高一数学期中测试题_10
2023-2024学年高一(上)期中数学试卷(带解析)
2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。
高一年级第一学期期中考试数学试卷及其参考答案
高一年级第一学期期中考试数学试卷(基础模块第一章、第二章)一、选择题(每小题5分,共60分)1.下列表示正确的是().A.{ 0 }=∅B.{全体实数}=RC.{ a }∈{a,b,c } D.{ x∈R∣x2+1=0 }=∅2.已知全集U={ 0,1,2,3,4,5},集合A={1,2,5},B={2,3,4},则(U C A)B=().A.{2}B.{0,2,3,4}C.{3,4}D.{1,2,3,4,5}3.已知A={ (x,y) | 2x-y=0 },B={ (x,y) | 3x+2y=7 },则A B=().A.{(2,1)}B.{1,2}C.{(1,2)}D.{x=1,y=2}4.设A={ x | 0< x < 1 },B={ x | x < a } ,若A⊆B,则a的取值范围是().A.[1,+∞) B.(-∞,0]C.[0,+∞)D.(-∞,1]5.已知集合A={ x | x2+14= 0 },若A∩R =∅,则实数m的取值范围是().A.m<1B.m≥1C.0<m<1D.0≤m<16.“A⊆B”是“A B=A”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.不等式21-+xx≤0的解集为().A.{ x | x≥2}B.{ x | x≥2或x<-1 }C.{ x|-1<x≤2 }D.{x| x≥2或x≤-1 }8.已知a<b<0,c>0,那么().A.a2<b2B.a b<1C.ca<cb D.ca>cb9.绝对值不等式| 2x-3 |<5的解集是().A.{ x | x<-1或x>4 }B.{ x |-1<x<4 }C.{ x | x<-1 }D.{ x | x>4 }10.与不等式-x2-2x+3>0同解的不等式(组)是().A. x2+2x-3>0B. (x+3)(x-1)<0C.x+3>0x-1D.x+3<0x-1>0⎧⎨⎩a 、b 、c 的大小顺序是( ). A.a>b>c B.c>b>a C.b>a>c D.a>c>b12.若实数0<a <1,则)0>1(a-x)(x-a的解集为( ). A.{ x |1<x<a a } B.{ x | 1<<a x a} C.{ x | 1< >x a 或x a } D.{ x | 1<a >x 或x a}二、填空题(每小题4分,共16分)13.设全集U={ 1,2,3,4,5 },A={ 2,5 },则U C A 的所有子集的个数为 _________. 14.符合条件{a}⊆M {a,c,d}的集合M的个数是 _________.15.设a,b为实数,则“a2=b2”是“a=b”的 _________条件.(填充分或必要)16.不等式2+2m x x+n>0的解集是(11,32-),则不等式2-nx +2x-m >0的解集是 _________.三、解答题(共74分,解答应写出文字说明及演算步骤) 17.已知U={ x |-2<x<7 ,x ∈N },A={ 1,2,4 },B={ 2,3,5}.求: ⑴ A U B ;⑵ A B ;⑶ B C C U U A;⑷ B C C U U A .(12分)18.若集合A={ x | mx 2+2x -1 = 0 , m ∈R , x ∈R }中有且仅有一个元素,那么m 的值是多少?(12分)19.设集合A={ x | x 2-3x +2 = 0 },B = { x | x 2+2(a +1)x +(a 2-5) = 0 },若A B = { 2 },求实数a的值.(12分) 20.解不等式x+23-x≤1.(12分) 21.设全集为R ,A={ x | |x-1|<3 },B={ x | x 2-x -2≥0 },求A B ,A U B ,A CB .(12分)22.已知集合A={ x | x 2-x -12 ≤0 },集合B={ x | m -1≤x ≤2m +3 },若A U B=A ,求实数m 的取值范围.(14分)高一年级第一学期期中考试数学试卷参考答案二、填空题(每小题4分,共16分)13、 8 14、 3 15、 必要 16、 (-2,3)三、解答题:(22题14分,17~21题每题12分,共计74分)17.解:U={ 0,1,2,3,4,5,6 }. ⑴A U B={1,2,3,4,5}.⑵A B={2}.