人教版数学九年级上册《第二十二章 二次函数》过关自测卷(附答案)
人教版数学九年级上册第二十二章 二次函数达标测试卷(含答案)
二次函数自我评估(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分) 1. 下列函数中,属于二次函数的是( ) A. y =2x +lB. y =(x ﹣l )2﹣x 2C. y =5x 2D. y =22x 2. 在平面直角坐标系中,将二次函数y =x 2的图象先向右平移3个单位长度,再向上平移1个单位长度,所得新抛物线的解析式为( ) A. y =(x +3)2+1B. y =(x ﹣3)2﹣1C. y =(x +3)2﹣1D. y =(x ﹣3)2+13. 某抛物线的形状、开口方向与y =12x 2﹣4x +3相同,顶点坐标为(﹣2,1),则该抛物线的解析式为( ) A .y =12(x ﹣2)2+1 B .y =12(x +2)2﹣1C .y =12(x +2)2+1D .y =-12(x +2)2+14. 二次函数y =ax 2+bx +c 的部分图象如图所示,可知关于x 的方程ax 2+bx +c =0的所有根的积为( ) A .﹣4 B .4 C .﹣5 D .5第4题图 第8题图 第9题图 第10题图 5. 关于二次函数y =3(x +1)2﹣7的图象及性质,下列说法正确的是( ) A. 对称轴是x =1 B. 当x =﹣1时,y 取得最小值,且最小值为﹣7 C. 顶点坐标为(﹣1,7) D. 当x <﹣1时,y 随x 的增大而增大6. 某种商品每件的进价为30元,在某时间段内若以每件x 元出售,可卖出(100﹣x )件.若想获得最大利润,则售价x 应定为( )A .35元B .45元C .55元D .65元7. 一次函数y =bx +a (b ≠0)与二次函数y =ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图象可能是( )A B C D8. 板球是以击球、投球和接球为主的运动,该项目主要锻炼手眼的协调能力,集上肢动作控制能力、技巧与力量为一体的综合性运动.如图是运动员击球过程中板球运动的轨迹示意图,板球在点A 处击出,落地前的点B 处被对方接住,已知板球经过的路线是抛物线,其解析式为y =132x 2+14x +1,则板球运行中离地面的最大高度为( )A. 1B.32C.83D. 49. 如图,在△ABC 中,∠B =90°,AB =4 cm ,BC =8 cm ,动点P 从点A 出发,沿边AB 向点B 以1 cm/s 的速度移动(不与点B 重合),同时动点Q 从点B 出发,沿边BC 向点C 以2 cm/s 的速度移动(不与点C 重合).当四边形APQC 的面积最小时,经过的时间为( ) A. 1 s B. 2 s C. 3 s D. 4 s 10. 已知抛物线y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的顶点坐标是(﹣1,m ),与x 轴的一个交点在点(﹣3,0)和(﹣2,0)之间,其部分图象如图所示,有下列结论:①abc >0;②关于x 的方程ax 2+bx +c ﹣m =2没有实数根;③3a +c >0.其中正确的个数是( ) A .3 B .2 C .1 D .0二、填空题(本大题共6小题,每小题4分,共24分) 11. 抛物线y =x 2+2x +c 的对称轴是 . 12. 当a = 时,函数y =(a ﹣1)21a x+x ﹣3是二次函数.13. 若二次函数y =x 2﹣4x +n 的图象与x 轴只有一个公共点,则实数n = .14. 点P 1(1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y =﹣x 2+2x +c 的图象上,则y 1,y 2,y 3的大小关系是 .15. 如图,将抛物线y 1=(x +1)2﹣3向右平移2个单位长度得到抛物线y 2,则阴影部分的面积为 .第15题图 第16题图16. 圆形喷水池中心O 处有一雕塑OA ,从点A 向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x 轴,O 为原点建立平面直角坐标系,点A 在y 轴上,x 轴上的C ,D 为水柱的落水点.已知雕塑OA 的高为116米,水柱最高点与OA 的水平距离为5米,落水点C ,D 之间的距离为22米,则喷出水柱的最大高度为 米.三、解答题(本大题共8小题,共66分)17.(6分)已知二次函数y =x 2﹣4x +c 的图象经过点(3,0). (1)求该二次函数的解析式;(2)点P (4,n )向上平移2个单位长度得到点P ',若点P ′落在该二次函数的图象上,求n 的值. 18.(6分)已知二次函数y =x 2-4mx +3m 2(m ≠0).(1)求证:该二次函数的图象与x 轴总有两个公共点; (2)若m>0,且两交点间的距离为2,求m 的值.19.(8分)购进一款防护PM 2.5的口罩,每件成本是5元,为了合理定价,投放市场试销,经调查可知,销售单价是10元时,每天的销量是50件,而销售单价每降低0.1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y (元)与销售单价x (元)之间的函数解析式; (2)求出销售单价定为多少元时,每天的利润最大,并求出最大利润. 20.(8分)如图,抛物线y =2x 2+bx ﹣2过点A (﹣1,m )和B (5,m ). (1)求b 和m 的值;(2)若抛物线与y 轴交于点C ,求△ABC 的面积.第20题图 第21题图 21.(8分)如图,已知抛物线L 1:y 1=34x 2,将抛物线平移后经过点A (﹣1,0),B (4,0)得到抛物线L 2,与y轴交于点C.(1)求抛物线L2的解析式;(2)已知P为抛物线L2上的动点,过点P作PD⊥x轴,与抛物线L1交于点D,是否存在PD=2OC,若存在,求点P的坐标;若不存在,请说明理由.22.(8分)已知抛物线y=﹣x2+bx+c的顶点坐标为(2,7).(1)求b,c的值;(2)已知点A,B落在抛物线上,点A在第二象限,点B在第一象限.若点B的纵坐标比点A的纵坐标大3,设点B的横坐标为m,求m的取值范围.23.(10分)图①是一座抛物线形拱桥侧面示意图,水面宽AB与桥长CD均为24 m,在到点D的距离为6米的E处,测得桥面到桥拱的距离EF为1.5 m.以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱顶部O离水面的距离;(2)如图②,桥面上方有3根高度均为4 m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m.①求出其中一条钢缆抛物线的解析式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.①②①②第23题图第24题图24.(12分)如图,已知抛物线与x轴交于A(﹣1,0),B两点,顶点为C(1,﹣1),E为对称轴上一点,D,F为抛物线上的点(点D位于对称轴左侧),且四边形CDEF为正方形.(1)求该抛物线的解析式;(2)如图①,求正方形CDEF的面积;(3)如图②,连接DF,与CE交于点M,与y轴交于点N.若P为抛物线上一点,Q为直线BN上一点,且P,Q两点均位于直线DF下方,当△MPQ是以点M为直角顶点的等腰直角三角形时,求点P的坐标.题报第②期 二次函数自我评估参考答案答案详解三、17. 解:(1)将(3,0)代入y =x 2﹣4x +c ,得9﹣12+c =0,解得c =3. 所以该二次函数的解析式为y =x 2﹣4x +3.(2)点P (4,n )向上平移2个单位长度得到点P '(4,n +2). 将P ′(4,n +2)代入y =x 2﹣4x +3,得16﹣16+3= n +2,解得n =1.18.(1)证明:令y =0,则x 2-4mx +3m 2=0(m ≠0).因为Δ=(-4m )2﹣4×3m 2=4m 2>0,所以方程x 2-4mx +3m 2=0(m≠0)有两个不等的实数根.所以无论m 取何值,该函数的图象与x 轴总有两个公共点. (2)解:解方程x 2-4mx +3m 2=0,得x 1=m ,x 2=3m .所以函数y =x 2-4mx +3m 2的图象与x 轴两个交点的坐标为(m ,0),(3m ,0).因为m >0,两交点间距离为2,所以3m-m =2,解得m =1. 19. 解:(1)根据题意,得y =(x ﹣5)105050.1x -⎛⎫+⨯⎪⎝⎭=﹣50x 2+800x ﹣2750(5≤x ≤10).所以每天的销售利润y (元)与销售单价x (元)之间的函数解析式是y =﹣50x 2+800x ﹣2750(5≤x ≤10). (2)由(1),知y =﹣50x 2+800x ﹣2750=﹣50(x ﹣8)2+450.因为﹣50<0,5≤x ≤10,所以当x =8时,y 有最大值,最大值为450. 所以销售单价定为8元时,每天的利润最大,最大利润是450元.20. 解:(1)因为A (﹣1,m ),B (5,m )是抛物线y =2x 2+bx ﹣2上的两点,所以对称轴为x=15222b -+-=⨯,得b =﹣8.所以抛物线的解析式为y =2x 2﹣8x ﹣2.将A (﹣1,m )代入y =2x 2﹣8x ﹣2,得m =2+8﹣2=8.(2)令x=0,得y =﹣2,所以点C 的坐标为(0,﹣2).所以OC =2. 因为A (﹣1,8),B (5,8),所以AB =6.所以S △ABC =12×6×(2+8)=30. 21. 解:(1)设抛物线L 2的解析式为y=34x 2+bx+c. 将A (﹣1,0),B (4,0)代入,得3041240b c b c ⎧-+=⎪⎨⎪++=⎩,,解得943.b c ⎧=-⎪⎨⎪=-⎩,所以抛物线L 2的解析式为y=34x 294-x-3.(2)存在PD =2OC . 理由:设P 239344a a a ⎛⎫-- ⎪⎝⎭,,D 234a a ⎛⎫⎪⎝⎭,,所以PD=223933444a a a ---=934a +,OC=3.由934a +=2OC=6,解得a=43或a=-4.所以点P 的坐标为41433⎛⎫ ⎪⎝⎭,-或(﹣4,18). 22. 解:(1)因为抛物线y =﹣x 2+bx +c 的顶点坐标为(2,7),所以对称轴为x=()21b-⨯-=2,解得b =4.所以y =﹣x 2+4x +c.将(2,7)代入y =﹣x 2+4x +c ,得﹣4+8+c =7,解得c =3.所以b 的值是4,c 的值是3. (2)因为y =﹣x 2+4x +3的顶点坐标为(2,7),所以抛物线开口向下,对称轴为x =2.令x =0,得y =3,所以抛物线与y 轴的交点坐标为(0,3).所以点(0,3)关于对称轴的对称点为(4,3). 因为点A ,B 落在抛物线上,点A 在第二象限,点B 在第一象限,点B 的纵坐标比点A 的纵坐标大3,所以将y =6代入y =﹣x 2+4x +3,得﹣x 2+4x +3=6,解得x =1或x =3.所以m 的取值范围是0<m <1或3<m <4.第22题图(共享2021-2022学年第二学期答案页第8期大报第20期“专项五”3题答案) 23. 解:(1)由题意,得F (6,-1.5). 设抛物线的解析式为y 1=a 1x 2.将F (6,-1.5)代入,得62·a 1=-1.5,解得a 1=124-. 所以抛物线的解析式为y 1=124-x 2.当12x =时,y 1=-6,所以桥拱顶部离水面的距离为6 m . (2)①由题意,得右侧抛物线的顶点为(6,1).设右侧抛物线的解析式为y 2=a 2(x-6)2+1.将H (0,4)代入,得a 2(0-6)2+1=4,解得a 2=112. 所以右侧抛物线的解析式为y 2=112(x-6)2+1. ②设彩带的长度为h m ,则h =y 2-y 1=112(x-6)2+1-2124x ⎛⎫-⎪⎝⎭=18x 2–x+4=18(x–4)2+2. 因为18>0,所以h 有最小值.当x=4时,h 取得最小值,为2.所以彩带长度的最小值是2 m .24. 解:(1)设抛物线的解析式为y =a (x ﹣1)2﹣1.将A (﹣1,0)代入,得a =14,所以y =14x 2-12x -34.(2)如图①,过点F 作FR ⊥EC 于点R . 设F 2113424t t t ⎛⎫-- ⎪⎝⎭,,则R 2113424t t ⎛⎫-- ⎪⎝⎭1,,所以RC =2111424t t -+,RF =t ﹣1. 因为四边形CDEF 是正方形,所以RF =RC .所以2111424t t -+=t ﹣1.所以t =1(舍去)或t =5.所以F (5,3).所以RF =4.所以CF 2=32.所以正方形CDEF 的面积是32. (3)令y=0,则14x 2-12x -34=0,解得x=-1或x=3.所以B (3,0). 由(2)可得N (0,3),M (1,3),所以直线BN 的解析式为y =﹣x +3.设Q (m ,3﹣m ),如图②,过点Q 作QG ⊥DF 于点G ,作PT ⊥DF 于点T .因为△MPQ 是以M 为直角顶点的等腰直角三角形,所以MP =QM ,∠TMP +∠GMQ =90°,∠TMP +∠TPM =90°.所以∠TPM =∠GMQ .所以△MTP ≌△QGM .所以PT =MG ,MT =QG .所以PT =MG =m ﹣1,MT =QG =m.所以P (1﹣m ,4﹣m ).因为点P 在抛物线上,所以4﹣m =14(1﹣m )2-12(1﹣m )-34,解得m =﹣2±因为m >0,所以m =﹣2+所以P (3--.所以当△MPQ 是以M 为直角顶点的等腰直角三角形时,点P 的坐标为(3--.① ② 第24题图。
人教版九年级数学上册 第22章 《二次函数》检测题 (含答案)
《二次函数》检测题一.选择题1.已知二次函数y=a(x﹣h)2+k,其图象过点A(0,2),B(6,2),则h的值是()A.6 B.5 C.4 D.3),B(1,y2),C(,y3)三2.若二次函数y=x2﹣6x+9的图象,经过A(﹣1,y点,y1,y2,y3大小关系正确的是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2 3.如果将抛物线y=x2+2向下平移1个单位,向右平移1个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2+1 B.y=(x+1)2+1 C.y=(x﹣1)2+3 D.y=(x+1)2﹣3 4.有一个矩形苗圃园,其中一边靠墙,另外边用长为20m的篱笆围成.已知墙长为15m,若平行于墙的一边长不小于8m,则这个苗圃园面积的最大值和最小值分别为()A.48m2,37.5m2B.50m2,32m2C.50m2,37.5m2D.48m2,32m25.二次函数y=2x2﹣3的二次项系数、一次项系数和常数项分別是()A.2、0、﹣3 B.2、﹣3、0 C.2、3、0 D.2、0、36.若二次函数y=x2+3x+a﹣1的图象经过原点,则a的值为()A.0 B.1 C.﹣1 D.1或﹣17.二次函数y=a2x2+bx+c(a≠0)的图象的顶点为P(m,k)且有一点Q(k,m)也在该函数图象上,则下列结论一定正确的是()A.m=k B.m>k C.m≥k D.m<k8.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.9.加工爆米花时,爆开且不糊的粒数的百分比称为“可食用率”.在特定条件下,可食用率p与加工时间t(单位:分钟)满足的函数关系p=at2+bt+c(a、b、c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为()A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟10.如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c>时,x>2;④当1<x<3时,x2+(b﹣1)x+c<0,其中正确的序号是()A.①②④B.②③④C.②④D.③④11.抛物线y=2x2﹣x﹣1与y轴的交点坐标为.12.抛物线y=﹣2(x+1)2﹣3开口,对称轴是,顶点坐标是,如果y随x的増大而减小,那么x的取值范围是.13.点P1(﹣1,y1),P2(4,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是.(用“<”连接)14.数学综合实践课,老师要求同学们利用直径为6cm的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计).若要求折出的盒子体积最大,则正方体的棱长等于.15.已知二次函数y=ax2﹣ax﹣x﹣t(t为实数)的对称轴是直线x=1,函数图象的顶点在x轴上,则t=;把抛物线k1:y=mx2﹣mx﹣x(m是一常数,且m<0)向上平移一个单位得到新的抛物线k2,则k2落在x轴上方的部分对应的x的取值范围是.16.若二次函数y=x2﹣x﹣(m2+m),以下结论:①抛物线与坐标轴有三个交点;②当x≥时,y随x的增大而增大;③函数交x轴于A,B两点,若AB=1,则m=0或m=1;④若直线y=x﹣1与抛物线没有交点,则m<1;其中正确的是.17.在平面直角坐标系xOy中,直线y=2x+2与x轴,y轴分别交于点A,B,抛物线y =ax2+bx﹣3a经过点A,将点B向右平移4个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.18.用长为36米的篱笆围成一个矩形养鸡场,设围成矩形一边长为x米,面积为y平方米.(1)求y关于x函数解析式;(2)当x为何值时,围成的养鸡场面积为45平方米?19.已知二次函数y=(1)把函数表达式配方成y=a(x﹣h)2+k的形式为.(2)函数图象的开口方向向,顶点坐标为,对称轴为直线,函数图象与x轴的交点坐标为,与y轴的交点坐标为.(3)函数y=的图象可由抛物线y=﹣向平移个单位长度,再向平移个单位长度得到;(4)根据图象,写出y>0时,x的取值范围是.(5)当y随x的增大而增大时,x的取值范围是.20.某商场将每台进价为3000元的彩电以3900元的销售价售出,每天可销售出6台,这种彩电每台降价100x(x为整数且0<x<9)元,每天可以多销售出3x台.(1)降价后每台彩电的利润是元,每天销售彩电台,设商场每天销售这种彩电获得的利润为y元,试写出y与x之间的函数关系式.(2)为了使顾客得到实惠,每台彩电的销售价定为多少时,销售该品牌彩电每天获得的利润最大,最大利润是多少?21.如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)点M在抛物线上,点N在x轴上,是否存在以点A,B,M,N为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标:若不存在,请说明理由;(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动时,点P到直线AB的距离为d,求d最大时点P的坐标.22.已知抛物线y=ax2+bx+3与x轴交于A(﹣1,0)、B(3,0)两点.(1)求抛物线解析式;(2)抛物线与y轴交于点C,在抛物线上存在点P,使S△BAP=S△CAP,求P点坐标;(3)已知直线l:y=2x﹣1,将抛物线沿y=2x﹣1方向平移,平移过程中与l相交于E、F两点.设平移过程中抛物线的顶点的横坐标为m,在x轴上存在一点P,使∠EPF=90°,求m的范围.23.已知抛物线y=ax2﹣2ax﹣2(a≠0).(1)当抛物线经过点P(1,0)时,求抛物线的顶点坐标;(2)若该抛物线开口向上,当0≤x≤4时,抛物线的最高点为M,最低点为N,点M 的纵坐标为6,求点M和点N的坐标;(3)点A(x1,y1)、B(x2,y2)为抛物线上的两点,设t≤x1≤t+1,当x2≥3且a<0时,均有y1≥y2,求t的取值范围.24.二次函数y=ax2+bx+2的图象交x轴于点A(﹣1,0),点B(4,0)两点,交y轴于点C,动点M从A点出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)直线MN上存在一点P,当△PBC是以∠BPC为直角等腰三角形时,求此时点D 的坐标;(3)当t=时,在直线MN上存在一点Q,使得∠AQC+∠OAC=90°,求点Q的坐标.参考答案一.选择题1.解:由解析式可知抛物线的对称轴为直线x=h,∵点A(0,2),B(6,2),它们的纵坐标相同,∴对称轴为直线x==3∴h=3.故选:D.2.解:∵二次函数y=x2﹣6x+9=(x﹣3)2,∴对称轴为直线x=3,3﹣(﹣1)=4,3﹣1=2,4+﹣3=1+,∵4>1+>2,∴y1>y3>y2.故选:B.3.解:抛物线y=x2+2向下平移1个单位后的解析式为:y=x2+2﹣1=x2+1.再向右平移1个单位所得抛物线的解析式为:y=(x﹣1)2+1.故选:A.4.解:设平行于墙的一边长为xm,苗圃园面积为Sm2,则S=x×(20﹣x)=﹣(x2﹣20x)=﹣(x﹣10)2+50∵﹣<0∴S有最大值,x=10>8时,S最大=50∵墙长为15m∴当x=15时,S最小S=15××(20﹣15)=37.5最小∴这个苗圃园面积的最大值和最小值分别为50m2,37.5m2.故选:C.5.解:二次函数y=2x2﹣3的二次项系数是2,一次项系数是0,常数项是﹣3,故选:A.6.解:把(0,0)代入y=x2+3x+a﹣1得a﹣1=0,解得a=1,所以a的值为1.故选:B.7.解:∵二次函数y=a2x2+bx+c(a≠0),∴a2>0,∴该函数开口向上,函数有最小值,∵二次函数y=a2x2+bx+c(a≠0)的图象的顶点为P(m,k)且有一点Q(k,m)也在该函数图象上,∴m≥k,故选:C.8.解:∵二次函数y=x2+a∴抛物线开口向上,∴排除B,∵一次函数y=ax+2,∴直线与y轴的正半轴相交,∴排除A;∵抛物线得a<0,∴排除C;故选:D.9.解:根据题意,将(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:,解得:,即p=﹣0.2t2+1.5t﹣2,当t=﹣=3.75时,p取得最大值,故选:B.10.解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;∴b2﹣4c<0故①不正确;当x=3时,y=9+3b+c=3,即3b+c+6=0;故②正确;把(1,1)(3,3)代入y=x2+bx+c,得抛物线的解析式为y=x2﹣3x+3,当x=2时,y=x2﹣3x+3=1,y==1,抛物线和双曲线的交点坐标为(2,1)第一象限内,当x>2时,x2+bx+c>;或第三象限内,当x<0时,x2+bx+c>;故③错误;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确;故选:C.二.填空题(共6小题)11.解:把x=0代入抛物线y=2x2﹣x﹣1得:y=﹣1,∴抛物线y=2x2﹣x﹣1与y轴的交点坐标是(0,﹣1),故答案为:(0,﹣1).12.解:抛物线y=﹣2(x+1)2﹣3的开口向下,对称轴是直线x=﹣1,顶点坐标是(﹣1,﹣3),当x>﹣1时,y随x的增大而减小,故答案为:向下,x=﹣1,(﹣1,﹣3),x>﹣1.13.解:∵y=﹣x2+2x+c=﹣(x﹣1)2+1+c,∴图象的开口向下,对称轴是直线x=1,A(﹣1,y)关于对称轴的对称点为(3,y1),1∵3<4<5,∴y3<y2<y1,故答案为y3<y2<y1.14.解:根据题意AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理,AB2=AC2+BC2,即62=x2+(3x)2,解得x=故答案为cm.15.解:对称轴是直线x=1=,解得:a=1,△=(﹣a﹣1)2+4at=0,解得:t=﹣1,故答案为:﹣1;k的表达式为:y=mx2﹣mx﹣x﹣1,2△=(﹣m﹣1)2+4m=(m﹣1)2,函数与x轴的交点坐标为:(,0)和(1,0),故k2落在x轴上方的部分对应的x的取值范围:<x<1,故答案为:<x<1.16.解:①△=1﹣4(﹣m2+m)=(2m﹣1)2≥0,即抛物线与坐标轴有2﹣3个交点,故不符合题意;②函数的对称轴为:x=,函数开口向上,故当x≥时,y随x的增大而增大,符合题意;③函数交x轴于A,B两点,则两个点的坐标分别为:(m+1,0)、(﹣m,0),则AB=|m+1+m|=1,则m=0或m=﹣1,故不符合题意;④若直线y=x﹣1与抛物线没有交点,即:x2﹣x﹣(m2+m)=x﹣1,化简为:x2﹣2x ﹣(m2+m﹣1)=0,△=4+4(m2+m﹣1)<0,解得:0<m<1,故m<1,不符合题意;故答案为:②三.解答题(共8小题)17.解:(1)与y轴交点:令x=0代入直线y=2x+2得y=2,∴B(0,2),∵点B向右平移4个单位长度,得到点C,∴C(4,2);(2)与x轴交点:令y=0代入直线y=2x+2得x=﹣1,∴A(﹣1,0),将点A(﹣1,0)代入抛物线y=ax2+bx﹣3a中得0=a﹣b﹣3a,即b=﹣2a,∴抛物线的对称轴x=﹣=﹣=1;(3)∵抛物线y=ax2+bx﹣3a经过点A(﹣1,0)且对称轴x=1,由抛物线的对称性可知抛物线也一定过A的对称点(3,0),①a>0时,如图1,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a<4,a>﹣,将x=4代入抛物线得y=5a,∴5a≥4,a≥,∴a≥;②a<0时,如图2,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a>4,a<﹣;③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,将点(1,4)代入抛物线得4=a﹣2a﹣3a,解得a=﹣1.综上所述,a≥或a<﹣或a=﹣1.18.解:(1)由题意可得,y=x•=x(18﹣x)=﹣x2+18x,即y关于x的函数关系式是:y=﹣x2+18x(0<x<18);(2)令y=45,则45=﹣x2+18x,解得x1=3,x2=15.即当x为3米或15米时,围成的养鸡场面积为45平方米.19.解:(1)y==﹣(x+1)2+2;故答案为:y=﹣(x+1)2+2;(2)﹣0,故函数图象的开口方向向下,顶点坐标为(﹣1,2),对称轴为直线x =﹣1,y=,令x=0,则y=,令y=0,则x=1或﹣3,故:函数图象与x轴的交点坐标为(1,0)或(﹣3,0),与y轴的交点坐标为(0,),故答案为:下,(﹣1,2),x=1,(1,0)或(﹣3,0),(0,);(3)函数y=的图象可由抛物线y=﹣向上平移2个单位,向左平移1个单位得到,故答案为:上,2,左,1;(4)根据图象,写出y>0时,x的取值范围是:﹣1<x<3,故答案为:﹣1<x<3;(5)函数的对称轴为:x=﹣1,故当y随x的增大而增大时,x的取值范围是x<﹣1,故答案为:x<﹣1.20.解:(1)由题意得:每台彩电的利润是(3900﹣100x﹣3000)元,即(900﹣100x)元,每天销售(6+3x)台,则y=(900﹣100x)(6+3x)=﹣300x2+2100x+5400故答案为:(900﹣100x),(6+3x);y与x之间的函数关系式为:y=﹣300x2+2100x+5400.(2)y=﹣300x2+2100x+5400.=﹣300(x﹣3.5)2+9075当x=3或x=4时,y最大值=9000.当x=3时,彩电销售单价为3600元,每天销售15台,营业额为3600×15=54000元,当x=4时,彩电销售单价为3500元,每天销售18台,营业额为3500×18=63000元,∴为了使顾客得到实惠,每台彩电的销售价定为3500元时,销售该品牌彩电每天获得的利润最大,最大利润是9000元.21.解:(1)物线y=ax2+2x+c与y轴交于点A(0,6),则c=6,将点B(6,0)代入函数表达式得:0=36a+12+6,解得:a=﹣,故抛物线的表达式为:y=﹣x2+2x+6,∴函数的对称轴为:x=2,顶点坐标为(2,8);(2)设点P(m,n),n=﹣m2+2m+6,点N(s,0),①当AB是平行四边形的一条边时,点A向右、向下均平移6个单位得到B,同理点N右、向下均平移6个单位得到M,故:s+6=m,0﹣6=n,解得:m=2±2,故点M的坐标为(2﹣2,﹣6)或(2+2,﹣6);②当AB是平行四边形的对角线时,则AB的中点即为MN的中点,则s+m=6,n+0=6,解得:m=4,故点M的坐标为(4,6),综上,点M的坐标为(2﹣2,﹣6)或(2+2,﹣6)或(4,6).(3)如下图,过点P作PG∥y轴交AB于点G,作PH⊥AB交于点H,∵OA=OB=6,则∠OAB=∠OBA=45°,∵PG∥y轴,则∠PGH=∠OAB=45°,直线AB的表达式为:y=﹣x+6,设点P(x,﹣x2+2x+6),则G(x,﹣x+6),d=PH=PG=(﹣x2+2x+6+x﹣6)=(﹣x2+3x),当x=3时,d取得最大值,此时点P(3,).22.解:(1)抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=1,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①;(2)①当点P在第一象限时,如下图左图:过点C作AP的平行线,过点B作AP的平行线交y轴于点H,当GH=CG时,即点G是CH的中点时,则S△BAP=S△CAP,设点P(m,﹣m2+2m+3),将点P、A的坐标代入一次函数表达式:y=kx+b并解得:直线PA的表达式为:y=(3﹣m)x+(3﹣m),则点G(0,3﹣m),.同理BH的表达式为:y=(3﹣m)x﹣9(3﹣m),则点H(0,9m﹣27),点G是CH的中点,则2(3﹣m)=3+9m﹣27,解得:m=,故点P(,);②当点P在第四象限时,如上图右侧图,S=S△CAP,则点B、C到直线AP的距离相等,△BAP则CB∥AP即满足条件,同理可得:直线BC的表达式为:y=﹣x+3,同理可得:直线AP的表达式为:y=﹣x﹣1…②,联立①②并解得:x=4,故点P(4,﹣5),③当点P在二、三象限时,点B、C到直线AP的距离不相等,故点P不存在;综上,点P的坐标为:(,)或(4,﹣5);(3)当以EF为直径的⊙R与x轴相切时,直线x上存在点P即切点,使∠EPF=90°,当⊙R与x轴相交时,在x轴上存在点P(即交点),使∠EPF=90°,当⊙R与x轴相离时,不存在点P.如下图,⊙R与x轴相切时,切点为P,设:点E、F的坐标分别为:(x1,y1)、(x2,y2),当平移后的抛物线顶点横坐标为m时,则抛物线向右平移了m﹣1个单位,相应纵坐标向上平移了2(m﹣1)个单位,则平移后抛物线的表达式为:y=﹣(x﹣m+1)2+2m ﹣2,将上式与y=2x﹣1联立并整理得:x2﹣(2m﹣4)x+m2﹣2=0,则x1+x2=2m﹣4,x1x2=m2﹣2,则y1+y2=2(x1+x2)﹣2,则点R(m﹣2,2m﹣5),则(x1﹣x2)2=(x1+x2)2+4x1x2=24﹣16m,PR=EF,即:EF2=4PR2,EF2=(x﹣x2)2+(y1﹣y2)2=5(x1﹣x2)2=5×(24﹣16m)=4PR2=4(2m﹣5)12,化简得:4m2=5,解得:m=±,故m的范围是:m≥或m≤﹣.23.解:(1)∵该二次函数图象的对称轴为:x=﹣=1又∵抛物线经过点P(1,0),∴抛物线的顶点坐标为(1,0).(2)∵该抛物线开口向上,对称轴为x=1,∴当0≤x≤4时,点M的纵坐标为6,∴抛物线的最高点M的坐标为(4,6),∴将(4,6)代入y=ax2﹣2ax﹣2得:6=a×16﹣2a×4﹣2解得:a=1∴y=x2﹣2x﹣2∴最低点N在x=1时取得∴N(1,﹣3)∴点M和点N的坐标分别为(4,6)和(1,﹣3).(3)当a<0时,该抛物线开口向下,对称轴为x=1,∵点A(x1,y1)、B(x2,y2)为抛物线上的两点,t≤x≤t+1,当x2≥3时,均有y1≥y2,1∴解得:﹣1≤t≤2∴t的取值范围是﹣1≤t≤2.24.解:(1)函数的表达式为:y=a(x+1)(x﹣4)=a(x2﹣3x﹣4),则﹣4a=2,解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+2;(2)过点M作x轴的平行线交y轴于点E,过点B作y轴的平行线交EM的延长线于点F,∵∠BMF+∠MBF=90°,∠MBF+∠CME=90°,∴∠CME=∠MBF,MB=MC,∠MFB=∠CEM=90°,∴△MFB≌△CEM(AAS),∴ME=t﹣1=BF=OE,EC=MB=5﹣t,CO=CE﹣OE=5﹣t﹣(t﹣1)=2,解得:t=2,则OM=2﹣1=1,当x=1时,y=﹣x2+x+2=3,故点D(1,3);(3)如图2,∠ACO+∠CAO=90°,∠AQC+∠OAC=90°,∴∠ACO=∠CQA,同理∠CQ′A=∠ACO,则A、C、Q、Q′四点公圆,且圆心R在x轴上,连接QR、RC,设圆的半径为r,则在△COR中,AO=1,OR=r﹣1,CO=2,MO=﹣1=,则(r﹣1)2+4=r2,解得:r=3,在△AQM中,MR=3﹣=,QM==,故点Q的坐标为:(,)或(,﹣).。
2020-2021学年度人教版九年级上册数学第二十二章《二次函数》综合过关测试卷(含答案)
流落地点 B 离墙距离 OB 是 ( )
第 6 题图
第 8 题图
第 10 题图
A.2m
B.3m
C.4m
D.5m
7.在同一平面直角坐标系中,函数 y=ax2+bx 与 y=bx+a 的图象可能是( )
8.如图,在平面直角坐标系中,抛物线所表示的函数表达式为 y=-2(x-h)2+k,则
下列结论正确的是 ( )
A.h>0,k>0 B.h<0,k>0
C.h<0,k<0
D.h>0,k<0
9.向空中发射一枚炮弹,经 x 秒后的高度为 y 米,且时间与高度的关系式为
y=ax2+bx+c(a≠0).若此炮弹在第 6 秒与第 14 秒时的高度相等,则在下列时
间中炮弹所在高度最高的是( )
A.第 8 秒 B.第 10 秒 C.第 12 秒 D.第 14 秒
,当 k=
时,y 随 x 的增大而减小.
