双平衡二极管混频器的设计

双平衡二极管混频器的设计
双平衡二极管混频器的设计

双平衡二极管混频器的设计

应用ADS软件设计双平衡二极管混频器,采用微带线对端口进行匹配。并用谐波方法对设计电路进行了谐波分析。最后给出了设计电路的性能参数。

标签:混频器;射频电路;ADS;二极管

1 引言

随着第三代移动通信技术的发展成熟以及蓝牙技术的日益普及,全球众多相关公司和研究部门都投入了相当多的人力和物力资源来研究无线通信技术。混频器就是无线通信中相当重要部分之一。已经广泛应用在手机,卫星通信,基站,雷达,导弹制导系统,军事通信系统,数字无线通信系统。混频器对电子系统的性能,尺寸,重量和成本有着决定性的影响。发展小型化,高性能的混频器有相

当重要的实际意义。[1-2]

2 应用ADS设计混频器

2.1 主要技术指标

本振功率0dBm,射频功率-20dBm;隔离度:本振和射频端口隔离度-25dB 以下,本振和中频输出端口隔离度-25dB以下;变频损耗7dB左右;端口反射系数:射频端口在1.95GHz处反射系数-20dB以下,本振端口在2.15GHz处反射系

数-25dB以下。

2.2 电路设计及各端口性能参数

建立双平衡二极管混频器电路原理图,三个端口采用微带线为之匹配。并按照电路设计参数为端口电源设定参数,如图2-1所示。启用ADS的仿真功能,

得到三个断口反射系数曲线和端口隔离度如图所示。

图2-1 双平衡二极管混频器原理图

由图2-2可知,S(1,1)在频率为1.95GHz时,满足反射小的要求,同样,

平衡混频器设计

应用ADS 设计混频器 1. 概述 图1为一微带平衡混频器,其功率混合电路采用3dB 分支线定向耦合器,在各端口匹配的条件下,1、2为隔离臂,1到3、4端口以及从2到3、4端口都是功率平分而相位差90°。 图1 设射频信号和本振分别从隔离臂1、2端口加入时,初相位都是0°,考虑到传输相同的路径不影响相对相位关系。通过定向耦合器,加到D1,D2上的信号和本振电压分别为: D1上电压 ) 2cos(1π ω- =t V v s s s 1-1 )cos(1πω-=t V v L L L 1-2 D2上电压 )cos(2t V v s s s ω= 1-3 )2cos(2π ω+ =t V v L L L 1-4 可见,信号和本振都分别以2 π 相位差分配到两只二极管上,故这类混频器称为 2 π 型平衡混频器。由一般混频电流的计算公式,并考虑到射频电压和本振电压的相位差,可以得到D1中混频电流为:

∑∑ ∞-∞ =∞ -+- = m n L s m n t jn t jm I t i ,,1)]()2 (exp[)(πωπ ω 同样,D2式中的混频器的电流为: ∑∑∞ -∞ =∞ + += m n L s m n t jn t jm I t i ,,2)]2 ()(exp[)(π ωω 当1,1±=±=n m 时,利用1,11,1-++-=I I 的关系,可以求出中频电流为: ]2 )cos[(41,1π ωω+ -=+-t I i L s IF 主要的技术指标有: 1、噪音系数和等效相位噪音(单边带噪音系数、双边带噪音系数); 2、变频增益,中频输出和射频输入的比较; 3、动态范围,这是指混频器正常工作时的微波输入功率范围; 4、双频三阶交调与线性度; 5、工作频率; 6、隔离度; 7、本振功率与工作点。 设计目标:射频:3.6 GHz ,本振:3.8 GHz ,噪音:<15。 2.具体设计过程 2.1创建一个新项目 ◇ 启动ADS ◇ 选择Main windows ◇ 菜单-File -New Project ,然后按照提示选择项目保存的路径和输入文件名 ◇ 点击“ok ”这样就创建了一个新项目。 ◇ 点击 ,新建一个电路原理图窗口,开始设计混频器。