⑶B C C U U A ={ 0,3,5,6 }U { 0,1,4,6 }={ 0,1,3,4,5,6, }. ⑷ B C C U U A={ 0,3,5,6 } { 0,1,4,6 }={ 0,6 }.18. 解:当m=0时, A=12⎧⎫⎨⎬⎩⎭,符合题意.当m ≠0时,要使集合A 中有且仅有一个元素,必须 方程mx 2+2x -1 = 0有两个相等实数根, ∴ 2∆=2+4m =0, 即m=-1,综上所述,m=0或m=-1. 19. 解:A={ 1,2 }∵ A B={ 2 }, ∴ 2 B, ∴ 2是方程x 2+2(a +1)x +(a 2-5) = 0的根,把x=2代入此方程得2a +4a+3=0, ∴ a=-1或a=-3, 当a=-1时,B={ -2,2 }, A B={ 2 },符合题意. 当a=-3时,B={ 2 }, A B={ 2 },符合题意. 综上所述,a 的值为-1或3. 20. 解:原不等式⇔x+2-13-x ≤0⇔x+2-(3-x)3-x ≤0⇔2x-13-x≤0 ⇔2x-1x-3≥00≠⎧⇔⎨⎩x-3(2x-1)(x-3)≥012⇔x ≤或x>3, ∴ 解集为12{x |x ≤或x>3}. 21. 解:解|x-1|<3得-2<x<4, 故A=(-2,4).解x 2-x -2≥0得x ≤-1或x ≥2, 故B=(-∞,-1]∪[2,+∞).∴ A B=(-2,-1]∪[2,4),A U B=R,A C B=(-2,4) (-1,2)=(-1,2).22.解: 解x2-x-12 ≤0得-3≤x≤4, 故A=[-3,4],由A U B=A,知B A,∴⎧⎪⎨⎪⎩m-1≤2m+3,m-1≥-3,2m+3≤4,即12⎧⎪⎪⎨⎪⎪⎩m≥-4,m≥-2,m≤,∴ -2≤m≤12.。
高一数学必修1期中考试测试题及答案(最新整理)
高一数学必修一期中考试试卷一、选择题(共10道小题,每道题5分,共50分.请将正确答案填涂在答题卡上)1.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},则A∩(C U B)等于( )A .{4,5} B.{2,4,5,7} C.{1,6} D.{3}2. 函数的定义域为 ( )()lg(31)f x x =-A .RB .C .D .1(,)3-∞1[,)3+∞1(,)3+∞3.如果二次函数的图象的对称轴是,并且通过点,则( )21y ax bx =++1x =(1,7)A -A .a =2,b = 4B .a =2,b = -4C .a =-2,b = 4D .a =-2,b = -44.函数的大致图象是()||2x y =5,则()(01)b a a =>≠且A .B .C .D .2log 1a b =1log 2ab =12log a b =12log b a=6、三个数,之间的大小关系是( )23.0=a 3.022,3.0log ==c b A. ﹤﹤B. ﹤﹤C. ﹤﹤D.﹤﹤a c b a b c b a c b c a7.下列说法中,正确的是()A .对任意x ∈R ,都有3x >2x ;B .y =()-x 是R 上的增函数;3C .若x ∈R 且,则;0x ≠222log 2log x x =D .在同一坐标系中,y =2x 与的图象关于直线对称.2log y x =y x =8.如果函数在区间(-∞,4]上是减函数,那么实数a 的取值范围是2(1)2y x a x =+-+( )A .a ≥9B .a ≤-3C .a ≥5D .a ≤-79.若函数()f x 为定义在R 上的奇函数,且在(0,)+∞内是增函数,又(2)f 0=,则不等式的解集为0)(<x xf A .(2,0)(2,)-+∞ B .(,2)(0,2)-∞- C .(,2)(2,)-∞-+∞D .)2,0()0,2( -10.已知函数定义域是,则的定义域是( )y f x =+()1[]-23,y f x =-()21 A .B. C. D. [052,[]-14,[]-55,[]-37,二、填空题(共5道小题,每道题5分,共25分。
四川省绵阳中学2024-2025学年高一上学期期中测试数学试卷(含答案)
