最新成都中考数学几何汇编(四边形、圆、相似、全等、三角函数)培优必刷题

合集下载

2024成都中考数学一轮复习专题 图形的相似 (含解析)

2024成都中考数学一轮复习专题 图形的相似 (含解析)

2024成都中考数学一轮复习专题图形的相似一、单选题1.(2023·重庆·统考中考真题)如图,已知ABC EDC ∽,:2:3AC EC =,若AB 的长度为6,则DE 的长度为()A .4B .9C .12D .13.52.(2023·四川遂宁·统考中考真题)在方格图中,以格点为顶点的三角形叫做格点三角形.在如图所示的平面直角坐标系中,格点ABC DEF 、成位似关系,则位似中心的坐标为()A .()1,0-B .()0,0C .()0,1D .()1,03.(2023·浙江嘉兴·统考中考真题)如图,在直角坐标系中,ABC 的三个顶点分别为()()()1,2,2,1,3,2A B C ,现以原点O 为位似中心,在第一象限内作与ABC 的位似比为2的位似图形A B C ''' ,则顶点C '的坐标是()A .()2,4B .()4,2C .()6,4D .()5,44.(2023·四川南充·统考中考真题)如图,数学活动课上,为测量学校旗杆高度,小菲同学在脚下水平放置一平面镜,然后向后退(保持脚、镜和旗杆底端在同一直线上),直到她刚好在镜子中看到旗杆的顶端.已A.6.4m B.5.(2023·安徽·统考中考真题)如图,点延长,交边BC于点M,交边A.23B.6.(2023·湖北黄冈·统考中考真题)如图,矩形A.10B7.(2023·四川内江·统考中考真题)如图,在∥∥,点H为AC DG EFA.1BA .36,55⎛⎫ ⎪⎝⎭B .9.(2023·山东东营·统考中考真题)AE 平分CAD ∠,连接DF ,分别交垂足为N ,连接PM ,有下列四个结论:④62ADM S ∆=.其中正确的是(A .①②B .②③④10.(2023·内蒙古赤峰·统考中考真题)延长线上的点Q 重合.DE 交则下列结论,①DQ EQ =,A .①②③B .②④11.(2023·黑龙江·统考中考真题)如图,在正方形A.①②③④⑤B二、填空题12.(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,中心,且113ABA B=.若A13.(2023·吉林长春·统考中考真题)如图,OA'上.若12OA AA'=::,则ABC14.(2023·四川乐山·统考中考真题)如图,在平行四边形于点F.若23AEEB=,则ADFAEFSS△△15.(2023·江西·统考中考真题)曲尺(即图中的ABC ).“偃矩以望高一水平线上,ABC ∠和AQP ∠均为直角,16.(2023·四川成都·统考中考真题)如图,在圆心,以适当长为半径作弧,于点M ';③以点M '为圆心,17.(2023·内蒙古·统考中考真题)如图,在时针方向旋转90︒,得到18.(2023·河南·统考中考真题)以点D ,M ,N 为顶点的三角形是直角三角形时,20.(2023·广东·统考中考真题)边长分别为(如图),则图中阴影部分的面积为21.(2023·天津·统考中考真题)如图,(1)ADEV的面积为________;(2)若F为BE的中点,连接AF 22.(2023·四川泸州·统考中考真题)如图,的动点,当PE PF+取得最小值时,23.(2023·山西·统考中考真题)如图,在四边形===∠AB AC BC5,6,三、解答题24.(2023·湖南·统考中考真题)在Rt ABC △中,90BAC AD ∠=︒,是斜边BC 上的高.(1)证明:C ABD BA ∽△△;(2)若610AB BC ==,,求BD 的长.25.(2023·湖南·统考中考真题)如图,,CA AD ED AD ⊥⊥,点B 是线段AD 上的一点,且CB BE ⊥.已知8,6,4AB AC DE ===.(1)证明:ABC DEB ∽△△.(2)求线段BD 的长.26.(2023·四川眉山·统考中考真题)如图,ABCD Y 中,点E 是AD 的中点,连接CE 并延长交BA 的延长线于点F .(1)求证:AF AB =;(2)点G 是线段AF 上一点,满足FCG FCD ∠=∠,CG 交AD 于点H ,若2,6AG FG ==,求GH 的长.27.(2023·四川凉山·统考中考真题)如图,在ABCD Y 中,对角线AC 与BD 相交于点O ,CAB ACB ∠=∠,过点B 作BE AB ⊥交AC 于点E .(1)求证:AC BD ⊥;(2)若10AB =,16AC =,求OE 的长.28.(2023·江苏扬州·统考中考真题)如图,点E.F 、G 、H 分别是ABCD Y 各边的中点,连接AF CE 、相交于点M ,连接AG CH 、相交于点N .(1)求证:四边形AMCN 是平行四边形;(2)若AMCN 的面积为4,求ABCD Y 的面积.29.(2023·上海·统考中考真题)如图,在梯形ABCD 中AD BC ∥,点F ,E 分别在线段BC ,AC 上,且=FAC ADE ∠∠,AC AD=(1)求证:DE AF=(2)若ABC CDE ∠=∠,求证:2AF BF CE=⋅参考答案一、单选题1.【答案】B 【分析】根据相似三角形的性质即可求出.【详解】解:∵ABC EDC ∽,∴::AC EC AB DE =,∵:2:3AC EC =,6AB =,∴2:36:DE =,∴9DE =,故选:B.【点拨】此题考查的是相似三角形的性质,掌握相似三角形的边长比等于相似比是解决此题的关键.2.【答案】A 【分析】根据题意确定直线AD 的解析式为:1y x =+,由位似图形的性质得出AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,即可求解.【详解】解:由图得:()()1,2,3,4A D ,设直线AD 的解析式为:y kx b =+,将点代入得:243k b k b =+⎧⎨=+⎩,解得:11k b =⎧⎨=⎩,∴直线AD 的解析式为:1y x =+,AD 所在直线与BE 所在直线x 轴的交点坐标即为位似中心,∴当0y =时,1x =-,∴位似中心的坐标为()1,0-,故选:A .【点拨】题目主要考查位似图形的性质,求一次函数的解析式,理解题意,掌握位似图形的特点是解题关键.3.【答案】C 【分析】直接根据位似图形的性质即可得.【详解】解:∵ABC 的位似比为2的位似图形是A B C ''' ,且()3,2C ,由图可知,AB BD⊥,CD \Ð=Ð=°.ABC CDE90根据镜面的反射性质,∠=∠,∴ACF ECF矩形ABCD中,3=,AB BC∴3==,CD AB∴225=+=.BD BC CD∠由作图过程可知,BP平分CBD∵35OA OB ==,∴AD OD OA =+=952,∴23OA AD =,∵:1:2CM MA =,∴23OA CM AD AC==,h=由④可知ADM△的高2∴=.DN'22故②不正确.综上所述,正确的是①③.故选:D.∴EFQ △与EDB △不相似.∴EQF EBD ∠≠∠.∴BD 与FQ 不平行.故④错误;故选:A .【点拨】本题主要考查了折叠的性质,平行线的性质,等腰三角形的性质,相似三角形的判定和性质,菱形的性质等知识,属于选择压轴题,有一定难度,熟练掌握相关性质是解题的关键.11.【答案】B 【分析】利用正方形的性质和翻折的性质,逐一判断,即可解答.【详解】解: 四边形ABCD 是正方形,90DAE ABF ∴∠=∠=︒,DA AB =,AF DE ⊥ ,90BAF AED ∴∠+∠=︒,90BAF AFB ∠+∠=︒ ,AED BFA ∴∠=∠,()AAS ABF AED ∴△≌△,AF DE ∴=,故①正确,将ABF △沿AF 翻折,得到AMF ,BM AF ∴⊥,∵AF D E ⊥,BM DE ∴∥,故②正确,当CM FM ⊥时,90CMF ∠=︒,90AMF ABF ∠=∠=︒ ,180AMF CMF ∴∠+∠=︒,即,,A M C 在同一直线上,45MCF ∴∠=︒,9045MFC MCF ∴∠=︒-∠=︒,通过翻折的性质可得45HBF HMF ∠=∠=︒,BF MF =,∴HMF MFC ∠=∠,HBC MFC ∠=∠,,BC MH HB MF ∴∥∥,设正方形ABCD的边长为在Rt AED△中,DE=∠=∠∠AHD FHB ADH,∴△∽△,AHD FHBFH BF a1【点拨】本题考查旋转的性质、等腰三角形的判定与性质、相似三角形的判定与性质、三角形的面积,熟练掌握相关知识是解题的关键.18.【答案】2或21+【分析】分两种情况:当MND ∠【详解】解:当90MND ∠=︒∵四边形ABCD 矩形,∴90A ∠=︒,则∥MN AB ,由平行线分线段成比例可得:AN BM ND MD=又∵M 为对角线BD 的中点,∵M 为对角线BD 的中点,90NMD ∠=︒∴MN 为BD 的垂直平分线,∴BN ND =,∵CF 平分DCE ∠,∴45FCM FCN ∠=∠=︒,∴=CM FM ,∴四边形CMFN 是正方形,由题意可知10,AD DC CG CE ===∴10CH AD ==,∵90,D DCH AJD HJC ∠=∠=︒∠=∠∴()AAS ADJ HCJ ≌,正方形ABCD的边长为3,AD∴=,3是等腰三角形,EA ADE13【点拨】本题考查了正方形的性质,等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理等知识,作辅助线构造全等三角形和相似三角形是解题关键.22.【答案】27【分析】作点F 关于AC 的对称点由题意得:此时F '落在设正方形ABCD 的边长为 四边形ABCD 是正方形,45F AK '∴∠=︒,P AE '∠则90AHC AHB ∠=∠=︒,∵5,6AB AC BC ===,三、解答题AD CD的中点,∵,H G为,。

2024成都中考数学复习专题 线、角、相交线与平行线(含命题) (含答案)

2024成都中考数学复习专题 线、角、相交线与平行线(含命题) (含答案)

2024成都中考数学复习专题线、角、相交线与平行线(含命题)基础题1. (2022柳州)如图,从学校A到书店B有①、②、③、④四条路线,其中最短的路线是()A. ①B. ②C. ③D. ④第1题图2. 如图,点P在△ABC的AB边上从点A向点B移动,当S△APC=S△BPC时,则CP是△ABC 的()第2题图A. 高B. 角平分线C. 中线D. 中位线3. (2023兰州改编)如图,直线AB与CD相交于点O,则∠BOD=()第3题图A. 40°B. 50°C. 55°D. 60°4. (2023临沂)在同一平面内,过直线l外一点P作l的垂线m,再过P作m的垂线n,则直线l与n的位置关系是()A. 相交B. 相交且垂直C. 平行D. 不能确定5. (2023广西)如图,一条公路两次转弯后又回到与原来相同的方向,∠A=130°,那么∠B的度数是( )第5题图A. 160°B. 150°C. 140°D. 130°6. 已知m +2n n =157(mn ≠0),则n m值为( ) A. 2 B. 5 C. 7 D. 277. 如图,AB ∥CD ,E 是直线AB 上一点,且∠DEF =150°,若∠BEF =4∠BED ,则∠D 的度数为( )A. 28°B. 30°C. 35°D. 25°第7题图8. (2023金华)如图,已知∠1=∠2=∠3=50°,则∠4的度数是( )第8题图A. 120°B. 125°C. 130°D. 135°9. (2023绥化)将一副三角板按下图所示摆放在一组平行线内,∠1=25°,∠2=30°,则∠3的度数为( )第9题图A. 55°B. 65°C. 70°D. 75°10. (2023恩施州)将含60°角的直角三角板按如图方式摆放,已知m ∥n ,∠1=20°,则∠2=( )A. 40°B. 30°C. 20°D. 15°第10题图11. (2023深圳改编)如图为商场某品牌椅子的侧面图,∠DEF=120°,DE与地面平行,∠ABD =50°,则∠ACB=()第11题图A. 70°B. 65°C. 60°D. 50°12. 如图,在△ABC中,D,E,F分别是AB,AC,BC上的点,且DE∥BC,EF∥AB,若BF∶FC=2∶3,AB=15,则BD=()A. 6B. 9C. 10D. 12第12题图13. (2023达州改编)命题“到一条线段两个端点距离相等的点,在这条线段的垂直平分线上”是________命题(填“真”或“假”).14. (2023烟台)一杆古秤在称物时的状态如图所示,已知∠1=102°,则∠2的度数为________.第14题图15. (2023乐山)如图,点O在直线AB上,OD是∠BOC的平分线,若∠AOC=140°,则∠BOD 的度数为________.第15题图16. 如图,已知直线l1∥l2,点A,B分别在直线l1,l2上,点P是直线l1,l2间一点,连接P A,PB. 若∠1=∠2=130°,则∠APB=________°.第16题图17. (2023北京)如图,直线AD,BC交于点O,AB∥EF∥C D.若AO=2,OF=1,FD=2,则BEEC的值为________.第17题图18. (2023台州)用一张等宽的纸条折成如图所示的图案,若∠1=20°,则∠2的度数为________.第18题图拔高题19. (2023徐州)如图,在△ABC中,若DE∥BC,FG∥AC,∠BDE=120°,∠DFG=115°,则∠C=________°.第19题图20. (2023达州)如图,乐器上的一根弦AB=80 cm,两个端点A,B固定在乐器面板上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则支撑点C,D之间的距离为______cm.(结果保留根号)第20题图参考答案与解析1. B2. C3. B 【解析】由题图可得∠AOC =50°,∴∠BOD =50°.4. C 【解析】∵l ⊥m ,n ⊥m ,∴l ∥n .5. D 【解析】∵公路两次转弯后又回到与原来相同的方向,∴AC ∥BD ,∴∠B =∠A =130°.6. C 【解析】∵m +2n n =157 ,∴7m +14n =15n ,∴7m =n ,∴n m=7. 7. B 【解析】∵∠BEF =4∠BED ,∴5∠BED =∠DEF =150°,∴∠BED =30°.∵AB ∥CD ,∴∠D =∠BED =30°.8. C 【解析】如解图,∵∠1=∠3=50°,∴a ∥b .∵∠2=50°,∴∠2=∠5=50°,∴∠4=180°-∠5=130°.第8题解图9. C 【解析】∵两条直线平行,∠1=25°,∴∠3+45°=∠1+90°,∴∠3=45°+∠1=45°+25°=70°.10. A 【解析】如解图,作l ∥m ,∵m ∥n ,∴l ∥m ∥n ,∴∠2=∠3,∠1=∠4,∴∠1+∠2=∠4+∠3=60°,∴∠2=60°-20°=40°.第10题解图11. A 【解析】∵DE ∥AB ,∠ABD =50°,∴∠D =∠ABD =50°.∵∠DEF =120°,且∠DEF 是△DCE 的外角,∴∠DCE =∠DEF -∠D =70°,∴∠ACB =∠DCE =70°.12. B 【解析】∵EF ∥AB ,BF ∶FC =2∶3,∴BF FC =AE EC =23 ,∴AC EC =53.∵DE ∥BC ,∴AB BD =AC EC ,∴15BD =53,∴BD =9. 13. 真14. 78° 【解析】如解图,由题意得AB ∥CD ,∴∠2=∠BCD .∵∠1=102°,∴∠BCD =78°,∴∠2=78°.第14题解图15. 20° 【解析】∵点O 在直线AB 上,∴∠AOC +∠BOC =180°,∴∠BOC =180°-∠AOC=180°-140°=40°.∵OD 为∠BOC 的平分线,∴∠BOD =12 ∠BOC =12×40°=20°,∴∠BOD =20°.16. 100 【解析】如解图,过点P 作l 1的平行线PQ ,∵l 1∥l 2∥PQ ,则∠1+∠APQ =∠2+∠QPB =180°,∵∠1=∠2=130°,∴∠APQ =∠QPB =180°-130°=50°,∴∠APB =∠APQ +∠QPB =50°+50°=100°.第16题解图17. 32 【解析】∵AB ∥EF ∥CD ,∴BE EC =AF FD =AO +OF FD.∵AO =2,OF =1,FD =2,∴BE EC =2+12 =32. 18. 140° 【解析】如解图,由折叠的性质得∠1=∠3=20°,由题意得AB ∥CD ,∴∠4=∠1+∠3=40°,∴∠2=180°-∠4=140°.第18题解图19. 55 【解析】∵DE ∥BC ,∠BDE =120°,∴∠B =180°-∠BDE =60°,同理∠A =65°.∵∠A +∠B +∠C =180°,∴∠C =180°-∠A -∠B =55°. 20. (805 -160) 【解析】由题得,弦AB =80 cm ,点C 是靠近点B 的黄金分割点,设BC=x ,则AC =80-x ,∴80-x 80 =5-12,解得x =120-405 .∵点D 是靠近点A 的黄金分割点,∴设AD =y ,则BD =80-y ,∴80-y 80 =5-12,解得y =120-405 ,∴支撑点C ,D 之间的距离为80-x -y =80-120+405 -120+405 =(805 -160)cm.。

2024成都中考数学一轮复习专题 几何综合压轴问题 (含解析)

2024成都中考数学一轮复习专题 几何综合压轴问题 (含解析)