二极管双平衡混频器

高频电子实验报告 实验名称: 二极管双平衡混频器 实验目的: 1、掌握二极管双平衡混频器频率变换的物理过程。 2、掌握晶体管混频器频率变换的物理过程和本振电压V0和工作电流Ie对中频转出电压大小的影响。 3、掌握集成模拟乘法器实现的平衡混频器频率变换的物理过程。 4、比较上述三种混频器对输入信号幅度与本振电压幅度的要求。 实验仪器: 1、 1号板 1块 2、 6号板 1块 3、 3 号板 1块 4、 7 号板 1块 5、双踪示波器 1台 实验原理: 1. 二极管双平衡混频原理

图3-1 二极管双平衡混频器 二极管双平衡混频器的电路图示见图3-1。图中V为输入信号电压,V为本机振荡电压。在负载R上产生差频和合频,还夹杂有一些其它频率的无用产物,再接上一个滤波器(图中未画出) 二极管双平衡混频器的最大特点是工作频率极高,可达微波波段,由于二极管双平衡混频器工作于很高的频段。图3-1 中的变压器一般为传输线变压器。 二极管双平衡混频器的基本工作原理是利用二极管伏安特性的非线性。众所周知,二极管的伏安特性为指数律,用幂级数展开为 当加到二极管两端的电压v 为输入信号V和本振电压V之和时,V项产生差频与和频。其它项产生不需要的频率分量。由于上式中u 的阶次越高,系数越小。因此,对差频与和频构成干扰最严重的是v 的一次方项(因其系数比v项大一倍)产生的输入信号频率分量和本振频率分量。 用两个二极管构成双平衡混频器和用单个二极管实现混频相比,前者能有效的抑制无用产物。双平衡混频器的输出仅包含(pω±ω)(p 为奇数)的组合频率分量,而抵消了ω、ω以及p 为偶数(pω±ω)众多组合频率分量。 下面我们直观的从物理方面简要说明双平衡混频器的工作原理及其对频率为ω及ω 的抑制作用。

二极管双平衡混频器实验报告

二极管双平衡混频器 一、实验目的 1、掌握二极管双平衡混频器频率变换的物理过程。 2、掌握晶体管混频器频率变换的物理过程和本振电压V0和工作电流Ie对中频转出电压大小的影响。 3、掌握集成模拟乘法器实现的平衡混频器频率变换的物理过程。 4、比较上述三种混频器对输入信号幅度与本振电压幅度的要求。 二、实验内容 1、研究二极管双平衡混频器频率变换过程和此种混频器的优缺点。 2、研究这种混频器输出频谱与本振电压大小的关系。 三、实验仪器 1、1号板1块 2、6号板1块 3、3 号板1块 4、7 号板1块 5、双踪示波器1台

四、实验原理与电路 i. 二极管双平衡混频原理 图3-1 二极管双平衡混频器 二极管双平衡混频器的电路图示见图3-1。图中VS为输入信号电压,VL为本机振荡电压。在负载RL上产生差频和合频,还夹杂有一些其它频率的无用产物,再接上一个滤波器(图中未画出) 二极管双平衡混频器的最大特点是工作频率极高,可达微波波段,由于二极管双平衡混频器工作于很高的频段。图3-1中的变压器一般 为传输线变压器。 二极管双平衡混频器的基本工作原理是利用二极管伏安特性的非 线性。众所周知,二极管的伏安特性为指数律,用幂级数展开为 当加到二极管两端的电压v 为输入信号VS和本振电压VL之和时, V2项产生差频与和频。其它项产生不需要的频率分量。由于上式中u

的阶次越高,系数越小。因此,对差频与和频构成干扰最严重的是v 的一次方项(因其系数比v2项大一倍)产生的输入信号频率分量和本振频率分量。 用两个二极管构成双平衡混频器和用单个二极管实现混频相比,前者能有效的抑制无用产物。双平衡混频器的输出仅包含(pωL±ωS)(p为奇数)的组合频率分量,而抵消了ωL、ωC 以及p为偶数(pωL±ωS)众多组合频率分量。 下面我们直观的从物理方面简要说明双平衡混频器的工作原理及其对频率为ω L 及ω S 的抑制作用。 (a)

