初中数学二次函数难题!!!

合集下载

(完整版)初三数学二次函数较难题型

(完整版)初三数学二次函数较难题型

一、二次函数解析式及定义型问题( 顶点式中考要点 ). 把二次函数的图象向左平移 2 个单位, 再向上平移1 个单位, 所得到的图象对应的二次函数关系式是 y (x 则 b 、 c 的值为 10. 抛物线 y x 2ax 4的顶点在 X 轴上,则 a 值为 11. 已知二次函数y 2(x 3)2,当 X 取 x 1和 x 2时函数值相等,当 X 取 x 1+x 2时函数值为 12. 若二次函数 y ax 2k ,当 X 取 X1 和 X2( x 1 x 2)时函数值相等 , 则当 X 取 X1+X2时,函数值为 13. 若函数 y a (x 3)2过(2. 9)点,则当 X =4时函数值 Y =14. 若函数 y (x h )2 k 的顶点在第二象限则, h 0, k 0 15. 已知二次函数当 x=2 时 Y 有最大值是1 . 且过(3 . 0)点求解析式?17. 已知抛物线在 X 轴上截得的线段长为6二、一般式交点式中考要点18. 如果抛物线 y=x 2-6x+c-2 的顶点到 x 轴的距离是 3, 那么 c 的值等于( ) (A ) 8 (B ) 14 (C ) 8 或 14( D )-8 或 -14 19. 二次函数 y=x 2-(12-k )x+12, 当 x>1 时, y 随着 x 的增大而增大, 当 x<1 时, y 随着 x 的增大而减小, 则 k 的值应取 ( (A ) 12 ( B )11 ( C )10(D ) 9 20. 若 b 0 ,则二次函数 y x 2bx 1的图象的顶点在 ( A )( A )第一象限( B )第二象限 ( C )第三象限( D )第四象限 21. 不论 x 为何值 , 函数y=ax 2+bx+c (a ≠ 0) 的值恒大于 0 的条件是 ( )A.a>0, △ >0B.a>0, △ <01)2则原. 如果函数 y (k3)x k2. ( 08 绍兴)已知点3k 2y 1 ) ,2, 1 ),形状开品与抛物线 y= - 2x 2相同,这个函数解析式为kx 1 是二次函数 , 则 k 的值是 _ .( 兰州 A .若 y 1 B .若 C .若 x 10 y 2,则 x 1 x 2,则x 2y 2 D .若 x 1 10) 抛物线 x 1 x 2 x 2 ,则y 1 y 2 y 1 b y 2 c 图像向右平移2 个单位再向下平移3 个单位, 所得图像的解析式为 y 2x 3,A . b=2 C . b=-2 . 抛物线 c=2 , c=-1 (m 1)x 2ax B. b=2 D. b= -3 c=0,(m 23m 4)x 5以 Y 轴为对称轴则。

最新初中数学二次函数难题汇编含答案解析

最新初中数学二次函数难题汇编含答案解析

最新初中数学二次函数难题汇编含答案解析一、选择题1.已知抛物线y=x2+2x﹣m﹣1与x轴没有交点,则函数y=的大致图象是()A.B.C.D.【答案】B【解析】【分析】由题意可求m<﹣2,即可求解.【详解】∵抛物线y=x2+2x﹣m﹣1与x轴没有交点,∴△=4﹣4(﹣m﹣1)<0∴m<﹣2∴函数y=的图象在第二、第四象限,故选B.【点睛】本题考查了反比例函数的图象,二次函数性质,求m的取值范围是本题的关键.2.在抛物线y=a(x﹣m﹣1)2+c(a≠0)和直线y=﹣12x的图象上有三点(x1,m)、(x2,m)、(x3,m),则x1+x2+x3的结果是()A.3122m-+B.0 C.1 D.2【答案】D【解析】【分析】根据二次函数的对称性和一次函数图象上点的坐标特征即可求得结果.【详解】解:如图,在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点A (x 1,m )、B (x 2,m )、C (x 3,m ), ∵y =a (x ﹣m ﹣1)2+c (a≠0) ∴抛物线的对称轴为直线x =m+1,∴232x x =m+1, ∴x 2+x 3=2m+2,∵A (x 1,m )在直线y =﹣12x 上, ∴m =﹣12x 1, ∴x 1=﹣2m ,∴x 1+x 2+x 3=﹣2m+2m+2=2, 故选:D .【点睛】本题考查了二次函数的对称性和一次函数图象上点的坐标特征,解题的关键是利用数形结合思想画出函数图形.3.如图,正方形ABCD 中,AB =4cm ,点E 、F 同时从C 点出发,以1cm /s 的速度分别沿CB ﹣BA 、CD ﹣DA 运动,到点A 时停止运动.设运动时间为t (s ),△AEF 的面积为S (cm 2),则S (cm 2)与t (s )的函数关系可用图象表示为( )A.B.C.D.【答案】D【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF可得S=﹣t2+4t,配成顶点式得S=﹣(t﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t)2=(t﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断.解:当0≤t≤4时,S=S正方形ABCD﹣S△ADF﹣S△ABE﹣S△CEF=4•4﹣•4•(4﹣t)﹣•4•(4﹣t)﹣•t•t=﹣t2+4t=﹣(t﹣4)2+8;当4<t≤8时,S=•(8﹣t)2=(t﹣8)2.故选D.考点:动点问题的函数图象.4.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④9a﹣3b+c<0;⑤c﹣a>1.其中所有正确结论的序号是()A.①②B.①③④C.①②③④D.①②③④⑤【答案】D【分析】根据抛物线的开口方向可得出a 的符号,再由抛物线与y 轴的交点可得出c 的值,然后进一步根据对称轴以及抛物线得出当x 1=、 x 1=-、x 3=-时的情况进一步综合判断即可. 【详解】由图象可知,a <0,c=1,对称轴:x=b12a-=-, ∴b=2a ,①由图可知:当x=1时,y <0,∴a+b+c <0,正确; ②由图可知:当x=−1时,y >1,∴a −b+c >1,正确; ③abc=2a 2>0,正确;④由图可知:当x=−3时,y <0,∴9a −3b+c <0,正确; ⑤c−a=1−a >1,正确; ∴①②③④⑤正确. 故选:D . 【点睛】本题主要考查了抛物线的函数图像性质的综合运用,熟练掌握相关概念是解题关键.5.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D 【解析】 【分析】根据抛物线开口方向得到a 0>,根据对称轴02bx a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a b c ++>,将23a b =-代入可得40c b ->.①根据抛物线开口方向得到0a >,根据对称轴02bx a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确. ②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a b c ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确. 故答案选D. 【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

初中数学二次函数难题汇编附答案解析

初中数学二次函数难题汇编附答案解析

初中数学二次函数难题汇编附答案解析一、选择题1.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )A .1B .2C .3D .4【答案】C【解析】【分析】【详解】 解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误;根据函数对称轴可得:-2b a=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.2.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线的开口向下,则a <0;抛物线的对称轴为x=1,则-2b a=1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误)由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0∵1x ≠2x∴a(x 1+x 2)+b=0∴x 1+x 2=2b a a a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.3.如图,二次函数()200y ax bx c a =++=≠的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线2x =,且OA OC =,则下列结论:①0abc >;②930a b c ++<;③1c >-;④关于x 的方程()200ax bx c a ++=≠有一个根为1a-,其中正确的结论个数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 由二次图像开口方向、对称轴与y 轴的交点可判断出a 、b 、c 的符号,从而可判断①;由图像可知当x =3时,y <0,可判断②;由OA =OC ,且OA <1,可判断③;把﹣1a 代入方程整理得ac 2-bc +c =0,结合③可判断④;从而得出答案.【详解】由图像开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x =2,∴﹣2b a>0,∴b >0,∴abc >0,故①正确;由图像可知当x =3时,y >0,∴9a +3b +c >0,故②错误;由图像可知OA <1,∵OA =OC ,∴OC <1,即﹣c <1,故③正确;假设方程的一个根为x =﹣1a ,把﹣1a 代入方程,整理得ac 2-bc +c =0, 即方程有一个根为x =﹣c ,由②知﹣c =OA ,而当x =OA 是方程的根,∴x =﹣c 是方程的根,即假设成立,故④正确.故选C.【点睛】本题主要考查二次函数的图像与性质以及二次函数与一元二次方程的联系,熟练掌握二次函数的相关知识是解答此题的关键.4.抛物线y =-x 2+bx +3的对称轴为直线x =-1.若关于x 的一元二次方程-x 2+bx +3﹣t =0(t 为实数)在﹣2<x <3的范围内有实数根,则t 的取值范围是( )A .-12<t ≤3B .-12<t <4C .-12<t ≤4D .-12<t <3【答案】C【解析】【分析】根据给出的对称轴求出函数解析式为y =-x 2−2x +3,将一元二次方程-x 2+bx +3−t =0的实数根看做是y =-x 2−2x +3与函数y =t 的交点,再由﹣2<x <3确定y 的取值范围即可求解.【详解】解:∵y =-x 2+bx +3的对称轴为直线x =-1,∴b =−2,∴y =-x 2−2x +3,∴一元二次方程-x 2+bx +3−t =0的实数根可以看做是y =-x 2−2x +3与函数y =t 的交点,∵当x =−1时,y =4;当x =3时,y =-12,∴函数y =-x 2−2x +3在﹣2<x <3的范围内-12<y≤4,∴-12<t≤4,故选:C .【点睛】本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键.5.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,m ),且与x 铀的一个交点在点(3,0)和(4,0)之间,则下列结论:①abc >0;②a ﹣b +c >0;③b 2=4a (c ﹣m );④一元二次方程ax 2+bx +c =m +1有两个不相等的实数根,其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据抛物线的开口方向和与坐标轴的交点及对称轴可判别a ,b ,c 的正负;根据抛物线的对称轴位置可判别在x 轴上另一个交点;根据抛物线与直线y=m 的交点可判定方程的解.【详解】∵函数的图象开口向上,与y 轴交于负半轴∴a>0,c<0∵抛物线的对称轴为直线x=-2b a=1 ∴b<0∴abc >0;①正确;∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y<0,即a-b+c<0,所以②不正确;∵抛物线的顶点坐标为(1,m ),∴244ac b a- =m , ∴b 2=4ac-4am=4a (c-m ),所以③正确;∵抛物线与直线y=m 有一个公共点,∴抛物线与直线y=m+1有2个公共点,∴一元二次方程ax 2+bx+c=m+1有两个不相等的实数根,所以④正确.故选:C .【点睛】考核知识点:抛物线与一元二次方程.理解二次函数性质,弄清抛物线与一元二次方程的关系是关键.6.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0),对称轴为直线x =﹣1,当y >0时,x 的取值范围是( )A .﹣1<x <1B .﹣3<x <﹣1C .x <1D .﹣3<x <1【答案】D【解析】【分析】 根据已知条件求出抛物线与x 轴的另一个交点坐标,即可得到答案.【详解】解:∵抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),对称轴为直线x =﹣1,∴抛物线与x 轴的另一交点坐标是(﹣3,0),∴当y >0时,x 的取值范围是﹣3<x <1.所以答案为:D .【点睛】此题考查抛物线的性质,利用对称轴及图象与x 轴的一个交点即可求出抛物线与x 轴的另一个交点坐标.7.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC --运动到点C ,点Q 以1cm/s 的速度沿BC 运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .【答案】B【解析】【分析】分三种情况求出y 与t 的函数关系式. 当0≤t≤2.5时:P 点由B 到A ;当2.5≤t≤4时,即P 点在AD 上时;当4≤t≤6时,即P 点从D 到C 时.即可得出正确选项.【详解】解:作AE ⊥BC 于E ,根据已知可得,AB 2=42+(6-3)2,解得,AB=5cm .下面分三种情况讨论:当0≤t≤2.5时:P 点由B 到A ,21442255y t t t ==gg g ,y 是t 的二次函数.最大面积= 5 cm 2; 当2.5≤t≤4时,即P 点在AD 上时,1422y t t =⨯=, y 是t 的一次函数且最大值=21448cm 2⨯⨯=; 当4≤t≤6时,即P 点从D 到C 时,()21 1226,2y t t t t =⋅-=-+y 是t 的二次函数故符合y 与t 的函数图象是B .故选:B .【点睛】此题考查了函数在几何图形中的运用.解答本题的关键在于分类讨论求出函数解析式,然后进行判断.8.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c <0;②a ﹣b +c >1;③abc >0;④9a ﹣3b +c <0;⑤c ﹣a >1.其中所有正确结论的序号是( )A .①②B .①③④C .①②③④D .①②③④⑤【答案】D【解析】【分析】 根据抛物线的开口方向可得出a 的符号,再由抛物线与y 轴的交点可得出c 的值,然后进一步根据对称轴以及抛物线得出当x 1=、 x 1=-、x 3=-时的情况进一步综合判断即可.【详解】由图象可知,a <0,c=1,对称轴:x=b12a-=-, ∴b=2a , ①由图可知:当x=1时,y <0,∴a+b+c <0,正确;②由图可知:当x=−1时,y >1,∴a −b+c >1,正确;③abc=2a 2>0,正确;④由图可知:当x=−3时,y <0,∴9a −3b+c <0,正确;⑤c−a=1−a >1,正确;∴①②③④⑤正确.故选:D .【点睛】本题主要考查了抛物线的函数图像性质的综合运用,熟练掌握相关概念是解题关键.9.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A.4个B.3个C.2个D.1个【答案】C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.10.如图,矩形ABCD中,AB=8,AD=4,E为边AD上一个动点,连接BE,取BE的中点G,点G绕点E逆时针旋转90°得到点F,连接CF,则△CEF面积的最小值是()A.16 B.15 C.12 D.11【答案】B【解析】【分析】过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【详解】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA , ∴ ,HF HE EF AE AB BE == G Q 为BE 的中点,1,2FE GE BE ∴== ∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴== CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .【点睛】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.11.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意.【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,∴选项B 符合题意,选项A 不合题意.故选B .【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.12.二次函数y=ax 2+bx+c (a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c >﹣3b ;(3)7a ﹣3b+2c >0;(4)若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B【解析】 根据题意和函数的图像,可知抛物线的对称轴为直线x=-2b a=2,即b=-4a ,变形为4a+b=0,所以(1)正确; 由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(2)正确;因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+2c=7a+12a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+2c <0,故(3)不正确;根据图像可知当x <2时,y 随x 增大而增大,当x >2时,y 随x 增大而减小,可知若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1=y 3<y 2,故(4)不正确;根据函数的对称性可知函数与x 轴的另一交点坐标为(5,0),所以若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<x 2,故(5)正确.正确的共有3个.故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.13.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y =x 2+(2a +1)x +a 2﹣a 的顶点的横坐标为:x =﹣212a +=﹣a ﹣12, 纵坐标为:y =()()224214a a a --+=﹣2a ﹣14, ∴抛物线的顶点横坐标和纵坐标的关系式为:y =2x +34, ∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D .【点睛】 本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.14.已知二次函数y =ax 2+bx +c 的图象如图所示,那么下列结论中正确的是( )A .ac >0B .b >0C .a +c <0D .a +b +c =0【答案】D【解析】【分析】 根据二次函数的图象与性质即可求出答案.【详解】A.由图象可知:a <0,c >0,∴ac <0,故A 错误;B.由对称轴可知:x =2b a -<0, ∴b <0,故B 错误;C.由对称轴可知:x =2b a -=﹣1, ∴b =2a ,∵x =1时,y =0,∴a +b +c =0,∴c =﹣3a ,∴a +c =a ﹣3a =﹣2a >0,故C 错误;故选D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.15.抛物线2y ax bx c =++(,,a b c 是常数),0a >,顶点坐标为1(,)2m .给出下列结论:①若点1(,)n y 与点23(2)2n y -,在该抛物线上,当12n <时,则12y y <;②关于x 的一元二次方程210ax bx c m -+-+=无实数解,那么( )A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误【答案】A【解析】【分析】①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的解析式,求得m ,再把m 代入一元二次方程ax 2-bx+c-m+1=0的根的判别式中计算,判断其正负便可判断正误.【详解】解:①∵顶点坐标为1,2m ⎛⎫ ⎪⎝⎭,12n < ∴点(n ,y 1)关于抛物线的对称轴x=12的对称点为(1-n ,y 1), ∴点(1-n ,y 1)与2322n y ⎛⎫- ⎪⎝⎭,在该抛物线的对称轴的右侧图像上, 31(1)2022n n n ⎛⎫---=-< ⎪⎝⎭Q 3122n n ∴-<- ∵a >0,∴当x >12时,y 随x 的增大而增大, ∴y 1<y 2,故此小题结论正确; ②把1,2m ⎛⎫ ⎪⎝⎭代入y=ax 2+bx+c 中,得1142m a b c =++, ∴一元二次方程ax 2-bx+c-m+1=0中, △=b 2-4ac+4am-4a 2211444()4042b ac a a b c a a b a ⎛⎫=-+++-=+-< ⎪⎝⎭ ∴一元二次方程ax 2-bx+c-m+1=0无实数解,故此小题正确;故选A .【点睛】本题主要考查了二次函数图象与二次函数的系数的关系,第①小题,关键是通过抛物线的对称性把两点坐标变换到对称轴的一边来,再通过二次函数的增减性进行比较,第②小题关键是判断一元二次方程根的判别式的正负.16.将抛物线243y x x =-+平移,使它平移后图象的顶点为()2,4-,则需将该抛物线( )A .先向右平移4个单位,再向上平移5个单位B .先向右平移4个单位,再向下平移5个单位C .先向左平移4个单位,再向上平移5个单位D .先向左平移4个单位,再向下平移5个单位【答案】C【解析】【分析】先把抛物线243y x x =-+化为顶点式,再根据函数图象平移的法则进行解答即可. 【详解】∵抛物线243y x x =-+可化为()221y x =--∴其顶点坐标为:(2,−1),∴若使其平移后的顶点为(−2,4)则先向左平移4个单位,再向上平移5个单位. 故选C.【点睛】本题考查二次函数图像,熟练掌握平移是性质是解题关键.17.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)【答案】C【解析】【分析】【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C .【点睛】本题考查二次函数的性质.18.在同一直角坐标系中,反比例函数图像与二次函数图像的交点的个数至少有( ) A .0B .1C .2D .3【答案】B【解析】【分析】根据二次函数和反比例函数的图象位置,画出图象,直接判断交点个数.【详解】若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第一,三象限,故两个函数的交点只有一个,在第三象限.同理,若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第二,四象限,故两个函数的交点只有一个,在第四象限.故答案为:B.【点睛】本题考查了二次函数和反比例函数的图象问题,掌握二次函数和反比例函数的图象性质是解题的关键.19.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于(-1,0),(3,0)两点,则下列说法:①abc<0;②a-b+c=0;③2a+b=0;④2a+c>0;⑤若A(x1,y1),B(x2,y2),C (x3,y3)为抛物线上三点,且-1<x1<x2<1,x3>3,则y2<y1<y3,其中正确的结论是()A.①⑤B.②④C.②③④D.②③⑤【答案】D【解析】【分析】①abc<0,由图象知c<0,a、b异号,所以,①错误;②a-b+c=0,当x=-1时,y=a-b+c=0,正确;③2a+b=0,函数对称轴x=-2b a=1,故正确;④2a+c >0,由②、③知:3a+c=0,而-a <0,∴2a+c <0,故错误;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,把A 、B 、C 坐标大致在图上标出,可知正确.【详解】解:①abc <0,由图象知c <0,a 、b 异号,所以,①错误;②a -b+c=0,当x=-1时,y=a-b+c=0,正确;③2a+b=0,函数对称轴x=-2b a=1,故正确; ④2a+c >0,由②、③知:3a+c=0,而-a <0,∴2a+c <0,故错误;⑤若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)为抛物线上三点,且-1<x 1<x 2<1,x 3>3,则y 2<y 1<y 3,把A 、B 、C 坐标大致在图上标出,可知正确;故选D .【点睛】考查图象与二次函数系数之间的关系,要会求对称轴、x=±1等特殊点y 的值.20.已知二次函数y =a (x ﹣h )2+k 的图象如图所示,直线y =ax +hk 的图象经第几象限( )A .一、二、三B .一、二、四C .一、三、四D .二、三、四【答案】D【解析】【分析】 根据二次函数的图象和性质可得a <0,h <0,k >0,以此判断一次函数的图象所经过的象限即可.【详解】解:由函数图象可知,y =a (x ﹣h )2+k 中的a <0,h <0,k >0,∴直线y =ax +hk 中的a <0,hk <0,∴直线y =ax +hk 经过第二、三、四象限,故选:D .【点睛】本题考查了一次函数的图象的问题,掌握二次函数、一次函数的图象和性质是解题的关键.。