2024成都中考数学一轮复习专题几何综合压轴问题1.(2023·四川自贡·统考中考真题)如图1,一大一小两个等腰直角三角形叠放在一起,M ,N 分别是斜边DE ,AB 的中点,2,4DE AB ==.(1)将CDE 绕顶点C 旋转一周,请直接写出点M ,N 距离的最大值和最小值;(2)将CDE 绕顶点C 逆时针旋转120︒(如图2),求MN 的长.2.(2023·山东烟台·统考中考真题)如图,点C 为线段AB 上一点,分别以,AC BC 为等腰三角形的底边,在AB 的同侧作等腰ACD 和等腰BCE ,且A CBE ∠=∠.在线段EC 上取一点F ,使EF AD =,连接,BF DE .(1)如图1,求证:DE BF =;(2)如图2,若2AD BF =,的延长线恰好经过DE 的中点G ,求BE 的长.(1)如图1,求AB边上的高CH的长.''.(2)P是边AB上的一动点,点,C D同时绕点P按逆时针方向旋转90︒得点,C D①如图2,当点C'落在射线CA上时,求BP的长.△是直角三角形时,求BP的长.②当AC D''(2)知识应用:如图2,在Y是菱形;①求证:ABCD②延长BC至点E,连接OE交CD于点由60PC P C PCP ''=∠=︒,,可知PCP '△为①三角形,故PP PC '=,又PA PB PC PA PB PP A B '''++=++≥,由②可知,当B ,P ,P ',A 在同一条直线上时,PA PB PC ++取最小值,如图的P 点为该三角形的“费马点”,且有APC BPC APB ∠=∠=∠=③;(3)如图5,设村庄A ,B ,C 的连线构成一个三角形,且已知4km AC BC =,建一中转站P 沿直线向A ,B ,C 三个村庄铺设电缆,已知由中转站P 到村庄元/km ,a 元/km ,2a 元/km ,选取合适的P 的位置,可以使总的铺设成本最低为用含a 的式子表示)上的中线.如图2,将ABC 的两个顶点B ,C 分别沿,EF GH 折叠后均与点D 重合,折痕分别交,,AB AC BC 于点E ,G ,F ,H .猜想证明:(1)如图2,试判断四边形AEDG 的形状,并说明理由.问题解决;(2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN 折叠,使得顶点B 与点H 重合,折痕分别交,AB BC 于点M ,N ,BM 的对应线段交DG 于点K ,求四边形MKGA 的面积.8.(2023·湖南·统考中考真题)(1)[问题探究]如图1,在正方形ABCD 中,对角线AC BD 、相交于点O .在线段AO 上任取一点P (端点除外),连接PD PB 、.①求证:PD PB =;②将线段DP 绕点P 逆时针旋转,使点D 落在BA 的延长线上的点Q 处.当点P 在线段AO 上的位置发生变化时,DPQ ∠的大小是否发生变化?请说明理由;③探究AQ 与OP 的数量关系,并说明理由.(2)[迁移探究]如图2,将正方形ABCD 换成菱形ABCD ,且60ABC ∠=︒,其他条件不变.试探究AQ 与CP 的数量关系,并说明理由.9.(2023·湖南岳阳·统考中考真题)如图1,在ABC 中,AB AC =,点,M N 分别为边,AB BC 的中点,连接MN .(1)求BCF ∠的度数;(2)求CD 的长.深入探究:(3)若90BAC ∠<︒,将BMN 绕点B 顺时针旋转α,得到BEF △,连接AE ,CF 满足0360α︒<<︒,点,,C E F 在同一直线上时,利用所提供的备用图探究BAE ∠与ABF ∠的数量关系,并说明理由.(1)如图1,当1m =时,直接写出AD ,BE 的位置关系:____________;(2)如图2,当1m ≠时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当3,47,4m AB DE ===时,将CDE 绕点C 旋转,使,,A D E 三点恰好在同一直线上,求(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;(2)如图②,在矩形ABCD 的BC 边上取一点E ,将四边形ABED 沿DE 翻折,使点B '处,若24,6BC CE AB ⋅==,求BE 的值;(3)如图③,在ABC 中,45,BAC AD BC ∠=︒⊥,垂足为点,10,D AD AE ==于点F ,连接DF ,且满足2DFE DAC ∠=∠,直接写出53BD EF +的值.13.(2023·湖南郴州·统考中考真题)已知ABC 是等边三角形,点D 是射线(1)如图1,当点D 在线段AB 上时,猜测线段CF 与BD 的数量关系并说明理由;(2)如图2,当点D 在线段AB 的延长线上时,①线段CF 与BD 的数量关系是否仍然成立?请说明理由;②如图3,连接AE .设4AB =,若AEB DEB ∠=∠,求四边形BDFC 的面积.(1)若正方形ABCD 的边长为2,E 是AD 的中点.①如图1,当90FEC ∠=︒时,求证:AEF DCE ∽△△;②如图2,当2tan 3FCE ∠=时,求AF 的长;(2)如图3,延长CF ,DA 交于点G ,当1,sin 3GE DE FCE =∠=时,求证:问题探究:(1)先将问题特殊化,如图(2),当90α=︒时,直接写出GCF ∠的大小;(2)再探究一般情形,如图(1),求GCF ∠与α的数量关系.问题拓展:(3)将图(1)特殊化,如图(3),当120α=︒时,若12DG CG =,求BE CE 的值.(1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的DBE 绕点B 逆时针方向旋转,问题.①“善思小组”提出问题:如图3,当ABE BAC ∠=∠时,过点A 作AM BE ⊥交BE 的延长线于点,M BM 与AC 交于点N .试猜想线段AM 和BE 的数量关系,并加以证明.请你解答此问题;②“智慧小组”提出问题:如图4,当CBE BAC ∠=∠时,过点A 作AH DE ⊥于点H ,若9,12BC AC ==,求AH 的长.请你思考此问题,直接写出结果.17.(2023·湖北十堰·统考中考真题)过正方形ABCD 的顶点D 作直线DP ,点C 关于直线DP 的对称点为点E ,连接AE ,直线AE 交直线DP 于点F .(1)如图1,若25CDP ∠=︒,则DAF ∠=___________︒;(2)如图1,请探究线段CD ,EF ,AF 之间的数量关系,并证明你的结论;(3)在DP 绕点D 转动的过程中,设AF a =,EF b =请直接用含,a b 的式子表示DF 的长.18.(2023·辽宁大连·统考中考真题)综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知,90AB AC A =∠>︒,点E 为AC 上一动点,将ABE 以BE 为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D 落在BC 上时,2EDC ACB ∠=∠.”小红:“若点E 为AC 中点,给出AC 与DC 的长,就可求出BE 的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰ABC 中,,90,AB AC A BDE =∠>︒△由ABE 翻折得到.(1)如图1,当点D 落在BC 上时,求证:2EDC ACB ∠=∠;(2)如图2,若点E 为AC 中点,43AC CD ==,,求BE 的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成90A ∠<︒的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰ABC 中,90,4,2A AB AC BD D ABD ∠<===∠=∠︒.若1CD =,则求BC 的长.19.(2023·山东·统考中考真题)(1)如图1,在矩形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF ⊥,垂足为点G .求证:ADE DCF △∽△.【问题解决】(2)如图2,在正方形ABCD 中,点E ,F 分别在边DC ,BC 上,AE DF =,延长BC 到点H ,使CH DE =,连接DH .求证:ADF H ∠=∠.【类比迁移】(3)如图3,在菱形ABCD 中,点E ,F 分别在边DC ,BC 上,11AE DF ==,8DE =,60AED ∠=︒,求CF 的长.20.(2023·福建·统考中考真题)如图1,在ABC 中,90,,BAC AB AC D ∠=︒=是AB 边上不与,A B 重合的一个定点.AO BC ⊥于点O ,交CD 于点E .DF 是由线段DC 绕点D 顺时针旋转90︒得到的,,FD CA 的延长线相交于点M .(1)求证:ADE FMC △∽△;(2)求ABF ∠的度数;(3)若N 是AF 的中点,如图2.求证:ND NO =.21.(2023·四川·统考中考真题)如图1,已知线段AB ,AC ,线段AC 绕点A 在直线AB 上方旋转,连接BC ,(1)若=90BDC ∠︒,以AB 为边在AB 上方作Rt BAE △,且90AEB ∠=示线段AC 与DE 的数量关系是;(2)如图2,在(1)的条件下,若DE AB ⊥,4AB =,2AC =,求BC (3)如图3,若90BCD ∠=︒,4AB =,2AC =,当AD 的值最大时,求此时请完成:(1)观察图1中1∠,2∠和3∠,试猜想这三个角的大小关系(2)证明(1)中的猜想;【类比操作】如图2,N 为矩形纸片请完成:(3)证明BB '是NBC ∠的一条三等分线.(1)如图1,若9AC =,3BD =,求线段AD 的长.(2)如图2,以CD 为边在CD 上方作等边CDE ,点F 是DE 的中点,连接BF 并延长,交G .若G BCE ∠=∠,求证:GF BF BE =+.(3)在CD 取得最小值的条件下,以CD 为边在CD 右侧作等边CDE .点M 为CD 所在直线上一点,(1)证明:在点P 的运动过程中,总有120PEQ ∠=(2)当AP DP为何值时,AQF 是直角三角形?26.(2023·黑龙江齐齐哈尔·统考中考真题)综合与实践(1)发现问题:如图1,在ABC 和AEF △中,AB AC =,AE AF =,30BAC EAF ∠=∠=︒,连接BE ,CF ,延长BE 交CF 于点D .则BE 与CF 的数量关系:______,BDC ∠=______︒;(2)类比探究:如图2,在ABC 和AEF △中,AB AC =,AE AF =,120BAC EAF ∠=∠=︒,连接BE ,CF ,延长BE ,FC 交于点D .请猜想BE 与CF 的数量关系及BDC ∠的度数,并说明理由;(3)拓展延伸:如图3,ABC 和AEF △均为等腰直角三角形,90BAC EAF ∠=∠=︒,连接BE ,CF ,且点B ,E ,F 在一条直线上,过点A 作AM BF ⊥,垂足为点M .则BF ,CF ,AM 之间的数量关系:______;(4)实践应用:正方形ABCD 中,2AB =,若平面内存在点P 满足90BPD ∠=︒,1PD =,则ABP S =△______.27.(2023·广东深圳·统考中考真题)(1)如图,在矩形ABCD 中,E 为AD 边上一点,连接BE ,①若BE BC =,过C 作CF BE ⊥交BE 于点F ,求证:ABE FCB ≌△△;②若20ABCD S =矩形时,则BE CF ⋅=______.(2)如图,在菱形ABCD 点F ,若24ABCD S =菱形(3)如图,在平行四边形ABCD 一点,连接EF ,过E 作EG ⊥长.(1)如图1,连接QA .当QA QP =时,试判断点Q 是否在线段PC 的垂直平分线上,并说明理由;(2)如图2,若90APB ∠=︒,且BAP ADB ∠=∠,①求证:2AE EP =;②当OQ OE =时,设EP a =,求PQ 的长(用含a 的代数式表示).【探究一】如图②,把CDM V 绕点C 逆时针旋转90︒得到CBH ,同时得到点H 在直线AB CNM CNH ∠=∠;【探究二】在图②中,连接BD ,分别交CM ,CN 于点E ,F .求证:CEF CNM △∽△;【探究三】把三角尺旋转到如图③所示位置,直线BD 与三角尺45︒角两边CM ,CN 分别交于点接AC 交BD 于点O ,求EF NM的值.PMN PNM ∠=∠.(2)用数学的思维思考.如图,延长图中的线段AD 交MN 的延长线于点E ,延长线段BC 交MN 的延长线于点F ,求证:AEM F ∠=∠.(3)用数学的语言表达.如图,在ABC 中,AC AB <,点D 在AC 上,AD BC =,M 是AB 的中点,N 是DC 的中点,连接MN 并延长,与BC 的延长线交于点G ,连接GD ,若60ANM ∠=︒,试判断CGD △的形状,并进行证明.31.(2023·甘肃兰州·统考中考真题)综合与实践【思考尝试】(1)数学活动课上,老师出示了一个问题:如图1,在矩形ABCD 中,E 是边AB 上一点,DF CE ⊥于点F ,GD DF ⊥,AG DG ⊥,AG CF =.试猜想四边形ABCD 的形状,并说明理由;【实践探究】(2)小睿受此问题启发,逆向思考并提出新的问题:如图2,在正方形ABCD 中,E 是边AB 上一点,DF CE ⊥于点F ,AH CE ⊥于点H ,GD DF ⊥交AH 于点G ,可以用等式表示线段FH ,AH ,CF 的数量关系,请你思考并解答这个问题;【拓展迁移】(3)小博深入研究小睿提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD 中,E 是边AB 上一点,AH CE ⊥于点H ,点M 在CH 上,且AH HM =,连接AM ,BH ,可以用等式表示线段CM ,BH 的数量关系,请你思考并解答这个问题.32.(2023·贵州·统考中考真题)如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC 中,,90CA CB C =∠=︒,过点B 作射线BD AB ⊥,垂足为B ,点P 在CB 上.(1)【动手操作】如图②,若点P 在线段CB 上,画出射线PA ,并将射线PA 绕点P 逆时针旋转90︒与BD 交于点在图中画出图形,图中PBE ∠的度数为_______度;(2)【问题探究】(1)如图,当点D 与点O 重合时,请直接写出线段AD 与线段EF 的数量关系;(2)如图,当点D 在线段AB 上时,求证:2CG BD BC +=;(3)连接DE ,CDE 的面积记为1S ,ABC 的面积记为2S ,当:EF BC 34.(2023·四川成都·统考中考真题)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt ABC △中,90,C AC BC ∠=︒=,D 是AB 边上一点,且1AD BD n=(【初步感知】(1)如图1,当1n =时,兴趣小组探究得出结论:22AE BF AB +=,请写出证明过程.【深入探究】(2)①如图2,当2n =,且点F 在线段BC 上时,试探究线段AE BF AB ,,之间的数量关系,请写出结论并=;(1)求证:ED EC(2)将BE绕点E逆时针旋转,使点与B,C重合),判断(3)在(2)的条件下,已知37.(2023·安徽·统考中考真题)在点D在直线AB外,连接(1)如图1,求ADB ∠的大小;(2)已知点D 和边AC 上的点E 满足,ME AD DE AB ⊥∥.(ⅰ)如图2,连接CD ,求证:BD CD =;(ⅱ)如图3,连接BE ,若8,6AC BC ==,求tan ABE ∠的值.38.(2023·浙江宁波·统考中考真题)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.(1)如图1,在四边形ABCD 中,,90AD BC A ∠=︒∥,对角线BD 平分ADC ∠.求证:四边形ABCD 为邻等四边形.(2)如图2,在6×5的方格纸中,A ,B ,C 三点均在格点上,若四边形ABCD 是邻等四边形,请画出所有符合条件的格点D .(3)如图3,四边形ABCD 是邻等四边形,90DAB ABC ∠=∠=︒,BCD ∠为邻等角,连接AC ,过B 作BE AC ∥交DA 的延长线于点E .若8,10AC DE ==,求四边形EBCD 的周长.39.(2023·江苏扬州·统考中考真题)【问题情境】在综合实践活动课上,李老师让同桌两位同学用相同的两块含30︒的三角板开展数学探究活动,两块三角板分别记作ADB 和,90,30A D C ADB A D C B C ∠=∠=︒∠''''=∠=︒△,设2AB =.(1)当60α=︒时,BC =________;当22BC =时,α=________︒;(2)当90α=︒时,画出图形,并求两块三角板重叠部分图形的面积;(3)如图2,取BC 的中点F ,将A D C '' 绕着点A 旋转一周,点F 的运动路径长为刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即形旋转的关键;故数学就是一门哲学.【问题解决】(1)上述问题情境中“(2)如图,小王将一个半径为4cm,圆心角为60︒的扇形纸板ABC绕点O逆时针旋转90︒到达扇形纸板'''的位置.A B C①请在图中作出点O;BB',则在旋转过程中,点B经过的路径长为__________;②如果=6cm【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置,另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止,此时,两个纸板重叠部分的面积是多少呢?如图所示,请你帮助小李解决这个问题.参考答案(2)解:如图所示,过点N 作NP MC ⊥,交MC 的延长线于点∵CDE 绕顶点C 逆时针旋转120︒,∴120BCE ∠=︒,∵45BCN ECM ∠=∠=︒,∴120MCN BCM ECM BCE ∠=∠-∠=∠=︒,∴60NCP ∠=︒,∴30CNP ∠=︒,∵点G 是DE 的中点,∴GH 是FCD 的中位线,∴11122GH CD AD ===,设BE a =,则CH EH ==∴90C PQ PC Q '∠+∠='︒∵90C PQ CPH ∠+∠='︒∴PC Q CPH ∠=∠'.由旋转知PC PC '=,设C D ''与射线BA 的交点为作CH AB ⊥于点H .∵PC PC ⊥',∴90CPH TPC ∠'+∠=︒,∵C D AT ''⊥,∴90PC T TPC ∠'+∠='︒,②AD DF BD =+.理由如下:∵DF 和DC 关于AD 对称,∴DF DC =.∵AE CD =,∴AE DF =.∴AD AE DE DF BD =+=+∵DF 和DC 关于AD 对称,∴DF DC =,ADF ADC ∠=∠.∵CD BD ⊥,∴45ADF ADC ∠=∠=︒,∴45EBD ∠=︒.∴2DE BD =.∵AB AC AF ==,∴()11222HF BF BD DF ==-=,222262210BC BD CD =+=+=∴2221022AF AC BC ===⨯=25HF∴1BG BO GC OD==,∴115222CG BC AD ===,∴552OF GC .【详解】(1)解:∵60PC P C PCP ''=∠=︒,,∴PCP '△为等边三角形;∴PP PC '=,60P PC PP C ''∠=∠=︒,又P A PA ''=,故PA PB PC PA PB PP A B '''++=++≥,由两点之间线段最短可知,当B ,P ,P ',A 在同一条直线上时,PA PB PC ++取最小值,最小值为A B ',此时的P 点为该三角形的“费马点”,∴180BPC P PC '∠+∠=︒,180A P C PP C ∠+∠='''︒,∴120BPC ∠=︒,120A P C ''∠=︒,又∵A P C APC ≅'' ,∴120APC AP C '∠=∠=︒,∴360120APB APC BPC ∠=︒-∠-∠=︒,∴120APC BPC APB ∠=∠=∠=︒;∵120BAC ∠≥︒,∴BC AC >,BC AB >,∴BC AB AC AB +>+,BC AC AB AC +>+,∴三个顶点中,顶点A 到另外两个顶点的距离和最小.又∵已知当ABC 有一个内角大于或等于120︒时,“费马点”为该三角形的某个顶点.∴该三角形的“费马点”为点A ,故答案为:①等边;②两点之间线段最短;③120︒;④A .(2)将APC △绕,点C 顺时针旋转60︒得到A P C '' ,连接PP ',由(1)可知当B ,P ,P ',A 在同一条直线上时,PA PB PC ++取最小值,最小值为A B ',∵ACP A CP ''∠=∠,∴30ACP BCP A CP BCP ACB ∠+∠=∠+∠=∠=''︒,又∵60PCP '∠=︒过点A '作A H BC '⊥,垂足为H ,∵60ACB ∠=︒,90ACA '∠=︒,∴30A CH '∠=︒,1∵1122 CHGS CH HG=⋅=∴154302CG HE⋅=⨯=,∵四边形ABCD 是正方形,∴45DAC BAC ∠=∠=︒,∴四边形AMPN 是矩形,∴90MPN ∠=︒,∵四边形ABCD 是正方形,∴45BAC ∠=︒,90AOB ∠=∴45AEP ∠=︒,四边形OPEF ∴45,PAE PEA EF ∠=∠=︒=作PM AB⊥于点M,则QM MB=,∴QA BE=.∴AQ CP∵MN 是BAC 的中位线,∴MN AC ∥,∴90BMN BAC ∠=∠=︒∵将BMN 绕点B 顺时针旋转α∴,BE BM BF BN ==;BEF ∠=∵点,,A E F 在同一直线上时,∵,ADN BDE ANB BED ∠=∠∠=∠∴ADN BDE ∽,∴2222DN AN DE BE ===,设DE x =,则2DN x =,在Rt ABE △中,2,2BE AE ==在Rt ADN △中,22AD DN AN =+(3)如图所示,当点,,C E F 在同一直线上时,且点E 在FC 上时,∵AB AC =,∴A ABC CB =∠∠,设ABC ACB θ∠=∠=,则1802BAC θ∠=︒-,∵MN 是ABC 的中位线,∴MN AC∥∴MNB MBN θ∠=∠=,∵将BMN 绕点B 顺时针旋转α,得到BEF △,∴EBF MBN ≌,MBE NBF α∠=∠=,∴EBF EFB θ∠=∠=∴1802BEF θ∠=︒-,∵点,,C E F 在同一直线上,∴2BEC θ∠=∴180BEC BAC ∠+∠=︒,∴,,,A B E C 在同一个圆上,∵,BEF BAC BC BC∠=∠=∴,,,A B E C 在同一个圆上,设ABC ACB θ∠=∠=,则1802BAC BEF θ∠=∠=︒-,将BMN 绕点B 顺时针旋转α,得到BEF △,设NBF β∠=,则EBM β∠=,则360αβ+=︒,∴ABF θβ∠=-,(2)解:成立;理由如下:∵90DCE ACB ∠=∠=︒,∴DCA ACE ACE ∠+∠=∠+(3)解:当点E 在线段AD 设AE x =,则AD AE DE =+根据解析(2)可知,DCA ∽△∴3BE BC m AD AC===,()334BE AD x ==+=设AD y =,则AE AD DE =+根据解析(2)可知,DCA △∴3BE BC m AD AC===,∵PM 平分A MA'∠∴90PMA ∠=︒∴PM AB∥∴DNM DBA V V ∽。

成都市近十年中考数学相似三角形、折叠、几何压轴题

成都市近十年中考数学相似三角形、折叠、几何压轴题

中线、角平分线、垂直平分线、中位线、相似、等量代换、三角函数、旋转、平移【2017成都中考】问题背景:如图1,等腰△ABC 中,AB=AC ,∠BAC=120°,作AD ⊥BC 于点D ,则D 为BC 的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC 和△ADE 都是等腰三角形,∠BAC=∠DAE=120°,D ,E ,C 三点在同一条直线上,连接BD .①求证:△ADB ≌△AEC ;E ,连接AE 并延长交①证明△②若AE=5【2016,连结BD .(1)求(2)将①如图②②如图③点G ,连接GH 【2015 (1(i (ii )若(2)如图②,当四边形ABCD 和EFCG 均为矩形,且==k 时,若BE=1,AE=2,CE=3,求k 的值;(3)如图③,当四边形ABCD 和EFCG 均为菱形,且∠DAB=∠GEF=45°时,设BE=m ,AE=n ,CE=p ,试探究m ,n ,p 三者之间满足的等量关系.(直接写出结果,不必写出解答过程)【2014成都中考】如图,矩形ABCD 中,AB AD 2=,E 是AD 边上一点,AD nDE 1=(n 为大于2的整数),连接BE ,作BE 的垂直平分线分别交AD 、BC 于点F ,G ,FG 与BE 的交点为O ,连接BF 和EG . (1)试判断四边形BFEG 的形状,并说明理由;BD(2)当a AB =(a 为常数),3=n 时,求FG 的长; (3)记四边形BFEG 的面积为1S ,矩形ABCD 的面积为2S ,当301721=S S 时,求n 的值.(直接写出结果,不必写出解答过程) 【2013AD BC =.(1(2)若; i )当点ii )当点【2012形,∠的中点重合.将△相交于点P ,线段(1)△BPE ≌△CQE ;(2的延长线上时,求证:△BPE ∽△CEQ ;并求当BP=a ,CQ=P 、Q 两点间的距离【2011相交于点K ,E 是线段AD 上一动点。

2024成都中考数学第一轮专题复习之一线三等角模型解决全等、相似问题 知识精练(含答案)

2024成都中考数学第一轮专题复习之一线三等角模型解决全等、相似问题 知识精练(含答案)

2024成都中考数学第一轮专题复习之第四章微专题一线三等角模型解决全等、相似问题知识精练1.如图,△ABC 为等边三角形,D 是BC 上一点,连接AD ,点P ,Q 在AD 上,连接BP ,CQ ,且∠BPD =∠CQD =60°,若BP =3,CQ =5,则PQ 的长为________.第1题图2.如图,在四边形ABCD 中,AD =4,AB =10,点E 是AB 的中点,连接DE ,CE ,若∠A =∠B =∠DEC ,则BE BC的值为________.第2题图3.(2023重庆A 卷)如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,点D 为BC 上一点,连接A D.过点B 作BE ⊥AD 于点E ,过点C 作CF ⊥AD 交AD 的延长线于点F .若BE =4,CF =1,则EF 的长度为________.第3题图4.如图,在等腰Rt △ABC 中,AB =AC ,点D 是CB 延长线上一点,且AB =DB ,连接AD ,若AD =6,则△ACD 的面积为________.第4题图5.(2023荆州)如图①,点P 是线段AB 上与点A ,点B 不重合的任意一点,在AB 的同侧分别以A ,P ,B 为顶点作∠1=∠2=∠3,其中∠1与∠3的一边分别是射线AB 和射线BA ,∠2的两边不在直线AB 上,我们规定这三个角互为等联角,点P 为等联点,线段AB 为等联线.(1)如图②,在5×3个方格的纸上,小正方形的顶点为格点、边长均为1,AB为端点在格点的已知线段.请用三种不同连接格点........的方法,作出以线段AB为等联线、某格点P为等联点的等联角,并标出等联角,保留作图痕迹;(2)如图③,在Rt△APC中,∠A=90°,AC>AP,延长AP至点B,使AB=AC,作∠A的等联角∠CPD和∠PBD,将△APC沿PC折叠,使点A落在点M处,得到△MPC,再延长PM 交BD的延长线于E,连接CE并延长交PD的延长线于F,连接BF.①确定△PCF的形状,并说明理由;②若AP∶PB=1∶2,BF=2k,求等联线AB和线段PE的长(用含k的式子表示).图①图②图③第5题图参考答案与解析1.2【解析】∵∠BPD =∠CQD =60°,∴∠APB =∠CQA .∵△ABC 是等边三角形,∴AB =AC ,∠BAC =60°.∵∠BPD =∠BAP +∠ABP =60°,∠BAC =∠BAP +∠CAQ =60°,∴∠ABP =∠CAQ .在△ABP 和△CAQ ABP =∠CAQ ,APB =∠CQA ,=CA ,∴△ABP ≌△CAQ (AAS),∴BP =AQ =3,AP =CQ =5.∵AP =AQ +PQ =BP +PQ ,∴PQ =AP -BP =5-3=2.2.45【解析】∵∠A =∠B =∠DEC ,∴△DAE ∽△EBC [钝角一线三等角(同侧)],∴AD BE =AE BC .∵AD =4,AB =10,点E 是AB 的中点,∴AE =BE =5,∴BE BC =AD AE =45.3.3【解析】∵BE ⊥AD ,CF ⊥AD ,∴∠AEB =∠CFA =90°,∴∠ABE +∠BAE =90°.∵∠BAC =90°,∴∠CAF +∠BAE =90°,∴∠ABE =∠CAF .又∵AB =AC ,∴△ABE ≌△CAF ,∴AE =CF =1,AF =BE =4,∴EF =AF -AE =4-1=3.4.9【解析】如解图,过点B 作BG ⊥AD 于点G ,过点C 作CH ⊥AD 交DA 的延长线于点H ,CH 即为点C 到直线AD 的距离.∵BG ⊥AD ,AB =DB ,∴∠AGB =90°,AG =DG =12AD =3.∵△ABC 为等腰直角三角形,AB =AC ,∴∠ABC =∠ACB =45°,∴∠BAC =90°,∴∠GAB +∠HAC =90°.又∵CH ⊥AD ,∴∠AGB =∠CHA =90°,∴∠HCA +∠HAC =90°,∴∠GAB =∠HCA .在△ABG 和△CAH AGB =∠CHA ,GAB =∠HCA ,=CA ,∴△ABG ≌△CAH (AAS),∴AG =CH =3,∴S △ACD =12AD ·CH =12×6×3=9.第4题解图5.解:(1)作图如解图①;(注:只需作出其中三种)方法2方法3方法4方法5方法6方法7方法8第5题解图①(2)①△PCF是等腰直角三角形.理由如下:如解图②,过点C作CN⊥BE交BE的延长线于点N.由折叠的性质得AC=CM,∠CMP=∠CME=∠A=90°,∠1=∠2,∵∠A,∠CPD,∠PBD互为等联角,∴∠A=∠CPD=∠PBD=90°.∵AC=AB,∠A=∠PBD=∠N=90°,∴四边形ABNC为正方形,∴CN=AC=CM.又∵CE=CE,∴Rt△CME≌Rt△CNE(HL),∴∠3=∠4.∵∠1+∠2+∠3+∠4=90°,∠CPF=90°,∴∠PCF=∠2+∠3=∠CFP=45°,∴△PCF是等腰直角三角形.第5题解图②②如解图②,过点F作FQ⊥BE于点Q,作FR⊥PB交PB的延长线于点R,则∠R=∠A =90°.∵∠1+∠5=∠5+∠6=90°,∴∠1=∠6.由△PCF是等腰直角三角形,得PC=PF,∴△APC≌△RFP(AAS),∴AP=FR,AC=PR.∵AC=AB,∴AP=BR=FR.∵在Rt △BRF 中,BR 2+FR 2=BF 2,BF =2k ,∴AP =BR =FR =k .∵AP ∶PB =1∶2,∴PB =2AP =2k ,∴AB =AP +PB =BN =3k .由BR =FR ,∠QBR =∠R =∠FQB =90°,得四边形BRFQ 为正方形,∴BQ =QF =k ,由FQ ⊥BN ,CN ⊥BN ,得FQ ∥CN ,∴QE NE =QF NC,而QE =BN -NE -BQ =3k -NE -k =2k -NE ,即2k -NE NE=k 3k =13,解得NE =32k ,由①知PM =AP =k ,ME =NE =32k ,∴PE =PM +ME =k +32k =52k .。

2024成都中考数学第一轮专题复习 全等与相似三角形的性质与判定(含位似) 知识精练(含答案)

2024成都中考数学第一轮专题复习 全等与相似三角形的性质与判定(含位似) 知识精练(含答案)