混频器设计

混频器设计 简介 无线收发机射频前端在本质上主要完成频率变换的功能,接收机射频前端将 接收到的射频信号装换成基带信号,而发射机射频前端将要发射的基带信号转换成射频信号,频率转换功能就是由混频器完成的。 本文设计应用于无线传感器网络(Wireless Sensor Network,简称WSN)的混频器,无线传感器网络是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织网络系统,其目的是协作的感知、采集和处理网络覆盖区域中感知对象的信息,并发送给观察者。这就要求所设计的混频器具有很低的功耗。同时,混频器是一种非线性电路,是接收机中输入射频信号最强的模块,这就对混频器的线性度提出了严格的要求。而混频过程通常会引入很大的噪声,考虑到LNA 的增益有限,混频器噪声也是要考虑的关键指标。由于所设计的接收机采用的是低中频的结构,中频频率只有2MHz,所以混频器的隔离度也是关键的指标。 结构选择及原理分析 结构选择 本接收机采用的结构为低中频结构,中频频率只有2MHz,LO 信号泄漏到RF 端口可能造成自混频及信号阻塞等问题。LO 信号泄漏到IF 端口,会对中频信号形成阻塞,同时LO 的噪声也将提高整体的噪声系数。而RF 信号馈通到LO端会造成自混频现象。双平衡的吉尔伯特混频器具有很好的隔离度,故本设计采用该结构。 本设计中频频率很低,开关对噪声(包括热噪声和1/ 噪声)是限制混频器噪声性能的主要因素,可以在不影响驱动级偏置电流的情况下减小流过开关对的偏置电流来减小混频器的噪声系数。可以通过在开关对的源极注入一个固定的偏置电流来实现。 线性度是混频器的一个重要指标,通常可以采用在驱动级晶体管的源极串一个无源元件形成串联反馈来提高驱动级的线性度。电阻作源简并元件会引入热噪声,而电阻本身会产生压降。电感和电容作源简并元件不会引入额外的噪声,而且对高频谐波成分和交调成分具有一定的抑制作用。因此通常选择电感作为源简并元件。但是本设计并没有采用结构,考虑到本设计的偏置电流很低,转换增益低,源简并技术将进一步降低转换增益,同时电感占用很大的芯片面积,不利于降低成本,故不可采用。根据Zigbee 协议,WSN 接受信号范围为-85 -20dBm,为了达到系统的线性度的要求,可以在低噪放级采用可调结构,这样使输入混频器的最大信号为-20dBm,降低了对混频器线性度的要求,有助于降低整个系统的功耗,但增加了LNA 的设计难度。 混频器的负载通常有三种形式:电阻作负载、晶体管作负载和LC 并联谐振电路作负载。晶体管作负载会引入非线性,而LC 并联谐振电路作负载虽具有很多的优势,但电感占用的芯片面积很大,不宜采用。电阻作负载不会引入非线性,同时具有很宽的带宽,但电阻上会引入直流压降,为了不使开关对和驱动级中的晶体管离开饱和区,电阻的取值不能太大,考虑到转换增益,电阻的取值将需要特别注意。而且这种负载不具有滤波的特性,因此不能衰减混频过程中产生的毛刺以及LO-IF、RF-IF 馈通成分。所以,本设计采用一个电容与电阻并联组成一个低通滤波网络来滤除高频成分。 综上所述,本设计所采用的结构如图4.1 所示。

实验三 二极管双平衡混频器

实验十二变容二极管调频实验 一、实验目的 1、掌握变容二极管调频电路的原理。 2、了解调频调制特性及测量方法。 3、观察寄生调幅现象,了解其产生及消除的方法。 二、实验内容 1、测试变容二极管的静态调制特性。 2、观察调频波波形。 3、观察调制信号振幅时对频偏的影响。 4、观察寄生调幅现象。 三、实验仪器 1、信号源模块1块 2、频率计模块1块 3、 3 号板1块 4、双踪示波器1台 5、万用表1块 6、频偏仪(选用)1台 四、实验原理及电路 1、变容二极管工作原理 调频即为载波的瞬时频率受调制信号的控制。其频率的变化量与调制信号成线性关系。常用变容二极管实现调频。 变容二极管调频电路如图12-1所示。从P3处加入调制信号,使变容二极管的瞬时反向偏置电压在静态反向偏置电压的基础上按调制信号的规律变化,从而使振荡频率也随调制电压的规律变化,此时从P2处输出为调频波(FM)。C15为变容二级管的高频通路,L2为音频信号提供低频通路,L2可阻止外部的高频信号进入振荡回路。本电路中使用的是飞利浦