时,它的图象是开口向下的抛物线;此时当 x
13.若抛物线 y=(x+a)2+a-1 的顶点在第二象限,则 a 的取值范围是
.
14.如图,已知二次函数 y=x2+bx+c 的图象经过点(-1,0),(1,-2),当 y 随 x 的增
大而增大时,x 的取值范围是________.
25.某跳水运动员进行 10m 跳台跳水训练时,身体(看成一点)在空中运动路线是 如图所示坐标系下经过原点 O 的一条抛物线(图中标出的数据为已知条件).在跳 某个规定动作时,正常情况下该运动员在空中的最高处 A 点距水面 10 m,入水处 B 点距池边的距离为 4m,同时运动员在距水面高度为 5m 以前,必须完成规定的翻 腾动作,并调整好入水的姿势,否则就会出现失误. 世纪金榜导学号 26534313
新人教版数学九年级上第22章二次函数检测题含答案
第22章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分) 1.下列函数中是二次函数的是( B )-12x =3y .B -1x =3y .A -3x +23x =y .D 2x -2)+1x (=y .C )D ( 的值分别为k ,b 则,k +2)-2x (=y +5配方后为bx +2x =y 若二次函数.2 A .0,5 B .0,1 C .-4,5 D .-4,1 ,向上平移2个单位再,-4先向右平移2个单位2x =y 将抛物线,在平面直角坐标系中.3得到的抛物线解析式为( B )-22)-2x (=y .B +22)+2x (=y .A -22)+2x (=y .D +22)-2x (=y .C )C ( 则它的对称轴是,上的两个点c +bx +2ax =y 是抛物线)5,4(,)5,2(若.4 A .x =1 B .x =2 C .x =3D .x =4)C ( 的值必为m 则,-3的图象经过原点m -22m +mx -2x )+1m (=y 若二次函数.5 A .-1或3 B .-1 C .3D .-3或1)C ( +1与坐标轴的交点个数为x -22x =y 抛物线.6 A .无交点 B .1个 C .2个D .3个)C ( 的图象可能是a +2x =y +1与二次函数ax =y 一次函数,同一坐标系中.7,=45°OBC ∠,C 轴交于点y 与,B ,A轴交于点x 与c +bx +2x =y 抛物线,如图.8则下列各式成立的是( B )A .b -c -1=0B .b +c +1=0C .b -c +1=0D .b +c -1=09.如图,正方形ABCD 中,AB =8 cm ,对角线AC ,BD 相交于点O ,点E ,F 分别从B ,C 两点同时出发,以1 cm/s 的速度沿BC ,CD 运动,到点C ,D 时停止运动,设运动时间为t (s),)B ( 的函数关系可用图象表示为)s (t 与)2cm (S 则,)2cm (S 的面积OEF △≠a 且,为常数c ,b ,a(+bx +c 2二次函数y =ax )·泰安2014(.100)中的x 与y 的部分对应值如下表: x -1 0 1 3 y-1 3 5 3x)1-b (+2ax 是方程3③的增大而减小;x 的值随y ,时1>x 当②;0<ac ①下列结论:)B ( 其中正确的个数为0.>c +x )1-b (+2ax ,时3<x <1当-④的一个根;0=c + A .4个 B .3个C .2个D .1个 二、填空题(每小题3分,共24分),___x =-1对称轴是__,___向上+2x -4的图象的开口方向是__2二次函数y =x .11.___)-5,-1(顶点坐标是__ .___8则m 的值为__,+8x +m 与x 轴只有一个公共点212抛物线y =2x ,)0,1(且经过点B ,)1,2(+bx +c 的顶点是A 2若抛物线y =ax .13.___+4x -32y =-x 则抛物线的函数关系式为__ ,2的函数关系式为s =20t -5t )s (间t 与时)m (刹车距离s ,公路上行驶的汽车急刹车时.14.___米才能停下来20汽车要滑行__,但由于惯性的作用,司机急刹车,当遇到紧急情况时宽4,m 一辆车高3,+3.252x 18且抛物线的解析式为y =-,隧道的截面是抛物线形.15)”不能“或”能“填.(___通过该隧道不能该车__,m 16.一个y 关于x 的函数同时满足两个条件:①图象过(2,1)点;②当x >0时,y 随x 的)写出一个即可.(___+52y =-x 这个函数解析式为__.增大而减小≠k (=kx +m 2与一次函数y )0≠a(+bx +c 2=ax 1二次函数y ,如图.17.___x <-2或x >8成立的x 的取值范围是__2>y 1则使y ,)2,8(B ,)4,-2(的图象相交于点A )0,-6(抛物线m 经过点A ,平移得到抛物线m 2x 12把抛物线y =,如图)·广安2014(.18,交于点Q 2x 12它的对称轴与抛物线y =,它的顶点为P ,)0,0(和原点O )0.___272则图中阴影部分的面积为__ 三、解答题(共66分)-2x +3.2已知二次函数y =-x )9分(.19 (1)求它的顶点坐标和对称轴;(2)求它与x 轴的交点;(3)画出这个二次函数图象的草图. 解:(1)顶点(-1,4),对称轴x =-1(2)(-3,0),(1,0)(3)图略.两点)-6,0(B ,)0,2(+bx +c 的图象经过A 2x 12二次函数y =-,如图)8分(.20(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求△ABC 的面积.+4x -62x 12y =-)1(解: ∴,)0,4(点C 的坐标为∴,=442×(-12)该抛物线对称轴为直线x =-∵)2(6=6×2×12OB =×AC ×12=ABC △S ∴,AC =OC -OA =4-2=2,-3m (,)0,m (+bx -c 的图象与x 轴两交点的坐标分别为2已知二次函数y =x )8分(21.0)(m ≠0).;2求证:4c =3b )1( (2)若该函数图象的对称轴为直线x =1,试求二次函数的最小值.,+bx -c =0的两根2-3m 是一元二次方程x ,m ,由题意)1(解:,2c =3m ,b =2m ∴,=-c )-3m (m·,=-b )-3m (得m +,根据一元二次方程根与系数的关系×34=2b 34得c =)1(由,b =-2∴,=1b 2由题意得-)2( 24c =3b ∴,2=12m 23b ,24c =12m ∴二次函数的最小值为-4∴,-42)x -1(-2x -3=2y =x ∴,=32)-2(22.(9分)如图,矩形ABCD 的两边长AB =18 cm ,AD =4 cm ,点P ,Q 分别从A ,B 同时出发,P 在边AB 上沿AB 方向以每秒2 cm 的速度匀速运动,Q 在边BC 上沿BC 方向以每秒1).2cm (PBQ 的面积为y △,)秒(设运动时间为x .的速度匀速运动cm (1)求y 关于x 的函数关系式,并写出x 的取值范围;(2)求△PBQ 的面积的最大值.,x )18-2x (12y =∴,BQ =x ,PB =AB -AP =18-2x ,PB·BQ 12=PBQ △S ∵)1(解:)4≤0<x (+9x 2即y =-x ,y 随x 的增大而增大,时92≤当0<x ∵,814+2)92x -(y =-∴,+9x 2知:y =-x )1(由)2(2cm PBQ 的最大面积是20△即,=20最大值y ,当x =4时∴,4≤而0<x,)3,0(点D 的坐标是,四边形ABCD 是菱形,如图)9分(.23.B 两点,恰好经过x 轴上A +bx +c 2以点C 为顶点的抛物线y =ax (1)求A ,B ,C 三点的坐标;(2)求过A ,B ,C 三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过D 点,求平移后抛物线的解析式,并指出平移了多少个单位?)3,2(,)0,3(,)0,1(C 的坐标分别为,B ,A )1(解: ,)3,0(代入D ,+k 2)x -2(3设抛物线的解析式为y =-)3( 3+2)x -2(3y =-)2(3=43-3平移了5∴,3+52)x -2(3平移后的抛物线的解析式为y =-,3可得k =5个单位24.(11分)(2014·武汉)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x ≤90)天的售价与销量的相关信息如下表:时间x(天) 1≤x <50 50≤x ≤90售价(元/件)x +4090每天销量(件) 200-2x(1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果. 解:(1)当1≤x <50时,y =(x +40-30)(200-2x)=-2x 2+180x +2000;当50≤x ≤90时,y =(90-30)(200-2x)=-120x +12000.综上,y =⎩⎨⎧-2x2+180x +2000(1≤x <50)-120x +12000(50≤x≤90)(2)当1≤x <50时,y =-2x 2+180x +2000=-2(x -45)2+6050,∵a =-2<0,∴当x =45时,y 有最大值,最大值为6050元;当50≤x ≤90时,y =-120x +12000,∵k =-120<0,∴y 随x 的增大而减小,∴当x =50时,y 有最大值,最大值为6000元.综上可知,当x =45时,当天的销售利润最大,最大利润为6050元 (3)4125.(12分)如图,已知抛物线经过点A(-1,0),B(3,0),C(0,3)三点. (1)求抛物线的解析式;(2)点M 是线段BC 上的点(不与B ,C 重合),过M 作NM ∥y 轴交抛物线于N ,若点M 的横坐标为m ,请用含m 的代数式表示MN 的长;(3)在(2)的条件下,连接NB ,NC ,是否存在点m ,使△BNC 的面积最大?若存在,求m 的值;若不存在,说明理由.+2x +32y =-x )1(解: (2)易求直线BC 的解析式为y =-x +3,∴M(m ,-m +3),又∵MN ⊥x 轴,∴N(m ,△=S BNC △S )3( )0<m <3(+3m 2=-m )-m +3(-)+2m +32-m (MN =∴,)+2m +32-m ,BNC 的面积最大△,当|MN|最大时∴,|MN|·|OB|12=MNB △+S CMN 2783=×94×12BNC 的面积最大为△,时32所以当m =,94+2)32m -(+3m =-2MN =-m。
第22章 二次函数 初中数学人教版九年级上册单元检测(含答案)
检测内容:第二十二章二次函数得分________卷后分________评价________一、选择题(每小题3分,共30分)1.下列函数关系中,y是x的二次函数的是( C )A.y=ax2+bx+c B.y=1 x2C.y=50+x2D.y=(x+2)(2x-3)-2x22.将二次函数y=x2-2x-2化成y=a(x-h)2+k的形式为( B )A.y=(x-2)2-2 B.y=(x-1)2-3C.y=(x-1)2-2 D.y=(x-2)2-33.二次函数y=ax2+bx-1(a≠0)的图象经过点(1,1),则a+b+1的值是( D )A.-3 B.-1 C.2 D.34.将抛物线y=2x2-1向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是( D )A.y=2x2+8x+9 B.y=2x2-8x+9C.y=2x2+8x+8 D.y=2x2-8x+85.对于二次函数y=x2-6x+11的图象,下列叙述正确的是( B )A.开口向下B.对称轴为直线x=3C.顶点坐标为(-3,2) D.当x≥3时,y随x增大而减小6.已知函数y=3x2-6x+k(k为常数)的图象经过点A(0.8,y1),B(1.1,y2),C( 2 ,y3),则有( C )A.y3>y2>y1B.y1>y2>y3C.y3>y1>y2D.y1>y3>y27.在平面直角坐标系中,直线y=ax+h与抛物线y=a(x-h)2的图象不可能是( C )A B C D8.如图是一款抛物线型落地灯筒示意图,防滑螺母C为抛物线支架的最高点,点C距灯柱AB的水平距离为1.6 m,点C距水平地面的距离为2.5 m,灯罩D距灯柱AB的水平距离为3.2 m,灯柱AB=1.5 m,则灯罩D到水平地面的距离为( A )A.1.5 m B.1 m C.1.2 m D.1.4 m第8题图第9题图第10题图9.如图①,在△ABC中,点P从点A出发向点C运动,在运动过程中,设x表示线段AP的长,y表示线段BP的长,y与x之间的关系如图②所示,则边BC的长是( A )A .33B .30C .35D . 610.(遂宁中考)已知二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,有下列5个结论:①abc >0;②b 2<4ac ;③2c <3b ;④a +b >m(am +b)(m ≠1);⑤若方程|ax 2+bx +c|=1有四个根,则这四个根的和为2.其中正确的结论有( A )A .2个B .3个C .4个D .5个二、填空题(每小题3分,共18分)11.如果抛物线y =(a -3)x 2-2有最低点,则a 的取值范围为____a >3____.12.(兰州中考)点A(-4,3),B(0,k)在二次函数y =-(x +2)2+h 的图象上,则k =__3__.13.已知二次函数y =-14(x -2)2+5,y 随x 的增大而减小,则x 的取值范围__x ≥2__. 14.如图,过点(0,1)且平行于x 轴的直线与二次函数y =ax 2+bx +c(a >0)图象的交点坐标为(1,1),(3,1),则不等式ax 2+bx +c -1>0的解集为__x <1或x >3__.第14题图 第15题图 第16题图15.(沈阳中考)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长度为900 m (篱笆的厚度忽略不计),当AB =__150__m 时,矩形土地ABCD 的面积最大.16.(黔东南州中考)如图,抛物线L 1:y =ax 2+bx +c(a ≠0)与x 轴只有一个公共点A(1,0),与y 轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线L 2,则图中两个阴影部分的面积和为__2__.三、解答题(共72分)17.(6分)用配方法把二次函数y =12x 2-4x +5化为y =a(x +m)2+k 的形式,并指出该函数的开口方向、对称轴和顶点坐标.解:y =12 x 2-4x +5=12(x -4)2-3,∴抛物线开口向上,对称轴是直线x =4,顶点坐标是(4,-3)18.(8分)(宁波中考)如图,已知二次函数y =x 2+ax +3的图象经过点P(-2,3).(1)求a 的值和图象的顶点坐标;(2)若点Q(m ,n)在该二次函数的图象上,则:①当m =2时,求n 的值;②若点Q 到y 轴的距离小于2,请根据图象直接写出n 的取值范围.解:(1)把点P(-2,3)代入y =x 2+ax +3中,得a =2,∴y =x 2+2x +3=(x +1)2+2,∴顶点坐标为(-1,2)(2)①当m =2时,n =11;②点Q 到y 轴的距离小于2,∴|m|<2,∴-2<m <2,∴2≤n <1119.(9分)已知二次函数y =x 2-2mx +2m -1.(1)求证:二次函数的图象与x 轴总有交点;(2)若二次函数的图象与x 轴的一个交点为原点,求方程x 2-2mx +2m -1=0的解. 解:(1)证明:∵Δ=4m 2-4(2m -1)=4m 2-8m +4=4(m -1)2≥0,∴二次函数的图象与x 轴总有交点(2)把(0,0)代入y =x 2-2mx +2m -1得2m -1=0,解得m =12,方程化为x 2-x =0,解得x 1=0,x 2=1,即方程x 2-2mx +2m -1=0的解为x 1=0,x 2=120.(10分)如图,四边形ABCD 是菱形,点D 的坐标是(0, 3 ),以点C 为顶点的抛物线 y =ax 2+bx +c 恰好经过x 轴上A ,B 两点.(1) 求A ,B ,C 三点的坐标;(2) 求经过A ,B ,C 三点的抛物线的解析式;(3)若将上述抛物线沿其对称轴向上平移后恰好过点D ,求平移后抛物线的解析式,并指出平移了多少个单位长度.解:(1)A ,B ,C 三点的坐标分别为(1,0),(3,0),(2, 3 )(2)设抛物线的解析式为y =a(x -2)2+ 3 ,代入点A 的坐标(1,0),得a =- 3 ,∴抛物线的解析式为y =- 3 (x -2)2+ 3(3)设平移后的抛物线的解析式为y =- 3 (x -2)2+k ,代入点D 的坐标(0, 3 ),得k =5 3 ,∴平移后的抛物线的解析式为y =- 3 (x -2)2+5 3 ,∴平移了5 3 - 3 =4 3 个单位长度21.(12分)(营口中考)某超市销售一款免洗洗手液,这款免洗洗手液的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款免洗洗手液的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款免洗洗手液每天的销售利润最大,最大利润为多少元?解:(1)由题意,得y =80+20×20-x 0.5,∴y =-40x +880(x >16) (2)设每天的销售利润为w 元,则w =(-40x +880)(x -16)=-40(x -19)2+360,∵a =-40<0,∴二次函数图象开口向下,∴当x =19时,w 有最大值,最大值为360元.答:当销售单价为19元时,销售这款免洗洗手液每天的销售利润最大,最大利润为360元22.(12分)(衢州中考)如图①是一座抛物线型拱桥侧面示意图.水面宽AB 与桥长CD 均为24 m ,在距离点D6 m 的E 处,测得桥面到桥拱的距离EF 为1.5 m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系.(1)求桥拱顶部O 离水面的距离;(2)如图②,桥面上方有3根高度均为4 m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m.①求出其中一条钢缆抛物线的函数表达式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.解:(1)根据题意可知点F的坐标为(6,-1.5),可设拱桥侧面所在二次函数表达式为y1=a1x2.将F(6,-1.5)代入y1=a1x2有-1.5=36a1,解得a1=-124,∴y1=-124x2,当x=12时,y1=-124×122=-6,∴桥拱顶部O离水面高度为6 m(2)①由题意可知右边钢缆所在抛物线的顶点坐标为(6,1),可设其表达式为y2=a2(x-6)2+1,将H(0,4)代入其表达式有4=a2(0-6)2+1,解得a2=112,∴右边钢缆所在抛物线表达式为y2=112(x-6)2+1,同理可得左边钢缆所在抛物线表达式为y3=112(x+6)2+1;②设彩带的长度为L m,则L=y2-y1=112(x-6)2+1-(-124x2)=18x2-x+4=18(x-4)2+2,∴当x=4时,L最小值=2,答:彩带长度的最小值是2 m23.(15分)(眉山中考)如图①,抛物线y=-x2+bx+c与x轴交于A,B两点,与y轴交于点C,已知点B坐标为(3,0),点C坐标为(0,3).(1)求抛物线的解析式;(2)点P为直线BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标;(3)如图②,点M为该抛物线的顶点,直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.解:(1)y=-x2+2x+3(2)∵点B(3,0),点C(0,3),∴直线BC解析式为y=-x+3,如图,过点P作PH⊥x 轴于点H,交BC于点G,设点P(m ,-m 2+2m +3),则点G(m ,-m +3),∴PG =(-m 2+2m +3)-(-m +3)=-m 2+3m ,∵S △PBC =12 ×OB ×PG =12 ×3×(-m 2+3m)=-32 (m -32 )2+278.∵0<m<3,∴当m =32 时,S △PBC 有最大值,此时点P(32 ,154) (3)存在N 满足条件,理由如下:∵抛物线y =-x 2+2x +3与x 轴交于A ,B 两点,∴点A(-1,0).∵y =-x 2+2x +3=-(x -1)2+4,∴顶点M 为(1,4).∵点M 为(1,4),点C(0,3),∴直线MC 的解析式为y =x +3.如图,设直线MC 与x 轴交于点E ,过点N 作NQ ⊥MC 于点Q, ∴点E(-3,0),∴DE =4=MD ,∴∠NMQ =45°.∵NQ ⊥MC ,∴∠NMQ =∠MNQ =45°,∴MQ =NQ =22MN.设点N(1,n),∵点N 到直线MC 的距离等于点N 到点A 的距离,∴NQ =AN ,∴NQ 2=AN 2,∴(22 MN)2=AN 2,∴(22|4-n|)2=4+n 2,∴n 2+8n -8=0,∴n =-4±2 6 ,∴存在点N 满足要求,点N 的坐标为(1,-4+2 6 )或(1,-4-2 6 )。
九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)
九年级数学上册第二十二章《二次函数》测试卷-人教版(含答案)考试范围:全章综合测试 参考时间:120分钟 满分:120分一、选择题(每小题3分,共30分)1.对于函数y =5x 2,下列结论正确的是( )A . y 随x 的增大而增大B . 图象开口向下C .图象关于y 轴对称D .无论x 取何值,y 的值总是正的 【答案】C .详解:a =5>0,开口向上,对称轴为y 轴,在y 轴左侧,y 随x 的增大而减小,在y 轴的右侧, y 随x 的增大而增大,当x =0时,y =0. 故A 错,B 错,C 对,D 错,∴答案选C . 2.二次函数y =x 2-4x 的图象的对称轴是( )A . x =4B . x =-4C . x =-2D . x =2 【答案】D .详解:a =1,b =-4,由对称轴公式,对称轴为x =-2ba=2,故选D . 3.二次函数y =2(x +1)2-3的图象的顶点坐标是( )A . (1,3)B . (-1,3)C . (1,-3)D .(-1,-3) 【答案】D .详解:知识点:抛物线的顶点式为y =a (x -h )2+k ,顶点坐标为(h ,k ).4.进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价. 若设平均每次降价的 百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( ) A . y =2a (x -1) B . y =2a (1-x ) C . y =a (1-x 2) D . y =a (1-x )2 【答案】D .详解:第一次降价后的价格为a (1-x )元,第二次降价后的价格为a (1-x )2,故选D . 5.用配方法将函数y =x 2-2x +2写成y =a (x -h )2+k 的形式是( )A . y =(x -1)2+1B . y =(x -1)2-1C . y =(x -1)2-3D . y =(.x +1)2-1 【答案】A .详解:y =x 2-2x +2=(x 2-2x +1)+1=(x -1)2+1,故选A .6.把抛物线y =2x 2绕原点旋转180°,再向右平移1个单位长度,向下平移2个单位长度,所得 的抛物线的函数表达式为( )A . y =2(x -1)2-2B . y =2(x +1)2-2C . y =-2(x -1)2-2D . y =-2(.x +1)2-2 【答案】C .详解:原抛物线的顶点为(0,0),旋转180°后,开口向下,顶点为(0,0),两次平移后的 顶点为(1,-2),故答案为y =-2(x -1)2-2.7. 在比赛中,某次羽毛球的运动路线可以看作是抛物线y=-14x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A. y=-14x2+34x+1 B. y=-14x2+34x-1C. y=-14x2-34x+1 D. y=-14x2-34x-1【答案】A.详解:依题意,点B的坐标为(0,1),点A的坐标为(4,0),把A( 4,0),B(0,1)代入y=-14x2+bx+c,解得b=34,c=1,故选A.另法:由B(0,1),可排除B、D,根据“左同右异”的规律,可排除C.8.抛物线y=ax2-2ax+c经过点A(2,4),若其顶点在第四象限,则a的取值范围为()A. a>4B. 0<a<4C. a>2D. 0<a<2【答案】A.详解:把A(2,4)代入,得c=4,∴y=ax2-2ax+4=a(x-1)2+4-a,顶点为(1,4-a),∵顶点在第四象限,∴4-a<0,∴a>4.9.飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数解析式是y=60t-32t2,飞机着陆至停下来共滑行()A. 20米B. 40米C. 400米D. 600米【答案】D.详解:配方得y=-32(t-20)2+600,∴当t=20时,y取得最大值600,即飞机着陆后滑行600米才能停下来.10. 如图,抛物线y=-2x2+mx+n与x轴交于A、B两点. 若线段AB的长度为4,则顶点C到x轴的距离为()A. 6B. 7C. 8D. 9【答案】C.详解:令y=0,得-2x2+mx+n=0,解得x=284m m n ±+.∴AB=|x1-x2|=282m n+=4,∴m2+8n=64.∴244ac ba-=24(2)4(2)n m---=288m n+=8,故答案选C.二、填空题(每小题3分,共18分)11.抛物线y =2x 2-4的顶点坐标是___________. 【答案】(0,-4).详解:a =2,b =0,c =-4,开口向上,对称轴为y 轴,顶点为(0,-4).12. 若方程ax 2+bx +c =0的解为x 1=-2,x 2=4,则二次函数y =ax 2+bx +c 的对称轴为______. 【答案】直线x =1. 详解:x =242-+=1. 13.如图,抛物线y =a (x -2)2+k (a 、k 为常数且a ≠0)与x 轴交于点A 、B 两点, 与y 轴交于点C ,过点C 作CD ∥x 轴与抛物线交于点D . 若点A 坐标为 (-2,0),则OBCD的值为_________. 【答案】32.详解:抛物线的对称轴为x =2,C 在y 轴上,∴CD =4.又∵A (-2,0),∴B (6,0),∴OB =6. ∴6342OB CD ==. 14.如图,Rt △OAB 的顶点A (-2,4)在抛物线y =ax 2上,将Rt △OAB 向右 平移得到△O 1AB 1,平移后的O 1A 1与抛物线交于点P ,若P 为线段A 1O 1 的中点,则点P 的坐标为________. 【答案】P (2,2).详解:把A (-2,4)代入y =ax 2得a =1,∴y =x 2. ∵A (-2,4),∴点A 1的纵坐标为4, ∵P 为O 1A 1的中点,∴点P 的纵坐标为2, 把y =2代入y =x 2,得x =±2. 取x =2,∴P (2,2).15.下列关于二次函数y =x 2-2mx +1(m 为常数)的结论: ①该函数的图象与函数y =-x 2+2mx 的图象的对称轴相同; ②该函数的图象与x 轴有交点时,m >1;③该函数的图象的顶点在函数y =-x 2+1的图象上;④点A (x 1,y 1)与点B (x 2,y 2)在该函数的图象上,若x 1<x 2,x 1+x 2<2m ,则y 1<y 2· 其中正确的结论是________________(填写序号). 【答案】①③.详解:对于①,根据对称轴公式,两抛物线对称轴均为x =m ,故①正确; 对于②,Δ=b 2-4ac =4m 2-4≥0,∴m ≥1或m ≤-1,故②错; 对于③,y =x 2-2mx +1的顶点为(m ,-m 2+1),显然③正确; 对于④,抛物线的开口向上,对称轴为x =m ,∵x 1+x 2<2m ,∴122x x +<m ,P O 1A 1B 1又∵x1<x2,∴点A离对称轴的距离大于点B离对称轴的距离,∴y1>y2,故④错;综上,正确的有①③.16.如图,抛物线y=x2+2x与直线y=2x+1交于A、B两点,与直线x=2交于点D,将抛物线沿着射线AB方向平移25个单位. 在整个平移过程中,点D经过的路程为___________.【答案】738.