2024成都中考数学第一轮专题复习之第四章第三节全等与相似三角形的性质与判定(含位似) 知识精练基础题1. (2023长春)如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA′、BB′的中点,只要量出A′B′的长度,就可以知道该零件内径AB的长度.依据的数学基本事实是()第1题图A. 两边及其夹角分别相等的两个三角形全等B. 两角及其夹边分别相等的两个三角形全等C. 两条直线被一组平行线所截,所得的对应线段成比例D. 两点之间线段最短2. 已知图中的两个三角形全等,则∠1的度数是()第2题图A. 76°B. 60°C. 54°D. 50°3. (2022云南)如图,OB平分∠AOC,D,E,F分别是射线OA,射线OB,射线OC上的点,D,E,F与O点都不重合,连接ED,EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是()A. OD=OEB. OE=OFC. ∠ODE=∠OEDD. ∠ODE=∠OFE第3题图4. 如图,在菱形ABCD 中,E 是CD 边上一点,连接AE ,点F ,G 均在AE 上,连接BF ,DG ,且∠BFE =∠BAD ,只添加一个条件,能判定△ABF ≌△DAG 的是( )第4题图A. ∠DGE =∠BADB. BF =EFC. AF =DGD. ∠EDG =∠BAD5. (2023重庆A 卷)若两个相似三角形周长的比为1∶4,则这两个三角形对应边的比是( ) A. 1∶2 B. 1∶4 C. 1∶8 D. 1∶166. 如图,已知△ABC ∽△EDC ,AC ∶EC =2∶3,若AB 的长度为6,则DE 的长度为( ) A. 4 B. 9 C. 12 D. 13.5第6题图7. (2023恩施州)如图,在△ABC 中,DE ∥BC 分别交AC ,AB 于点D ,E ,EF ∥AC 交BC 于点F ,若AE BE =25,BF =8,则DE 的长为( )第7题图A.165 B. 167C. 2D. 3 8. (2023陕西)如图,DE 是△ABC 的中位线,点F 在DB 上,DF =2BF ,连接EF 并延长,与CB的延长线相交于点M.若BC=6,则线段CM的长为()A. 132 B. 7 C.152 D. 8第8题图9. 如图,在四边形ABCD中,对角线AC,BD相交于点O,OA=OC,添加一个条件使△AOB≌△COD,则这个条件可以是______________.(写出一个即可)第9题图10. (2023江西)《周髀算经》中记载了“偃矩以望高”的方法.“矩”在古代指两条边呈直角的曲尺(即图中的ABC).“偃矩以望高”的意思是把“矩”仰立放,可测量物体的高度.如图,点A,B,Q在同一水平线上,∠ABC和∠AQP均为直角,AP与BC相交于点D.测得AB=40 cm,BD=20 cm,AQ=12 m,则树高PQ=________m.第10题图11. 如图,△ABC≌△ADE,BC的延长线交AD于点F,交DE于点G.若∠D=28°,∠E=115°,∠DAC=50°,则∠DGB的度数为________.第11题图12. (2023鄂州)如图,在平面直角坐标系中,△ABC与△A1B1C1位似,原点O是位似中心,且ABA1B1=3.若A(9,3),则点A1的坐标是________.第12题图13. (2023乐山)如图,在平行四边形ABCD 中,E 是线段AB 上一点,连接AC ,DE 交于点F .若AE EB =23,则S △ADF S △AEF=________.第13题图14. (2023江西)如图,AB =AD ,AC 平分∠BA D.求证:△ABC ≌△ADC .第14题图15. (2023陕西)如图,在△ABC 中,∠B =50°,∠C =20°.过点A 作AE ⊥BC ,垂足为E ,延长EA 至点D ,使AD =AC ,在边AC 上截取AF =AB ,连接DF .求证:DF =CB .第15题图16. (2022盐城)如图,在△ABC与△A′B′C′中,点D,D′分别在边BC,B′C′上,且△ACD∽△A′C′D′,若________,则△ABD∽△A′B′D′.请从①BDCD=B′D′C′D′;②ABCD=A′B′C′D′;③∠BAD=∠B′A′D′这3个选项中选择一个作为条件(写序号),并加以证明.第16题图17. (2023舟山)如图,在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,连接EF.(1)求证:AE=AF;(2)若∠B=60°,求∠AEF的度数.第17题图拔高题18. (2023绥化)如图,在平面直角坐标系中,△ABC 与△AB ′C ′的相似比为1∶2,点A 是位似中心,已知点A (2,0),点C (a ,b ),∠C =90°,则点C ′的坐标为________.(结果用含a ,b 的式子表示)第18题图19. (2023杭州)如图,在△ABC 中,AB =AC ,∠A <90°,点D ,E ,F 分别在边AB ,BC ,CA 上,连接DE ,EF ,FD ,已知点B 和点F 关于直线DE 对称.设BC AB =k ,若AD =DF ,则CFF A =________(结果用含k 的代数式表示).第19题图20. (2023温州)如图,已知矩形ABCD ,点E 在CB 延长线上,点F 在BC 延长线上,过点F 作FH ⊥EF 交ED 的延长线于点H ,连接AF 交EH 于点G ,GE =GH . (1)求证:BE =CF ; (2)当AB FH =56,AD =4时,求EF 的长.第20题图参考答案与解析1. A 【解析】∵点O 为AA ′、BB ′的中点,∴OA =OA ′,OB =OB ′,由对顶角相等得∠AOB =∠A ′OB ′,在△AOB 和△A ′OB ′中,⎩⎪⎨⎪⎧OA =OA ′,∠AOB =∠A ′OB ′,OB =OB ′,∴△AOB ≌△A ′OB ′(SAS),∴AB =A ′B ′,即只要量出A ′B ′的长度,就可以知道该零件内径AB 的长度.2. D 【解析】第一个三角形中b ,c 之间的夹角为180°-76°-54°=50°,∠1是b ,c 之间的夹角.∵两个三角形全等,∴∠1=50°.3. D 【解析】由题意得∠AOB =∠BOC ,OE =OE ,若要使△DOE ≌△FOE ,则需OD =OF 或除已知外的一组对应角相等即可.根据选项可知∠ODE =∠OFE 满足条件.4. A 【解析】∵四边形ABCD 是菱形,∴AB =DA .∵∠BFE =∠BAD ,∴∠ABF +∠BAF =∠DAG +∠BAF ,∴∠ABF =∠DAG .当∠DGE =∠BAD 时,∠ADG +∠DAG =∠DAG +∠BAF ,∴∠BAF =∠ADG ,∴△ABF ≌△DAG (ASA).5. B6. B 【解析】∵△ABC ∽△EDC ,AC ∶EC =2∶3.∴AB ED =AC EC =BC DC =23,∴当AB =6时,DE =9.7. A 【解析】∵DE ∥BC ,EF ∥AC ,∴∠B =∠AED ,∠BEF =∠A ,∴△BEF ∽△EAD ,∴BF ED =BE EA =52 .∵BF =8,∴DE =165. 8. C 【解析】∵DE 是△ABC 的中位线,∴DE ∥BC ,DE =12 BC =12 ×6=3,∴△DEF ∽△BMF ,∴DE BM =DF BF =2BF BF =2,∴BM =32 ,CM =BC +BM =152.9. OB =OD (答案不唯一) 【解析】∵OA =OC ,∠AOB =∠COD ,OB =OD ,∴△AOB ≌△COD (SAS).10. 6 【解析】∵∠ABC 和∠AQP 均为直角,∴BC ∥PQ ,∴△ABD ∽△AQP ,∴BD AB =PQAQ ,∴2040 =PQ12,∴PQ =6 m. 11. 87° 【解析】∵△ABC ≌△ADE ,∴∠B =∠D =28°,∠ACB =∠E =115°,∴∠ACG =65°.∵∠DAC =50°,∴∠AFC =∠GFD =65°,∴∠DGF =180°-∠D -∠DFG =87°.12. (3,1) 【解析】∵△ABC 与△A 1B 1C 1位似,且原点O 为位似中心,ABA 1B 1 =3,点A (9,3),∴13 ×9=3,13×3=1,即点A 1的坐标是(3,1).13. 52 【解析】如题图,∵AE EB =23 ,∴AE AB =25 .∵四边形ABCD 为平行四边形,∴DC=AB ,DC ∥AB ,∴DF EF =DC AE .∵AE AB =25 ,DC =AB ,∴AE DC =25 ,∴DC AE =52 ,∴DF EF =52 ,∴S △ADF S △AEF =DF EF =52 . 14. 证明:∵ AC 平分∠BAD , ∴∠BAC =∠DAC . 在△ABC 和△ADC 中, ⎩⎪⎨⎪⎧AB =AD ,∠BAC =∠DAC ,AC =AC ,∴△ABC ≌△ADC (SAS).15. 证明:∵在△ABC 中,∠B =50°,∠C =20°, ∴∠CAB =180°-∠B -∠C =110°. ∵AE ⊥BC , ∴∠AEC =90°,∴∠DAF =∠AEC +∠C =110°, ∴∠DAF =∠CAB . 又∵AD =AC ,AF =AB , ∴△DAF ≌△CAB , ∴DF =CB . 16. 解:选择①BD CD =B ′D ′C ′D ′, 证明:∵△ACD ∽△A ′C ′D ′, ∴∠ADC =∠A ′D ′C ′,AD A ′D ′ =CDC ′D ′, ∴∠ADB =∠A ′D ′B ′. 又∵BD CD =B ′D ′C ′D ′ ,∴BD B ′D ′ =CDC ′D ′,∴BD B ′D ′ =CD C ′D ′ =ADA ′D ′, ∴△ABD ∽△A ′B ′D ′. 选择③∠BAD =∠B ′A ′D ′. 证明:∵△ACD ∽△A ′C ′D ′, ∴∠ADC =∠A ′D ′C ′, ∴∠ADB =∠A ′D ′B ′. ∵∠BAD =∠B ′A ′D ′, ∴△ABD ∽△A ′B ′D ′.17. (1)证明:∵四边形ABCD 是菱形,∴AB =AD ,∠B =∠D . 又∵AE ⊥BC ,AF ⊥CD , ∴∠AEB =∠AFD =90°.在△ABE 和△AFD 中,⎩⎪⎨⎪⎧∠AEB =∠AFD ,∠B =∠D ,AB =AD ,∴△ABE ≌△ADF (AAS), ∴AE =AF ;(2)∵四边形ABCD 是菱形, ∴∠B +∠BAD =180°. ∵∠B =60°, ∴∠BAD =120°.又∵∠AEB =90°,∠B =60°, ∴∠BAE =180°-∠AEB -∠B =30°. 由(1)知△ABE ≌△ADF , ∴∠DAF =∠BAE =30°,∴∠EAF =120°-∠DAF -∠BAE =60°. ∵AE =AF ,∴△AEF 是等边三角形, ∴∠AEF =60°.18. (6-2a ,-2b ) 【解析】如解图,过点C 作CM ⊥AB 于点M ,过C ′作C ′N ⊥AB ′于点N ,则∠ANC ′=∠AMC =90°,∵△ABC 与△AB ′C ′的相似比为1∶2,∴AC AC ′ =12.∵∠NAC ′=∠MAC ,∴△ACM ∽△AC ′N ,∴AM AN =CM C ′N =AC AC ′.∵点A (2,0),点C (a ,b ),∴OA =2,OM =a ,CM =b ,∴AM =a -2,∴a -2AN =b C ′N =12 ,∴AN =2a -4,C ′N =2b ,∴ON =AN-OA =2a -6,∴点C ′的坐标为(6-2a ,-2b ).第18题解图19. k 22-k 2 【解析】设∠B =α,BE =x ,∵AB =AC ,∴∠C =α,∠A =180°-2α.∵点B 和点F 关于直线DE 对称,∴△DBE ≌△DFE ,∴∠DFE =∠B =α,EF =BE =x .∵AD =DF ,∴∠DF A =∠A =180°-2α,∴∠CFE =180°-∠AFD -∠DFE =180°-(180°-2α)-α=α,∴∠CFE =∠C ,∴CE =EF =x ,∴BC =2x ,∴∠CFE =∠C =∠B =α,∴△CEF ∽△CAB ,∴EF AB =CF CB ,即x AB =CF 2x ,∴AB ·CF =2x 2.∵BC AB =k ,∴AB =BC k =2x k ,∴CF =2x 2AB =2x 2·k 2x =kx ,∴F A =AC -CF =AB -CF =2x k -kx =2-k 2k x ,∴CF F A =kx 2-k 2kx =k 22-k 2. 20. (1)证明:∵FH ⊥EF ,GE =GH ,∴GE =GF =GH , ∴∠GFE =∠E .∵四边形ABCD 是矩形,∴AB =CD ,∠ABC =∠DCB =90°, ∴△ABF ≌△DCE (AAS), ∴BF =CE ,∴CE -BC =BF -BC ,即BE =CF ; (2)解:∵CD ∥FH , ∴△DCE ∽△HFE , ∴EC EF =CD FH . ∵CD =AB , ∴CD FH =AB FH =56 . 设BE =CF =x ,∵BC=AD=4,∴CE=x+4,EF=2x+4.∴x+42x+4=5 6,解得x=1,∴EF=6.。

押成都卷第12-13题(全等三角形的判定、相似三角形与位似、尺规作图与几何综合)(解析版)-中考数学

押成都卷第12-13题(全等三角形的判定、相似三角形与位似、尺规作图与几何综合)(解析版)-中考数学

押成都卷第12-13题押题方向一:全等三角形的性质与判定3年成都真题考点命题趋势2023年成都卷第11题全等三角形的性质从近年成都中考来看,全等三角形的性质与判定考查以基本性质和判定为主,试题以选填题形式呈现,整体难度不高;预计2024年成都卷还将继续重视全等三角形的性质与判定的考查。

2022年成都卷第4题全等三角形的判定1.(2023·四川成都·中考真题)如图,已知ABC DEF ≌△△,点B ,E ,C ,F 依次在同一条直线上.若85BC CE ==,,则CF 的长为.【答案】3【分析】利用全等三角形的性质求解即可.【详解】解:由全等三角形的性质得:8EF BC ==,∴853CF EF CE =-=-=,故答案为:3.【点睛】本题考查全等三角形性质,熟练掌握全等三角形的性质是解答的关键.2.(2022·四川成都·中考真题)如图,在ABC 和DEF 中,点A ,E ,B ,D 在同一直线上,AC DF ∥,AC DF =,只添加一个条件,能判定ABC DEF ≌△△的是()A .BC DE =B .AE DB =C .A DEF ∠=∠D .ABC D∠=∠【答案】B【分析】根据三角形全等的判定做出选择即可.【详解】A 、BC DE =,不能判断ABC DEF ≌△△,选项不符合题意;B 、AE DB =,利用SAS 定理可以判断ABC DEF ≌△△,选项符合题意;C 、A DEF ∠=∠,不能判断ABC DEF ≌△△,选项不符合题意;D 、ABC D ∠=∠,不能判断ABC DEF ≌△△,选项不符合题意;故选:B .【点睛】本题考查三角形全等的判定,根据SSS 、SAS 、ASA 、AAS 判断三角形全等,找出三角形全等的条件是解答本题的关键.1.全等三角形的性质:对应边相等,对应角相等。

推论:全等三角形的周长和面积相等,对应的“三线”分别相等。

初三数学必刷题

初三数学必刷题

初三数学必刷题
以下是一些初三数学必刷题的推荐:
1. 线性方程组:解下列方程组,包括两个未知数和三个未知数的情况。

2. 平方根与整式的运算:对一些带有平方根的式子进行化简、加减乘除的运算。

3. 相似三角形:给出一些三角形的边长比例,求其他未知量的比例或角的大小。

4. 等差数列与等比数列:给出一些数列的前几项,求通项公式或者某一项的值。

5. 勾股定理与三角函数:根据给出的两条边长或一个角和一条边的关系,求其他未知量的大小。

6. 平行四边形与矩形:根据已知长度关系或者图形条件,求其他未知量的大小。

7. 几何证明:要求使用几何知识进行严密的证明过程,解决一些几何问题。

8. 立体几何:给出一些空间图形的特征,求其他未知量的大小。

9. 概率与统计:根据已知的概率或频率,求其他未知量的概率或频率。

以上题型覆盖了初中数学的各个知识点,建议从易到难进行刷题,并结合教材进行学习和巩固。

成都市第二十中学校数学全等三角形单元培优测试卷

成都市第二十中学校数学全等三角形单元培优测试卷

一、八年级数学全等三角形解答题压轴题(难)1.如图1,等腰△ABC中,AC=BC=42, ∠ACB=45˚,AO是BC边上的高,D为线段AO上一动点,以CD为一边在CD下方作等腰△CDE,使CD=CE且∠DCE=45˚,连结BE.(1) 求证:△ACD≌△BCE;(2) 如图2,在图1的基础上,延长BE至Q, P为BQ上一点,连结CP、CQ,若CP=CQ=5,求PQ的长.(3) 连接OE,直接写出线段OE的最小值.【答案】(1)证明见解析;(2)PQ=6;(3)OE=422-【解析】试题分析:()1根据SAS即可证得ACD BCE≌;()2首先过点C作CH BQ⊥于H,由等腰三角形的性质,即可求得45DAC∠=︒,则根据等腰三角形与直角三角形中的勾股定理即可求得PQ 的长.()3OE BQ⊥时,OE取得最小值.试题解析:()1证明:∵△ABC与△DCE是等腰三角形,∴AC=BC,DC=EC,45ACB DCE∠=∠=,45ACD DCB ECB DCB∴∠+∠=∠+∠=,∴∠ACD=∠BCE;在△ACD和△BCE中,,AC BCACD BCEDC EC=⎧⎪∠=∠⎨⎪=⎩(SAS)ACD BCE∴≌;()2首先过点C作CH BQ⊥于H,(2)过点C作CH⊥BQ于H,∵△ABC是等腰三角形,∠ACB=45˚,AO是BC边上的高,45DAC∴∠=,ACD BCE≌,45PBC DAC∴∠=∠=,∴在Rt BHC中,2242422CH BC=⨯=⨯=,54PC CQ CH===,,3PH QH∴==,6.PQ∴=()3OE BQ⊥时,OE取得最小值.最小值为:42 2.OE=-2.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE ,再由AB=AD ,AE=AC ,根据SAS 即可证得△ABC ≌△ADE ;(2)已知∠CAE=90°,AC=AE ,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC ≌△DAE ,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE 即可得∠FAE 的度数;(3)延长BF 到G ,使得FG=FB ,易证△AFB ≌△AFG ,根据全等三角形的性质可得AB=AG ,∠ABF=∠G ,再由△BAC ≌△DAE ,可得AB=AD ,∠CBA=∠EDA ,CB=ED ,所以AG=AD ,∠ABF=∠CDA ,即可得∠G=∠CDA ,利用AAS 证得△CGA ≌△CDA ,由全等三角形的性质可得CG=CD ,所以CG=CB+BF+FG=CB+2BF=DE+2BF .【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF 到G ,使得FG=FB ,∵AF ⊥BG ,∴∠AFG=∠AFB=90°,在△AFB 和△AFG 中,BF F AFB AFG AF AF G =⎧⎪∠=∠⎨⎪=⎩, ∴△AFB ≌△AFG (SAS ),∴AB=AG ,∠ABF=∠G ,∵△BAC ≌△DAE ,∴AB=AD ,∠CBA=∠EDA ,CB=ED ,∴AG=AD ,∠ABF=∠CDA ,∴∠G=∠CDA ,在△CGA和△CDA中,GCA DCACGA CDAAG AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CGA≌△CDA,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.3.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.【答案】(1)详见解析;(2)BE+CF>EF,证明详见解析【解析】【分析】(1)先利用ASA判定△BGD≅CFD,从而得出BG=CF;(2)利用全等的性质可得GD=FD,再有DE⊥GF,从而得到EG=EF,两边之和大于第三边从而得出BE+CF>EF.【详解】解:(1)∵BG∥AC,∴∠DBG =∠DCF .∵D 为BC 的中点,∴BD =CD又∵∠BDG =∠CDF ,在△BGD 与△CFD 中,∵DBG DCF BD CD BDG CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BGD ≌△CFD (ASA ).∴BG =CF .(2)BE +CF >EF .∵△BGD ≌△CFD ,∴GD =FD ,BG =CF .又∵DE ⊥FG ,∴EG =EF (垂直平分线到线段端点的距离相等).∴在△EBG 中,BE +BG >EG ,即BE +CF >EF .【点睛】本题考查了三角形全等的判定和性质,要注意判定三角形全等的一般方法有:SSS 、SAS 、AAS 、ASA 、HL .4.已知△ABC 中,AB =AC ,点P 是AB 上一动点,点Q 是AC 的延长线上一动点,且点P 从B 运动向A 、点Q 从C 运动向Q 移动的时间和速度相同,PQ 与BC 相交于点D ,若AB =82,BC =16.(1)如图1,当点P 为AB 的中点时,求CD 的长;(2)如图②,过点P 作直线BC 的垂线,垂足为E ,当点P 、Q 在移动的过程中,设BE +CD =λ,λ是否为常数?若是请求出λ的值,若不是请说明理由.【答案】(1)4;(2)8【解析】【分析】(1)过P 点作PF ∥AC 交BC 于F ,由点P 和点Q 同时出发,且速度相同,得出BP=CQ ,根据PF ∥AQ ,可知∠PFB=∠ACB ,∠DPF=∠CQD ,则可得出∠B=∠PFB ,证出BP=PF ,得出PF=CQ ,由AAS 证明△PFD ≌△QCD ,得出,再证出F 是BC 的中点,即可得出结果;(2)过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形,可得BE=12BF ,由(1)证明方法可得△PFD ≌△QCD 则有CD=12CF ,即可得出BE +CD =8. 【详解】解:(1)如图①,过P 点作PF ∥AC 交BC 于F ,∵点P 和点Q 同时出发,且速度相同,∴BP=CQ ,∵PF ∥AQ ,∴∠PFB=∠ACB ,∠DPF=∠CQD ,又∵AB=AC ,∴∠B=∠ACB ,∴∠B=∠PFB ,∴BP=PF ,∴PF=CQ ,又∠PDF=∠QDC ,∴△PFD ≌△QCD ,∴DF=CD=12CF , 又因P 是AB 的中点,PF ∥AQ , ∴F 是BC 的中点,即FC=12BC=8, ∴CD=12CF=4; (2)8BE CD λ+==为定值.如图②,点P 在线段AB 上,过点P 作PF ∥AC 交BC 于F ,易知△PBF 为等腰三角形,∵PE ⊥BF∴BE=12BF ∵易得△PFD ≌△QCD ∴CD=12CF ∴()111182222BE CD BF CF BF CF BC λ+==+=+== 【点睛】 此题考查了等腰三角形的性质,全等三角形的判断与性质,熟悉相关性质定理是解题的关键.5.在ABC 中,AB AC =,点D 在BC 边上,且60,ADB E ∠=︒是射线DA 上一动点(不与点D 重合,且DA DB ≠),在射线DB 上截取DF DE =,连接EF .()1当点E 在线段AD 上时,①若点E 与点A 重合时,请说明线段BF DC =;②如图2,若点E 不与点A 重合,请说明BF DC AE =+;()2当点E 在线段DA 的延长线上()DE DB >时,用等式表示线段,,AE BF CD 之间的数量关系(直接写出结果,不需要证明).【答案】(1)①证明见解析;②证明见解析;(2)BF =AE-CD【解析】【分析】(1)①根据等边对等角,求到B C∠=∠,再由含有60°角的等腰三角形是等边三角形得到ADF∆是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到120AFB ADC∠=∠=︒,推出ABF ACD∆∆≌,根据全等三角形的性质即可得出结论;②过点A做AG∥EF交BC于点G,由△DEF为等边三角形得到DA=DG,再推出AE=GF,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论.【详解】(1)①证明:AB AC=B C∴∠=∠,60DF DE ADB=∠=︒,且E与A重合,ADF∴∆是等边三角形60ADF AFD∴∠=∠=︒120AFB ADC∴∠=∠=︒在ABF∆和ACD∆中AFB ADCB CAB AC∠=∠⎧⎪∠=∠⎨⎪=⎩ABF ACD∴∆∆≌BF DC∴=②如图2,过点A做AG∥EF交BC于点G,∵∠ADB=60°DE=DF∴△DEF为等边三角形∵AG∥EF∴∠DAG=∠DEF=60°,∠AGD=∠EFD=60°∴∠DAG=∠AGD∴DA=DG∴DA-DE=DG-DF,即AE=GF由①易证△AGB≌△ADC∴BG=CD∴BF =BG +GF =CD +AE(2)如图3,和(1)中②相同,过点A 做AG ∥EF 交BC 于点G ,由(1)可知,AE=GF ,DC=BG ,BF CD BF BG GF AE ∴+=+==故BF AE CD =-. 【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.6.(1)如图(a )所示点D 是等边ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方作等边DCF ,连接AF .你能发现线段AF 与BD 之间的数量关系吗?并证明.(2)如图(b )所示当动点D 运动至等边ABC 边BA 的延长线上时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?(直接写出结论)(3)①如图(c )所示,当动点D 在等边ABC 边BA 上运动时(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方、下方分别作等边DCF 和等边DCF ',连接AF 、BF ',探究AF 、BF '与AB 有何数量关系?并证明.②如图(d )所示,当动点D 在等边ABC 边BA 的延长线上运动时,其他作法与(3)①相同,①中的结论是否成立?若不成立,是否有新的结论?并证明.【答案】(1)AF=BD ,理由见解析;(2)AF=BD ,成立;(3)①AF BF AB '+=,证明见解析;②①中的结论不成立新的结论是AF AB BF '=+,理由见解析【解析】【分析】(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS 可证得BCD ACF △≌△,然后由全等三角形的对应边相等知AF BD = .(2)通过证明BCD ACF △≌△,即可证明AF BD =.(3)①'AF BF AB += ,利用全等三角形BCD ACF △≌△的对应边BD AF = ,同理'BCF ACD △≌△ ,则'BF AD = ,所以'AF BF AB +=;②①中的结论不成立,新的结论是'AF AB BF =+ ,通过证明BCF ACD △≌△,则'BF AD =(全等三角形的对应边相等),再结合(2)中的结论即可证得'AF AB BF =+ .【详解】(1)AF BD =证明如下:ABC 是等边三角形,BC AC ∴=,60BCA ︒∠=.同理可得:DC CF =,60DCF ︒∠=.BCA DCA DCF DCA ∴∠-∠=∠-∠.即BCD ACF ∠=∠.BCD ACF ∴△≌△.AF BD ∴=.(2)证明过程同(1),证得BCD ACF △≌△,则AF BD =(全等三角形的对应边相等),所以当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF BD =依然成立.(3)①AF BF AB '+=证明:由(1)知,BCD ACF △≌△.BD AF ∴=.同理BCF ACD '△≌△.BF AD '∴=.AF BF BD AD AB '∴+=+=.②①中的结论不成立新的结论是AF AB BF '=+;BC AC =,BCF ACD '∠=∠,F C DC '=,BCF ACD '∴△≌△.BF AD '∴=.又由(2)知,AF BD =.AF BD AB AD AB BF '∴==+=+.即AF AB BF '=+.【点睛】本题考查了三角形的综合问题,掌握等边三角形的三条边、三个内角都相等的性质、全等三角形的判定定理、全等三角形的对应边相等是解题的关键.7.如图,在ABC∆中,5BC=,高AD、BE相交于点O,23BD CD=,且AE BE= .(1)求线段AO的长;(2)动点P从点O出发,沿线段OA以每秒 1 个单位长度的速度向终点A运动,动点Q 从点B出发沿射线BC以每秒 4 个单位长度的速度运动,,P Q两点同时出发,当点P到达A点时,,P Q两点同时停止运动.设点P的运动时间为t秒,POQ∆的面积为S,请用含t的式子表示S,并直接写出相应的t的取值范围;(3)在(2)的条件下,点F 是直线AC上的一点且CF BO=.是否存在t 值,使以点,,B O P为顶点的三角形与以点,,F C Q为顶点的三角形全等?若存在,请直接写出符合条件的t值; 若不存在,请说明理由.【答案】(1)5;(2)①当点Q在线段BD上时,24QD t=-,t的取值范围是12t<<;②当点Q在射线DC上时,42QD t=-,,t的取值范围是152t<≤;(3)存在,1t=或53.【解析】【分析】(1)只要证明△AOE≌△BCE即可解决问题;(2)分两种情形讨论求解即可①当点Q在线段BD上时,QD=2-4t,②当点Q在射线DC上时,DQ=4t-2时;(3)分两种情形求解即可①如图2中,当OP=CQ时,BOP≌△FCQ.②如图3中,当OP=CQ时,△BOP≌△FCQ;【详解】解:(1)∵AD是高,∴90ADC∠=∵BE是高,∴90AEB BEC∠=∠=∴90EAO ACD∠+∠=,90EBC ECB∠+∠=,∴EAO EBC∠=∠在AOE∆和BCE∆中,EAO EBCAE BEAEO BEC∠=∠⎧⎪=⎨⎪∠=∠⎩∴AOE ∆≌BCE ∆∴5AO BC ==;(2)∵23BD CD =,=5BC ∴=2BD ,=3CD , 根据题意,OP t =,4BQ t =,①当点Q 在线段BD 上时,24QD t =-,∴21(24)22S t t t t =-=-+,t 的取值范围是102t <<. ②当点Q 在射线DC 上时,42QD t =-, ∴21(42)22S t t t t =-=-,t 的取值范围是152t <≤ (3)存在.①如图2中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴5-4t ═t ,解得t=1,②如图3中,当OP=CQ 时,∵OB=CF ,∠POB=∠FCQ ,∴△BOP ≌△FCQ .∴CQ=OP ,∴4t-5=t ,解得t=53. 综上所述,t=1或53s 时,△BOP 与△FCQ 全等.【点睛】本题考查三角形综合题、全等三角形的判定和性质、三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;(2)在(1)的条件下,求∠BEC的度数;拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.【答案】(1)见解析;(2)70°;(3)2【解析】【分析】(1)根据SAS证明△BAD≌△CAE即可.(2)利用全等三角形的性质解决问题即可.(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.【详解】(1)证明:如图1中,∵∠ABC=∠ACB=∠ADE=∠AED,∴∠EAD=∠CAB,∴∠EAC=∠DAB,∵AE=AD,AC=AB,∴△BAD≌△CAE(SAS).(2)解:如图1中,设AC交BE于O.∵∠ABC=∠ACB=55°,∴∠BAC=180°﹣110°=70°,∵△BAD≌△CAE,∴∠ABO=∠ECO,∵∠EOC=∠AOB,∴∠CEO=∠BAO=70°,即∠BEC=70°.(3)解:如图2中,∵∠CAB=∠EAD=120°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴∠BAD=∠ACE,BD=EC=4,同理可证∠BEC=∠BAC=120°,∴∠FEC=60°,∵CF⊥EF,∴∠F=90°,∴∠FCE=30°,∴EF=12EC=2.【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.9.已知点P是线段MN上一动点,分别以PM,PN为一边,在MN的同侧作△APM,△BPN,并连接BM,AN.(Ⅰ)如图1,当PM=AP,PN=BP且∠APM=∠BPN=90°时,试猜想BM,AN之间的数量关系与位置关系,并证明你的猜想;(Ⅱ)如图2,当△APM,△BPN都是等边三角形时,(Ⅰ)中BM,AN之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.(Ⅲ)在(Ⅱ)的条件下,连接AB得到图3,当PN=2PM时,求∠PAB度数.【答案】(1)BM=AN,BM⊥AN.(2)结论成立.(3)90°.【解析】【分析】(1)根据已知条件可证△MBP≌△ANP,得出MB=AN,∠PAN=∠PMB,再延长MB交∠=︒,因此有BM⊥AN;AN于点C,得出MCN90(2)根据所给条件可证△MPB≌△APN,得出结论BM=AN;(3)取PB的中点C,连接AC,AB,通过已知条件推出△APC为等边三角形,∠PAC=∠PCA=60°,再由CA=CB,进一步得出∠PAB的度数.【详解】解:(Ⅰ)结论:BM=AN,BM⊥AN.理由:如图1中,∵MP=AP,∠APM=∠BPN=90°,PB=PN,∴△MBP≌△ANP(SAS),∴MB=AN.延长MB交AN于点C.∵△MBP≌△ANP,∴∠PAN=∠PMB,∵∠PAN+∠PNA=90°,∴∠PMB+∠PNA=90°,∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,∴BM⊥AN.(Ⅱ)结论成立理由:如图2中,∵△APM,△BPN,都是等边三角形∴∠APM=∠BPN=60°∴∠MPB=∠APN=120°,又∵PM=PA,PB=PN,∴△MPB≌△APN(SAS)∴MB=AN.(Ⅲ)如图3中,取PB的中点C,连接AC,AB.∵△APM,△PBN都是等边三角形∴∠APM=∠BPN=60°,PB=PN∵点C是PB的中点,且PN=2PM,∴2PC=2PA=2PM=PB=PN,∵∠APC=60°,∴△APC为等边三角形,∴∠PAC=∠PCA=60°,又∵CA=CB,∴∠CAB=∠ABC=30°,∴∠PAB=∠PAC+∠CAB=90°.【点睛】本题是一道关于全等三角形的综合性题目,充分考查了学生对全等三角形的判定定理及其性质的应用的能力,此类题目常常需要数形结合,借助辅助线才得以解决,因此,作出合理正确的辅助线是解题的关键.10.如图1,已知CF是△ABC的外角∠ACE的角平分线,D为CF上一点,且DA=DB.(1)求证:∠ACB =∠ADB ;(2)求证:AC +BC <2BD ;(3)如图2,若∠ECF =60°,证明:AC =BC +CD .【答案】(1)详见解析;(2)详见解析;(3)详见解析.【解析】【分析】(1)过点D 分别作AC ,CE 的垂线,垂足分别为M ,N ,证明Rt △DAM ≌Rt △DBN ,得出∠DAM=∠DBN ,则结论得证;(2)证明Rt △DMC ≌Rt △DNC ,可得CM=CN ,得出AC+BC=2BN ,又BN <BD ,则结论得证;(3)在AC 上取一点P ,使CP=CD ,连接DP ,可证明△ADP ≌△BDC ,得出AP=BC ,则结论可得出.【详解】(1)证明:过点D 分别作AC ,CE 的垂线,垂足分别为M ,N ,∵CF 是△ABC 的外角∠ACE 的角平分线,∴DM =DN ,在Rt △DAM 和Rt △DBN 中,DA DB DM DN =⎧⎨=⎩, ∴Rt △DAM ≌Rt △DBN (HL ),∴∠DAM =∠DBN ,∴∠ACB =∠ADB ;(2)证明:由(1)知DM =DN ,在Rt △DMC 和Rt △DNC 中,DC DCDM DN=⎧⎨=⎩,∴Rt△DMC≌Rt△DNC(HL),∴CM=CN,∴AC+BC=AM+CM+BC=AM+CN+BC=AM+BN,又∵AM=BN,∴AC+BC=2BN,∵BN<BD,∴AC+BC<2BD.(3)由(1)知∠CAD=∠CBD,在AC上取一点P,使CP=CD,连接DP,∵∠ECF=60°,∠ACF=60°,∴△CDP为等边三角形,∴DP=DC,∠DPC=60°,∴∠APD=120°,∵∠ECF=60°,∴∠BCD=120°,在△ADP和△BDC中,APD BCDPAD CBDDA DB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADP≌△BDC(AAS),∴AP=BC,∵AC=AP+CP,∴AC=BC+CP,∴AC=BC+CD.【点睛】本题是三角形综合题,考查了等边三角形的判定与性质,全等三角形的判定与性质,角平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.。