初中数学二次函数难题汇编含答案解析

初中数学二次函数难题汇编含答案解析

初中数学二次函数难题汇编含答案解析一、选择题1.某二次函数图象的顶点为()2,1-,与x 轴交于P 、Q 两点,且6PQ =.若此函数图象通过()1,a 、()3,b 、()1,c -、()3,d -四点,则a 、b 、c 、d 之值何者为正?( ) A .aB .bC .cD .d【答案】D【解析】【分析】根据题意可以得到该函数的对称轴,开口方向和与x 轴的交点坐标,从而可以判断a 、b 、c 、d 的正负,本题得以解决.【详解】∵二次函数图象的顶点坐标为(2,-1),此函数图象与x 轴相交于P 、Q 两点,且PQ=6, ∴该函数图象开口向上,对称轴为直线x=2,∴图形与x 轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0),∵此函数图象通过(1,a )、(3,b )、(-1,c )、(-3,d )四点,∴a <0,b <0,c=0,d >0,故选:D .【点睛】此题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.2.抛物线y =-x 2+bx +3的对称轴为直线x =-1.若关于x 的一元二次方程-x 2+bx +3﹣t =0(t 为实数)在﹣2<x <3的范围内有实数根,则t 的取值范围是( )A .-12<t ≤3B .-12<t <4C .-12<t ≤4D .-12<t <3【答案】C【解析】【分析】根据给出的对称轴求出函数解析式为y =-x 2−2x +3,将一元二次方程-x 2+bx +3−t =0的实数根看做是y =-x 2−2x +3与函数y =t 的交点,再由﹣2<x <3确定y 的取值范围即可求解.【详解】解:∵y =-x 2+bx +3的对称轴为直线x =-1,∴b =−2,∴y =-x 2−2x +3,∴一元二次方程-x 2+bx +3−t =0的实数根可以看做是y =-x 2−2x +3与函数y =t 的交点,∵当x =−1时,y =4;当x =3时,y =-12,∴函数y =-x 2−2x +3在﹣2<x <3的范围内-12<y≤4,∴-12<t≤4,故选:C .【点睛】本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键.3.要将抛物线2y x =平移后得到抛物线223y x x =++,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位 C .向右平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向下平移2个单位【答案】A【解析】【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法.【详解】y=x 2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x 2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x 2向左平移1个单位长度,再向上平移2个单位长度. 故选:A .【点睛】此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.4.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC --运动到点C ,点Q 以1cm/s 的速度沿BC 运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .【答案】B【解析】【分析】分三种情况求出y 与t 的函数关系式. 当0≤t≤2.5时:P 点由B 到A ;当2.5≤t≤4时,即P 点在AD 上时;当4≤t≤6时,即P 点从D 到C 时.即可得出正确选项.【详解】解:作AE ⊥BC 于E ,根据已知可得,AB 2=42+(6-3)2,解得,AB=5cm .下面分三种情况讨论:当0≤t≤2.5时:P 点由B 到A ,21442255y t t t ==gg g ,y 是t 的二次函数.最大面积= 5 cm 2; 当2.5≤t≤4时,即P 点在AD 上时,1422y t t =⨯=, y 是t 的一次函数且最大值=21448cm 2⨯⨯=; 当4≤t≤6时,即P 点从D 到C 时,()211226,2y t t t t =⋅-=-+y 是t 的二次函数 故符合y 与t 的函数图象是B .故选:B .【点睛】此题考查了函数在几何图形中的运用.解答本题的关键在于分类讨论求出函数解析式,然后进行判断.5.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A.B.C.D.【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a,b,c的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax2+bx+c的图象开口向下,∴a<0,∵二次函数y=ax2+bx+c的图象经过原点,∴c=0,∵二次函数y=ax2+bx+c的图象对称轴在y轴左侧,∴a,b同号,∴b<0,∴一次函数y=ax+c,图象经过第二、四象限,反比例函数y=bx图象分布在第二、四象限,故选D.【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.6.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()A.当m=-3时,函数图象的顶点坐标是(13,83)B.当m>0时,函数图象截x轴所得的线段长度大于3 2C.当m≠0时,函数图象经过同一个点D .当m<0时,函数在x>14时,y 随x 的增大而减小 【答案】D【解析】 分析:A 、把m=-3代入[2m ,1-m ,-1-m],求得[a ,b ,c],求得解析式,利用顶点坐标公式解答即可;B 、令函数值为0,求得与x 轴交点坐标,利用两点间距离公式解决问题;C 、首先求得对称轴,利用二次函数的性质解答即可;D 、根据特征数的特点,直接得出x 的值,进一步验证即可解答.详解:因为函数y=ax 2+bx+c 的特征数为[2m ,1﹣m ,﹣1﹣m];A 、当m=﹣3时,y=﹣6x 2+4x+2=﹣6(x ﹣13)2+83,顶点坐标是(13,83);此结论正确;B 、当m >0时,令y=0,有2mx 2+(1﹣m )x+(﹣1﹣m )=0,解得:x 1=1,x 2=﹣12﹣12m, |x 2﹣x 1|=32+12m >32,所以当m >0时,函数图象截x 轴所得的线段长度大于32,此结论正确; C 、当x=1时,y=2mx 2+(1﹣m )x+(﹣1﹣m )=2m+(1﹣m )+(﹣1﹣m )=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确.D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x=14m m-,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.7.若二次函数y =x 2﹣2x+2在自变量x 满足m≤x≤m+1时的最小值为6,则m 的值为( )A +B .1C.1 D.5,15--【答案】B【解析】【分析】由抛物线解析式确定出其对称轴为x=1,分m>1或m+1<1两种情况,分别确定出其最小值,由最小值为6,则可得到关于m的方程,可求得m的值.【详解】∵y=x2﹣2x+2=(x﹣1)2+1,∴抛物线开口向上,对称轴为x=1,当m>1时,可知当自变量x满足m≤x≤m+1时,y随x的增大而增大,∴当x=m时,y有最小值,∴m2﹣2m+2=6,解得m=1+5或m=1﹣5(舍去),当m+1<1时,可知当自变量x满足m≤x≤m+1时,y随x的增大而减小,∴当x=m+1时,y有最小值,∴(m+1)2﹣2(m+1)+2=6,解得m=5(舍去)或m=﹣5,综上可知m的值为1+5或﹣5.故选B.【点睛】本题主要考查二次函数的性质,用m表示出其最小值是解题的关键.8.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线92t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m. 其中正确结论的个数是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】【详解】解:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m ,故①错误,∴抛物线的对称轴t =4.5,故②正确,∵t =9时,y =0,∴足球被踢出9s 时落地,故③正确,∵t =1.5时,y =11.25,故④错误,∴正确的有②③,故选B .9.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确. 当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.10.如图,矩形ABCD 中,AB =8,AD =4,E 为边AD 上一个动点,连接BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90°得到点F ,连接CF ,则△CEF 面积的最小值是( )A .16B .15C .12D .11【答案】B【解析】【分析】 过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值.【详解】解:过点F 作AD 的垂线交AD 的延长线于点H ,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°-∠BEA=∠EBA ,∴△FEH ∽△EBA ,∴ ,HF HE EF AE AB BE== G Q 为BE 的中点,1,2FE GE BE ∴== ∴ 1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴== CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+=故选:B.【点睛】本题通过构造K形图,考查了相似三角形的判定与性质.建立△CEF面积与AE长度的函数关系式是解题的关键.11.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()①c>0;②b2-4ac<0;③ a-b+c>0;④当x>-1时,y随x的增大而减小.A.4个B.3个C.2个D.1个【答案】C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.12.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =【答案】C【解析】【分析】【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =. 故选C .考点:抛物线与x 轴的交点.13.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个【答案】B【解析】【分析】【详解】 解:∵抛物线和x 轴有两个交点,∴b 2﹣4ac >0,∴4ac ﹣b 2<0,∴①正确;∵对称轴是直线x ﹣1,和x 轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x 轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a ﹣2b+c >0,∴4a+c >2b ,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c <0,∴2a+2b+2c <0,∴3b ,2c <0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a ﹣b+c 的值最大,即把(m ,0)(m≠0)代入得:y=am 2+bm+c <a ﹣b+c ,∴am 2+bm+b <a ,即m (am+b )+b <a ,∴④正确;即正确的有3个,故选B .考点:二次函数图象与系数的关系14.二次函数y=ax 2+bx+c (a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c >﹣3b ;(3)7a ﹣3b+2c >0;(4)若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B【解析】 根据题意和函数的图像,可知抛物线的对称轴为直线x=-2b a=2,即b=-4a ,变形为4a+b=0,所以(1)正确; 由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(2)正确;因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+2c=7a+12a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+2c <0,故(3)不正确;根据图像可知当x <2时,y 随x 增大而增大,当x >2时,y 随x 增大而减小,可知若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1=y 3<y 2,故(4)不正确;根据函数的对称性可知函数与x 轴的另一交点坐标为(5,0),所以若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<x 2,故(5)正确.正确的共有3个.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.15.二次函数2y ax bx c =++(,,a b c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③0m <203n +<.其中,正确结论的个数是( ) A .0B .1C .2D .3【答案】C【解析】【分析】 首先确定对称轴,然后根据二次函数的图像和性质逐一进行分析即可求解.【详解】∵由表格可知当x=0和x=1时的函数值相等都为-2∴抛物线的对称轴是:x=-2b a =12; ∴a 、b 异号,且b=-a ;∵当x=0时y=c=-2∴c 0<∴abc >0,故①正确;∵根据抛物线的对称性可得当x=-2和x=3时的函数值相等都为t∴2-和3是关于x 的方程2ax bx c t ++=的两个根;故②正确;∵b=-a ,c=-2∴二次函数解析式:2-a -2=y ax x ∵当12x =-时,与其对应的函数值0y >.∴3204a->,∴a83>;∵当x=-1和x=2时的函数值分别为m和n,∴m=n=2a-2,∴m+n=4a-4203>;故③错误故选:C.【点睛】本题考查了二次函数的综合题型,主要利用了二次函数图象与系数的关系,二次函数的对称性,二次函数与一元二次方程等知识点,要会利用数形结合的思想,根据给定自变量x 与函数值y的值结合二次函数的性质逐条分析给定的结论是关键.16.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:从上表可知,下列说法错误的是A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6) C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的【答案】C【解析】【分析】【详解】解:当x=-2时,y=0,∴抛物线过(-2,0),∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=12,故C错误;当x<12时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C.17.若A(-4,1y),B(-3,2y),C(1,3y)为二次函数y=x2+4x-m的图象上的三点,则1y,2y,3y的大小关系是()A .1y <2y <3yB .3y <1y <2yC .2y <1y <3yD .1y <3y <2y【答案】C【解析】【分析】 分别将点的坐标代入二次函数解析式,然后进行判断即可.【详解】解:y 1=(-4)2+4×(-4)m -=16-16m - =m -,y 2=(-3)2+4×(-3)m - =9-12m - =3m --,y 3=12+4×m - 1=1+4m - =5m -,∵-3m -<m -<5m -,∴y 2<y 1<y 3.故选:C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键在于三个函数值的大小不受m 的影响.18.二次函数y=﹣x 2+mx 的图象如图,对称轴为直线x=2,若关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解,则t 的取值范围是( )A .t >﹣5B .﹣5<t <3C .3<t≤4D .﹣5<t≤4【答案】D【解析】【分析】 先根据对称轴x=2求得m 的值,然后求得x=1和x=5时y 的值,最后根据图形的特点,得出直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4.【详解】∵抛物线的对称轴为x =2, ∴22m -=-,m=4 如图,关于x 的一元二次方程﹣x 2+mx ﹣t=0的解就是抛物线y=﹣x 2+mx 与直线y=t 的交点的横坐标当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,则直线y=t在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D.【点睛】本题考查二次函数与一元二次方程的关系,方程有解,反映在图象上即图象与x轴(或某直线)有交点.19.若二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x0,y0)在x轴下方,对于以下说法:①b2﹣4ac>0②x=x0是方程ax2+bx+c=y0的解③x1<x0<x2④a(x0﹣x1)(x0﹣x2)<0其中正确的是()A.①③④B.①②④C.①②③D.②③【答案】B【解析】【分析】①根据二次函数图象与x轴有两个不同的交点,结合根的判别式即可得出△=b2-4ac>0,①正确;②由点M(x0,y0)在二次函数图象上,利用二次函数图象上点的坐标特征即可得出x=x0是方程ax2+bx+c=y0的解,②正确;③分a>0和a<0考虑,当a>0时得出x1<x0<x2;当a<0时得出x0<x1或x0>x2,③错误;④将二次函数的解析式由一般式转化为交点式,再由点M(x0,y0)在x轴下方即可得出y0=a(x0-x1)(x0-x2)<0,④正确.【详解】①∵二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,∴方程ax2+bx+c=0有两个不相等的实数根,∴△=b2-4ac>0,①正确;②∵图象上有一点M(x0,y0),∴a+bx0+c=y0,∴x=x0是方程ax2+bx+c=y0的解,②正确;③当a>0时,∵M(x0,y0)在x轴下方,∴x1<x0<x2;当a<0时,∵M(x0,y0)在x轴下方,∴x0<x1或x0>x2,③错误;④∵二次函数y=ax2+bx+c(a≠0)的图象于x轴的交点坐标分别为(x1,0),(x2,0),∴y=ax2+bx+c=a(x-x1)(x-x2),∵图象上有一点M(x0,y0)在x轴下方,∴y0=a(x0-x1)(x0-x2)<0,④正确;故选B.【点睛】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征以及二次函数图象与系数的关系,根据二次函数的相关知识逐一分析四条结论的正误是解题的关键.20.如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A、B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1:4,则k值为何?( )A.1 B.12C.43D.45【答案】D【解析】【分析】求出顶点和C的坐标,由三角形的面积关系得出关于k的方程,解方程即可.【详解】解:∵y=﹣x2+4x﹣k=﹣(x﹣2)2+4﹣k,∴顶点D(2,4﹣k),C(0,﹣k),∴OC=k,∵△ABC的面积=12AB•OC=12AB•k,△ABD的面积=12AB(4﹣k),△ABC与△ABD的面积比为1:4,∴k=14(4﹣k),解得:k=45.故选:D.【点睛】本题考查了抛物线与x轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.。

初中数学《二次函数》重难点题型汇编含解析

初中数学《二次函数》重难点题型汇编含解析

二次函数重难点题型汇编【题型01:二次函数的概念】【题型02:二次函数的条件】【题型03:列处二次函数关系式】【题型04:特殊二次函数的图像和性质】【题型05:与特殊二次函数有关的几何知识】【题型06:二次函数y=ax2+bx+c的图像和性质】【题型07:二次函数y=ax2+bx+c的最值与求参数范围问题】【题型08:根据二次函数y=ax2+bx+c的图像判断有关的信息】【题型09:二次函数的平移变换】【题型10:二次函数的交点个数问题】【题型01:二次函数的概念】1下列函数是关于x的二次函数的是()A.y=x2+1x2B.y=x1-xC.y=x+12-x2 D.y=ax2+bx+c【答案】B【分析】本题考查了二次函数的定义,根据形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数是二次函数,判断即可,熟练掌握二次函数的一般形式是解题的关键.【详解】解:A、y=x2+1x2的分母含有自变量,不是y关于x的二次函数,故A不符合题意;B、y=x1-x=-x2+x,是y关于x的二次函数,故B符合题意;C、y=x+12-x2=2x+1,不是y关于x的二次函数,故C不符合题意;D、y=ax2+bx+c,当a=0时不是二次函数,故D不符合题意;故选:B.2下列各式中,是二次函数的是()A.y=2x+1B.y=-2x+1C.y=x2+2D.y=2x2-1x【答案】C【分析】本题主要考查了二次函数的定义,解题的关键是掌握一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.【详解】解:A、y=2x+1,是一次函数,故本选项不合题意;B、y=-2x+1,是一次函数,故本选项不合题意;C、y=x2+2,是二次函数,故本选项符合题意;D、y=2x2-1x,右边中-1x不是整式,不是二次函数,故本选项不合题意.故选:C.3下列函数解析式中,y是x的二次函数的是()A.y=ax2+bx+cB.y=-5x+1C.y=-23x2+x-34D.y=2x2-1x【答案】C【分析】根据:形如y=ax2+bx+c a≠0,这样的函数叫做二次函数,进行判断即可.【详解】解:A、当a=0时,y=ax2+bx+c不是二次函数,不符合题意;B、y=-5x+1,是一次函数,不是二次函数,不符合题意;C、y=-23x2+x-34,是二次函数,符合题意;D、y=2x2-1x,不是二次函数,不符合题意;故选C.4如图,分别在正方形ABCD边AB、AD上取E、F点,并以AE、AF的长分别作正方形.已知DF= 3,BE=5.设正方形ABCD的边长为x,阴影部分的面积为y,则y与x满足的函数关系是()A.一次函数关系B.二次函数关系C.正比例函数关系D.反比例函数关系【答案】A【分析】本题考查函数关系的识别,完全平方公式,列函数关系式,根据题意表示出AE、AF的长度,再结合阴影部分的面积等于以AE、AF的长的正方形的面积之差可得y=4x-16,理解题意,列出函数关系式是解决问题的关键.【详解】解:由题意可得:AE=AB-BE=x-5,AF=AD-DF=x-3,则阴影部分的面积为y=x-32-x-52=x2-6x+9-x2+10x-25=4x-16,即:y=4x-16,为一次函数,故选:A.【题型02:二次函数的条件】5抛物线y=ax2+a-2x-a-1经过原点,那么a的值等于()A.0B.1C.-1D.35【答案】C【分析】本题考查了抛物线与点的关系,熟练掌握把(0,0)代入函数解析式,求解关于a的一元一次方程是解题的关键.【详解】解:∵抛物线y=ax2+a-2x-a-1经过原点,∴a≠0-a-1=0,解得:a=-1,故选C.6已知y=m-1x m2+1-2x+5是二次函数,则m的值为()A.1或-1B.1C.-1D.0【答案】C【分析】本题考查了二次函数的定义,根据二次函数y=ax2+bx+c的定义条件是:a、b、c为常数,a≠0,自变量最高次数为2即可求解.【详解】解:根据二次函数的定义:m2+1=2,且m-1≠0,解得:m=1或m=-1,又∵m≠1,∴m=-1,故选:C.7已知二次函数y=m-2x m2-2+3x+1,则m=.【答案】-2【分析】此题考查了二次函数的定义,根据二次函数的定义:形如y=ax2+bx+c a≠0,这样的函数叫做二次函数,得到m-2≠0,m2-2=2,进行求解即可.解题的关键是熟练掌握二次函数的定义.【详解】解:∵函数y=m-2x m2-2+3x+1是二次函数,∴m-2≠0,m2-2=2,∴m=-2.故答案为:-2.【题型03:列处二次函数关系式】8某厂今年一月份新产品的研发资金为9万元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年一季度新产品的研发资金y(元)关于x的函数关系式为()A.y=91+x2 B.y=9+9x+x2C.y=9+91+x+91+x2 D.y=91+x2【答案】C【分析】此题主要考查了根据实际问题抽象出二次函数解析式.根据题意得到二月的研发资金为:91+x,三月份新产品的研发资金为:91+x2,再求和即可,正确表示出三月份的研发资金.【详解】解:根据题意可得二月的研发资金为:91+x,三月份新产品的研发资金为:91+x2,今年一季度新产品的研发资金y=9+91+x+91+x2,故选:C.9已知一正方体的棱长是3cm,设棱长增加xcm时,正方体的表面积增加ycm2,则y与x之间的函数关系式是()A.y=6x2-36xB.y=-6x2+36xC.y=x2+36xD.y=6x2+36x【答案】D【分析】本题考查了二次函数的应用,根据题意直接列式即可作答.【详解】根据题意有:y=6x+32-6×32=6x2+36x,故选:D.10某商店购进某种商品的价格是7.5元/件,在一段时间里,单价是13.5元,销售量是500件,而单价每降低1元就可多售出200件,当销售价为x元/件(7.5<x<13.5)时,获取利润y元,则y与x的函数关系为()A.y=x-7.5500+xB.y=13.5-x500+200xC.y=x-7.5500+200xD.以上答案都不对【答案】D【分析】当销售价为x元/件时,每件利润为(x-7.5)元,销售量为[500+200×(13.5-x)],根据利润=每件利润×销售量列出函数关系式即可.【详解】解:由题意得w=(x-7.5)×[500+200×(13.5-x)],故选:D.【点睛】题考查了根据实际问题列二次函数关系式,用含x的代数式分别表示出每件利润及销售量是解题的关键.11正方形边长3,若边长增加x,增加后正方形的面积为y,y与x的函数关系式为.【答案】y=x+32/y=3+x2【分析】本题考查了列二次函数关系式,根据正方形面积等于边长的平方,即可求解.【详解】解:依题意,y=x+32,故答案为:y=x+32.【题型04:特殊二次函数的图像和性质】12已知函数y=-(x-2)2的图象上有A-32,y1,B3,y2,C4,y3三点,则y1,y2,y3的大小关系是()A.y 1<y 2<y 3B.y 2<y 1<y 3C.y 1<y 3<y 2D.y 2<y 3<y 1【答案】C【分析】本题考查二次函数的性质,当开口向上时,距离对称轴越近,函数值越小;当开口向下时,距离对称轴越近,函数值越大,解题的关键是熟练掌握二次函数的图象与性质.先找到对称轴和开口方向,根据点到对称轴的距离比较函数值的大小即可.【详解】解:∵函数y =-(x -2)2,∴图象开口向下,对称轴为直线x =2,∴图象上的点距离对称轴越近,函数值越大,2--32=72,3-2 =1,4-2 =2,∵1<2<72,∴y 1<y 3<y 2,故选:C .13对于二次函数y =2x -1 2+3,下列说法正确的是()A.开口方向向下B.顶点坐标(1,-3)C.对称轴是y 轴D.当x =1时,y 有最小值【答案】D【分析】本题考查了二次函数的性质:根据抛物线的性质,由a =2得到图象开口向上,根据顶点式得到顶点坐标为(1,3),对称轴为直线x =1,当x =1时,y 有最小值3,再进行判断即可.【详解】解:二次函数y =2(x -1)2+3的图象开口向上,顶点坐标为(1,3),对称轴为直线x =1,当x =1时,y 有最小值3.故选项D 正确,故选:D14下列抛物线中,对称轴为直线x =12的是()A.y =x -122B.y =12x 2C.y =x 2+12D.y =x +122-3【答案】A【分析】本题考查了抛物线求对称轴方程的公式:x =-b2a.利用抛物线对称轴的公式即可确定每一个函数的对称轴,然后即可确定选项.【详解】解:A 、y =x -122的对称轴为直线x =12,故选项符合题意.B 、y =12x 2的对称轴为直线x =0,故选项不符合题意.C 、y =x 2+12的对称轴为直线x =0,故选项不符合题意.D、y=x+122-3的对称轴为直线x=-12,故选项不符合题意.故选:A.15在二次函数y=-x-12+3的图象中,若y随x的增大而减小,则x的取值范围是()A.x>-1B.x<-1C.x>1D.x<1【答案】C【分析】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键;由题可知,函数图象开口向下,对称轴为x=1,在对称轴右侧,y随x的增大而减小;在对称轴左侧,y随x 的增大而增大,据此即可得到答案.【详解】解:由二次函数的解析式得,抛物线开口向下,对称轴为x=1,当x>1时,y 随 x 的增大而减小.故选:C .16抛物线y=-2x+12+2的顶点的坐标是.【答案】(-1,2)【分析】本题考查了二次函数的性质,根据顶点式y=a(x-h)2+k的顶点坐标为h,k,即可求解.【详解】解:抛物线y=-2x+12+2的顶点坐标是(-1,2),故答案为:(-1,2).17点A-3,y1,B2,y2均在二次函数y=-x2+2的图象上,则y1y2.(填“>”或“<”)【答案】<【分析】本题主要考查了二次函数的图象和性质.根据开口向下的二次函数,离对称轴越远函数值越小进行求解即可.【详解】解:∵二次函数解析式为y=-x2+2,∴二次函数开口向下,对称轴为y轴,∴离对称轴越远函数值越小,∵0--3=3>2-0=2,∴y1<y2,故答案为:<.【题型05:与特殊二次函数有关的几何知识】18如图,⊙O的半径为2,C1是函数y=12x2的图象,C2是函数y=-12x2的图象,则阴影部分的面积是()A.4πB.2πC.πD.无法确定【答案】B【分析】据函数y =12x 2与函数y =-12x 2的图象关于x 轴对称,得出阴影部分面积即是半圆面积求出即可.【详解】解:∵C 1是函数y =-12x 2的图象,C 2是函数y =-12x 2的图象,且当x 相等时,两个函数的函数值互为相反数,∴函数y =12x 2的图象与函数y =-12x 2的图象关于x 轴对称,∴阴影部分面积即是半圆面积,∴面积为:12π×22=2π.故选:B .【点睛】此题主要考查了二次函数的图象,根据已知得出阴影部分面积即是半圆面积是解题关键.19如图,已知点A 1,A 2,...,A 2024在函数y =2x 2位于第二象限的图像上,点B 1,B 2,...,B 2024在函数y =2x 2位于第一象限的图像上,点C 1,C 2,...,C 2024在y 轴的正半轴上,若四边形O 1A 1C 1B 1,C 1A 2C 2B 2,...,C 2023A 2024C 2024B 2024都是正方形,则正方形C 2023A 2024C 2024B 2024的边长为()A.1012B.10122C.20232D.202322【答案】B【分析】根据正方形对角线平分一组对角可得OB 1与y 轴的夹角为45°,然后表示出OB 1的解析式,再与抛物线解析式联立求出点B 1的坐标,然后求出OB 1的长,再根据正方形的性质求出OC 1,表示出C 1B 2的解析式,与抛物线联立求出B 2的坐标,然后求出C 1B 2的长,再求出C 1C 2的长,然后表示出C 2B 3的解析式,与抛物线联立求出B 3的坐标,然后求出C 2B 3的长,从而根据边长的变化规律解答即可.【详解】解:∵OA 1C 1B 1是正方形,∴OB 1与y 轴的夹角为45°,∴OB 1的解析式为y =x ,联立方程组得:y =xy =2x 2 ,解得x 1=0y 1=0 ,x 2=12y 2=12.∴B 点的坐标是:12,12,∴OB 1=122+122=22=1×22;同理可得:正方形C 1A 2C 2B 2的边长C 1B 2=2×22;⋯依此类推,正方形C 2023A 2024C 2024B 2024的边长是为2024×22=10122.故选B .【点睛】本题考查了二次函数的对称性,正方形的性质,表示出正方形的边长所在直线的解析式,与抛物线解析式联立求出正方形的顶点的坐标,从而求出边长是解题的关键.20如图,正方形OABC 有三个顶点在抛物线y =14x 2上,点O 是原点,顶点B 在y 轴上则顶点A 的坐标是()A.2,2B.2,2C.4,4D.22,22【答案】C【分析】连接AC 交y 轴于点D ,设点B 坐标为0,m ,根据正方形的性质可得OD =12m ,AD =12m ,从而得到A 12m ,12m,再代入y =14x 2,即可求解.【详解】解:如图,连接AC 交y 轴于点D ,设点B 坐标为0,m ,∵四边形OABC 是正方形,∴OD =12OB ,CD =AD ,AC ⊥y 轴,∴OD =12m ,AD =12m ,∴A 12m ,12m,∵A 在抛物线y =14x 2上,∴12m =14×12m 2,解得m =0(舍去)或8,∴点A 的坐标为4,4 .故选:C .【点睛】本题主要考查了二次函数的性质,正方形的性质,利用数形结合思想解答是解题的关键.21如图,在平面直角坐标系中,正方形ABCD 的顶点A 、B 、C 的坐标分别为1,1 、1,4 、4,4 .若抛物线y =ax 2的图象与正方形ABCD 有公共点,则a 的取值范围是.【答案】116≤α≤4【分析】本题考查二次函数图象与系数的关系,二次函数图象上的点的坐标特征等知识,求出抛物线经过两个特殊点时的a 的值即可解决问题.【详解】解:∵正方形ABCD 的顶点A 、B 、C 的坐标分别为1,1 、1,4 、4,4 .∴D 4,1 ,当抛物线经过点B 1,4 时,则a =4,当抛物线经过D4,1时,a=1 16,观察图象可知,抛物线y=ax2的图象与正方形ABCD有公共点,则a的取值范围是116≤α≤4,故答案为:116≤α≤4.【题型06:二次函数y=ax2+bx+c的图像和性质】22将抛物线y=x2-4x+3绕原点O顺时针旋转180°,则旋转后的函数表达式为()A.y=x2+4x-3B.y=-x2+4x+3C.y=-x2-4x-3D.y=-x2+4x-3【答案】C【分析】本题考查了二次函数的旋转变换,熟练掌握二次函数的性质和旋转的性质是解题的关键.设P x,y为旋转之后所得抛物线上的一点,P绕原点O顺时针旋转180°点P -x,-y,则P 是在旋转后的抛物线上,然后代入化简即可解答.【详解】解:设P x,y为旋转之后所得抛物线上的一点,P绕原点O顺时针旋转180°点P -x,-y,由题意可知:P -x,-y是在抛物线y=x2-4x+3上,即:-y=x2+4x+3,化简得:y=-x2-4x-3.故选C.23直线y=ax+b与抛物线y=ax2+bx+b在同一坐标系里的大致图象正确的是()A. B. C. D.【答案】D【分析】本题考查二次函数的图象、一次函数的图象,根据题意和各个选项中的函数图象,可以得到一次函数中a和b的正负情况和二次函数图象中a、b的正负情况,然后即可判断哪个选项中的图象符合题意,解题的关键是明确题意,利用数形结合的思想解答.【详解】解:A、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b<0,故选项不符合题意;B、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b<0,故选项不符合题意;C、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b>0,ab>0,而抛物线对称轴位于y轴右侧,则ab<0,故选项不符合题意;D、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b>0,对称轴位于y轴左侧,则ab>0,故选项符合题意;故选:D.24已知一个二次函数y=ax2+bx+c的自变量x与函数y的几组对应值如下表,x⋯-4-2035⋯y ⋯-24-80-3-15⋯则下列关于这个二次函数的结论正确的是()A.图象的开口向上B.当x >0时,y 的值随x 的值增大而增大C.图象经过第二、三、四象限D.图象的对称轴是直线x =1【答案】D【分析】本题考查了待定系数法求二次函数解析式,二次函数的性质.先利用待定系数法求得二次函数解析式,再根据二次函数的性质逐一判断即可.【详解】解:由题意得4a -2b +c =-8c =09a +3b +c =-3 ,解得a =-1c =0b =2,∴二次函数的解析式为y =-x 2+2x =-x -1 2+1,∵a =-1<0,∴图象的开口向下,故选项A 不符合题意;图象的对称轴是直线x =1,故选项D 符合题意;当0<x <1时,y 的值随x 的值增大而增大,当x >1时,y 的值随x 的值增大而减小,故选项B 不符合题意;∵顶点坐标为1,1 且经过原点,图象的开口向下,∴图象经过第一、三、四象限,故选项C 不符合题意;故选:D .25如图,平面直角坐标系中有两条抛物线,它们的顶点P ,Q 都在x 轴上,平行于x 轴的直线与两条抛物线相交于A ,B ,C ,D 四点,若AB =10,BC =5,CD =6,则PQ 的长度为()A.7B.8C.9D.10【答案】B【分析】分别作出两条抛物线的对称轴PM ,QN ,交AD 于点M ,N ,得四边形PMNQ 是矩形,利用抛物线的对称性计算即可.本题考查了抛物线的性质,矩形的性质,熟练掌握抛物线的性质是解题的关键.【详解】分别作出两条抛物线的对称轴PM ,QN ,交AD 于点M ,N ,∴四边形PMNQ 是矩形,∴MN =PQ ,∵AB=10,BC=5,CD=6,∴MA=MC=12AC=12AB+BC=152,BN=ND=12BD=12CD+BC=112,∴MN=AD-AM-ND=AB+BC+CD-AM-ND,=21-112-152=8,∴PQ=8,故选B.26二次函数y=ax2+bx+c的图象如图所示,则关于x的一元二次方程x2-bx+a=0的根的情况是()A.只有一个实数根B.没有实数根C.有两个不相等的实数根D.有两个相等的实数根【答案】C【分析】此题考查了二次函数的图象和性质,一元二次方程的判别式,首先根据二次函数的图象得到a<0,b>0,然后判断一元二次方程的判别式求解即可.【详解】∵二次函数图象开口向下,对称轴大于零,∴a<0,-b2a>0∴b>0∴方程x2-bx+a=0的判别式Δ=b2-4ac=-b2-4×1×a=b2-4a>0∴关于x的一元二次方程x2-bx+a=0的根的情况是有两个不相等的实数根.故选:C.27抛物线y=x2+14x+54的顶点坐标是()A.7,5B.7,-5C.-7,5D.-7,-5【答案】C【分析】依据题意,由抛物线为y=x2+14x+54=(x+7)2+5,从而可以判断得解.本题主要考查了二次函数图象与性质,解题时要熟练掌握并能利用顶点式进行判断是关键.【详解】解:由题意,∵抛物线为y=x2+14x+54=(x+7)2+5,∴顶点为-7,5.故选:C.28用配方法将二次函数y=-x2-2x-3化为y=a x-h2+k的形式为()A.y=-x-12-2 D.y=x-12+22-4 C.y=-x+12+3 B.y=x+1【答案】C【分析】本题考查了二次函数的三种表达形式,正确运用配方法把二次函数的一般式化为顶点式是解题的关键.运用配方法即可将其化为顶点式.【详解】解:y=-x2-2x-3=-x2+2x+1-2=-x+12-2故选:C.29如图,抛物线y=ax2+bx+c的对称轴为x=1,点P、点Q是抛物线与x轴的两个交点,若点P的坐标为-1,0,则点Q的坐标为()A.0,-1D.3,0C.4,0B.2,0【答案】D【分析】本题考查二次函数的图象和性质,由题意可得点P、点Q关于对称轴对称即可求解.【详解】解:由题意得:点P、点Q关于对称轴对称,∴点Q的坐标为3,0,故选:D.【题型07:二次函数y=ax2+bx+c的最值与求参数范围问题】30已知抛物线y=-x2+2x+1在自变量x的值满足t≤x≤t+2时,与其对应的函数值y的最小值为-7,求此时t的值为()A.1或-2B.2或-2C.3或-1D.-1或-2【答案】B【分析】本题考查二次函数的图象和性质,根据二次函数的性质,分2种情况进行讨论求解即可.【详解】解:∵y=-x2+2x+1=-x-12+2,∴抛物线的开口向下,对称轴为直线x=1,∴抛物线的上的点离对称轴越远,函数值越小,∵t≤x≤t+2时,与其对应的函数值y的最小值为-7,分两种情况:①当t-1≤t+2-1时,即:t≥0时,当x=t+2时,y=-t+22+2t+2+1=-7,解得:t=-4(舍去)或t=2;②当t-1>t+2-1时,即:t<0时,当x=t时,y=-t2+2t+1=-7,解得:t=4(舍去)或t=-2;综上:t的值为2或-2;故选B.31已知二次函数y=x2-2x-1≤x≤t-1,当x=-1时,函数取得最大值;当x=1时,函数取得最小值,则t的取值范围是()A.0<t≤2B.0<t≤4C.2≤t≤4D.t≥2【答案】C【分析】本题考查了二次函数的图象与性质,二次函数的最值等知识.熟练掌握二次函数的图象与性质是解题的关键.由y=x2-2x=x-12-1,可知图象开口向上,对称轴为直线x=1,顶点坐标为1,-1,当x=-1时,y =3,即-1,3关于对称轴对称的点坐标为3,3,由当x=-1时,函数取得最大值;当x=1时,函数取得最小值,可得1≤t-1≤3,计算求解,然后作答即可.【详解】解:∵y=x2-2x=x-12-1,∴图象开口向上,对称轴为直线x=1,顶点坐标为1,-1,当x=-1时,y=3,∴-1,3关于对称轴对称的点坐标为3,3,∵当x=-1时,函数取得最大值;当x=1时,函数取得最小值,∴1≤t-1≤3,解得,2≤t≤4,故选:C.32已知抛物线y=x2+(2a-1)x-3,当-1≤x≤3时,函数最大值为1,则a值为()A.-12B.-13C.-12或-13D.-1或-13【答案】D【分析】根据顶点的位置分两种情况讨论即可.【详解】解:∵y=x2+(2a-1)x-3,∴图象开口向上,对称轴为直线x=-2a-12,∵-1≤x≤3,∴当-2a-12≤1时,即a≥-12,x=3时有最大值1,∴9+(2a-1)×3-3=1,∴a=-13,当-2a-12≥1时,即a≤-12,x=-1时有最大值1,∴1+(2a-1)×(-1)-3=1,∴a=-1,∴a=-1或-13,故选:D.【点睛】本题考查了二次函数性质以及二次函数的最值,分类讨论是解题的关键.33已知二次函数y=x-m2-1(m为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y 的最小值为3,则m的值为()A.0或3B.0或7C.3或4D.4或7【答案】B【分析】利用二次函数的性质,分三种情况求解即可.【详解】解:∵y=x-m2-1,∴当x=m时,y的最小值为-1.当m<2时,在2≤x≤5中,y随x的增大而增大,∴2-m2-1=3,解得:m1=0,m2=4(舍去);当2≤m≤5时,y的最小值为-1,舍去;当m>5时,在2≤x≤5中,y随x的增大而减小,∴5-m2-1=3,解得:m1=3(舍去),m2=7.∴m的值为0或7.故选:B.【点睛】本题考查了二次函数的性质,以及二次函数图象上点的坐标特征,分三种情况求解是解题的关键.34已知二次函数y=mx2-2mx+2(m≠0)在-2≤x≤2时有最小值-2,则m=()A.-4或-12B.4或-12C.-4或12D.4或12【答案】B【分析】本题考查了二次函数的性质,根据解析式可得对称轴为直线x=1,进而分m>0和m<0两种情况讨论,根据二次函数的性质,即可求解.【详解】解:∵二次函数解析式为y=mx2-2mx+2(m≠0),∴二次函数对称轴为直线x=-2m-2m=1,当m>0时,∵在-2≤x≤2时有最小值-2,∴当x=1时,y=m-2m+2=-2,∴m=4;当m<0时,∵在-2≤x≤2时有最小值-2,∴当x=-2时,y=4m+4m+2=-2,∴m=-12;综上所述,m=4或m=-1 2,故选:B.35已知二次函数y=-x2-2x+2,当m≤x≤m+2时,函数y的最大值是3,则m的取值范围是()A.m≥-1B.m≤2C.-3≤m≤-1D.0≤m≤2【答案】C【分析】本题主要考查二次函数的性质,依据题意,由y=-x2-2x+2=-x+12+3,可得当x=-1时,y取最大值是3,又当m≤x≤m+2时,函数y的最大值是3,故m≤-1≤m+2,进而计算可以得解.【详解】解:由题意,∵y=-x2-2x+2=-x+12+3,∴当x=-1时,y取最大值是3.又当m≤x≤m+2时,函数y的最大值是3,∴m≤-1≤m+2.∴-3≤m≤-1.故选:C.【题型08:根据二次函数y=ax2+bx+c的图像判断有关的信息】36已知二次函数y=ax2+bx+c a≠0的图象如图所示,对称轴为x=32,且经过点-1,0,下列结论:①ab<0;②8b-3c=0;③若y≤c,则0≤x≤3.其中正确的有()A.0个B.1个C.2个D.3个【答案】C【分析】本题考查了二次函数的性质及二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.由对称轴为x =32即可判断①,由抛物线经过点-1,0 ,得出a -b +c =0,对称轴x =-b 2a =32,得出a =-13b ,代入即可判断②;根据二次函数的性质以及抛物线的对称性即可判断③.【详解】解:∵对称轴x =-b 2a =32,∴b =-3a ,∴ab =-3a 2<0,①正确;∵经过点-1,0 ,∴a -b +c =0,∵对称轴x =-b 2a =32,∴a =-13b ,∴-13b -b +c =0,∴3c =4b ,∴4b -3c =0,故②错误;∵对称轴x =32,∴点0,c 的对称点为3,c ,∵开口向上,∴y ≤c 时,0≤x ≤3.故③正确;综上所述,正确的有2个.故选:C .37二次函数y =ax 2+bx +c 的图像如图所示,下列结论错误的是()A.y有最小值B.当-1<x<2时,y<0C.a+b+c>0D.当x<-1时,y随x的增大而减小【答案】C【分析】本题考查了抛物线的图像及其性质,根据性质,结合图像判断解答即可.【详解】解:A、由图像可知函数有最小值,故正确;B、由抛物线可知当-1<x<2时,y<0,故正确;C、当x=1时,y<0,即a+b+c<0,故错误;D、由图像可知在对称轴的左侧y随x的增大而减小,故正确.故选:C.38二次函数y=ax2+bx+c的图象如图所示,与x轴左侧交点为-1,0,对称轴是直线x=1.下列结论:①abc>0;②3a+c>0;③a+c2-b2<0;④a+b≤m am+b(m为实数).其中结论正确的为()A.①④B.②③④C.①②④D.①②③④【答案】A【分析】本题考查了二次函数图象与系数的关系,掌握二次函数的性质是解题关键.根据抛物线开口方向,对称轴位置,以及与y轴交点位置,可判断①结论;由抛物线对称轴得到b=-2a,再结合当x=-1时,y= 0,可判断②结论;根据平方差公式展开,可判断③结论;根据抛物线的最小值,可判断④结论.【详解】解:由图象可知,抛物线开口向上,对称轴在y轴右侧,与y轴交点在负半轴,∴a>0,a、b异号,c<0,∴b<0,∴abc>0,①结论正确;∵抛物线对称轴是直线x=1,=1,∴-b2a∴b=-2a,由图象可知,当x=-1时,y=0,∴a-b+c=a--2a+c=3a+c=0,②结论错误;由图象可知,当x=1时,y<0,∴a+b+c<0,又∵a-b+c=0,∴a+ca+c-b=0,③结论错误;2-b2=a+c+b∵当x=1时,y=a+b+c为最小值,∴a+b+c≤am2+bm+c,∴a+b≤m am+b,④结论正确,故选:A.39已知二次函数y=ax2+bx+c的部分图象如图所示,则下列结论正确的是()A.abc>0B.关于x的一元二次方程ax2+bx+c=0的根是x1=-2,x2=3C.a+b=c-bD.a+4b=3c【答案】C【分析】本题考查了二次函数的图象和性质;熟练掌握二次函数的图象和性质是解题的关键.根据二次函数的图象先判定a,b,c的符号,再结合对称轴求解抛物线与x轴的交点坐标,再进一步逐一分析即可.【详解】解:由函数图像可知开口向下,与y轴交于正半轴,∴a<0,c>0,∵对称轴为x=-b=1,2a∴b>0,∴abc <0,故A 不符合题意;∵抛物线与x 轴交于3,0 ,对称轴为直线x =1,∴抛物线与x 轴的另一个交点为-1,0 ,∴关于x 的一元二次方程ax 2+bx +c =0的根是x 1=-1,x 2=3;故B 不符合题意;∵抛物线与x 轴交于3,0 ,-1,0 ,对称轴为直线x =1,∴b =-2aa -b +c =09a +3b +c =0,解得:b =-2ac =-3a ,∴∵a +b =a -2a =-a ,c -b =-3a --2a =-a ∴a +b =c -b ,故C 符合题意;∴a +4b =a +-8a =-7a ≠-9a ;∴a +4b =3c 错误,故D 不符合题意;故选:C .40如图,二次函数y =ax 2+bx +c a ≠0 的图象与x 轴交于点A 3,0 ,与y 轴交于点B ,对称轴为直线x =1,下列四个结论:①bc <0;②3a +2c <0;③ax 2+bx ≥a +b ;④若-2<c <-1,则-83<a +b +c <-43,其中正确结论的个数为()A.1个B.2个C.3个D.4【答案】C【分析】此题考查了二次函数的图象和性质,数形结合是解题的关键,利用开口方向和对称轴的位置即可判断①,利用对称轴和特殊点的函数值即可判断②,利用二次函数的最值即可判断③,求出c =-3a ,进一步得到13<a <23,又根据b =-2a 得到a +b +c =a -2a -3a =-4a ,即可判断④.【详解】解:①∵函数图象开口方向向上,∴a >0;∵对称轴在y 轴右侧,∴a 、b 异号,∴b <0,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴bc>0,故①错误;②∵二次函数y=ax2+bx+c的图象与x轴交于点A3,0,与y轴交于点B,对称轴为直线x=1,∴-b2a=1,∵b=-2a,∴x=-1时,y=0,∴a-b+c=0,∴3a+c=0,∴3a+2c<0,故②正确;③∵对称轴为直线x=1,a>0,∴y=a+b+c最小值,ax2+bx+c≥a+b+c,∴ax2+bx≥a+b,故③正确;④∵-2<c<-1,∴根据抛物线与相应方程的根与系数的关系可得x1x2=-1×3=-3=c a,∴c=-3a,∴-2<-3a<-1,∴1 3<a<23,∵b=-2a,∴a+b+c=a-2a-3a=-4a,∴-83<a+b+c<-43,故④正确;综上所述,正确的有②③④,故选:C【题型09:二次函数的平移变换】41将抛物线y=2(x+1)2-3向右平移2个单位,再向上平移1个单位得到的抛物线解析式为()A.y=2(x+3)2-4B.y=2(x+3)2-2C.y=2(x-1)2-2D.y=2x-1【答案】C【分析】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=2(x+1)2-3向右平移2个单位,向上平移1个单位得到的抛物线解析式是:y=2 (x+1-2)2-3+1,即y=2(x-1)2-2.故选:C.42将抛物线y=-3x2+2向左平移1个单位,再向下平移3个单位后所得到的抛物线为()A.y=-3(x-1)2-3B.y=-3(x-1)2-1C.y=-3(x+1)2-3D.y=-3(x+1)2-1【答案】D【分析】此题主要考查了二次函数图象的平移,根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=-3x2+2向左平移1个单位所得直线解析式为:y=-3(x+1)2+2;再向下平移3个单位为:y=-3(x+1)2+2-3,即y=-3(x+1)2-1.故选:D.【题型10:二次函数交点的个数问题】43如图所示,已知函数y1=x2x≤28xx>2的图象与一次函数y2=x+b的图象有三个交点,则b的取值范围是()A.-14≤b≤2 B.b>-14C.-14≤b<2 D.-14<b<2【答案】D【分析】此题考查了一次函数和二次函数图象交点问题,一元二次方程的判别式,首先根据题意画出图象,然后求出A2,4,代入y2=x+b求出b=2;然后得到当一次函数y2=x+b的图象与y=x2相切时,得到x2-x-b=0的Δ=b2-4ac=0,进而求出b=-14,然后根据图象求解即可.【详解】解:如图所示,当x=2时,函数y=x2=22=4,∴A2,4,当一次函数y2=x+b的图象经过点A时,∴4=2+b,解得b=2;当一次函数y2=x+b的图象与y=x2相切时,∴x2=x+b,即x2-x-b=0,∴Δ=b2-4ac=0,∴-12-4×1×-b=0,解得b=-1 4,∴由图象可得,当-14<b<2时,函数y1=x2x≤28xx>2的图象与一次函数y2=x+b的图象有三个交点.故选:D.44如图,二次函数y=-x2+x+2及一次函数y=x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数,当直线y=x+m与新图象有4个交点时,m的取值范围是()A.14<m<-3 B.254<m≤1 C.-2<m<1 D.-3<m<-2【答案】D【分析】如图所示,过点B作直线y=x+m,将直线向下平移到恰在点C处相切,则一次函数y=x+m在两条直线之间时,两个图象有4个交点,即可求解【详解】解:在y=-x2+x+2中,当y=0,0=-x2+x+2,解得x1=-1,x2=2,A-1,0,B2,0,当x=0时,y=2,∴原抛物线与y轴交点坐标为0,2,∴翻折后与y轴的交点坐标为0,-2,如图,当直线y=x+m经过点B时,直线y=x+m与新图有3个交点,把B2,0代入y=x+m中,得m=-2,∵抛物线y=-x2+x+2翻折到x轴下方的部分的解析式为:-y=-x2+x+2,∴翻折后的部分解析式为:y=x2-x-2-1<x<2,当直线y=x+m与抛物线y=x2-x-2-1<x<2只有一个交点C时,直线y=x+m与图象有3个交点,把y=x+m代入y=x2-x-2-1<x<2中,得到方程x+m=x2-x-2有两个相等的实数根,整理得x2-2x-2-m=0,∴Δ=-22-4×1×-2-m=0,解得m=-3,∴当直线y=x+m与新图象有4个交点时,m的取值范围是-3<m<-2.故选:D.【点睛】本题主要考查了二次函数与一次函数综合应用,理解题意,找准临界点是解题关键.45抛物线y=-x2+kx+k-54与x轴的一个交点为A(m,0),若-2≤m≤1,则实数k的取值范围是()A.-214≤k≤1 B.k≤-214或k≥1 C.-5≤k≤98D.k≤-5或k≥98【答案】B【分析】根据抛物线有交点,则-x2+kx+k-54=0有实数根,得出k≤-5或k≥1,分类讨论,分别求得当x=-2和x=1时k的范围,即可求解.。

