩,灌木型茶树(720﹣3x )亩,依题意,得:{720−3x ≤75×2x 2x ≤270,解得:124429≤x ≤135.设有a 个工人来采摘茶叶,则2x 0.4a+x 0.5a+720−3x 0.6a=20,整理,得:x +600=10a , ∴a =60+x10, ∵a 为正整数, ∴x 10为整数,∴x 为10的倍数, 又∵124429≤x ≤135,∴x =130, ∴2x =260. 故答案为:260. 三.解答题(共5小题)19.先化简,再求值:(2x 2x+1−14x 2+2x )÷(1−4x 2+14x),其中x =3.【解答】解:原式=4x 2−12x(2x+1)÷4x−4x 2−14x =(2x+1)(2x−1)2x(2x+1)•4x −(2x−1)2=−22x−1, 当x =3时,原式=−25.20.已知关于x ,y 的二元一次方程组{x +y =3①2x −3y =3k +4②的解满足x +2y >4,求k 的取值范围.【解答】解:{x +y =3①2x −3y =3k +4②,①×3+②得5x =3k +13 解得x =3k+135, ①×2﹣②得5y =2﹣3k 解得y =2−3k5, ∵方程组{x +y =3①2x −3y =3k +4②的解满足x +2y >4,∴3k+135+2(2−3k)5>4,∴k 的取值范围是k <﹣1.21.如图,已知反比例函数y =kx 的图象与一次函数y =x +b 的图象交于点A (1,4),点B (﹣4,n ). (1)求n 和b 的值; (2)求△OAB 的面积;(3)直接写出一次函数值大于反比例函数值的自变量x 的取值范围.【解答】解:(1)把A 点(1,4)分别代入反比例函数y =kx ,一次函数y =x +b , 得k =1×4,1+b =4, 解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =4x 的图象上, ∴n =4−4=−1;(2)如图,设直线y =x +3与y 轴的交点为C , ∵当x =0时,y =3, ∴C (0,3),∴S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.22.如图,在△ABC 中,∠B =90°,cosA =57,D 是AB 上的一点,连接DC ,若∠BDC =60°,BD =2√3.试求AC 的长.【解答】解:在△ABC 中,∠B =90°,cosA =57, ∴AB AC=57.设:AB =5x ,AC =7x , 由勾股定理 得BC =2√6x ,在Rt △DBC 中,∠BDC =60°,BD =2√3, ∴BC =BD tan60°=2√3×√3=6, ∴2√6x =6, 解得 x =√62, ∴AC =7x =7√62.23.为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,若两车合作,各运12趟才能完成,需支付运费共4800元.若甲、乙两车单独运完此堆垃圾,则乙车所运趟数是甲车的2倍,已知乙车每趟运费比甲车少200元. (1)分别求出甲、乙两车每趟的运费; (2)若单独租用甲车运完此堆垃圾,需多少趟?(3)若同时租用甲、乙两车,则甲车运x 趟,乙车运y 趟,才能运完此堆垃圾,其中x ,y 均为正整数.①当x =10时,y = 16 ;当y =10时,x = 13 ; ②用含x 的代数式表示y ; 探究:(4)在(3)的条件下:①用含x 的代数式表示总运费w ;②要想总运费不大于4000元,甲车最多需运多少趟?【解答】(1)解:设甲、乙两车每趟的运费分别为m 元、n 元, 由题意得{m −n =20012(m +n)=4800解得:{m =300n =100答:甲、乙两车每趟的运费分别为300元、100元;(2)解:设单独租用甲车运完此堆垃圾,需运a 趟,由题意得 12(1a +12a)=1,解得 a =18,经检验a =18是原方程的解;答:单独租用甲车运完此堆垃圾,需运18趟; (3)①由题意得:x 18+y 36=1,∴当x =10时,y =16; 当y =10时,x =13; 故答案为:16,13. ②∵x 18+y 36=1,∴y =36﹣2x ,(4)①w =300x +100y =300x +100(36﹣2x ) =100x +3600,(0<x <18,且x 为正整数), ②由题意,得100x +3 600≤4 000. ∴x ≤4.答:甲车最多需运4趟.。

2020年河北省初中毕业生升学文化课考试数学试题(PDF版)

2020年河北省初中毕业生升学文化课考试数学试题(PDF版)

D CB A -3-2-1012-3-2-1012-3-2-1012-3-2-10122020年河北省初中毕业生升学文化课考试数学试题注意事项:1、本卷共5页,总分120分,考试时间120分钟。