成都九年级数学圆与相似的专项培优易错试卷练习题(含答案)

成都九年级数学圆与相似的专项培优易错试卷练习题(含答案)

成都九年级数学圆与相似的专项培优易错试卷练习题(含答案)一、相似1.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点0.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.【答案】(1)解:∵在矩形ABCD中,Ab=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM= AO= ,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ADC,∴,∴AP=t= ,②当AP=AO=t=5,∴当t为或5时,△AOP是等腰三角形(2)解:作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,在△APO与△CEO中,∵∠PAO=∠ECO,AO=OC,∠AOP=∠COE,∴△AOP≌△COE,∴CE=AP=t,∵△CEH∽△ABC,∴,∴EH= ,∵DN= = ,∵QM∥DN,∴△CQM∽△CDN,∴,即,∴QM= ,∴DG= = ,∵FQ∥AC,∴△DFQ∽△DOC,∴,∴FQ= ,∴S五边形OECQF=S△OEC+S四边形OCQF= = ,∴S与t的函数关系式为(3)解:存在,∵S△ACD= ×6×8=24,∴S五边形OECQF:S△ACD=():24=9:16,解得t= ,t=0,(不合题意,舍去),∴t= 时,S五边形S五边形OECQF:S△ACD=9:16(4)解:如图3,过D作DM⊥AC于M,DN⊥AC于N,∵∠POD=∠COD,∴DM=DN= ,∴ON=OM= = ,∵OP•DM=3PD,∴OP= ,∴PM= ,∵,∴,解得:t≈15(不合题意,舍去),t≈2.88,∴当t=2.88时,OD平分∠COP.【解析】【分析】(1)根据矩形的性质可得:AB=CD=6,BC=AD=8,所以AC=10;而P、Q 两点分别从A点和D点同时出发且以相同的速度为1cm/s运动,当一个点停止运动时,另一个点也停止运动,所以点P不可能运动到点D;所以△AOP是等腰三角形分两种情况讨论:①当AP=PO=t时,过P作PM⊥AO,易证△CQM∽△CDN,可得比例式即可求解;②当AP=AO=t=5时,△AOP是等腰三角形;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,可将五边形转化成一个三角形和一个直角梯形,则五边形OECQF的面积S=三角形OCE的面积+直角梯形OCQF的面积;(3)因为三角形ACD的面积=AD CD=24,再将(2)中的结论代入已知条件S五边形S :S△ACD=9:16中,可得关于t的方程,若有解且符合题意,则存在,反之,不存五边形OECQF在;(4)假设存在。

成都初三练习题必刷题

成都初三练习题必刷题

成都初三练习题必刷题在成都市,初三学生面临着重要的中考,为了提高自己的知识水平和应试能力,他们通常会进行大量的练习题训练。

本文就针对成都初三学生所需必刷的练习题进行介绍和推荐,帮助他们更好地备战中考。

练习题一:数学题目数学是中考中的一门重要科目,因此要想在中考中取得好成绩,初三学生必须掌握扎实的数学基础。

以下是一道适合成都初三学生的数学必刷题:题目:已知直角三角形中,一条直角边的长度为6cm,另一条直角边的长度为8cm,求斜边的长度。

解析:根据勾股定理可知,斜边的长度等于直角边长度的平方和的平方根。

代入已知数值进行计算,得到斜边的长度为10cm。

练习题二:语文题目语文是中考中分值较高的科目之一,对于成都初三学生来说,将重点放在阅读理解和写作能力的提升上是比较明智的选择。

以下是一道适合成都初三学生的语文必刷题:题目:阅读下面的短文,根据短文内容判断语句的正(√)误(×)。

(1)猫头鹰属于昼伏夜出的鸟类。

√(2)猫头鹰用爪子捉住猎物后,会用喙啄食。

√(3)猫头鹰是肉食性动物,以草食性动物为食。

×(4)猫头鹰的眼睛非常敏锐,可以在黑暗中看到物体。

√解析:根据短文可得出以上判断。

练习题三:英语题目英语是中考中必考的科目之一,对于成都初三学生来说,建议他们多进行听、说、读、写四项能力的练习。

以下是一道适合成都初三学生的英语必刷题:题目:根据句意和所给汉语提示,写出单词的正确形式(单词的首字母已给出)。

(1)The weather is so h_______ today. We can go swimming.(2)The students need to p________ for the exam tomorrow.(3)The library is a good place for r________.(4)I'm so tired. I want to take a r_______.解析:根据句意和所给的汉语提示,分别写出正确的单词形式:hot, prepare, reading, rest。

四川省成都市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

四川省成都市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类

四川省成都市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类一.一次函数的应用(共1小题)1.(2023•成都)2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.二.反比例函数综合题(共3小题)2.(2021•成都)如图,在平面直角坐标系xOy中,一次函数y=x+的图象与反比例函数y=(x>0)的图象相交于点A(a,3),与x轴相交于点B.(1)求反比例函数的表达式;(2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当△ABD是以BD为底的等腰三角形时,求直线AD的函数表达式及点C的坐标.3.(2022•成都)如图,在平面直角坐标系xOy中,一次函数y=﹣2x+6的图象与反比例函数y=的图象相交于A(a,4),B两点.(1)求反比例函数的表达式及点B的坐标;(2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC被y轴分成长度比为1:2的两部分时,求BC的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ 是完美筝形时,求P,Q两点的坐标.4.(2023•成都)如图,在平面直角坐标系xOy中,直线y=﹣x+5与y轴交于点A,与反比例函数y=的图象的一个交点为B(a,4),过点B作AB的垂线l.(1)求点A的坐标及反比例函数的表达式;(2)若点C在直线l上,且△ABC的面积为5,求点C的坐标;(3)P是直线l上一点,连接PA,以P为位似中心画△PDE,使它与△PAB位似,相似比为m.若点D,E恰好都落在反比例函数图象上,求点P的坐标及m的值.三.二次函数综合题(共3小题)5.(2023•成都)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+c经过点P(4,﹣3),与y轴交于点A(0,1),直线y=kx(k≠0)与抛物线交于B,C两点.(1)求抛物线的函数表达式;(2)若△ABP是以AB为腰的等腰三角形,求点B的坐标;(3)过点M(0,m)作y轴的垂线,交直线AB于点D,交直线AC于点E.试探究:是否存在常数m,使得OD⊥OE始终成立?若存在,求出m的值;若不存在,请说明理由.6.(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.(1)当k=2时,求A,B两点的坐标;(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;(3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.7.(2021•成都)如图,在平面直角坐标系xOy中,抛物线y=a(x﹣h)2+k与x轴相交于O,A两点,顶点P的坐标为(2,﹣1).点B为抛物线上一动点,连接AP,AB,过点B 的直线与抛物线交于另一点C.(1)求抛物线的函数表达式;(2)若点B的横坐标与纵坐标相等,∠ABC=∠OAP,且点C位于x轴上方,求点C 的坐标;(3)若点B的横坐标为t,∠ABC=90°,请用含t的代数式表示点C的横坐标,并求出当t<0时,点C的横坐标的取值范围.四.三角形综合题(共1小题)8.(2023•成都)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且=(n为正整数),E 是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明).【拓展运用】(3)如图3,连接EF,设EF的中点为M,若AB=2,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).五.圆的综合题(共2小题)9.(2022•成都)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O,交AB边于点D,在上取一点E,使=,连接DE,作射线CE交AB边于点F.(1)求证:∠A=∠ACF;(2)若AC=8,cos∠ACF=,求BF及DE的长.10.(2021•成都)如图,AB为⊙O的直径,C为⊙O上一点,连接AC,BC,D为AB延长线上一点,连接CD,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为,△ABC的面积为2,求CD的长;(3)在(2)的条件下,E为⊙O上一点,连接CE交线段OA于点F,若=,求BF的长.六.几何变换综合题(共2小题)11.(2022•成都)如图,在矩形ABCD中,AD=nAB(n>1),点E是AD边上一动点(点E不与A,D重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG ∽矩形ABCD,EG交直线CD于点H.【尝试初探】(1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.【深入探究】(2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE的值.【拓展延伸】(3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n 的代数式表示).12.(2021•成都)在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图1,当点A′落在AC的延长线上时,求AA′的长;(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.七.解直角三角形的应用(共1小题)13.(2022•成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A'OB=108°时(点A'是A的对应点),用眼舒适度较为理想.求此时顶部边缘A'处离桌面的高度A'D的长.(结果精确到1cm;参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)八.解直角三角形的应用-仰角俯角问题(共1小题)14.(2021•成都)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A处安置测倾器,测得点M的仰角∠MBC=33°,在与点A相距3.5米的测点D处安置测倾器,测得点M的仰角∠MEC=45°(点A,D与N在一条直线上),求电池板离地面的高度MN的长.(结果精确到1米;参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)四川省成都市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类参考答案与试题解析一.一次函数的应用(共1小题)1.(2023•成都)2023年7月28日至8月8日,第31届世界大学生运动会将在成都举行.“当好东道主,热情迎嘉宾”,成都某知名小吃店计划购买A,B两种食材制作小吃.已知购买1千克A种食材和1千克B种食材共需68元,购买5千克A种食材和3千克B种食材共需280元.(1)求A,B两种食材的单价;(2)该小吃店计划购买两种食材共36千克,其中购买A种食材千克数不少于B种食材千克数的2倍,当A,B两种食材分别购买多少千克时,总费用最少?并求出最少总费用.【答案】(1)A种食材单价是每千克38元,B种食材单价是每千克30元;(2)A种食材购买24千克,B种食材购买12千克时,总费用最少,为1272元.【解答】(1)设A种食材的单价为x元/千克,B种食材的单价为y元/千克,由题意得:,解得:,∴A种食材单价是每千克38元,B种食材单价是每千克30元;(2)设A种食材购买m千克,B种食材购买(36﹣m)千克,总费用为w元,由题意得:w=38m+30(36﹣m)=8m+1080,∵m≥2(36﹣m),∴24≤m≤36,∵k=8>0,∴w随m的增大而增大,∴当m=24时,w有最小值为:8×24+1080=1272(元),∴A种食材购买24千克,B种食材购买12千克时,总费用最少,为1272元.二.反比例函数综合题(共3小题)2.(2021•成都)如图,在平面直角坐标系xOy中,一次函数y=x+的图象与反比例函数y=(x>0)的图象相交于点A(a,3),与x轴相交于点B.(1)求反比例函数的表达式;(2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当△ABD是以BD为底的等腰三角形时,求直线AD的函数表达式及点C的坐标.【答案】(1)反比例函数的表达式为y=;(2)直线AD的函数表达式为y=﹣x+,点C的坐标为(4,).【解答】(1)∵一次函数y=x+的图象经过点A(a,3),∴a+=3,解得:a=2,∴A(2,3),将A(2,3)代入y=(x>0),得:3=,∴k=6,∴反比例函数的表达式为y=;(2)如图,过点A作AE⊥x轴于点E,在y=x+中,令y=0,得x+=0,解得:x=﹣2,∴B(﹣2,0),∵E(2,0),∴BE=2﹣(﹣2)=4,∵△ABD是以BD为底边的等腰三角形,∴AB=AD,∵AE⊥BD,∴DE=BE=4,∴D(6,0),设直线AD的函数表达式为y=mx+n,∵A(2,3),D(6,0),∴,解得:,∴直线AD的函数表达式为y=﹣x+,联立方程组:,解得:(舍去),,∴点C的坐标为(4,).3.(2022•成都)如图,在平面直角坐标系xOy中,一次函数y=﹣2x+6的图象与反比例函数y=的图象相交于A(a,4),B两点.(1)求反比例函数的表达式及点B的坐标;(2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC被y轴分成长度比为1:2的两部分时,求BC的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ 是完美筝形时,求P,Q两点的坐标.【答案】(1)反比例函数的解析式为:y=,点B(2,2);(2)BC的长为4或;(3)点P(﹣4,﹣1),点Q(﹣1,5).【解答】解:(1)∵一次函数y=﹣2x+6的图象过点A,∴4=﹣2a+6,∴a=1,∴点A(1,4),∵反比例函数y=的图象过点A(1,4),∴k=1×4=4;∴反比例函数的解析式为:y=,联立方程组可得:,解得:,,∴点B(2,2);(2)如图,过点A作AE⊥y轴于E,过点C作CF⊥y轴于F,∴AE∥CF,∴△AEH∽△CFH,∴,当=时,则CF=2AE=2,∴点C(﹣2,﹣2),∴BC==4,当=2时,则CF=AE=,∴点C(﹣,﹣8),∴BC==,综上所述:BC的长为4或;(3)如图,当∠AQP=∠ABP=90°时,设直线AB与y轴交于点E,过点B作BF⊥y 轴于F,设BP与y轴的交点为N,连接BQ,AP交于点H,∵直线y=﹣2x+6与y轴交于点E,∴点E(0,6),∵点B(2,2),∴BF=OF=2,∴EF=4,∵∠ABP=90°,∴∠ABF+∠FBN=90°=∠ABF+∠BEF,∴∠BEF=∠FBN,又∵∠EFB=∠BFN=90°,∴△EBF∽△BNF,∴,∴FN==1,∴点N(0,1),∴直线BN的解析式为:y=x+1,联立方程组得:,解得:,,∴点P(﹣4,﹣1),∴直线AP的解析式为:y=x+3,∵AP垂直平分BQ,∴设BQ的解析式为y=﹣x+4,∴x+3=﹣x+4,∴x=,∴点H(,),∵点H是BQ的中点,点B(2,2),∴点Q(﹣1,5).4.(2023•成都)如图,在平面直角坐标系xOy中,直线y=﹣x+5与y轴交于点A,与反比例函数y=的图象的一个交点为B(a,4),过点B作AB的垂线l.(1)求点A的坐标及反比例函数的表达式;(2)若点C在直线l上,且△ABC的面积为5,求点C的坐标;(3)P是直线l上一点,连接PA,以P为位似中心画△PDE,使它与△PAB位似,相似比为m.若点D,E恰好都落在反比例函数图象上,求点P的坐标及m的值.【答案】(1)点A的坐标为(0,5),反比例函数的表达式为(2)点C的坐标为(6,9)或(﹣4,﹣1);(3)点P的坐标为的值为3.【解答】解:(1)令x=0,则y=﹣x+5=5,∴点A的坐标为(0,5),将B(a,4)代入y=﹣x+5得,4=﹣a+5,∴a=1,∴B(1,4),将B(1,4)代入y=得,4=,解得k=4,∴反比例函数的表达式为y=;(2)设直线l与y轴交于M,直线y=﹣x+5与x轴交于N,令y=﹣x+5=0得,x=5,∴N(5,0),∴OA=ON=5,∵∠AON=90°,∴∠OAN=45°,∵A(0,5),B(1,4),∴=,∵直线l是AB的垂线,即∠ABM=90°,∠OAN=45°,∴,∴M(0,3),设直线l的解析式为y=k1x+b1,将M(0,3),B(1,4)代入y=k1x+b1得,,解得,∴直线l的解析式为y=x+3,设点C的坐标为(t,t+3),∵•|x B﹣x C|=,解得t=﹣4或t=6,当t=﹣4时,t+3=﹣1,当t=6时,t+3=9,∴点C的坐标为(6,9)或(﹣4,﹣1);方法二:设点C的坐标为(t,t+3),∴BC==|1﹣t|,===5,∴S△ABC∴t=﹣4或t=6,当t=﹣4时,t+3=﹣1,当t=6时,t+3=9,∴点C的坐标为(6,9)或(﹣4,﹣1);(3)∵位似图形的对应点与位似中心三点共线,∴点B的对应点也在直线l上,不妨设为E点,则点A的对应点为D,将直线l与双曲线的解析式联立方程组,解得,或,∴E(﹣4,﹣1),画出图形如图所示,∵△PAB∽△PDE,∴∠PAB=∠PDE,∴AB∥DE,∴直线AB与直线DE的一次项系数相等,设直线DE的解析式为y=﹣x+b2,∴﹣1=﹣(﹣4)+b2,∴b2=﹣5,∴直线DE的解析式为y=﹣x﹣5,∵点D在直线DE与双曲线的另一个交点,∴解方程组得,或,∴D(﹣1,﹣4),则直线AD的解析式为y=9x+5,解方程组得,,∴P(﹣,),∴,,∴m=.三.二次函数综合题(共3小题)5.(2023•成都)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+c经过点P(4,﹣3),与y轴交于点A(0,1),直线y=kx(k≠0)与抛物线交于B,C两点.(1)求抛物线的函数表达式;(2)若△ABP是以AB为腰的等腰三角形,求点B的坐标;(3)过点M(0,m)作y轴的垂线,交直线AB于点D,交直线AC于点E.试探究:是否存在常数m,使得OD⊥OE始终成立?若存在,求出m的值;若不存在,请说明理由.【答案】(1)y=﹣x2+1;(2)点B的坐标为(﹣4,﹣3)或(﹣2﹣2、5,﹣5﹣2,5)或(﹣2+2,﹣5+2);(3)存在,2或.【解答】解:(1)将P(4,﹣3)、A(0,1)代入y=ax2+c,∴16a+1=﹣3,解得a=﹣,∴y=﹣x2+1;(2)设B(x,y),∵P(4,﹣3),A(0,1),∴AB=,AP=4,BP=,当AB=AP时,4=,∵y=﹣x2+1,∴x=4或x=﹣4,∴B(﹣4,﹣3);当AB=BP时,=,解得x=﹣2+2或x=﹣2﹣2,∴B(﹣2+2,﹣5+2)或(﹣2﹣2,﹣5﹣2);综上所述:B点坐标为(﹣4,﹣3)或(﹣2+2,﹣5+2)或(﹣2﹣2,﹣5﹣2);(3)存在常数m,使得OD⊥OE始终成立,理由如下:设B(t,kt),C(s,ks),联立方程,整理得x2+4kx﹣4=0,∴t+s=﹣4k,t•s=﹣4,直线AB的解析式为y=x+1,直线AC的解析式为y=x+1,∴D(,m),E(,m),过D点作DG⊥x轴交于G点,过点E作EK⊥x轴交于K点,∵∠DOE=90°,∴∠DOG+∠EOK=90°,∵∠DOG+∠ODG=90°,∴∠EOK=∠ODG,∴△DOG∽△OEK,∴=,∴m2=﹣,∴m2=4(m﹣1)2,解得m=2或m=.6.(2022•成都)如图,在平面直角坐标系xOy中,直线y=kx﹣3(k≠0)与抛物线y=﹣x2相交于A,B两点(点A在点B的左侧),点B关于y轴的对称点为B'.(1)当k=2时,求A,B两点的坐标;(2)连接OA,OB,AB',BB',若△B'AB的面积与△OAB的面积相等,求k的值;(3)试探究直线AB'是否经过某一定点.若是,请求出该定点的坐标;若不是,请说明理由.【答案】(1)A(﹣3,﹣9),B(1,﹣1);(2)k的值为或﹣;(3)直线AB'经过定点(0,3),理由见解答过程.【解答】解:(1)当k=2时,直线为y=2x﹣3,由得:或,∴A(﹣3,﹣9),B(1,﹣1);(2)当k>0时,如图:∵△B'AB的面积与△OAB的面积相等,∴OB'∥AB,∴∠OB'B=∠B'BC,∵B、B'关于y轴对称,∴OB=OB',∠ODB=∠ODB'=90°,∴∠OB'B=∠OBB',∴∠OBB'=∠B'BC,∵∠ODB=90°=∠CDB,BD=BD,∴△BOD≌△BCD(ASA),∴OD=CD,在y=kx﹣3中,令x=0得y=﹣3,∴C(0,﹣3),OC=3,∴OD=OC=,D(0,﹣),在y=﹣x2中,令y=﹣得﹣=﹣x2,解得x=或x=﹣,∴B(,﹣),把B(,﹣)代入y=kx﹣3得:﹣=k﹣3,解得k=;当k<0时,过B'作B'F∥AB交y轴于F,如图:在y=kx﹣3中,令x=0得y=﹣3,∴E(0,﹣3),OE=3,∵△B'AB的面积与△OAB的面积相等,∴OE=EF=3,∵B、B'关于y轴对称,∴FB=FB',∠FGB=∠FGB'=90°,∴∠FB'B=∠FBB',∵B'F∥AB,∴∠EBB'=∠FB'B,∴∠EBB'=∠FBB',∵∠BGE=90°=∠BGF,BG=BG,∴△BGF≌△BGE(ASA),∴GE=GF=EF=,∴OG=OE+GE=,G(0,﹣),在y=﹣x2中,令y=﹣得﹣=﹣x2,解得x=或x=﹣,∴B(,﹣),把B(,﹣)代入y=kx﹣3得:﹣=k﹣3,解得k=﹣,综上所述,k的值为或﹣;(3)直线AB'经过定点(0,3),理由如下:由得:x2+kx﹣3=0,设x2+kx﹣3=0二根为a,b,∴a+b=﹣k,ab=﹣3,A(a,﹣a2),B(b,﹣b2),∵B、B'关于y轴对称,∴B'(﹣b,﹣b2),设直线AB'解析式为y=mx+n,将A(a,﹣a2),B'(﹣b,﹣b2)代入得:,解得:,∵a+b=﹣k,ab=﹣3,∴m=﹣(a﹣b)=b﹣a==,n=﹣ab=﹣(﹣3)=3,∴直线AB'解析式为y=•x+3,令x=0得y=3,∴直线AB'经过定点(0,3).7.(2021•成都)如图,在平面直角坐标系xOy中,抛物线y=a(x﹣h)2+k与x轴相交于O,A两点,顶点P的坐标为(2,﹣1).点B为抛物线上一动点,连接AP,AB,过点B 的直线与抛物线交于另一点C.(1)求抛物线的函数表达式;(2)若点B的横坐标与纵坐标相等,∠ABC=∠OAP,且点C位于x轴上方,求点C 的坐标;(3)若点B的横坐标为t,∠ABC=90°,请用含t的代数式表示点C的横坐标,并求出当t<0时,点C的横坐标的取值范围.【答案】(1)y=x2﹣x;(2)(6,3)或(﹣1,);(3)C的横坐标为﹣t﹣+4;当t<0时,点C的横坐标的取值范围是x C≥12.【解答】解:(1)∵抛物线y=a(x﹣h)2+k,顶点P的坐标为(2,﹣1),∴h=2,k=﹣1,即抛物线y=a(x﹣h)2+k为y=a(x﹣2)2﹣1,∵抛物线y=a(x﹣h)2+k经过O,即y=a(x﹣2)2﹣1的图象过(0,0),∴0=a(0﹣2)2﹣1,解得a=,∴抛物线的函数表达为y=(x﹣2)2﹣1=x2﹣x;(2)在y=x2﹣x中,令y=x得x=x2﹣x,解得x=0或x=8,∴B(0,0)或B(8,8),①当B(0,0)时,过B作BC∥AP交抛物线于C,此时∠ABC=∠OAP,如图:在y=x2﹣x中,令y=0,得x2﹣x=0,解得x=0或x=4,∴A(4,0),设直线AP解析式为y=kx+b,将A(4,0)、P(2,﹣1)代入得:,解得,∴直线AP解析式为y=x﹣2,∵BC∥AP,∴设直线BC解析式为y=x+b',将B(0,0)代入得b'=0,∴直线BC解析式为y=x,由得(此时为点O,舍去)或,∴C(6,3);②当B(8,8)时,过P作PQ⊥x轴于Q,过B作BH⊥x轴于H,作H关于AB的对称点M,作直线BM交抛物线于C,连接AM,如图:∵P(2,﹣1),A(4,0),∴PQ=1,AQ=2,Rt△APQ中,tan∠OAP==,∵B(8,8),A(4,0),∴AH=4,BH=8,Rt△ABH中,tan∠ABH==,∴∠OAP=∠ABH,∵H关于AB的对称点M,∴∠ABH=∠ABM,∴∠ABM=∠OAP,即C是满足条件的点,设M(x,y),∵H关于AB的对称点M,∴AM=AH=4,BM=BH=8,∴,两式相减变形可得x=8﹣2y,代入即可解得(此时为H,舍去)或,∴M(,),设直线BM解析式为y=cx+d,将M(,),B(8,8)代入得;,解得,∴直线BM解析式为y=x+2,解得或(此时为B,舍去),∴C(﹣1,),综上所述,C坐标为(6,3)或(﹣1,);(3)设BC交y轴于M,过B作BH⊥x轴于H,过M作MN⊥BH于N,如图:∵点B的横坐标为t,∴B(t,t2﹣t),又A(4,0),∴AH=|t﹣4|,BH=|t2﹣t|,OH=|t|=MN,∵∠ABC=90°,∴∠MBN=90°﹣∠ABH=∠BAH,且∠N=∠AHB=90°,∴△ABH∽△BMN,∴=,即=∴BN==4,∴NH=t2﹣t+4,∴M(0,t2﹣t+4),设直线BM解析式为y=ex+t2﹣t+4,将B(t,t2﹣t)代入得t2﹣t=et+t2﹣t+4,∴e=﹣,∴直线BC解析式为y=﹣x+t2﹣t+4,由得,解得x1=t(B的横坐标),x2=﹣=﹣t﹣+4,∴点C的横坐标为﹣t﹣+4;当t<0时,x C=﹣t﹣+4=()2+()2+4=(﹣)2+12,∴=时,x C最小值是12,此时t=﹣4,∴当t<0时,点C的横坐标的取值范围是x C≥12.四.三角形综合题(共1小题)8.(2023•成都)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且=(n为正整数),E 是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明).【拓展运用】(3)如图3,连接EF,设EF的中点为M,若AB=2,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).【答案】(1)见解析过程;(2)①=,见解析过程;②当点F在射线BC上时,,当点F在CB延长线上时,;(3)点M运动的路径长为.【解答】(1)证明:连接CD,∵∠C=90°,AC=BC,AD=DB,∴AB=AC,∠A=∠B=∠ACD=45°,AD=CD=BD,CD⊥AB,∵ED⊥FD,∴∠EDF=∠CDB=90°,∴∠CDE=∠BDF,∴△CDE≌△BDF(ASA),∴CE=BF,∴AE+BF=AE+CE=AC=AB;(2)①AE+BF=AB,理由如下:过点D作DN⊥AC于N,DH⊥BC于H,∵∠C=90°,AC=BC,∴∠A=∠B=45°,∵DN⊥AC,DH⊥BC,∴△ADN和△BDH是等腰直角三角形,∴AN=DN,DH=BH,AD=AN,BD=BH,∠A=∠B=45°=∠ADN=∠BDH,∴△ADN∽△BDH,∴=,设AN=DN=x,BH=DH=2x,∴AD=x,BD=2x,∴AB=3x,∵DN⊥AC,DH⊥BC,∠ACB=90°,∴四边形DHCN是矩形,∴∠NDH=90°=∠EDF,∴∠EDN=∠FDH,又∵∠END=∠FHD,∴△EDN∽△FDH,∴=,∴FH=2NE,∴AE+BF=x+NE+(2x﹣FH)=2x=AB;②如图4,当点F在射线BC上时,过点D作DN⊥AC于N,DH⊥BC于H,∵∠C=90°,AC=BC,∴∠A=∠B=45°,∵DN⊥AC,DH⊥BC,∴△ADN和△BDH是等腰直角三角形,∴AN=DN,DH=BH,AD=AN,BD=BH,∠A=∠B=45°=∠ADN=∠BDH,∴△ADN∽△BDH,∴=,设AN=DN=x,BH=DH=nx,∴AD=x,BD=nx,∴AB=(n+1)x,∵DN⊥AC,DH⊥BC,∠ACB=90°,∴四边形DHCN是矩形,∴∠NDH=90°=∠EDF,∴∠EDN=∠FDH,又∵∠END=∠FHD,∴△EDN∽△FDH,∴=,∴FH=nNE,∴AE+BF=x﹣NE+(nx+FH)=2x=AB;当点F在CB的延长线上时,如图5,∵∠C=90°,AC=BC,∴∠A=∠B=45°,∵DN⊥AC,DH⊥BC,∴△ADN和△BDH是等腰直角三角形,∴AN=DN,DH=BH,AD=AN,BD=BH,∠A=∠B=45°=∠ADN=∠BDH,∴△ADN∽△BDH,∴=,设AN=DN=x,BH=DH=nx,∴AD=x,BD=nx,∴AB=(n+1)x,∵DN⊥AC,DH⊥BC,∠ACB=90°,∴四边形DHCN是矩形,∴∠NDH=90°=∠EDF,∴∠EDN=∠FDH,又∵∠END=∠FHD,∴△EDN∽△FDH,∴=,∴FH=nNE,∴AE﹣BF=x+NE﹣(FH﹣nx)=2x=AB;综上所述:当点F在射线BC上时,,当点F在CB延长线上时,;(3)如图,连接CD,CM,DM,∵EF的中点为M,∠ACB=∠EDF=90°,∴CM=DM=EF,∴点M在线段CD的垂直平分线上运动,如图,当点E'与点A重合时,点F'在BC的延长线上,当点E'与点C重合时,点F″在CB的延长线上,过点M'作M'R⊥F'C于R,∴M'R∥AC,∴=,∴M'R=1,F'R=CR,设AN=DN=x,BH=DH=nx,∴AD=x,BD=nx,∴AB=(n+1)x=2,∴x=,∵F'D=BD=nx,∴F'B=2nx,∴CF'=2nx﹣2,∴CR=nx﹣1=﹣1=,由(2)可得:CD==x•,DF″=nDE″=nx•,∴CF″=(1+n2)x,∴CM″===,∴RM″=n,∴M″M'=,∴点M运动的路径长为.五.圆的综合题(共2小题)9.(2022•成都)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O,交AB边于点D,在上取一点E,使=,连接DE,作射线CE交AB边于点F.(1)求证:∠A=∠ACF;(2)若AC=8,cos∠ACF=,求BF及DE的长.【答案】(1)证明见解析;(2)BF=5,DE=.【解答】(1)证明:∵=,∴∠BCF=∠FBC,∵∠ACB=90°,∴∠A+∠FBC=90°,∠ACF+∠BCF=90°,∴∠A=∠ACF;(2)解:连接CD.∵∠A=∠ACF,∠FBC=∠BCF,∴AF=FC=FB,∴cos∠A=cos∠ACF==,∵AC=8,∴AB=10,BC=6,∵BC是直径,∴∠CDB=90°,∴CD⊥AB,=•AC•BC=•AB•CD,∵S△ABC∴CD==,∴BD===,∵BF=AF=5,∴DF=BF﹣BD=5﹣=,∵∠DEF+∠DEC=180°,∠DEC+∠B=180°,∴∠DEF=∠B=∠BCF,∴DE∥CB,∴△DEF∽△BCF,∴=,∴=,∴DE=.10.(2021•成都)如图,AB为⊙O的直径,C为⊙O上一点,连接AC,BC,D为AB延长线上一点,连接CD,且∠BCD=∠A.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为,△ABC的面积为2,求CD的长;(3)在(2)的条件下,E为⊙O上一点,连接CE交线段OA于点F,若=,求BF的长.【答案】见试题解答内容【解答】(1)证明:连接OC,如图:∵AB为⊙O的直径,∴∠ACB=90°,∠A+∠ABC=90°,∵OB=OC,∴∠ABC=∠BCO,又∠BCD=∠A,∴∠BCD+∠BCO=90°,即∠DCO=90°,∴OC⊥CD,∴CD是⊙O的切线;(2)过C作CM⊥AB于M,过B作BN⊥CD于N,如图:∵⊙O的半径为,∴AB=2,∴AB•CM=2,即×2•CM=2,∴CM=2,Rt△BCM中,∠BCM=90°﹣∠CBA,Rt△ABC中,∠A=90°﹣∠CBA,∴∠BCM=∠A,∴tan∠BCM=tan A,即=,∴=,解得BM=﹣1,(BM=+1已舍去),∵∠BCD=∠A,∠BCM=∠A,∴∠BCD=∠BCM,而∠BMC=∠BNC=90°,BC=BC,∴△BCM≌△BCN(AAS),∴CN=CM=2,BN=BM=﹣1,∵∠DNB=∠DMC=90°,∠D=∠D,∴△DBN∽△DCM,∴==,即==,解得DN=2﹣2,∴CD=DN+CN=2;方法二:过C作CM⊥AB于M,连接OC,如图:∵⊙O的半径为,∴AB=2,∴AB•CM=2,即×2•CM=2,∴CM=2,Rt△MOC中,OM==1,∵∠DMC=∠CMO=90°,∠CDM=90°﹣∠DCM=∠OCM,∴△DCM∽△COM,∴=,即=,∴CD=2;(3)过C作CM⊥AB于M,过E作EH⊥AB于H,连接OE,如图:∵CM⊥AB,EH⊥AB,∴==,∵=,∴==,由(2)知CM=2,BM=﹣1,∴HE=1,MF=2HF,Rt△OEH中,OH===2,∴AH=OA﹣OH=﹣2,设HF=x,则MF=2x,由AB=2可得:BM+MF+HF+AH=2,∴(﹣1)+2x+x+(﹣2)=2,解得:x=1,∴HF=1,MF=2,∴BF=BM+MF=(﹣1)+2=+1.六.几何变换综合题(共2小题)11.(2022•成都)如图,在矩形ABCD中,AD=nAB(n>1),点E是AD边上一动点(点E不与A,D重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG ∽矩形ABCD,EG交直线CD于点H.【尝试初探】(1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.【深入探究】(2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE的值.【拓展延伸】(3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n 的代数式表示).【答案】(1)理由见解答;(2)tan∠ABE的值是;(3)tan∠ABE的值是或.【解答】解:(1)∵四边形EBFG和四边形ABCD是矩形,∴∠A=∠BEG=∠D=90°,∴∠ABE+∠AEB=∠AEB+∠DEH=90°,∴∠DEH=∠ABE,∴△ABE∽△DEH,∴在点E的运动过程中,△ABE与△DEH始终保持相似关系;(2)如图1,∵H是线段CD中点,∴DH=CH,设DH=x,AE=a,则AB=2x,AD=4x,DE=4x﹣a,由(1)知:△ABE∽△DEH,∴=,即=,∴2x2=4ax﹣a2,∴2x2﹣4ax+a2=0,∴x==,∵tan∠ABE==,当x=时,tan∠ABE==,当x=时,tan∠ABE==;综上,tan∠ABE的值是.(3)分两种情况:①如图2,BH=FH,设AB=x,AE=a,∵四边形BEGF是矩形,∴∠BEG=∠G=90°,BE=FG,∴Rt△BEH≌Rt△FGH(HL),∴EH=GH,∵矩形EBFG∽矩形ABCD,∴==n,∴=n,∴=,由(1)知:△ABE∽△DEH,∴==,∴=,∴nx=2a,∴=,∴tan∠ABE===;②如图3,BF=FH,∵矩形EBFG∽矩形ABCD,∴∠ABC=∠EBF=90°,=,∴∠ABE=∠CBF,∴△ABE∽△CBF,∴∠BCF=∠A=90°,∴D,C,F共线,∵BF=FH,∴∠FBH=∠FHB,∵EG∥BF,∴∠FBH=∠EHB,∴∠EHB=∠CHB,∵BE⊥EH,BC⊥CH,∴BE=BC,由①可知:AB=x,AE=a,BE=BC=nx,由勾股定理得:AB2+AE2=BE2,∴x2+a2=(nx)2,∴x=(负值舍),∴tan∠ABE===,综上,tan∠ABE的值是或.12.(2021•成都)在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A,C的对应点分别为点A′,C′.(1)如图1,当点A′落在AC的延长线上时,求AA′的长;(2)如图2,当点C′落在AB的延长线上时,连接CC′,交A′B于点M,求BM的长;(3)如图3,连接AA′,CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.在旋转过程中,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.【答案】(1)8;(2);(3)1.【解答】解:(1)∵∠ACB=90°,AB=5,BC=3,∴AC==4,∵∠ACB=90°,△ABC绕点B顺时针旋转得到△A′BC′,点A′落在AC的延长线上,∴∠A'CB=90°,A'B=AB=5,Rt△A'BC中,A'C==4,∴AA'=AC+A'C=8;(2)过C作CE∥A'B交AB于E,过C作CD⊥AB于D,如图:∵△ABC绕点B顺时针旋转得到△A′BC′,∴∠A'BC'=∠ABC,BC'=BC=3,∵CE∥A'B,∴∠A'BC'=∠CEB,∴∠CEB=∠ABC,∴CE=BC=3,Rt△ABC中,S△ABC=AC•BC=AB•CD,AC=4,BC=3,AB=5,∴CD==,Rt△CED中,DE===,同理BD=,∴BE=DE+BD=,C'E=BC'+BE=3+=,∵CE∥A'B,∴=,∴=,∴BM=;(3)DE存在最小值1,理由如下:过A作AP∥A'C'交C'D延长线于P,连接A'C,如图:∵△ABC绕点B顺时针旋转得到△A′BC′,∴BC=BC',∠ACB=∠A'C'B=90°,AC=A'C',∴∠BCC'=∠BC'C,而∠ACP=180°﹣∠ACB﹣∠BCC'=90°﹣∠BCC',∠A'C'D=∠A'C'B﹣∠BC'C=90°﹣∠BC'C,∴∠ACP=∠A'C'D,∵AP∥A'C',∴∠P=∠A'C'D,∴∠P=∠ACP,∴AP=AC,∴AP=A'C',在△APD和△A'C'D中,,∴△APD≌△A'C'D(AAS),∴AD=A'D,即D是AA'中点,∵点E为AC的中点,∴DE是△AA'C的中位线,∴DE=A'C,要使DE最小,只需A'C最小,此时A'、C、B共线,A'C的最小值为A'B﹣BC=AB﹣BC =2,∴DE最小为A'C=1.七.解直角三角形的应用(共1小题)13.(2022•成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角∠AOB=150°时,顶部边缘A处离桌面的高度AC的长为10cm,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角∠A'OB=108°时(点A'是A的对应点),用眼舒适度较为理想.求此时顶部边缘A'处离桌面的高度A'D的长.(结果精确到1cm;参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)【答案】此时顶部边缘A'处离桌面的高度A'D的长约为19cm.【解答】解:∵∠AOB=150°,∴∠AOC=180°﹣∠AOB=30°,在Rt△ACO中,AC=10cm,∴AO=2AC=20(cm),由题意得:AO=A′O=20cm,∵∠A′OB=108°,∴∠A′OD=180°﹣∠A′OB=72°,在Rt△A′DO中,A′D=A′O•sin72°≈20×0.95=19(cm),∴此时顶部边缘A'处离桌面的高度A'D的长约为19cm.八.解直角三角形的应用-仰角俯角问题(共1小题)14.(2021•成都)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A处安置测倾器,测得点M的仰角∠MBC=33°,在与点A相距3.5米的测点D处安置测倾器,测得点M的仰角∠MEC=45°(点A,D与N在一条直线上),求电池板离地面的高度MN的长.(结果精确到1米;参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)【答案】见试题解答内容【解答】解:延长BC交MN于点H,AD=BE=3.5,设MH=x米,∵∠MEC=45°,∴EH=x米,在Rt△MHB中,tan∠MBH==≈0.65,解得x=6.5,则MN=1.6+6.5=8.1≈8(米),∴电池板离地面的高度MN的长约为8米.。