(专题精选)初中数学二次函数难题汇编含答案解析

(专题精选)初中数学二次函数难题汇编含答案解析

(专题精选)初中数学二次函数难题汇编含答案解析一、选择题1.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A .甲B .乙C .丙D .丁【答案】B【解析】【分析】利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论.【详解】解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确由乙、丁同学的结论可得 01442b c b c =-+⎧⎨=++⎩解得:1323b c ⎧=⎪⎪⎨⎪=-⎪⎩∴二次函数的解析式为:221212533636⎛⎫=+-=+ ⎪⎝⎭-y x x x ∴当x=16-时,y 的最小值为2536-,与丙的结论矛盾,故假设不成立,故本选项不符合题意;B .假设乙同学的结论错误,则甲、丙、丁的结论都正确由甲、丙的结论可得二次函数解析式为()213y x =-+当x=2时,解得y=4,当x=-1时,y=7≠0∴此时符合假设条件,故本选项符合题意;C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确由甲乙的结论可得 1201b b c⎧-=⎪⎨⎪=-+⎩ 解得:23b c =-⎧⎨=-⎩∴223y x x =--当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确由甲、丙的结论可得二次函数解析式为()213y x =-+当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意. 故选B .【点睛】此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键.2.抛物线y =-x 2+bx +3的对称轴为直线x =-1.若关于x 的一元二次方程-x 2+bx +3﹣t =0(t 为实数)在﹣2<x <3的范围内有实数根,则t 的取值范围是( )A .-12<t ≤3B .-12<t <4C .-12<t ≤4D .-12<t <3【答案】C【解析】【分析】根据给出的对称轴求出函数解析式为y =-x 2−2x +3,将一元二次方程-x 2+bx +3−t =0的实数根看做是y =-x 2−2x +3与函数y =t 的交点,再由﹣2<x <3确定y 的取值范围即可求解.【详解】解:∵y =-x 2+bx +3的对称轴为直线x =-1,∴b =−2,∴y =-x 2−2x +3,∴一元二次方程-x 2+bx +3−t =0的实数根可以看做是y =-x 2−2x +3与函数y =t 的交点,∵当x =−1时,y =4;当x =3时,y =-12,∴函数y =-x 2−2x +3在﹣2<x <3的范围内-12<y≤4,∴-12<t≤4,故选:C .【点睛】本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键.3.已知抛物线2y ax bx c =++与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线一定过原点;②方程()200++=≠ax bx c a 的解为0x =或4;③0a b c -+<;④当04x <<时,20ax bx c ++<;⑤当2x <时,y 随x 增大而增大.其中结论正确的个数有( )A .1B .2C .3D .4【答案】D【解析】【分析】 根据题意,求得,,a b c ,根据二次函数的图像和性质,结合选项进行逐一分析,即可判断.【详解】 由题可知22b a-=,与x 轴的一个交点坐标为(4,0),则另一个交点坐标为()0,0, 故可得1640a b c ++=,0c =,故可得4,0a b c -==①因为0c =,故①正确;②因为二次函数过点()()0,0,4,0,故②正确;③当1x =-时,函数值为0a b c -+<,故③正确;④由图可知,当04x <<时,0y <,故④正确;⑤由图可知,当2x <时,y 随x 增大而减小,故⑤错误;故选:D.【点睛】本题考查二次函数的图像和性质,涉及二次函数的增减性,属综合中档题.4.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C【解析】【分析】 利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.【详解】解:Q 抛物线开口向上, 0a ∴>,Q 对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,Q 抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;Q 当1x =时,0y <,0a b c ∴++<,所以②错误;Q 抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =, 即12b a-=, 20a b ∴+=,所以③正确;Q 抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误.综上所述:③正确;①②④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.5.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC --运动到点C ,点Q 以1cm/s 的速度沿BC 运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .【答案】B【解析】【分析】分三种情况求出y 与t 的函数关系式. 当0≤t≤2.5时:P 点由B 到A ;当2.5≤t≤4时,即P 点在AD 上时;当4≤t≤6时,即P 点从D 到C 时.即可得出正确选项.【详解】解:作AE ⊥BC 于E ,根据已知可得,AB 2=42+(6-3)2,解得,AB=5cm .下面分三种情况讨论:当0≤t≤2.5时:P 点由B 到A ,21442255y t t t ==gg g ,y 是t 的二次函数.最大面积= 5 cm 2; 当2.5≤t≤4时,即P 点在AD 上时,1422y t t =⨯=, y 是t 的一次函数且最大值=21448cm 2⨯⨯=; 当4≤t≤6时,即P 点从D 到C 时,()21 1226,2y t t t t =⋅-=-+y 是t 的二次函数故符合y 与t 的函数图象是B .故选:B .【点睛】此题考查了函数在几何图形中的运用.解答本题的关键在于分类讨论求出函数解析式,然后进行判断.6.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a ,b 同号,∴b <0,∴一次函数y=ax+c ,图象经过第二、四象限,反比例函数y=b x图象分布在第二、四象限, 故选D .【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.7.如图,二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,给出以下结论:①abc <0;②3a +c =0;③ax 2+bx ≤a +b ;④若M (﹣0.5,y 1)、N (2.5,y 2)为函数图象上的两点,则y 1<y 2.其中正确的是( )A .①③④B .①②3④C .①②③D .②③④【答案】C【解析】【分析】 根据二次函数的图象与性质即可求出答案.【详解】解:①由图象可知:a <0,c >0, 由对称轴可知:2b a ->0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:2b a -=1, ∴b =﹣2a ,∵抛物线过点(3,0),∴0=9a+3b+c ,∴9a ﹣6a+c =0,∴3a+c =0,故②正确;③当x =1时,y 取最大值,y 的最大值为a+b+c ,当x 取全体实数时,ax 2+bx+c≤a+b+c ,即ax 2+bx≤a+b ,故③正确;④(﹣0.5,y 1)关于对称轴x =1的对称点为(2.5,y 1):∴y 1=y 2,故④错误;故选:C .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.8.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m 1≥B .0m ≤C .01m ≤≤D .m 1≥或0m ≤【答案】C【解析】【分析】 找到最大值和最小值差刚好等于5的时刻,则M 的范围可知.【详解】解:如图1所示,当t 等于0时,∵2(1)4y x =--,∴顶点坐标为(1,4)-,当0x =时,3y =-,∴(0,3)A -,当4x =时,5y =,∴(4,5)C ,∴当0m =时, (4,5)D -,∴此时最大值为0,最小值为5-;如图2所示,当1m =时,此时最小值为4-,最大值为1.综上所述:01m ≤≤,故选:C .【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.9.某二次函数图象的顶点为()2,1-,与x 轴交于P 、Q 两点,且6PQ =.若此函数图象通过()1,a 、()3,b 、()1,c -、()3,d -四点,则a 、b 、c 、d 之值何者为正?( ) A .aB .bC .cD .d【答案】D【解析】【分析】根据题意可以得到该函数的对称轴,开口方向和与x 轴的交点坐标,从而可以判断a 、b 、c 、d 的正负,本题得以解决.【详解】∵二次函数图象的顶点坐标为(2,-1),此函数图象与x 轴相交于P 、Q 两点,且PQ=6, ∴该函数图象开口向上,对称轴为直线x=2,∴图形与x 轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0),∵此函数图象通过(1,a )、(3,b )、(-1,c )、(-3,d )四点,∴a <0,b <0,c=0,d >0,故选:D .【点睛】此题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.10.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =【答案】C【解析】【分析】【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =. 故选C .考点:抛物线与x 轴的交点.11.抛物线y =ax 2+bx+c 的顶点为(﹣1,3),与x 轴的交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为( )①若点P(﹣3,m),Q(3,n)在抛物线上,则m <n ;②c =a+3;③a+b+c <0;④方程ax 2+bx+c =3有两个相等的实数根.A .1个B .2个C .3个D .4个【答案】C【解析】 试题分析:由抛物线与x 轴有两个交点,可知b 2-4ac >0,所以①错误;由抛物线的顶点为D (-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,可知抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y <0,即a+b+c <0,所以②正确;由抛物线的顶点为D (-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x=2b a=-1,可得b=2a ,因此a-2a+c=2,即c-a=2,所以③正确;由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确.故选C .考点:二次函数的图像与性质12.已知抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,则函数y =的大致图象是( ) A . B .C .D .【答案】B【解析】【分析】由题意可求m <﹣2,即可求解.【详解】∵抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,∴△=4﹣4(﹣m ﹣1)<0∴m <﹣2∴函数y =的图象在第二、第四象限,故选B .【点睛】本题考查了反比例函数的图象,二次函数性质,求m 的取值范围是本题的关键.13.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x -12x 2刻画,斜坡可以用一次函数y =12x 刻画,下列结论错误的是( )A .斜坡的坡度为1: 2B .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .当小球抛出高度达到7.5m 时,小球距O 点水平距离为3m【答案】D【解析】【分析】求出抛物线与直线的交点,判断A 、C ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出当7.5y =时,x 的值,判定D .【详解】解:214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 72∶7=1∶2,∴A 正确; 小球落地点距O 点水平距离为7米,C 正确;2142y x x =-21(4)82x =--+, 则抛物线的对称轴为4x =, ∴当4x >时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,当7.5y =时,217.542x x =-, 整理得28150x x -+=,解得,13x =,25x =,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5m ,D 错误,符合题意;故选:D【点睛】本题考查的是解直角三角形的-坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.14.一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()A .B .C .D .【答案】B【解析】【分析】根据题中给出的函数图像结合一次函数性质得出a <0,b >0,再由反比例函数图像性质得出c <0,从而可判断二次函数图像开口向下,对称轴:2b x a=->0,即在y 轴的右边,与y 轴负半轴相交,从而可得答案.【详解】解:∵一次函数y=ax+b 图像过一、二、四,∴a <0,b >0,又∵反比例 函数y=c x 图像经过二、四象限, ∴c <0,∴二次函数对称轴:2b x a=->0, ∴二次函数y=ax 2+bx+c 图像开口向下,对称轴在y 轴的右边,与y 轴负半轴相交, 故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y 轴的交点坐标等确定出a 、b 、c 的情况是解题的关键.15.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y =x 2+(2a +1)x +a 2﹣a 的顶点的横坐标为:x =﹣212a +=﹣a ﹣12, 纵坐标为:y =()()224214a a a --+=﹣2a ﹣14, ∴抛物线的顶点横坐标和纵坐标的关系式为:y =2x +34, ∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D .【点睛】 本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.16.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )A .1B .2C .3D .4【答案】C【解析】【分析】【详解】 解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误; 根据函数对称轴可得:-2b a =3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.17.在同一平面直角坐标系中,函数3y x a =+与2+3y ax x =的图象可能是( ) A . B .C .D .【答案】C【解析】【分析】根据一次函数及二次函数的图像性质,逐一进行判断.【详解】解:A.由一次函数图像可知a>0,因此二次函数图像开口向上,但对称轴32a-<应在y轴左侧,故此选项错误;B. 由一次函数图像可知a<0,而由二次函数图像开口方向可知a>0,故此选项错误;C. 由一次函数图像可知a<0,因此二次函数图像开口向下,且对称轴32a->在y轴右侧,故此选项正确;D. 由一次函数图像可知a>0,而由二次函数图像开口方向可知a<0,故此选项错误;故选:C.【点睛】本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.18.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()A.2 B.4 C.3D.3【答案】C【解析】【分析】点P、Q的速度比为33x=2,y=3P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q3a,故点P、Q的速度比为33故设点P、Q的速度分别为:3v3,由图2知,当x =2时,y =63,此时点P 到达点A 的位置,即AB =2×3v =6v , BQ =2×3v =23v ,y =12⨯AB ×BQ =12⨯6v ×23v =63,解得:v =1, 故点P 、Q 的速度分别为:3,3,AB =6v =6=a ,则AC =12,BC =63,如图当点P 在AC 的中点时,PC =6,此时点P 运动的距离为AB +AP =12,需要的时间为12÷3=4,则BQ =3x =43,CQ =BC ﹣BQ =63﹣43=23,过点P 作PH ⊥BC 于点H ,PC =6,则PH =PC sin C =6×12=3,同理CH =3,则HQ =CH ﹣CQ =333,PQ 22PH HQ +39+3,故选:C .【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.19.在平面直角坐标系中,点P 的坐标为()1,2,将抛物线21322y x x =-+沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( )A .12B .1C .5D .52【答案】B【解析】【分析】先求出平移后P 点对应点的坐标,求出平移距离,即可得出选项.【详解】解:21322y x x =-+=()215322x --, 当沿水平方向平移时,纵坐标和P 的纵坐标相同,把y=2代入得:解得:x=0或6,平移的最短距离为1-0=1;当沿竖直方向平移时,横坐标和P 的横坐标相同,把x=1代入得:解得:y=12-, 平移的最短距离为152=22⎛⎫--⎪⎝⎭, 即平移的最短距离是1,故选B.【点睛】本题考查了二次函数图象上点的坐标特征,能求出平移后对应的点的坐标是解此题的关键.20.已知二次函数y =ax 2+bx+c 的图象如图所示,下列结i 论:①abc >0;②b 2﹣4ac >0;③2a+b =0;④a ﹣b+c <0.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 首先根据开口方向确定a 的取值范围,根据对称轴的位置确定b 的取值范围,根据抛物线与y 轴的交点确定c 的取值范围,根据抛物线与x 轴是否有交点确定b 2﹣4ac 的取值范围,根据x =﹣1函数值可以判断.【详解】解:Q 抛物线开口向下,0a ∴<,Q 对称轴12b x a=-=, 0b ∴>,Q 抛物线与y 轴的交点在x 轴的上方,0c ∴>,0abc ∴<,故①错误;Q 抛物线与x 轴有两个交点,240b ac ∴->,故②正确;Q 对称轴12b x a=-=, 2a b ∴=-, 20a b ∴+=,故③正确;根据图象可知,当1x =-时,0y a b c =-+<,故④正确;故选:C .【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用是解题关键.。