2、答案请用黑色钢笔或圆珠笔直接写在答题纸上题号一二三总分得分卷Ⅰ(选择题,共42分)一、选择题(本大题共16个小题,共42分,1~10小题,每小题3分;11~16小题,每小题2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在0,-1,0.5,2(1)-四个数中,最小的数是………………………………………【】A.0 B.-1 C.0.5 D.2(1)-2.在圆的面积计算公式S=πR 2中,变量是………………………………………………【】A.S B.R C.π,R D.S ,R 3.如图,在△ABC 中,∠A=36°,AB=AC,BD 平分∠ABC,则图中等腰三角形的个数是…………………………【】A.0个B.1个C.2个D.3个4.下列等式成立的是………………………………………………………………………【】A.(-x-1)2=(x-1)2B.(-x-1)2=(x+1)2C.(-x+1)2=(x+1)2D.(x+1)2=(x-1)25.现有一列式子:①552﹣452;②5552﹣4452;③55552﹣44452…则第⑧个式子的计算结果用科学记数法可表示为………………………………………………………………【】A.1.1111111×1016 B.1.1111111×1027C.1.111111×1056D.1.1111111×10176.函数y=63+x 中自变量x 的取值范围在数轴上表示正确的是……………………【】A B C D7.下列说法正确的是……………………………………………………………………【】A.调查石家庄民心河的水质情况,采用抽样调查的方式B.数据2,0,-2,1,3的中位数是-2C.可能性是99%的事件在一次试验中一定会发生D.从2000名学生中随机抽取100名学生进行调查,样本容量为2000名学生8.9的平方根是…………………………………………………………………………【】A.3 B.﹣3 C.3和﹣3 D.3±9.如图,∠B 的同位角可以是……………………………………………………………【】A.∠1B.∠2C.∠3D.∠410.在△ABC 和△A 1B 1C 1中,下列四个命题:(1)若AB =A 1B 1,AC =A 1C 1,∠A =∠A 1,则△ABC ≌△A 1B 1C 1;(2)若AB =A 1B 1,AC =A 1C 1,∠B =∠B 1,则△ABC ≌△A 1B 1C 1;(3)若∠A =∠A 1,∠C =∠C 1,则△ABC ∽△A 1B 1C 1;(4)若AC :A 1C 1=CB :C 1B 1,∠C =∠C 1,则△ABC ∽△A 1B 1C 1.其中真命题的个数为…………………………………………………………………【】A.4个B.3个C.2个D.1个CBAPD C B A DCBA PO A BCD P11.已知四边形ABCD 是平行四边形,再从①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.在四个条件中,选两个作为补充条件后,使得四边形ABCD 是正方形,现有下列四种选法,其中错误的是…………………………………………………………………【】A.选①② B.选②③ C.选①③ D.选②④12.下列三个函数:①1+=x y ;②xy 1=;③12+-=x x y .其图象既是轴对称图形,又是中心对称图形的个数有……………………………………………………………【】A.0个B.1个C.2个D.3个13.如图,在△ABC 中,BC>AB>AC.甲、乙两人想在BC 上取一点P ,使得∠APC=2∠ABC ,其作法如下:甲:作AB 的垂直平分线,交BC 于P 点,则P 即为所求.乙:以B 为圆心,AB 长为半径画弧,交BC 于P 点,则P 即为所求.对于两人的作法,下列选项正确的是……………………………………【】A .甲正确,乙错误B .甲错误,乙正确C .两人都对D .两人都错14.矩形ABCD 中,AB=10,AD=4,点P 是CD 上的动点,当∠APB=90°时,DP 的长是…………………【】A.2B.6C.2或6D.2或815.如图,在矩形ABCD 中,AB=6,AD=3,动点P 满足S △PAB =31S 矩形ABCD ,则点P 到A、B 两点间距离之和PA+PB的最小值为…………………………………………………【】A.132B.102C.1102+D.2102+16.如图,直线AB、CD 相交于点O,∠AOC=30°,半径为2cm 的P 的圆心在射线OA 上,且与点O 的距离为6cm,如果P 以1cm/s 的速度沿直线AB 由A 向B 的方向移动,那么P 与直线CD 相切时☉P 运动的时间是……………………………………………【】A.3秒或10秒B.3秒或8秒C.2秒或8秒D.2秒或10秒卷II(非选择题,共78分)二、填空题(本大题有3个小题,共12分,17~18小题各3分;19小题有2个空,每空3分,把答案写在题中横线上)17.23--=.18.已知△ABC 与△DEF 相似且面积比为4︰25,则△DEF 与△ABC 的相似比为.19.对于三个数a 、b 、c ,用{},,M a b c 表示这三个数的中位数,用{}max ,,a b c 表示这三个数中最大数,例如:{}2,1,01M --=-,{}max 2,1,00--=,{}(1)max 2,1,1(1)a a a a ≥-⎧--=⎨-<-⎩.解决问题:{}sin 45,cos60,tan 60M ︒︒︒=,如果{}max 3,53,263x x --=,则x 的取值范围为.A 、B 两款运动鞋销售量统计图一月二月三月月份销售量(双)A 、B 两款运动鞋总销售额统计图一月二月三月月份总销售额(万元)80604020642A B506052652645?BAOyx三、解答题(本大题有7个小题,共66分。