详解:平移前,D(2,8),∴直线AB的解析式为y=2x +1,∴抛物线沿射线AB方程平移25个单位时,相当于抛物线向右平移了4个单位,向上平移了2个单位. ∵原抛物线顶点为M(-1,-1),平移后的顶点为M′(3,1),平移后的抛物线为y=(x-3)2+1,此时D′(2,2),直线MM′的解析式为y=12x-12,平移过程中,抛物线的顶点始终在y=12x-12上,设顶点为(a,12a-12),-1≤a≤3,抛物线的解析式为y=(x-a)2+12a-12,当x=2时,y=(2-a)2+12a-12=a2-72a+72,即在平移过程中,抛物线与直线x=2的交点的纵坐标为y=a2-72a+72,∵y=a2-72a+72=(a-74)2+716,∴当a=74时,点D到达最低点,此时D(2,716)当a=3时,y=(x-3)2+1,此时D(2,2);观察图形,可知点D的运动路径为D(2,8)→D(2,716)→D(2,2),路径长为(8-716)+(2-716)=738.三、解答题(共8题,共72分)17.(8分)通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标.(1) y=x2-4x+6;(2) y=-4x2+4x.【答案】(1) y=x2-4x+6=x2-4x+4+2=(x-2)2+2,开口向上,对称轴为x=2,顶点坐标为(2,2).(2) y=-4x2+4x=-4(x2-x)=-4(x2-x+14-14)=-4(x-12)2+1,yxM‘MBAD2O开口向下,对称轴为x =12,顶点坐标为(12,1).18.(8分)二次函数的最大值为4,其图象的对称轴为x =2,且过点(1,2),求此函数的解析式. 【答案】∵函数的最大值为4,图象的对称轴为x =2, ∴可设函数的解析式为y =a (x -2)2+4,把(1,2)代入,得:a (1-2)2+4=2,解得a =-2, ∴函数的解析式为y =-2(x -2)2+4.19.(8分)二次函数y =x 2+bx +c 图象上部分点的横坐标x 、纵坐标y 的对应值如下表: (1)求二次函数的表达式;(2)画出二次函数的示意图,结合函数图象, 直接写出y <0时自变量x 的取值范围. 【答案】(1) 把(0,3),(1,0)代入y =x 2+bx +c , 得:310c b c =⎧⎨++=⎩,解得43b c =-⎧⎨=⎩,∴二次函数的表达式为y =x 2-4x +3;(2) 函数的图象如图所示,由图象,可知当1<x <3时,y <0.20.(8分)二次函数的图象与直线y =x +m 交于x 轴上一点A (-1,0), 图象的顶点为C (1,-4). (1)求这个二次函数的解析式;(2)若二次函数的图象与x 轴交于另一点B ,与直线 y =x +m 交于另一点D ,求△ABD 的面积. 【答案】(1)∵图象的顶点为C (1,-4),可设抛物线的解析式为y =a (x -1)2-4, 把(-1,0)代入,得:4a -4=0,∴a =1. ∴抛物线的解析式为y =(x -1)2-4, 即y =x 2-2x -3.(2)令y =0,得x 2-2x -3=0,∴x 1=-1,x 2=3. ∴B (3,0). 把A (-1,0)代入y =x +m ,得m =1,∴y =x +1. 联立2123y x y x x =+⎧⎨=--⎩,解得1110x y =-⎧⎨=⎩,2245x y =⎧⎨=⎩,∴D (4,5). ∵A (-1,0),B (3,0),∴AB =4,x… 0 1 2 3 … y … 3 0 -1 0 …yx123O∴△ABD 的面积S =12×4×5=10.21.(8分)如图,抛物线y =-12x 2+52x -2与x 轴相交于A 、B 两点,与y 轴相交于点C . (1)求△ABC 各顶点的坐标及△ABC 的面积;(2)过点C 作CD ∥x 轴交抛物线于点D . 若点P 在线段AB 上以 每秒1个单位长度的速度由点A 向点B 运动,同时点Q 在线 段CD 上以每秒1.5个单位长度的速度由点D 向点C 运动,问: 经过几秒时,PQ =AC ?【答案】(1)令y =0,得-12x 2+52x -2=0,得x 1=1,x 2=4. ∴A (1,0),B (4,0).令x =0,得y =-2,∴C (0,-2).△ABC 的面积为S =12AB ·OC =12×3×2=3.(2) 设经过t 秒后,PQ =AC . 则AP =t ,P (1+t ,0) 抛物线的对称轴为x =2.5,∵C (0,-2),∴D (5,-2). DQ =1.5t ,∴CQ =5-1.5t ,∴Q (5-1.5t ,-2).过P 作PH ⊥CQ 于H ,则PH =OC ,∵PQ =AC ,∴HQ =OA =1. 即|(1+t )-(5-1.5t )|=1,化简得|2.5t -4|=1,解得t =2或65.所以,经过2秒或65秒时,PQ =AC .22. (10分)如图,有一面长为a m 的墙,利用墙长和30m 的篱笆,围成中间隔有一道篱笆的长方形 花圃,设花圃的宽AB 为x m ,面积为S m 2. (1)当a =10时;①求S 与x 的关系式,并写出自变量x 的取值范围; ②如果要围成面积为48m 2的花圃,AB 的长是多少m ? (2)求长方形花圃的最大面积.【答案】(1) ①AB =CD =x ,BC =30-3x , ∴S =x (30-3x )=-3x 2+30x , 由0<BC ≤a ,得0<30-3x ≤10,∴203≤x <10. ② 令S =48,得-3x 2+30x =48,即x 2-10x +16=0,H30-3xxxx解得:x =8或2(舍),∴AB 的长为8m . (2) S =-3x 2+30x =-3(x -5)2+75, ∵0<30-3x ≤a ,∴10-3a≤x <10.∵抛物线开口向下,对称轴为x =5,1°当10-3a≤5时,即a ≥15,此时当x =5时,S 取得最大值75;2°当10-3a>5,即0<a <15,此时S 随x 的增大而减小,则当x =10-3a 时,S 的最大值为10a -13a 2.答:当a ≥15时,长方形花圃的最大面积为75m 2;当0<a <15,长方形花圃的最大面积为(10a -13a 2)m 2.23.(10分)某小区内超市在“新冠肺炎”疫情期间,两周内标价为10元/斤的某种水果,经过两次 降价后的价格为8.1元/斤,并且两次降价的百分率相同. (1)求该种水果每次降价的百分率;(2)①从第一次降价的第1天算起,第x 天(x 为整数)的售价、销量及储存和损耗费用的 相关信息如表所示:已知该种水果的进价为4.1元/斤,设销售该水果第x (天)的利润为y (元), 求y 与x (1≤x <15)之间的函数解析式,并求出第几天时销售利润最大.②在①的条件下,问这14天中有多少天的销售利润不低于330元,请直接写出结果. 【答案】(1) 设该种水果每次降价的百分率为x ,依题意,得: 10(1-x )2=8.1,解得x =0.1或1.9(舍去). 答:该种水果每次降价的百分率为10%.(2) ① 当1≤x <9时,第一次降价后的价格为10(1-10%)=9(元), ∴y =(9-4.1)(80-3x )-(40+3x )=-17.7x +352,y 随x 的增大而减小,∴当x =1时,y 取得最大值为334.3(元); 当9≤x <15时,第二次降价后的价格为8.1(元),∴y =(8.1-4.1)(120-x )-(3x 2-64x +400)=-3x 2+60x +80=-3(x -10)2+380, 图象的开口向下,当x =10时,y 取得最大值为380(元)>334.3(元).时间x (天) 1≤x <9 9≤x <15 售价(元/斤) 第1次降价后的价格第2次降价后的价格销量(斤) 80-3x 120-x 储存和损耗费用(元)40+3x3x 2-64x +400综上,第10天时销售利润最大. ②7天.提示:当1≤x <9时,y =-17.7x +352≥330,解得x ≤220177, ∵x 为正整数,∴x =1;当9≤x <15时,y =-3(x -10)2+380≥330,解得10-563≤x ≤10+563, ∵x 为正整数,9≤x <15,∴x =9,10,11,12,13,14,共6天; 1+6=7,故一共有7天.24.(12分)直线y =kx +k +2与抛物线y =12x 2交于A 、B 两点(A 在B 的左侧). (1)直线AB 经过一个定点M ,直接写出M 点的坐标;(2)如图1,点C (-1,m )在抛物线上,若△ABC 的面积为3,求k 的值;(3)如图2,分别过A 、B 且与抛物线只有唯一公共点的两条直线交于点P ,求OP 的最小值. 【答案】(1) M (-1,2);提示:y =k (x +1)+2, 直线AB 过定点,令x +1=0, 得y =2,∴定点为M (-1,2). (2) 过C 作CD ∥y 轴交AB 于D ,把C (-1,m )代入y =12x 2,得C (-1,12).把x =-1代入y =kx +k +2,得D (-1,2), ∴CD =2-12=32.联立2212y kx k y x =++⎧⎪⎨=⎪⎩,得x 2-2kx -(2k +4)=0, 设点A 、B 的横坐标分别为a 、b ,则a 、b 为上述方程的根, ∴a +b =2k ,ab =-(2k +4).∵△ABC 的面积为3,由铅垂法,得12CD (b -a )=3,即12×32(b -a )=3,∴b -a =4. 两边平方,得(a +b )2-4ab =16,∴(2k )2+4(2k +4)=16, 整理,得:k 2+2k =0,解得k =0或-2. (3) 设点A 、B 的横坐标分别为a 、b ,则a ≠b . 由(2),a +b =2k ,ab =-(2k +4),∴设直线P A 的解析式为y =px +q ,联立212y px qy x =+⎧⎪⎨=⎪⎩,得 x 2-2px -2q =0,D∵P A 与抛物线只有唯一公共点,∴上述方程有两个相等的实数根(x 1=x 2=a ), 由根与系数的关系,得a +a =2p ,a ·a =-2q ,∴p =a ,q =-12a 2.∴直线P A 的解析式为y =ax -12a 2.同理,直线PB 的解析式为y =bx -12b 2.联立221212y ax a y bx b ⎧=-⎪⎪⎨⎪=-⎪⎩,解得x =2a b +=k ,y =2ab =-(k +2). ∴P (k ,-k -2).∴OP 2=k 2+(-k -2)2=2k 2+4k +4=2(k +1)2+2, 当k =-1时,OP 2.。
人教版九年级数学上册第二十二章《二次函数》测试卷(含答案)
人教版九年级数学上册第二十二章《二次函数》测试卷(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.抛物线的对称轴是()A.直线B.直线C.轴D.直线2.如果二次函数的最小值为负数,则的取值范围是()A. B. C. D.3.二次函数的图象如图所示,对称轴,下列结论中正确的是()A. B.C. D.4.已知二次函数的图象如图所示,有下列个结论:①;②;③;④其中正确的结论有()A.个B.个C.个D.个5.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.y=(x﹣1)2+4 B.y=(x﹣4)2+4 C.y=(x+2)2+6 D.y=(x﹣4)2+66.下列函数解析式中,一定为二次函数的是()A.y=x+3 B.y=ax2+bx+c C.y=t2﹣2t+2 D.y=x2+7.若二次函数的图象过,,,则,,的大小关系是()A. B.C. D.8.一学生推铅球,铅球行进高度与水平距离之间的关系是,则铅球落地水平距离为()A. B. C. D.9.已知抛物线经过三点,,则,,的大小关系为()A. B.C. D.10.如图是二次函数图象的一部分,其对称轴是,且过点,下列说法:①;②;③;④若,是抛物线上两点,则,其中说法正确的是()A.①②B.②③C.①②④D.②③④二、填空题(每题3分,共24分) 11.经过原点的抛物线与x轴交于另一点,该点到原点的距离为2,且该抛物线经过(3,3)点,则该抛物线的解析式为.12.若实数a、b满足a+b2=2,则a2+5b2的最小值为.13.某商店经销一种成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克,若销售价每涨1元,则月销售量减少10千克.要使月销售利润达到最大,销售单价应定为元.14.已知直线y=﹣x+1与抛物线y=x2+k一个交点的横坐标为﹣2,则k= .15.抛物线y=x2﹣2x﹣3与交y轴负半轴于C点,直线y=kx+2交抛物线于E、F 两点(E点在F点左边).使△CEF被y轴分成的两部分面积差为5,则k的值为.16.若抛物线y=(a+1)x2﹣(a+1)x+1与x轴有且仅有一个公共点,则a的值为.17.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象不经过第象限.18.若二次函数y=x2-3x-4的图象如图所示,则方程x2-3x-4=0的解是__________;不等式x2-3x-4>0的解集是______________;不等式x2-3x-4<0的解集是________________.三.解答题(共46分,19题6分,20 ---24题8分)19. 已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?20. 已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.21.在平面直角坐标系中,有抛物线y=x2+1,已知点A(0,2),P(m,n)是抛物线上一动点,过O、P的直线交抛物线于点D,若AP=2AD,求直线OP的解析式.22. 已知抛物线,如图所示,直线是其对称轴,确定,,,的符号;求证:;当取何值时,,当取何值时.23. 如图,矩形的两边长,,点、分别从、同时出发,在边上沿方向以每秒的速度匀速运动,在边上沿方向以每秒的速度匀速运动.设运动时间为秒,的面积为.求关于的函数关系式,并写出的取值范围;求的面积的最大值.24.某工厂设门市部专卖某产品,该每件成本每件成本元,从开业一段时间的每天销售统计中,随机抽取一部分情况如下表所示:销售单位(元)…日销售量…假设每天定的销价是不变的,且每天销售情况均服从这种规律.秋日销售量与销售价格之间满足的函数关系式;门市部原设定两名销售员,担当销售量较大时,在每天售出量超过件时,则必须增派一名营业员才能保证营业有序进行.设营业员每人每天工资为元,求每件产品应定价多少元,才能使每天门市部纯利润最大?(纯利润总销售-成本-营业员工资)参考答案一、选择题:题号 1 2 3 4 5 6 7 8 9 10 答案 C A C A B C C B A A 二、填空题11.y=x2﹣2x或y=x2+x.12.4.13.70.14.﹣1.15.﹣4.16.解:∵y=(a+1)x2﹣(a+1)x+1与x轴有且仅有一个公共点,∴b2﹣4ac=(a+1)2﹣4(a+1)=a2﹣2a﹣3=0,解得:a1=3,a2=﹣1,当a=﹣1,则a+1=0,故舍去.故答案为:3.17.解:根据题意得:抛物线的顶点坐标为(﹣m,n),且在第四象限,∴﹣m>0,n<0,即m<0,n<0,则一次函数y=mx+n不经过第一象限.故答案为:一.18.【答案】x1=4,x2=-1;x>4或x<-1;-1<x<4三.解答题19. 解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.20. 解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),∴,解得,,即a的值是1,b的值是﹣2.21.【答案】解:∵P(m,n)是抛物线y=x2+1上一动点,∴m2+1=n,∴m2=4n-4,∵点A(0,2),∴AP===n,∴点P到点A的距离等于点P的纵坐标,过点D作DE⊥x轴于E,过点P作PF⊥x轴于F,∵AP=2AD,∴PF=2DE,∴OF=2OE,设OE=a,则OF=2a,∴×(2a)2+1=2(a2+1),解得a=,∴a2+1=×2+1=,∴点D的坐标为(,),设OP的解析式为y=kx,则k=,解得k=,∴直线OP的解析式为y=x.【解析】根据点P在抛物线上用n表示出m2,再利用勾股定理列式求出AP,从而得到点P到点A的距离等于点P的纵坐标,过点D作DE⊥x轴于E,过点P作PF⊥x轴于F,根据AP=2AD判断出PF=2DE,得到OF=2OE,设OE=a,表示出OF=2a,然后代入抛物线解析式并列出方程求出a的值,再求出点D的坐标,最后利用待定系数法求一次函数解析式解答.22. 解:∵抛物线开口向下,∴,∵对称轴,∴,∵抛物线与轴的交点在轴的上方,∴,∵抛物线与轴有两个交点,∴;证明:∵抛物线的顶点在轴上方,对称轴为,∴当时,;根据图象可知,当时,;当或时,.23. 解:∵,,,∴,即;由知,,∴,∵当时,随的增大而增大,而,∴当时,,即的最大面积是.24.解:经过图表数据分析,日销售量与销售价格之间的函数关系为一次函数,设,经过、,代入函数关系式得,,解得:,,故;设每件产品应定价元,利润为,当日销售量时,,解得:,由题意得,∵,∴取时,取得最大,元;当日销售量时,,解得:,由题意得,∵,∴取时,取得最大,元;综上可得:当每件产品应定价元,才能使每天门市部纯利润最大.。
九年级数学上册《第二十二章 二次函数》单元测试卷附答案(人教版)
九年级数学上册《第二十二章二次函数》单元测试卷附答案(人教版)一、单选题1.下列各式中表示二次函数的是()+1B.y=2−x2A.y=x2+1x−x2D.y=(x−1)2−x2C.y=1x22.将抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线是()A.y=5(x+2)2+3B.y=5(x+2)2−3C.y=5(x−2)2+3D.y=5(x−2)2−33.抛物线y=x2−2x−3与x轴的两个交点间的距离是()A.-1 B.-2 C.2 D.44.已知(2,5)、 (4,5)是抛物线y=ax2+bx+c上的两点,则这个抛物线的对称轴方程是()B.x=2 C.x=4 D.x=3A.x=−ab5.不论m取何实数,抛物线y=2(x+m)2+m的顶点一定在下列哪个函数图象上()A.y=2x2B.y=-x C.y=-2x D.y=x6.已知函数y=1x2-x-12,当函数y随x的增大而减小时,x的取值范围是()2A.x<1 B.x>1 C.x>-4 D.-4<x<67.下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x …−20 1 3 …y … 6 −4−6−4…下列选项中,正确的是()A.这个函数的开口向下B.这个函数的图象与x轴无交点C.当x>2时,y的值随x的增大而减小D.这个函数的最小值小于68.二次函数y=ax2+bx+c的图象如图所示,则下列判断中错误的是 ( )A.图象的对称轴是直线x=1B.当x>1时,y随x的增大而减小C.一元二次方程ax2+bx+c=0的两个根是-1,3D.当-1<x<3时,y<09.一个球从地面竖直向上弹起时的速度为10米/秒,经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2,那么球弹起后又回到地面所花的时间t(秒)是()A.5 B.10 C.1 D.210.如图,是一个横断面为抛物线形状的拱桥,当水面宽4m时,拱顶(拱桥洞的最高点)离水面2m,当水面上升1m时,水面的宽为()A.2 m B.2m C. m D.3m二、填空题11.不论m取任何实数,抛物线y=x2+2mx+m2+m−1的顶点都在一条直线上,则这条直线的解析式是.12.若二次函数y=2x2﹣5的图象上有两个点A(2,a)、B(3,b),则a b(填“<”或“=”或“>”).13.抛物线y=x2−6x+c与x轴只有一个交点,则c=.14.已知抛物线y=a(x﹣h)2+k与x轴交于(﹣2,0)、(4,0),则关于x的一元二次方程:a(x ﹣h+3)2+k=0的解为.15.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为元.三、解答题16.已知二次函数的图象经过(-6,0),(2,0),(0,-6)三点.(1)求这个二次函数的表达式;(2)求这个二次函数的顶点坐标.17.在平面直角坐标系xOy中,抛物线y=ax2−4ax+1 .(1)若抛物线过点A(−1,6),求二次函数的表达式;(2)指出(1)中x为何值时y随x的增大而减小;(3)若直线y=m与(1)中抛物线有两个公共点,求m的取值范围.18.如图,抛物线y=a x2 +c与直线y=3相交于点A,B,与y相交于点C(0,-1),其中点A的横坐标为-4.(1)计算a,c的值;(2)求出抛物线y=ax 2 +c与x轴的交点坐标;19.如图一,抛物线y=ax2+bx+c过A(−1,0)B(3.0),C(0,√3)三点(1)求该抛物线的解析式;(2)P(x1,y1),Q(4,y2)两点均在该抛物线上,若y1≤y2,求P点横坐标x1的取值范围;(3)如图二,过点C作x轴的平行线交抛物线于点E,该抛物线的对称轴与x轴交于点D,连结CD,CB,点F为线段CB的中点,点M,N分别为直线CD和CE上的动点,求ΔFMN周长的最小值.20.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/千克)55 60 65 70销售量y(千克)70 60 50 40(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?21.如图,抛物线y=ax2+bx+c(a≠0)与直线y=x+1相交于A(−1,0),B(4,m)两点,且抛物线经过点C(5,0)(1)求抛物线的解析式;(2)点P是抛物线上的一个动点(不与点A.点B重合),过点P作直线PD⊥x轴于点D,交直线AB 于点E.当PE=2ED时,求P点坐标;(3)点P是直线上方的抛物线上的一个动点,求ΔABP的面积最大时的P点坐标.参考答案1.B2.B3.D4.D5.B6.A7.D8.D9.D10.A11.y=−x−112.<13.914.x1=−515.2516.(1)解:设抛物线y=ax2+bx+c把(-6,0),(2,0),(0,-6)三点代入解析式,得{36a+6b+c=0 4a+2b+c=0c=−6解得∴抛物线的解析式为:y=12x2+2x−6(2)解:y=12x2+2x−6=12(x+2)2−8∴抛物线的顶点坐标为:(-2,-8).17.(1)解:把点A(-1,6),代入y=ax2−4ax+1得:6=a×(−1)2−4a×(−1)+1解得a=1∴二次函数的表达式y=x2−4x+1(2)解:二次函数y=x2−4x+1对称轴x=2∵a=1>0∴二次函数在对称轴左边y随x的增大而减小∴当x≤2是y随x的增大而减小;(3)解:∵直线y=m与y=x2−4x+1有两个公共点∴一元二次方程m=x2−4x+1有两不等根即一元二次方程x2−4x+1−m=0有两不等根∴Δ>0∴42−4×1×(1−m)>0解得m>−318.(1)解:设y=a x2 -1把(-4,3)代入得:3=a(-4) 2 -1∴a= 14∴y= 14x 2 -1∴a= 14,c=-1(2)解:y= 14x 2 -1=0∴x=±2∴(-2,0),(2,0)19.(1)解:∵抛物线y=ax2+bx+c过A(−1,0)B(3,0) C(0,√3)三点∴{a−b+c=09a+3b+c=0c=√3解得:a=−√33,b=2√33,c=√3;∴抛物线的解析式为:y=−√33x2+2√33x+√3(2)解:抛物线的对称轴为x=1,抛物线上与Q(4,y2)相对称的点Q′(−2,y2) P(x1,y1)在该抛物线上y1≤y2,根据抛物线的增减性得:∴x1≤−2或x1≥4答:P点横坐标x1的取值范围:x1≤−2或x1≥4.(3)解:∵C(0,√3),B(3,0)∴OC=√3,OB=3∵F是BC的中点∴F(32,√3 2)当点 F 关于直线 CE 的对称点为 F ′ ,关于直线 CD 的对称点为 F ′′ ,直线 F ′F ′′ 与 CE 、 CD 交点为 M,N ,此时 ΔFMN 的周长最小,周长为 F ′F ′′ 的长,由对称可得到: F ′(32,3√32) , F ′′(0,0) 即点 O F ′F ′′=F ′O =(32)(3√32)=3即: ΔFMN 的周长最小值为320.(1)解:设y 与x 之间的函数表达式为 y =kx +b ( k ≠0 ),将表中数据(55,70)、(60,60)代入得:{55k +b =7060k +b =60解得: {k =−2b =180∴y 与x 之间的函数表达式为 y =−2x +180 ;(2)解:由题意得: (x −50)(−2x +180)=600整理得 :x 2−140x +4800=0解得 x 1=60,x 2=80答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克;(3)解:设当天的销售利润为w 元,则:w =(x −50)(−2x +180)=−2(x ﹣70)2+800∵﹣2<0∴当 x =70 时w 最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.21.(1)解:∵点B (4,m )在直线y =x +1上∴m =4+1=5∴B (4,5)把A 、B 、C 三点坐标代入抛物线解析式可得{a −b +c =016a +4b +c =025a +5b +c =0解得{a =−1b =4c =5∴抛物线解析式为y =−x 2+4x +5;(2)解:设P (x ,−x 2+4x +5),则E (x ,x +1),D (x ,0)则PE =|−x 2+4x +5−(x +1)|=|−x 2+3x +4|,DE =|x +1|∵PE =2ED∴|−x 2+3x +4|=2|x +1|当−x 2+3x +4=2(x +1)时,解得x =−1或x =2,但当x =−1时,P 与A 重合不合题意,舍去 ∴P (2,9);当−x 2+3x +4=−2(x +1)时,解得x =−1或x =6,但当x =−1时,P 与A 重合不合题意,舍去 ∴P (6,−7);综上可知P 点坐标为(2,9)或(6,−7);(3)解:∵点P 是直线上方的抛物线上的一个动点设(x ,−x 2+4x +5),则E (x ,x +1),D (x ,0)则PE =−x 2+4x +5−(x +1)=−x 2+3x +4∴ΔABP = S ΔAEP + S ΔEBP = 12×PE ×(x B −x A ) = 12×(−x 2+3x +4)×5= −52(x −32)2+1258 ∴当x= 32 , ΔABP 的面积最大把x= 32 代入y =−x 2+4x +5,解得y= 354故P ( 32 , 354 ).。
人教版初中数学九年级上册《第22章 二次函数》单元测试卷(含答案解析