最新初中数学二次函数难题汇编含答案

最新初中数学二次函数难题汇编含答案

A.1
B.2
C.3
D.4
【答案】C
【解析】
【分析】
【详解】
解:根据函数的开口方向、对称轴以及函数与 y 轴的交点可知:a 0,b 0,c 0,则
abc 0,则①正确;
根据图形可得:当 x=1 时函数值为零,则 a+b+c=0,则②错误;
根据函数对称轴可得:- b =3,则 b=-6a,根据 a+b+c=0 可知:a-6a+c=0,-5a+c=0,则 5a2a
C.①②④
D.②③④
【答案】C
【解析】
【分析】
利用抛物线开口方向得到 a 0 ,利用对称轴在 y 轴的右侧得到 b 0 ,利用抛物线与 y 轴
的交点在 x 轴下方得到 c 0 ,则可对 A 进行判断;利用当 x 1 时, y 0 可对 B 进行判
断;利用抛物线的对称性得到抛物线的对称轴为直线 x b 1,则可对 C 进行判断; 2a
与 x 轴有 1 个交点;△=b2-4ac<0 时,抛物线与 x 轴没有交点.
9.抛物线 y=ax2+bx+c 的顶点为(﹣1,3),与 x 轴的交点 A 在点(﹣3,0)和(﹣2,0)之间, 其部分图象如图,则以下结论,其中正确结论的个数为( ) ①若点 P(﹣3,m),Q(3,n)在抛物线上,则 m<n; ②c=a+3; ③a+b+c<0; ④方程 ax2+bx+c=3 有两个相等的实数根.
c=0,则③正确;
根据函数的交点以及函数图像的位置可得④正确.
点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向
上,则 a 大于零,如果函数开口向下,则 a 小于零;如果函数的对称轴在 y 轴左边,则 b

初中数学二次函数难题汇编含解析

初中数学二次函数难题汇编含解析

初中数学二次函数难题汇编含解析一、选择题1.已知在平面直角坐标系中,有两个二次函数()()39m x x y =++及()()26y n x x =--图象,将二次函数()()39m x x y =++的图象按下列哪一种平移方式平移后,会使得此两个函数图象的对称轴重叠( )A .向左平移2个单位长度B .向右平移2个单位长度C .向左平移10个单位长度D .向右平移10个单位长度【答案】D【解析】【分析】将二次函数解析式展开,结合二次函数的性质找出两二次函数的对称轴,二者做差后即可得出平移方向及距离.【详解】解:∵y =m (x +3)(x +9)=mx 2+12mx +27m ,y =n (x -2)(x -6)=nx 2-8nx +12n ,∴二次函数y =m (x +3)(x +9)的对称轴为直线x =-6,二次函数y =n (x -2)(x -6)的对称轴为直线x =4,∵4-(-6)=10,∴将二次函数y =m (x +3)(x +9)的图形向右平移10个单位长度,两图象的对称轴重叠.故选:D .【点睛】本题考查了二次函数图象与几何变换以及二次函数的性质,根据二次函数的性质找出两个二次函数的对称轴是解题的关键.2.二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论①24b ac >,②0abc <,③20a b c +->,④0a b c ++<.其中正确的是( )A .①④B .②④C .②③D .①②③④【答案】A【解析】①抛物线与x 轴由两个交点,则240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,所以0abc >,故②错误;③对称轴:直线12b x a=-=-,2b a =,所以24a b c a c +-=-,240a b c a c +-=-<,故③错误;④对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,则抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确.【详解】解:①∵抛物线与x 轴由两个交点,∴240b ac ->,即24b ac >,所以①正确;②由二次函数图象可知,0a <,0b <,0c >,∴0abc >,故②错误;③∵对称轴:直线12b x a=-=-, ∴2b a =,∴24a b c a c +-=-,∵0a <,40a <, 0c >,0a <,∴240a b c a c +-=-<,故③错误;④∵对称轴为直线1x =-,抛物线与x 轴一个交点132x -<<-,∴抛物线与x 轴另一个交点201x <<,当1x =时,0y a b c =++<,故④正确.故选:A .【点睛】本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的性质是解题的关键.3.要将抛物线2y x =平移后得到抛物线223y x x =++,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位 C .向右平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向下平移2个单位【答案】A【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法.【详解】y=x2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x2向左平移1个单位长度,再向上平移2个单位长度.故选:A.【点睛】此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.4.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列4个结论:①abc<0;②2a+b =0;③4a+2b+c>0;④b2﹣4ac>0;其中正确的结论的个数是()A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定解答.【详解】①由抛物线的对称轴可知:﹣>0,∴ab<0,∵抛物线与y轴的交点在正半轴上,∴c>0,∴abc<0,故①正确;②∵﹣=1,∴b=﹣2a,∴2a+b=0,故②正确.③∵(0,c)关于直线x=1的对称点为(2,c),而x=0时,y=c>0,∴x=2时,y=c>0,∴y=4a+2b+c>0,故③正确;④由图象可知:△>0,∴b 2﹣4ac >0,故②正确;故选:D .【点睛】本题考查二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,属于中考常考题型.5.如图,抛物线2119y x =-与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是( )A .2B .322C .52D .3【答案】A【解析】【分析】 根据抛物线解析式即可得出A 点与B 点坐标,结合题意进一步可以得出BC 长为5,利用三角形中位线性质可知OE=12BD ,而BD 最小值即为BC 长减去圆的半径,据此进一步求解即可.【详解】∵2119y x =-, ∴当0y =时,21019x =-, 解得:=3x ±,∴A 点与B 点坐标分别为:(3-,0),(3,0),即:AO=BO=3,∴O 点为AB 的中点,又∵圆心C 坐标为(0,4),∴OC=4,∴BC 长度5=,∵O 点为AB 的中点,E 点为AD 的中点,∴OE 为△ABD 的中位线,即:OE=12BD , ∵D 点是圆上的动点,由图可知,BD 最小值即为BC 长减去圆的半径,∴BD 的最小值为4,∴OE=12BD=2, 即OE 的最小值为2,故选:A.【点睛】本题主要考查了抛物线性质与三角形中位线性质的综合运用,熟练掌握相关概念是解题关键.6.在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点(x 1,m )、(x 2,m )、(x 3,m ),则x 1+x 2+x 3的结果是( ) A .3122m -+ B .0 C .1 D .2 【答案】D【解析】【分析】 根据二次函数的对称性和一次函数图象上点的坐标特征即可求得结果.【详解】 解:如图,在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点A (x 1,m )、B (x 2,m )、C (x 3,m ),∵y =a (x ﹣m ﹣1)2+c (a≠0)∴抛物线的对称轴为直线x =m+1, ∴232x x +=m+1, ∴x 2+x 3=2m+2, ∵A (x 1,m )在直线y =﹣12x 上, ∴m =﹣12x 1, ∴x 1=﹣2m ,∴x 1+x 2+x 3=﹣2m+2m+2=2,故选:D .【点睛】本题考查了二次函数的对称性和一次函数图象上点的坐标特征,解题的关键是利用数形结合思想画出函数图形.7.如图,在四边形ABCD 中,//AD BC ,DC BC ⊥,4cm DC =,6cm BC =,3cm AD = ,动点P ,Q 同时从点B 出发,点P 以2cm /s 的速度沿折线BA AD DC --运动到点C ,点Q 以1cm/s 的速度沿BC 运动到点C ,设P ,Q 同时出发s t 时,BPQ ∆的面积为2cm y ,则y 与t 的函数图象大致是( )A .B .C .D .【答案】B【解析】【分析】分三种情况求出y 与t 的函数关系式. 当0≤t≤2.5时:P 点由B 到A ;当2.5≤t≤4时,即P 点在AD 上时;当4≤t≤6时,即P 点从D 到C 时.即可得出正确选项.【详解】解:作AE ⊥BC 于E ,根据已知可得,AB 2=42+(6-3)2,解得,AB=5cm .下面分三种情况讨论:当0≤t≤2.5时:P 点由B 到A ,21442255y t t t ==gg g ,y 是t 的二次函数.最大面积= 5 cm 2; 当2.5≤t≤4时,即P 点在AD 上时,1422y t t =⨯=, y 是t 的一次函数且最大值=21448cm 2⨯⨯=; 当4≤t≤6时,即P 点从D 到C 时,()211226,2y t t t t =⋅-=-+y 是t 的二次函数 故符合y 与t 的函数图象是B .故选:B .【点睛】此题考查了函数在几何图形中的运用.解答本题的关键在于分类讨论求出函数解析式,然后进行判断.8.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( )A .0<t <5B .﹣4≤t <5C .﹣4≤t <0D .t ≥﹣4【答案】B【解析】【分析】先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解;【详解】解:∵对称轴为直线x =2,∴b =﹣4,∴y =x 2﹣4x ,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4,∴二次函数y 的取值为﹣4≤y <5,∴﹣4≤t <5;故选:B .【点睛】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键.9.如图,二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,给出以下结论:①abc <0;②3a +c =0;③ax 2+bx ≤a +b ;④若M (﹣0.5,y 1)、N (2.5,y 2)为函数图象上的两点,则y 1<y 2.其中正确的是( )A .①③④B .①②3④C .①②③D .②③④【答案】C【解析】【分析】 根据二次函数的图象与性质即可求出答案.【详解】解:①由图象可知:a <0,c >0, 由对称轴可知:2b a ->0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:2b a-=1, ∴b =﹣2a ,∵抛物线过点(3,0),∴0=9a+3b+c ,∴9a ﹣6a+c =0,∴3a+c =0,故②正确;③当x =1时,y 取最大值,y 的最大值为a+b+c ,当x 取全体实数时,ax 2+bx+c≤a+b+c ,即ax 2+bx≤a+b ,故③正确;④(﹣0.5,y 1)关于对称轴x =1的对称点为(2.5,y 1):∴y 1=y 2,故④错误;故选:C .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.10.如图,矩形ABCD 的周长是28cm ,且AB 比BC 长2cm .若点P 从点A 出发,以1/cm s 的速度沿A D C →→方向匀速运动,同时点Q 从点A 出发,以2/cm s 的速度沿A B C →→方向匀速运动,当一个点到达点C 时,另一个点也随之停止运动.若设运动时间为()t s ,APQ V 的面积为()2cm S ,则()2cm S 与()t s 之间的函数图象大致是( )A .B .C .D .【答案】A【解析】【分析】先根据条件求出AB 、AD 的长,当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,计算S 与t 的关系式,分析图像可排除选项B 、C ;当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,计算S 与t 的关系式,分析图像即可排除选项D ,从而得结论.【详解】解:由题意得2228AB BC +=,2AB BC =+,可解得8AB =,6BC =,即6AD =,①当0≤t≤4时,Q 在边AB 上,P 在边AD 上,如图1,S △APQ =211222AP AQ t t t ==g g , 图像是开口向上的抛物线,故选项B 、C 不正确;②当4<t≤6时,Q 在边BC 上,P 在边AD 上,如图2,S △APQ =118422AP AB t t =⨯=g , 图像是一条线段,故选项D 不正确;故选:A .【点睛】本题考查了动点问题的函数图象,根据动点P 和Q 的位置的不同确定三角形面积的不同,解决本题的关键是利用分类讨论的思想求出S 与t 的函数关系式.11.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意.【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,∴选项B 符合题意,选项A 不合题意.故选B .【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.12.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个B.3个C.2个D.1个【答案】B【解析】【分析】【详解】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系13.已知抛物线y=x2+2x﹣m﹣1与x轴没有交点,则函数y=的大致图象是()A.B.C.D.【答案】B【解析】【分析】由题意可求m<﹣2,即可求解.【详解】∵抛物线y=x2+2x﹣m﹣1与x轴没有交点,∴△=4﹣4(﹣m﹣1)<0∴m<﹣2∴函数y=的图象在第二、第四象限,故选B.【点睛】本题考查了反比例函数的图象,二次函数性质,求m的取值范围是本题的关键.14.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③13<a<23;④b>c.其中含所有正确结论的选项是()A.①②③B.①③④C.②③④D.①②④【答案】B【解析】【分析】根据对称轴为直线x=1及图象开口向下可判断出a 、b 、c 的符号,从而判断①;根据对称性得到函数图象经过(3,0),则得②的判断;根据图象经过(-1,0)可得到a 、b 、c 之间的关系,从而对④作判断;从图象与y 轴的交点B 在(0,-2)和(0,-1)之间可以判断c 的大小得出③的正误.【详解】①∵函数开口方向向上,∴a >0;∵对称轴在y 轴右侧∴ab 异号,∵抛物线与y 轴交点在y 轴负半轴,∴c <0,∴abc >0,故①正确;②∵图象与x 轴交于点A (-1,0),对称轴为直线x=1,∴图象与x 轴的另一个交点为(3,0),∴当x=2时,y <0,∴4a+2b+c <0,故②错误;③∵图象与y 轴的交点B 在(0,-2)和(0,-1)之间,∴-2<c <-1∵-12b a, ∴b=-2a , ∵函数图象经过(-1,0),∴a-b+c=0,∴c=-3a ,∴-2<-3a <-1, ∴13<a <23;故③正确 ④∵函数图象经过(-1,0),∴a-b+c=0,∴b-c=a ,∵a >0,∴b-c >0,即b >c ;故④正确;故选B .【点睛】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.15.若A (-4,1y ),B (-3,2y ),C (1,3y )为二次函数y =x 2+4x -m 的图象上的三点,则1y ,2y ,3y 的大小关系是( )A .1y <2y <3yB .3y <1y <2yC .2y <1y <3yD .1y <3y <2y【答案】C【解析】【分析】分别将点的坐标代入二次函数解析式,然后进行判断即可.【详解】解:y 1=(-4)2+4×(-4)m -=16-16m - =m -,y 2=(-3)2+4×(-3)m - =9-12m - =3m --,y 3=12+4×m - 1=1+4m - =5m -,∵-3m -<m -<5m -,∴y 2<y 1<y 3.故选:C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键在于三个函数值的大小不受m 的影响.16.一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax 2+bx+c 的图象可能是()A .B .C .D .【答案】B【解析】【分析】根据题中给出的函数图像结合一次函数性质得出a <0,b >0,再由反比例函数图像性质得出c <0,从而可判断二次函数图像开口向下,对称轴:2b x a =->0,即在y 轴的右边,与y 轴负半轴相交,从而可得答案.【详解】解:∵一次函数y=ax+b 图像过一、二、四,∴a <0,b >0,又∵反比例 函数y=c x 图像经过二、四象限, ∴c <0,∴二次函数对称轴:2b x a=->0, ∴二次函数y=ax 2+bx+c 图像开口向下,对称轴在y 轴的右边,与y 轴负半轴相交, 故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y 轴的交点坐标等确定出a 、b 、c 的情况是解题的关键.17.如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC CD →方向运动,当P 运动到B 点时,P Q 、点同时停止运动.设P 点运动的时间为t 秒,APQ ∆的面积为S ,则表示S 与t 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】本题应分两段进行解答,①点P 在AB 上运动,点Q 在BC 上运动;②点P 在AB 上运动,点Q 在CD 上运动,依次得出S 与t 的关系式,即可判断得出答案.【详解】解:当点P 在AB 上运动,点Q 在BC 上运动时,此时,,2AP t BQ t ==2122APQ S t t t =⋅⋅=V ,函数图象为抛物线; 当点P 在AB 上运动,点Q 在BC 上运动时,此时,AP t =,APQ V 底边AP 上的高保持不变1422APQ S t t =⋅⋅=V ,函数图象为一次函数; 故选:D .【点睛】本题考查的知识点是函数图象,理解题意,分段求出S 与t 之间的函数关系是解此题的关键.18.抛物线2y ax bx c =++(,,a b c 是常数),0a >,顶点坐标为1(,)2m .给出下列结论:①若点1(,)n y 与点23(2)2n y -,在该抛物线上,当12n <时,则12y y <;②关于x 的一元二次方程210ax bx c m -+-+=无实数解,那么( )A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误【答案】A【解析】【分析】①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的解析式,求得m ,再把m 代入一元二次方程ax 2-bx+c-m+1=0的根的判别式中计算,判断其正负便可判断正误.解:①∵顶点坐标为1,2m ⎛⎫ ⎪⎝⎭,12n < ∴点(n ,y 1)关于抛物线的对称轴x=12的对称点为(1-n ,y 1), ∴点(1-n ,y 1)与2322n y ⎛⎫- ⎪⎝⎭,在该抛物线的对称轴的右侧图像上, 31(1)2022n n n ⎛⎫---=-< ⎪⎝⎭Q 3122n n ∴-<- ∵a >0,∴当x >12时,y 随x 的增大而增大, ∴y 1<y 2,故此小题结论正确; ②把1,2m ⎛⎫ ⎪⎝⎭代入y=ax 2+bx+c 中,得1142m a b c =++, ∴一元二次方程ax 2-bx+c-m+1=0中, △=b 2-4ac+4am-4a 2211444()4042b ac a a b c a a b a ⎛⎫=-+++-=+-< ⎪⎝⎭ ∴一元二次方程ax 2-bx+c-m+1=0无实数解,故此小题正确;故选A .【点睛】本题主要考查了二次函数图象与二次函数的系数的关系,第①小题,关键是通过抛物线的对称性把两点坐标变换到对称轴的一边来,再通过二次函数的增减性进行比较,第②小题关键是判断一元二次方程根的判别式的正负.19.下面所示各图是在同一直角坐标系内,二次函数y =2ax +(a+c )x+c 与一次函数y =ax+c 的大致图象.正确的( )A .B .C .D .【解析】【分析】根据题意和二次函数与一次函数的图象的特点,可以判断哪个选项符合要求,从而得到结论.【详解】令ax2+(a+c)x+c=ax+c,解得,x1=0,x2=-ca,∴二次函数y=ax2+(a+c)x+c与一次函数y=ax+c的交点为(0,c),(−ca,0),选项A中二次函数y=ax2+(a+c)x+c中a>0,c<0,而一次函数y=ax+c中a<0,c>0,故选项A不符题意,选项B中二次函数y=ax2+(a+c)x+c中a>0,c<0,而一次函数y=ax+c中a>0,c<0,两个函数的交点不符合求得的交点的特点,故选项B不符题意,选项C中二次函数y=ax2+(a+c)x+c中a<0,c>0,而一次函数y=ax+c中a<0,c>0,交点符合求得的交点的情况,故选项D符合题意,选项D中二次函数y=ax2+(a+c)x+c中a<0,c>0,而一次函数y=ax+c中a>0,c<0,故选项C不符题意,故选:D.【点睛】考查一次函数的图象、二次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.20.已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()A.1个B.2个C.3个D.4个【答案】B【解析】试题解析:①由开口向下,可得0,a<又由抛物线与y轴交于正半轴,可得0c>,再根据对称轴在y轴左侧,得到b与a同号,则可得0,0b abc,故①错误;②由抛物线与x 轴有两个交点,可得240b ac ->, 故②正确; ③当2x =-时,0,y < 即420a b c -+< ......(1) 当1x =时,0y <,即0a b c ++< (2)(1)+(2)×2得,630a c +<,即20a c +<,又因为0,a <所以()230a a c a c ,++=+< 故③错误;④因为1x =时,0y a b c =++<,1x =-时,0y a b c =-+> 所以()()0a b c a b c ++-+<即()()22()0,a c b a c b a c b ⎡⎤⎡⎤+++-=+-<⎣⎦⎣⎦ 所以22().a c b +<故④正确,综上可知,正确的结论有2个.故选B .。

(易错题精选)初中数学二次函数难题汇编附答案

(易错题精选)初中数学二次函数难题汇编附答案

(易错题精选)初中数学二次函数难题汇编附答案一、选择题1.抛物线y =ax 2+bx+c 的顶点为(﹣1,3),与x 轴的交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为( )①若点P(﹣3,m),Q(3,n)在抛物线上,则m <n ;②c =a+3;③a+b+c <0;④方程ax 2+bx+c =3有两个相等的实数根.A .1个B .2个C .3个D .4个【答案】C【解析】 试题分析:由抛物线与x 轴有两个交点,可知b 2-4ac >0,所以①错误;由抛物线的顶点为D (-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,可知抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y <0,即a+b+c <0,所以②正确;由抛物线的顶点为D (-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x=2b a-=-1,可得b=2a ,因此a-2a+c=2,即c-a=2,所以③正确;由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确.故选C .考点:二次函数的图像与性质2.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D【解析】【分析】 由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断【详解】解:抛物线的开口向下,则a <0;抛物线的对称轴为x=1,则-2b a=1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误)由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0∵1x ≠2x∴a(x 1+x 2)+b=0∴x 1+x 2=2b a a a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.3.对于二次函数()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭,下列说法正确的个数是( ) ①对于任何满足条件的a ,该二次函数的图象都经过点()2,1和()0,0两点; ②若该函数图象的对称轴为直线0x x =,则必有001x <<;③当0x ≥时,y 随x 的增大而增大;④若()14,P y ,()()24,0Q m y m +>是函数图象上的两点,如果12y y >总成立,则112a ≤-. A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可.【详解】 对于()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭当2x =时,142(2)12y a a =+-=,则二次函数的图象都经过点()2,1当0x =时,0y =,则二次函数的图象都经过点()0,0则说法①正确 此二次函数的对称轴为1212124a x a a-=-=-+ 0a <1114a∴-+> 01x ∴>,则说法②错误 由二次函数的性质可知,抛物线的开口向下,当114x a <-+时,y 随x 的增大而增大;当114x a ≥-+时,y 随x 的增大而减小 因11104a-+>> 则当1014x a <-≤+时,y 随x 的增大而增大;当114x a≥-+时,y 随x 的增大而减小 即说法③错误 0m >44m ∴+>由12y y >总成立得,其对称轴1144x a=-+≤ 解得112a ≤-,则说法④正确 综上,说法正确的个数是2个故选:B.【点睛】本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.4.已知,二次函数y=ax2+bx+a2+b(a≠0)的图象为下列图象之一,则a的值为()A.-1 B.1 C.-3 D.-4【答案】A【解析】【分析】分别对图形进行讨论:若二次函数的图形为第一个,则b=0,其顶点坐标为(0,a2),与图形中的顶点坐标不符;若二次函数的图形为第二个,则b=0,根据顶点坐标有a2=3,由抛物线与x的交点坐标得到x2=-a,所以a=-4,它们相矛盾;若二次函数的图形为第三个,把点(-1,0)代入解析式得到a-b+a2+b=0,解得a=-1;若二次函数的图形为第四个,把(-2,0)和(0,0)分别代入解析式可计算出a的值.【详解】解:若二次函数的图形为第一个,对称轴为y轴,则b=0,y=ax2+a2,其顶点坐标为(0,a2),而a2>0,所以二次函数的图形不能为第一个;若二次函数的图形为第二个,对称轴为y轴,则b=0,y=ax2+a2,a2=3,而当y=0时,x2=−a,所以−a=4,a=−4,所以二次函数的图形不能为第二个;若二次函数的图形为第三个,令x=−1,y=0,则a−b+a2+b=0,所以a=−1;若二次函数的图形为第四个,令x=0,y=0,则a2+b=0①;令x=−2,y=0,则4a−2b+a2+b=0②,由①②得a=−2,这与图象开口向上不符合,所以二次函数的图形不能为第四个.故选A.【点睛】本题考查了二次函数y=ax2+bx+c(a≠0)的图象与系数的关系:a>0,开口向上;a<0,开口向下;抛物线的对称轴为直线x=-;顶点坐标为(-,);也考查了点在抛物线上则点的坐标满足抛物线的解析式.5.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,m),且与x铀的一个交点在点(3,0)和(4,0)之间,则下列结论:①abc>0;②a﹣b+c>0;③b2=4a(c﹣m);④一元二次方程ax2+bx+c=m+1有两个不相等的实数根,其中正确结论的个数是( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据抛物线的开口方向和与坐标轴的交点及对称轴可判别a ,b ,c 的正负;根据抛物线的对称轴位置可判别在x 轴上另一个交点;根据抛物线与直线y=m 的交点可判定方程的解.【详解】∵函数的图象开口向上,与y 轴交于负半轴∴a>0,c<0∵抛物线的对称轴为直线x=-2b a=1 ∴b<0∴abc >0;①正确;∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间.∴当x=-1时,y<0,即a-b+c<0,所以②不正确;∵抛物线的顶点坐标为(1,m ), ∴244ac b a - =m , ∴b 2=4ac-4am=4a (c-m ),所以③正确;∵抛物线与直线y=m 有一个公共点,∴抛物线与直线y=m+1有2个公共点,∴一元二次方程ax 2+bx+c=m+1有两个不相等的实数根,所以④正确.故选:C .【点睛】考核知识点:抛物线与一元二次方程.理解二次函数性质,弄清抛物线与一元二次方程的关系是关键.6.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数byx在同平面直角坐标系中的图象大致是()A.B.C.D.【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a,b,c的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax2+bx+c的图象开口向下,∴a<0,∵二次函数y=ax2+bx+c的图象经过原点,∴c=0,∵二次函数y=ax2+bx+c的图象对称轴在y轴左侧,∴a,b同号,∴b<0,∴一次函数y=ax+c,图象经过第二、四象限,反比例函数y=bx图象分布在第二、四象限,故选D.【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.7.若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是()A.12≤m<1 B.12<m≤1C.1<m≤2D.1<m<2【答案】B【解析】【分析】画出图象,利用图象可得m 的取值范围【详解】∵y =mx 2﹣4mx +4m ﹣2=m (x ﹣2)2﹣2且m >0,∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x =2.由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意. 将(1,﹣1)代入y =mx 2﹣4mx +4m ﹣2得到﹣1=m ﹣4m +4m ﹣2.解得m =1. 此时抛物线解析式为y =x 2﹣4x +2.由y =0得x 2﹣4x +2=0.解得12120.622 3.42x x ==-≈+≈,. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意. 则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大】答案图1(m =1时) 答案图2( m =时) ②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意. 此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意. 将(0,0)代入y =mx 2﹣4mx +4m ﹣2得到0=0﹣4m +0﹣2.解得m =12. 此时抛物线解析式为y =12x 2﹣2x . 当x =1时,得13121122y =⨯-⨯=-<-.∴点(1,﹣1)符合题意. 当x =3时,得13923122y =⨯-⨯=-<-.∴点(3,﹣1)符合题意. 综上可知:当m =12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意,∴m =12不符合题. ∴m >12. 综合①②可得:当12<m ≤1时,该函数的图象与x 轴所围成的区域(含边界)内有七个整点,故选:B .【点睛】考查二次函数图象与系数的关系,抛物线与x 轴的交点,画出图象,数形结合是解题的关键.8.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D【解析】【分析】 根据抛物线开口方向得到a 0>,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a bc ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误;④当2x =时,由图像可知此时0y >,即420a b c ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。