四川省成都市2021-2023三年中考数学真题分类汇编-02填空题知识点分类

四川省成都市2021-2023三年中考数学真题分类汇编-02填空题知识点分类

四川省成都市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.代数式求值(共1小题)1.(2022•成都)已知2a2﹣7=2a,则代数式(a﹣)÷的值为.二.幂的乘方与积的乘方(共1小题)2.(2022•成都)计算:(﹣a3)2=.三.因式分解-提公因式法(共1小题)3.(2023•成都)因式分解:m2﹣3m=.四.因式分解-运用公式法(共1小题)4.(2023•贵州)因式分解:x2﹣4=.五.因式分解的应用(共1小题)5.(2023•成都)定义:如果一个正整数能表示为两个正整数m,n的平方差,且m﹣n>1,则称这个正整数为“智慧优数”.例如,16=52﹣32,16就是一个智慧优数,可以利用m2﹣n2=(m+n)(m﹣n)进行研究.若将智慧优数从小到大排列,则第3个智慧优数是;第23个智慧优数是.六.分式的化简求值(共1小题)6.(2023•成都)若3ab﹣3b2﹣2=0,则代数式(1﹣)÷的值为.七.根与系数的关系(共1小题)7.(2021•成都)若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是.八.解分式方程(共1小题)8.(2022•成都)分式方程+=1的解为.九.一次函数图象与系数的关系(共1小题)9.(2021•成都)在正比例函数y=kx中,y的值随着x值的增大而增大,则点P(3,k)在第象限.一十.反比例函数的性质(共1小题)10.(2022•成都)在平面直角坐标系xOy中,若反比例函数y=的图象位于第二、四象限,则k的取值范围是.一十一.反比例函数图象上点的坐标特征(共1小题)11.(2023•成都)若点A(﹣3,y1),B(﹣1,y2)都在反比例函数y=的图象上,则y1 y2(填“>”或“<”).一十二.抛物线与x轴的交点(共1小题)12.(2021•成都)在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=.一十三.二次函数的应用(共1小题)13.(2022•成都)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=﹣5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w 的取值范围是;当2≤t≤3时,w的取值范围是.一十四.全等三角形的性质(共1小题)14.(2023•成都)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为.一十五.勾股定理(共2小题)15.(2022•成都)若一个直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,则这个直角三角形斜边的长是.16.(2021•成都)如图,数字代表所在正方形的面积,则A所代表的正方形的面积为.一十六.等腰直角三角形(共1小题)17.(2022•成都)如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交边AB于点E.若AC =5,BE=4,∠B=45°,则AB的长为.一十七.垂径定理(共2小题)18.(2023•成都)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A到B有一笔直的栏杆,圆心O 到栏杆AB的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳名观众同时观看演出.(π取3.14,取1.73)19.(2021•成都)如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为.一十八.作图—基本作图(共2小题)20.(2023•成都)如图,在△ABC中,D是边AB上一点,按以下步骤作图:①以点A为圆心,以适当长为半径作弧,分别交AB,AC于点M,N;②以点D为圆心,以AM长为半径作弧,交DB于点M′;③以点M′为圆心,以MN长为半径作弧,在∠BAC内部交前面的弧于点N′;④过点N′作射线DN′交BC于点E.若△BDE与四边形ACED的面积比为4:21,则的值为.21.(2021•成都)如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为.一十九.关于x轴、y轴对称的点的坐标(共1小题)22.(2023•成都)在平面直角坐标系xOy中,点P(5,﹣1)关于y轴对称的点的坐标是.二十.轴对称-最短路线问题(共1小题)23.(2022•成都)如图,在菱形ABCD中,过点D作DE⊥CD交对角线AC于点E,连接BE,点P是线段BE上一动点,作P关于直线DE的对称点P',点Q是AC上一动点,连接P'Q,DQ.若AE=14,CE=18,则DQ﹣P'Q的最大值为.二十一.翻折变换(折叠问题)(共2小题)24.(2023•成都)如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若,则tan A=.25.(2021•成都)如图,在矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且AE=3,按以下步骤操作:第一步,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B ′,则线段BF的长为;第二步,分别在EF,A′B′上取点M,N,沿直线MN继续翻折,使点F与点E重合,则线段MN的长为.二十二.位似变换(共1小题)26.(2022•成都)如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA:AD=2:3,则△ABC与△DEF的周长比是.二十三.由三视图判断几何体(共1小题)27.(2023•成都)一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有个.二十四.几何概率(共1小题)28.(2022•成都)如图,已知⊙O是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是.二十五.列表法与树状图法(共1小题)29.(2021•成都)我们对一个三角形的顶点和边都赋给一个特征值,并定义:从任意顶点出发,沿顺时针或逆时针方向依次将顶点和边的特征值相乘,再把三个乘积相加,所得之和称为此三角形的顺序旋转和或逆序旋转和.如图1,ar+cq+bp是该三角形的顺序旋转和,ap+bq+cr是该三角形的逆序旋转和.已知某三角形的特征值如图2,若从1,2,3中任取一个数作为x,从1,2,3,4中任取一个数作为y,则对任意正整数k,此三角形的顺序旋转和与逆序旋转和的差小于4的概率是.四川省成都市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.代数式求值(共1小题)1.(2022•成都)已知2a2﹣7=2a,则代数式(a﹣)÷的值为.【答案】.【解答】解:原式=(﹣)×=×=a(a﹣1)=a2﹣a,∵2a2﹣7=2a,∴2a2﹣2a=7,∴a2﹣a=,∴代数式的值为,故答案为:.二.幂的乘方与积的乘方(共1小题)2.(2022•成都)计算:(﹣a3)2=a6.【答案】a6.【解答】解:(﹣a3)2=a6.三.因式分解-提公因式法(共1小题)3.(2023•成都)因式分解:m2﹣3m=m(m﹣3).【答案】m(m﹣3).【解答】解:m2﹣3m=m(m﹣3).故答案为:m(m﹣3).四.因式分解-运用公式法(共1小题)4.(2023•贵州)因式分解:x2﹣4=(x+2)(x﹣2).【答案】见试题解答内容【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).五.因式分解的应用(共1小题)5.(2023•成都)定义:如果一个正整数能表示为两个正整数m,n的平方差,且m﹣n>1,则称这个正整数为“智慧优数”.例如,16=52﹣32,16就是一个智慧优数,可以利用m2﹣n2=(m+n)(m﹣n)进行研究.若将智慧优数从小到大排列,则第3个智慧优数是15;第23个智慧优数是57.【答案】15,57.【解答】解:根据题意,且m﹣n>1,当m=3,n=1,则第1个智慧优数为:32﹣12=8,当m=4,n=2,则第2个智慧优数为:42﹣22=12,当m=4,n=1,则第3个智慧优数为:42﹣12=15.正整数的平方分别为:1,4,9,16,25,36,49,64,81.当m=5,n=3,则第3个智慧优数为:52﹣32=16,当m=5,n=2,则第3个智慧优数为:52﹣22=21,当m=5,n=1,则第3个智慧优数为:52﹣12=24,以此类推,当m=6时,有4个智慧优数,同理m=7时有5个,m=8时,有6个,智慧优数虽然不会重复,但产生方式却会.举例:24是一个智慧数,却可以有两种方式产生:m=7,n=5和m=5,n=1.又两数之间的差越小,平方越小,所以后面也有智慧优数比较小的,所以需要将智慧优数进行一一列出,并进行比较.第22个智慧优数,当m=9时,n=5,第22个智慧优数为:92﹣52=81﹣25=56,第23个智慧优数,当m=11时,n=8,第23个智慧优数为:112﹣82=121﹣64=57,故答案为:15,57.六.分式的化简求值(共1小题)6.(2023•成都)若3ab﹣3b2﹣2=0,则代数式(1﹣)÷的值为.【答案】.【解答】解:(1﹣)÷=•=•=b(a﹣b)=ab﹣b2,∵3ab﹣3b2﹣2=0,∴3ab﹣3b2=2,∴ab﹣b2=,当ab﹣b2=时,原式=.故答案为:.七.根与系数的关系(共1小题)7.(2021•成都)若m,n是一元二次方程x2+2x﹣1=0的两个实数根,则m2+4m+2n的值是﹣3.【答案】﹣3.【解答】解:∵m是一元二次方程x2+2x﹣1=0的根,∴m2+2m﹣1=0,∴m2+2m=1,∵m、n是一元二次方程x2+2x﹣1=0的两个根,∴m+n=﹣2,∴m2+4m+2n=m2+2m+2m+2n=1+2×(﹣2)=﹣3.故答案为:﹣3.八.解分式方程(共1小题)8.(2022•成都)分式方程+=1的解为x=3.【答案】x=3【解答】解:去分母得:3﹣x﹣1=x﹣4,解得:x=3,经检验x=3是分式方程的解,故答案为:x=3.九.一次函数图象与系数的关系(共1小题)9.(2021•成都)在正比例函数y=kx中,y的值随着x值的增大而增大,则点P(3,k)在第一象限.【答案】一.【解答】解:∵在正比例函数y=kx中,y的值随着x值的增大而增大,∴k>0,∴点P(3,k)在第一象限.故答案为:一.一十.反比例函数的性质(共1小题)10.(2022•成都)在平面直角坐标系xOy中,若反比例函数y=的图象位于第二、四象限,则k的取值范围是k<2.【答案】k<2.【解答】解:∵反比例函数y=的图象位于第二、四象限,∴k﹣2<0,解得k<2,故答案为:k<2.一十一.反比例函数图象上点的坐标特征(共1小题)11.(2023•成都)若点A(﹣3,y1),B(﹣1,y2)都在反比例函数y=的图象上,则y1>y2(填“>”或“<”).【答案】>.【解答】解:∵y=中k=6>0,∴在每个象限内,y随x的增大而减小,∵﹣3<﹣1<0,∴y1>y2.故答案为:>.一十二.抛物线与x轴的交点(共1小题)12.(2021•成都)在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=1.【答案】1.【解答】解:由题意得:Δ=b2﹣4ac=4﹣4k=0,解得k=1,故答案为1.一十三.二次函数的应用(共1小题)13.(2022•成都)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度h(米)与物体运动的时间t(秒)之间满足函数关系h=﹣5t2+mt+n,其图象如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t秒时h的值的“极差”(即0秒到t秒时h的最大值与最小值的差),则当0≤t≤1时,w 的取值范围是0≤w≤5;当2≤t≤3时,w的取值范围是5≤w≤20.【答案】0≤w≤5;5≤w≤20.【解答】解:∵物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒,∴抛物线h=﹣5t2+mt+n的顶点的纵坐标为20,且经过(3,0)点,∴,解得:,(不合题意,舍去),∴抛物线的解析式为h=﹣5t2+10t+15,∵h=﹣5t2+10t+15=﹣5(t﹣1)2+20,∴抛物线的最高点的坐标为(1,20).∵20﹣15=5,∴当0≤t≤1时,w的取值范围是:0≤w≤5;当t=2时,h=15,当t=3时,h=0,∵20﹣15=5,20﹣0=20,∴当2≤t≤3时,w的取值范围是:5≤w≤20.故答案为:0≤w≤5;5≤w≤20.一十四.全等三角形的性质(共1小题)14.(2023•成都)如图,已知△ABC≌△DEF,点B,E,C,F依次在同一条直线上.若BC=8,CE=5,则CF的长为3.【答案】3.【解答】解:∵△ABC≌△DEF,∴BC=EF,又BC=8,∴EF=8,∵EC=5,∵CF=EF﹣EC=8﹣5=3.故答案为:3.一十五.勾股定理(共2小题)15.(2022•成都)若一个直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,则这个直角三角形斜边的长是2.【答案】2.【解答】解:设直角三角形两条直角边分别为a、b,斜边为c,∵直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,∴a+b=6,ab=4,∴斜边c====2,故答案为:2.16.(2021•成都)如图,数字代表所在正方形的面积,则A所代表的正方形的面积为100.【答案】100.【解答】解:由题意可知,直角三角形中,一条直角边的平方=36,一直角边的平方=64,则斜边的平方=36+64=100.故答案为100.一十六.等腰直角三角形(共1小题)17.(2022•成都)如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交边AB于点E.若AC =5,BE=4,∠B=45°,则AB的长为7.【答案】7.【解答】解:设MN交BC于D,连接EC,如图:由作图可知:MN是线段BC的垂直平分线,∴BE=CE=4,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°,在Rt△ACE中,AE===3,∴AB=AE+BE=3+4=7,故答案为:7.一十七.垂径定理(共2小题)18.(2023•成都)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A到B有一笔直的栏杆,圆心O 到栏杆AB的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳184名观众同时观看演出.(π取3.14,取1.73)【答案】184.【解答】解:过O作OD⊥AB,D为垂足,∴AD =BD ,OD =5m ,∵cos ∠AOD ===,∴∠AOD =60°,AD =OD =5m ,∴∠AOB =120°,AB =10m ,∴S 阴影部分=S 扇形OAB ﹣S △OAB =﹣×10×5=π﹣25≈61.4(m 2),∴61.4×3=184(人).∴观看马戏的观众人数约为184人.故答案为:184人.19.(2021•成都)如图,在平面直角坐标系xOy 中,直线y =x +与⊙O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为2.【答案】2.【解答】解:设直线AB 交y 轴于C ,过O 作OD ⊥AB 于D ,如图:在y=x+中,令x=0得y=,∴C(0,),OC=,在y=x+中令y=0得x+=0,解得x=﹣2,∴A(﹣2,0),OA=2,Rt△AOC中,tan∠CAO===,∴∠CAO=30°,Rt△AOD中,AD=OA•cos30°=2×=,∵OD⊥AB,∴AD=BD=,∴AB=2,故答案为:2.一十八.作图—基本作图(共2小题)20.(2023•成都)如图,在△ABC中,D是边AB上一点,按以下步骤作图:①以点A为圆心,以适当长为半径作弧,分别交AB,AC于点M,N;②以点D为圆心,以AM长为半径作弧,交DB于点M′;③以点M′为圆心,以MN长为半径作弧,在∠BAC内部交前面的弧于点N′;④过点N′作射线DN′交BC于点E.若△BDE与四边形ACED的面积比为4:21,则的值为.【答案】.【解答】解:由作图知,∠A=∠BDE,∴DE∥AC,∴△BDE∽△BAC,△BAC的面积:△BDE的面积=(△BDE的面积+四边形ACED的面积):△BDE的面积=1+四边形ACED的面积:△BDE的面积=1+=,∴△BDC的面积:△BAC的面积=()2=,∴=,∴=.故答案为:.21.(2021•成都)如图,在Rt△ABC中,∠C=90°,AC=BC,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AC,AB于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧在∠BAC内交于点O;③作射线AO,交BC于点D.若点D到AB的距离为1,则BC的长为1+.【答案】1+.【解答】解:过点D作DH⊥AB,则DH=1,由题目作图知,AD是∠CAB的平分线,则CD=DH=1,∵△ABC为等腰直角三角形,故∠B=45°,则△DHB为等腰直角三角形,故BD=HD=,则BC=CD+BD=1+,故答案为:1+.一十九.关于x轴、y轴对称的点的坐标(共1小题)22.(2023•成都)在平面直角坐标系xOy中,点P(5,﹣1)关于y轴对称的点的坐标是(﹣5,﹣1).【答案】(﹣5,﹣1).【解答】解:∵关于y轴对称,∴横坐标互为相反数,纵坐标不变,∴点P(5,﹣1)关于y轴对称的点的坐标是(﹣5,﹣1).故答案为:(﹣5,﹣1).二十.轴对称-最短路线问题(共1小题)23.(2022•成都)如图,在菱形ABCD中,过点D作DE⊥CD交对角线AC于点E,连接BE,点P是线段BE上一动点,作P关于直线DE的对称点P',点Q是AC上一动点,连接P'Q,DQ.若AE=14,CE=18,则DQ﹣P'Q的最大值为.【答案】.【解答】解:如图,连接BD交AC于点O,过点D作DK⊥BC于点K,延长DE交AB 于点R,连接EP′并延长,延长线交AB于点J,作EJ关于AC的对称线段EJ′,则点P′的对应点P″在线段EJ′上.当点P是定点时,DQ﹣QP′=DQ﹣QP″,当D,P″,Q共线时,QD﹣QP′的值最大,最大值是线段DP″的长,当点P与B重合时,点P″与J′重合,此时DQ﹣QP′的值最大,最大值是线段DJ′的长,也就是线段BJ的长.∵四边形ABCD是菱形,∴AC⊥BD,AO=OC,∵AE=14.EC=18,∴AC=32,AO=OC=16,∴OE=AO﹣AE=16﹣14=2,∵DE⊥CD,∴∠DOE=∠EDC=90°,∵∠DEO=∠DEC,∴△EDO∽△ECD,∴DE2=EO•EC=36,∴DE=EB=EJ=6,∴CD===12,∴OD===4,∴BD=8,=×OC×BD=BC•DK,∵S△DCB∴DK==,∵∠BER=∠DCK,∴sin∠BER=sin∠DCK===,∴RB=BE×=,∵EJ=EB,ER⊥BJ,∴JR=BR=,∴JB=DJ′=,∴DQ﹣P'Q的最大值为.解法二:DQ﹣P'Q=BQ﹣P'Q≤BP',显然P'的轨迹EJ,故最大值为BJ.勾股得CD,OD.△BDJ∽△BAD,BD2=BJ*BA,可得BJ=.故答案为:.二十一.翻折变换(折叠问题)(共2小题)24.(2023•成都)如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB交AB于点D,过D作DE∥BC交AC于点E,将△DEC沿DE折叠得到△DEF,DF交AC于点G.若,则tan A=.【答案】.【解答】解:过点G作GM⊥DE于M,如图,∵CD平分∠ACB交AB于点D,DE∥BC,∴∠1=∠2,∠2=∠3,∴∠1=∠3,∴ED=EC,∵将△DEC沿DE折叠得到△DEF,∴∠3=∠4,∴∠1=∠4,又∵∠DGE=∠CGD,∴△DGE∽△CGD,∴,∴DG2=GE×GC,∵∠ABC=90°,DE∥BC,∴AD⊥DE,∴AD∥GM,∴=,∠MGE=∠A,∵,∴,设GE=3k,EM=3n,则AG=7k,DM=7n,∴EC=DE=10n,∴DG2=GE×GC=3k×(3k+10n)=9k2+30kn,在Rt△DGM中,GM2=DG2﹣DM2,在Rt△GME中,GM2=GE2﹣EM2,∴DG2﹣DM2=GE2﹣EM2,即9k2+30kn﹣(7n)2=(3k)2﹣(3n)2,解得:k,∴EM=k,∵GE=3k,∴GM===k,∴tan A=tan∠EGM===.故答案为:.25.(2021•成都)如图,在矩形ABCD中,AB=4,AD=8,点E,F分别在边AD,BC上,且AE=3,按以下步骤操作:第一步,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B ′,则线段BF的长为1;第二步,分别在EF,A′B′上取点M,N,沿直线MN继续翻折,使点F与点E重合,则线段MN的长为.【答案】1,.【解答】解:如图,过点F作FT⊥AD于T,则四边形ABFT是矩形,连接FN,EN,设AC交EF于J.∵四边形ABFT是矩形,∴AB=FT=4,BF=AT,∵四边形ABCD是矩形,∴AB=CD=4,AD=BC=8,∠B=∠D=90°∴AC===4,∵∠TFE+∠AEJ=90°,∠DAC+∠AEJ=90°,∴∠TFE=∠DAC,∵∠FTE=∠D=90°,∴△FTE∽△ADC,∴==,∴==,∴TE=2,EF=2,∴BF=AT=AE﹣ET=3﹣2=1,设A′N=x,∵NM垂直平分线段EF,∴NF=NE,∴12+(4﹣x)2=32+x2,∴x=1,∴FN===,∴MN===,补充求TE的第二种方法:∵∠TFE=∠DAC,∴tan∠TFE=tan∠CAD,∴==,∵FT=AB=4,∴ET=2,∴BF=AT=AE﹣ET=3﹣2=1.故答案为:1,.二十二.位似变换(共1小题)26.(2022•成都)如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA:AD=2:3,则△ABC与△DEF的周长比是2:5.【答案】2:5.【解答】解:∵△ABC和△DEF是以点O为位似中心的位似图形.∴△ABC和△DEF的位似比为OA:OD,∵OA:AD=2:3,∴OA:OD=2:5,∴△ABC与△DEF的周长比是2:5.故答案为:2:5.二十三.由三视图判断几何体(共1小题)27.(2023•成都)一个几何体由几个大小相同的小立方块搭成,它的主视图和俯视图如图所示,则搭成这个几何体的小立方块最多有6个.【答案】6.【解答】解:根据俯视图发现最底层有4个小立方块,从主视图发现第二层最多有2个小立方块,故最多有4+2=6(个)小立方块.故答案为:6.二十四.几何概率(共1小题)28.(2022•成都)如图,已知⊙O是小正方形的外接圆,是大正方形的内切圆.现假设可以随意在图中取点,则这个点取在阴影部分的概率是.【答案】.【解答】解:作OD⊥CD,OB⊥AB,如图:设⊙O的半径为r,∵⊙O是小正方形的外接圆,是大正方形的内切圆,∴OB=OC=r,△AOB、△COD是等腰直角三角形,∴AB=OB=r,OD=CD=r,∴AE=2r,CF=r,∴这个点取在阴影部分的概率是=,故答案为:.二十五.列表法与树状图法(共1小题)29.(2021•成都)我们对一个三角形的顶点和边都赋给一个特征值,并定义:从任意顶点出发,沿顺时针或逆时针方向依次将顶点和边的特征值相乘,再把三个乘积相加,所得之和称为此三角形的顺序旋转和或逆序旋转和.如图1,ar+cq+bp是该三角形的顺序旋转和,ap+bq+cr是该三角形的逆序旋转和.已知某三角形的特征值如图2,若从1,2,3中任取一个数作为x,从1,2,3,4中任取一个数作为y,则对任意正整数k,此三角形的顺序旋转和与逆序旋转和的差小于4的概率是.【答案】.【解答】解:该三角形的顺序旋转和与逆序旋转和的差为(4x+2k+3y)﹣(3x+2y+4k)=x+y﹣2k,画树状图为:共有12种等可能的结果,其中此三角形的顺序旋转和与逆序旋转和的差小于4的结果数为9,所以三角形的顺序旋转和与逆序旋转和的差小于4的概率==.故答案为.。