人教新版九年级上学期《第22章二次函数》单元测试卷一.选择题(共40小题)1.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C.D.y=(x﹣1)2﹣x22.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.当﹣1<x<2时,y>0C.a+b+c<0D.当x<,y随x的增大而减小3.用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为()A.y=(x+3)2+2B.y=(x﹣3)2﹣2C.y=(x﹣6)2﹣2D.y=(x﹣3)2+2 4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③5.在平面直角坐标系中,直线y=ax+h与抛物线y=a(x﹣h)2的图象不可能是()A.B.C.D.6.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3.其中正确的个数是()A.1B.2C.3D.47.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或28.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为()A.y=﹣2(x﹣1)2+3B.y=﹣2(x+1)2+3C.y=﹣(2x+1)2+3D.y=﹣(2x﹣1)2+39.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0,其中,正确结论的个数是()A.1B.2C.3D.410.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.至少有3个D.有无穷多个11.一个二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为()A.y=﹣2(x+2)2+4B.y=﹣2(x﹣2)2+4C.y=2(x+2)2﹣4D.y=2(x﹣2)2﹣412.烟花厂为雁荡山旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度h (m)与飞行时间t(s)的关系式是h=﹣t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.6s13.根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的个数是()A.0B.1C.2D.1或214.函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x 的取值范围是()A.x<﹣4或x>2B.﹣4<x<2C.x<0或x>2D.0<x<2 15.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c在坐标系中的大致图象是()A.B.C.D.16.如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()A.B.C.D.17.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0C.2a﹣b=0D.a﹣b+c=0 18.在同一平面直角坐标系中,函数y=ax+b与y=bx2+ax的图象可能是()A.B.C.D.19.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣2;④使y≤3成立的x的取值范围是x≥0;⑤抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<﹣1<x2,且x1+x2>﹣2,则y1<y2其中正确的个数有()A.1个B.2个C.3个D.4个20.已知二次函数y=﹣(x﹣2)2+7,其中﹣1≤x≤4,现有下列说法:①当x=2时,y有最大值7;②当x=2时,y有最小值7;③当x=﹣1时,y有最小值﹣2;④当x=4时,y有最大值3.其中正确的是()A.①③B.①④C.②④D.①③④21.已知一条抛物线经过E(0,10),F(2,2),G(4,2),H(3,1)四点,选择其中两点用待定系数法能求出抛物线解析式的为()A.E,F B.E,G C.E,H D.F,G22.如图,已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,则函数y的最小值和最大值()A.﹣3和5B.﹣4和5C.﹣4和﹣3D.﹣1和5 23.已知二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象是()A.B.C.D.24.已知抛物线y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A(1,y A),B (0,y B),C(﹣1,y C)在该抛物线上,当y0≥0恒成立时,的最小值为()A.1B.2C.4D.325.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是()A.当m=﹣3时,函数图象的顶点坐标是()B.当m>0时,函数图象截x轴所得的线段长度大于C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x时,y随x的增大而减小26.已知二次函数y=﹣x2+x+2,当自变量x取m时对应的值大于0,当自变量x 分别取m﹣3、m+3时对应的函数值为y1、y2,则y1、y2必须满足()A.y1>0、y2>0B.y1<0、y2<0C.y1<0、y2>0D.y1>0、y2<0 27.若二次函数y=ax2+bx+c的图象与x轴交于A和B两点,顶点为C,且b2﹣4ac=4,则∠ACB的度数为()A.120°B.90°C.60°D.30°28.某中学课外兴趣活动小组准备围建一个矩形苗圃圆,其中一边靠墙,另外三边用长为40米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米,围成的苗圃面积为y,则y关于x的函数关系式为()A.y=x(40﹣x)B.y=x(18﹣x)C.y=x(40﹣2x)D.y=2x(40﹣2x)29.在比赛中,某次羽毛球的运动路线可以看作是抛物线y=﹣x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的解析式是()A.y=﹣x2+x+1B.y=﹣x2+x﹣1C.y=﹣x2﹣x+1D.y=﹣x2﹣x﹣130.如图,点A(a,b)是抛物线上一动点,OB⊥OA交抛物线于点B(c,d).当点A在抛物线上运动的过程中(点A不与坐标原点O重合),以下结论:①ac为定值;②ac=﹣bd;③△AOB的面积为定值;④直线AB必过一定点.正确的有()A.1个B.2个C.3个D.4个31.已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6B.1或6C.1或3D.4或632.已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(﹣1,0),(0,3),其对称轴在y轴右侧.有下列结论:①抛物线经过点(1,0);②方程ax2+bx+c=2有两个不相等的实数根;③﹣3<a+b<3其中,正确结论的个数为()A.0B.1C.2D.333.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨一元,月销售量就减少10千克.设销售单价为每千克x元,月销售利润为y元,则y与x的函数关系式为()A.y=(x﹣40)(500﹣10x)B.y=(x﹣40)(10x﹣500)C.y=(x﹣40)[500﹣10(x﹣50)]D.y=(x﹣40)[500﹣10(50﹣x)] 34.抛物线y=ax2+bx+c交x轴于A(﹣1,0),B(3,0),交y轴的负半轴于C,顶点为D.下列结论:①2a+b=0;②2c<3b;③当m≠1时,a+b<am2+bm;④当△ABD是等腰直角三角形时,则a═;⑤当△ABC是等腰三角形时,a的值有3个.其中正确的有()个.A.5B.4C.3D.235.已知抛物线y=x2+2x+3a﹣1的图象恰好只经过三个象限,则字母a的取值范围为()A.a<0B.a>C.<a≤D.≤a<36.已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为()A.(﹣3,7)B.(﹣1,7)C.(﹣4,10)D.(0,10)37.已知函数y=(k﹣3)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≤4且k≠3B.k<4且k≠3C.k<4D.k≤438.已知二次函数y=ax2+bx+c中,y与x的部分对应值如下:则一元二次方程ax2+bx+c=0的一个解x满足条件()A.1.2<x<1.3B.1.3<x<1.4C.1.4<x<1.5D.1.5<x<1.639.二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是()A.函数有最小值B.当﹣1<x<2时,y>0C.a+b+c<0D.当x<﹣1时,y随x的增大而减小40.在平面直角坐标系xOy中,A点的坐标是(6,4),点A关于直线x=2的对称点为B,若抛物线y=ax2(a≠0)与线段AB恰有一个公共点,则a的取值范围是()A.<a<1B.≤a≤1C.<a≤1D.≤a<1人教新版九年级上学期《第22章二次函数》单元测试卷参考答案与试题解析一.选择题(共40小题)1.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C.D.y=(x﹣1)2﹣x2【分析】根据二次函数的定义,逐一分析四个选项即可得出结论.【解答】解:A、当a=0时,y=bx+c不是二次函数;B、y=x(x﹣1)=x2﹣x是二次函数;C、y=不是二次函数;D、y=(x﹣1)2﹣x2=﹣2x+1为一次函数.故选:B.【点评】本题考查了二次函数的定义,牢记二次函数的定义是解题的关键.2.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.当﹣1<x<2时,y>0C.a+b+c<0D.当x<,y随x的增大而减小【分析】A、观察可判断函数有最小值;B、由抛物线可知当﹣1<x<2时,可判断函数值的符号;C、观察当x=1时,函数值的符号,可判断a+b+c的符号;D、由抛物线对称轴和开口方向可知y随x的增大而减小,可判断结论.【解答】解:A、由图象可知函数有最小值,故正确;B、由抛物线可知当﹣1<x<2时,y<0,故错误;C、当x=1时,y<0,即a+b+c<0,故正确;D、由图象可知在对称轴的左侧y随x的增大而减小,故正确.故选:B.【点评】本题考查了二次函数图象的性质与解析式的系数的关系.关键是熟悉各项系数与抛物线的各性质的联系.3.用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为()A.y=(x+3)2+2B.y=(x﹣3)2﹣2C.y=(x﹣6)2﹣2D.y=(x﹣3)2+2【分析】由于二次项系数是1,利用配方法直接加上一次项系数一半的平方来凑完全平方式,可把一般式转化为顶点式.【解答】解:y=x2﹣6x+11,=x2﹣6x+9+2,=(x﹣3)2+2.故选:D.【点评】二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).4.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①当x=1时,结合图象y=a+b+c<0,故此选项正确;②当x=﹣1时,图象与x轴交点负半轴明显小于﹣1,∴y=a﹣b+c>0,故本选项错误;③由抛物线的开口向上知a>0,∵对称轴为0<x=﹣<1,∴2a>﹣b,即2a+b>0,故本选项错误;④对称轴为x=﹣>0,∴a、b异号,即b<0,图象与坐标相交于y轴负半轴,∴c<0,∴abc>0,故本选项正确;∴正确结论的序号为①④.故选:C.【点评】此题主要考查了二次函数图象与系数关系,同学们应掌握二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.5.在平面直角坐标系中,直线y=ax+h与抛物线y=a(x﹣h)2的图象不可能是()A.B.C.D.【分析】根据各选项中直线经过的象限可得出a、b的符号,再依此找出二次函数图象的开口、对称轴以及顶点坐标,对照图象即可得出结论.【解答】解:A、∵直线y=ax+h经过第一、二、四象限,∴a<0,h>0,∴抛物线y=a(x﹣h)2开口向下,对称轴为直线x=h在y轴的右侧,顶点为(h,0),∴该选项图象符合题意;B、直线y=ax+h经过第一、二、三象限,∴a>0,h>0,∴抛物线y=a(x﹣h)2开口向上,称轴为直线x=h在y轴的右侧,顶点为(h,0),∴该选项图象符合题意;C、直线y=ax+h经过第一、二、三象限,∴a>0,h>0,∴抛物线y=a(x﹣h)2开口向上,称轴为直线x=h在y轴的右侧,顶点为(h,0),∴该选项图象不符合题意;D、∵直线y=ax+h经过第一、三、四象限,∴a>0,h<0,∴抛物线y=a(x﹣h)2开口向上,称轴为直线x=h在y轴的左侧,顶点为(h,0),∴该选项图象符合题意;故选:C.【点评】本题考查了二次函数的图象以及一次函数图象与系数的关系,逐一分析四个选项中图象的正误是解题的关键.6.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3.其中正确的个数是()A.1B.2C.3D.4【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.【点评】此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A 点坐标是解题关键.7.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或2【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x ≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故选:D.【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.8.一抛物线和抛物线y=﹣2x2的形状、开口方向完全相同,顶点坐标是(﹣1,3),则该抛物线的解析式为()A.y=﹣2(x﹣1)2+3B.y=﹣2(x+1)2+3C.y=﹣(2x+1)2+3D.y=﹣(2x﹣1)2+3【分析】直接利用顶点式写出抛物线解析式.【解答】解:抛物线解析式为y=﹣2(x+1)2+3.故选:B.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.9.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①c>0;②若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2;③2a﹣b=0;④<0,其中,正确结论的个数是()A.1B.2C.3D.4【分析】①根据抛物线y轴交点情况可判断;②根据点离对称轴的远近可判断;③根据抛物线对称轴可判断;④根据抛物线与x轴交点个数以及不等式的性质可判断.【解答】解:由抛物线交y轴的正半轴,∴c>0,故①正确;∵对称轴为直线x=﹣1,∴点B(﹣,y1)距离对称轴较近,∵抛物线开口向下,∴y1>y2,故②错误;∵对称轴为直线x=﹣1,∴﹣=﹣1,即2a﹣b=0,故③正确;由函数图象可知抛物线与x轴有2个交点,∴b2﹣4ac>0即4ac﹣b2<0,∵a<0,∴>0,故④错误;综上,正确的结论是:①③,故选:B.【点评】本题考查了二次函数图象与系数的关系,二次函数y=ax2+bx+c(a≠0),a的符号由抛物线开口方向决定;b的符号由对称轴的位置及a的符号决定;c的符号由抛物线与y轴交点的位置决定;抛物线与x轴的交点个数,决定了b2﹣4ac的符号.10.若对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.至少有3个D.有无穷多个【分析】根据题意可以得到相应的不等式,然后根据对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),即可求得点P的坐标,从而可以解答本题.【解答】解:∵对于任意非零实数a,抛物线y=ax2+ax﹣2a总不经过点P(x0﹣3,x02﹣16),∴x02﹣16≠a(x0﹣3)2+a(x0﹣3)﹣2a∴(x0﹣4)(x0+4)≠a(x0﹣1)(x0﹣4)∴(x0+4)≠a(x0﹣1)∴x0=﹣4或x0=1,∴点P的坐标为(﹣7,0)或(﹣2,﹣15)故选:B.【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.11.一个二次函数的图象的顶点坐标是(2,4),且过另一点(0,﹣4),则这个二次函数的解析式为()A.y=﹣2(x+2)2+4B.y=﹣2(x﹣2)2+4C.y=2(x+2)2﹣4D.y=2(x﹣2)2﹣4【分析】根据二次函数的顶点式求解析式.【解答】解:∵二次函数的图象的顶点坐标是(2,4),∴设这个二次函数的解析式为y=a(x﹣2)2+4,把(0,﹣4)代入得a=﹣2,∴这个二次函数的解析式为y=﹣2(x﹣2)2+4.故选:B.【点评】主要考查待定系数法求二次函数的解析式.当知道二次函数的顶点坐标时通常使用二次函数的顶点式来求解析式.顶点式:y=a(x﹣h)2+k或y=a (x+m)2+k12.烟花厂为雁荡山旅游节特别设计制作一种新型礼炮,这种礼炮的升空高度h (m)与飞行时间t(s)的关系式是h=﹣t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.6s【分析】将关系式h=﹣t2+20t+1化为顶点式,由二次函数的性质就可以求出结论.【解答】解:∵h=﹣t2+20t+1,∴h=﹣(t﹣4)2+41,∴当t=4秒时,礼炮达到最高点爆炸.故选:B.【点评】本题考查了二次函数的解析式一般式化为顶点式的运用,二次函数的性质的运用,解答时化为顶点式是关键.13.根据下列表格中的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的个数是()A.0B.1C.2D.1或2【分析】由表格中的对应值可得出,方程的一个根在6.17﹣6.18之间,另一个根在6.18﹣6.19之间.【解答】解:∵当x=6.17时,y=0.02;当x=6.18时,y=﹣0.01;当x=6.19时,y=0.02;∴方程的一个根在6.17﹣6.18之间,另一个根在6.18﹣6.19之间,故选:C.【点评】本题考查了用图象法求一元二次方程的近似根,当函数值由正变为负或由负变为正时,方程的根在这两个自变量之间.14.函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x 的取值范围是()A.x<﹣4或x>2B.﹣4<x<2C.x<0或x>2D.0<x<2【分析】先求出抛物线的对称轴方程,再利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(﹣4,0),然后利用函数图象写出抛物线在x轴下方所对应的自变量的范围即可.【解答】解:抛物线y=ax2+2ax+m的对称轴为直线x=﹣=﹣1,而抛物线与x轴的一个交点坐标为(2,0),∴抛物线与x轴的另一个交点坐标为(﹣4,0),∵a<0,∴抛物线开口向下,∴当x<﹣4或x>2时,y<0.故选:A.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.15.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c在坐标系中的大致图象是()A.B.C.D.【分析】先根据二次函数的图象开口向下可知a<0,根据对称轴x=﹣<0,可得b<0,再由函数图象经过原点可知c=0,进而得到一次函数y=bx+c在坐标系中的大致图象.【解答】解:∵二次函数的图象开口向下,∴a<0,∵对称轴x=﹣<0,∴b<0,∵函数图象经过原点,∴c=0,∴一次函数y=bx+c在坐标系中的大致图象是经过原点且从左往右下降的直线,故选:D.【点评】本题主要考查了二次函数以及一次函数的图象,解题时注意:正比例函数的图象是经过原点的一条直线.16.如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()A.B.C.D.【分析】Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行线的性质得出∠OCD=∠A,即∠AOD=∠OCD=45°,进而证明OD=CD=t;最后根据三角形的面积公式,解答出S与t之间的函数关系式,由函数解析式来选择图象.【解答】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,=×OD×CD∴S△OCD=t2(0≤t≤3),即S=t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3]、开口向上的二次函数图象;故选:D.【点评】本题主要考查的是二次函数解析式的求法及二次函数的图象特征.17.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0C.2a﹣b=0D.a﹣b+c=0【分析】根据抛物线与x轴有两个交点有b2﹣4ac>0可对A进行判断;由抛物线开口向上得a>0,由抛物线与y轴的交点在x轴下方得c<0,则可对B进行判断;根据抛物线的对称轴是x=1对C选项进行判断;根据抛物线的对称性得到抛物线与x轴的另一个交点为(﹣1,0),所以a﹣b+c=0,则可对D 选项进行判断.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴﹣=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴a﹣b+c=0,所以D选项正确;故选:D.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.18.在同一平面直角坐标系中,函数y=ax+b与y=bx2+ax的图象可能是()A.B.C.D.【分析】根据a、b的正负不同,则函数y=ax+b与y=bx2+ax的图象所在的象限也不同,针对a、b进行分类讨论,从而可以选出正确选项.【解答】解:若a>0,b>0,则y=ax+b经过一、二、三象限,y=bx2+ax开口向上,顶点在y轴左侧,故B、C错误;若a<0,b<0,则y=ax+b经过二、三、四象限,y=bx2+ax开口向下,顶点在y 轴左侧,故D错误;若a>0,b<0,则y=ax+b经过一、三、四象限,y=bx2+ax开口向下,顶点在y 轴右侧,故A正确;故选:A.【点评】本题考查二次函数的图象、一次函数的图象,解题的关键是明确一次函数图象和二次函数图象的特点,利用分类讨论的数学思想解答.19.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣2;④使y≤3成立的x的取值范围是x≥0;⑤抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<﹣1<x2,且x1+x2>﹣2,则y1<y2其中正确的个数有()A.1个B.2个C.3个D.4个【分析】利用二次函数的性质结合二次函数的图象确定符合条件的选项,即可得出结论.【解答】解:①观察图象知最高点为(﹣1,4),故最大值为4正确;②当x=2时,y<0,故4a+2b+c<0正确;③∵抛物线对称轴为x=﹣1,故一元二次方程ax2+bx+c=1的两根之和为﹣2正确;④使y≤3成立的x的取值范围是x≤﹣2或x≥0,故错误;⑤∵x1<﹣1<x2,且x1+x2>﹣2,∴P(x1,y1)距离对称近,∴y1>y2,故错误;故正确的有①②③3个,故选:C.【点评】本题考查了二次函数的性质及二次函数的最值的知识,解题的关键是能够结合图象发现其有关的结论,难度不大.20.已知二次函数y=﹣(x﹣2)2+7,其中﹣1≤x≤4,现有下列说法:①当x=2时,y有最大值7;②当x=2时,y有最小值7;③当x=﹣1时,y有最小值﹣2;④当x=4时,y有最大值3.其中正确的是()A.①③B.①④C.②④D.①③④【分析】根据函数的解析式画出该二次函数的草图,结合图形可得函数的最值情况.【解答】解:由函数图象可知,当x=2时,y有最大值7,故①正确;当x=﹣1时,y有最小值﹣2,故③正确;故选:A.【点评】本题主要考查二次函数的最值,解题的关键是熟练掌握二次函数的图象和性质.21.已知一条抛物线经过E(0,10),F(2,2),G(4,2),H(3,1)四点,选择其中两点用待定系数法能求出抛物线解析式的为()A.E,F B.E,G C.E,H D.F,G【分析】利用抛物线的对称性得到抛物线的对称轴为直线x=3,则可判断H(3,1)点为抛物线的顶点,于是可设顶点式y=a(x﹣3)2+1,然后把E点或F点或G点坐标代入求出a即可得到抛物线解析式.【解答】解:∵F(2,2),G(4,2),∴F和G点为抛物线上的对称点,∴抛物线的对称轴为直线x=3,∴H(3,1)点为抛物线的顶点,设抛物线的解析式为y=a(x﹣3)2+1,把E(0,10)代入得9a+1=10,解得a=1,∴抛物线的解析式为y=(x﹣3)2+1.故选:C.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.22.如图,已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,则函数y的最小值和最大值()A.﹣3和5B.﹣4和5C.﹣4和﹣3D.﹣1和5【分析】先求出二次函数的对称轴为直线x=﹣1,然后根据二次函数开口向上确定其增减性,并结合图象解答即可.【解答】解:∵二次函数y=(x+1)2﹣4,对称轴是:x=﹣1∵a=﹣1>0,∴x>﹣1时,y随x的增大而增大,x<﹣1时,y随x的增大而减小,由图象可知:在﹣2≤x≤2内,x=2时,y有最大值,y=(2+1)2﹣4=5,x=﹣1时y有最小值,是﹣4,故选:B.【点评】本题考查了二次函数的最值问题,二次函数的增减性,结合图象可得函数的最值是解题的关键.23.已知二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象是()A.B.C.D.【分析】直接利用二次函数图象得出a,b的符号,进而利用一次函数的图象性质得出答案.【解答】解:如图所示:抛物线开口向下,则a<0,则a,b互为相反数,则b>0,故一次函数y=ax+b的图象经过第一、二、四象限.故选:A.【点评】此题主要考查了二次函数以及一次函数的图象,正确得出a,b的符号是解题关键.24.已知抛物线y=ax2+bx+c(0<2a<b)的顶点为P(x0,y0),点A(1,y A),B (0,y B),C(﹣1,y C)在该抛物线上,当y0≥0恒成立时,的最小值为()A.1B.2C.4D.3【分析】由0<2a<b得x0=﹣<﹣1,作AA1⊥x轴于点A1,CD⊥y轴于点D,连接BC,过点A作AF∥BC,交抛物线于点E(x1,y E),交x轴于点F(x2,0),则AA1=y A,OA1=1,BD=y B﹣y C,CD=1,易证得Rt△AFA1∽Rt△BCD,利用相似比得到=;过点E作EG⊥AA1于点G,易得△AEG∽△BCD,利用相似比得=,再把点A(1,y A)、B(0,y B)、C(﹣1,y C)、E(x1,y E)代入抛物线y=ax2+bx+c得y A=a+b+c,y B=c,y C=a﹣b+c,y E=ax12+bx1+c,所以=1﹣x1,整理得x12+x1﹣2=0,解得x1=﹣2(x1=1舍去),由于y0≥0恒成立,则有x2≤x1<﹣1,所以1﹣x2≥1﹣x1,即1﹣x2≥3,于是得到≥3,所以的最小值为3.【解答】解:由0<2a<b,得x0=﹣<﹣1,由题意,如图,过点A作AA1⊥x轴于点A1,则AA1=y A,OA1=1,连接BC,过点C作CD⊥y轴于点D,则BD=y B﹣y C,CD=1,过点A作AF∥BC,交抛物线于点E(x1,y E),交x轴于点F(x2,0),则∠FAA1=∠CBD.于是Rt△AFA1∽Rt△BCD,所以=,即=,过点E作EG⊥AA1于点G,易得△AEG∽△BCD.有=,即=,∵点A(1,y A)、B(0,y B)、C(﹣1,y C)、E(x1,y E)在抛物线y=ax2+bx+c上,得y A=a+b+c,y B=c,y C=a﹣b+c,y E=ax12+bx1+c,∴==1﹣x1,化简,得x12+x1﹣2=0,解得x1=﹣2(x1=1舍去),∵y0≥0恒成立,根据题意,有x2≤x1<﹣1,则1﹣x2≥1﹣x1,即1﹣x2≥3.∴≥3,∴的最小值为3.故选:D.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x <﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.25.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1﹣m,﹣1﹣m]的函数的一些结论,其中不正确的是()A.当m=﹣3时,函数图象的顶点坐标是()B.当m>0时,函数图象截x轴所得的线段长度大于C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x时,y随x的增大而减小【分析】A、把m=﹣3代入[2m,1﹣m,﹣1﹣m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;C、首先求得对称轴,利用二次函数的性质解答即可;D、根据特征数的特点,直接得出x的值,进一步验证即可解答.【解答】解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣)2+,顶点坐标是(,);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣﹣,|x2﹣x1|=+>,所以当m>0时,函数图象截x轴所得的线段长度大于,此结论正确;C、当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意m,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m ≠0时,函数图象经过x轴上一个定点此结论正确.D、当m<0时,y=2mx2+(1﹣m)x+(﹣1﹣m)是一个开口向下的抛物线,其对称轴是:直线x=,在对称轴的右边y随x的增大而减小.因为当m<0时,=﹣>,即对称轴在x=右边,因此函数在x=右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选:D.【点评】此题考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.26.已知二次函数y=﹣x2+x+2,当自变量x取m时对应的值大于0,当自变量x 分别取m﹣3、m+3时对应的函数值为y1、y2,则y1、y2必须满足()。