绵阳中学高2024级高一上期期中测试数学试题第I 卷(选择题)一、单选题(每小题5分,共计40分)1.已知命题,命题的否定是()A.B.C.. D.2.已知集合,若,则实数的值不可以为()A.2 B.1 C.0 D.3.下列函数既是奇函数又在单调递增的是()A. B.C. D.4.已知,若的解集为,则函数的大致图象是( )A. B.C. D.5.已知函数在区间上的值域是,则区间可能是()A. B. C. D.6.“函数的定义域为”是“”的( )2:,210p x x ∀∈+>R p 2,210x x ∀∈+R …2,210x x ∃∈+>R 2,210x x ∃∈+<R 2,210x x ∃∈+R …{}()(){}2320,220A x x x B x x ax =-+==--=∣∣A B A ⋃=a 1-()0,∞+1y x =31y x=1y x x =-1y x x=+()2f x ax x c =--()0f x >()2,1-()y f x =-222y x x =-+[],a b []1,2[],a b []1,0-30,2⎡⎤⎢⎥⎣⎦[]1,3[]1,1-()211f x ax ax =-+R 04a <<A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知且,不等式恒成立,则正实数的取值范围是( )A.B.C. D.8.已知函数是定义在的单调函数,且对于任意的,都有,若关于的方程恰有两个实数根,则实数的取值范围为( )A. B. C. D.二、多选题(每小题6分,共计18分)9.对于任意实数,下列四个命题中为假命题的是( )A.若,则B.若,则C.若,则D.若,则10.已知为正实数,且,则( )A.的最大值为4B.的最小值为18C.的最小值为4D.11.定义在上的偶函数满足:,且对于任意,,若函数,则下列说法正确的是()A.在上单调递增B.0,0a b >>1ab =11422m a b a b++≥+m 2m ≥4m ≥6m ≥8m ≥()f x [)0,∞+[)0,x ∞∈+()2f f x ⎡=⎣x ()2f x x k +=+k 92,4⎡⎫⎪⎢⎣⎭51,4⎡⎫⎪⎢⎣⎭133,4⎡⎫⎪⎢⎣⎭13,4∞⎛⎫- ⎪⎝⎭,,,a b c d ,0a b c >≠ac bc>22ac bc >a b>0a b <<22a ab b >>0,a bcd >>>ac bd>,a b 8ab a b ++=ab 22(1)(1)a b +++a b +1111a b +++R ()f x ()22f =120x x >>()()21122122x f x x f x x x ->-()()2f xg x x -=()g x ()0,∞+()()34g g -<C.在上单调递减D.若正数满足,则第II 卷(非选择题)三、填空题(每小题5分,共计15分)12.函数__________.13.函数,若,则14.已知函数的定义域为的图象关于直线对称,且,若,则__________.四、解答题(共计77分)15.(13分)已知定义在上的函数满足:.(1)求函数的表达式;(2)若不等式在上恒成立,求实数的取值范围.16.(15分)设集合.(1)若,求实数的值;(2)若“”是“”的必要条件,求实数的取值范围.17.(15分)如图,正方形的边长为分别是和边上的点沿折叠使与线段上的点重合(不在端点处),折叠后与交于点.若(1)证明:的周长为定值.(2)求的面积S 的最大值.()f x ()2,∞+m ()()24202m f m f m -+->()2,m ∞∈+()12f x x =+()2,0228,2x x x f x x x ⎧+<<=⎨-+≥⎩()()2f a f a =+()2__________.f a =()(),f x g x (),y f x =R 1x =()()()()110,45f x g x f x g x -+=--=()21f =()()12g g +=R ()()2223f x f x x x +-=-+()f x ()21f x ax ≥-[]1,3a {}(){}222320,2150A x x x B x x a x a =-+==+++-=∣∣{}2A B ⋂=a x A ∈x B ∈a ABCD 1,,E F AD BC EF C AB M M ,A B CD AD G ,BM x BF y==AMG AMG18.(17分)已知函数是定义在上的奇函数,且.(1)求函数的解析式;(2)判断在上的单调性,并用单调性定义证明;(3)解不等式.19.(17分)若函数的定义域为,集合,若存在正实数,使得任意,都有,且,则称在集合上具有性质.(1)已知函数,判断在区间上是否具有性质,并说明理由;(2)已知函数,且在区间上具有性质,求正整数的最小值;(3)如果是定义域为的奇函数,当时,,且在上具有性质,求实数的取值范围.