公司的BB910型变容二极管,其电压-容值特性曲线见图12-4,从图中可以看出,在1到10V 的区间内,变容二极管的容值可由35P到8P左右的变化。电压和容值成反比,也就是TP6的电平越高,振荡频率越高。 图12-1 变容二极管调频 图12-4 BB910型变容二极管容值与电压特性曲线 图12-2示出了当变容二极管在低频简谐波调制信号作用情况下,电容和振荡频率的变化示意图。在(a)中,U0是加到二极管的直流电压,当u=U0时,电容值为C0。uΩ是调制电压,当uΩ为正半周时,变容二极管负极电位升高,即反向偏压增大;变容二极管的电容减小;当uΩ为负半周时,变容二极管负极电位降低,即反向偏压减小,变容二极管的电容增大。在图(b)中,对应于静止状态,变容二极管的电容为C0,此时振荡频率为f0。

双平衡二极管混频器的分析与设计【文献综述】

文献综述 电子信息工程 双平衡二极管混频器的分析与设计 混频器应用于移动通信和微波通信以及各种高精度的微波测量系统中的前端电路,是射频系统中的一个关键部分,其性能的好坏直接影响到整个系统的性能。本文打算采用ADS软件设计了一个双平衡二极管混频器。最后通过仿真得到了二极管双平衡混频器的三阶交调等参数。介绍了混频器的发展状况、混频二极管以及利用它们来实现混频的优缺点。给出了混频器相关的概念和指标,还有各种不同结构的混频器电路及其指标的差异。探讨了二极管环形混频电路的工作原理,通过分析和计算,得出最终输出电流的组合频率分量。按采用的非线性器件不同,常用的混频器有三极管混频器、二极管混频器和集成模拟乘法器构成的混频器,此外,还有采用变容二极管等非线性元器件构成的混频器。其中,二极管混频器主要应用于工作频率较高的无线电超外差式接收机(如米波段及微波接收机)或仪器中。其优点是电路结构简单,噪声低,工作频段宽,组合频率少。它的电路形式有单管式、平衡式及环形式(也称为双平衡式)等。 混频器已被广泛应用于移动通信,微波通信,以及各种高精密微波前端电路测试系统,射频系统是其性能的关键部分,直接影响到整个系统的性能。通信工程和无线电技术,被广泛用于调制系统中,输入基带信号,通过转换进入高频率的调制信号。在解调过程中,收到的信号调制高频频率也将受到相应的中频信号转换。特别是在超外差接收器,混频器被广泛使用,如AM广播接收器将有一个535KHz调幅信号,可用1000Hz的本振将其变频为465KHz的中频信号。在为了提高发射机的发射频率,多级发射器的稳定性。以较低的频率作为主振荡器晶体振荡器,产生一个非常稳定的高频主振信号,然后通过加,减,乘,除法运算转化成无线电频率,所以必须使用混频器电路,如转让发送和接收频道的电视转换,卫星通信上行,下行频率转换等,必须使用混频器。因此,混频器电路是电子技术和无线电专业应用必须掌握的关键电路。双平衡混

高频课程设计 二极管双平衡混频器

河北科技师范学院课程设计说明书课程名称:高频电子线路 设计题目:混频器工作原理 姓名:高金龙、郭强、姚明月 院系:机电工程学院 专业班级:电子0701、0702 学号:0414070107 0414070210 0414070227(姓名顺序排列)指导教师:杜殿会 日期:2009年12月8至12日

目录 1、设计任务与要求 (1) 2、方案与论证 (1) 3、原理 (1) 4、参数计算 (3) 5、总原理图与仿真结果 (6) 6、元件清单 (8) 7、结论与心得 (9) 8、参考文献 (9)