九年级数学上册第二十二章《二次函数》测试-人教版(含答案)
九年级数学上册第二十二章《二次函数》测试-人教版(含答案)一.选择题1.若y=(2﹣m)是二次函数,则m等于()A.±2B.2C.﹣2D.不能确定2.下列函数不属于二次函数的是()A.y=(x﹣1)(x+2)B.y=(x+1)2C.y=1﹣x2D.y=2(x+3)2﹣2x23.下列函数中是二次函数的是()A.y=3x﹣1B.y=x3﹣2x﹣3C.y=(x+1)2﹣x2D.y=3x2﹣14.二次函数y=﹣x2+2x的图象可能是()A.B.C.D.5.抛物线y=x2﹣2x+3的对称轴为()A.直线x=﹣1B.直线x=﹣2C.直线x=1D.直线x=26.若函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,则m的值为()A.﹣2B.1C.2D.﹣17.在同一坐标系中一次函数y=ax+b和二次函数y=ax2+bx的图象可能为()A.B.C.D.8.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.9.若二次函数y=(x﹣m)2﹣1,当x≤3时,y随x的增大而减小,则m的取值范围是()A.m=3B.m>3C.m≥3D.m≤310.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A.B.C.D.二.填空题11.若是二次函数,则m=.12.如图,⊙O的半径为2,C1是函数y=x2的图象,C2是函数y=﹣x2的图象,则阴影部分的面积是.13.如图所示,在同一坐标系中,作出①y=3x2;②y=x2;③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号).14.若y=(m﹣1)x|m|+1﹣2x是二次函数,则m=.15.已知y=(a+1)x2+ax是二次函数,那么a的取值范围是.16.若y=(m2+m)是二次函数,则m的值等于.17.小颖同学想用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象,取自变量x的5个值,分别计算出对应的y值,如下表:x…﹣2﹣1012…y…112﹣125…由于粗心,小颖算错了其中的一个y值,请你指出这个算错的y值所对应的x=.18.已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.19.已知抛物线y=ax2与y=2x2的形状相同,则a=.20.二次函数y=x2+bx+c的图象上有两点(3,4)和(﹣5,4),则此抛物线的对称轴是直线x=.三.解答题21.函数是关于x的二次函数,求m的值.22.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?23.画出二次函数y=x2的图象.24.已知,在同一平面直角坐标系中,正比例函数y=﹣2x与二次函数y=﹣x2+2x+c的图象交于点A(﹣1,m).(1)求m,c的值;(2)求二次函数图象的对称轴和顶点坐标.25.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?26.已知是x的二次函数,求出它的解析式.27.抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?参考答案一.选择题1.解:根据二次函数的定义,得:m2﹣2=2解得m=2或m=﹣2又∵2﹣m≠0∴m≠2∴当m=﹣2时,这个函数是二次函数.故选:C.2.解:A、整理为y=x2+x﹣3,是二次函数,不合题意;B、整理为y=x2+x+,是二次函数,不合题意;C、整理为y=﹣x2+1,是二次函数,不合题意;D、整理为y=12x+18,是一次函数,符合题意.故选:D.3.解:二次函数的一般式是:y=ax2+bx+c,(其中a≠0)(A)最高次数项为1次,故A错误;(B)最高次数项为3次,故B错误;(C)y=x2+2x+1﹣x2=2x﹣1,故C错误;故选:D.4.解:∵y=﹣x2+2x,a<0,∴抛物线开口向下,A、C不正确,又∵对称轴x=﹣=1,而D的对称轴是直线x=0,∴只有B符合要求.故选:B.5.解:∵y=x2﹣2x+3=(x﹣1)2+2,∴对称轴为x=1,故选:C.6.解:∵函数y=(1﹣m)+2是关于x的二次函数,且抛物线的开口向上,∴,解得m=﹣2.故选:A.7.解:A、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b<0,正确;B、由抛物线可知,a>0,由直线可知,a<0,错误;C、由抛物线可知,a<0,x=﹣>0,得b>0,由直线可知,a<0,b<0,错误;D、由抛物线可知,a<0,由直线可知,a>0,错误.故选:A.8.解:∵二次函数y=x2+a∴抛物线开口向上,∴排除B,∵一次函数y=ax+2,∴直线与y轴的正半轴相交,∴排除A;∵抛物线得a<0,∴排除C;故选:D.9.解:∵二次函数的解析式y=(x﹣m)2﹣1的二次项系数是1,∴该二次函数的开口方向是向上;又∵该二次函数的图象的顶点坐标是(m,﹣1),∴该二次函数图象在[﹣∞,m]上是减函数,即y随x的增大而减小;而已知中当x≤3时,y随x的增大而减小,∴x≤3,∴x﹣m≤0,∴m≥3.故选:C.10.解:解得或.故二次函数y=ax2+bx与一次函数y=ax+b(a≠0)在同一平面直角坐标系中的交点在x轴上为(﹣,0)或点(1,a+b).在A中,由一次函数图象可知a>0,b>0,二次函数图象可知,a>0,b>0,﹣<0,a+b>0,故选项A有可能;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B有可能;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C有可能;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D不可能;故选:D.二.填空题11.解:∵是二次函数,∴,解得m=﹣2.故答案为:﹣2.12.解:由图形观察可知,把x轴上边的阴影部分的面积对称到下边就得到一个半圆阴影面积,则阴影部分的面积s==2π.故答案为:2π.13.解:①y=3x2,②y=x2,③y=x2中,二次项系数a分别为3、、1,∵3>1>,∴抛物线②y=x2的开口最宽,抛物线①y=3x2的开口最窄.故依次填:①③②.14.解:由y=(m﹣1)x|m|+1﹣2x是二次函数,得,解得m=﹣1.故答案为:﹣1.15.解:根据二次函数的定义可得a+1≠0,即a≠﹣1.故a的取值范围是a≠﹣1.16.解:根据二次函数的定义,得:,解得:m=2.故答案为:2.17.解:根据表格给出的各点坐标可得出,该函数的对称轴为直线x=0,求得函数解析式为y=3x2﹣1,则x=2与x=﹣2时应取值相同.故这个算错的y值所对应的x=2.18.解:已知抛物线与x轴的一个交点是(﹣1,0),对称轴为x=1,根据对称性,抛物线与x轴的另一交点为(3,0),观察图象,当y>0时,﹣1<x<3.19.解:∵抛物线y=ax2与y=2x2的形状相同,∴|a|=2,∴a=±2.故答案为±2.20.解:∵点(3,4)和(﹣5,4)的纵坐标相同,∴点(3,4)和(﹣5,4)是抛物线的对称点,而这两个点关于直线x=﹣1对称,∴抛物线的对称轴为直线x=﹣1.故答案为﹣1.三.解答题21.解:由题意可知解得:m=2.22.解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.23.解:函数y=x2的图象如图所示,24.解:(1)∵点A(﹣1,m)在函数y=﹣2x的图象上,∴m=﹣2×(﹣1)=2,∴点A坐标为(﹣1,2),∵点A在二次函数图象上,∴﹣1﹣2+c=2,解得c=5;(2)∵二次函数的解析式为y=﹣x2+2x+5,∴y=﹣x2+2x+5=﹣(x﹣1)2+6,∴对称轴为直线x=1,顶点坐标为(1,6).25.解:(1)根据一次函数的定义,得:m2﹣m=0解得m=0或m=1又∵m﹣1≠0即m≠1;∴当m=0时,这个函数是一次函数;(2)根据二次函数的定义,得:m2﹣m≠0解得m1≠0,m2≠1∴当m1≠0,m2≠1时,这个函数是二次函数.26.解:由二次函数的定义,可知m2+m≠0,即m≠0,m≠﹣1又因为m2﹣2m﹣1=2,m2﹣2m﹣3=0解得m=3或m=﹣1(不合题意,舍去)所以m=3故y=12x2+9.27.解:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)得:m=3.∴抛物线为y=﹣x2+2x+3=﹣(x﹣1)2+4.列表得:X﹣10123y03430图象如右.(2)由﹣x2+2x+3=0,得:x1=﹣1,x2=3.∴抛物线与x轴的交点为(﹣1,0),(3,0).∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴抛物线顶点坐标为(1,4).(3)由图象可知:当﹣1<x<3时,抛物线在x轴上方.(4)由图象可知:当x>1时,y的值随x值的增大而减小.。
人教版九年级数学上册第22章《二次函数》单元综合过关试题(含答案)
第 1 页 共 53 页人教版九年级数学上册第22章《二次函数》单元综合过关试题(含答案)一.选择题1.抛物线y =﹣(x﹣)2﹣2的顶点坐标是( ) A .(,2)B .(﹣,2)C .(﹣,﹣2)D .(,﹣2)2.若二次函数y =ax 2+bx +c 的图象经过点(﹣1,0)和(3,0),则方程ax 2+bx +c =0的解为( ) A .x 1=﹣3,x 2=﹣1 B .x 1=1,x 2=3C .x 1=﹣1,x 2=3D .x 1=﹣3,x 2=13.对于抛物线y =3x 2﹣1,下列说法不正确的是( ) A .向上平移一个单位可得到抛物线y =3x 2B .当x =0时,函数有最小值﹣1C .当x <0时,y 随x 的增大而增大D .与抛物线y =﹣3x 2+1关于x 轴对称4.已知抛物线y =﹣x 2+ax +b 与x 轴两个交点间的距离为2,对称轴为直线x =1,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( ) A .(﹣3,﹣6)B .(﹣3,﹣3)C .(﹣3,﹣1)D .(﹣3,0)5.若二次函数y =4mx 2﹣8x +m 的图象与x 轴有两个交点,满足条件的m 的值是( ) A .﹣2B .0C .1D .26.抛物线y =x 2+x +2的图象上有三个点(﹣3,a ),(﹣2,b ),(3,c ),则( ) A .a >b >cB .b >a >cC .c >a >bD .c >b >a7.一名跳水运动员从10米台上跳水,他跳下的高度h (单位:米)与所用的时间t (单位:秒)的关系是h =﹣5(t ﹣2)(t +1),这名运动员从起跳到入水所用的时间是( ) A .﹣5秒B .1秒C .﹣1秒D .2秒8.下列关于抛物线y =﹣4x 2﹣2x +1的描述不正确的是( )A.开口向下B.当x≤﹣时,y随x的增大而增大C.与y轴交点是(0,1)D.当x=﹣1时,y=09.二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,其图象的一部分如图所示.下列说法错误的是()A.abc<0 B.a﹣b+c<0C.3a+c<0 D.当﹣1<x<3时,y>010.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,则下列结论:①c=0;②2a﹣b=0;③当﹣2<x<0时,y<0;④a﹣b>0.其中正确结论的个数有()A.1个B.2个C.3个D.4个11.关于x的一元二次方程ax2+bx+=0有一个根是﹣1,若二次函数y=ax2+bx+的图象的顶点在第一象限,设t=2a+b,则t的取值范围是()A.<t<B.﹣1<t≤C.﹣≤t<D.﹣1<t<12.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;第 2 页共53 页③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个二.填空题13.抛物线y=﹣2x2﹣4x+8的开口,对称轴,顶点坐标是.14.已知函数y=(m+3)x2+2x+1的图象与x轴只有一个公共点,则m的值为15.已知二次函数=2+2+2,当>2时,y随x的增大而增大,则实数m的取值范围是.16.已知直线y=2x﹣5与x轴和y轴分别交于点A和点B,抛物线y=﹣x2+bx+c的顶点M在线AB上,且抛物线与直线AB的另一个交点为N.(1)如图,当点M与点A重合时,则抛物线的解析式为;(2)当抛物线y=﹣x2+bx+c的顶点M在直线AB上平移时,若△OMN与△AOB相似,则点M的坐标为.第 3 页共53 页三.解答题17.抛物线y=﹣x2+2mx+4﹣m2与x轴交于A,B两点,点A在点B的左侧.(1)若点B的坐标为(3,0).①求抛物线的对称轴;②当2≤x≤n时,函数值y的取值范围为﹣n﹣1≤y≤3,求n的值;(2)将抛物线在x轴上方的部分沿x轴翻折,得到新的函数图象,当﹣2≤x≤n时,此函数的值随x的增大而增大,直接写出n的取值范围.18.2019年在法国举办的女足世界杯,为人们奉献了一场足球盛宴.某商场销售一批足球文化衫,已知该文化衫的进价为每件40元,当售价为每件60元时,每个月可售出100第 4 页共53 页件.根据市场行情,现决定涨价销售,调查表明,每件商品的售价每上涨1元,每个月会少售出2件,设每件商品的售价为x元,每个月的销量为y件.(1)求y与x之间的函数关系式;(2)当每件商品的售价定为多少元时,每个月的利润恰好为2250元;(3)当每件商品的售价定为多少元时,每个月获得利润最大?最大月利润为多少?19.如图,已知抛物线y=ax2+x+c(a≠0)与y轴交于A(0,4),与x轴交于B、C,点C坐标为(8,0),连接AB、AC.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由.20.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,OB=2OC且OC=2.(1)求抛物线的解析式及点D的坐标;(2)点P为y轴右侧抛物线上一点,是否存在点P使S△ABP=S△ABC?若存在请求出点P坐标;若不存在,请说明理由.第 5 页共53 页21.如图,已知抛物线y=a2+by+6(a≠0)与x轴交于点A(﹣3,0)和点B(1,0)与y轴交于点C.(1)填空;a=;b=;点C的坐标为(,);(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.第 6 页共53 页22.已知函数y=(n为常数)(1)当n=5,①点P(4,b)在此函数图象上,求b的值;②求此函数的最大值.(2)已知线段AB的两个端点坐标分别为A(2,2)、B(4,2),当此函数的图象与线段AB只有一个交点时,直接写出n的取值范围.(3)当此函数图象上有4个点到x轴的距离等于4,求n的取值范围.23.6月19日是全国低碳日.低碳生活代表着更健康、更自然、更安全的生活.某低碳家居用品销售商在第一个月成批购进低碳厨房用品A的单价为20元,调查发现:低碳厨房用品A的预计销售单价是30元,则销售量是230件,而实际销售单价比预计销售单价每上涨1元,销售量就减少5件,每件低碳厨房用品A售价不能高于50元.(1)第一个月低碳厨房用品A的实际销售单价定为多少元时,它的销售利润恰好为3600元?(2)第二个月,销售商将继续购进350件低碳厨房用品A,销售单价比第一个月预计销售单价上涨了10%,进价比第一个月的进价上涨了0.2m%同时,销售商将另外购进m件低碳厨房用品B,且它的单价比第一个月购进低碳厨房用品A的进价低20%,销售单价为28元;低碳厨房用品B的数量不少于第二个月购进低碳厨房用品A的数量的2倍,且不超过800套.第二个月低碳厨房用品A、B的进货全部销售完后,销售商获得的总利润为Q,请问当m取何值时利润最大,并求出最大值.第7 页共53 页24.如图,抛物线y=x2+x﹣4与x轴交于A,B(A在B的左侧),与y轴交于点C,抛物线上的点E的横坐标为3,过点E作直线l1∥x轴.(1)点P为抛物线上的动点,且在直线AC的下方,点M,N分别为x轴,直线l1上的动点,且MN⊥x轴,当△APC面积最大时,求PM+MN+EN的最小值;(2)过(1)中的点P作PD⊥AC,垂足为F,且直线PD与y轴交于点D,把△DFC绕顶点F旋转45°,得到△D'FC',再把△D'FC'沿直线PD平移至△D″F′C″,在平面上是否存在点K,使得以O,C″,D″,K为顶点的四边形为菱形?若存在直接写出点K的坐标;若不存在,说明理由.第8 页共53 页第 9 页 共 53 页参考答案一.选择题1.解:因为y =﹣(x﹣)2﹣2是抛物线的顶点式,根据顶点式的坐标特点可知,顶点坐标为(,﹣2). 故选:D .2.解:∵二次函数y =ax 2+bx +c 的图象经过点(﹣1,0)和(3,0), ∴方程ax 2+bx +c =0的解为x 1=﹣1,x 2=3. 故选:C .3.解:A 、向上平移一个单位可得到抛物线y =3x 2,故本选项不符合题意.B 、由于a =3>0,该抛物线的开口方向向上,且顶点坐标是(0,﹣1),则当x =0时,函数有最小值﹣1,故本选项不符合题意.C 、由于对称轴是y 轴,抛物线的开口方向向上,则当x <0时,y 随x 的增大而减小,故本选项符合题意.D 、抛物线y =3x 2﹣1与抛物线y =﹣3x 2+1关于x 轴对称,故本选项不符合题意.故选:C .4.解:已知抛物线y =﹣x 2+ax +b 与x 轴两个交点间的距离为2,对称轴为直线x =1, 则函数与x 轴两个交点坐标为:(3,0)、(﹣1,0),则函数的表达式为:y =﹣(x ﹣3)(x +1)=﹣(x ﹣1)2+4,此抛物线向左平移2个单位,再向下平移3个单位得到的新抛物线表达式为:y ′=﹣(x +1)2+1,当x =﹣3时,y =﹣3, 故选:B .5.解:由题意得:m ≠0,且△=(﹣8)2﹣4×4m ×m >0, 解得:﹣2<m <2,第 10 页 共 53 页故选:C .6.解:抛物线y =x 2+x +2的开口向上,对称轴为x =﹣=﹣,(﹣3,a ),(﹣2,b ),(3,c )三点到对称轴的距离分别为2.5,1.5,3.5, ∴c >a >b , 故选:C .7.解:设运动员起跳到入水所用的时间是ts , 根据题意可知:﹣5(t ﹣2)(t +1)=0, 解得:t 1=﹣1(不合题意舍去),t 2=2, 那么运动员起跳到入水所用的时间是2s . 故选:D .8.解:﹣4<0,故抛物线开口向下,故A 不符合题意; 函数对称轴为:x =﹣=﹣,函数对称轴左侧,y 随x 的增大而增大,故B 不符合题意;函数与y 轴的交点是(0,1),故C 不符合题意; 当x =﹣1时,y =﹣4+2+1=﹣1,故D 符合题意; 故选:D .9.解:A 、∵开口向下, ∴a <0,∵对称轴在y 轴右侧, ∴﹣>0,∴b >0,∵抛物线与y 轴交于正半轴, ∴c >0,∴abc <0,故不选项不符合题意;B 、∵对称轴为直线x =1,抛物线与x 轴的一个交点横坐标在2与3之间,∴另一个交点的横坐标在0与﹣1之间;∴当x =﹣1时,y =a ﹣b +c <0,故不选项不符合题意;C、∵对称轴x=﹣=1,∴2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故不选项不符合题意;D、如图,当﹣1<x<3时,y不只是大于0.故本选项符合题意;故选:D.10.解:①∵抛物线经过原点,∴c=0,故正确;②∵抛物线的对称轴为x=﹣1,∴﹣=﹣1,∴b=2a,∴2a﹣b=0,故正确;③∵抛物线的对称轴为x=﹣1,与x轴交于(0,0),∴另一个交点为(﹣2,0),∴当﹣2<x<0时,y<0;故正确;④∵抛物线的开口向上,∴a>0,∵b=2a,∴a﹣b=a﹣2a=﹣a<0,故错误;故选:C.11.解:∵关于x的一元二次方程ax2+bx+=0有一个根是﹣1,∴二次函数y=ax2+bx+的图象过点(﹣1,0),∴a﹣b+=0,∴b=a+,t=2a+b,则a=,b=,第11 页共53 页∵二次函数y=ax2+bx+的图象的顶点在第一象限,∴﹣>0,﹣>0,将a=,b=代入上式得:>0,解得:﹣1<t<,﹣>0,解得:t或1<t<3,故:﹣1<t<,故选:D.12.解:①由抛物线可知:a>0,c<0,对称轴x=﹣<0,∴b>0,∴abc<0,故①正确;②由对称轴可知:﹣=﹣1,∴b=2a,∵x=1时,y=a+b+c=0,∴c+3a=0,∴c+2a=﹣3a+2a=﹣a<0,故②正确;③(1,0)关于x=﹣1的对称点为(﹣3,0),∴x=﹣3时,y=9a﹣3b+c=0,故③正确;④当x=﹣1时,y的最小值为a﹣b+c,∴x=m时,y=am2+bm+c,第12 页共53 页∴am2+bm+c≥a﹣b+c,即a﹣b≤m(am+b),故④错误;⑤抛物线与x轴有两个交点,∴△>0,即b2﹣4ac>0,∴4ac﹣b2<0,故⑤正确;故选:A.二.填空题(共4小题)13.解:∵抛物线y=﹣2x2﹣4x+8=﹣2(x+1)2+10,∴该抛物线的开口向下,对称轴是直线x=﹣1,顶点坐标是(﹣1,10),故答案为:向下,直线x=﹣1,(﹣1,10).14.解:∵函数y=(m+3)x2+2x+1的图象与x轴只有一个公共点,∴或(m+3)=0,解得,m=﹣1或m=﹣3,故答案为:m=﹣1或m=﹣3.15.解:二次函数=2+2+2的对称轴是直线y=﹣=﹣m,a=1>0,抛物线的图象开口向上,当x>﹣m时,y随x的增大而增大,第13 页共53 页∵当>2时,y随x的增大而增大,∴﹣m≤2,解得:m≥﹣2,故答案为:m≥﹣2.16.解:(1)直线y=2x﹣5与x轴和y轴分别交于点A和点B,则点A、B的坐标分别为:(,0)、(0,﹣5),设抛物线的顶点为:(m,2m﹣5),则抛物线的表达式为:y=﹣(x﹣m)2+2m﹣5,当点M与点A重合时,即m=,则抛物线的表达式为:y=﹣x2+5x﹣,故答案为:y=﹣x2+5x﹣;(2)设点M(m,2m﹣5),点N(x,y),将抛物线表达式与直线表达式联立并整理得:x2+(2﹣2m)x+m2+2m=0,则x+m=2m﹣2,则x=m﹣2,故点N(m﹣2,2m﹣9),则MN=2,则AB=,①当∠OMN=90°时,则直线OM表达式中的k值为﹣,即=﹣,解得:m=2,故点M、N的坐标分别为:(2,﹣1)、(0,﹣5),则OM=,ON=5,经验证:,满足△OMN与△AOB相似,故点M(2,﹣1);②当∠ONM=90°时,同理可得:点M(4,3);③当∠MON=90°时,第14 页共53 页过点M、N分别作y轴的垂线交于点G、H,∵∠GMO+∠GOM=90°,∠GOM+∠HON=90°,∴∠GMO=∠HON=α,则tan∠GMO=tan∠HON,即:,解得:m=3,故点M(3,1)(△OMN为等腰直角三角形,故舍去);综上,点M的坐标为:(2,﹣1)、(4,3),故答案为:(2,﹣1)、(4,3).三.解答题(共8小题)17.解:(1)①将B代入得,﹣9+6m+4﹣m2=0,m=1或5,∵对称轴x=m<3,∴m=1 即对称轴x=1②当2≤x≤n时,函数单调递减,所以当x=n时,y=﹣n2+2n+3=﹣n﹣1,∴n=1或4,∵n>2,∴n=4(2)∵抛物线y=﹣x2+2mx+4﹣m2与x轴交于A,B两点,∴令0═﹣x2+2mx+4﹣m2解得A(m﹣2,0),B(m+2,0)对称轴为:x=m∵抛物线在x轴上方的部分沿x轴翻折,∴此时函数的值随x的增大而增大的为:x<m﹣2和m<x<m+2,∴当x<m﹣2时,此时n≤m﹣2;当﹣m<x<m+2,n≤m+2,m>﹣2第15 页共53 页第 16 页 共 53 页解得n ≤0或n ≤﹣4∴n ≤0﹣4综上所述,n ≤﹣4.18.解:(1)由题意得,月销售量y =100﹣2(x ﹣60)=220﹣2x (60≤x ≤110,且x 为正整数)答:y 与x 之间的函数关系式为y =220﹣2x .(2)由题意得:(220﹣2x )(x ﹣40)=2250化简得:x 2﹣150x +5525=0解得x 1=65,x 2=85答:当每件商品的售价定为65元或85元时,每个月的利润恰好为2250元.(3)设每个月获得利润w 元,由(2)知w =(220﹣2x )(x ﹣40)=﹣2x 2+300x ﹣8800∴w =﹣2(x ﹣75)2+2450∴当x =75,即售价为75元时,月利润最大,且最大月利润为2450元.19.解(1)∵抛物线y =ax 2+x +c 与y 轴交于A (0,4)与x 轴交于B 、C ,点C 坐标为(8,0),∴,解得:,∴抛物线的解析式为y =﹣x 2+x +4;(2)△ABC 为直角三角形,理由如下:当y =0时,﹣x 2+x +4=0,解得:x 1=8,x 2=﹣2,∴点B 的坐标为(﹣2,0),由已知可得在Rt △ABO 中,AB 2=BO 2+AO 2=22+42=20,在Rt△ACO中,AC2=CO2+AO2=82+42=80,又∵BC=OB+OC=2+8=10,∴在△ABC中,AB2+AC2=20+80=102=BC2,∴△ABC是直角三角形.20.解:(1)∵OC=2,OB=2OC=4,∴B(4,0),C(0,2),根据题意得,解得,∴抛物线的解析式为y=﹣x2+x+2;∵y=﹣(x ﹣)2+,∴D点坐标为(,);(2)存在.当y=0时,﹣x2+x+2=0,解得x1=﹣1,x2=4,则A(﹣1,0),设P(x,﹣x2+x+2),∵S△ABP=S△ABC,∴•5•|﹣x2+x+2|=••5•2,解方程﹣x2+x+2=3得x1=1,x2=2,则P(1,3)或(2,3),解方程﹣x2+x+2=﹣3得x1=5,x2=﹣2(舍去),则P(5,﹣3),∴当P点坐标为(1,3)或(2,3)或(5,﹣3)时,点P使S△ABP=S△ABC.21.解:(1)将A,B的坐标代入函数解析式,得,解得:,抛物线y的函数表达式y=﹣2x2﹣4x+6,当x=0时,y=6,即C(0,6);第17 页共53 页故答案为:﹣2,﹣4,0,6;(2)由MA=MB=MC,得M点在AB的垂直平分线上,M在AC的垂直平分线上,设M(﹣1,x),MA=MC,得(﹣1+3)2+x2=(x﹣6)2+(﹣1﹣0)2,解得x =,∴若MA=MB=MC,点M的坐标为(﹣1,);(3)①如图1,过点A作DA⊥AC交y轴于点F,交CB的延长线于点D,∵∠ACO+∠CAO=90°,∠DAO+∠CAO=90°,∠ACO+∠AFO=90°,∴∠DAO=∠ACO,∠CAO=AFO∴△AOF∽△COA,∴,∴AO2=OC×OF∵OA=3,OC=6∴OF =,∴F(0,﹣,第18 页共53 页∵A(﹣6,0),∴直线AF的解析式为:y=﹣,∵B(1,0),(0,6),∴直线BC的解析式为:y=﹣6x+6∴,解得:,∴,∴,∴tan∠ACB=.∵4tan∠ABE=11tan∠ACB∴tan∠ABE=2过点A作AM⊥x轴,连接BM交抛物线于点E∵AB=4,tan∠ABE=2∴AM=8∴M(﹣3,8),∵B(1,0),(﹣3,8)∴直线BM的解析式为:y=﹣2x+2,联立BM与抛物线,得,解得x=﹣2或x=1(舍去)∴y=6∴E(﹣2,6),第19 页共53 页②当点E在x轴下方时,如图2,过点E作EG⊥AB,连接BE,设点E(m,﹣2m2﹣4m+6),∴tan∠ABE=,∴m=﹣4或m=1(舍去)可得E(﹣4,﹣10),综上所述:E点坐标为(﹣2,6),(﹣4,﹣10).22.解:(1)当n=5时,y=,①将P(4,b)代入y=﹣x2+x+,∴b =;②当x≥5时,当x=5时有最大值为5;当x<5时,当x=时有最大值为;∴函数的最大值为;(2)将点(4,2)代入y=﹣x2+nx+n中,∴n =,∴<n<4时,图象与线段AB只有一个交点;第20 页共53 页将点(2,2)代入y=﹣x2+nx+n中,∴n=2,将点(2,2)代入y=﹣x2+x+中,∴n =,∴2≤n<时图象与线段AB只有一个交点;综上所述:<n<4,2≤n<时,图象与线段AB只有一个交点;(3)n>0时,n>,函数图象如图实线所示.