2024成都中考数学相似、面积、动点综合题预测精选及答案解析

2024成都中考数学相似、面积、动点综合题预测精选及答案解析

2024成都中考数学相似、面积、动点综合题预测精选一.解答题(共11小题)1.(2022•苏州)(1)如图1,在△ABC中,∠ACB=2∠B,CD平分∠ACB,交AB于点D,DE∥AC,交BC于点E.①若DE=1,BD=,求BC的长;②试探究﹣是否为定值.如果是,请求出这个定值;如果不是,请说明理由.(2)如图2,∠CBG和∠BCF是△ABC的2个外角,∠BCF=2∠CBG,CD平分∠BCF,交AB的延长线于点D,DE∥AC,交CB的延长线于点E.记△ACD的面积为S1,△CDE的面积为S2,△BDE的面积为S3.若S1•S3=,求cos∠CBD的值.2.(2021•苏州)如图,在矩形ABCD中,线段EF、GH分别平行于AD、AB,它们相交于点P,点P1、P2分别在线段PF、PH上,PP1=PG,PP2=PE,连接P1H、P2F,P1H与P2F相交于点Q.已知AG:GD=AE:EB=1:2,设AG=a,AE=b.(1)四边形EBHP的面积四边形GPFD的面积(填“>”、“=”或“<”)(2)求证:△P1FQ∽△P2HQ;(3)设四边形PP1QP2的面积为S1,四边形CFQH的面积为S2,求的值.3.(2024•姑苏区一模)(1)如图①,△ABC中,AB=AC=10,BC=12,D为边BC上一动点,将点A 绕点D按顺时针方向旋转,得到点A′,使得∠ADA′=∠B,过点C作AD的平行线,交直线DA′于点E,连接AE.①若BD=2,求AD的长度;②求AD•CE的最大值.(2)如图②,当点D在BC的延长线上时,将点A绕点D按顺时针方向旋转,得到点A′,使得∠ADA′=∠B,过点C作AD的平行线,交直线DA′于点E,连接AE.记△ABD的面积为S1,△ADE 的面积为S2,△CDE的面积为S3,若,求sin∠ADB的值.4.(2024•高新区模拟)已知矩形ABCD中,E是BC的中点,DF⊥AE于点F.(1)如图1,若BE=,求AE•AF的值;(2)如图2,连接AC交DF于点G,若=,求cos∠FCE的值;(3)如图3,延长DF交AB于点G,若G点恰好为AB的中点,连接FC,过A作AK∥FC交FD于K,设△ADK的面积为S1,△CDF的面积为S2,则的值为.5.(2024•惠山区一模)如图1,矩形ABCD中,AB=4,BC=8,点P为线段BC边上一点,点E为线段AP上一点,取线段DE的中点F,以PE,PF为邻边向上作▱PEGF,EG、GE所在直线分别交AD于M、N.设.(1)当点G落在AD上时(如图2),m的值为.(2)若P为BC的中点,且点G到直线AD的距离为1时,求m的值.(3)设△GMN的面积为s,求s与m的函数表达式.6.(2023•吉安县模拟)课本再现如图1,在等边△ABC中,E为边AC上一点,D为BC上一点,且AE=CD,连接AD与BE相交于点F.(1)AD与BE的数量关系是,AD与BE构成的锐角夹角∠BFD的度数是;深入探究(2)将图1中的AD延长至点G,使FG=BF,连接BG,CG,如图2所示.求证:GA平分∠BGC.(第一问的结论,本问可直接使用)迁移应用(3)如图3,在等腰△ABC中,AB=AC,D,E分别是边BC,AC上的点,AD与BE相交于点F.若∠BAC=∠BFD,且BF=3AF,求值.7.(2023•苏州模拟)如图①,点E为矩形ABCD中较短边AB上一任意点,连接DE,在AD上方以DE 为边作正方形DEFG,分别连接CE、CF、CG,F与BC交于点H,若△ECD的面积y1与BE的长度x 的函数关系的图象如图②中直线的一部分,正方形DEFG的面积y2与BE的长度x的函数关系的图象如图②中抛物线的一部分.(1)①矩形ABCD的面积=;②求出矩形ABCD的周长;(2)E、C、G三点能否共线,若能,求出此时x的值,若不能,请说明理由;(3)连接FB,令△BFE的面积为S1,△CEF的面积为S2,当x为间值时,取得最大值?此时∠FCB 和∠CGD是否相等?请说明理由.8.(2023•工业园区一模)如图①,在四边形ABCD中,AD∥BC,∠ABC=90°,AD=3,BC=5,.点P在AB上,连接BD、PC、PD.(1)求AB的长;(2)探索:是否存在这样的点P,使得PC平分∠BCD、PD平分∠ADB同时成立?若存在,求出PA 的长;若不存在,说明理由;(3)如图②,PC与BD相交于点E,过点P作PF∥CD,PF与BD相交于点F.设△PEF、△PCD 的面积分别为S1、S2.若S2=6S1,求PA的长.9.(2023•涟水县二模)如图,△ABC是边长为3的等边三角形,D是AB上一动点,连接CD,以CD为边向CD的右侧作等边三角形CDE,连接AE.(1)【尝试初探】如图1,当点D在线段AB上运动时,AC,DE相交于点F,在运动过程中发现有两个三角形始终保持全等,请你找出这对全等三角形,并说明理由.(2)【深入探究】如图2,当点D在线段AB上运动时,延长ED,交CB的延长线于点H,随着D点位置的变化,H点的位置随之发生变化,当AD=2BD时,求tan∠DHC的值.(3)【拓展延伸】如图3,当点D在BA的延长线上运动时,CD,AE相交于点F,设△ADF的面积为S1,△CEF的面积为S2,当S2=4S1时,求BD的长.10.(2021•吴江区模拟)如图,以△ABC的边AB为直径的⊙O与边AC相交于点D,BC是⊙O的切线,E为BC的中点,连接AE、DE.(1)求证:DE是⊙O的切线;(2)设△CDE的面积为S1,四边形ABED的面积为S2.若S2=5S1,求tan∠BAC的值;(3)在(2)的条件下,若AE=3,求⊙O的半径长.11.(2020•工业园区一模)【探索规律】如图①,在△ABC中,点D,E,F分别在AB,BC,AC上,且DF∥BC,EF∥AB.设△ADF的边DF上的高为h1,△EFC的边CE上的高为h2.(1)若△ADF、△EFC的面积分别为3,1,则=;(2)设△ADF、△EFC、四边形BDFE的面积分别为S1,S2,S,求证:S=2;【解决问题】(3)如图②,在△ABC中,点D,E分别在AB,AC上,点F,G在BC上,且DE∥BC,DF∥EG.若△ADE、△DBF、△EGC的面积分别为3,7,5,求△ABC的面积.参考答案与试题解析一.解答题(共11小题)1.【解答】解:(1)①∵CD平分∠ACB,∴∠ACD=∠DCB=∠ACB,∵∠ACB=2∠B,∴∠ACD=∠DCB=∠B,∴CD=BD=,∵DE∥AC,∴∠ACD=∠EDC,∴∠EDC=∠DCB=∠B,∴CE=DE=1,∴△CED∽△CDB,∴,∴,∴BC=;②﹣是定值.∵DE∥AC,∴,同①可得,CE=DE,∴,∴=1,∴﹣是定值,定值为1;(2)∵DE∥AC,∴,∵,∴,又∵S1•S3=,∴,设BC=9x,则CE=16x,∵CD平分∠BCF,∴∠ECD=∠FCD=∠BCF,∵∠BCF=2∠CBG,∴∠ECD=∠FCD=∠CBD,∴BD=CD,∵DE∥AC,∴∠EDC=∠FCD,∴∠EDC=∠CBD=∠ECD,∴CE=DE,∵∠DCB=∠ECD,∴△CDB∽△CED,∴,∴CD2=CB•CE=144x2,∴CD=12x,过点D作DH⊥BC于点H,∵BD=CD=12x,∴BH=BC=x,∴cos.2.【解答】解:(1)∵四边形ABCD为矩形,∴∠A=∠B=∠C=90°,∵GH∥AB,∴∠B=∠GHC=90°,∠A=∠PGD=90°,∵EF∥AD,∴∠PGD=∠HPF=90°,∴四边形PFCH为矩形,同理可得,四边形AGPE、GDFP、EPHB均为矩形,∵AG=a,AE=b,AG:GD=AE:EB=1:2,∴PE=a,PG=b,GD=PF=2a,EB=PH=2b,∴四边形EBHP的面积=PE•PH=2ab,四边形GPFD的面积=PG•PF=2ab,故答案为:=;(2)∵PP1=PG,PP2=PE,由(1)知PE•PH=2ab,PG•PF=2ab,∴PP2•PH=PP1•PF,即=,又∵∠FPP2=∠HPP1,∴△PP2F∽△PP1H,∴∠PFP 2=∠PHP 1,∵∠P 1QF =∠P 2QH ,∴△P 1FQ ∽△P 2HQ ;(3)连接P 1P 2、FH ,∵==,==,∴=,∵∠P 1PP 2=∠C =90°,∴△PP 1P 2∽△CFH ,∴==,=()2=,由(2)中△P 1FQ ∽△P 2HQ ,得=,∴=,∵∠P 1QP 2=∠FQH ,∴△P 1QP 2∽△FQH ,∴=()2=,∵S1=+,S 2=S △CFH +S △FQH ,∴S 1=S △CFH +S △FQH =S 2,∴=.3.【解答】解:(1)①如图1,作AF⊥BC于F,作DG⊥AB于G,∴∠BGD=∠AFB=90°,∵AB=AC=10,∴BF=CF=BC=6,∴AF=8,∵∠B=∠B,∴△BDG∽△BAF,∴,∴,∴DG=,BG=,∴AG=AB﹣BG=10﹣=,∴AD==4;②∵CE∥AD,∴∠DEC=∠ADA′,∵∠ADA′=∠B,∴∠CED=∠B,∵∠BAD+∠ADB=180°﹣∠B,∠ADB+∠CDE=180°﹣∠ADA′,∴∠BAD=∠CDE,∴△ABD∽△DEC,∴,∴AD•CE=BD•CD=BD•(12﹣BD)=﹣(BD﹣6)2+36,∴当BD=6时,(AD•BD)最大=36;(2)如图2,作AF⊥BD于F,设CD=x,∵DF=CF+CD=x+6,AF=8,∴AD2+82+(x+6)2=x2+12x+100,∵CE∥AD,=S△ACD,∠CED=∠ADA′,∠ADB=∠DCE,∴S△ADE∵∠B=∠ADA′,∴∠CED=∠B,∴△CDE∽△DAB,∴=,=•S△ABD,∴S△CDE∵,∴=,∵,∴=,∴x2=38,x2=﹣2(舍去),∴CD=38,DF=38+6=44,∴AD==20,∴sin∠ADB=.4.【解答】解:(1)∵E是BC的中点,∴BC=2BE=2,∵四边形ABCD是矩形,∴AD=BC=2,∠B=90°,AD∥BC,∴∠AEB=∠DAF,∵DF⊥AE,∴∠AFD=90°=∠B,∴△ABE∽△DFA,∴=,∴AE•AF=AD•BE=2×=4;(2)延长DE交CB的延长线于H,连接DE、AH,如图2所示:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∠BCD=90°,∴△ADG∽△CHG,∴==,∴BH=BC,∵E是BC的中点,∴BE=CE=BH,∴EH=BC=AD,∴四边形ADEH是平行四边形,∵DF⊥AE,∴四边形ADEH是菱形,∴DF=HF,∠AEH=∠AED,DE=AD=EH=BC,∴CE=DE,∴∠CDE=30°,∴∠CED=90°﹣30°=60°,∴∠AEH=∠AED=60°,∵DF⊥AE,∴∠FDE=30°=∠CDE,∴FE=CE,∴∠FCE=∠CFE=∠AEH=30°,∴cos∠FCE=;(3)过F作PQ⊥AB于P,交CD于Q,作KH⊥AD于H,如图3所示:则PQ=AD,AP=DQ,PQ∥BC∥AD,∵G是AB的中点,E是BC的中点,∴AB=2AG,BC=2BE,∵四边形ABCD是矩形,∴AD=BC,AB=CD,∠B=∠DAG=90°,∵DF⊥AE,∴∠ADF+∠DAF=∠BAE+∠DAF=90°,∴∠BAE=∠ADF,∴△ABE∽△DAG,∴=,∴AB•AG=AD•BE,即AB2=AD2,∴AB=AD,∴四边形ABCD是正方形,∴AB=BC=CD=AD=PQ,设AB=BC=CD=AD=PQ=4a,则BE=AG=2a,∴tan∠ADG=tan∠BAE==,AE=DG==2a,∵DF⊥AE,∴AF===a,∵PQ∥BC,∴△APF∽△ABE,∴==,即==,解得:AP=a,PF=a,∴CQ=PB=AB﹣AP=4a﹣a=a,FQ=PQ﹣PF=4a﹣a=a,∵KH⊥AD,∴tan∠ADG==,设KH=x,则DH=2x,∵PQ∥AD,AK∥FC,∴∠DAF=∠QFE,∠KAF=∠CFE,∴∠DAK=∠QFC,又∵∠AHK=∠FQC=90°,∴△AHK∽△FQC,∴=,即=,解得:AH=x,∵AH+DH=AD,∴x+2x=4a,解得:x=a,∴KH=a,∵△ADK的面积为S1=AD×KH,△CDF的面积为S2=CD×FQ,∴===;故答案为:.5.【解答】解:(1)∵四边形PEGF是平行四边形,∴GF=PE,GF∥PE,∴△DGF∽△DAE,∴,∵F是DE的中点,∴DF=DE,∴,∴,∴m=,故答案为:;(2)如图1,当点G在矩形ABCD的外部时,作GH⊥AD于H,作射线DG,交PA的延长线于W,作WQ⊥PA,交PA的延长线于点Q,由(1)得,G是DW的中点,同理可得WQ=2GH=2,PE=FG=WE,设PE=FG=x,则WE=2x,∵四边形ABCD是矩形,∴∠DAB=∠B=90°,∵P时BC的中点,∴PB=BC=4,∴AB=PB,∴∠WAQ=∠DAP=∠PAB=45°,∴AW=WQ=2,AP=AB=4,∴WP=AW+AP=6,由WE+PE=WP得,2x+x=6,∴x=2,∴AE=AP﹣PE=2,∴m=1,如图2,当点G在矩形ABCD的内部时,由上可知:AW=2,∴PW=AP﹣﹣AW=2,∴PE=PW=,∴AE=4=,∴m=,综上所述:m=1或;(3)如图3,当m<时,延长EP至X,使PX=EP,连接DP,DX,∵点F是DE的中点,∴PF∥DX,∵EM∥PF,∴EM∥DX,∴∠AME=∠ADX,∵GF∥PE,∴∠MNG=∠DAX,∴△MNG∽△DAX,∴,=AD•AB=,,∵S△ADP=S△DEP=S△ADP=,∴S△DPX=S△ADP+S△DPX=16+=,∴S△ADX设AE=x,则GF=PE=mx,∵FN=AE=x,∴NG=FN﹣GF=,∵AX=AE+PE+PX=x+2mx=(1+2m)x,∴=()2,∴S=,如图4,同理可得,,NG=FG﹣NF=(m﹣)x,AX=(1+2m)x,∴S=,6.【解答】(1)解:∵△ABC是等边三角形,∴AB=CA,∠BAE=∠C=60°,在△ACD和△BAE中,∴△ACD≌△BAE(SAS).∴AD=BE,∠CAD=∠ABE,∴∠BFD=∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60°,故答案为:AD=BE,60°;(2)证明:由(1)可知,∠BFD=60°,∴∠AFB=120°,∵FG=BF,∴△BFG是等边三角形,∴BF=BG,∠FBG=∠BGF=60°,∵△ABC是等边三角形,∴AB=CB,∠ABC=60°,∴∠ABC=∠FBG,∴∠ABC﹣∠FBD=∠FBG﹣∠FBD,即∠ABF=∠CBG,∴△ABF≌△CBG(SAS),∴∠AFB=∠CGB=120°,∴∠CGF=∠CGB﹣∠BGF=120°﹣60°=60°,∴∠BGF=∠CGF,∴GA平分∠BGC;(3)解:如图3,延长FD至点G,使FG=BF,连接BG、CG,过点D作DM⊥BG于点M,DN⊥CG 于点N,∵AB=AC,FG=BF,∴=,∵∠BAC=∠BFD,∴△ABC∽△FBG,∴=,∠ABC=∠FBG,∴∠ABC﹣∠CBE=∠FBG﹣∠CBE,即∠ABF=∠CBG,∴△ABF∽△CBG,∴==3,∠BAF=∠BCG,∵∠ADB=∠CDG,∴∠CGD=∠ABD,∵AB=AC,FG=BF,∴∠ABC=∠ACB,∠FBG=∠FGB,∵∠BAC=∠BFD,∴∠BAC=∠FGB,∴∠CGD=∠FGB,∴DG平分∠BGC,∵DM⊥BG,DN⊥CG,∴DM=DN,=BG•DM,S△CGD=CG•DN,∵S△BGD∴===3,又∵=,∴=3.方法二:如图4,过点D作DP∥AB交AC于点P,则∠BAF=∠ADP,∠ABC=∠PDC,∵∠BAC=∠BFD,∠BFD=∠ABF+∠BAF,∠BAC=∠BAF+∠DAP,∴∠ABF=∠DAP,∴△ABF∽△DAP,∴=,即==3,∵AB=AC,∴∠ABC=∠ACB=∠PDC,∴PD=PC,∵DP∥AB,∴===3.7.【解答】解:(1)①由图②知,△ECD的面积为6,∴CD•AD=6,∴CD•AD=12,∴矩形ABCD的面积为12;故答案为:12;②由图②知,正方形DEFG的面积最大为25,此时边DE最大,E与B重合,∴AB2+AD2=25,由矩形ABCD,结合①可知AB•AD=CD•AD=12,∴AB+AD===7,∴矩形ABCD的周长为14;(2)E、C、G三点不能共线,理由如下:由(1)知AB+AD=7,AB•AD=12,∴AB=3,AD=4(AB为矩形ABCD的较短边,AB=4,AD=3已舍去),以A为原点,AD所在直线为x轴建立直角坐标系,过G作GK⊥CD交DC延长线于K,如图:∵∠KDG=90°﹣∠EDC=∠EDA,∠K=90°=∠EAD,DE=DG,∴△DKG≌△DAE(AAS),∴DK=AD=4,KG=AE,设AE=m,则KG=m,∴E(0,m),G(4+m,4),∴直线EG函数表达式为y=x+m,若C(4,3)在直线EG上,则3=×4+m,变形整理得:m2﹣3m+4=0,∵Δ=(﹣3)2﹣4×4=﹣7<0,∴C(4,3)不可能满足y=x+m,∴C不可能在直线EG上,故E、C、G三点不能共线;(3)过F作FT⊥y轴于T,FW⊥BC于W,如图:∵∠TEF=90°﹣∠AED=∠ADE,∠ETF=90°=∠EAD,EF=ED,∴△EFT≌△DEA(AAS),∴TF=AE,TE=AD=4,∵BE=x,∴AE=AB﹣BE=3﹣x=TF,∵BH∥TF,∴=即=,∴BH=﹣+x,∴CH=4﹣BH=﹣x+4,∴S1=BE•TF=x•(3﹣x)=﹣x2+x,S2=CH•TE=(﹣x+4)×4=﹣x+8,∴==﹣1+,当x2﹣3x+16最小时,最大,从而最大,∵x2﹣3x+16=(x﹣)2+,∴当x=时,x2﹣3x+16最小为,此时取得最大值,∴BE=,∴AE=TF=3﹣=,TB=TE﹣BE=4﹣=,∴BW=TF=,FW=TB=,∴CW=BC﹣BW=4﹣=,∴CW=FW,∴△CFW是等腰直角三角形,∴∠FCB=45°,∵∠EGD=45°,∴∠FCB=∠EGD,由(2)知C不在EG上,∴∠CGD≠∠FCB.∴当x=时,取得最大值,此时∠FCB与∠CGD不相等.8.【解答】解:(1)如图1,过D作DM⊥BC于M,则四边形ABMD是矩形,∴AB=DM,BM=AD=3(矩形性质),∴CM=BC﹣BM=2,在Rt△CDM中,由勾股定理得,∴AB=4,∴AB的长为4;(2)不存在,理由如下:如图2,过P作PH∥AD交BD于G,交CD于H,∴PH∥AD∥BC,∴∠ADP=∠DPG,∠HPC=∠BCP(两直线平行,内错角相等),∠GHD=∠BCD(两直线平行,同位角相等),∵PC平分∠BCD,∴∠ADP=∠PDG(角平分线的性质),∴∠DPG=∠PDG,∴PG=DG(等角对等边),在Rt△ABD中,,由勾股定理得,∴BD=BC,∴∠BDC=∠BCD,∴∠GHD=∠BDC,∴DG=GH,∴PG=DG=GH,设PG=DG=GH=a,则BG=5﹣a,,∵∠PBG=∠ABD,∠BPG=∠A=90°,∴△PBG∽△ABD,∴,即,解得,∴,∵GH∥BC,∴△DGH∽△DBC,∴,即,解得,∴,若PD平分∠ADB,则∠BCP=∠HCP=∠HPC,即PH=CH,∵,与PH=CH矛盾,∴不存在这样的点P,使得PC平分∠BCD、PD平分∠ADB同时成立;(3)令△PEF中PE边上的高为h1,△PCD中PC边上的高为h2,∵PF∥CD,∴∠PFE=∠CDE,∠FPE=∠DCE,∴△PFE∽△CDE,设,则,∴PE=kCE,h1=kh2,∴,,∵S2=6S1,即,整理得6k2﹣k﹣1=0,则(2k﹣1)(3k+1)=0,解得,(舍去),∴,如图3,过E作EQ∥AD交AB于Q,∴QE∥BC,∴△PQE∽△PBC,∴,即,∴,,∵QE∥AD,∴△BEQ∽△BDA,∴,即,解得,∴,∴,∴AP的长为.9.【解答】解:(1)如图1,△BCD≌△ACE,理由如下:∵△ABC与△CDE都是等边三角形,∴BC=AC,DC=EC,∠ACB=∠DCE=60°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,即∠BCD=∠ACE,在△BCD与△ACE中,,∴△BCD≌△ACE(SAS);(2)如图2,过点D作DG⊥BC于D点G,∵△ABC是边长为3的等边三角形,AD=2BD,∴∠ABC=∠ACB=60°,BD=1,AD=2,∵DG⊥BC,∴BG=,DG=BG=,由(1)得,△BCD≌△ACE,∴AE=BD=1,∠CAE=∠CBA=60°,∴∠CAE=∠ACB,∴AE∥CH,∴△ADE∽△BDH,∴,∵AD=2BD,AE=1,∴,∴BH=,∴GH=BH+BG=1,∵DG⊥BC,∴tan∠DHC=;(3)如图3,过点C作CH⊥AB于点H,∵△ABC与△CDE都是等边三角形,∴BC=AC,DC=EC,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△BCD与△ACE中,,∴△BCD≌△ACE(SAS),∴∠BDC=∠AEC,又∵∠AFD=∠CFE,∴△AFD∽△CFE,∴,∵S2=4S1,∴CE=2AD,设BD=x,则AD=BD﹣AB=x﹣3,CD=CE=2(x﹣3)=2x﹣6,∵CH⊥AB,△ABC是边长为3的等边三角形,∴AH=,CH=AH=,∴DH=AH+AD=,∵CH⊥AB,∴CH2+DH2=CD2,即()=(2x﹣6)2,解得x=,∵点D在BA的延长线上,∴BD>AB,∴x>3,∴x=,即BD=.10.【解答】(1)证明:连接OD,∴OD=OB∴∠ODB=∠OBD.∵AB是直径,∴∠ADB=90°,∴∠CDB=90°.∵E为BC的中点,∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB为直径的⊙O的切线,∴AB⊥BC,∴∠EBO=90°,∴∠ODE=90°,∴DE是⊙O的切线;(2)∵S2=5S1=2S△CDB∴S△ADB∴∵△BDC∽△ADB∴∴DB2=AD•DC∴=∴tan∠BAC==.(3)∵tan∠BAC==∴=,得BC=AB∵E为BC的中点∴BE=AB∵AE=3,∴在Rt△AEB中,由勾股定理得,解得AB=4故⊙O的半径R=AB=2.11.【解答】解:(1)∵DF∥BC,EF∥AB,∴∠AFD=∠ACB,∠DAF=∠EFC,∴△ADF∽△FEC,∵△ADF、△EFC的面积分别为3,1,∴,∴,∵△ADF的边DF上的高为h1,△EFC的边CE上的高为h2,∴;故答案为:.(2)证明:如图①,设AD=a,BD=b,DB与EF间的距离为h,∵EF∥AB,DF∥BC,∴四边形DBFE是平行四边形,∴BD=EF=b,由(1)知△ADF∽△FEC,∴,∵S1=ah,∴S2=,∴S1S2=,∴bh=2,∵S=bh,∴S=2.(3)如图②,过点D作DM∥AC交BC于点M,∴∠DMF=∠ECG,∵DE∥BC,DF∥EG,∴四边形DFGE为平行四边形,∴DF=EG,∠DFM=∠EGC,∴△DFM≌△EGC(AAS),=S△EGC=5,∴S△DFM=7,∵S△DBF=7+5=12,∴S△BDM∵DE∥BM,DM∥AC,∴∠ADE=∠DBM,∠BDM=∠BAE,∴△DAE∽△BDM,∴=,∴,∴,同理,△ADE∽△ABC,=9S△ADE=9×3=27.∴S△ABC。