二极管双平衡混频器 1、设计任务与要求 变频(混频)是指将高频已调波经过频率变换,变为固定中频已调波,同时必须保持其调制规律不变。具有这种功能的电路称为混频电路或变频电路,亦称为混频器或变频器。 2、方案与论证 方案一:三极管混频器的电路组态 电路(c)和(d)都是共基级混频器,分为同级注入式和分级注入式。 电路(b),共发分级注入式 电路(a),共发同级注入式 方案二:二极管混频器 图1二极管双平衡混频器的电路图示见图。图中VS为输入信号电压,VL 为本机振荡电压。在负载RL上产生差频和合频,还夹杂有一些其它频率的无用产物,再接上一个滤波器(图中未画出) 二极管双平衡混频器的最大特点是工作频率极高,可达微波波段,由于二极管双平衡混频器工作于很高的频段。图中的变压器一般为传输线变压器。 3、原理 二极管双平衡混频器的最大特点是工作频率极高,可达微波波段,由于二极管双平衡混频器工作于很高的频段。图1中的变压器一般为传输线变压器。

二极管双平衡混频器的基本工作原理是利用二极管伏安特性的非线性。众所周知,二极管的伏安特性为指数律,用幂级数展开为 ])(1)(21[ )1(2?+?++=-=n T T T S S V v n V v V v I e I i T V v !! 当加到二极管两端的电压v 为输入信号VS 和本振电压VL 之和时,V2项产生差频与和频。其它项产生不需要的频率分量。由于上式中u 的阶次越高,系数越小。因此,对差频与和频构成干扰最严重的是v 的一次方项(因其系数比v2项大一倍)产生的输入信号频率分量和本振频率分量。 用两个二极管构成双平衡混频器和用单个二极管实现混频相比,前者能有效的抑制无用产物。双平衡混频器的输出仅包含(p ωL ±ωS )(p 为奇数)的组合频率分量,而抵消了ωL 、ωC 以及p 为偶数(p ωL ±ωS )众多组合频率分量。 下面我们直观的从物理方面简要说明双平衡混频器的工作原理及其对频率为ωL 及ωS 的抑制作用。 (a )

二极管环形混频实验

实验五混频原理和电路分析实验 一、实验目的 1、掌握二极管环形混频器的工作原理; 2、了解二极管环形混频器组合频率的测试方法。 3、观察三极管混频器输出信号的频谱。 二、实验仪器 1、示波器一台 2、数字万用表一块 3、调试工具一套 4、频谱分析仪一台 三、实验原理 1、混频器原理及相关知识 混频就是要对某信号进行频率变换,将其载频变换到某一固定的频率上,而保持原信号的调制规律不变。混频是一种频谱搬移电路,混频前后,信号的频谱结构并不发生变化,混频器的电路组成如图5-1所示。 o i 图5-1 混频器的组成及作用 混频原理:当两个不同频率的正弦电压,同时作用到一个非线性元件上时,就会在它的输出电流中,产生许多组合频率分量,选用适当的滤波器取出所需的频率分量,此时就完成了混频。 混频器的电路分为叠加型混频器,乘积型混频器两种类型。如图5-2所示。 v o (t) L (a )叠加型混频器实现模型(b) 乘积型混频器实现模型 图5-2 混频器电路

叠加型混频器的类型: (1) 晶体三极管混频器,它有一定的混频增益; (2) 场效应管混频器,其交调、互调干扰少; (3) 二极管平衡混频器和环形混频器,其动态范围大、组合频率干扰少。 混频器的主要质量指标: (1)变频增益 混频后的输出电压振幅和输入信号电压振幅之比,称为变频电压增益或变频放大系数。 (2)失真和干扰 失真包括频率失真和非线性失真。混频中有可能出现组合频率、交叉调制、互相调制等特有干扰。要求混频器件最好工作在其特性曲线的平方项区域,使之既能完成频率变换,又能防止失真,抑制干扰。 (3)噪声系数 即输入端高频信号噪声功率比和输出端信号噪声功率比之比。 (4)选择性 2、晶体三极管混频器 晶体管混频电路有多种形式,但无论本振电压注入方式如何,都是利用晶体管的发射结非线性实现混频。如图5-3所示: i c 图5-3 晶体三极管混频器 在晶体管混频器的分析中,输入信号电压V s 很小,经常将晶体管视为一个跨导随本振信号变化的线性参变元件。如图5-4所示:

5_8GHzCMOS混频器设计

基金项目:国家自然科学基金重点资助项目(90307016);国家预研项目(E0617010)518GHz CMOS 混频器设计 任怀龙1,默立冬1,吴思汉2,陈兴1,冯威1,廖斌1,吴洪江1 (11中国电子科技集团公司第十三研究所,石家庄050051;21国防科技信息研究中心,北京100028)摘要:介绍了C MOS 混频器主要技术指标的设计思路和技术。采用0118L m C MOS 工艺,使用Agilent 公司的ADS 软件设计出一种518GHz C MOS 混频器电路,结果表明,工作电压118V 时,RF 频率518GHz,本振频率5178GHz,中频频率20MHz 下,转换增益713dB 、输入1dB 压缩点-813dB m,噪声系数817,工作电流小于5mA,该电路已交付流片。 关键词:C MOS 混频器;转换增益;线性度 中图分类号:TN405 文献标识码:A 文章编号:1003-353X (2008)03-0257-04 Design of 518GHz CMOS Mixer Ren Huailong 1 ,Mo Lidong 1 ,Wu Sihan 2 ,Chen Xing 1 ,Feng Wei 1 ,Liao Bin 1 , Wu Hongjiang 1 (11The 13th Resea r ch I nstitute ,CETC,Shi jia z huang 050051,China;21The Research Center o f De f ense T echnology In f ormation,Bei j ing 100028,China) Abstract:The design techniques of improved CMOS mixers were illustrated.Based on 0118L m CMOS process,a 518GHz C MOS mixer was designed with Agilent ADS.The simulated results show that this mixer achieves a conversion gain of 713dB,input 1dB gain compress of -813dBm,and a noise figure of 817dB,while consuming less than 5mA from a single 118V supply,the circuit is in manufacturing. Key words:C MOS mixer;c onversion gain;linearity EEAC C:2570A 0 引言 近年来,无线通信系统,如无绳电话、手机、PDA 、W LAN 、导航仪等,已经成为人们日常生活中不可或缺的一部分。多种无线通信系统的蓬勃发展,使得对重量轻、体积小、功耗低、成本低的无线产品需求迅速增加,高集成度的射频收发机越来越受到关注。随着深亚微米C MOS 工艺的不断进步和成熟,其沟道长度不断减小,截止频率f T 不断增加,再加上C MOS 工艺与其他工艺相比具有价格低、集成度高、功耗小等特点,用C MOS 工艺设计 射频集成电路已经成为世界范围内的研究热点[1] ,人们不断提出基于C MOS 工艺的射频电路结构及设计技术,并逐渐推出成熟的C MOS 射频产品,取得了非常大的成绩。 混频器作为射频接收机中的关键部件,负责实现射频接收机的频率转换,其性能直接影响着整个接收机的性能,因此,混频器C MOS 设计技术的研究也是非常重要的课题之一。混频器的设计通常需要考虑转换增益、线性度、噪声系数、端口之间的隔离度以及功耗等性能指标,如低噪声的混频器可以减少对LNA 增益的要求;高转换增益的混频器可以减小中频噪声的影响,混频器的线性度决定了射频收发机的动态范围,其功耗也是接收机整体功耗主要组成部分。因此,研究设计高性能的混频器具有非常重要的应用价值。本文针对无限局域网的射频前端接收电路,设计了一种518GHz C MOS 混频器。 1 电路设计 111 混频器结构选择 根据电路设计及实现工艺的要求,可以应用的 集成电路设计与开发 Design and Development of IC