①如图1中,当点A的纵坐标为4时,则有﹣++=+=4时,解得n=4或n=﹣8(舍去),观察图象可知:n=4时,满足条件的点恰好有四个,分别是A,B,C,D.②如图2中,观察图象可知,当n≥8时,恰好有四个点满足条件,分别是图中A,B,C,D.第21 页共53 页n<0时,n<,函数图象如图中实线.③如图3中,当点A的纵坐标为4时,恰好有四个点满足条件,分别是图中A,B,C,D.则有:﹣++n=4时,解得n=﹣2﹣2或n=﹣2+2(舍弃)④如图4中,当n≤﹣8时,观察图象可知,恰好有四个点满足条件,分别是图中A,B,C,D.第22 页共53 页第 23 页 共 53 页综上所述,函数图象上有4个点到x 轴的距离等于4时,n ≤﹣8或n =﹣2﹣2或n=4或n ≥8.23.解:(1)设实际销售单价比预计销售单价上涨x 元, 根据题意得:(30+x ﹣20)(230﹣5x )=3600, 整理得:x 2﹣36x +260=0, 解得:x 1=10,x 2=26,∵每件低碳厨房用品A 售价不能高于50元, 26+30=56(元)>50元, ∴x 2=26,不合题意舍去, 10+30=40(元),∴第一个月低碳厨房用品A 的实际销售单价定为40元;答:第一个月低碳厨房用品A 的实际销售单价定为40元时,它的销售利润恰好为3600元;(2)根据题意得:Q =350[30(1+10%)﹣20(1+0.2m %)]+m [28﹣20(1﹣20%)]=4550﹣2m ,∵低碳厨房用品B 的数量不少于第二个月购进低碳厨房用品A 的数量的2倍,且不超过800套,第 24 页 共 53 页∴700≤m ≤800,当m =700时,Q 值最大,Q =4550﹣2×700=3150(元). 答:当m 取700时利润最大,最大值为3150元.24.解:(1)如图1,过点P 作PG ⊥x 轴于点G ,交AC 于点H ,在PG 上截取PP '=MN ,连接P 'N ,以NE 为斜边在直线NE 上方作等腰Rt △NEQ ,过点P '作P 'R ⊥EQ 于点R ∵x =0时,y=x 2+x ﹣4=﹣4 ∴C (0,﹣4)∵y =0时, x 2+x ﹣4=0 解得:x 1=﹣4,x 2=2 ∴A (﹣4,0),B (2,0) ∴直线AC 解析式为y =﹣x ﹣4 ∵抛物线上的点E 的横坐标为3 ∴y E=×32+3﹣4= ∴E (3,),直线l 1:y=∵点M 在x 轴上,点N 在直线l 1上,MN ⊥x 轴 ∴PP '=MN=设抛物线上的点P (t, t 2+t ﹣4)(﹣4<t <0) ∴H (t ,﹣t ﹣4)∴PH =﹣t ﹣4﹣(t 2+t ﹣4)=﹣t 2﹣2t∴S △APC =S △APH +S △CPH=PH •AG+PH •OG=PH •OA =2PH =﹣t 2﹣4t ∴当t =﹣=﹣2时,S △APC 最大∴y P=t 2+t ﹣4=2﹣2﹣4=﹣4,y P '=y P+∴P (﹣2,﹣4),P '(﹣2,﹣)∵PP'=MN,PP'∥MN∴四边形PMNP'是平行四边形∴PM=P'N∵等腰Rt△NEQ中,NE为斜边∴∠NEQ=∠ENQ=45°,NQ⊥EQ∴NQ=EN∴PM+MN+EN=P'N+PP'+NQ=+P'N+NQ∵当点P'、N、Q在同一直线上时,P'N+NQ=P'R最小∴PM+MN+EN=+P'R设直线EQ解析式为y=﹣x+a∴﹣3+a=解得:a=∴直线EQ:y=﹣x+设直线P'R解析式为y=x+b∴﹣2+b=﹣解得:b=∴直线P'R:y=x+∵解得:∴R(,4)∴P'R=∴PM+MN+EN最小值为(2)∵PD⊥AC,P(﹣2,﹣4),∴直线PD解析式为:y=x﹣2,∴D(0,﹣2),F(﹣1,﹣3),∴CD=2,DF=CF=,△CDF是等腰直角三角形,第25 页共53 页如图2,把△DFC绕顶点F逆时针旋转45°,得到△D'FC',∴C′(,﹣3),D′(﹣1,﹣3)把△D'FC'沿直线PD平移至△D″F′C″,连接D′D″,C′C″则直线C′C″解析式为y=x﹣2﹣,直线D′D″解析式为y=x+﹣2,显然OC″≥+1>2=C″D″∴以O,C″,D″,K为顶点的四边形为菱形,OC″不可能为边,只能以OD″、C″D″为邻边构成菱形∴OD″=C″D″=OK=2,∵OK∥C″D″,PD⊥C″D″∴OK⊥PD∴K1(,﹣),如图3,把△DFC绕顶点F顺时针旋转45°,得到△D'FC',∴C′(﹣1,﹣3﹣),D′(﹣1,﹣﹣3)把△D'FC'沿直线PD平移至△D″F′C″,连接D′D″,C′C″,显然,C″D″∥PD,OC″≥+1>C″D″,OD″≥+1>C″D″,∴以O,C″,D″,K为顶点的四边形为菱形,C″D″只能为对角线,∴K2(2+,﹣2﹣).综上所述,点K的坐标为:K1(,﹣),K2(2+,﹣2﹣).第26 页共53 页第27 页共53 页人教版九年级数学上册第二十二章二次函数单元练习题含答案一、选择题1.一枚炮弹射出x秒后的高度为y米,且y与x之间的关系为y=ax2+bx+c(a≠0),若此炮弹在第3.2秒与第5.8秒时的高度相等,则在下列时间中炮弹所在高度最高的是()A.第3.3sB.第4.3sC.第5.2sD.第4.6s2.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:下列说法正确的是()A.抛物线的开口向下B.当x>-3时,y随x的增大而增大C.二次函数的最小值是-2D.抛物线的对称轴是x =-3.已知矩形的周长为36m,矩形绕着它的一条边旋转形成一个圆柱,设矩形的一条边长为x m,圆柱的侧面积为y m2,则y与x的函数关系式为()A.y=-2πx2+18πxB.y=2πx2-18πxC.y=-2πx2+36πxD.y=2πx2-36πx4.如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是()A.60m2B.63m2第28 页共53 页C.64m2D.66m25.已知抛物线y=ax2+bx+c过(1,-1)、(2,-4)和(0,4)三点,那么a、b、c的值分别是()A.a=-1,b=-6,c=4B.a=1,b=-6,c=-4C.a=-1,b=-6,c=-4D.a=1,b=-6,c=46.二次函数y=2x2-3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A.抛物线开口向下B.抛物线经过点(2,3)C.抛物线的对称轴是直线x=1D.抛物线与x轴有两个交点7.抛物线y=-2x2的对称轴是()A.直线x =B.直线x =-C.直线x=0D.直线y=08.如图,抛物线y=x2-2x-3与x轴交于点A、D,与y轴交于点C,四边形ABCD是平行四边形,则点B的坐标是()A.(-4,-3)B.(-3,-3)第29 页共53 页C.(-3,-4)D.(-4,-4)二、填空题9.在同一平面直角坐标系中,如果两个二次函数y1=a1(x+h1)2+k1与y2=a2(x+h2)2+k2的图象的形状相同,并且对称轴关于y轴对称,那么我们称这两个二次函数互为梦函数.如二次函数y=(x+1)2-1与y=(x-1)2+3互为梦函数,写出二次函数y=2(x+3)2+2的其中一个梦函数_____________________.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象可知:当k__________时,方程ax2+bx+c=k有两个不相等的实数根.11.已知函数y=(m-2)x2-3x+1,当________时,该函数是二次函数;当_______时,该函数是一次函数.12.抛物线y=2x2-4x-6与x轴交于点A、B,与y轴交于点C.有下列说法:①抛物线的对称轴是x=1;②A、B两点之间的距离是4;③△ABC的面积是24;④当x<0时,y随x的增大而减小.其中,说法正确的是_________________.(只需填写序号)13.如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为________________.14.观察下表:第30 页共53 页则一元二次方程x2-2x-2=0在精确到0.1时一个近似根是______,利用抛物线的对称性,可推知该方程的另一个近似根是_______.15.如图所示,已知抛物线y=ax2+bx+c(a≠0)经过原点和点(-2,0),则2a-3b______0.(>、<或=)16.如图,坐标系中正方形网格的单位长度为1,抛物线y1=-x2+3向下平移2个单位后得抛物线y2,则阴影部分的面积S=_____________.三、解答题17.如图,排球运动员站在点O处练习发球,将球从点O正上方2米的点A处发出把球看成点,其运行的高度y(米)与运行的水平距离x(米)满足关系式y=a(x-6)2+h,已知球网与点O的水平距离为9米,高度为2.43米,球场的边界距点O的水平距离为18米.(1)当h=2.6时,求y与x的函数关系式;(2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由;(3)若球一定能越过球网,又不出边界.则h的取值范围是多少?第31 页共53 页18.如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?19.已知函数y=ax2+bx+c(a,b,c是常数),当a,b,c满足什么条件时,(1)它是二次函数?(2)它是一次函数?(3)它是正比例函数?20.将抛物线y=mx2+n向下平移6个单位长度,得到抛物线y=-x2+3,设原抛物线的顶点为P,且原抛物线与x轴相交于点A、B,求△PAB的面积.21.已知二次函数y=-x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.第32 页共53 页第二十二章《二次函数》单元练习题答案解析1.【答案】D【解析】∵炮弹在第3.2秒与第5.8秒时的高度相等,∴抛物线的对称轴方程为x=4.5.∵4.6s最接近4.5s,∴当4.6s时,炮弹的高度最高.2.【答案】D【解析】将点(-4,0)、(-1,0)、(0,4)代入到二次函数y=ax2+bx+c中,得,解得,∴二次函数的解析式为y=x2+5x+4.A、a=1>0,抛物线开口向上,A不正确;B、-=-,当x≥-时,y随x的增大而增大,B不正确;C、y=x2+5x+4=(x +)2-,二次函数的最小值是-,C不正确;D、-=-,抛物线的对称轴是x =-,D正确.3.【答案】C【解析】根据题意,矩形的一条边长为x m,则另一边长为(36-2x)÷2=18-x(m),则圆柱体的侧面积y=2πx(18-x)=-2πx2+36πx.4.【答案】C【解析】设BC=x m,则AB=(16-x)m,矩形ABCD面积为y m2,根据题意得y=(16-x)x=-x2+16x=-(x-8)2+64,当x=8m时,y max=64m2,则所围成矩形ABCD的最大面积是64m2.5.【答案】D【解析】根据题意,得,第33 页共53 页解得.6.【答案】D【解析】A、a=2,则抛物线y=2x2-3的开口向上,所以A选项错误;B、当x=2时,y=2×4-3=5,则抛物线不经过点(2,3),所以B选项错误;C、抛物线的对称轴为直线x=0,所以C选项错误;D、当y=0时,2x2-3=0,此方程有两个不相等的实数解,所以D选项正确.7.【答案】C【解析】对称轴为y轴,即直线x=0.8.【答案】A【解析】令y=0,可得x=3或x=-1,∴A点坐标为(-1,0);D点坐标为(3,0);令x=0,则y=-3,∴C点坐标为(0,-3),∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵AD=BC=4,∴B点的坐标为(-4,-3).9.【答案】y=2(x-3)2+2(答案为不唯一).【解析】由一对梦函数的图象的形状相同,并且对称轴关于y轴对称,可|a1|=a2,h1与h2互为相反数,二次函数y=2(x+3)2+2的一个梦函数是y=2(x-3)2+2.10.【答案】<2【解析】由二次函数和一元二次方程的关系可知y的最大值即为k的最大值,因此当k<2时,方程ax2+bx+c=k有两个不相等的实数根.11.【答案】m≠2;m=2【解析】y=(m-2)x2-3x+1,当m≠2时,该函数是二次函数;当m=2时,该函数是一次函数.12.【答案】①②④【解析】①抛物线y=2x2-4x-6的对称轴是直线x =-=1,故①正确;②2x2-4x-6=0,解得x=-1或3,所以AB=4;故②正确;③∵AB=4,C(0,-6),∴S△ABC =×4×6=12,故③错误;④∵抛物线y=2x2-4x-6的开口向上,对称轴是直线x=1,∴当x<1时,y随x的增大而减小;x>1时,y随x的增大而增大;∴当x<0时,y随x的增大而减小,故④正确,所以正确的第34 页共53 页是①②④.13.【答案】(1+,2)或(1-,2)【解析】∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作PE⊥y轴于点E,则E为线段CD的中点,∵抛物线y=-x2+2x+3与y轴交于点C,∴C(0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在y=-x2+2x+3中,令y=2,可得-x2+2x+3=2,解得x =1±,∴P点坐标为(1+,2)或(1-,2).14.【答案】2.7;-0.7【解析】∵x=2.7时,y=-0.11;x=2.8时,y=0.24,∴方程的一个根在2.7和2.8之间,又∵x=2.7时的y值比x=2.8更接近0,∴方程的一个近似根为2.7;∵此函数的对称轴为x=1,设函数的另一根为x ,则=1,解得x=-0.7.15.【答案】>【解析】∵抛物线的开口向下,∴a<0.∵抛物线经过原点和点(-2,0),∴对称轴是x=-1,又对称轴x =-,∴-=-1,b=2a.∴2a-3b=2a-6a=-4a>0.16.【答案】4【解析】根据题意知,图中阴影部分的面积即为平行四边形的面积:2×2=4.17.【答案】解:(1)∵h=2.6,球从O点正上方2m的A处发出,∴抛物线y=a(x-6)2+h过点(0,2),∴2=a(0-6)2+2.6,解得a =−,故y与x的关系式为y =-(x-6)2+2.6;(2)当x=9时,y =−(x-6)2+2.6=2.45>2.43,所以球能过球网;第35 页共53 页当y=0时,−(x-6)2+2.6=0,解得x1=6+2>18,x2=6-2(舍去),故会出界;(3)当球正好过点(18,0)时,抛物线y=a(x-6)2+h还过点(0,2),代入解析式得,解得,此时二次函数解析式为y =−(x-6)2+,此时球若不出边界h ≥,当球刚能过网,此时函数解析式过(9,2.43),抛物线y=a(x-6)2+h还过点(0,2),代入解析式得,解得,此时球要过网h ≥,故若球一定能越过球网,又不出边界,h的取值范围是h ≥.【解析】(1)利用h=2.6,球从O点正上方2m的A处发出,将点(0,2)代入解析式求出即可;(2)利用当x=9时,y =-(x-6)2+2.6=2.45,当y=0时,−(x-6)2+2.6=0,分别得出即可;(3)根据当球正好过点(18,0)时,抛物线y=a(x-6)2+h还过点(0,2),以及当球刚能过网,此时函数解析式过(9,2.43),第36 页共53 页抛物线y=a(x-6)2+h还过点(0,2)时分别得出h的取值范围,即可得出答案.18.【答案】解:(1)由题意得函数y=at2+5t+c的图象经过(0,0.5)(0.8,3.5),∴,解得,∴抛物线的解析式为y =-t2+5t +,∴当t =时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,∴当t=2.8时,y =-×2.82+5×2.8+=2.25<2.44,∴他能将球直接射入球门.【解析】(1)由题意得函数y=at2+5t+c的图象经过(0,0.5),(0.8,3.5),于是得到,求得抛物线的解析式为y =-t2+5t +,当t =时,y最大=4.5;(2)把x=28代入x=10t得t=2.8,当t=2.8时,y =-×2.82+5×2.8+=2.25<2.44,于是得到他能将球直接射入球门.19.【答案】解:(1)当a≠0时,y=ax2+bx+c是二次函数;(2)当a=0,b≠0,c≠0时,y=ax2+bx+c是一次函数;(3)当a=0,b≠0,c=0时,y=ax2+bx+c是正比例函数.【解析】(1)根据二次项系数不等于零是二次函数,可得答案;(2)根据二次项系数等于零而一次项系数不等于零,且常数项不等于零是一次函数,可得答案;(3)根据二次项系数等于零而一次项系数不等于零,且常数项等于零是正比例函数,可得答案.20.【答案】解:∵将抛物线y=mx2+n向下平移6个单位长度,得到y=mx2+n-6,∴m=-1,n-6=3,∴n=9,∴原抛物线y=-x2+9,∴顶点P(0,9),令y=0,第37 页共53 页则0=-x2+9,解得x=±3,∴A(-3,0),B(3,0),∴AB=6,∴S△PAB =AB•OP =×6×9=27.【解析】根据平移的性质得出y=mx2+n-6,根据题意求得m=-1,n=9,从而求得原抛物线的解析式,得出顶点坐标和与x轴的交点坐标,进而根据三角形面积求得即可.21.【答案】解:(1)∵二次函数的图象与x轴有两个交点,∴△=22+4m>0,∴m>-1;(2)∵二次函数的图象过点A(3,0),∴0=-9+6+m∴m=3,∴二次函数的解析式为y=-x2+2x+3,令x=0,则y=3,∴B(0,3),设直线AB的解析式为:y=kx+b,∴,解得,∴直线AB的解析式为y=-x+3,∵抛物线y=-x2+2x+3的对称轴为x=1,∴把x=1代入y=-x+3得y=2,∴P(1,2).【解析】(1)由二次函数的图象与x轴有两个交点,得到△=22+4m>0于是得到m>-1;(2)把点A(3,0)代入二次函数的解析式得到m=3,于是确定二次函数的解析式为:y=-x2+2x+3,求得B(0,3),得到直线AB的解析式为:y=-x+3,把对称轴方程x=1,代入直线y=-x+3即可得到结果.第38 页共53 页人教版九年级数学上册第22章二次函数单元测试卷含答案一、选择题(共8题;共24分)1.二次函数y=x2-2x+3顶点坐标是()A. (-1,-2)B. (1,2)C. (-1,2)D. (0,2)2.已知抛物线y=(x−4)2-3与y轴交点的坐标是()A. (0,3)B. (0,-3)C. (0,)D. (0,-)3.二次函数y= 的图象()A. 向左移动1个单位,向上移动3个单位B. 向右移动1个单位,向上移动3个单位C. 向左移动1个单位,向下移动3个单位D. 向右移动1个单位,向下移动3个单位4.在平面直角坐标系xOy中,将抛物线y=2x2先向左平移1个单位长度,再向下平移3个单位长度后所得到的抛物线的解析式为()A. y=2(x-1)2-3B. y=2(x-1)2+3C. y=2(x+1)2-3D. y=2(x+1)2+35.已知二次函数的图象如下图所示,则四个代数式,,,中,值为正数的有()A. 4个B. 3个C. 2个D. 1个6.如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是()A. ①③B. ②③C. ②④D. ③④7.已知一次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;第39 页共53 页②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A. 1B. 2C. 3D. 48.如图,已知顶点为(-3,-6)的抛物线y=ax2+bx+c经过点(-1,-4),则下列结论中错误的是()A. b2>4acB. ax2+bx+c≥-6C. 若点(-2,m),(-5,n)在抛物线上,则m>nD. 关于x的一元二次方程ax2+bx+c=-4的两根为-5和-1二、填空题(共10题;共30分)9.若抛物线的开口向上,则的取值范围是________.10.抛物线的顶点坐标是________.11.若A(,),B(,),C(1,)为二次函数y= +4x﹣5的图象上的三点,则、、的大小关系是________.12.抛物线与x轴交于点(1,0),(﹣3,0),则该抛物线可设为:________.13.把二次函数y=﹣2x2+4x+3化成y=a(x﹣m)2+k的形式是________.14.如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为________.15.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为________16.二次函数y=x2+(2m+1)x+(m2﹣1)有最小值﹣2,则m=________.17.若二次函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是________.18.抛物线y=ax2+bx+c满足下列条件:(1)4a﹣b=0;(2)a﹣b+c>0;(3)与x轴有两个第40 页共53 页。
九年级数学上册第二十二章《二次函数》测试-人教版(含答案)
九年级数学上册第二十二章《二次函数》测试-人教版(含答案)一、单选题(共48分)1.(本题4分)抛物线23y x =-与y 轴的交点坐标为( )A .(-3,0)B .(0,-3)C .(3,0)-D .(3,0) 2.(本题4分)已知:抛物线y =a (x +1)2的顶点为A ,图象与y 轴负半轴交点为B ,且OB =OA ,若点C (-3,b )在抛物线上,则△ABC 的面积为( )A .3B .3.5C .4D .4.53.(本题4分)二次函数y =﹣x 2﹣4的图象经过的象限为( )A .第一象限、第四象限B .第二象限、第四象限C .第三象限、第四象限D .第一象限、第三象限、第四象限4.(本题4分)在平面直角坐标系中,将二次函数2y x 的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为( )A .()221y x =-+B .()221y x =++C .()221y x =+-D .()221y x =-- 5.(本题4分)从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的函数关系如图所示.则下列结论不正确的是( )A .小球在空中经过的路程是40mB .小球运动的时间为6sC .小球抛出3s 时,速度为0D .当 1.5t =s 时,小球的高度30h =m 6.(本题4分)关于x 的方程20ax bx c ++=有两个不相等的实根1x 、2x ,若212x x =,则49b ac -的最大值是( )A .1B .2C .3D .27.(本题4分)二次函数21y ax bx =++的图象与一次函数2y ax b =+在同一平面直角坐标系中的图象可能是( )A .B .C .D . 8.(本题4分)已知二次函数()222y x =--,关于该函数在13x -≤≤的取值范围内,下列说法正确的是( ).A .有最大值-1,有最小值-2B .有最大值0,有最小值-1C .有最大值7,有最小值-1D .有最大值7,有最小值-2 9.(本题4分)记某商品销售单价为x 元,商家销售此种商品每月获得的销售利润为y 元,且y 是关于x 的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y 与x 的函数关系式是( )A .y =﹣(x ﹣60)2+1825B .y =﹣2(x ﹣60)2+1850C .y =﹣(x ﹣65)2+1900D .y =﹣2(x ﹣65)2+200010.(本题4分)已知二次函数2202020212022y x x =++的图象上有两点A (x 1,2023)和B (x 2,2023),则当12x x x =+时,二次函数的值是( )A .2020B .2021C .2022D .2023 11.(本题4分)如图,在平面直角坐标系中,二次函数y =x 2﹣2x +c 的图象与x 轴交于A 、C 两点,与y 轴交于点B (0,﹣3),若P 是x 轴上一动点,点D (0,1)在y 轴上,连接PD 2+PC 的最小值是( )A .4B .2+22C .22D .32223+ 12.(本题4分)抛物线2222y x mx m =-+-+与y 轴交于点C ,过点C 作直线l 垂直于y 轴,将抛物线在y 轴右侧的部分沿直线l 翻折,其余部分保持不变,组成图形G ,点()11,M m y -,()21,N m y +为图形G 上两点,若12y y <,则m 的取值范围是( ) A .1m <-或0m > B .1122m -<< C .02m ≤< D .11m -<<二、填空题(共20分)13.(本题5分)若22(2)32m y m x x -=++-是二次函数,则m 的值是 ________. 14.(本题5分)若点1(1,)A y -,2(2,)B y 在抛物线22y x =上,则1y ,2y 的大小关系为:1y ________2y (填“>”,“=”或“<”).15.(本题5分)如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏州的历史文化.如图②,“门”的内侧曲线呈抛物线形,已知其底部宽度为80米,高度为200米.则离地面150米处的水平宽度(即CD 的长)为______.16.(本题5分)如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).三、解答题(共52分)17.(本题6分)二次函数y =ax 2+bx +c 的图象如图所示,经过(﹣1,0)、(3,0)、(0,﹣3).(1)求二次函数的解析式;(2)不等式ax 2+bx +c >0的解集为 ;(3)方程ax 2+bx +c =m 有两个实数根,m 的取值范围为 .18.(本题6分)已知抛物线经过点(0,-2),(3,0),(-1,0),求抛物线的解析式.19.(本题6分)已知:二次函数2142y x x =-++. (1)通过配方,将其写成()2y a x h k =-+的形式;(2)求出函数图象与x y 、轴的交点、、A B C 的坐标;(3)当0y >时,直接写出x 的取值范围;(4)当x ________时,y 随x 的增大而减少.20.(本题6分)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.21.(本题6分)一隧道内设双行公路,隧道的高MN 为6米.下图是隧道的截面示意图,并建立如图所示的直角坐标系,它是由一段抛物线和一个矩形CDEF 的三条边围成的,矩形的长DE 是8米,宽CD 是2米.(1)求该抛物线的解析式;(2)为了保证安全,要求行驶的车辆顶部与隧道顶部至少要有0.5米的距离.若行车道总宽度PQ (居中,两边为人行道)为6米,一辆高3.2米的货运卡车(设为长方形)靠近最右边行驶能否安全?请写出判断过程;(3)施工队计划在隧道门口搭建一个矩形“脚手架”ABHG ,使H 、G 两点在抛物线上,A 、B 两点在地面DE 上,设GH 长为n 米,“脚手架”三根木杆AG 、GH 、HB 的长度之和为L ,当n 为何值时L 最大,最大值为多少?22.(本题6分)如图,抛物线y =a (x ﹣2)2+3(a 为常数且a ≠0)与y 轴交于点A (0,53).(1)求该抛物线的解析式; (2)若直线y =kx 23+(k ≠0)与抛物线有两个交点,交点的横坐标分别为x 1,x 2,当x 12+x 22=10时,求k 的值;(3)当﹣4<x ≤m 时,y 有最大值43m ,求m 的值. 23.(本题8分)如图,抛物线2y x bx c =++(b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,1,0A ,4AB =,点P 为线段AB 上的动点,过P 作PQ //BC 交AC 于点Q .(1)求该抛物线的解析式;(2)求CPQ面积的最大值,并求此时P点坐标.24.(本题8分)已知抛物线y=ax2+3ax+c(a≠0)与y轴交于点A(1)若a>0①当a=1,c=-1,求该抛物线与x轴交点坐标;②点P(m,n)在二次函数抛物线y=ax2+3ax+c的图象上,且n-c>0,试求m的取值范围;(2)若抛物线恒在x轴下方,且符合条件的整数a只有三个,求实数c的最小值;(3)若点A的坐标是(0,1),当-2c<x<c时,抛物线与x轴只有一个公共点,求a的取值范围.参考答案1.B2.A3.C4.B5.A6.D7.A8.D9.D10.C11.A12.D13.214.<15.40米16.②③17.(1)y =x 2﹣2x ﹣3;(2)x <﹣1或x >3;(3)m ≥﹣4.18.224233y x x =-- 19.(1)()219122x --+ (2)A (-2,0),B (4,0),C (0,4)(3)-2<x <4(4)>120.(1)()y 309601032x x =-+≤≤(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元21.(1)y=-14x 2+4;(2)能安全通过,见解析;(3)n=4时,L 有最大值,最大值为14 22.(1)()21233y x =--+;(2)1222,,3k k ==;(3)95.4m =-或 23.(1)223y x x =+-(2)2;P (-1,0)24.(1)①,0),0)②m>0或m<-3 (2)-9(3)49a=或12a≥或14a-≤。