(专题精选)初中数学二次函数难题汇编及答案

(专题精选)初中数学二次函数难题汇编及答案

(专题精选)初中数学二次函数难题汇编及答案一、选择题1.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( ) A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a【答案】C 【解析】 【分析】根据二次函数的图象和性质对各项进行判断即可. 【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2), ∴a ﹣b +c =2,a +b +c =﹣2, ∴a +c =0,b =﹣2, ∴A 正确; ∵c =﹣a ,b =﹣2, ∴y =ax 2﹣2x ﹣a , ∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点, ∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a, 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0, ∴m +n <0,2a>0, ∴m +n <2a;∴D 正确, 故选:C . 【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.2.对于二次函数()21202y ax a x a ⎛⎫=+-<⎪⎝⎭,下列说法正确的个数是( ) ①对于任何满足条件的a ,该二次函数的图象都经过点()2,1和()0,0两点; ②若该函数图象的对称轴为直线0x x =,则必有001x <<; ③当0x ≥时,y 随x 的增大而增大;④若()14,P y ,()()24,0Q m y m +>是函数图象上的两点,如果12y y >总成立,则112a ≤-. A .1个 B .2个C .3个D .4个【答案】B 【解析】 【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可. 【详解】 对于()21202y ax a x a ⎛⎫=+-<⎪⎝⎭当2x =时,142(2)12y a a =+-=,则二次函数的图象都经过点()2,1 当0x =时,0y =,则二次函数的图象都经过点()0,0 则说法①正确此二次函数的对称轴为1212124ax a a-=-=-+ 0a <Q 1114a∴-+> 01x ∴>,则说法②错误由二次函数的性质可知,抛物线的开口向下,当114x a<-+时,y 随x 的增大而增大;当114x a≥-+时,y 随x 的增大而减小因11104a-+>> 则当1014x a <-≤+时,y 随x 的增大而增大;当114x a≥-+时,y 随x 的增大而减小 即说法③错误0m >Q44m ∴+>由12y y >总成立得,其对称轴1144x a=-+≤ 解得112a ≤-,则说法④正确 综上,说法正确的个数是2个 故选:B . 【点睛】本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.3.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,n ),且与x 轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①4a ﹣2b +c >0;②3a +b >0;③b 2=4a (c ﹣n );④一元二次方程ax 2+bx +c =n ﹣1有两个互异实根.其中正确结论的个数是( )A .1个B .2个C .3个D .4个【答案】B 【解析】 【分析】根据二次函数图象和性质,开口向下,可得a<0,对称轴x=1,利用顶点坐标,图象与x 轴的交点情况,对照选项逐一分析即可. 【详解】①∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点在点(﹣2,0)和(﹣1,0)之间, ∴当x =﹣2时,y <0,即4a ﹣2b +c <0,所以①不符合题意;②∵抛物线的对称轴为直线x =﹣2ba=1,即b =﹣2a , ∴3a +b =3a ﹣2a =a <0,所以②不符合题意; ③∵抛物线的顶点坐标为(1,n ),∴244ac b a-=n ,∴b 2=4ac ﹣4an =4a (c ﹣n ),所以③符合题意; ④∵抛物线与直线y =n 有一个公共点, ∴抛物线与直线y =n ﹣1有2个公共点,∴一元二次方程ax 2+bx +c =n ﹣1有两个不相等的实数根,所以④符合题意. 故选:B .【点睛】本题考查了二次函数的图象和性质的应用,二次函数开口方向,对称轴,交点位置,二次函数与一次函数图象结合判定方程根的个数,掌握二次函数的图象和性质是解题的关键.4.在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点(x 1,m )、(x 2,m )、(x 3,m ),则x 1+x 2+x 3的结果是( )A .3122m -+B .0C .1D .2【答案】D 【解析】 【分析】根据二次函数的对称性和一次函数图象上点的坐标特征即可求得结果.【详解】解:如图,在抛物线y =a (x ﹣m ﹣1)2+c (a≠0)和直线y =﹣12x 的图象上有三点A (x 1,m )、B (x 2,m )、C (x 3,m ), ∵y =a (x ﹣m ﹣1)2+c (a≠0) ∴抛物线的对称轴为直线x =m+1,∴232x x +=m+1, ∴x 2+x 3=2m+2,∵A(x1,m)在直线y=﹣12x上,∴m=﹣12x1,∴x1=﹣2m,∴x1+x2+x3=﹣2m+2m+2=2,故选:D.【点睛】本题考查了二次函数的对称性和一次函数图象上点的坐标特征,解题的关键是利用数形结合思想画出函数图形.5.如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S (cm2),则S(cm2)与t(s)的函数关系可用图象表示为()A.B.C.D.【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S 正方形ABCD ﹣S △ADF ﹣S △ABE ﹣S △CEF 可得S=﹣t 2+4t ,配成顶点式得S=﹣(t ﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t )2=(t ﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断. 解:当0≤t≤4时,S=S 正方形ABCD ﹣S △ADF ﹣S △ABE ﹣S △CEF =4•4﹣•4•(4﹣t )﹣•4•(4﹣t )﹣•t•t =﹣t 2+4t =﹣(t ﹣4)2+8;当4<t≤8时,S=•(8﹣t )2=(t ﹣8)2. 故选D .考点:动点问题的函数图象.6.若二次函数y =x 2﹣2x+2在自变量x 满足m≤x≤m+1时的最小值为6,则m 的值为( )A .5,5,15,12-+-B .5,51-+C .1D .5,15--【答案】B 【解析】 【分析】由抛物线解析式确定出其对称轴为x=1,分m >1或m+1<1两种情况,分别确定出其最小值,由最小值为6,则可得到关于m 的方程,可求得m 的值. 【详解】∵y =x 2﹣2x+2=(x ﹣1)2+1, ∴抛物线开口向上,对称轴为x =1,当m >1时,可知当自变量x 满足m≤x≤m+1时,y 随x 的增大而增大, ∴当x =m 时,y 有最小值,∴m 2﹣2m+2=6,解得m =1+5或m =1﹣5(舍去),当m+1<1时,可知当自变量x 满足m≤x≤m+1时,y 随x 的增大而减小, ∴当x =m+1时,y 有最小值,∴(m+1)2﹣2(m+1)+2=6,解得m =5(舍去)或m =﹣5, 综上可知m 的值为1+5或﹣5. 故选B .本题主要考查二次函数的性质,用m表示出其最小值是解题的关键.7.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是( )A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<0【答案】A【解析】【分析】【详解】解:∵二次函数的图象开口向上,∴a>0.∵对称轴在y轴的左边,∴b2a-<0.∴b>0.∵图象与y轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b﹣2=0.∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣4,∵b>0,∴b=2﹣a>0.∴a<2.∵a>0,∴0<a<2.∴0<2a<4.∴﹣4<2a﹣4<0,即﹣4<P<0.故选A.【点睛】本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.8.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线92t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m. 其中正确结论的个数是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】【详解】解:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误,∴正确的有②③,故选B.9.已知二次函数y=ax2+bx+c的图像如图所示,则下列结论正确的个数有()①c>0;②b2-4ac<0;③ a-b+c>0;④当x>-1时,y随x的增大而减小.A.4个B.3个C.2个D.1个【答案】C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.10.抛物线y =ax 2+bx+c 的顶点为(﹣1,3),与x 轴的交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为( ) ①若点P(﹣3,m),Q(3,n)在抛物线上,则m <n ; ②c =a+3; ③a+b+c <0;④方程ax 2+bx+c =3有两个相等的实数根.A .1个B .2个C .3个D .4个【答案】C 【解析】试题分析:由抛物线与x 轴有两个交点,可知b 2-4ac >0,所以①错误;由抛物线的顶点为D (-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,可知抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y <0,即a+b+c <0,所以②正确; 由抛物线的顶点为D (-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x=2b a-=-1,可得b=2a ,因此a-2a+c=2,即c-a=2,所以③正确;由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确. 故选C .考点:二次函数的图像与性质11.在平面直角坐标系内,已知点A (﹣1,0),点B (1,1)都在直线1122y x =+上,若抛物线y =ax 2﹣x +1(a ≠0)与线段AB 有两个不同的交点,则a 的取值范围是( )A.a≤﹣2 B.a<98C.1≤a<98或a≤﹣2 D.﹣2≤a<98【答案】C【解析】【分析】分a>0,a<0两种情况讨论,根据题意列出不等式组,可求a的取值范围.【详解】∵抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,∴令1122x+=ax2﹣x+1,则2ax2﹣3x+1=0∴△=9﹣8a>0∴a<9 8①当a<0时,110111 aa++≤⎧⎨-+≤⎩解得:a≤﹣2∴a≤﹣2②当a>0时,110111 aa++≥⎧⎨-+≥⎩解得:a≥1∴1≤a<9 8综上所述:1≤a<98或a≤﹣2故选:C.【点睛】本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键.12.如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x-12x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是( )A.斜坡的坡度为1: 2B.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.当小球抛出高度达到7.5m时,小球距O点水平距离为3m【答案】D【解析】【分析】求出抛物线与直线的交点,判断A、C;根据二次函数的性质求出对称轴,根据二次函数性质判断B;求出当7.5y=时,x的值,判定D.【详解】解:214212y x xy x⎧=-+⎪⎪⎨⎪=⎪⎩,解得,11xy=⎧⎨=⎩,22772xy=⎧⎪⎨=⎪⎩,72∶7=1∶2,∴A正确;小球落地点距O点水平距离为7米,C正确;2142y x x=-21(4)82x=--+,则抛物线的对称轴为4x=,∴当4x>时,y随x的增大而减小,即小球距O点水平距离超过4米呈下降趋势,B正确,当7.5y=时,217.542x x=-,整理得28150x x-+=,解得,13x=,25x=,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5m ,D 错误,符合题意;故选:D【点睛】本题考查的是解直角三角形的-坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.13.若A (-4,1y ),B (-3,2y ),C (1,3y )为二次函数y =x 2+4x -m 的图象上的三点,则1y ,2y ,3y 的大小关系是( )A .1y <2y <3yB .3y <1y <2yC .2y <1y <3yD .1y <3y <2y【答案】C【解析】【分析】分别将点的坐标代入二次函数解析式,然后进行判断即可.【详解】解:y 1=(-4)2+4×(-4)m -=16-16m - =m -,y 2=(-3)2+4×(-3)m - =9-12m - =3m --,y 3=12+4×m - 1=1+4m - =5m -,∵-3m -<m -<5m -,∴y 2<y 1<y 3.故选:C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键在于三个函数值的大小不受m 的影响.14.二次函数y=﹣x 2+mx 的图象如图,对称轴为直线x=2,若关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解,则t 的取值范围是( )A .t >﹣5B .﹣5<t <3C .3<t≤4D .﹣5<t≤4【答案】D【解析】【分析】 先根据对称轴x=2求得m 的值,然后求得x=1和x=5时y 的值,最后根据图形的特点,得出直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4.【详解】∵抛物线的对称轴为x =2, ∴22m -=-,m=4 如图,关于x 的一元二次方程﹣x 2+mx ﹣t=0的解就是抛物线y=﹣x 2+mx 与直线y=t 的交点的横坐标当x=1时,y=3,当x=5时,y=﹣5,由图象可知关于x 的一元二次方程﹣x 2+mx ﹣t=0(t 为实数)在1<x <5的范围内有解, 则直线y=t 在直线y=﹣5和直线y=4之间包括直线y=4,∴﹣5<t≤4.故选:D .【点睛】本题考查二次函数与一元二次方程的关系,方程有解,反映在图象上即图象与x 轴(或某直线)有交点.15.已知抛物线224y x x c =-+与直线2y =有两个不同的交点.下列结论:①4c <;②当1x =时,y 有最小值2c -;③方程22420x x c -+-=有两个不等实根;④若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则52c =;其中正确的结论的个数是( )A .4B .3C .2D .1 【答案】B【解析】【分析】根据“抛物线224y x x c =-+与直线2y =有两个不同的交点”即可判断①③;根据抛物线的对称轴为直线x=1即可判断②;根据等腰直角三角形的性质,用c 表达出两个交点,代入抛物线解析式计算即可判断④.【详解】解:∵抛物线224y x x c =-+与直线2y =有两个不同的交点,∴2242x x c -+=有两个不相等的实数根,即22420x x c -+-=有两个不相等的实数根,故③正确,∴1642(2)0c ∆=-⨯⨯->,解得:4c <,故①正确;∵抛物线的对称轴为直线x=1,且抛物线开口向上,∴当x=1时,2y c =-为最小值,故②正确;若连接这两个交点与抛物线的顶点,恰好是一个等腰直角三角形,则顶点(1,c-2)到直线y=2的距离等于两交点距离的一半,∵顶点(1,c-2)到直线y=2的距离为2-(c-2)=4-c ,∴两交点的横坐标分别为1-(4-c )=c-3与1+(4-c )=5-c∴两交点坐标为(c-3,2)与(5-c,2),将(c-3,2)代入224y x x c =-+中得:22(3)4(3)2c c c ---+= 解得:72c =或4c = ∵4c <, ∴72c =,故④错误, ∴正确的有①②③,故选:B .【点睛】 本题考查了二次函数与一元二次方程的关系以及二次函数的性质,解题的关键是熟练掌握函数与方程之间的联系.16.已知抛物线y=x 2+2x 上三点A (﹣5,y 1),B (2.5,y 2),C (12,y 3),则y 1,y 2,y 3满足的关系式为( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 2【答案】C【解析】【分析】首先求出抛物线y=x 2+2x 的对称轴,对称轴为直线x=-1;然后根据A 、B 、C 的横坐标与对称轴的位置,接着利用抛物线的增减性质即可求解;由B 离对称轴最近,A 次之,C 最远,则对应y 的值大小可确定.【详解】∵抛物线y=x 2+2x ,∴x=-1,而A (-5,y 1),B (2.5,y 2),C (12,y 3),∴B 离对称轴最近,A 次之,C 最远,∴y 2<y 1<y 3.故选:C .【点睛】本题考查了二次函数的图象和性质,二次函数图象上点的坐标特征等知识点,能熟记二次函数的性质是解此题的关键.17.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)【答案】C【解析】【分析】【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C .【点睛】本题考查二次函数的性质.18.下列函数(1)y =x (2)y =2x ﹣1 (3)y =1x(4)y =2﹣3x (5)y =x 2﹣1中,是一次函数的有( )A .4个B .3个C .2个D .1个 【答案】B【解析】【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y =x 是一次函数,符合题意;(2)y =2x ﹣1是一次函数,符合题意; (3)y =1x是反比例函数,不符合题意; (4)y =2﹣3x 是一次函数,符合题意;(5)y =x 2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B .【点睛】 此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.19.在平面直角坐标系中,点P 的坐标为()1,2,将抛物线21322y x x =-+沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( )A .12B .1C .5D .52【答案】B【解析】【分析】先求出平移后P 点对应点的坐标,求出平移距离,即可得出选项.【详解】 解:21322y x x =-+=()215322x --, 当沿水平方向平移时,纵坐标和P 的纵坐标相同,把y=2代入得:解得:x=0或6,平移的最短距离为1-0=1;当沿竖直方向平移时,横坐标和P 的横坐标相同,把x=1代入得:解得:y=12-, 平移的最短距离为152=22⎛⎫-- ⎪⎝⎭, 即平移的最短距离是1,故选B.【点睛】本题考查了二次函数图象上点的坐标特征,能求出平移后对应的点的坐标是解此题的关键.20.平移抛物线y =﹣(x ﹣1)(x +3),下列哪种平移方法不能使平移后的抛物线经过原点( )A .向左平移1个单位B .向上平移3个单位C .向右平移3个单位D .向下平移3个单位【答案】B【解析】【分析】先将抛物线解析式转化为顶点式,然后根据顶点坐标的平移规律即可解答.【详解】解:y =﹣(x ﹣1)(x +3)=-(x+1)2+4A 、向左平移1个单位后的解析式为:y =-(x+2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意;B 、向上平移3个单位后的解析式为:y=-(x+1)2+7,当x=0时,y=3,即该抛物线不经过原点,故本选项符合题意;C 、向右平移3个单位后的解析式为:y=-(x-2)2+4,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.;D、向下平移3个单位后的解析式为:y=-(x+1)2+1,当x=0时,y=0,即该抛物线经过原点,故本选项不符合题意.【点睛】本题考查了二次函数图像的平移,函数图像平移规律:上移加,下移减,左移加,右移减.。

初三数学二次函数难题

初三数学二次函数难题

【导语】以下是⽆忧考为您整理的初三数学⼆次函数难题,供⼤家学习参考。

1、变化后的⼆次函数,配⽅得到y=(x+3/2)^2-13/4因为是由原函数向下平移2个单位,再向左平移3个单位得到的,所以将变化后的函数:3/2-3=-3/2-13/4+2=-5/4得到y=(x-3/2)^2-5/4展开后,即得到⽅程y=x^2-3x+1所以b=-3c=12、依题意得,设C(0,y),坐标原点为O因为三⾓形ABC是直⾓三⾓形所以有三⾓形OAC与变化后的⼆次函数,配⽅得到 y=(x+3/2)^2-13/4 因为是由原函数向下平移2个单位,再向左平移3个单位得到的,所以将变化后的函数: 3/2-3=-3/2 -13/4+2=-5/4 得到y=(x-3/2)^2-5/4 展开后,即得到⽅程y=x^2-3x+1 所以 b=-3 c=1 2、 依题意得,设C(0,y),坐标原点为O 因为三⾓形ABC是直⾓三⾓形...显⽰剩下8⾏ 1、 变化后的⼆次函数,配⽅得到 y=(x+3/2)^2-13/4 因为是由原函数向下平移2个单位,再向左平移3个单位得到的,所以将变化后的函数: 3/2-3=-3/2 -13/4+2=-5/4 得到y=(x-3/2)^2-5/4 展开后,即得到⽅程y=x^2-3x+1 所以 b=-3 c=1 2、 依题意得,设C(0,y),坐标原点为O 因为三⾓形ABC是直⾓三⾓形 所以有三⾓形OAC与三⾓形OCB相似 所以|OA|:|OC|=|OC|:|OB| 2:y=y:4 解得C(0,正负2根号2) 将三点坐标代⼊⽅程y=ax^2+bx+c 解之得 y=-根号2/6x^2+5根号2/6x+2根号2 或y=根号2/6x^2-根号2/6x-2根号2 y=ax^2+4ax+t, 0=a-4a+t, t=3a, 即Y=a(x^2+4x+3)=a(x+3)(x+1), 抛物线与x轴的另⼀个交点B的坐标为(-3,0). D是抛物线与y轴的交点.则 点D坐标为(0,3a). 当Y=3a时,3a=ax^2+4ax+3a, x1=0,x2=-4. 则点C的坐标为(-4,3a), |AB=|-3+1|=2, |CD|=|-4-0|=4. 梯形ABCD的⾯积为9,有 9=1/2*(|AB|+|CD|)*|3a|, a1=1,a2=-1. 此抛物线的函数关系式为 Y=X^2+4X+3,或Y=-X^2-4X-3.。