混频器设计及仿真

, cos ,cos t V v t V v LO LO LO RF RF RF ωω==D L RF R R v i i +=-2232) (22141πω-+= -t K R R v i i LO D L RF 实验名称:混频器设计及仿真 一、实验目的 1、理解和掌握二极管双平衡混频器电路组成和工作原理。 2、理解和掌握二极管双平衡混频器的各种性能指标。 3、进一步熟悉电路分析软件。 二、实验原理 混频器作为一种三端口非线性器件,它可以将两种不同频率的输入信号变为一系列的输出频谱,输出频率分别为两个输入频率的和频、差频及其谐波。两个输入端分别为射频端RF 和本振LO 。输出端称为中频端IF 。基本原理图如图: 本实验采用二极管环形混频器如图: 由于RF LO V V >>,二极管主要受到大信号LO V 控制,四个二极管均按开关状态工 作, 将二极管用开关等效,开关函数表示为:)(1t K LO ω,因此在LO v 正半周期间开关闭合,上 下 回 路 方 程 为 : 0)(,0)(233322=---+-=---+L D LO RF L D LO RF R i i R i v v R i i R i v v , 求得: , 与之相应的开关函数)(1t K LO ω,因此一般形式为: ,与之相应的开关函数)(1t K LO ω,因此一般形式为: ,同理分析得在LO v 负半周期间有: 专 业:信息对抗(12083511) 学生姓名:刘美琪( 12083103) 实验名称:混频器设计及仿真 )(22132t K R R v i i L D L RF ω+=-) (22132t K R R v i i L D L RF ω+= -

混频器的作用和混频器原理分别是什么

混频器的作用和混频器原理分别是什么? 当然也可以直接放大后就进行检波,这就是所谓的直接放大式接收机,这样的接收机,不适合作成多波段,灵敏度也不能做的很高. 经过混频变成固定的中频后,可以对中频进行较高增益的放大,因为中频是固定的,所以中频放大器是稳定的,在检波前可以得到足够的放大,使接收机的灵敏度得 到了很大的提高. 混频器原理 工作频率 混频器是多频工作器件,除指明射频信号工作频率外,还应注意本振和中频频率应用范围。 噪声系数 混频器的噪声定义为:NF=Pno/Pso Pno是当输入端口噪声温度在所有频率上都是标准温度即T0=290K时,传输到输出端口的总噪声资用功率。Pno 主要包括信号源热噪声,内部损耗电阻热噪声,混频器件电流散弹噪声及本振相位噪声。Pso为仅有有用信号输入在输出端产生的噪声资用功率。 变频损耗 混频器的变频损耗定义为混频器射频输入端口的微波信号功率与中频输出端信号功率之比。主要由电路失配损耗,二极管的固有结损耗及非线性电导净变 频损耗等引起。 1dB压缩点 在正常工作情况下,射频输入电平远低于本振电平,此时中频输出将随射频输入线性变化,当射频电平增加到一定程度时,中频输出随射频输入增加的速度减慢,混频器出现饱和。当中频输出偏离线性1dB时的射频输入功率为混频器的1dB压缩点。对于结构相同的混频器,1dB压缩点取决于本振功率大小和 二极管特性,一般比本振功率低6dB。 动态范围 动态范围是指混频器正常工作时的微波输入功率范围。其下限因混频器的应用环境不同而异,其上限受射频输入功率饱和所限,通常对应混频器的1dB压 缩点。 双音三阶交调 如果有两个频率相近的微波信号fs1和fs2和本振fLO一起输入到混频器,由于混频器的非线性作用,将产生交调,其中三阶交调可能出现在输出中频附近的地方,落入中频通带以内,造成干扰,通常用三阶交调抑制比来描述,即有用信号功率与三阶交调信号功率比值,常表示为dBc。因中频功率随输入功率 成正比,当微波输入信号减小1dB时,三阶交调信号抑制比增加2dB。 隔离度 混频器隔离度是指各频率端口间的相互隔离,包括本振与射频,本振与中频,及射频与中频之间的隔离。隔离度定义为本振或射频信号泄漏到其它端口的 功率与输入功率之比,单位dB。 本振功率