人教版九年级数学上册第二十二章《二次函数》测试卷(含答案)
人教版九年级数学上册第二十二章《二次函数》测试卷(含答案)一、单选题1.下列函数中,y 是x 的二次函数的是( ) A .22(1)y x x =--B .(2)y x x =-+C .21y x =D .2x y =2.若函数2221()m m y m m x --=+是二次函数,则m 的值是( ) A .2B .-1或3C .-1D .33.已知二次函数y =(a ﹣1)x 2﹣x +a 2﹣1图象经过原点,则a 的取值为( ) A .a =±1B .a =1C .a =﹣1D .无法确定4.苹果熟了,从树上落下所经过的路线s 与下落的时间t 满足s=212gt (g 是不为0的常数),则s 与t 的函数图象大致是( )A .B .C .D .5.若二次函数y=ax 2+1的图象经过点(-2,0),则关于x 的方程a (x-2)2+1=0的实数根为( ) A .1x 0=,2x 4= B .1x 2=-,2x 6= C .132x =,25x 2=D .1x 4=-,2x 0=6.由二次函数22(3)1y x =-+可知( ) A .其图象的开口向下 B .其图象的对称轴为3x =- C .其最大值为1D .当3x <时,y 随x 的增大而减小7.二次函数y =﹣2x 2+4x +1的图象如何平移可得到y =﹣2x 2的图象( ) A .向左平移1个单位,向上平移3个单位 B .向右平移1个单位,向上平移3个单位 C .向左平移1个单位,向下平移3个单位 D .向右平移1个单位,向下平移3个单位8.如果二次函数2(0)y ax bx c a =++≠的图像如图所示,那么( )A .a 0,b 0,c 0<>>B .0,0,0a b c >>>C .0,0,0a b c ><<D .0,0,0a b c >><9.已知函数y =kx 2﹣7x ﹣7的图象和x 轴有交点,则k 的取值范围是( )A .74k >-B .74k ≥-C .74k ≥-且k ≠0D .74k >-且k ≠010.根据表格中代数式ax 2+bx +c =0与x 的对应值,判断方程ax 2+bx +c =0(其中a ,b ,c 是常数,且a ≠0)的一个根x 的大致范围是( )x 6.17 6.18 6.19 6.20 ax 2+bx +c ﹣0.03﹣0.010.020.06A .6<x <6.17B .6.17<x <6.18C .6.18<x <6.19D .6.19<x <6.2011.老师出示了小黑板上的题后(如图),小华说:过点(3,0);小彬说:过点(4,3);小明说:a=1;小颖说:抛物线被x 轴截得的线段长为2.你认为四人的说法中,正确的有( )A .1个B .2个C .3个D .4个12.某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y (件)与销售单价x (元)之间满足函数关系式5550y x =-+,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?( ) A .90元,4500元 B .80元,4500元 C .90元,4000元 D .80元,4000元二、填空题13.若二次函数y =(m +2)23mx -的图象开口向下,则m =______.14.点P (m ,n )在以y 轴为对称轴的二次函数y =x 2+ax +4的图象上,则m -n 的最大值为_________.15.抛物线223(0)y ax ax a =--≠与x 轴交于两点,分别是()0m ,,(),0n ,则m n +的值为_______.16.如图,抛物线2y ax =与直线y bx c =+的两个交点坐标分别为()2,4A -,()1,1B ,则关于x 的方程20ax bx c --=的解为______.17.如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A ,B 两点,拱桥最高点C 到AB 的距离为8m ,24m AB =,D ,E 为拱桥底部的两点,且//DE AB ,若DE 的长为36m ,则点E 到直线AB 的距离为______.三、解答题18.已知抛物线y =ax 2-2ax -6+a 2(a ≠0) (1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其对应的函数的解析式.19.已知二次函数2y x px q +=+的图象经过(0,1),(2,1)A B -两点. (1)求,p q 的值.(2)试判断点(1,2)P -是否在此函数的图象上.20.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为区域ABCD 的面积为y m 2. (1)求y 与x 之间的函数关系式;(2)当x 为何值时,y 有最大值?最大值是多少?21.已知二次函数2123y x x =--的图像与x 轴交于A 、B 两点(A 在B 的左侧),与y轴交于点C ,顶点为D .(1)求点A 、B 、D 的坐标,并在下面直角坐标系中画出该二次函数的大致图像; (2)设一次函数()20y kx b k =+≠的图像经过B 、C 两点,请直接写出满足12y y <的x 的取值范围.22.已知,如图,二次函数y=ax 2+bx+c 的图象与x 轴交于A 、B 两点,其中A 点坐标为(﹣1,0),点C (0,5),另抛物线经过点(1,8),M 为它的顶点. (1)求抛物线的解析式; (2)求①MCB 的面积.23.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y =kx+b,且x=65时,y=55;x=75时,y=45.(1)求一次函数的表达式;(2)若该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?24.国庆期间,某商场销售一种商品,进货价为20元/件,当售价为24元/件时,每天的销售量为200件,在销售的过程中发现:销售单价每上涨1元,每天的销量就减少10件.设销售单价为x(元/件)(x≥24),每天销售利润为y(元).(1)直接写出y与x的函数关系式为:;(2)若要使每天销售利润为1400元,求此时的销售单价;(3)若每件小商品的售价不超过36元,求该商场每天销售此商品的最大利润.参考答案1.BA . 22(1=)2+1y x x x =---是一次函数,不合题意;B . 2(2)=2y x x x x =-+--是二次函数,合题意;C . 21y x =不是二次函数,不合题意; D . 2x y =不是函数,不合题意; 故选:B . 2.D根据题意得:22212m m m m ⎧+≠⎨--=⎩解得:m=3. 故选:D . 3.C解:①二次函数y =(a ﹣1)x 2﹣x +a 2﹣1 的图象经过原点, ①a 2﹣1=0, ①a =±1, ①a ﹣1≠0, ①a ≠1, ①a 的值为﹣1. 故选:C 4.B 解:由21,2s gt =可得:s 是t 的二次函数,且函数图像经过原点,图像的开口向上, 所以:A 错误,B 正确,,C D 错误, 故选:.B 5.A解:①二次函数y=ax 2+1的图象经过点(-2,0), ①4a+1=0,①a=-14,①方程a (x-2)2+1=0为:方程-14(x-2)2+1=0,解得:x 1=0,x 2=4,故选:A . 6.D解:22(3)1y x =-+,∴抛物线开口向上,对称轴为3x =,顶点坐标为(3,1), ∴函数有最小值1,当3x <时,y 随x 的增大而减小, 故选:D . 7.C解:二次函数y =﹣2x 2+4x +1的顶点坐标为(1,3),y =﹣2x 2的顶点坐标为(0,0), 只需将函数y =﹣2x 2+4x +1的图象向左移动1个单位,向下移动3个单位即可. 故选:C . 8.C解:①图象开口方向向上, ①a >0;①图象的对称轴在y 轴的右边上, ①2ba->0, ①a >0, ①b <0;①图象与y 轴交点在y 轴的负半轴上, ①c <0;①a >0,b <0,c <0. 故选:C . 9.B解:当0k =时,函数为77y x =--,为一次函数,与x 轴有交点,符合题意; 当0k ≠,函数为277y kx x =--,为二次函数, 因为图像与x 轴有交点所以,2(7)470k ∆=-+⨯≥,解得74k ≥-且0k ≠综上,74k ≥-故选B 10.C解:①当x =6.18时,y =-0.01<0;当x =6.19时,y =0.02>0,①当x 在6.18<x <6.19的范围内取某一值时,对应的函数值为0,即ax 2+bx +c =0,①方程ax 2+bx +c =0(其中a ,b ,c 是常数,且a ≠0)的一个根x 的大致范围为6.18<x <6.19. 故选:C . 11.C解:①抛物线过(1,0),对称轴是x =2,① 30b 22a a b ++=⎧⎪⎨-=⎪⎩ ,解得a =1,b =-4,①y =x 2-4x +3,当x =3时,y =0,所以小华正确, 当x =4时,y =3,小彬正确, a =1,小明也正确,抛物线被x 轴截得的线段长为2,已知过点(1,0),则可得另一点为(-1,0)或(3,0),所以对称轴为y 轴或x =2,此时答案不唯一,所以小颖也错误, 故答案为:C . 12.B解:设每月总利润为w , 依题意得:(50)w y x =-(5550)(50)x x =-+- 2580027500x x =-+-25(80)4500x =--+50-<,此图象开口向下,又50x ≥,∴当80x =时,w 有最大值,最大值为4500元.故选:B . 13.5①y =(m +2)23m x -是二次函数,①m 2-3=2, 解得:5m =± ①二次函数y =(m +2)23m x -的图象开口向下,①m +2<0, ①2m <-,52>-,52--, ①5m =- 故答案为:5-14.154-解:二次函数y =x 2+ax +4以y 轴为对称轴 02a∴-= ,即0a = , ∴ 二次函数解析式为24y x =+ ,点P (m ,n )在二次函数y =x 2+ax +4的图象上, 24n m ∴=+ ,()2221154424m n m m m m m ⎛⎫∴-=--=---=--- ⎪⎝⎭ ,∴ m -n 的最大值为154-. 故答案为:154-. 15.2解:①抛物线y =ax 2-2ax -3与x 轴交于两点,分别是(m ,0),(n ,0), ①2.2am n a-+=-=. 故答案是:2. 16.12x =-,21x =解:①抛物线2y ax =与直线y bx c =+的两个交点坐标分别为()2,4A -,()1,1B ,①方程组2y ax y bx c ⎧=⎨=+⎩的解为1124x y =-⎧⎨=⎩,2211x y =⎧⎨=⎩,即关于x 的方程20ax bx c --=的解为12x =-,21x =. 故答案为x 1=-2,x 2=1. 17.10m解:根据题意,以C 为坐标原点建立如图所示的平面直角坐标系,则B (12,﹣8), 设该抛物线的表达式为y =ax 2,将B (12,﹣8)代入,得:﹣8=a ·122, 解得:a =118-, ①该抛物线的表达式为y =118-x 2, 当x =18时,y =118-×182=﹣18,①E (18,﹣18), ①点E 到直线AB 的距离为﹣8﹣(﹣18)=10m ,故答案为:10m .18.(1)222226(1)6y ax ax a a x a a =--+=-+--, ∴对称轴为直线1x =;(2)由题可知,当抛物线顶点在x 轴上时, 260a a --=, (3)(2)0a a -+=,解得:3a =或2a =-,当3a =时,函数解析式为2363y x x =-+; 当2a =-时,函数解析式为2242y x x =-+-. 19.解:(1)把A (0,1),B (2,-1)代入y =x 2+px +q ,得1421q p q =⎧⎨++=-⎩, 解得:31p q =-⎧⎨=⎩,①p ,q 的值分别为-3,1;(2)把x =-1代入y =x 2-3x +1,得y =5, ①点P (-1,2)不在此函数的图象上. 20.解:(1)设BC 的长度为x m ,则AB =13(40﹣x )m ,则矩形区域ABCD 的面积y =13x (40﹣x )=﹣13x 2+403x ;(2)①y =﹣13x 2+403x =13-(x ﹣20)2+4003 ,①当x =20时,y 有最大值,最大值是4003m 2. 21.解:(1)令y=0时,则有2023x x -=-,解得:121,3x x =-=, ①()1,0A -;()3,0B ;由二次函数2123y x x =--可得顶点式为()2114y x =--, ①()1,4D -,图像如图所示:(2)由题意画出直线()20y kx b k =+≠的图像,如图所示,则由图像可得:当12y y <时,03x <<.22.(1)①A (﹣1,0),C (0,5),(1,8)三点在抛物线y=ax 2+bx+c 上, ①058a b c c a b c -+=⎧⎪=⎨⎪++=⎩,解方程组,得145a b c =-⎧⎪=⎨⎪=⎩,故抛物线的解析式为y=﹣x 2+4x+5;(2)①y=﹣x 2+4x+5=﹣(x ﹣5)(x+1)=﹣(x ﹣2)2+9,①M (2,9),B (5,0),设直线BC 的解析式为:y=kx+b ,550b k b =⎧⎨+=⎩,解得,15k b =-⎧⎨=⎩则直线BC 的解析式为:y=﹣x+5.过点M 作MN①y 轴交BC 轴于点N ,则①MCB 的面积=①MCN 的面积+①MNB 的面积=12MN OB ⋅. 当x=2时,y=﹣2+5=3,则N (2,3),则MN=9﹣3=6, 则165152MCB S =⨯⨯=. 23.(1)解:根据题意,得65557545k b k b +=⎧⎨+=⎩,解得:1120k b =-⎧⎨=⎩, ①所求一次函数的表达式为y =-x +120;(2)解:W =(x -60)•(-x +120)=-x 2+180x -7200=-(x -90)2+900,①抛物线的开口向下,①当x <90时,W 随x 的增大而增大,①60≤x ≤60×(1+45%),①60≤x ≤87,①当x =87时,W 有最大值,此时W =-(87-90)2+900=891.答:销售单价定为87元时,商场可获得最大利润,最大利润是891元. 24.解:(1)由题意得:y 与x 的函数关系式为:()()2202001024106408800y x x x x =---=-+-⎡⎤⎣⎦;故答案为2106408800y x x =-+-;(2)由题意得:21064088001400x x -+-=,解得:1230,34x x ==;答:此时的销售单价为30元或34元.(3)由()2210640880010321440y x x x =-+-=--+可得100-<, ①该二次函数的图象开口向下,对称轴为直线32x =,①每件小商品的售价不超过36元,①当32x =时,该商场每天销售此商品的利润为最大,最大值为1440; 答:该商场每天销售此商品的最大利润为1440元.。
初中数学人教版九年级上册 第二十二章 二次函数单元测试(含简单答案)
第二十二章二次函数一、单选题1.下列函数中,是二次函数的是()A.y=2x﹣3B.y=−1x2C.y=(x﹣5)2﹣x2D.y=x(1﹣x)2.二次函数y=(x−2)2+1的图象的顶点坐标是()A.(2,−1)B.(−2,1)C.(2,1)D.(−2,−1)3.抛物线y=ax2−2ax+c(a≠0)过点(3,0),则一元二次方程ax2−2ax+c=0的解是()A.x1=−1,x2=3B.x1=−3,x2=1C.x1=−3,x2=−1D.x1=1,x2=34.如果函数y=2x2+4x−c的顶点在x轴上,那么c的值为()A.−2B.−1C.1D.25.已知二次函数y=x2+(1−m)x+1,当x>1时,y随x的增大而增大,则m的取值范围是()A.m=−1B.m=3C.m≤3D.m≥−16.在平面直角坐标系中,将二次函数y=x2−4的图像沿直线x=2翻折,它能够与另一个二次函数的图像重合,另一个二次函数的表达式为()A.y=x2+4B.y=x2−6x+8C.y=x2−8x+12D.y=−x2−47.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为( ) A.k>﹣1B.k≥﹣1C.k>﹣1且k≠0D.k≥﹣1且k≠0 8.若P1(x1,y1)、P2(x2,y2)是抛物线y=a(x−2)2−4a上两点,当|x1−2|>|x2−2|时,则下列结论一定正确的是()A.y1+y2>0B.a(y1+y2)>0C.y1−y2>0D.a(y1−y2)>09.图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(3,0),对称轴为直线x=1.结合图象分析下列结论:①abc>0;②4a+2b+c>0;③一元二次方程ax2+bx+c=0的两根分别为x1=3,x2=−1;④2a+c<0.其中正确的结论有( )个A.1B.2C.3D.410.已知关于x的多项式ax2+bx+c(a≠0),当x=a时,该多项式的值为c−a,则多项式a2−b2+3的值可以是()A.74B.2C.94D.52二、填空题11.二次函数y=2(x-3)2-4的最小值为.12.抛物线y=ax2经过点(1,−3),则抛物线的函数关系式为.13.二次函数y=kx2−7x−7的图象与x轴有两个交点,则k的取值范围为.14.已知点A(0,y1),B(3,y2)在二次函数y=(x−1)2+2的图象上,则y1y2(填“<”,“>”或“=”).15.教练对小明推铅球的录像进行技术分析,如图,发现铅球行进高度y(m)与水平距离x(m)之间的关系为y=−110(x−4)2+185,由此可知铅球推出的距离m.16.在二次函数ax2+bx+c=0中,x与y的部分对应值如下表:x…−2023…y…8003…则下列结论:①图像经过原点;②图像开口向下;③图像经过点(−1,3);④当x>0时,y随着x的增大而增大;⑤方程ax2+bx+c=0有两个不相等的实数根.其中所有正确结论的序号是.17.如图,四边形OABC是边长为1的正方形,OC与x轴正半轴的夹角为15°,点B在抛物线y=ax2(a<0)的图像上,则a的值为.18.如图,在平面直角坐标系中,正方形OABC的顶点A在y轴的负半轴上,点C在x轴的负半轴上,抛物线y=a(x+3)2+c(a>0)的顶点为E,且经过点A、B,若△ABE为等腰直角三角形,则a的值是.三、解答题19.分别求出满足下列条件的二次函数的解析式.(1)图象经过点A(1,0),B(0,﹣3),对称轴是直线x=2;(2)图象顶点坐标是(﹣2,3),且过点(1,﹣3);20.二次函数y=ax2−2ax−3(a≠0)的图象经过点A.(1)求二次函数的对称轴;(2)当A(−1,0)时,①求此时二次函数的表达式;②把y=ax2−2ax−3化为y=a(x−ℎ)2+k的形式,并写出顶点坐标;21.如图,若二次函数y=x2−x−2的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于C点.(1)求A、B两点的坐标;(2)当−2<x<1时,函数值y的取值范围为 ;(直接写出答案即可)(3)若P(m,−2)为二次函数y=x2−x−2图象上一点,求m的值.22.如图,二次函数y=−x2+bx+c的图象过A(1,0),B(0,−3)两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.23.一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P 位于AB的中央且距地面6m,建立如图所示的坐标系.(1)求抛物线的表达式;(2)一辆货车高4m,宽2.4m,能否从该隧道内通过,为什么?24.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程y=ax2+bx+c的两个根;(2)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围;(3)若抛物线与直线y=2x−2相交于A(1,0),B(2,2)两点,写出抛物线在直线下方时x的取值范围.25.某植物园有一块足够大的空地,其中有一堵长为a米的墙,现准备用20米的篱笆围两间矩形花圃,中间用篱笆隔开.小俊设计了如图甲和乙的两种方案:方案甲中AD的长不超过墙长;方案乙中AD的长大于墙长.(1)若a=6.①按图甲的方案,要围成面积为25平方米的花圃,则AD的长是多少米?②按图乙的方案,能围成的矩形花圃的最大面积是多少?(2)若0<a<6.5,哪种方案能围成面积最大的矩形花圃?请说明理由.26.普洱茶是中国十大名茶之一,也是中华古老文明中的一颗瑰宝.某公司经销某种品牌普洱茶,每千克成本为50元.经市场调查发现:每周销售量y(千克)与销售单价x(元/千克)满足一次函数关系,部分数据如下表所示,销售单价x(元/千克)5665751190销售量y(千克)128解答下列问题:(1)求y与x的函数关系式;(2)求这一周销售这种品牌普洱茶获得的利润W元的最大值;(3)物价部门规定茶叶销售单价不得高于90元/千克,公司想获得不低于2000元周利润,请计算销售单价范围.参考答案:1.D 2.C 3.A 4.A 5.C 6.C 7.C 8.D 9.B 10.A 11.-412.y =−3x 213.k >−74且k ≠014.<15.(4+81422)16.①③⑤17.−2318.1319.(1)y =−(x−2)2+1(或y =−x 2+4x−3);(2)y =−23(x +2)2+3(或y =−23x 2−83x +13).20.(1)x =1(2)①y =x 2−2x−3;②y =(x−1)2−4;(1,−4)21.(1)A(−1,0),B(2,0)(2)−94≤y <4(3)0或122.(1)这个二次函数的解析式为y =−x 2+4x−3(2)S△ABC=32(x−4)2+623.(1)y=−14(2)货车可以通过24.(1)x1=1,x2=3;(2)k<2;(3)x<1或x>225.(1)①AD的长是5米;②按图乙的方案,能围成的矩形花圃的最大面积是169平方米;9(2)乙种方案能围成面积最大的矩形花圃.26.(1)y=−2x+240;(2)2450元;(3)70≤x≤90。
人教版九年级数学上册《第二十二章二次函数》单元测试卷-附答案
人教版九年级数学上册《第二十二章二次函数》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题,满分40分)1.把抛物线2y x =-的图像向左平移2个单位,再向上平移3个单位,得到新的抛物线为( ) A .2(2)3y x =---B .2(2)3y x =--+C .2(2)3y x =-+-D .2(2)3y x =-++2.如图是抛物线2y ax bx c =++的示意图,则c 的值可以是( ).A .2-B .1-C .0D .33.一次函数y cx b =+与二次函数2y ax bx c =++在同一平面直角坐标系中的大致图象可能是( ) A . B .C .D .4.二次函数1(6)y x mx m m ⎛⎫=-- ⎪⎝⎭(其中0m >),下列命题:①该函数图象过(6,0);①该函数图象顶点在第三象限;①当3x >时,y 随着x 的增大而增大;①若当x n <时,都有y 随着x 的增大而减小,则132n m≤+.其中正确结论的个数是( )A .1B .2C .3D .4 5.二次函数2y ax bx c =++(a≠0)的图象如图所示,则下列结论中正确的是A .a >0B .当﹣1<x <3时,y >0C .c <0D .当x≥1时,y 随x 的增大而增大6.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax 2+bx+c 的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称.根据现有信息,题中的二次函数不一定具有的性质是( ) A .过点(3,0)B .顶点是(2,﹣2)C .在x 轴上截得的线段的长度是2D .c=3a7.已知抛物线y=-12(x -1)2+k 上有三点A (-2,y 1),B (-1,y 2)C (2,y 3),则y 1、y 2、y 3的大小关系为( )A .y 1>y 2>y 3B .y 3>y 2>y 1C .y 2>y 3>y 1D .y 2>y 1>y 3 8.如图是二次函数2y ax bx c =++图象的一部分,顶点()1,n ,其中说法正确的是( )A .0abc >B .20a b -=C .点()11,x y 和()22,x y 都在该二次函数图象上,若11x <-,且223x <<,则12y y >.D .方程282ax bx c n +++=-一定有实数根9.抛物线y =ax 2+bx +c 交x 轴于A (-1,0),B (3,0),交y 轴的负半轴于C ,顶点为D .下列结论:①2a +b =0;①2c <3b ;①当m ≠1时,a +b <am 2+bm ;①当△ABD 是等腰直角三角形时,则a =12;其中正确的有( )个.A .4B .3C .2D .110.已知二次函数()20,0,0y ax bx c a b c =++>≥≤的图象经过点()1,0-,()2,3当3x =时,y 的取值范围是( )A .8y ≤B .68y ≤≤C .48y ≤<D .48y <≤二、填空题(共8小题,满分32分)11.若抛物线y=2x 2-(m +3)x -m +7的对称轴是x=1,则m= .12.抛物线223y x =--的开口方向 ,对称轴是 ,顶点坐标是 .13.在同一坐标系中,二次函数212y x =与2122y x =+的图象在开口方向、对称轴和顶点三项指标中相同的是 .14.已知y 是x 的函数,且满足:①x 的取值范围是全体实数;①y 的取值范围是1y ≥-;①在1x >时,y 随x 的增大而增大.请写出一个符合条件的函数解析式 . 15.如图,在平面直角坐标系中,点A 是抛物线y =ax 2+bx+c 的顶点,点B (0,2)是抛物线与y 轴的交点,直线BC 平行于x 轴,交抛物线于点C ,D 为x 轴上任意一点,若S △ABC =3,S △BCD =2,则点A 的坐标为 .16.二次函数y=32的图象如图,点O 为坐标原点,点A 在y 轴的正半轴上,点B 、C 在二次函数y=3x 2的图象上,四边形OBAC 为菱形,且①OBA=120°,则菱形OBAC 的面积是 .17.已知抛物线y=ax 2+bx+c 的顶点M 在第二象限,且经过点 A(1,0)和点 B(0,2).则(1)a 的取值范围是 ;(2)若△AMO 的面积为△ABO 面积的32倍时,则a 的值为 18.已知2210p ap -+=,()221220q a q a ---+=且2a ≥,设()t a p q =+,则t 的最小值为 .三、解答题(共6小题,每题8分,满分48分)19.在平面直角坐标系xOy 中,点()()1,3,A m B n 、在抛物线22y ax bx =++上.(1)如果m n =,那么抛物线的对称轴为直线 ;(2)如果点A 、B 在直线1y x =-上,求抛物线的表达式和顶点坐标.20.如图,用20米长的篱笆围成一个一边靠墙的矩形花圃(墙足够长),设垂直于墙的一边长为x 米矩形花圃的面积为y 平方米.(1)写出y 关于x 的函数解析式;(2)当x 为多少时,矩形花圈的面积最大?21.某商场老板对一种新上市商品的销售情况进行记录,已知这种商品进价为每件40元,每月的销售量y (件)与销售单价x (元)之间的关系可近似地看作一次函数,其图象如图所示.(1)求y 与x 的函数关系式.(2)设商场老板每月获得的利润为P (元),求P 与x 之间的函数关系式;并求出利润的最大时销售单价为多少元?22.如图,已知二次函数243y x x =++,回答下列问题:(1)求出此抛物线的对称轴和顶点坐标;(2)写出抛物线与x 轴交点A 、B 的坐标,与y 轴的交点C 的坐标;(3)写出函数的最值和增减性;(4)x 取何值时,①0y <,①0y >.23.小王从同事小李手中接收一批生产任务,派单方要求必须在15天内完成,届时承以每件60元的价格全部回收,小王在接受任务之后,其生产的任务y (件)与生产的天数x (天)关系如图1所示,其中在生产6天之后,每天的生产数量达到了30件.(1)求y 与x 之间的函数表达式;(2)设第x 天生产的产品成本为m 元/件,m 与x 的函数图象如图2所示,若小王第x 天的利润为W 元,求W 与x 的关系式,并求出第几天后小王的利润可达到最大值,最大值为多少?24.已知二次函数2y ax bx c =++图象上部分点的横坐标x 、纵坐标y 的对应值如下表: x … 0 1 2 3 4 …y … -3 -4 -3 0 5 …(1)求该二次函数的表达式;(2)直接写出该二次函数图象与x 轴的交点坐标.参考答案1.D2.D3.B4.B5.B6.B7.B8.D9.B10.B11.112. 下 y 轴 (0,-3)13.开口方向和对称轴14.21y x =-(答案不唯一)15.(1,﹣1)16..17. (1)﹣2<a <0 (2)﹣318.619.(1)2x =(2)232y x x =-+,顶点31,24⎛⎫- ⎪⎝⎭20.(1)2220y x x =-+()010x <<(2)当5x =时,苗圃的面积最大,最大值是50平方米.21.(1)24360y x =-+(40≤x ≤90);(2)65元.22.(1)对称轴为直线2x =-,顶点坐标为()2,1--;(2)A 点坐标为(3,0)-,B 点坐标为(1,0)-,C 点坐标为(03),;(3)二次函数有最小值1-;当<2x -时,y 随x 的增大而减小,当2x >-时,y 随x 的增大而增大;(4)①当31x -<<-时0y <;①当3x <-或1x >-时0y >23.(1)2090,(16)3030,(615)x x y x x +⎧=⎨+<<⎩;(2)当1≤x≤6时,W 1=500x+2250(1≤x≤6);当6<x≤15时,W 2=﹣30(x ﹣15)2+7680(6<x≤15);第15天后小王的利润可达到最大值,最大值为7680. 24.(1)2=23y x x --;(2)(3,0)和(-1,0).。