(易错题精选)初中数学二次函数难题汇编附答案解析

(易错题精选)初中数学二次函数难题汇编附答案解析

(易错题优选)初中数学二次函数难题汇编附答案分析一、选择题1.如图,矩形 ABCD 中, AB=8, AD=4, E 为边 AD 上一个动点,连结 BE ,取 BE 的中点 G ,点 G 绕点 E 逆时针旋转 90°获得点 F ,连结 CF ,则 △CEF 面积的最小值是( ) A .16B . 15C . 12D . 11【答案】 B【分析】 【剖析】过点 F 作AD 的垂线交AD 的延伸线于点H ,则 △FEH ∽△ EBA ,设 AE=x ,可得出 △CEF 面积与 x 的函数关系式,再依据二次函数图象的性质求得最小值.【详解】解:过点 F 作 AD 的垂线交 AD 的延伸线于点 H , ∵∠ A=∠H=90°,∠ FEB=90°, ∴∠ FEH=90°-∠ BEA=∠ EBA , ∴△ FEH ∽△ EBA ,∴HF HE EF ,AE AB BEQG 为BE 的中点,FEGE 1BE,2∴ HF HE EF 1 ,AE ABBE 2 设 AE=x , ∵ AB 8, AD 4,∴ HF1x, EH4,2DHAEx,S CEF S DHFC S CED SEHF1 x( 1 x 8)18(4x)1 4 ? 1x2 222 21 x2 4x 16 4x x41 x2 x 16,4∴当x122面积的最小值 1 421615.CEF4应选: B .【点睛】本题经过结构 K 形图,考察了相像三角形的判断与性质.成立 △CEF 面积与 AE 长度的函数关系式是解题的重点.2.如图,二次函数 y ax 2bx c 0 a 0 的图象与 x 轴正半轴订交于A 、B 两点,与 y 轴订交于点 C ,对称轴为直线 x 2 ,且 OA OC ,则以下结论:① abc 0 ; ② 9a 3b c 0 ; ③ c1; ④ 对于 x 的方程 ax 2bx c 0 a 0 有一个根为1),此中正确的结论个数有(aA . 1个B . 2个C .3个D . 4个【答案】 C【分析】【剖析】由二次图像张口方向、对称轴与y 轴的交点可判断出a 、b 、c 的符号,从而可判断① ;由图像可知当x = 3 时, y <0,可判断 ② ;由OA = OC ,且OA < 1,可判断 ③ ;把﹣1 代入a方程整理得 ac 2- bc +c = 0,联合 ③ 可判断 ④ ;从而得出答案.【详解】由图像张口向下,可知a <0,与 y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x=2,∴﹣b > 0,∴ b > 0,∴ abc > 0,故 ① 正确;由图像可知当x =3时, y > 0,∴ 9a +2a3b+ c> 0,故②错误;由图像可知OA<1,∵ OA= OC,∴ OC<1 ,即﹣ c< 1,故③正确;假定方程的一个根为x=﹣1,把﹣1代入方程,整理得ac2- bc+ c=0,即方程有一a a个根为 x=﹣ c,由②知﹣ c= OA,而当 x=OA 是方程的根,∴x=﹣ c 是方程的根,即假定成立,故④正确 .应选 C.【点睛】本题主要考察二次函数的图像与性质以及二次函数与一元二次方程的联系,娴熟掌握二次函数的有关知识是解答本题的重点.3.如图是抛物线 y= ax2+bx+c( a≠0)的部分图象,其极点坐标为(1,m),且与 x 铀的一个交点在点(30)和(40① abc>;② a﹣b+c0③ b2=,,)之间,则以下结论:>;4a( c﹣ m);④一元二次方程ax2+bx+c= m+1 有两个不相等的实数根,此中正确结论的个数是()A.1B. 2C. 3D. 4【答案】C【分析】【剖析】依据抛物线的张口方向和与坐标轴的交点及对称轴可鉴别a, b, c 的正负;依据抛物线的对称轴地点可鉴别在x 轴上另一个交点;依据抛物线与直线y=m的交点可判断方程的解.【详解】∵函数的图象张口向上,与y 轴交于负半轴∴a>0,c<0∵抛物线的对称轴为直线x=-b=1 2a∴b<0∴abc> 0;① 正确;∵抛物线与 x 轴的一个交点在点( 3, 0)和( 4, 0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和( -1, 0)之间.∴当 x=-1 时, y<0,即 a-b+c<0,所以②不正确;∵抛物线的极点坐标为( 1, m),∴4ac b 2=m ,4a∴ b 2=4ac-4am=4a ( c-m ),所以 ③ 正确;∵抛物线与直线 y=m 有一个公共点,∴抛物线与直线 y=m+1 有 2 个公共点,∴一元二次方程 ax 2+bx+c=m+1 有两个不相等的实数根,所以 ④ 正确.应选 :C .【点睛】查核知识点:抛物线与一元二次方程.理解二次函数性质,弄清抛物线与一元二次方程的关系是重点.4.方程 x23x1 0 的根可视为函数y = x+ 3的图象与函数1y 的图象交点的横坐x标,则方程 x 3 2x 1 0 的实根 x 0 所在的范围是( )A . 0<x 0 < 1B . 1 <x 0 <1C . 1<x 0 <1D . 1<x 0 <1443 322【答案】 C【分析】【剖析】第一依据题意推测方程x 3+2x-1=0 的实根是函数 y=x 2+2 与 y1 的图象交点的横坐标,再根x据四个选项中 x 的取值代入两函数分析式,找出抛物线的图象在反比率函数上方和反比率函数的图象在抛物线的上方两个点即可判断推测方程x 3+2x-1=0 的实根 x 所在范围.【详解】解:依题意得方程x 3 2x 1 0 的实根是函数 yx 2 2 与 y 1 的图象交点的横坐标,x这两个函数的图象如下图,它们的交点在第一象限.当 x= 1 时, yx 22 2 1, y1 4 ,此时抛物线的图象在反比率函数下方;416 x 当 x= 1时, yx22 2 1, y 1 3 ,此时抛物线的图象在反比率函数下方;39 x当 x= 1 时, yx 22 2 1 , y 1 2 ,此时抛物线的图象在反比率函数上方;24 x当 x=1 时,y x 2 2 3, y1 1 ,此时抛物线的图象在反比率函数上方.x∴方程x32x10的实根x0所在范围为:1<x 0< 1.32应选 C.【点睛】本题考察了学生从图象中读守信息的数形联合能力.解决此类识图题,同学们要注意剖析此中的“重点点”,还要擅长剖析各图象的变化趋向.5.已知二次函数y= ax2+bx+c( a≠0)的图象如下图,则以下结论:(1) 4a+2b+c< 0;(2)方程 ax2+bx+c= 0 两根都大于零;(3) y 随 x 的增大而增大;(4)一次函数y=x+bc 的图象必定可是第二象限.此中正确的个数是()A.1 个B.2 个C.3 个D.4 个【答案】 C【分析】【剖析】由图可知, x=2 时函数值小于 0,故( 1)正确,函数与x 轴的交点为 x=1.x=3,都大于0,故( 2)正确,由图像知( 3)错误,由图象张口向上,a>0,与 y 轴交于正半轴, c> 0,对称轴 x=﹣= 1,故 b< 0, bc< 0,即可判断一次函数y= x+bc 的图象 .【详解】①由 x= 2 时, y= 4a+2b+c,由图象知: y= 4a+2b+c< 0,故正确;②方程 ax2+bx+c=0 两根分别为1, 3,都大于0,故正确;③当 x< 2 时,由图象知:y 随 x 的增大而减小,故错误;④由图象张口向上,a>0,与 y 轴交于正半轴,c>0 ,x=﹣=1>0,∴ b<0,∴b c< 0,∴一次函数 y= x+bc 的图象必定过第一、三、四象限,故正确;故正确的共有 3 个,应选:C.【点睛】本题主要考察二次函数的图像,解题的重点是熟知各系数所代表的含义.6.若平面直角坐标系内的点M 知足横、纵坐标都为整数,则把点M 叫做“整点”.比如:P(1 ,0)、 Q( 2,﹣ 2)都是“整点”.抛物线 y= mx2﹣ 4mx+4m﹣2( m>0)与 x 轴交于点 A、 B 两点,若该抛物线在 A、B 之间的部分与线段 AB 所围成的地区(包含界限)恰有七个整点,则m 的取值范围是()A.1≤m< 1B.1 <m≤1C. 1< m≤2D. 1< m< 2 22【答案】B【分析】【剖析】画出图象,利用图象可得m 的取值范围【详解】∵y= mx2﹣4mx+4m﹣ 2= m( x﹣ 2)2﹣ 2 且m> 0,∴该抛物线张口向上,极点坐标为(2,﹣ 2),对称轴是直线x= 2.由此可知点(2, 0)、点(2,﹣ 1)、极点(2,﹣ 2)切合题意.①当该抛物线经过点(1,﹣ 1)和( 3,﹣ 1)时(如答案图1),这两个点切合题意.将( 1,﹣ 1)代入 y= mx2﹣ 4mx+4m﹣ 2 获得﹣ 1= m﹣ 4m+4m﹣ 2.解得 m= 1.此时抛物线分析式为y= x2﹣ 4x+2.由 y= 0 得x2﹣ 4x+2= 0.解得x12120.6, x22 2 3.4.∴x 轴上的点(1, 0)、(2, 0)、( 3, 0)切合题意.则当m=1 时,恰巧有(1,0)、(2, 0)、( 3, 0)、( 1,﹣ 1)、( 3,﹣ 1)、(2,﹣1)、(2,﹣2)这7 个整点切合题意.∴m≤1.【注:m 的值越大,抛物线的张口越小,m 的值越小,抛物线的张口越大】答案图 1(m= 1 时)答案图2(m=时)②当该抛物线经过点(0, 0)和点( 4, 0)时(如答案图2),这两个点切合题意.此时 x 轴上的点(1,0)、(2,0)、(3,0)也切合题意.将( 0, 0)代入 y= mx2﹣ 4mx+4m﹣ 2 获得 0= 0﹣ 4m+0﹣ 2.解得 m=1.2此时抛物线分析式为y=1x2﹣ 2x.2当 x= 1 时,得y112131.∴点(1,﹣1)切合题意.22当 x= 3 时,得y19233 1 .∴点(3,﹣1)切合题意.22综上可知:当m=1时,点( 0, 0)、( 1, 0)、( 2, 0)、( 3, 0)、( 4, 0)、2(1,﹣ 1)、( 3,﹣ 1)、( 2,﹣ 2)、(2,﹣ 1)都切合题意,共有9 个整点切合题意,∴m=1 不切合题.2∴m>1 .2综合①②可得:当1 <m≤1时,该函数的图象与x 轴所围成的地区(含界限)内有七个2整点,应选: B.【点睛】考察二次函数图象与系数的关系,抛物线与键.x 轴的交点,画出图象,数形联合是解题的关7.已知在平面直角坐标系中,有两个二次函数y m x3x9及y n x2x6图象,将二次函数y m x 3 x9 的图象按以下哪一种平移方式平移后,会使得此两个函数图象的对称轴重叠()A.向左平移 2 个单位长度B.向右平移 2 个单位长度C.向左平移 10 个单位长度D.向右平移10 个单位长度【答案】D【分析】【剖析】将二次函数分析式睁开,联合二次函数的性质找出两二次函数的对称轴,两者做差后即可得出平移方向及距离.【详解】解:∵ y= m( x+3)( x+ 9)= mx2+ 12mx+ 27m, y= n( x- 2)( x- 6)= nx2-8nx+12n,∴二次函数y= m(x+ 3)( x+ 9)的对称轴为直线x=- 6,二次函数y= n( x- 2)( x-6)的对称轴为直线x= 4,∵4-(- 6)= 10,∴将二次函数 y= m( x+ 3)( x+ 9)的图形向右平移 10 个单位长度,两图象的对称轴重叠.应选: D.【点睛】本题考察了二次函数图象与几何变换以及二次函数的性质,依据二次函数的性质找出两个二次函数的对称轴是解题的重点.8.如图,抛物线y ax2bx c 与x轴交于点A(﹣1,0),极点坐标(1,n),与y 轴的交点在( 0, 3),( 0, 4)之间(包含端点),则以下结论:① abc>0;②3a+b<42+bm( m 为随意实数);⑤一元二次方程ax2bx c n 0;③﹣≤a≤﹣ 1;④ a+b≥am3有两个不相等的实数根,此中正确的有()A.2 个B.3 个C.4 个D.5 个【答案】 B【分析】b 解:∵抛物线张口向下,∴a< 0,∵极点坐标(1, n),∴对称轴为直线x=1,∴2a =1,∴ b=﹣ 2a>0 ,∵与 y 轴的交点在( 0, 3),( 0, 4)之间(包含端点),∴ 3≤c≤4,∴abc< 0,故①错误;3a+b=3a+(﹣ 2a) =a< 0,故②正确;∵与 x 轴交于点A(﹣ 1 ,0),∴ a﹣b+c=0,∴ a﹣(﹣ 2a)+c=0,∴ c=﹣3a,∴ 3≤﹣43a≤4,∴﹣≤a≤﹣1,故③ 正确;3∵极点坐标为( 1, n),∴当 x=1 时,函数有最大值n,∴ a+b+c≥am 2+bm+c,∴a+b≥am2+bm ,故④正确;一元二次方程ax2bx c n 有两个相等的实数根x1=x2=1,故⑤错误.综上所述,结论正确的选项是②③④共 3 个.应选 B.点睛:本题考察了抛物线与x 轴的交点,二次函数的性质,主要利用了二次函数的张口方向,对称轴,最值问题,以及二次函数图象上点的坐标特色,重点在于依据极点横坐标表示出 a、 b 的关系.11 9.在平面直角坐标系内,已知点A(﹣ 1,0),点B( 1, 1)都在直线y x上,22a 的取值范围是()若抛物线y= ax2﹣ x+1( a≠0)与线段AB 有两个不一样的交点,则A a≤ 2B a99或a≤ 2 D2≤a9< C 1≤a﹣.﹣<.﹣..<888【答案】 C【分析】【剖析】分 a> 0,a< 0 两种状况议论,依据题意列出不等式组,可求 a 的取值范围.【详解】∵抛物线 y= ax2﹣ x+1( a≠0)与线段 AB 有两个不一样的交点,∴令1x1=ax2﹣ x+1,则 2ax2﹣3x+1= 0 22∴△= 9﹣ 8a>0∴a<98a 1 10①当 a< 0 时,a 1 11解得: a≤﹣ 2∴a≤﹣ 2a 1 10②当 a> 0 时,a 1 11解得: a≥1∴1≤a<98综上所述: 1≤a<9或 a≤﹣ 2 8应选: C.【点睛】本题考察二次函数图象与系数的关系,一次函数图象上点的坐标特色,二次函数图象点的坐标特色,利用分类议论思想解决问题是本题的重点.10.二次函数 y=ax2+bx+c( a≠0)的部分图象如图所示,图象过点(﹣1, 0),对称轴为直线 x=2,以下结论:(1) 4a+b=0;( 2)9a+c>﹣ 3b;( 3) 7a﹣ 3b+2c>0;( 4)若点 A(﹣ 3, y1)、点 B(﹣1,y2)、点 C( 7, y3)在该函数图象上,则y1< y3< y2;( 5)若2方程 a(x+1)( x﹣ 5) =﹣ 3 的两根为 x1和 x2,且 x1< x2,则 x1<﹣ 1< 5<x2.此中正确的结论有()A.2 个B.3 个C.4 个D.5 个【答案】 B【分析】依据题意和函数的图像,可知抛物线的对称轴为直线x=- b=2,即 b=-4a,变形为2a4a+b=0,所以( 1)正确;由 x=-3 时, y>0,可得 9a+3b+c>0,可得 9a+c>-3c,故( 2)正确;由于抛物线与x 轴的一个交点为(-1,0) 可知 a-b+c=0,而由对称轴知b=-4a,可得 a+4a+c=0,即 c=-5a.代入可得 7a﹣3b+2c=7a+12a-5a=14a,由函数的图像张口向下,可知a< 0,所以7a﹣ 3b+2c< 0,故( 3)不正确;依据图像可知当x<2 时, y 随 x 增大而增大,当x> 2 时, y 随 x 增大而减小,可知若点 A(﹣ 3, y11,y23 1 32,故( 4))、点 B(﹣)、点 C( 7, y)在该函数图象上,则 =y < y2不正确;依据函数的对称性可知函数与x 轴的另一交点坐标为(5, 0),所以若方程a( x+1)( x ﹣5) =﹣ 3 的两根为 x1和 x2,且 x1< x2,则 x1<﹣ 1< x2,故( 5)正确.正确的共有 3 个 .应选 B.点睛:本题考察了二次函数图象与系数的关系:二次函数y=ax2+bx+c( a≠0),二次项系数a 决定抛物线的张口方向和大小,当a> 0 时,抛物线向上张口;当a<0 时,抛物线向下张口;一次项系数 b 和二次项系数 a 共同决定对称轴的地点,当 a 与 b 同号时(即 ab>0),对称轴在 y 轴左;当 a 与 b 异号时(即 ab< 0),对称轴在y 轴右;常数项 c 决定抛物线与 y 轴交点.抛物线与 y 轴交于( 0, c);抛物线与x 轴交点个数由△决定,△=b2﹣4ac> 0 时,抛物线与 x 轴有 2 个交点;△=b2﹣ 4ac=0 时,抛物线与x 轴有 1 个交点;△=b2﹣4ac<0 时,抛物线与 x 轴没有交点.11.如图,已知 A 4, 1 ,线段AB与 x 轴平行,且AB 2,抛物线yx2mx n 经过点 C 0,3和D 3,0,若线段AB 以每秒2个单位长度的速度向下平移,设平移的时间为 t (秒).若抛物线与线段AB 有公共点,则t 的取值范围是()A.0t 10B.2t 10C.2t 8D.2t10【答案】 B【分析】【剖析】直接利用待定系数法求出二次函数,得出 B 点坐标,分别得出当抛物线l 经过点 B 时,当抛物线 l 经过点 A 时,求出 y 的值,从而得出 t 的取值范围;【详解】解:( 1)把点 C( 0, 3)和 D( 3, 0)的坐标代入 y=-x2+mx+n 中,n3得,323m n0n3解得m2∴抛物线l分析式为y=-x2+2x+3,设点 B 的坐标为( -2, -1-2t ),点 A 的坐标为( -4, -1-2t ),当抛物线 l 经过点 B 时,有 y=-( -2)2+2×(-2) +3=-5,当抛物线 l 经过点 A 时,有 y=-( -4)2+2×( -4)+3=-21,当抛物线 l 与线段 AB 总有公共点时,有 -21≤-1-2t ≤-5,解得: 2≤t ≤10.故应选 B【点睛】本题主要考察了二次函数综合以及不等式组的解法等知识,正确利用数形联合剖析得出关于 t 的不等式是解题重点.12.若用“ *表”示一种运算规则,我们规定:a* b= ab﹣ a+b,如: 3*2 = 3×2﹣ 3+2= 5.以下说法中错误的选项是()A.不等式(﹣ 2) * ( 3﹣x)< 2 的解集是x< 3B.函数 y=( x+2) * x 的图象与 x 轴有两个交点C.在实数范围内,不论 a 取何值,代数式a* ( a+1)的值总为正数D.方程( x﹣ 2) *3 =5 的解是 x= 5【答案】 D【分析】【剖析】依据题目中所给的运算法例列出不等式,解不等式即可判断选项A;依据题目中所给的运算法例求得函数分析式,由此即可判断选项B;依据题目中所给的运算法例可得a*(a+1)= a( a+1)﹣ a+( a+1)= a2 +a+1=( a+ 1)2+3>0,由此即可判断选项C;依据24题目中所给的运算法例列出方程,解方程即可判断选项 D.【详解】∵a* b= ab﹣ a+b,∴(﹣ 2) * ( 3﹣ x)=(﹣ 2)×( 3﹣ x)﹣(﹣ 2)+( 3﹣ x)= x﹣ 1,∵(﹣ 2) * ( 3﹣ x)< 2,∴x﹣ 1< 2,解得 x<3,应选项 A 正确;∵y=( x+2)* x=( x+2) x﹣( x+2) +x= x2+2x﹣ 2,∴当 y= 0 时, x2 +2x﹣ 2= 0,解得, x1=﹣ 1+3 ,x2=﹣1﹣3,应选项B正确;∵a* ( a+1)= a( a+1)﹣ a+( a+1)= a2+a+1=( a+ 1)2 +3> 0,24∴在实数范围内,不论 a 取何值,代数式a* ( a+1)的值总为正数,应选项 C 正确;∵( x﹣ 2)*3 = 5,∴( x﹣ 2)×3﹣( x﹣2) +3= 5,解得, x=3,应选项 D 错误;应选 D.【点睛】本题是阅读理解题,依据题目中所给的运算法例获得相应的运算式子是解决问题的重点.13.一次函数 y=ax+b 与反比率函数y= c在同一平面直角坐标系中的图象如左图所示,则x二次函数y=ax2+bx+c 的图象可能是()A.B.C.D.【答案】 B【分析】【剖析】依据题中给出的函数图像联合一次函数性质得出a< 0, b> 0,再由反比率函数图像性质得出 c< 0,从而可判断二次函数图像张口向下,对称轴:b> 0,即在 y 轴的右侧,x2a与 y 轴负半轴订交,从而可得答案.【详解】解:∵一次函数 y=ax+b 图像过一、二、四,∴ a<0, b> 0,又∵反比率函数 y= c图像经过二、四象限,x∴ c<0,b> 0,∴二次函数对称轴: x2a∴二次函数 y=ax2+bx+c 图像张口向下,对称轴在y 轴的右侧,与y 轴负半轴订交,故答案为 B.【点睛】本题考察了二次函数的图形,一次函数的图象,反比率函数的图象,娴熟掌握二次函数的有关性质:张口方向、对称轴、与 y 轴的交点坐标等确立出 a、 b、 c 的状况是解题的重点.14.如图,在边长为 4 的正方形ABCD 中,动点P从A点出发,以每秒 1 个单位长度的速度沿 AB 向B点运动,同时动点Q 从B点出发,以每秒2个单位长度的速度沿BC CD 方向运动,当P运动到B点时, P、 Q 点同时停止运动.设P 点运动的时间为t 秒,APQ 的面积为 S ,则表示 S 与 t 之间的函数关系的图象大概是()A.B.C.D.【答案】 D【分析】【剖析】本题应分两段进行解答, ①点 P在 AB上运动,点Q 在 BC上运动;②点 P在 AB上运动,点 Q 在 CD 上运动,挨次得出 S 与 t 的关系式,即可判断得出答案.【详解】解:当点 P 在 AB 上运动,点 Q 在 BC上运动时,此时, AP t, BQ2tSV APQ1t2t t2,函数图象为抛物线;2当点 P 在 AB 上运动,点 Q 在 BC 上运动时,此时, AP t ,VAPQ底边AP上的高保持不变SV APQ1t 4 2t ,函数图象为一次函数;2应选: D.【点睛】本题考察的知识点是函数图象,理解题意,分段求出S 与 t 之间的函数关系是解本题的关键.15.如图,矩形 ABCD 的周长是28cm,且 AB 比BC 长 2cm .若点P从点 A 出发,以1cm / s 的速度沿 A D C 方向匀速运动,同时点Q 从点A出发,以2cm / s的速度沿A B C 方向匀速运动,当一个点抵达点 C 时,另一个点也随之停止运动.若设运动时间为 t( s) , VAPQ 的面积为S cm2,则 S cm2与 t (s) 之间的函数图象大概是()A .B .C .D .【答案】 A 【分析】 【剖析】先依据条件求出 AB 、 AD 的长,当 0≤t ≤4时, Q 在边 AB 上, P 在边 AD 上,如图 1,计算 S与 t 的关系式,剖析图像可清除选项 B 、C ;当 4< t ≤6时, Q 在边 BC 上, P 在边 AD 上,如 图 2,计算 S 与 t 的关系式,剖析图像即可清除选项 D ,从而得结论.【详解】解:由题意得2 AB 2BC 28, AB BC 2 ,可解得 AB 8, BC 6,即 AD 6 ,① 当 0≤ t ≤4时, Q 在边 AB 上, P 在边 AD 上,如图1,△APQ = 1 1 2S2APgAQt g2tt ,2图像是张口向上的抛物线,应选项B 、C 不正确;② 当 4< t ≤6时, Q 在边 BC 上, P 在边 AD 上,如图 2,S △APQ = 1 APgAB1t 8 4t ,22图像是一条线段,应选项D 不正确;应选: A.【点睛】本题考察了动点问题的函数图象,依据动点P 和 Q 的地点的不一样确立三角形面积的不一样,解决本题的重点是利用分类议论的思想求出S 与 t 的函数关系式.2(h为常数),当自变量 x 的值知足 2x 5 时,与其对应的16.已知二次函数y( x h)函数值 y 的最大值为-1,则h的值为 ()A.3或6B.1或6C.1或3D.4或6【答案】 B【分析】剖析:分h< 2、2≤h≤5和 h> 5 三种状况考虑:当h< 2 时,依据二次函数的性质可得出关于 h 的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0 与题意不符,可得出该状况不存在;当h> 5 时,依据二次函数的性质可得出对于h 的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当 h<2 时,有 -(2-h)2=-1,解得: h1=1, h2=3(舍去);当 2≤h≤5时, y=-( x-h)2的最大值为 0,不切合题意;当 h>5 时,有 -(5-h)2=-1,解得: h3=4(舍去), h4=6.综上所述: h 的值为 1 或 6.应选 B.点睛:本题考察了二次函数的最值以及二次函数的性质,分h <2、 2≤h≤5和 h> 5 三种情况求出 h 值是解题的重点.17.下边所示各图是在同向来角坐标系内,二次函数y=ax2 +( a+c)x+c 与一次函数y=ax+c 的大概图象.正确的()A.B.C.D.【答案】 D【分析】【剖析】依据题意和二次函数与一次函数的图象的特色,能够判断哪个选项切合要求,从而获得结论.【详解】令 ax2+( a+c) x+c=ax+c,ca∴二次函数 y=ax2+( a+c) x+c 与一次函数 y=ax+c 的交点为( 0, c),( -c, 0),a选项 A 中二次函数 y=ax2+( a+c) x+c 中 a>0, c<0,而一次函数y=ax+c 中 a< 0, c> 0,应选项 A 不符题意,选项 B 中二次函数 y=ax2+( a+c)x+c 中 a> 0, c< 0,而一次函数y=ax+c 中 a> 0, c<0,两个函数的交点不切合求得的交点的特色,应选项 B 不符题意,选项 C 中二次函数 y=ax2+(a+c)x+c 中 a< 0,c>0,而一次函数y=ax+c 中 a< 0, c> 0,交点切合求得的交点的状况,应选项 D 切合题意,选项 D 中二次函数 y=ax2+( a+c)x+c 中 a< 0, c>0,而一次函数y=ax+c 中 a> 0, c<0,应选项 C 不符题意,应选: D.【点睛】考察一次函数的图象、二次函数的图象,解答本题的重点是明确题意,利用数形联合的思想解答.18.在同一平面直角坐标系中,函数y 3x a 与 y ax2 +3 x 的图象可能是()A.B.C.D.【答案】 C【分析】【剖析】依据一次函数及二次函数的图像性质,逐个进行判断.【详解】解: A.由一次函数图像可知 a>0,所以二次函数图像张口向上,但对称轴30 应在y 2a轴左边,故此选项错误;B. 由一次函数图像可知a< 0,而由二次函数图像张口方向可知a> 0,故此选项错误;C. 由一次函数图像可知a< 0,所以二次函数图像张口向下,且对称轴30 在y轴右2a侧,故此选项正确;D. 由一次函数图像可知a> 0,而由二次函数图像张口方向可知a< 0,故此选项错误;应选: C.【点睛】本题考察二次函数与一次函数图象的性质,解题的重点是利用数形联合思想剖析图像,本题属于中等题型.19.已知二次函数y= ax2+bx+c( a≠0)的图象如图,剖析以下四个结论:① abc < 0;②b2﹣4ac>0;③3a+c> 0;④(a+c)2< b 2,此中正确的结论有()A.1 个B.2 个【答案】 B【分析】试题分析:①由张口向下,可得a 又由抛物线与y 轴交于正半轴,可得0,c 0,C.3 个D.4 个再依据对称轴在y 轴左边,获得 b 与a 同号,则可得 b 0,abc 0,故① 错误;②由抛物与 x 有两个交点,可得b2故② 正确;4ac 0,③当 x 2 ,y 0,即 4a2b c0 ⋯⋯(1)当 x 1 ,y 0,即 a b c0 ⋯⋯(2)(1) +( 2)×2得,6a3c0,即 2a c 0,又因 a0,所以 a2a c3a c0,故③ ;④ 因x1, y a b c 0,1, y a b c 0x所以 a b c a b c0即 a c b a c b(a c)2b20,所以 (a c)2b2.故④ 正确,上可知,正确的有 2 个 .故 B.20.在平面直角坐系中,点P 的坐1,2,将抛物 y 1 x23x 2 沿坐平移2一次,使其点P ,平移的最短距离()1B. 1C. 55A.D.22【答案】 B【分析】【剖析】先求出平移后P 点点的坐,求出平移距离,即可得出.【解】解: y 1 x23x 2 =1x325,222当沿水平方向平移,坐和P 的坐同样,把y=2 代入得:解得: x=0 或 6,平移的最短距离1-0=1;当沿直方向平移,横坐和P 的横坐同样,把x=1 代入得:解得: y=1,215平移的最短距离 2= ,22即平移的最短距离是1,应选 B.【点睛】本题考察了二次函数图象上点的坐标特色,能求出平移后对应的点的坐标是解本题的关键.。