2020年河北省初中毕业生升学文化课考试数学试卷(含答案)

2020年河北省初中毕业生升学文化课考试数学试卷(含答案)

2020年河北省初中毕业生升学文化课考试数 学 试 卷一、选择题(本大题共有16个小题,共42分。

1﹣10小题各3分,11﹣16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、如图 1,在平面内作已知直线m 的垂线,可作垂线的条数有( )A . 0条B .1条C .2条D .无数条2、墨迹覆盖了等式“3xx =2x (x ≠0)”的运算符号,则覆盖的是( ) A . + B .- C .× D .÷3、对于① x ﹣3xy =x (1﹣3y ),② (x +1)(x ﹣3)=2x +2x ﹣3,从左到右的变形,表述正确的是( )A . 都是因式分解B . 都是乘法运算C . ①是因式分解,②是乘法运算D . ①是乘法运算,②是因式分解4、图2的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图, 正确的是( )A . 仅主视图不同B . 仅俯视图不同C . 仅左视图不同D . 主视图、左视图和俯视图都相同5、图3是小颖前三次购买苹果单价的统计图,第四次又买的苹果的单价是a 元/千克,发现这四个单价的中位数恰好也是众数,则a =( )A . 9B .8C .7D .66、如图4﹣1,已知∠ABC ,用尺规作它的角平分线。

如图4﹣2,步骤如下: 第一步:以B 为圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ;第二步:分别以D ,E 为圆心,以b 为半径画弧,两弧在∠ABC 内部交于点P ; 第三步:画射线BP 。

射线 BP 即为所求。

下列正确的是( )A .a ,b 均无限制B .a >0,b >21DE 的长 C .a 有最小限制,b 无限制 D .a ≥0,b <21DE 的长7、若a ≠b ,则下列分式化简正确的是( )A .22++b a =b aB .22--b a =b aC .22b a =b a D .b a2121=b a8、如图5所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是( )A .四边形NPMQB .四边形NPMRC .四边形NHMQD .四边形NHMR9、若k)()(1111922-⋅-=8×10×12,则k =( )A . 12B . 10C . 8D . 6 10、如图 6,将△ABC 绕边AC 的中点O 顺时针旋转180°. 嘉淇发现,旋转后的△CDA 与△ABC 构成平行四边形,并推理如下:小明为保证嘉淇的推理更严谨,想在方框中“∵CB =AD ,”和“∴四边形……”之间作补充.下列正确的是( )A . 嘉淇推理严谨,不必补充B . 应补充:且AB =CDC . 应补充:且AB ∥CD D . 应补充:且OA =OC 11、若k 为正整数,则=( )A .kk 2 B .12+k k C .2kk D .kk +212、如图 7,从笔直的公路l 旁一点P 出发,向西走6km 到达l ,从P 出发向北走 6km 也到达 l ,下面说法错误的是( )A .从P 出发向北偏西45°走3km 到达lB .公路l 的走向是南偏西45°C .公路l 的走向是北偏东45°D .从P 出发向北走3km 后,在向西走3km 到达l13.已知光速为300000千米/秒,光经过t 秒(1≤t ≤10)传播的距离用科学记数法表示为a ×n10千米,则n 可能为( )A .5B .6C .5或6D .5或6或7 14、有一道题目:“已知:点O 为△ABC 的外心,∠BOC =130°,求∠A ”。