2024成都中考数学一轮复习专题 三角形及全等三角形 (含解析)

2024成都中考数学一轮复习专题 三角形及全等三角形 (含解析)

2024成都中考数学一轮复习专题三角形及全等三角形一、单选题1.(2023·吉林长春·统考中考真题)如图,工人师傅设计了一种测零件内径AB 的卡钳,卡钳交叉点O 为AA '、BB '的中点,只要量出A B ''的长度,就可以道该零件内径AB 的长度.依据的数学基本事实是()A .两边及其夹角分别相等的两个三角形全等B .两角及其夹边分别相等的两个三角形全等C .两余直线被一组平行线所截,所的对应线段成比例D .两点之间线段最短2.(2023·四川宜宾·统考中考真题)如图,AB CD ∥,且40A ∠=︒,24D ∠=︒,则E ∠等于()A .40︒B .32︒C .24︒D .16︒3.(2023·云南·统考中考真题)如图,A B 、两点被池塘隔开,、、A B C 三点不共线.设AC BC 、的中点分别为M N 、.若3MN =米,则AB =()A .4米B .6米C .8米D .10米4.(2023·四川眉山·统考中考真题)如图,ABC 中,,40=∠=︒AB AC A ,则ACD ∠的度数为()A .70︒B .100︒C .110︒D .140︒A .45︒B .50︒7.(2023·福建·统考中考真题)阅读以下作图步骤:①在OA 和OB 上分别截取,OC OD ②分别以,C D 为圆心,以大于12③作射线OM ,连接,CM DM ,如图所示.A .12∠=∠且CM DM=C .12∠=∠且OD DM =8.(2023·浙江台州·统考中考真题)如图,锐角三角形连接BE ,CD .下列命题中,假命题A .若CD BE =,则DCB EBC∠=∠B .若DCB EBC ∠=∠,则CD BE =C .若BD CE =,则DCB EBC ∠=∠D .若DCB EBC ∠=∠,则BD CE=9.(2023·河北·统考中考真题)在ABC 和A B C ''' 中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=()A .30︒B .n ︒C .n ︒或180n ︒-︒D .30︒或150︒12.(2023·新疆·统考中考真题)13.(2023·安徽·统考中考真题)清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术结论:如图,AD 是锐角ABC 14.(2023·浙江·统考中考真题)如图,在B ADB ∠=∠.若4AB =15.(2023·湖北随州·统考中考真题)如图,在∠的角平分线,则若BD是ABC16.(2023·湖北十堰·统考中考真题)∠=___________________则DFC17.(2023·浙江杭州·统考中考真题)如图,点∠=段BC的延长线上.若ADE18.(2023·湖北荆州·统考中考真题)CD=,则DE=___________519.(2023·湖南·统考中考真题)如图,在小于AC长为半径作弧,分别交20.(2023·广东深圳·统考中考真题)如图,在AD ,将ABD △沿AD 翻折得到V 三、解答题21.(2023·江苏苏州·统考中考真题)如图,在ABC 中,,AB AC AD =为ABC 的角平分线.以点A 圆心,AD 长为半径画弧,与,AB AC 分别交于点,E F ,连接,DE DF .(1)求证:ADE ADF V V ≌;(2)若80BAC ∠=︒,求BDE ∠的度数.23.(2023·云南·统考中考真题)如图,24.(2023·四川宜宾·统考中考真题)已知:如图,26.(2023·全国·统考中考真题)如图,点C 在线段BD 上,在ABC 和DEC 中,A D AB DE B E ∠=∠=∠=∠,,.求证:AC DC =.27.(2023·四川乐山·统考中考真题)如图,AB.CD 相交于点O ,AO=BO ,AC ∥DB .求证:AC=BD .28.(2023·山东临沂·统考中考真题)如图,90,,,A AB AC BD AB BC AB BD ∠=︒=⊥=+.(1)写出AB 与BD 的数量关系(2)延长BC 到E ,使CE BC =,延长DC 到F ,使CF DC =,连接EF .求证:EF AB ⊥.(3)在(2)的条件下,作ACE ∠的平分线,交AF 于点H ,求证:AH FH =.29.(2023·山东聊城·统考中考真题)如图,在四边形ABCD 中,点E 是边BC 上一点,且BE CD =,B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠;(2)若60C ∠=︒,4DE =时,求AED △的面积.30.(2023·甘肃兰州·统考中考真题)综合与实践问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在OA 和OB 上分别取点C 和D ,使得OC OD =,连接CD ,以CD 为边作等边三角形CDE ,则OE 就是AOB ∠的平分线.请写出OE 平分AOB ∠的依据:____________;类比迁移:(2)小明根据以上信息研究发现:CDE 不一定必须是等边三角形,只需CE DE =即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3,在AOB ∠的边OA ,OB 上分别取OM ON =,移动角尺,使角尺两边相同刻度分别与点M ,N 重合,则过角尺顶点C 的射线OC 是AOB ∠的平分线,请说明此做法的理由;拓展实践:(3)小明将研究应用于实践.如图4,校园的两条小路AB和AC,汇聚形成了一个岔路口A,现在学校要在两条小路之间安装一盏路灯E,使得路灯照亮两条小路(两条小路一样亮),并且路灯E到岔路口A的距离和休息椅D到岔路口A的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规..........在对应的示意图5中作出路灯E的位置.(保留作图痕迹,不写作法)参考答案与解析一、单选题1.【答案】A 【分析】根据题意易证()SAS AOB A OB '' ≌,根据证明方法即可求解.【详解】解:O 为AA '、BB '的中点,OA OA ∴'=,OB OB '=,AOB A OB ''∠=∠ (对顶角相等),∴在AOB 与A OB ''△中,OA OA AOB A OB OB OB =⎧⎪∠=∠⎨⎪=''⎩',()SAS AOB A OB ''∴△≌△,AB A B ''∴=,故选:A .【点拨】本题考查了全等三角形的证明,正确使用全等三角形的证明方法是解题的关键.2.【答案】D 【分析】可求40ACD ∠=︒,再由ACD D E ∠=∠+∠,即可求解.【详解】解:AB CD ∥ ,40ACD A ∴∠=∠=︒,ACD D E ∠=∠+∠ ,2440E ∴︒+∠=︒,16E ∴∠=︒.故选:D .【点拨】本题考查了平行线的性质,三角形外角性质,掌握三角形外角的性质是解题的关键.3.【答案】B 【分析】根据三角形中位线定理计算即可.【详解】解∶∵AC BC 、的中点分别为M N 、,∴MN 是ABC 的中位线,∴26(AB MN ==米),故选:C .【点拨】本题考查了平行线的性质,三角形外角的性质等知识,掌握这两个知识点是关键.7.【答案】A 【分析】由作图过程可得:,OD OC CM DM ==,再结合DM DM =可得()SSS COM DOM ≌,由全等三角形的性质可得12∠=∠即可解答.【详解】解:由作图过程可得:,OD OC CM DM ==,∵DM DM =,∴()SSS COM DOM ≌.∴12∠=∠.∴A 选项符合题意;不能确定OC CM =,则13∠=∠不一定成立,故B 选项不符合题意;不能确定OD DM =,故C 选项不符合题意,OD CM ∥不一定成立,则23∠∠=不一定成立,故D 选项不符合题意.故选A .【点拨】本题主要考查了角平分线的尺规作图、全等三角形的判定与性质等知识点,理解尺规作图过程是解答本题的关键.8.【答案】A 【分析】由AB AC =,可得A ABC CB =∠∠,再由CD BE BC CB ==,,由SSA 无法证明BCD 与CBE 全等,从而无法得到DCB EBC ∠=∠;证明ABE ACD @V V 可得CD BE =;证明ABE ACD @V V ,可得ACD ABE ∠=∠,即可证明;证明()DBC ECB ASA ≅ ,即可得出结论.【详解】解:∵AB AC =,∴A ABC CB =∠∠,∵若CD BE =,又BC CB =,∴BCD 与CBE 满足“SSA ”的关系,无法证明全等,因此无法得出DCB EBC ∠=∠,故A 是假命题,∵若DCB EBC ∠=∠,∴ACD ABE ∠=∠,在ABE 和ACD 中,ACD ABE AB AC A A ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABE ACD ASA ≅ ,∴CD BE =,故B 是真命题;若BD CE =,则AD AE =,在ABE 和ACD 中,AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩,∴()ABE ACD SAS ≅ ,∴ACD ABE ∠=∠,∵A ABC CB =∠∠,∴DCB EBC ∠=∠,故C 是真命题;若DCB EBC ∠=∠,则在DBC △和ECB 中,ABC ACB BC BC DCB EBC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()DBC ECB ASA ≅ ,∴BD CE =,故D 是真命题;故选:A .【点拨】本题考查等腰三角形的判定和性质,全等三角形的判定和性质,命题的真假判断,正确的命题叫真命题,错误的命题叫假命题,判断命题的真假关键是掌握相关性质定理.9.【答案】C 【分析】过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,求得3AD A D ''==,分两种情况讨论,利用全等三角形的判定和性质即可求解.【详解】解:过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,∵306B B AB A B '''∠=∠=︒==,,∴3AD A D ''==,当B C 、在点D 的两侧,B C ''、在点D ¢的两侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴C C n '∠=∠=︒;当B C 、在点D 的两侧,B C ''、在点D ¢的同侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴'''A C D C n ∠=∠=︒,即'''180'''180A C B A C D n ∠=︒-∠=︒-︒;综上,C '∠的值为n ︒或180n ︒-︒.故选:C .【点拨】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.二、填空题10.【答案】4(答案不唯一,大于2且小于8之间的数均可)【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得5353x -<<+,再解即可.在Rt ABC △中,∵8AC BC =,∴222286AB AC BC =+=+∵BD 是ABC ∠的角平分线,∴CBD PBD ∠=∠,∴6BC BP ==,CD PD =,设CD PD x ==,在Rt ADP 中,∵4PA AB BP =-=,8AD x =-,∴2224(8)x x +=-,∴3x =,∴3AD =.故答案为:3.【点拨】本题考查了角平分线的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.【答案】100︒【分析】根据直角三角板的性质,得到45DFE ∠=︒,90E B ∠=∠=︒,结合12∠=∠得到35EAB BFE ∠=∠=︒,利用平角的定义计算即可.【详解】解:如图,根据直角三角板的性质,得到45DFE ∠=︒,90E B ∠=∠=︒,∵12∠=∠,∴35EAB BFE ∠=∠=︒,1803545100DFC ∠=︒-︒-︒=︒.故答案为:100︒.【点拨】本题考查了三角板的性质,直角三角形的性质,平角的定义,熟练掌握三角板的性质,直角三角形的性质是解题的关键.17.【答案】90︒【分析】首先根据平行线的性质得到28B ADE ∠=∠=︒,然后根据三角形外角的性质求解即可.【详解】∵DE BC ∥,28ADE ∠=︒,∴28B ADE ∠=∠=︒,∵118ACF ︒∠=,∴1182890A ACF B ∠=∠-∠=︒-︒=︒.根据作图可知AD 为CAB ∠的角平分线,∵,DC AC DE AB⊥⊥∴1CD DE ==,故答案为:1.∵AM BD ⊥于点M ,∴3tan 4AM B BM ==,设12AM a =,则16BM a =,AB AM =三、解答题21.【答案】(1)见解析(2)20BDE ∠=︒【分析】(1)根据角平分线的定义得出BAD CAD ∠=∠,由作图可得AE AF =,即可证明ADE ADF V V ≌;(2)根据角平分线的定义得出40EAD ∠=︒,由作图得出AE AD =,则根据三角形内角和定理以及等腰三角形的性质得出70ADE ∠=︒,AD BC ⊥,进而即可求解.【详解】(1)证明:∵AD 为ABC 的角平分线,∴BAD CAD ∠=∠,由作图可得AE AF =,在ADE V 和ADF △中,AE AF BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,∴ADE ADF V V ≌()SAS ;(2)∵80BAC ∠=︒,AD 为ABC 的角平分线,∴40EAD ∠=︒由作图可得AE AD =,∴70ADE ∠=︒,∵AB AC =,AD 为ABC 的角平分线,∴AD BC ⊥,∴20BDE ∠=︒【点拨】本题考查了全等三角形的性质与判定,等腰三角形的性质与判定,角平分线的定义,熟练掌握等腰三角形的性质与判定是解题的关键.22.【答案】(1)2(2)见解析【分析】(1)先计算立方根,特殊角三角函数值和零指数幂,再计算加减法即可;(2)先由角平分线的定义得到BAC DAC ∠=∠,再利用SAS 证明ABC ADC △△≌即可.【详解】解:(1)原式211=+-2=;(2)∵AC 平分BAD ∠,∴BAC DAC ∠=∠,在ABC 和ADC △中,AB AD BAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC ADC △△≌.【点拨】本题主要考查了实数的运算,零指数幂,特殊角三角函数值,全等三角形的判定,角平分线的定义等等,灵活运用所学知识是解题的关键.23.【答案】见解析【分析】根据C 是BD 的中点,得到BC CD =,再利用SSS 证明两个三角形全等.【详解】证明: C 是BD 的中点,BC CD ∴=,在ABC 和EDC △中,BC CD AB ED AC EC =⎧⎪=⎨⎪=⎩,()ABC EDC SSS ∴ ≌【点拨】本题考查了线段中点,三角形全等的判定,其中对三角形判定条件的确定是解决本题的关键.24.【答案】见解析【分析】根据平行线的性质得出A D ∠=∠,然后证明AC DF =,证明()SAS ABC DEF ≌△△,根据全等三角形的性质即可得证.【详解】证明:∵AB DE ∥,∴A D ∠=∠,∵AF DC =,∴AF CF DC CF+=+即AC DF=在ABC 与DEF 中AC DF A D AB DE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABC DEF ≌△△,∴B E ∠=∠.【点拨】本题考查了全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.25.【答案】见解析【分析】根据已知条件得出AOB COD ∠=∠,进而证明△≌△AOB COD ,根据全等三角形的性质即可得证.【详解】证明:AOD COB ∠=∠ ,,AOD BOD COB BOD ∴∠-∠=∠-∠即AOB COD ∠=∠.在AOB 和COD △中,,,,OA OC AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩AOB COD∴ ≌AB CD ∴=.【点拨】本小题考查等式的基本性质、全等三角形的判定与性质等基础知识,考查几何直观、推理能力等,掌握全等三角形的性质与判定是解题的关键.26.【答案】证明见解析【分析】直接利用ASA 证明ABC DEC ≌△△,再根据全等三角形的性质即可证明.【详解】解:在ABC 和DEC 中,A D AB DE B E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ABC DEC ≌ ∴AC DC =.【点拨】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.27.【答案】见解析【分析】要证明AC=BD ,只要证明△AOC ≌△BOD ,根据AC//DB 可得∠A=∠B ,∠C=∠D ,又知AO=BO ,则可得到△AOC ≌△BOD ,从而求得结论.【详解】(方法一)∵AC//DB ,∴∠A=∠B ,∠C=∠D .在△AOC 与△BOD 中∵∠A=∠B ,∠C=∠D ,AO=BO ,∴△AOC ≌△BOD .∴AC=BD .(方法二)∵AC//DB ,∴∠A=∠B .在△AOC 与△BOD 中,∴90,A AB AC∠=︒=∴=45ABC ∠︒,∵BD AB ⊥,∴45DBC ∠=︒∴=45E DBC ∠=∠︒∴EF BD∥∴AB EF⊥(3)证明:如图所示,延长,BA EF 交于点M ,延长CH 交ME 于点G ,∵EF AB ⊥,AC AB ⊥,∴ME AC ∥,∴CGE ACG∠=∠∵CH 是ACE ∠的角平分线,∴ACG ECG ∠=∠,∴CGE ECG∠=∠∴EG EC=∵CBD CEF ≌,∴EF BD =,CE CB =,∴EG CB =,又∵BC AB BD =+,∴EG AB BD AC EF =+=+,【点拨】本题考查了三角形内角和定理,全等三角形的判定和性质,等腰三角形的性质,含的性质以及勾股定理等知识,正确寻找证明三角形全等的条件是解题的关键.30.【答案】(1)SSS ;(2)证明见解析;【分析】(1)先证明OCE ODE ≌【点拨】本题考查的是全等三角形的判定与性质,角平分线的定义与角平分线的性质,作已知角的角平分线,理解题意,熟练的作角的平分线是解本题的关键.。