初中数学二次函数难点100题

初中数学二次函数难点100题

二次函数难点100题未命名一、单选题1.已知二次函数f (x )=x 2+bx+c ,若对任意的x 1,x 2∈[-1,1],有|f (x 1)-f (x 2)|≤6,则b 的取值范围是( )A .[−5,5]B .[−4,4]C .[−3,3]D .[−2,2]2.已知二次函数f(x)=ax 2+bx (|b |≤2|a |),定义f 1(x)=max {f(t)|−1≤t ≤x ≤1},f 2(x)=min {f(t)|−1≤t ≤x ≤1},其中max {a,b }表示a,b 中的较大者,min {a,b }表示a,b 中的较小者,下列命题正确的是A .若f 1(−1)=f 1(1),则f(−1)>f(1)B .若f 2(−1)=f 2(1),则f(−1)>f(1)C .若f 2(1)=f 1(−1),则f 1(−1)<f 1(1)D .若f 2(1)=f 1(-1),则f 2(−1)>f 2(1) 3.已知函数的图象如图所示,则函数的图象可能是( )A .B .C .D .4.若函数在上存在极小值点,则实数的取值范围是( )A .B .C .D .5.已知函数f(x)={x +k(1−a 2),x ≥0x 2−4x +(3−a)2,x <0,其中a ∈R ,若对任意的非零实数x 1,存在唯一的非零实数x 2(x 1≠x 2),使得f(x 1)=f(x 2)成立,则k 的取值范围为( ) A .0≤k ≤8 B .k ≥8 C .k ≤0或k ≥8 D .k ≤06.已知函数f(x)=cos(2π3x)+(a −1)sin(π3x)+a,g(x)=2x −x 2,若f[g(x)]≤0对()y f x =()()()g x ff x=()32233f x x ax bx b =+-+()0,1b (]1,0-()1,-+∞[)0,+∞()1,+∞x ∈[0,1]恒成立,则实数a 的取值范围是( )A .(−∞,√3−1]B .(−∞,0]C .[0√3−1]D .(−∞,1−√3] 7.已知函数,若不等式对任意上恒成立,则实数的取值范围为( ) A .B .C .D .8.若函数在其图象上存在不同的两点,,其坐标满足条件:0,则称为“柯西函数”,则下列函数:①:②:③:④.其中为“柯西函数”的个数为( ) A .1B .2C .3D .49.如果把一个平面区域内两点间的距离的最大值称为此区域的直径,那么曲线围成的平面区域的直径为( )AB .C .D .10.已知函数,若恒成立,则实数m 的取值范围是A .B .C. D . 11.若函数f(x)={2|x−2|,x ≤2log 2(x 2−ax +a 23),x >2 的最小值为f(2),则实数a 的取值范围为( )A .a ≤3+√3或a ≥3√3;B .a ≤3−√3或a ≥3√3;C .a ≤3+√3或a ≥2√6;D .a ≤3−√3或a ≥2√6;12.在ΔABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(asinA −csinBcosA)=bsinB ,且30λcos(B +C)+9cos2A +16λ2+5≤0恒成立,则λ的取值范围是( ) A .[−12,12] B .[−1,78] C .[78,1]D .[78,5√28]13.函数f(x)定义域为D ,若满足①f(x)在D 内是单调函数;②存在[a,b]⊆D 使f(x)在23ln ,1()46,1x x f x x x x -≤⎧=⎨-+>⎩()2f x x a ≥-(0,)x ∈+∞a 13,3e⎡⎤-⎢⎥⎣⎦[3,3ln 5]+[3,4ln 2]+[2,5]()f x ()11,A x y ()22,B x y 1212|]x x y y +()f x 1()f x x x=+(0)x >()ln (0)f x x x e =<<()cos f x x =2()4f x x =-422x y +=34()xxf x e me -=-()'f x ≥()[)0,+∞[)2,+∞[)3,+∞(],3-∞[a,b]上的值域为[a 2,b2],那么就称y =f(x)为“半保值函数”,若函数f(x)=log a (a x +t 2)(a >0且a ≠1)是“半保值函数”,则t 的取值范围为( ) A .(0,14) B .(−12,0)∪(0,12) C .(0,12) D .(−12,12)14.已知f (x )=m (x −2m )(x +m +3),g (x )=4x −2,若对任意x ∈R ,f (x )<0或g (x )<0,则m 的取值范围是( )A .(−72,+∞)B .(−∞,14)C .(−72,0)D .(0,14)15.已知1是函数f (x )=ax 2+bx+c (a >b >c )的一个零点,若存在实数x 0.使得f (x 0)<0.则f (x )的另一个零点可能是( ) A .x 0−3 B .x 0−12 C .x 0+32 D .x 0+216.设函数f(x)=g(x)=x 2f(x -1),则函数g(x)的递减区间是( )A .(-∞,0]B .[0,1)C .[1,+∞)D .[-1,0]17.已知函数f(x)=2cosx ⋅(m −sinx)−3x 在(−∞,+∞)上单调递减,则实数m 的取值范围是( )A .[−1,1]B .[−1,12] C .[−12,12] D .(−12,12)18.设奇函数f(x)在[−1,1]上是增函数,且f(−1)=−1,若对所有的x ∈[−1,1]及任意的m ∈[−1,1]都满足f(x)≤t 2−2mt +1,则t 的取值范围是( ) A .[−2,2] B .[−12,12]C .(−∞,−12]∪[12,+∞)∪{0} D .(−∞,−2]∪[2,+∞)∪{0}19.设函数f(x)=ax 2+bx +c(a,b,c ∈R,a >0),则“f (f (−b2a ))<0”是“f(x)与f(f(x))”都恰有两个零点的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件20.给出定义:若m −12<x ≤m +12(其中m 为整数),则m 叫做离实数x 最近的整数,记作{x },即{x }=m .设函数f(x)=x −{x },二次函数g(x)=ax 2+bx ,若函数y =f(x)与y =g(x)的图象有且只有一个公共点,则a,b 的取值不可能是( )A .a =−4,b =1B .a =−2,b =−1C .a =−5,b =−1D .a =5,b =121.已知集合M={ ( x ,y ) | y =f (x ) },若对于任意( x 1 ,y 1 )∈M,都存在( x 2 ,y 2 )∈M,使得x 1 x 2 +y 1 y 2 =0成立,则称集合M 是“理想集合”,则下列集合是理想集合的是( )A .M={ ( x ,y ) | y =1x }B .M={ ( x ,y ) | y =log 2 (x -1) }C .M={ ( x ,y ) | y =x 2-2x +2 }D .M={ ( x ,y ) | y =cos x }22.设a ,b ,c 是△ABC 的三条边长,对任意实数x ,f(x)=b 2x 2+(b 2+c 2-a 2)x +c 2,有( )A .f(x)=0B .f(x)>0C .f(x)≤0D .f(x)<023.函数f (x )=13x 3+12bx 2+cx +d 在(0,2)内既有极大值又有极小值,则c 2+2bc +4c 的取值范围是( )A .(0,116) B .(0,14) C .(0,12) D .(0,1)24.已知函数f (x )=x 3+ax 2−9x +1,a ∈R ,当x 0≠1时,曲线y =f (x )在点(x 0,f (x 0))与点(2−x 0,f (2−x 0))处的切线总是平行时,则由点(a,a )可作曲线y =f (x )的切线的条数为( )A .1B .2C .3D .无法确定25.若对任意的x ∈[1,+∞),不等式2x 2−|x 2−ax +2|>1恒成立,则实数a 的取值范围是( )A .(−2√3,2√3)B .(0,2)C .(2,2√3)D .(2,4)26.f(x)=x 2+bx +c ,若方程f(x)=x 无实根,则方程f(f(x))=x ( ) A .有四个相异实根 B .有两个相异实根 C .有一个实根 D .无实数根27.已知函数f(x)=alnx +12x 2,对任意不等实数x 1,x 2∈(0,+∞),不等式f(x 1+a)−f(x 2+a)x 1−x 2>3恒成立,则实数a 的取值范围为( )A .[2,+∞)B .(2,+∞)C .[94,+∞) D .(94,+∞)28.设函数的定义域为,若存在闭区间,使得函数满足:①在上是单调函数;②在上的值域是,则称区间是函数的“和谐区间”.下列结论错误..的是( ) A .函数存在“和谐区间”()f x D [],a b D ⊆()f x ()f x [],a b ()f x [],a b []2,2a b [],a b ()f x ()()20f x xx =≥B .函数不存在“和谐区间”C .函数存在“和谐区间”D .函数 (且)不存在“和谐区间”29.令,函数,满足以下两个条件:①当时, 或;②, , ,则实数的取值范围是( ) A . B . C . D .30.若在定义域内存在实数x 0,满足f(−x 0)=−f(x 0),则称f(x)为“有点奇函数”,若f(x)=4x −m2x+1+m 2−3为定义域R 上的“有点奇函数”,则实数m 的取值范围是( ).A .1−√3≤m ≤1+√3B .1−√3≤m ≤2√2C .−2√2≤m ≤2√2D .−2√2≤m ≤1−√331.如果函数f (x )=12(2−m )x 2+(n −8)x +1(m >2)在区间[−2,−1]上单调递减,那么mn 的最大值为( )A .16B .18C .25D .3032.若区间[x 1,x 2]的长度定义为|x 2−x 1|,函数f(x)=(m 2+m)x−1m x(m ∈R,m ≠0)的定义域和值域都是[a,b] (b >a),则区间[a,b]的最大长度为( ) A .2√33B .√33 C .√3 D .333.已知函数满足: ,且, 分别是上的偶函数和奇函数,若使得不等式恒成立,则实数的取值范围是( )A .B .C .D . ()()3f x x x R =+∈()()2401xf x x x =≥+()1log 8xc f x c ⎛⎫=- ⎪⎝⎭0c >1c ≠11t x dx-=⎰()()12241332{1log 2x x f x x t x ⎛⎫+≤- ⎪⎝⎭=⎛⎫+>- ⎪⎝⎭()()()21422{ 12xx ax a x g x x -+≤=->0x ≤()0f x <()0g x <(){}0A f x x =(){}0B g x x =A B R ⋃=a 11,23⎡⎤--⎢⎥⎣⎦11,23⎡⎫--⎪⎢⎣⎭1,3⎛⎫-∞- ⎪⎝⎭1,3⎛⎤-∞- ⎥⎝⎦()xF x e =()()()F x g x h x =+()g x ()h x R (]02x ∀∈,()()20g x ah x -≥a (-∞(-∞(()+∞34.已知函数, ,若对任意的实数, 与中至少有一个为正数,则实数的取值范围是( )A .B .C .D . 35.若函数为定义域上的单调函数,且存在区间(其中),使得当时, 的取值范围恰为,则称函数是上的正函数.若函数是上的正函数,则实数的取值范围为( )A .B .C .D . 36.函数的定义域为,若满足:①在内是单调函数;②存在区间,使在区间上的值域为,那么就称函数为“铁山函数”,若函数 是“铁山函数”,则的取值范围为( ) A . B . C . D .37.函数的定义域为,对于内的任意都有成立,则的值为A .B .C .D .以上答案均不正确38.已知函数若,且,则的最小值为( )A .B .C .D .39.记为三个数中的最小数,若二次函数有零点,则 的最大值为( ) A .2 B .C .D .1 40.已知函数的两个零点满足,集合,则( )A .∀m ∈A ,都有f (m +3)>0B .∀m ∈A ,都有f (m +3)<0C .∃m 0∈A ,使得f (m 0()f x tx =()()2241g x t x x =--+0x ()0f x ()0g x t ()(],20,2-∞-⋃()(]2,00,2-⋃(]2,2-()0,+∞()f x D []a b D ⊆,a b <[]x a b ∈,()f x []a b ,()f x D ()2g x x m =+()0-∞,514⎛⎫-- ⎪⎝⎭,5344⎛⎫-- ⎪⎝⎭,314⎛⎫-- ⎪⎝⎭,304⎛⎫- ⎪⎝⎭,D ()f x D [],a b ()f x [],a b ,22a b ⎡⎤⎢⎥⎣⎦()y f x =()()log 2x c f x c t =+()c 0c 1>≠,t ()0,1(]0,11,8⎛⎤-∞ ⎥⎝⎦108⎛⎫ ⎪⎝⎭,()f x =D D x ()()()11f f x f -≤≤()3b c f ⋅+605()223,f x x x =--1a b <<()()f a f b =3a b +3-4-4-5-(),,M x y z ,,x y z ()2(,,0)f x ax bx c a b c =++>,,b c c a a b M ab c +++⎛⎫⎪⎝⎭5432()2f x x bx c =++12,x x 123x x -<()}{0A m f m =<+3)=0 D .∃m 0∈A ,使得f (m 0+3)<041.已知是实数,关于的方程有4个不同的实数根,则的取值范围为( )A . B. C . D . 42.已知若存在互不相同的四个实数0<a <b <c <d 满足f (a )=f (b )=f (c )=f (d ),则ab +c +2d 的取值范围是() A .(,B .(,15) C .[,15] D .(15)43.已知且, , ,则的最小值为( )A .5B .10C .15D .2044.设函数,若关于的方程有四个不同的解,且,则的取值范围是( ) A . B . C . D . 45.若函数有两个极值点,则实数的取值范围是( ) A . B . C .D .46.设函数f(x)={m +x 2,|x |≥1x,|x |<1的图象过点(1,1),函数g(x)是二次函数,若函数f(g(x))的值域是[0,+∞),则函数g(x)的值域是( ) A .(-∞,-1]∪[1,+∞) B .(-∞,-1]∪[0,+∞) C .[0,+∞) D .[1,+∞),a b x 21x ax b x +=-a b +()2,+∞()2,2-()2,6(),2-∞()2,02,{814,2,x f x x x x <≤=-+>1313+1313+13(),,0,a b c ∈+∞a b c ≥≥12a b c ++=45ab bc ca ++=a ()22122,0{ 2log ,0x x x f x x x ++≤=>x ()f x a =1234,,,x x x x 1234x x x x <<<1224341x x x x x ++()3,-+∞(),3-∞[)3,3-(]3,3-()()3212113xx x f x e me m e =++++m 1,12⎛-⎝1,12⎡--⎢⎣(,1-∞((),11-∞⋃+∞47.已知函数,方程有四个不同的实数根,则实数的取值范围为( )A .B .C .D .48.若函数在上单调递增,则实数的取值范围为( )A .B .C .D .49.已知在(−∞,1]上单调递减的函数f (x )=x 2−2tx +1,对任意的x 1,x 2∈[0,t +1],总有|f (x 1)−f (x 2)|≤2,则实数t 的取值范围为( ) A .[−√2,√2] B .[1,√2] C .[2,3] D .[1,2]50.已知函数,且f(a 2−4)=f(2a −8),则的最小值为A .374B .358 C .D .27451.实系数一元二次方程x 2+ax +b =0的一个根在(0,1)上,另一个根在(1,2)上,则2−b3−a 的取值范围是 ( )A .(2,+∞)B .(−∞,12) C .(12,2) D .(0,12)52.设函数f(x)={2x 2−x,x ≤0−x 2+2x,x >0,且关于x 的方程f(x)=m(m ∈R)恰有3个不同的实数根x 1,x 2,x 3,则x 1x 2x 3的取值范围是( ) A .(−1,0) B .(−12,+∞) C .(0,1) D .(−12,0)53.已知函数y =√1−x -√x +3的最大值为M ,最小值为m ,则M +m = ( ) A .−2 B .2 C .0 D .1−√354.已知函数f(x)={e |x−1|,x >0−x 2−2x +1,x ≤0,若关于x 的方程f 2(x)−3f(x)+a =0(a ∈R)有8个不等的实数根,则a 的取值范围是( ) A .(0,14) B .(13,3) C .(1,2) D .(2,94)()x f x xe =()()()210f x tf x t R ++=∈t 21,e e ⎛⎫+-∞- ⎪⎝⎭21,2e e ⎛⎫+-- ⎪⎝⎭212,e e ⎛⎫+ ⎪⎝⎭21,e e ⎛⎫++∞ ⎪⎝⎭()()()1cos23sin cos 412f x x a x x a x =+-+-,02π⎡⎤-⎢⎥⎣⎦a 1,17⎡⎤⎢⎥⎣⎦11,7⎡⎤-⎢⎥⎣⎦][1,1,7⎛⎫-∞-⋃+∞ ⎪⎝⎭[)1,+∞55.已知f(x)={x +1,(0≤x <1)2x −12,(x ≥1),设a >b ≥0,若f(a)=f(b),则b ⋅f(a)的取值范围是( )A .(1,2]B .(34,2] C .[34,2) D .(12,2)56.已知实数a <b <c ,设方程1x−a +1x−b +1x−c =0的两个实根分别为x 1,x 2(x 1<x 2),则下列关系中恒成立的是( )A .x 1<a <b <x 2<cB .a <x 1<b <x 2<cC .a <x 1<x 2<b <cD .a <x 1<b <c <x 2二、填空题57.已知是定义在上的函数, 若在定义域上恒成立,而且存在实数满足:且,则实数的取值范围是_______58.若二次函数f(x)=ax 2+bx +c (a >0)在区间[1,2]上有两个不同的零点,则f(1)a的取值范围为_____.59.若不等式对任意都成立,则实数的最小值为________.60.已知函数,若对任意恒成立,则实数的取值范围是___.61.已知函数,若函数有三个零点,则实数的取值范围为_________.62.对满足的任意x ,y ,恒有,成立,则a的取值范围为_____.63.若存在实数a ∈[−12,12],使函数f(x)=|x|(x −a)−t(1−a)有3个不同的零点,则实数t 的取值范围为______________.64.函数f (x +12)=x 3+2019x −2019−x +1,若f(sinθ+cosθ)+f(sin2θ−t)<2对2()22f x x x b =++[-1,0][()]0f f x ≤0x 00[()]f f x x =00()f x x ≠b 2sin sin sin 19sin sin k B A C B C +>ABC ∆k ()221f x ax x =++(),0x R f f x ⎡⎤∈≥⎣⎦a ()240{ 30x x x f x x x-≥=<,,()()3g x f x x b =-+2221y x ax a ≥-++22320220x xy y x y ⎧--≤⎨+-≥⎩∀θ∈R 恒成立,则实数t 的取值范围是_____.65.设二次函数(为实常数)的导函数为,若对任意不等式恒成立,则的最大值为_____.66.已知f(x)=x 2−ax ,若对任意的 a ∈R ,存在 x 0 ∈[0,2] ,使得|f(x 0)|≥k 成立,则实数k 的最大值是_____67.若f (x )=cos 2x +a cos (π2+x)在区间(π6,π2)上是增函数,则实数a 的取值范围为________.68.已知函数g(x)=log 2x,x ∈(0,2) ,若关于x 的方程|g(x)|2+m|g(x)|+2m+3=0有三个不同的实数解,则实数m 的取值范围是__________________. 69.当0<x <12时,恒有x 2<log a x 成立,则a 的取值范围为_______.70.已知函数f (x )={|x 2−1| , x ≥0x +1, x <0 ,若方程[f (x )]2+af (x )+1=0有四个不等的实数根,则实数a 的取值范围是___________.71.已知函数f(x)=x|x|,若存在x ∈[t 2−2 , t 2],不等式f(x +t)≥4f(x)成立,则实数t 的取值范围是__________.72.已知函数f (x )=−2x 2+bx +c 在x =1时有最大值1,0<m <n ,并且x ∈[m,n ]时,f (x )的取值范围为[1n ,1m ],则m +n =__________.73.若关于x 的方程x 2+x +|a −14|+|a|=0有实根,则实数a 的取值范围是________.74.已知a,b,c ∈R +(a >c),关于x 的方程|x 2−ax +b|=cx 恰有三个不等实根,且函数f(x)= |x 2−ax +b|+cx 的最小值是c 2,则ac =_______.75.设函数f (x )=|x 2−2x −1|,若a >b ≥1,f (a )=f (b ),则对任意的实数c , (a +c 2)2+(b −c 2)2的最小值为_________________.76.已知函数f(x)=mx 2+(1−3m)x −4,m ∈R .当m <0时,若存在x 0∈(1,+∞),使得f(x 0)>0,则m 的取值范围为__________.77.已知函数f (x )=x 2+(1−2a )x +a 2,若关于x 的不等式f(f (x ))≥0恒成立,则实数a 的取值范围是__________.78.已知二次函数y =a(a +1)x 2−(2a +1)x +1,a =1,2,⋯,n ,⋯时,其对应的抛物线在x 轴上截得的线段长依次为d 1,d 2,⋯,d n ,⋯,则d 1+d 2+⋯+d n =__________.79.已知实数a,b,c ∈[−2,2],且满足a +b +c =0,则a 3+b 3+c 3的取值范围是()2f x ax bx c =++,,a b c ()f x 'x ∈R ()()f x f x '≤222b a c+__________.80.已知函数f(x)={|x +a|+|x −1|,x >0,x 2−ax +2,x ≤0的最小值为a ,则实数a 的取值集合为__________.81.已知f (x )=ax 3+bx 2+cx +d (b,c,d ∈Z,b ≠c ),若f (b )a =b 3,f (c )a =c 3,则d =____________.82.已知f(x)为二次函数,且不等式f(x)<0的解集是(−2017,2019),若f(t −1)>f(1+t 2),则实数t 的取值范围是__________.83.已知函数f(x)=x 2−5x +7,若对于任意的正整数n ,在区间[1,n +5n ]上存在m +1个实数a 0、a 1、a 2、⋅⋅⋅、a m ,使得f(a 0)>f(a 1)+f(a 2)+⋅⋅⋅+f(a m )成立,则m 的最大值为________84.已知函数f (x )=x |x −4|+2x ,存在x 3>x 2>x 1≥0,使得f (x 1)=f (x 2)=f (x 3),则x 1⋅x 2⋅f (x 3)的取值范围是__________.85.已知函数,若关于的不等式的解集为空集,则实数的取值范围是______.86.已知函数,函数,若函数有4个零点,则实数的取值范围为__________.87.若函数在定义域内某区间i 上是增函数,且在i 上是减函数,则称的在i 上是“弱增函数”.已知函数的上是“弱增函数”,则实数的值为____________.88.已知函数若对于任意实数x , 与的值至少有一个为正数,则实数m 的取值范围是__________.89.若, ,满足,则的最小值__________.90.若在定义域内存在实数,满足,称为“局部奇函数”.若为定义域上的“局部奇函数”,则实数的取值范围是__________.()()21f x x a x a =+--x ()()0f f x <a ()2,0{ 115,024x x f x a x x >=+-≤()2g x x =()()y f x g x =-a ()f x D ()f x x ()y f x =()()24g x x m x m =+-+(]0,2m ()()()212,,4f x mx m xg x mx =+-+=()f x ()g x m n R ∈10m n ++=x ()()f x f x -=-()f x ()12423x x f x m m +=-+-R m91.若二次函数f (x )=ax 2+bx +c (a ≠0)的图象和直线y =x 无交点,现有下列结论: ①方程f [f (x )]=x 一定没有实数根;②若a >0,则不等式f [f (x )]>x 对一切实数x 都成立;③若a <0,则必存在实数x 0,使f [f (x 0)]>x 0;④若a +b +c =0,则不等式f [f (x )]<x 对一切实数都成立;⑤函数g (x )=ax 2−bx +c 的图象与直线y =−x 也一定没有交点,其中正确的结论是__________.(写出所有正确结论的编号)92.若函数f (x )= (a ,b ,c ∈R)的部分图象如图所示,则b =________.93.在希腊数学家海伦的著作《测地术》中记载了著名的海伦公式,利用三角形的三条边长求三角形面积,若三角形的三边长为, , ,其面积这里.已知在中, , ,其面积取最大值时__________.94.设, 在上恒成立,则的最大值为__________.95.若函数f(x)={3x −a ,x <1x 2−3ax +2a 2,x ≥1恰有两个零点,则实数a 的取值范围为__________.96.函数f(x)的定义域为D ,若满足:①f(x)在D 内是单调函数;②存在[a,b]⊂D ,使得f(x)在[a,b]上的值域为[2a,2b],则称函数f(x)为“成功函数”,若函数f(x)=log c (c 4x +3t) (c >0,c ≠1)是“成功函数”,则t 的取值范围为_________.三、解答题97.设函数y =f (x )的定义域为D ,值域为A ,如果存在函数x =g (t ),使得函数y =f [g (t )]的值域仍是A ,那么称x =g (t )是函数y =f (x )的一个等值域变换.(1)判断下列函数x =g (t )是不是函数y =f (x )的一个等值域变换?说明你的理由; ①f (x )=log 2x,x >0,x =g (t )=t +1t ,t >0;②f (x )=x 2−x +1,x ∈R,x =g (t )=2t ,t ∈R .(2)设f (x )=log 2x 的定义域为x ∈[2,8],已知x =g (t )=mt 2−3t+nt +1是y =f (x )的一个21ax bx c++a b c S =()12p a b c =++ABC ∆6BC =2AB AC =sin A =0a <()()2201720160x a x b ++≥()a b ,b a -等值域变换,且函数y =f [g (t )]的定义域为R ,求实数m 、n 的值.98.对于函数f(x),若f(x 0)=x 0,则称x 0为f(x)的“不动点”;若f[f(x 0)]=x 0,则称x 0为f(x)的“稳定点”.函数f(x)的“不动点”和“稳定点”的集合分别记为A 和B ,即A ={x|f(x)=x },B ={x|f[f(x)]=x }.(1)设函数f(x)=3x +4,求集合A 和B .(2)求证:A ⊆B .(3)设函数f(x)=ax 2+bx +c(a ≠0),且A =∅,求证:B =∅.99.设x ∈[2,8]时,函数f (x )=12log a (ax )⋅log a (a 2x ) (a>0,且a≠1)的最大值是1,最小值是−18,求a 的值.100.对于函数,若存在实数对(),使得等式对定义域中的每一个都成立,则称函数是“()型函数”.(1) 判断函数是否为 “()型函数”,并说明理由;(2) 若函数是“()型函数”,求出满足条件的一组实数对; (3)已知函数是“()型函数”,对应的实数对为(1,4).当 时, ,若当时,都有,试求的取值范围.101.对于区间和函数,若同时满足:①在上是单调函数;②函数, 的值域还是,则称区间为函数的“不变”区间.(1)求函数的所有“不变”区间. (2)函数是否存在“不变”区间?若存在,求出实数的取值范围;若不存在,说明理由.102.若函数的图象关于直线对称,求函数的最大值. ()f x ,a b ()()f a x f a x b +⋅-=x ()f x ,a b ()1f x x =,a b ()24x f x =,a b (),a b ()g x ,a b (),a b []0,1x ∈()2g x x =()11m x --+(0)m >[]0,2x ∈()14g x ≤≤m [],a b ()y f x =()f x [],a b ()y f x =[],x a b ∈[],a b [],a b ()f x ()20y xx =≥()20y x m x =+≥m ()()()221f x xx ax b =-++2x =-()f x参考答案1.C【来源】浙江省湖州市八校联盟2018-2019学年高一上学期期中联考数学试题【解析】【分析】若对任意的x1,x2∈[-1,1],有|f(x1)-f(x2)|≤6,则当x1,x2∈[-1,1],函数值的极差不大于6,进而可得答案。

(专题精选)初中数学二次函数难题汇编附答案

(专题精选)初中数学二次函数难题汇编附答案
∵x1+x2= 2 ,x1x2=﹣1, a
∴|x1﹣x2|=2
1 1 >2, a2
∴B 正确;
二次函数 y=ax2+bx+c(a>0)的对称轴 x=﹣ b = 1 , 2a a
当 a>0 时,不能判定 x< 1 时,y 随 x 的增大而减小; 10
∴C 错误;
∵﹣1<m<n<0,a>0,
∴m+n<0, 2 >0, a
∴m2﹣2m+2=6,解得 m=1+ 5 或 m=1﹣ 5 (舍去),
当 m+1<1 时,可知当自变量 x 满足 m≤x≤m+1 时,y 随 x 的增大而减小,
∴当 x=m+1 时,y 有最小值,
∴(m+1)2﹣2(m+1)+2=6,解得 m= 5 (舍去)或 m=﹣ 5 ,
综上可知 m 的值为 1+ 5 或﹣ 5 .
C.③④⑤
D.①③⑤
【答案】C
【解析】
【分析】
由抛物线的开口方向判断 a 的符号,由抛物线与 y 轴的交点判断 c 的符号,然后根据对称
轴及抛物线与 x 轴交点情况进行推理,进而对所得结论进行判断.
【详解】
①由抛物线交 y 轴于负半轴,则 c<0,故①错误;
②由抛物线的开口方向向上可推出 a>0;
解:依题意得方程 x3 2x 1 0 的实根是函数 y x2 2 与 y 1 的图象交点的横坐标,
x 这两个函数的图象如图所示,它们的交点在第一象限.
当 x= 1 时, y x2 2 2 1 , y 1 4 ,此时抛物线的图象在反比例函数下方;
4
16
x
当 x= 1 时, y x2 2 2 1 , y 1 3 ,此时抛物线的图象在反比例函数下方;