邯郸市2020版中考数学试卷(I)卷

邯郸市2020版中考数学试卷(I)卷

邯郸市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·宁德期中) -3的相反数是()A . 3B .C .D .2. (2分)(2012·杭州) 下列计算正确的是()A . (﹣p2q)3=﹣p5q3B . (12a2b3c)÷(6ab2)=2abC . 3m2÷(3m﹣1)=m﹣3m2D . (x2﹣4x)x﹣1=x﹣43. (2分)(2020·重庆模拟) 如图,AB是⊙O的直径,且经过弦CD的中点H,已知tan∠CDB=,BD=10,则OH的长度为()A .B . 1C .D .4. (2分) (2015四下·宜兴期末) 下列哪个不等式组的解集在数轴上的表示如图所示()A .B .C .D .5. (2分)某商品的外包装盒的三视图如图所示,则这个包装盒的体积是()A . 200πcm3B . 500πcm3C . 1000πcm3D . 2000πcm36. (2分)从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为()A .B .C .D .7. (2分)(2019·金台模拟) 如图,在平面直角坐标系中,▱OABC的顶点A在x轴上,顶点B的坐标为(6,4).若直线l经过点(1,0),且将▱OABC分割成面积相等的两部分,则直线l的函数解析式是()A . y=x+1B .C . y=3x﹣3D . y=x﹣18. (2分)(2019·邹平模拟) 如图,小明站在自家阳台上A处观测到对面大楼底部C的俯角为a,A处到地面B处的距离AB=35m,则两栋楼之间的距离BC(单位:m)为()A . 35tanαB . 35sinαC .D .9. (2分)(2017·官渡模拟) 如图,在平面直角坐标系xOy中,⊙A切y轴于点B,且点A在反比例函数y=(x>0)的图象上,连接OA交⊙A于点C,且点C为OA中点,则图中阴影部分的面积为()A . 4 ﹣B . 4C . 2D . 210. (2分)(2016·南岗模拟) 一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,快车到达乙地后,快车停止运动,慢车继续以原速匀速驶往甲地,直至慢车到达甲地为止,设慢车行驶的时间为t(h),两车之间的距离为s(km),图中的折线表示s与t之间的函数关系.根据图象提供的信息有下列说法:①甲、乙两地之间的距离为900km;②行驶4h两车相遇;③快车的速度为150km/h;④行驶6h两车相距400km;⑤相遇时慢车行驶了240km;⑥快车共行驶了6h.其中符合图象描述的说法有()个.A . 3B . 4C . 5D . 6二、填空题 (共6题;共7分)11. (1分)(2018·威海) 分解因式:﹣ a2+2a﹣2=________.12. (1分)如图,将△ABC平移到△A′B′C′的位置(点B′在AC边上),若∠B=55°,∠C=100°,则∠AB′A′的度数为________13. (2分)用一根长16cm的细铁丝围成一个等腰三角形,设三角形的底边长为ycm,腰长为xcm,则底边长y与腰长x的函数关系式为________,自变量x的取值范围为________.14. (1分)(2017·微山模拟) 为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是________.15. (1分)一个容器盛满纯药液40L ,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L ,则每次倒出的液体是________L .16. (1分) (2018九上·天河期末) 如图5,在△ABC中,∠BAC=60°,将△ABC绕着点A顺时针旋转40°后得到△ADE,则∠BAE的度数为________.三、解答题 (共8题;共82分)17. (10分)计算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

邯郸市2020年初中文化学科素养数学测评卷
姓名:________ 班级:________ 成绩:________
一、选择题(本题有6小题,每小题5分,共30分.请选出各题中一个 (共6题;共30分)
1. (5分)下表中,若平均数为2,则x等于().
A . 0
B . 1
C . 2
D . 3
2. (5分)(2020·奉化模拟) 如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,∠AOB=60°,点C是的中点,且CD=5m,则这段弯路所在圆的半径为()
A . (20-10 )m
B . 20m
C . 30m
D . (20+10 )m
3. (5分)(2020·奉化模拟) 已知函数y=2019-(x-m)(x-n),并且a,b是方程2019-(x-m)(x-n)=0的两个根,则实数m,n,a,b的大小关系可能是()
A . m<a<b<n
B . m<a<n<b
C . a<m<b<n
D . a<m<n<b
4. (5分)(2020·奉化模拟) 如图,Rt△ABC中,AB⊥BC,AB=4,BC=3,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()
A . 1
B . 1.6
C . -2
D . 2
5. (5分)(2020·奉化模拟) 设P是边长为a的正三角形内的一点,P到三边的距离分别为x,y,z(x≤y≤z),若以x,y,z为边可以组成三a角形,则z应满足的条件为()
A . a≤z< a
B . a≤z< a
C . a≤z< a
D . a≤z< a
6. (5分)(2020·奉化模拟) 如图,矩形ABCD中,AD=6,AB=4,E为AB的中点,将△ADE沿DE翻折得到△FDE,
延长EF交BC于G,FH⊥BC,垂足为H,连接BF、DG。