成都2017-2022中考真题精选-四边形几何题(含详细解析及答案)

成都2017-2022中考真题精选-四边形几何题(含详细解析及答案)

成都2017—2022年中考真题——几何题选1、(成都2017年中考25题4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG= cm.2、(成都2019年中考24题4分)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.3、(成都2020年中考19题4分)如图,在矩形ABCD 中,AB =4,BC =3,E ,F分别为AB ,CD 边的中点.动点P 从点E 出发沿EA 向点A 运动,同时,动点Q 从点F 出发沿FC 向点C 运动,连接PQ ,过点B 作BH ⊥PQ 于点H ,连接DH .若点P 的速度是点Q 的速度的2倍,在点P 从点E 运动至点A 的过程中,线段PQ 长度的最大值为______,线段DH 长度的最小值为______.4、(成都2021年中考18题4分)如图,在矩形ABCD 中,4AB =,8AD =,点E ,F分别在边AD ,BC 上,且3AE =,按以下步骤操作:第一步,沿直线EF 翻折,点A 的对应点A '恰好落在对角线AC 上,点B 的对应点为B ',则线段BF 的长为________________.第二步,分别在EF ,A B ''上取点M ,N ,沿直线MN 继续翻折,使点F 与点E 重合,则线段MN 的长为____________.5、(成都2022年中考23题4分)如图,在菱形ABCD 中,过点D 作DE ⊥CD 交对角线AC 于点E ,连接BE ,点P 是线段BE 上一动点,作P 关于直线DE 的对称点P ′,点Q 是AC 上一动点,连接P ′Q ,DQ,若AE=14,CE=18,则DQ-P ′Q 的最大值为.(成都2017年中考27题10分)问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,6、作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.7、(成都2018年中考27题10分)在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C′(点A,B 的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ 的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.8、(成都2020年中考27题10分)在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上点F处.(1)如图1,若BC=2BA,求∠CBE的度数;(2)如图2,当AB=5,且AF⋅FD=10时,求BC的长;(3)如图3,延长EF,与∠ABF的角平分线交于点M,BM交AD于点N,当NF= AN+FD时,求AB的值.BC1、(成都2017年中考25题4分)如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.【解答】解:作GM⊥AC′于M,A′N⊥AD于N,AA′交EC′于K.易知MG=AB=AC′,∵GF⊥AA′,∴∠AFG+∠FAK=90°,∠MGF+∠MFG=90°,∴∠MGF=∠KAC′,∴△AKC′≌△GFM,∴GF=AK,∵AN=4.5cm,A′N=1.5cm,C′K∥A′N,∴=,∴=,∴C′K=1cm,在Rt△AC′K中,AK==cm,∴FG=AK=cm,故答案为.2、(成都2019年中考24题4分)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.【分析】根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,推出四边形A′B′CD是矩形,∠B′A′C=30°,解直角三角形即可得到结论.【解答】解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,∠A′B′D=30°,当B′C⊥A′B′时,A'C+B'C的值最小,∵AB∥A′B′,AB=A′B′,AB=CD,AB∥CD,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是矩形,∠B′A′C=30°,∴B′C=,A′C=,∴A'C+B'C的最小值为,故答案为:.【点评】本题考查了轴对称﹣最短路线问题,菱形的性质,矩形的判定和性质,解直角三角形,平移的性质,正确的理解题意是解题的关键.3、(成都2020年中考19题4分)3√2 √13−√2解:连接EF 交PQ 于M ,连接BM ,取BM 的中点O ,连接OH ,OD ,过点O 作ON ⊥CD 于N .∵四边形ABCD 是矩形,DF =CF ,AE =EB , ∴四边形ADFE 是矩形, ∴EF =AD =3, ∵FQ //PE ,∴△MFQ ∽△MEP , ∴MFME =FQPE ,∵PE =2FQ ∴EM =2MF ,∴EM =2,FM =1,当点P 与A 重合时,PQ 的值最大,此时PM =√AE 2+ME 2=√22+22=2√2,MQ =√FQ 2+MF 2=√12+12=√2, ∴PQ =3√2,∵MF //ON //BC ,MO =OB ,∴FN =CN =1,DN =DF +FN =3,ON =12(FM +BC )=2,∴OD =√DN 2+ON 2=√32+22=√13, ∵BH ⊥PQ , ∴∠BHM =90°, ∵OM =OB ,∴OH =12BM =12×√22+22=√2, ∵DH ≥OD −OH , ∴DH ≥√13−√2,∴DH 的最小值为√13−√2,4、(成都2021年中考18题4分)1;5解析:第一步:设AA '与EF 交于点H .由折叠可知EF AA '⊥.4CD AB ==,8AD =,224845AC ∴=+=,825cos 545CAD ∴∠==,2565cos 355AH AE EAH ∴=⨯∠=⨯=,651454555HC AC AH ∴=-=-=.//AD BC ,HCF CAD ∴∠=∠,cos cos HCF CAD ∴∠=∠,255CH CF ∴=,14555725CF ⨯∴==,871BF BC FC ∴=-=-=.第二步:由题意可知MN 垂直平分EF ,故MN 的位置如图所示,连接NE ,NF ,则NE NF =.易知1B F BF '==,4A B AB ''==,3A E AE '==.90B EA B ︒'''∠==∠,2222B F B N A N A E ''''∴+=+,即()2222143B N B N ''+=-+,3B N '∴=,2221310FN ∴=+=.过点F 作FG AD ⊥于点G ,则4FG AB ==,312GE =-=,EF ∴=12FM EF ∴=,MN ∴=5、(成都2022年中考23题4分)6、(成都2017年中考27题10分)问题背景:如图1,等腰△ABC 中,AB=AC ,∠BAC=120°,作AD ⊥BC 于点D ,则D 为BC 的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC 和△ADE 都是等腰三角形,∠BAC=∠DAE=120°,D ,E ,C 三点在同一条直线上,连接BD . ①求证:△ADB ≌△AEC ;②请直接写出线段AD ,BD ,CD 之间的等量关系式;拓展延伸:如图3,在菱形ABCD 中,∠ABC=120°,在∠ABC 内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接CE ,CF . ①证明△CEF 是等边三角形; ②若AE=5,CE=2,求BF 的长.【解答】迁移应用:①证明:如图②∵∠BAC=∠DAE=120°,∴∠DAB=∠CAE,在△DAE和△EAC中,,∴△DAB≌△EAC,②解:结论:CD=AD+BD.理由:如图2﹣1中,作AH⊥CD于H.∵△DAB≌△EAC,∴BD=CE,在Rt△ADH中,DH=AD•cos30°=AD,∵AD=AE,AH⊥DE,∴DH=HE,∵CD=DE+EC=2DH+BD=AD+BD.拓展延伸:①证明:如图3中,作BH⊥AE于H,连接BE.∵四边形ABCD是菱形,∠ABC=120°,∴△ABD,△BDC是等边三角形,∴BA=BD=BC,∵E、C关于BM对称,∴BC=BE=BD=BA,FE=FC,∴A、D、E、C四点共圆,∴∠ADC=∠AEC=120°,∴∠FEC=60°,∴△EFC是等边三角形,②解:∵AE=5,EC=EF=2,∴AH=HE=2.5,FH=4.5,在Rt△BHF中,∵∠BFH=30°,∴=cos30°,∴BF==3.7、(成都2018年中考27题10分)在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C′(点A,B 的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ 的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形PA'B′Q的面积是否存在最小值.若存在,求出四边形PA′B′Q的最小面积;若不存在,请说明理由.27.(10分)解:(1)由旋转可得:AC=A'C=2,∵∠ACB=90°,AB=,AC=2,∴BC=,∵∠ACB=90°,m∥AC,∴∠A'BC=90°,∴cos∠A'CB==,∴∠A'CB=30°,∴∠ACA'=60°;(2)∵M为A'B'的中点,∴∠A'CM=∠MA'C,由旋转可得,∠MA'C=∠A,∴∠A=∠A'CM,∴tan∠PCB=tan∠A=,∴PB=BC=,∵tan∠Q=tan∠A=,∴BQ=BC×=2,∴PQ=PB+BQ=;(3)∵S四边形PA'B′Q =S△PCQ﹣S△A'CB'=S△PCQ﹣,∴S四边形PA'B′Q 最小,即S△PCQ最小,∴S△PCQ=PQ×BC=PQ,法一:(几何法)取PQ的中点G,则∠PCQ=90°,∴CG=PQ,即PQ=2CG,当CG最小时,PQ最小,∴CG⊥PQ,即CG与CB重合时,CG最小,∴CG min=,PQ min=2,∴S△PCQ 的最小值=3,S四边形PA'B′Q=3﹣;法二(代数法)设PB=x,BQ=y,由射影定理得:xy=3,∴当PQ最小时,x+y最小,∴(x+y)2=x2+2xy+y2=x2+6+y2≥2xy+6=12,当x=y=时,“=”成立,∴PQ=+=2,∴S△PCQ 的最小值=3,S四边形PA'B′Q=3﹣.8、(成都2020年中考27题10分)27.解:(1)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F 处,∴BC=BF,∠FBE=∠EBC,∵BC=2AB,∴BF=2AB,∴∠AFB=30°,∵四边形ABCD是矩形,∴AD//BC,∴∠AFB=∠CBF=30°,∴∠CBE=12∠FBC=15°;(2)∵将△BCE沿BE翻折,使点C恰好落在AD边上点F处∴∠BFE=∠C=90°,CE=EF,又∵矩形ABCD中,∠A=∠D=90°,∴∠AFB+∠DFE=90°,∠DEF+∠DFE=90°,∴∠AFB=∠DEF,∴△FAB∽△EDF,∴AFDE =ABDF∴AF⋅DF=AB⋅DE,∵AF⋅DF=10,AB=5,∴DE=2,∴CE=DC−DE=5−2=3,∴EF=3,∴DF=√EF2−DE2=√32−22=√5,∴AF=√5=2√5,∴BC=AD=AF+DF=2√5+√5=3√5.(3)过点N作NG⊥BF于点G,∵NF=AN+FD,∴NF=12AD=12BC,∵BC=BF,∴NF=12BF,∵∠NFG=∠AFB,∠NGF=∠BAF=90°,∴△NFG∽△BFA,∴NGAB =FGFA=NFBF=12,设AN=x,∵BN平分∠ABF,AN⊥AB,NG⊥BF,∴AN=NG=x,设FG=y,则AF=2y,∵AB2+AF2=BF2,∴(2x)2+(2y)2=(2x+y)2,解得y=43x.∴BF=BG+GF=2x+43x=103x.∴ABBC=ABBF=2x103x=35.。

2024年四川中考数学真题分类汇编——几何压轴材料阅读

2024年四川中考数学真题分类汇编——几何压轴材料阅读

2024年四川中考数学真题分类汇编——几何压轴材料阅读一成都数学活动课上,同学们将两个全等的三角形纸片完全重合放置,固定一个顶点,然后将其中一个纸片绕这个顶点旋转,来探究图形旋转的性质.已知三角形纸片ABC 和ADE 中,3AB AD ==,4BC DE ==,90ABC ADE ∠=∠=︒.【初步感知】(1)如图1,连接BD ,CE ,在纸片ADE 绕点A 旋转过程中,试探究BD CE的值.【深入探究】(2)如图2,在纸片ADE 绕点A 旋转过程中,当点D 恰好落在ABC 的中线BM 的延长线上时,延长ED 交AC 于点F ,求CF 的长.【拓展延伸】(3)在纸片ADE 绕点A 旋转过程中,试探究C ,D ,E 三点能否构成直角三角形.若能,直接写出所有直角三角形CDE 的面积;若不能,请说明理由.倍,某数学兴趣小组以此为方向对菱形的对角线和边长的数量关系探究发现,具体如下:如图1.(1) 四边形ABCD 是菱形,AC BD ∴⊥,AO CO =,BO DO =.222AB AO BO ∴=+.又2AC AO = ,2BD BO =,2AB ∴=______+______.化简整理得22AC BD +=______.【类比探究】(2)如图2.若四边形ABCD 是平行四边形,请说明边长与对角线的数量关系.【拓展应用】(3)如图3,四边形ABCD 为平行四边形,对角线AC ,BD 相交于点O ,点E 为AO 的中点,点F 为BC 的中点,连接EF ,若8AB =,8BD =,12AC =,直接写出EF 的长度.数学实验,能增加学习数学的乐趣,还能经历知识“再创造”的过程,更是培养动手能力,创新能力的一种手段.小强在学习《相似》一章中对“直角三角形斜边上作高”这一基本图形(如图1)产生了如下问题,请同学们帮他解决.在ABC 中,点D 为边AB 上一点,连接CD .(1)初步探究如图2,若ACD B ∠=∠,求证:2AC AD AB =⋅;(2)尝试应用如图3,在(1)的条件下,若点D 为AB 中点,4BC =,求CD 的长;(3)创新提升如图4,点E 为CD 中点,连接BE ,若30CDB CBD ∠=∠=︒,ACD EBD ∠=∠,AC =求BE 的长.在一堂平面几何专题复习课上,刘老师先引导学生解决了以下问题:【问题情境】如图1,在中,,,点D、E在边上,且,,,求的长.解:如图2,将绕点A逆时针旋转得到,连结.由旋转的特征得,,,.∵,,∴.∵,∴,即.∴.在和中,,,,∴___①___.∴.又∵,∴在中,___②___.∵,,∴___③___.【问题解决】上述问题情境中,“①”处应填:______;“②”处应填:______;“③”处应填:______.刘老师进一步谈到:图形的变化强调从运动变化的观点来研究,只要我们抓住了变化中的不变量,就能以不变应万变.【知识迁移】如图3,在正方形中,点E、F分别在边上,满足的周长等于正方形的周长的一半,连结,分别与对角线交于M、N两点.探究的数量关系并证明.【拓展应用】如图4,在矩形中,点E、F分别在边上,且.探究的数量关系:______(直接写出结论,不必证明).【问题再探】如图5,在中,,,,点D、E在边上,且.设,,求y与x的函数关系式.五眉州综合与实践问题提出:在一次综合与实践活动中,某数学兴趣小组将足够大的直角三角板的一个顶点放在正方形的中心处,并绕点旋转,探究直角三角板与正方形重叠部分的面积变化情况.操作发现:将直角三角板的直角顶点放在点处,在旋转过程中:(1)若正方形边长为4,当一条直角边与对角线重合时,重叠部分的面积为______;当一条直角边与正方形的一边垂直时,重叠部分的面积为______.(2)若正方形面积为,重叠部分的面积为,在旋转过程中与的关系为______.类比探究:如图1,若等腰直角三角板的直角顶点与点重合,在旋转过程中,两条直角边分别角交正方形两边于,两点,小宇经过多次实验得到结论,请你帮他进行证明.拓展延伸:如图2,若正方形边长为4,将另一个直角三角板中角的顶点与点重合,在旋转过程中,当三角板的直角边交于点,斜边交于点,且时,请求出重叠部分的面积.(参考数据:,,)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成都中考数学几何汇编(四边形、圆、相似、全等、三角函数)培优必刷题一.填空题(共14小题)1.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.2.如图,在菱形ABCD中,tan A=,M,N分别在边AD,BC上,将四边形AMNB沿MN翻折,使AB的对应线段EF经过顶点D,当EF⊥AD时,的值为.3.如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=cm.4.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.5.如图,面积为6的平行四边形纸片ABCD中,AB=3,∠BAD=45°,按下列步骤进行裁剪和拼图.第一步:如图①,将平行四边形纸片沿对角线BD剪开,得到△ABD和△BCD纸片,再将△ABD纸片沿AE剪开(E为BD上任意一点),得到△ABE和△ADE纸片;第二步:如图②,将△ABE纸片平移至△DCF处,将△ADE纸片平移至△BCG处;第三步:如图③,将△DCF纸片翻转过来使其背面朝上置于△PQM处(边PQ与DC重合,△PQM和△DCF在DC同侧),将△BCG纸片翻转过来使其背面朝上置于△PRN处,(边PR与BC重合,△PRN和△BCG在BC同侧).则由纸片拼成的五边形PMQRN中,对角线MN长度的最小值为.6.已知菱形A1B1C1D1的边长为2,∠A1B1C1=60°,对角线A1C1,B1D1相较于点O,以点O为坐标原点,分别以OA1,OB1所在直线为x轴、y轴,建立如图所示的直角坐标系,以B1D1为对角线作菱形B1C2D1A2∽菱形A1B1C1D1,再以A2C2为对角线作菱形A2B2C2D2∽菱形B1C2D1A2,再以B2D2为对角线作菱形B2C3D2A3∽菱形A2B2C2D2,…,按此规律继续作下去,在x轴的正半轴上得到点A1,A2,A3,…,A n,则点A n的坐标为.7.如图,在半径为5的⊙O中,弦AB=8,P是弦AB所对的优弧上的动点,连接AP,过点A作AP的垂线交射线PB于点C,当△P AB是等腰三角形时,线段BC的长为.8.如图,在平面直角坐标系xOy中,直线y=x与双曲线y=相交于A,B两点,C是第一象限内双曲线上一点,连接CA并延长交y轴于点P,连接BP,BC.若△PBC的面积是20,则点C的坐标为.9.如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.10.如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE 重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值为cm,最大值为cm.11.在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8.过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的T处,折痕为MN.当点T在直线l 上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动,则线段AT长度的最大值与最小值之和为(计算结果不取近似值).12.如图,△ABC内接于⊙O,∠B=90°,AB=BC,D是⊙O上与点B关于圆心O成中心对称的点,P是BC边上一点,连接AD、DC、AP.已知AB=8,CP=2,Q是线段AP上一动点,连接BQ并延长交四边形ABCD的一边于点R,且满足AP=BR,则的值为.13.如图,在△ABC中,∠B=90°,AB=12mm,BC=24mm,动点P从点A开始沿边AB 向B以2mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4mm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过秒,四边形APQC的面积最小.14.如图,A,B,C为⊙O上相邻的三个n等分点,=,点E在上,EF为⊙O的直径,将⊙O沿EF折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′.设EB′=b,EC=c,EA′=p.现探究b,c,p三者的数量关系:发现当n=3时,p=b+c.请继续探究b,c,p三者的数量关系:当n=4时,p=;当n=12时,p=.(参考数据:sin15°=cos75°=,cos15°=sin75°=)二.解答题(共26小题)15.如图1,在△ABC中,AB=AC=20,tan B=,点D为BC边上的动点(点D不与点B,C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD 交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.16.在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC 绕点C顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分別交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形P A'B′Q的面积是否存在最小值.若存在,求出四边形P A′B′Q的最小面积;若不存在,请说明理由.17.问题背景:如图1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于点D,则D为BC的中点,∠BAD=∠BAC=60°,于是==;迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.①求证:△ADB≌△AEC;②请直接写出线段AD,BD,CD之间的等量关系式;拓展延伸:如图3,在菱形ABCD中,∠ABC=120°,在∠ABC内作射线BM,作点C 关于BM的对称点E,连接AE并延长交BM于点F,连接CE,CF.①证明△CEF是等边三角形;②若AE=5,CE=2,求BF的长.18.已知AC,EC分别是四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90°.(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.(i)求证:△CAE∽△CBF;(ii)若BE=1,AE=2,求CE的长;(2)如图②,当四边形ABCD和EFCG均为矩形,且==k时,若BE=1,AE =2,CE=3,求k的值;(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE =m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)19.如图,矩形ABCD中,AD=2AB,E是AD边上一点,DE=AD(n为大于2的整数),连接BE,作BE的垂直平分线分别交AD,BC于点F,G,FG与BE的交点为O,连接BF和EG.(1)试判断四边形BFEG的形状,并说明理由;(2)当AB=a(a为常数),n=3时,求FG的长;(直(3)记四边形BFEG的面积为S1,矩形ABCD的面积为S2,当=时,求n的值.接写出结果,不必写出解答过程)20.如图,点B在线段AC上,点D、E在AC同侧,∠A=∠C=90°,BD⊥BE,AD=BC.(1)求证:AC=AD+CE;(2)若AD=3,CE=5,点P为线段AB上的动点,连接DP,作PQ⊥DP,交直线BE 于点Q;(i)当点P与A、B两点不重合时,求的值;(ii)当点P从A点运动到AC的中点时,求线段DQ的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)21.已知:在菱形ABCD中,O是对角线BD上的一动点.(1)如图甲,P为线段BC上一点,连接PO并延长交AD于点Q,当O是BD的中点时,求证:OP=OQ;(2)如图乙,连接AO并延长,与DC交于点R,与BC的延长线交于点S.若AD=4,∠DCB=60°,BS=10,求AS和OR的长.22.如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.(1)若BK=KC,求的值;(2)连接BE,若BE平分∠ABC,则当AE=AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=AD(n>2),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.23.如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF 的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离(用含a的代数式表示).24.如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)在(2)的条件下,过点C作⊙O的切线,交BA的延长线于点P,过点P作PQ∥CB交⊙O于F,Q两点(点F在线段PQ上),求PQ的长.25.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,O为AB上一点,经过点A,D的⊙O分别交AB,AC于点E,F,连接OF交AD于点G.(1)求证:BC是⊙O的切线;(2)设AB=x,AF=y,试用含x,y的代数式表示线段AD的长;(3)若BE=8,sin B=,求DG的长,26.如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若A为EH的中点,求的值;(3)若EA=EF=1,求圆O的半径.27.如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接BD,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tan E;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.28.如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相较于点D,E,F,且BF=BC,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD,FH.(1)求证:△ABC≌△EBF;(2)试判断BD与⊙O的位置关系,并说明理由;(3)若AB=1,求HG•HB的值.29.如图,在⊙O的内接△ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线l交⊙O 于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.(1)求证:△P AC∽△PDF;(2)若AB=5,=,求PD的长;(3)在点P运动过程中,设=x,tan∠AFD=y,求y与x之间的函数关系式.(不要求写出x的取值范围)30.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB 的延长线于F.切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sin E=,AK=,求FG的长.31.已知:如图,以矩形ABCD的对角线AC的中点O为圆心,OA长为半径作⊙O,⊙O 经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD=(a为大于零的常数),求BK的长:(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长.32.已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是的中点,连接BD并延长交EC的延长线于点G,连接AD,分别交CE、BC于点P、Q.(1)求证:P是△ACQ的外心;(2)若,求CQ的长;(3)求证:(FP+PQ)2=FP•FG.33.如图,⊙O的半径r=25,四边形ABCD内接于圆⊙O,AC⊥BD于点H,P为CA延长线上的一点,且∠PDA=∠ABD.(1)试判断PD与⊙O的位置关系,并说明理由;(2)若tan∠ADB=,P A=AH,求BD的长;(3)在(2)的条件下,求四边形ABCD的面积.34.如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.(1)求证:BD=AC;(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tan C=3,求AE的长;②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.35.2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力,如图,在一场马拉松比赛中,某人在大楼A处,测得起点拱门CD的顶部C的俯角为35°,底部D的俯角为45°,如果A处离地面的高度AB=20米,求起点拱门CD的高度.(结果精确到1米;参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)36.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70°方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37°方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin37°≈0.6,cos37°≈0.80,tan37°≈0.75)37.科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶4千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,求B,C两地的距离.38.在学习完“利用三角函数测高”这节内容之后,某兴趣小组开展了测量学校旗杆高度的实践活动,如图,在测点A处安置测倾器,量出高度AB=1.5m,测得旗杆顶端D的仰角∠DBE=32°,量出测点A到旗杆底部C的水平距离AC=20m,根据测量数据,求旗杆CD的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62)39.如图,登山缆车从点A出发,途经点B后到达终点C,其中AB段与BC段的运行路程均为200m,且AB段的运行路线与水平面的夹角为30°,BC段的运行路线与水平面的夹角为42°,求缆车从点A运行到点C的垂直上升的距离.(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)40.如图,在一次数学课外实践活动,小文在点C处测得树的顶端A的仰角为37°,BC=20m,求树的高度AB.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)。

相关文档
最新文档