(专题精选)初中数学二次函数难题汇编及答案解析

(专题精选)初中数学二次函数难题汇编及答案解析

【解析】
【分析】
原抛物线顶点坐标为( 0, 0),平移后抛物线顶点坐标为( -1, 2),由此确定平移办法.
【详解】 y=x2+2x+3=( x+1) 2+2,该抛物线的顶点坐标是(
-1, 2),抛物线 y=x2 的顶点坐标是( 0,
0), 则平移的方法可以是:将抛物线
y=x2 向左平移 1 个单位长度,再向上平移 2 个单位长度.
故选: A.
【点睛】
此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,
寻找平移方法.
4.方程
2
x
3x
1
0 的根可视为函数
y = x+ 3的图象与函数 y
标,则方程 x 3 2x 1 0 的实根 x0 所在的范围是( )
1 的图象交点的横坐
x
1 A. 0<x 0 <
4
1
1
B. <x 0 <
对称轴 x=﹣ = 1,故 b< 0, bc< 0,即可判断一次函数 y= x+bc 的图象 .
【详解】 ① 由 x= 2 时, y= 4a+2b+c,由图象知: y= 4a+2b+c< 0,故正确; ② 方程 ax2+bx+c=0 两根分别为 1, 3,都大于 0,故正确; ③ 当 x< 2 时,由图象知: y 随 x 的增大而减小,故错误;
3
2
故选 C.
【点睛】
此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析
其中的 “关键点 ”,还要善于分析各图象的变化趋势.
5.将抛物线 y x2 4x 3平移,使它平移后图象的顶点为

(易错题精选)初中数学二次函数难题汇编及答案解析

(易错题精选)初中数学二次函数难题汇编及答案解析
【解析】
【分析】
设出原数,表示出新数,利用解方程和函数性质即可求解.
【详解】
解:设原数为m,则新数为 ,
设新数与原数的差为y
则 ,
易得,当m=0时,y=0,则A错误

当 时,y有最大值.则B错误,D正确.
当y=21时, =21
解得 =30, =70,则C错误.
故答案选:D.
【点睛】
本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.
∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,
∴足球距离地面的最大高度为20.25m,故①错误,
∴抛物线的对称轴t=4.5,故②正确,
∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,
∵t=1.5时,y=11.25,故④错误,∴正确的有②③,
故选B.
11.如图是二次函数 的图象,有下面四个结论: ; ; ; ,其中正确的结论是
(易错题精选)初中数学二次函数难题汇编及答案解析
一、选择题
1.若二次函数y=x2﹣2x+2在自变量x满足m≤x≤m+1时的最小值为6,则m的值为( )
A. B.
C.1D.
【答案】B
【解析】
【分析】
由抛物线解析式确定出其对称轴为x=1,分m>1或m+1<1两种情况,分别确定出其最小值,由最小值为6,则可得到关于m的方程,可求得m的值.
【详解】
①由抛物线交y轴于负半轴,则c<0,故①错误;
②由抛物线的开口方向向上可推出a>0;
∵对称轴在y轴右侧,对称轴为x= >0,
又∵a>0,
∴b<0;

突破中学数学二次函数的八个难题

突破中学数学二次函数的八个难题

突破中学数学二次函数的八个难题第一难题:求二次函数的顶点坐标在解决二次函数的问题时,确定顶点是至关重要的一步。

顶点的坐标可以通过将二次函数标准形式转化为顶点形式来得到。

标准形式为y = ax^2 + bx + c,而顶点形式为y = a(x - h)^2 + k,其中(h, k)为顶点坐标。

为了确定顶点坐标,可使用以下公式:h = -b / (2a)k = c - b^2 / (4a)这样,我们就可以通过计算得到二次函数的顶点坐标。

第二难题:求二次函数与坐标轴的交点要求二次函数与x轴的交点,只需令y = 0,然后解方程。

同样地,要求二次函数与y轴的交点,只需令x = 0,再解方程。

通过解方程,我们可以找到二次函数与坐标轴的交点的坐标。

第三难题:求二次函数的对称轴对称轴是二次函数的一个重要概念。

对于二次函数y = ax^2 + bx + c,其对称轴方程为x = -b / (2a)。

我们可以通过计算得到对称轴方程,从而确定二次函数的对称轴。

第四难题:求二次函数的焦点坐标对于二次函数y = ax^2 + bx + c,其焦点坐标为[(h, k + 1 / (4a))],其中(h, k)为顶点坐标。

通过计算顶点坐标,我们可以得到二次函数的焦点坐标。

第五难题:求二次函数的图像方向图像方向用来描述二次函数的开口方向。

要确定二次函数的图像方向,需要根据a的值进行判断。

若a > 0,则图像开口向上;若a < 0,则图像开口向下。

第六难题:求二次函数的最值最值是指二次函数的最大值或最小值。

对于二次函数y = ax^2 + bx + c,最值的计算方法如下:最小值:当a > 0时,二次函数的最小值为顶点的y坐标;最大值:当a < 0时,二次函数的最大值为顶点的y坐标。

通过计算可以得到二次函数的最值。

第七难题:求二次函数与直线的交点要求二次函数与直线的交点坐标,需要将直线方程代入二次函数方程,并解方程得到交点坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1077676的初中数学二次函数组卷一.选择题(共2小题)1.如图,已知动点P在函数y=(x>0)的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=﹣x+1交于点E,F,则AF•BE的值为().2.如图,抛物线y=x2﹣x﹣与直线y=x﹣2交于A、B两点(点A在点B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B.若使点P运动的总路径最短,则点P运动的总路径的长为().C D.二.解答题(共28小题)3.已知:关于x的方程mx2﹣3(m﹣1)x+2m﹣3=0.(1)当m取何整数值时,关于x的方程mx2﹣3(m﹣1)x+2m﹣3=0的根都是整数;(2)若抛物线y=mx2﹣3(m﹣1)x+2m﹣3向左平移一个单位后,过反比例函数y=(k≠0)上的一点(﹣1,3),①求抛物线y=mx2﹣3(m﹣1)x+2m﹣3的解析式;②利用函数图象求不等式﹣kx>0的解集.4.已知:关于x的一元二次方程mx2﹣(2m+n)x+m+n=0①.(1)求证:方程①有两个实数根;(2)求证:方程①有一个实数根为1;(3)设方程①的另一个根为x1,若m+n=2,m为正整数且方程①有两个不相等的整数根时,确定关于x的二次函数y=mx2﹣(2m+n)x+m+n的解析式;(4)在(3)的条件下,把Rt△ABC放在坐标系内,其中∠CAB=90°,点A、B的坐标分别为(1,0)、(4,0),BC=5,将△ABC沿x轴向右平移,当点C落在抛物线上时,求△ABC平移的距离.5.某商场以80元/件的价格购进西服1000件,已知每件售价为100元时,可全部售出.如果定价每提高1%,则销售量就下降0.5%,问如何定价可使获利最大(总利润=总收入﹣总成本)?6.(2004•长沙)如图,等腰梯形ABCD,AD∥BC,AD=3cm,BC=7cm,∠B=60°,P为下底BC上一点(不与B、C重合),连接AP,过P作∠APE=∠B,交DC于E.(1)求证:△ABP∽△PCE;(2)求等腰梯形的腰AB的长;(3)在底边BC上是否存在一点P,使得DE:EC=5:3?如果存在,求BP的长;如果不存在,请说明理由.7.如图所示,已知矩形ABCD中,CD=2,AD=3,点P是AD上的一个动点(与A、D不重合),过点P作PE⊥CP 交直线AB于点E,设PD=x,AE=y,(1)写出y与x的函数解析式,并指出自变量的取值范围;(2)如果△PCD的面积是△AEP面积的4倍,求CE的长;(3)是否存在点P,使△APE沿PE翻折后,点A落在BC上?证明你的结论.8.(2007•义乌市)如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.9.如图,在直角坐标系xoy中,抛物线y=x2+bx+c与x轴交于A、B两点(其中A在原点左侧,B在原点右侧),C为抛物线上一点,且直线AC的解析式为y=mx+2m(m≠0),∠CAB=45°,tan∠COB=2.(1)求A、C的坐标;(2)求直线AC和抛物线的解析式;(3)在抛物线上是否存在点D,使得四边形ABCD为梯形?若存在,请求出点D的坐标;若不存在,请说明理由.10.(2006•达州)如图,抛物线y=﹣x2+bx+2交x轴于A、B两点(点B在点A的左侧),交y轴于点C,其对称轴为x=,O为坐标原点.(1)求A、B、C三点的坐标;(2)求证:∠ACB是直角;(3)抛物线上是否存在点P,使得∠APB为锐角?若存在,求出点P的横坐标的取值范围;若不存在,请说明理由.11.(A)抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y 的值相等.直线y=3x﹣7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.(1)求这条抛物线的解析式;(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQOC的面积为S.求S与t之间的函数关系式及自变量t的取值范围.(3)对于二次三项式x2﹣10x+36,小明同学作出如下结论:无论x取什么实数,它的值都不可能等于11.你是否同意他的说法?说明你的理由.12.(2012•赤峰)如图,抛物线y=x2﹣bx﹣5与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点C与点F关于抛物线的对称轴对称,直线AF交y轴于点E,|OC|:|OA|=5:1.(1)求抛物线的解析式;(2)求直线AF的解析式;(3)在直线AF上是否存在点P,使△CFP是直角三角形?若存在,求出P点坐标;若不存在,说明理由.13.如图1,抛物线y=nx2﹣11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空:点B的坐标为(_________),点C的坐标为(_________);(2)连接OA,若△OAC为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M 的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.14.(2008•濮阳)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=O和x=4时,y的值相等.直线y=4x﹣16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M.(1)求这条抛物线的解析式;(2)P为线段OM上一点,过点P作PQ⊥x轴于点Q.若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值,并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值.15.(2002•哈尔滨)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y的值相等.直线y=3x﹣7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.(1)求这条抛物线的解析式;(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQAC的面积为S.求S与t之间的函数关系式及自变量t的取值范围;(3)在线段BM上是否存在点N,使△NMC为等腰三角形?若存在,请求出点N的坐标;若不存在,请说明理由.16.如图,已知抛物线C1:y=a(x+2)2﹣5的顶点为P,与x轴相交于A、B两点(点A在点B的左侧),点B的横坐标是1;(1)求a的值;(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.17.如图,已知△ABC内接于半径为4的☉0,过0作BC的垂线,垂足为F,且交☉0于P、Q两点.OD、OE的长分别是抛物线y=x2+2mx+m2﹣9与x轴的两个交点的横坐标.(1)求抛物线的解析式;(2)是否存在直线l,使它经过抛物线与x轴的交点,并且原点到直线l的距离是2?如果存在,请求出直线l的解析式;如果不存在,请说明理由.18.(2011•永州)如图,已知二次函数y=﹣x2+bx+c的图象经过A(﹣2,﹣1),B(0,7)两点.(1)求该抛物线的解析式及对称轴;(2)当x为何值时,y>0?(3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作x轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.19.(2009•江西)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m;①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系式.20.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),与y轴交于点D.(1)求点A、B、D的坐标;(2)若点C在该抛物线上,使△ABD≌△BAC.求点C的坐标,及直线AC的函数表达式;(3)P是(2)中线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值.21.(2004•哈尔滨)已知:抛物线y=﹣x2﹣(m+3)x+m2﹣12与x轴交于A(x1,0)、B(x2,0)两点,且x1<0,x2>0,抛物线与y轴交于点C,OB=2OA.(1)求抛物线的解析式;(2)在x轴上,点A的左侧,求一点E,使△ECO与△CAO相似,并说明直线EC经过(1)中抛物线的顶点D;(3)过(2)中的点E的直线y=x+b与(1)中的抛物线相交于M、N两点,分别过M、N作x轴的垂线,垂足为M′、N′,点P为线段MN上一点,点P的横坐标为t,过点P作平行于y轴的直线交(1)中所求抛物线于点Q.是否存在t值,使S梯形MM'N'N:S△QMN=35:12?若存在,求出满足条件的t值;若不存在,请说明理由.22.(2008•莆田)如图,抛物线c1:y=x2﹣2x﹣3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.点P为线段BC上一点,过点P作直线l⊥x轴于点F,交抛物线c1点E.(1)求A、B、C三点的坐标;(2)当点P在线段BC上运动时,求线段PE长的最大值;(3)当PE为最大值时,把抛物线c1向右平移得到抛物线c2,抛物线c2与线段BE交于点M,若直线CM把△BCE 的面积分为1:2两部分,则抛物线c1应向右平移几个单位长度可得到抛物线c2?23.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为D,且点B的坐标为(1,0),点C的坐标为(0,3).(1)求抛物线及直线AC的解析式;(2)E、F是线段AC上的两点,且∠AEO=∠ABC,过点F作与y轴平行的直线交抛物线于点M,交x轴于点N.当MF=DE时,在x轴上是否存在点P,使得以点P、A、F、M为顶点的四边形是梯形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点Q是位于抛物线对称轴左侧图象上的一点,试比较锐角∠QCO与∠BCO的大小(直接写出结果,不要求写出求解过程,但要写出此时点Q的横坐标x的取值范围).24.(2011•沈阳)如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,﹣3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.①当线段PQ=AB时,求tan∠CED的值;②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.25.已知,如图,抛物线y=x2+bx+3与x轴的正半轴交于A、B两点(A在B的左侧),且与y轴交于点C,O为坐标原点,OB=4.(1)直接写出点B,C的坐标及b的值;(2)过射线CB上一点N,作MN∥OC分别交抛物线、x轴于M、T两点,设点N的横坐标为t.①当0<t<4时,求线段MN的最大值;②以点N为圆心,NM为半径作⊙N,当点B恰好在⊙N上时,求此时点M的坐标.26.如图,抛物线y=ax2+bx+c与x轴交于A、B两点的横坐标分别是﹣1,3 (点A在点B左侧),与y轴交于点C,抛物线的顶点M在直线y=3x﹣7上.(1)求抛物线的解析式;(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQAC的面积为S.求S与t之间的函数关系式及自变量t的取值范围;(3)在线段BM上是否存在点N,使△NMC为等腰三角形?若存在,请求出点N的坐标;若不存在,请说明理由.27.如图,抛物线y=x2﹣4x﹣1顶点为D,与x轴相交于A、B两点,与y轴相交于点C.(1)求这条抛物线的顶点D的坐标;(2)经过点(0,4)且与x轴平行的直线与抛物线y=x2﹣4x﹣1相交于M、N两点(M在N的左侧),以MN为直径作⊙P,过点D作⊙P的切线,切点为E,求点DE的长;(3)上下平移(2)中的直线MN,以MN为直径的⊙P能否与x轴相切?如果能够,求出⊙P的半径;如果不能,请说明理由.28.(2011•攀枝花)如图,已知二次函数y=x2+bx+c的图象的对称轴为直线x=1,且与x轴有两个不同的交点,其中一个交点坐标为(﹣1,0).(1)求二次函数的关系式;(2)在抛物线上有一点A,其横坐标为﹣2,直线l过点A并绕着点A旋转,与抛物线的另一个交点是点B,点B 的横坐标满足﹣2<x B<,当△AOB的面积最大时,求出此时直线l的关系式;(3)抛物线上是否存在点C使△AOC的面积与(2)中△AOB的最大面积相等?若存在,求出点C的横坐标;若不存在说明理由.29.如图1,抛物线C1:y=﹣x2+4x﹣2与x轴交于A、B,直线l:y=﹣x+b分别交x轴、y轴于S点和C点,抛物线C1的顶点E在直线l上.(1)求直线l的解析式;(2)如图2,将抛物线C1沿射线ES的方向平移得到抛物线C2,抛物线C2的顶点F在直线l上,并交x轴于M、N两点,且tan∠EAB=•tan∠FNM,求抛物线C1平移的距离;(3)将抛物线C2沿水平方向平移得到抛物线C3,抛物线C3与x轴交于P、G两点(点P在点G的左侧),使得△PEF 为直角三角形,求抛物线C3的解析式.30.(2009•湘西州)在直角坐标系xoy中,抛物线y=x2+bx+c与x轴交于两点A、B,与y轴交于点C,其中A在B的左侧,B的坐标是(3,0).将直线y=kx沿y轴向上平移3个单位长度后恰好经过点B、C.(1)求k的值;(2)求直线BC和抛物线的解析式;(3)求△ABC的面积;(4)设抛物线顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标.1077676的初中数学二次函数组卷参考答案与试题解析一.选择题(共2小题)1.如图,已知动点P在函数y=(x>0)的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=﹣x+1交于点E,F,则AF•BE的值为().,))),,,)(=2.如图,抛物线y=x2﹣x﹣与直线y=x﹣2交于A、B两点(点A在点B的左侧),动点P从A点出发,先到达抛物线的对称轴上的某点E,再到达x轴上的某点F,最后运动到点B.若使点P运动的总路径最短,则点P运动的总路径的长为().C D.x=x=x与直线x=x,时,﹣,﹣)﹣=的对称点的交点是C=+﹣C=1+==.运动的总路径的长为二.解答题(共28小题)3.已知:关于x的方程mx2﹣3(m﹣1)x+2m﹣3=0.(1)当m取何整数值时,关于x的方程mx2﹣3(m﹣1)x+2m﹣3=0的根都是整数;(2)若抛物线y=mx2﹣3(m﹣1)x+2m﹣3向左平移一个单位后,过反比例函数y=(k≠0)上的一点(﹣1,3),①求抛物线y=mx2﹣3(m﹣1)x+2m﹣3的解析式;②利用函数图象求不等式﹣kx>0的解集.和﹣y=(时,即:不等式4.已知:关于x的一元二次方程mx2﹣(2m+n)x+m+n=0①.(1)求证:方程①有两个实数根;(2)求证:方程①有一个实数根为1;(3)设方程①的另一个根为x1,若m+n=2,m为正整数且方程①有两个不相等的整数根时,确定关于x的二次函数y=mx2﹣(2m+n)x+m+n的解析式;(4)在(3)的条件下,把Rt△ABC放在坐标系内,其中∠CAB=90°,点A、B的坐标分别为(1,0)、(4,0),BC=5,将△ABC沿x轴向右平移,当点C落在抛物线上时,求△ABC平移的距离.的另一个根为5.某商场以80元/件的价格购进西服1000件,已知每件售价为100元时,可全部售出.如果定价每提高1%,则销售量就下降0.5%,问如何定价可使获利最大(总利润=总收入﹣总成本)?6.(2004•长沙)如图,等腰梯形ABCD,AD∥BC,AD=3cm,BC=7cm,∠B=60°,P为下底BC上一点(不与B、C重合),连接AP,过P作∠APE=∠B,交DC于E.(1)求证:△ABP∽△PCE;(2)求等腰梯形的腰AB的长;(3)在底边BC上是否存在一点P,使得DE:EC=5:3?如果存在,求BP的长;如果不存在,请说明理由.理由是:∵EC=cm,=7.如图所示,已知矩形ABCD中,CD=2,AD=3,点P是AD上的一个动点(与A、D不重合),过点P作PE⊥CP 交直线AB于点E,设PD=x,AE=y,(1)写出y与x的函数解析式,并指出自变量的取值范围;(2)如果△PCD的面积是△AEP面积的4倍,求CE的长;(3)是否存在点P,使△APE沿PE翻折后,点A落在BC上?证明你的结论.,PE=PC=2,EC=8.(2007•义乌市)如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.,4+﹣),时,;,,,x+4+.因此直线,﹣9.如图,在直角坐标系xoy中,抛物线y=x2+bx+c与x轴交于A、B两点(其中A在原点左侧,B在原点右侧),C为抛物线上一点,且直线AC的解析式为y=mx+2m(m≠0),∠CAB=45°,tan∠COB=2.(1)求A、C的坐标;(2)求直线AC和抛物线的解析式;(3)在抛物线上是否存在点D,使得四边形ABCD为梯形?若存在,请求出点D的坐标;若不存在,请说明理由.;﹣﹣(舍去),10.(2006•达州)如图,抛物线y=﹣x2+bx+2交x轴于A、B两点(点B在点A的左侧),交y轴于点C,其对称轴为x=,O为坐标原点.(1)求A、B、C三点的坐标;(2)求证:∠ACB是直角;(3)抛物线上是否存在点P,使得∠APB为锐角?若存在,求出点P的横坐标的取值范围;若不存在,请说明理由.D=,+x=的对称点x=,11.(A)抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y 的值相等.直线y=3x﹣7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.(1)求这条抛物线的解析式;(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQOC的面积为S.求S与t之间的函数关系式及自变量t的取值范围.(3)对于二次三项式x2﹣10x+36,小明同学作出如下结论:无论x取什么实数,它的值都不可能等于11.你是否同意他的说法?说明你的理由.(t+12.(2012•赤峰)如图,抛物线y=x2﹣bx﹣5与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点C与点F关于抛物线的对称轴对称,直线AF交y轴于点E,|OC|:|OA|=5:1.(1)求抛物线的解析式;(2)求直线AF的解析式;(3)在直线AF上是否存在点P,使△CFP是直角三角形?若存在,求出P点坐标;若不存在,说明理由.,13.如图1,抛物线y=nx2﹣11nx+24n (n<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.(1)填空:点B的坐标为((3,0)),点C的坐标为((8,0));(2)连接OA,若△OAC为等腰三角形.①求此时抛物线的解析式;②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M 的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.×,∴,,x x,﹣mxmm)﹣(m﹣MN CE=(﹣14.(2008•濮阳)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=O和x=4时,y的值相等.直线y=4x﹣16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M.(1)求这条抛物线的解析式;(2)P为线段OM上一点,过点P作PQ⊥x轴于点Q.若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;(3)随着点P的运动,四边形PQCO的面积S有最大值吗?如果S有最大值,请求出S的最大值,并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;(4)随着点P的运动,是否存在t的某个值,能满足PO=OC?如果存在,请求出t的值.==2×t+×S=8+t=﹣t=15.(2002•哈尔滨)如图,抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y的值相等.直线y=3x﹣7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.(1)求这条抛物线的解析式;(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQAC的面积为S.求S与t之间的函数关系式及自变量t的取值范围;(3)在线段BM上是否存在点N,使△NMC为等腰三角形?若存在,请求出点N的坐标;若不存在,请说明理由.×t+t+(,﹣)±.舍去.,,﹣1+,16.如图,已知抛物线C1:y=a(x+2)2﹣5的顶点为P,与x轴相交于A、B两点(点A在点B的左侧),点B的横坐标是1;(1)求a的值;(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.(x x+.17.如图,已知△ABC内接于半径为4的☉0,过0作BC的垂线,垂足为F,且交☉0于P、Q两点.OD、OE的长分别是抛物线y=x2+2mx+m2﹣9与x轴的两个交点的横坐标.(1)求抛物线的解析式;(2)是否存在直线l,使它经过抛物线与x轴的交点,并且原点到直线l的距离是2?如果存在,请求出直线l的解析式;如果不存在,请说明理由.======,MN==的坐标为()x+的坐标为(,﹣,y=x+y=使原点到18.(2011•永州)如图,已知二次函数y=﹣x2+bx+c的图象经过A(﹣2,﹣1),B(0,7)两点.(1)求该抛物线的解析式及对称轴;(2)当x为何值时,y>0?(3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作x轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.,2,2,219.(2009•江西)如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m;①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系式.﹣)分别代入得:PF PF OM=PF PF ×m m20.如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),与y轴交于点D.(1)求点A、B、D的坐标;(2)若点C在该抛物线上,使△ABD≌△BAC.求点C的坐标,及直线AC的函数表达式;(3)P是(2)中线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值.﹣+时,.21.(2004•哈尔滨)已知:抛物线y=﹣x2﹣(m+3)x+m2﹣12与x轴交于A(x1,0)、B(x2,0)两点,且x1<0,x2>0,抛物线与y轴交于点C,OB=2OA.(1)求抛物线的解析式;(2)在x轴上,点A的左侧,求一点E,使△ECO与△CAO相似,并说明直线EC经过(1)中抛物线的顶点D;(3)过(2)中的点E的直线y=x+b与(1)中的抛物线相交于M、N两点,分别过M、N作x轴的垂线,垂足为M′、N′,点P为线段MN上一点,点P的横坐标为t,过点P作平行于y轴的直线交(1)中所求抛物线于点Q.是否存在t值,使S梯形MM'N'N:S△QMN=35:12?若存在,求出满足条件的t值;若不存在,请说明理由.,y=,y=[4(y=,,﹣t﹣﹣t+2,,或22.(2008•莆田)如图,抛物线c1:y=x2﹣2x﹣3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.点P为线段BC上一点,过点P作直线l⊥x轴于点F,交抛物线c1点E.(1)求A、B、C三点的坐标;(2)当点P在线段BC上运动时,求线段PE长的最大值;(3)当PE为最大值时,把抛物线c1向右平移得到抛物线c2,抛物线c2与线段BE交于点M,若直线CM把△BCE 的面积分为1:2两部分,则抛物线c1应向右平移几个单位长度可得到抛物线c2?)(.,.y=,点的坐标为(,,﹣)=﹣(负值舍去),﹣)=k=1+1+23.在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,顶点为D,且点B的坐标为(1,0),点C的坐标为(0,3).(1)求抛物线及直线AC的解析式;(2)E、F是线段AC上的两点,且∠AEO=∠ABC,过点F作与y轴平行的直线交抛物线于点M,交x轴于点N.当MF=DE时,在x轴上是否存在点P,使得以点P、A、F、M为顶点的四边形是梯形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点Q是位于抛物线对称轴左侧图象上的一点,试比较锐角∠QCO与∠BCO的大小(直接写出结果,不要求写出求解过程,但要写出此时点Q的横坐标x的取值范围).﹣时,可得点的坐标为(﹣时,可得的坐标为(﹣24.(2011•沈阳)如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,﹣3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P在第三象限.①当线段PQ=AB时,求tan∠CED的值;②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.PQ=ABPM=轴的距离是的横坐标为,)=﹣1=CED=﹣,﹣x=1+﹣,,代入抛物线的函数表达式为﹣﹣,﹣,﹣)25.已知,如图,抛物线y=x2+bx+3与x轴的正半轴交于A、B两点(A在B的左侧),且与y轴交于点C,O为坐标原点,OB=4.(1)直接写出点B,C的坐标及b的值;(2)过射线CB上一点N,作MN∥OC分别交抛物线、x轴于M、T两点,设点N的横坐标为t.①当0<t<4时,求线段MN的最大值;②以点N为圆心,NM为半径作⊙N,当点B恰好在⊙N上时,求此时点M的坐标.y=(﹣)﹣(t﹣(t MN=t﹣x+3t+3,t+3t+3)﹣(t﹣t(﹣NBT==,=t,,﹣)tt(不合题意舍去)的坐标为(,﹣)t或t26.如图,抛物线y=ax2+bx+c与x轴交于A、B两点的横坐标分别是﹣1,3 (点A在点B左侧),与y轴交于点C,抛物线的顶点M在直线y=3x﹣7上.(1)求抛物线的解析式;(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQAC的面积为S.求S与t之间的函数关系式及自变量t的取值范围;(3)在线段BM上是否存在点N,使△NMC为等腰三角形?若存在,请求出点N的坐标;若不存在,请说明理由.。

相关文档
最新文档