以下结论:①BF∥ED;②BH=3FH;③tan∠GEB= ;④S△BFG=0.6;其中正确的个数是()
A . 1
B . 2
C . 3
D . 4
二、填空题(本题有6小题,每小题5分,共30分) (共6题;共30分)
7. (5分)不等式的最小整数解是________.
8. (5分)若单项式﹣3x4a﹣by2与3x3ya+b是同类项,则这两个单项式的积为________.
9. (5分)(2019·鄂尔多斯模拟) 下列说法正确的是________.(填写正确说法的序号)
①在角的内部,到角的两边距离相等的点在角的平分线上;②一元二次方程x2﹣3x=5无实数根;③ 的平方根为±4;④了解北京市居民”一带一路”期间的出行方式,采用抽样调查方式;⑤圆心角为90°的扇形面积是π,则扇形半径为2.
10. (5分)(2020·奉化模拟) 如图,在△ABC中,∠C=60°,将边AB绕点A顺时针旋转α(0°<α<90°)得到AD,边AC绕点A逆时针旋转β(0°<β<90°)得到AE,连结DE。

若AB=3,AC=2,且α+β=B,则DE=________。

11. (5分)(2020·奉化模拟) 向一个三角形内加入2016个点,加上原三角形的三个点共计2019个点,用剪刀最多可以剪出________个以这2019个点为顶点的三角形。

12. (5分)(2020·奉化模拟) 如图,菱形OABC中,∠OCB=60°,点C坐标为(-2,0),过点D(2,0)作直线l分别交AO、OB于点G、F,交BC于E,点E在反比例函数y= (x<0)的图象上,若△BEF和△ODG(即图中两阴影部分) 的面积之比为4:3,则k值为________ 。

三、解答题(本题有3大题,第13题12分,第14题14分,第15 (共3题;共40分)
13. (12分)(2019·惠来模拟) 在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O , B , C的对应点分别为D , E ,F .
(1)如图①,当点D落在BC边上时,求点D的坐标;
(2)如图②,当点D落在线段BE上时,AD与BC交于点H .
①求证△ADB≌△AOB;
②求点H的坐标.
(3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可).
14. (14分)(2020·锦州模拟) [阅读理解]
构造“平行八字型”全等三角形模型是证明线段相等的一种方法,我们常用这种方法证明线段的中点问题.
例如:如图,D是△ABC边AB上一点,E是AC的中点,过点C作CF∥AB,交DE的延长线于点F,则易证E是线段DF的中点.
[经验运用]
请运用上述阅读材料中所积累的经验和方法解决下列问题.
(1)如图1,在正方形ABCD中,点E在AB上,点F在BC的延长线上,且满足AE=CF,连接EF交AC于点G.
求证:①G是EF的中点;
②CG= BE;
(2)如图2,在矩形ABCD中,AB=2BC,点E在AB上,点F在BC的延长线上,且满足AE=2CF,连接EF交AC于点G.探究BE和CG之间的数量关系,并说明理由;
(3)如图3,若点E在BA的延长线上,点F在线段BC上,DF交AC于点H,BF=2,CF=1,( 2)中的其它条件不变,请直接写出GH的长.
15. (14分) (2019九上·深圳期中) 如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边向OA终点A运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ =y.
(1)直接写出y关于t的函数解析式及t的取值范围:________;
(2)当PQ=3 时,求t的值;
(3)连接OB交PQ于点D,若双曲线经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.
参考答案
一、选择题(本题有6小题,每小题5分,共30分.请选出各题中一个 (共6题;共30分) 1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
二、填空题(本题有6小题,每小题5分,共30分) (共6题;共30分)
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
三、解答题(本题有3大题,第13题12分,第14题14分,第15 (共3题;共40分)
13-1、
13-2、
13-3、
14-3、15-1、
15-2、15-3、。

相关文档
最新文档