混频器

混频器 一.混频器的工作原理 混频器在发射机和接收机系统中主要负责频率的搬移功能,在频域上起加法器或减法器的作用,频域上的加减法通过时域上的乘积获得。混频器通常可以表示为如图1所示的三端口系统,应至少包含三个信号:两个输入信号和一个输出信号。根据图1可以表示混频器最常见的数学模型: A1cosω1t A2cosω2t=A1A2 [cosω1?ω2t+cos?(ω1+ω2)t] 式中A1表征输入信号的振幅,A2表征本振信号的振幅。 图1.混频器原理框图 对于混频器而言,混频器的输入信号分别定义为射频信号RF(Radio Frequency),频率记为ωRF,和本振信号LO(LocalOscillator),频率记为ωLO。混频器的输出信号定义为中频信号IF(Intermediate Frequency),频率记为ωIF。根据混频器的应用领域不同,中频输出选择的频率分量也不同。当ωIF<ωRF时,混频器称为下变频器,输出低中频信号,多用于接收机系统;当ωIF>ωRF时,混频器称为上变频器,输出高中频信号,多用于发射机系统。 常用的混频器实现方法主要有三种:第一种是用现有的非线性器件或电路,比如利用二极管电压电流的指数关系实现的二极管微波混频器;第二种是采用开关调制技术实现信号在频域上的加减运算,进而实现频率变换的功能,比如基于吉尔伯特单元的混频器;第三种是利用已有的电子元件实现混频电路的乘法模块。 二.混频器性能指标 (一)转换增益 转换增益(或者转换损耗),其定义是需要的IF输出与RF输入的比值。 混频器的电压转换增益可表示为: G V=20log V IF RF 混频器的功率转换增益可表示为: G P=10log P IF P RF =10log( V IF V RF )2 R S R L 其中V IF和V RF分别为中频输出电压和射频输入电压的有效值.R L是负载电阻,R S是源电阻。当输入电阻和负载电阻相等时,两种增益的dB形式相等。 (二)噪声系数 一般而言,在分析系统噪声性能时,系统内的各模块视为黑盒子.即无需知道模块内部具体电路的噪声如何,而是用一个统一的系统参数对各模块噪声进行描述。因此在分析混频器噪声性能时,将其看成是一个线性二端口网络。 噪声系数被用来衡量信号经过混频器后信噪比的恶化程度,即混频器本身引入的噪声的大小。其定义为输入(RF)端信号的信噪比(SNR)除以输出(IF)端信号的信噪比。即:

实验三 二极管的双平衡混频器

实验三二极管的双平衡混频器 一、实验目的 1、掌握二极管的双平衡混频器频率变换的物理过程。 2、掌握晶体管混频器频率变换的物理过程和本振电压V0和工作电流I e对中频转出电 压大小的影响。 3、掌握集成模拟乘法器实现的平衡混频器频率变换的物理过程。 4、比较上述三种混频器对输入信号幅度与本振电压幅度的要求。 二、实验内容 1、研究二极管双平衡混频器频率变换过程和此种混频器的优缺点。 2、研究这种混频器输出频谱与本振电压大小的关系。 三、实验仪器 1、信号源模块1块 2、频率计模块1块 3、7 号板1块 4、双踪示波器1台 四、实验原理与电路 1、二极管双平衡混频原理

图3-1 二极管双平衡混频器 二极管双平衡混频器的电路图示见图3-1。图中V S 为输入信号电压,V L 为本机振荡电压。在负载R L 上产生差频和合频,还夹杂有一些其它频率的无用产物,再接上一个滤波器(图中未画出) 二极管双平衡混频器的最大特点是工作频率极高,可达微波波段,由于二极管双平衡混频器工作于很高的频段。图3-1中的变压器一般为传输线变压器。 二极管双平衡混频器的基本工作原理是利用二极管伏安特性的非线性。众所周知,二极管的伏安特性为指数律,用幂级数展开为 ?+?++=-=n T T T S S V v n V v V v I e I i T V v )(1)(21[)1(2!! 当加到二极管两端的电压v 为输入信号V S 和本振电压V L 之和时,V 2项产生差频与和频。其它项产生不需要的频率分量。由于上式中u 的阶次越高,系数越小。因此,对差频与和频构成干扰最严重的是v 的一次方项(因其系数比v 2项大一倍)产生的输入信号频率分量和本振频率分量。 用两个二极管构成双平衡混频器和用单个二极管实现混频相比,前者能有效的抑制无用产物。双平衡混频器的输出仅包含(p ωL ±ωS )(p 为奇数)的组合频率分量,而抵消了ωL 、ωC 以及p 为偶数(p ωL ±ωS )众多组合频率分量。 下面我们直观的从物理方面简要说明双平衡混频器的工作原理及其对频率为ωL 及ωS 的抑制作用。

相关文档
最新文档