人教版数学九年级上册《第二十二章 二次函数》过关自测卷
第二十二章过关自测卷(100分,45分钟)一、选择题(每题4分,共32分)1.抛物线y=ax2+bx-3过点(2,4),则代数式8a+4b+1的值为()A.-2B.2C.15D.-152.图1是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2 m,水面宽4 m.如图2建立平面直角坐标系,则抛物线的关系式是()图1 图2A.y=-2x2B.y=2x2C.y=-x2D.y=x23.〈恩施州〉把抛物线y=x2-1先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A.y=(x+1)2-3B.y=(x-1)2-3C.y=(x+1)2+1D.y=(x-1)2+14.〈常州〉二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x -3 -2 -1 0 1 2 3 4 5y 12 5 0 -3 -4 -3 0 5 12给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为-3;(2)当-<x<2时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.05.〈舟山〉若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(-2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1B.直线x=-2C.直线x=-1D.直线x=-46.设一元二次方程(x-1)(x-2)=m(m>0)的两实根分别为α,β,且α<β,则α,β满足()A.1<α<β<2B.1<α<2<βC.α<1<β<2D.α<1且β>27.〈内江〉若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是直线x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)8.〈南宁〉已知二次函数y=ax2+bx+c(a≠0)的图象如图3所示,下列说法错误的是()。
人教版数学九年级上册 第二十二章 二次函数测试和答案
人教版数学九上第二十二章二次函数测试及答案一、选择题:(每小题3分共30分)1.抛物线y=(x-1)2+1的顶点坐标为( )A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1)【答案】A解:抛物线y=(x-1)2+1的顶点坐标为(1,1 ).故选A.2.二次函数的最大值为()A.3 B.4 C.5 D.6【答案】C解:y=﹣(x﹣1)2+5,∵a=﹣1<0,∴当x=1时,y有最大值,最大值为5.故选:C.3.二次函数y=a2x+bx+c(a≠0)的图象如图所示,当y>0时,自变量x的取值范是()A.x<-1 B.x>3 C.x<-1或x>3 D.-1<x<3【答案】D解:由图像可知,当y >0时,自变量x 的取值范是-1<x<3.故选D.4.在同一平面直角坐标系中,函数y =ax 2+bx 与y =﹣bx +a 的图象可能是( ) A . B . C .D .【答案】B解:A 、对于直线y=-bx+a 来说,由图象可以判断,a <0,b >0;而对于抛物线y=ax 2+bx 来说,图象应开口向下,故不合题意;B 、对于直线y=-bx+a 来说,由图象可以判断,a >0,b <0;而对于抛物线y=ax 2+bx 来说,图象开口向上,对称轴x=-2b a>0,在y 轴的右侧,符合题意,图形正确; C 、对于直线y=-bx+a 来说,由图象可以判断,a <0,b <0;而对于抛物线y=ax 2+bx 来说,对称轴x=-2b a<0,应位于y 轴的左侧,故不合题意; D 、对于直线y=-bx+a 来说,由图象可以判断,a >0,b <0;而对于抛物线y=ax 2+bx 来说,图象应开口向下,故不合题意.故选:B .5.若函数y =(m ﹣1)x 2﹣6x + m 的图象与x 轴有且只有一个交点,则m 的值为( )A .﹣2或3B .﹣2或﹣3C .1或﹣2或3D .1或﹣2或﹣3【答案】C解:当m =1时,函数解析式为:y =﹣6x + 是一次函数,图象与x 轴有且只有一个交点, 当m ≠1时,函数为二次函数,∵函数y =(m ﹣1)x 2﹣6x + m 的图象与x 轴有且只有一个交点,∴62﹣4×(m﹣1)×m=0,解得,m=﹣2或3,故选:C.6.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,动点P从点A开始沿边AB向B以1cm/s 的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过()秒,四边形APQC的面积最小.A.1 B.2 C.3 D.4【答案】C解:设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Scm2,则有:S=S△ABC-S△PBQ=12×12×6-12(6-t)×2t=t2-6t+36=(t-3)2+27.∴当t=3s时,S取得最小值.故选:C.7.如图,抛物线y=(x﹣1)2﹣4与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,经过点C作x轴的平行线,与抛物线的另一个交点为点D,M为抛物线的顶点,P (m,n)是抛物线上点A,C之间的一点(不与点A,C重合),以下结论:①OC=4;②点D的坐标为(2,﹣3);③n+3>0;④存在点P,使PM⊥DM.其中正确的是()A.①③B.②③C.②④D.①④【答案】B解:①将x=0时,y=-3,∴c(0,-3),∴OC=3,故①错误;②当y=-3时,-3=(x-1)2-4,解:x=0或x=2∴D(2,-3),故②正确.③点P在AC之间,且C(0,-3),∴.n>-3,n+3>0,故③正确;④易得M点坐标(1,-4).∴又CD=2∴MC2+DM2=CD2,.∴∠CMD=90o.点 P和点 C重合,∴PM不垂直于 DM, 故④错.故正确为②③,故选B.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c <b;④b2-4ac>0,其中正确的个数是( )A.1 B.2 C.3 D.4【答案】C解:观察可得二次函数的开口向下,与y轴的交点在y轴的正半轴,所以a<0,c>0,②正确;由0<﹣<1,可得b>0,①错误;当x=﹣1时,y=a﹣b+c<0,即可得a+c<b,③正确;再由二次函数与x轴有两个交点,可得△=b2﹣4ac>0,④正确,所以正确的有3个,故选C.9.将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为()A.y=2(x﹣3)2﹣5 B.y=2(x+3)2+5 C.y=2(x﹣3)2+5 D.y=2(x+3)2﹣5【答案】A解:把向右平移3个单位长度变为:,再向下平移5个单位长度变为:.故选A.10.如图所示,已知二次函数y=ax2+bx+c的图象与x交于A,B两点,与y轴交于点C,对称轴为直线x=1.直线y=﹣x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴下方且横坐标小于3,则下列结论错误的是()A.2a+b+c>0B.a<﹣1C.x(ax+b)≤a+bD.双曲线y=的两分支分别位于第一、第三象限【答案】D【解析】解:∵抛物线与y轴的交点在x轴上方,∴c>0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a,∴2a+b+c=2a﹣2a+c=c>0,所以A正确,不符合题意;∵直线y=﹣x+c与抛物线y=ax2+bx+c交于C、D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<﹣3+c,而b=﹣2a,∴9a﹣6a<﹣3,解得a<﹣1,所以B正确,不符合题意;∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴ax2+bx≤a+b,所以C正确,不符合题意;∵抛物线与x轴的一个交点在点(3,0)左侧,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣1,0)右侧,∴当x=﹣1时,y<0,∴a﹣b+c<0,∴双曲线y=的两分支分别位于第二、第四象限所以D错误,符合题意,故选:D.二、填空题11.已知抛物线(a≠0)经过点(-2,4),则4a+c-1=________ .【答案】-3解:把(-2,4)代入得:,∴4a+c=-2,∴4a+c-1=-2-1=-3.12.如图,已知二次函数y=x2-4x-5与x轴交于A,B两点,则AB的长度为_____.【答案】6解:在y=x2-4x-5中,令y=0,解得:x=-1,x=5,∴AB=5-(-1)=6.13.如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣1交y轴于点A,过点A作AB∥x轴交抛物线于点B,点P在抛物线上,连结PA、PB,若点P关于x轴的对称点恰好落在直线AB上,则△ABP的面积是_____.【答案】2解:令x=0,则y=x2-2x-1=-1,∴A(0,-1),把y=-1代入y=x2-2x-1得-1=x2-2x-1,解得x1=0,x2=2,∴B(2,-1),∴AB=2,∵点P关于x轴的对称点恰好落在直线AB上,∴△PAB边AB上的高为2,∴S=12×2×2=2.故答案为2.14.已知二次函数y=ax2+bx+c的图象如图所示,则点P(a,bc)在第_____象限.【答案】三.解:∵抛物线的开口向下,∴a<0,∵对称轴在y轴左边,∴a,b同号即b<0,∵抛物线与y轴的交点在正半轴,∴c>0,∴bc<0,∴点p(a,bc)在第三象限.故填空答案:三.15.如图,是二次函数y=﹣x2+bx+c的部分图象,则不等式﹣x2+bx+c>0的解集是_____.【答案】-1<x<9解:∵对称轴x=4,抛物线与x轴的交点(9,0),∴另一个与x轴交点的坐标(-1,0),∴二次函数y=-x2+2x+c的图象与x轴交点坐标为(-1,0)、(9,0),而-x2+bx+c>0,即y>0,∴-1<x<9.故答案为:-1<x<9.16.如图,四边形ABCD、DEFG都是正方形,边长分别为m、n(m<n).坐标原点O为AD的中点,A 、D 、E 在y 轴上.若二次函数y =ax 2的图象过C 、F 两点,则n m=_____.【答案】1解:∵正方形ABCD 的边长为m ,坐标原点O 为AD 的中点,∴C (m ,12m ). ∵抛物线y =ax 2过C 点, ∴12m =am 2,解得a =12m , ∴抛物线解析式为y =12mx 2, 将F (﹣n ,n )代入y =12m x 2, 得n =12m×(﹣n )2, 整理得m 2﹣2mn ﹣n 2=0,解得n =(1m (负值舍去),∴n m=.故答案为.三、解答题17.关于x 的二次函数2y ax bx c =++的图象与x 轴交于点()1,0A -和点()3,0B ,与y 轴交于点()0,3C(1)求二次函数的解析式;(2)求二次函数的对称轴和顶点坐标.【答案】(1)2y x 2x 3=-++(2)对称轴:直线1x =;顶点坐标为()1,4.解:(1)设抛物线的解析式为y=a (x+1)(x-3),将C (0,3)代入得:3=-3a ,解得a=-1,∴抛物线的解析式为y=-x 2+2x+3.(2)y=-x 2+2x+3=-2x 14-+().∴对称轴:直线1x =;顶点坐标为()1,4.18.抛物线 与 轴交于点 .(1)求抛物线的解析式;(2)求它与 轴的交点和抛物线顶点的坐标.【答案】(1) ,(2)解:(1)把 代入 得, ,故抛物线的解析式为 ;(2)当 时, ,解得 或 ,则抛物线与 轴的交点是 、 ,∵ ,∴抛物线的顶点是 .19.特产店销售一种水果,其进价每千克40元,按60元出售,平均每天可售100千克,后来经过市场调查发现,单价每降低2元,则平均每天可增加20千克销量.(1)若该专卖店销售这种核桃要想平均每天获利2240元,每千克水果应降多少元?(2)若该专卖店销售这种核桃要想平均每天获利最大,每千克水果应降多少元?【答案】(1)每千克核桃应降价4元或6元;(2)若该专卖店销售这种核桃要想平均每天获利最大,每千克水果应降价5元.解:(1)设每千克核桃应降价x 元. 根据题意,得60401002022402x x --+⨯=()(). 化简,得210240x x -+=,解得1246x x ==,.答:每千克核桃应降价4元或6元.(2)每天总利润y 与降价x 元的函数关系式为:(6040100202x y x =--+⨯)(), 2101002000x x =-++,210102000x x =--+(),21052250x =--+(),当5x =时,y 最大,答:若该专卖店销售这种核桃要想平均每天获利最大,每千克水果应降价5元.20.已知抛物线y =-x 2+2(m -1)x +m +1.(1)求证:无论m 取何值,抛物线与x 轴总有两个不同的交点;(2)若抛物线与x 轴交于A ,B 两点,且A 点在原点的右边,B 点在原点的左边,求m 的取值范围.【答案】(1)证明见解析(2)m>-1解:(1)证明:∵b 2-4ac =[2(m -1)]2-4×(-1)×(m +1)=(2m -1)2+7>0,∴抛物线与x 轴总有两个不同的交点.(2)设A (x 1,0),B (x 2,0),则x 1>0,x 2<0,∴x 1x 2=-(m +1)<0.∴m >-1.21.已知抛物线y =3x 2-2x +4.(1)通过配方,将抛物线的表达式写成y =a(x -h)2+k 的形式;(2)写出抛物线的开口方向和对称轴.【答案】(1)(2)x= 解:(1)y =3x 2-2x +4= = .(2)开口向上,对称轴是直线 .22.已知二次函数y =x 2﹣(k +1)x +14k 2+1与x 轴有交点. (1)求k 的取值范围; (2)方程x 2﹣(k +1)x +14k 2+1=0有两个实数根,分别为x 1,x 2,且方程x 12+x 22+15=6x 1x 2,求k 的值,并写出y =x 2﹣(k +1)x +14k 2+1的代数解析式. 【答案】(1)32k ≥;(2)k 的值是4,y =x 2﹣5x +5. 解:(1)∵二次函数y =x 2﹣(k+1)x+14k 2+1与x 轴有交点, ∴△=221[(k 1)]41k 14⎛⎫-+-⨯⨯+ ⎪⎝⎭≥0, 解得32k ≥, 即k 的取值范围是32k ≥; (2)∵方程x 2﹣(k+1)x+14k 2+1=0有两个实数根,分别为x 1,x 2, ∴x 1+x 2=k+1,x 1x 2=14k 2+1, ∵x 12+x 22+15=6x 1x 2,∴(x 1+x 2)2﹣2x 1x 2+15=6x 1x 2,∴(k+1)2﹣2(14k 2+1)+15=6×(14k 2+1), 解得,k =4或k =﹣2(舍去),∴y =x 2﹣5x+5,即k 的值是4,y =x 2﹣(k+1)x+14k 2+1的代数解析式是y =x 2﹣5x+5. 23.如图,抛物线y =2(x -2)2与平行于x 轴的直线交于点A ,B ,抛物线顶点为C ,△ABC 为等边三角形,求S △AB C .解:过B 作BP ⊥x 轴交于点P ,连接AC ,BC ,由抛物线y=222x ()得C (2,0), ∴对称轴为直线x=2,设B (m ,n ),∴CP=m-2,∵AB ∥x 轴,∴AB=2m-4,∵△ABC 是等边三角形,∴BC=AB=2m-4,∠BCP=∠ABC=60°,∴(m-2),∵PB=n=222m -(),m-2)=222m -(),解得m=42+,m=2(不合题意,舍去),∴BP=32,∴S △ABC =13224=.24.如图,抛物线2(0)y ax bx c a =++≠与y 轴交于点C(O ,4),与x 轴交于点A 和点B ,其中点A 的坐标为(-2,0),抛物线的对称轴1x =与抛物线交于点D ,与直线BC 交于点E .(1)求抛物线的解析式;(2)若点F 是直线BC 上方的抛物线上的一个动点,是否存在点F 使四边形ABFC 的面积为17,若存在,求出点F 的坐标;若不存在,请说明理由;(3)平行于DE 的一条动直线Z 与直线BC 相交于点P ,与抛物线相交于点Q ,若以D 、E 、P 、Q 为顶点的四边形是平行四边形,求点P 的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十二章过关自测卷(100分,45分钟)一、选择题(每题4分,共32分)1.抛物线y=ax2+bx-3过点(2,4),则代数式8a+4b+1的值为()A.-2B.2C.15D.-152.图1是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2 m,水面宽4 m.如图2建立平面直角坐标系,则抛物线的关系式是()图1 图2A.y=-2x2B.y=2x2C.y=-12x2 D.y=12x23.〈恩施州〉把抛物线y=12x2-1先向右平移1个单位,再向下平移2个单位,得到的抛物线的解析式为()A.y=12(x+1)2-3B.y=12(x-1)2-3C.y=12(x+1)2+1D.y=12(x-1)2+14.〈常州〉二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为-3;<x<2时,y<0;(2)当-12(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论的个数是()A.3B.2C.1D.05.〈舟山〉若一次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(-2,0),则抛物线y=ax2+bx的对称轴为()A.直线x=1B.直线x=-2C.直线x=-1D.直线x=-46.设一元二次方程(x-1)(x-2)=m(m>0)的两实根分别为α,β,且α<β,则α,β满足()A.1<α<β<2B.1<α<2<βC.α<1<β<2D.α<1且β>27.〈内江〉若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A.抛物线开口向上B.抛物线的对称轴是直线x=1C.当x=1时,y的最大值为-4D.抛物线与x轴的交点为(-1,0),(3,0)8.〈南宁〉已知二次函数y=ax2+bx+c(a≠0)的图象如图3所示,下列说法错误的是()A.图象关于直线x=1对称B.函数y=ax2+bx+c(a≠0)的最小值是-4C.-1和3是方程ax2+bx+c=0(a≠0)的两个根D.当x<1时,y随x的增大而增大图3二、填空题(每题4分,共32分)9.已知抛物线y=-1x2+2,当1≤x≤5时,y的最大值是______.310.已知二次函数y=x2+bx-2的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是__________.11.已知函数y=(k-3)x2+2x+1的图象与x轴有公共点,则k的取值范围是________.12.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=-5(t-1)2+6,则小球距离地面的最大高度是________.13.二次函数y=ax2+bx的图象如图4,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为__________.图4 图5与y=ax2+bx(a>0,b>0)的图象交于点P,14.如图5,已知函数y=-3x=0的解为_______.点P的纵坐标为1,则关于x的方程ax2+bx+3x15.将一条长为20 cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是__________ cm2.x2平移得到抛物线m,抛物线m经过点16.如图6,把抛物线y=12x2 A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=12交于点Q,则图中阴影部分的面积为__________.图6三、解答题(每题12分,共36分)17.〈牡丹江〉如图7,已知二次函数y=x2+bx+c的图象过点A(1,0),C(0,-3).(1)求此二次函数的解析式;(2)在抛物线上存在一点P使△ABP的面积为10,请求出点P的坐标.图718.在平面直角坐标系xOy中,O为坐标原点,已知抛物线y=x2-k2+1.(k+2)x+14(1)k取什么值时,此抛物线与x轴有两个交点?(2)若此抛物线与x轴交于A(x1,0)、B(x2,0)两点(点A在点B左侧),且x1+x2=3,求k的值.19.〈广州〉已知抛物线y 1=ax 2+bx +c 过点A (1,0),顶点为B ,且抛物线不经过第三象限. (1)使用a 、c 表示b ;(2)判断点B 所在象限,并说明理由;(3)若直线y 2=2x +m 经过点B ,且与该抛物线交于另一点C ,8cb a⎛⎫+ ⎪⎝⎭,求当x ≥1时y 1的取值范围.参考答案及点拨一、1. C 2. C 3. B4. B 点拨:本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.5. C6. D 点拨:令m=0,则函数y=(x-1)(x-2)的图象与x轴的交点分别为(1,0),(2,0),画出函数图象(如答图1),利用数形结合即可求出α,β的取值范围.∵m>0,∴α<1,β>2.故选D.答图17. C 8. D二、9. 53点拨:∵拋物线y=-13x2+2的二次项系数a=-13<0,∴该抛物线开口向下;又∵常数项c=2,∴该抛物线与y轴交于点(0,2);而对称轴就是y轴,∴当1≤x≤5时,y=-13x2+2中y随x的增大而减小,∴当1≤x≤5时,y最大值=-13+2=53.10. (-2,0)11. k≤4 点拨:分为两种情况:①当k-3≠0时,(k-3)x2+2x+1=0, =b2-4ac=22-4(k-3)×1=-4k+16≥0,k≤4;②当k-3=0时,y=2x+1,与x 轴有交点.故k ≤4. 12. 6米13. 3 点拨:方法一:图象法,由ax 2+bx +m =0得ax 2+bx =-m ,一元二次方程ax 2+bx +m =0有实数根,得函数y =ax 2+bx 与函数y =-m 的图象有交点,所以-m ≥-3,m ≤3;方法二:因为一元二次方程ax 2+bx +m =0有实数根,所以b 2-4am ≥0,由y =ax 2+bx 的图象可得顶点纵坐标,204b a- =-3,b 2=12a ,所以12a-4am ≥0,解得m ≤3. 14. x =-315. 12.5 点拨:设一段铁丝的长度为x cm ,则另一段长度为(20-x ) cm ,S =116x 2+116(20-x )(20-x )=18(x -10)2+12.5,∴当x =10 时,S 最小为12.5 cm 2. 16.272点拨:(1)平移后抛物线的表达式与原来的抛物线的表达式中的a 相同,可以通过待定系数法求抛物线的表达式;(2)不规则图形的面积要通过割补、拼接转化为规则图形的面积,这是解本题的关键.三、17. 解:(1)∵二次函数y =x 2+bx +c 的图象过点A (1,0),C (0,-3),∴10,3,b c c ++=⎧⎨=-⎩解得2,3.b c =⎧⎨=-⎩∴二次函数的解析式为y =x 2+2x -3;(2)∵当y =0时,x 2+2x -3=0,解得:x 1=-3,x 2=1,∴A (1,0),B (-3,0),∴AB =4,设P (m ,n ),∵△ABP 的面积为10,∴12AB ·|n |=10,解得:n =±5,当n =5时,m 2+2m -3=5,解得:m =-4或2,∴P 点坐标为(-4,5)或(2,5);当n =-5时,m 2+2m -3=-5,方程无解,故P 点坐标为(-4,5)或(2,5).18. 解:(1)∵抛物线y =x 2-(k +2)x +14k 2+1与x 轴有两个交点, 若令y =0,即x 2-(k +2)x +14k 2+1=0,则有∆=-(k +2)2-4×1×(14k 2+1)>0, k 2+4k +4-k 2-4>0,4k >0,∴k >0, 即k >0时,此抛物线与x 轴有两个交点.(2)∵抛物线y =x 2-(k +2)x+14k 2+1与x 轴交于A (x 1,0)、B (x 2,0)两点,∴x 1,2A 在点B 左侧,即x 1<x 2,又∵k >0,∴x 1,x 2,∴22x x =.∵x 1+2x =3,∴x 1+x 2=3,即22k +++ 22k +=3,即k =1. 19. 解:(1)把点A (1,0)的坐标代入函数解析式即可得到b =-a -c .(2)若a <0,则抛物线开口向下,抛物线必过第三象限,所以a <0不成立.当a >0时,抛物线开口向上,B 在第四象限.理由如下:由题意,ax 2+bx +c =0可变形为ax 2-(a +c )x +c =0,解得x1=1,x2=ca,a≠c,所以抛物线与x轴有两个交点.又因为抛物线不经过第三象限,所以a>0,且顶点在第四象限;(3)由(2)知抛物线与x轴两个交点为A(1,0)与(ca,0).∵直线y2=2x+m与该抛物线交于点B、点C (ca,b+8),∴点C就是抛物线与x轴的一个交点,即b+8=0,b=-8,此时-a-c=-8,y1=ax2-8x+c,抛物线顶点B的坐标为(4a ,16aca).把B、C两点坐标代入直线解析式y2=2x+m,得ac+2c=24.又a+c=8,解得a=c=4(与a≠c矛盾,舍去)或a=2,c=6.∴y1=2x2-8x+6,B(2,-2).画出上述二次函数的图象(如答图2),观察图象知,当x≥1时,y1的最小值为顶点纵坐标-2,且无最大值.∴当x≥1时,y1的取值范围是y1≥-2.答图2点拨:二次函数的问题通常都是求解析式、求对称轴、求顶点坐标、求最值以及与其他知识的综合等,本题基本上综合了上述各种问题,解题的方法就是牢牢抓住二次函数的对称轴的求法,顶点坐标的求法,以及最值的求法.11 / 11。