()21ax b f x x-=+[]1,1-()11f =-()f x ()f x []1,1-()()()210f t f t f -+>()f x D M D ⊆t x M ∈x t D +∈()()f x t f x +>()f x M ()P t 2()f x x =()f x [1,0]-(1)P 3()f x x x =-()f x [0,1]()P n n ()f x R 0x ≥()()f x x a a a =--∈R ()f x R (6)P a数学参考答案题号12345678910答案D D C C B B D C AD ABC题号11答案ABD 填空题12.13.414.【详解】因为的图象关于直线对称,则①,又,即,结合①得②,因为,则,结合②得,则,令,得,令,得,由,得,由,得,则,所以.15.【详解】(1)将的替换为得联立()(],22,1∞--⋃-()y f x =1x =()()11f x f x -=+()()110f x g x -+=()()110f x g x -=-()()110g x f x ++=()()45f x g x --=()()135f x g x +--=()()35g x g x +-=1x =()()125g g +-=2x =()()125g g -+=()()110f x g x -+=()()2110f g +-=()()45f x g x --=()()225f g --=()()125g g -+-=()()125g g +=()()2223f x f x x x +-=-+x x -()()2223f x f x x x -+=++()()()()22223223f x f x x x f x f x x x ⎧+-=-+⎪⎨-+=++⎪⎩解得(2)不等式为,化简得,要使其在上恒成立,则,,当且仅当取等,所以.16.【详解】(1)由,所以或,故集合.因为,所以,将代入中的方程,得,解得或,当时,,满足条件;当时,,满足条件,综上,实数的值为或(2)因为“”是“”的必要条件,所以对于集合.当,即时,,此时;当,即时,,此时;当,即时,要想有,须有,此时:,该方程组无解.综上,实数的取值范围是.17.【详解】(1)设,则,由勾股定理可得,即,由题意,,()21213f x x x =++()21f x ax ≥-2121213x x ax ++≥-116x a x ≤++[]1,3min116x a x ⎛⎫≤++ ⎪⎝⎭11116x x ++≥=x =1a ≤+()()2320120x x x x -+=⇒--=1x =2x ={}1,2A ={}2A B ⋂=2B ∈2x =B 2430a a ++=1a =-3a =-1a =-{}{}2402,2B x x =-==-∣3a =-{}{}24402B x x x =-+==∣a 1-3-x A ∈x B ∈B A⊆()()22,Δ4(1)4583B a a a =+--=+Δ0<3a <-B =∅B A ⊆Δ0=3a =-{}2B =B A ⊆Δ0>3a >-B A ⊆{}1,2B A ==()221352a a ⎧+=-⎨-=⎩a (],3∞--,,01BM x BF y x ==<<1CF MF y ==-222(1)x y y +=-212x y -=90GMF DCF ∠∠==即,可知,设的周长分别为,则又因为,所以,的周长为定值,且定值为2.(2)设的面积为,则,因为,所以,.因为,则,因为,所以,当且仅当,即时,等号成立,满足故的面积的最大值为.18.【详解】(1)函数是定义在上的奇函数,,解得,,而,解得,.(2)函数在上为减函数;90AMG BMF ∠∠+= Rt Rt AMG BFM ∽,AMG BFM 1,p p 11p AM x p BF y -==111p x y y x =++-=+()2111112x x x p p x y y y---==⋅+==AMG BFM 1S 22122(1)S AM x S BF y-==112S xy =()2221221(1)(1)(1)211x x x x x x x S S y y x x ----====-+()()()211121311x x x x x⎡⎤⎡⎤-++-⎣⎦⎣⎦==-+-+++10x +>201x>+211x x ++≥=+3S ≤-211x x+=+1x =-()0,1x ∈AMG 3-()21ax b f x x-=+[]1,1-()()22;11ax b ax b f x f x x x ----=-=-++0b =()21ax f x x ∴=+()11f =-2a =-()[]22,1,11x f x x x -∴=∈-+()221x f x x -=+[]1,1-证明如下:任意且,则因为,所以,又因为,所以,所以,即,所以函数在上为减函数.(3)由题意,,又,所以,即解不等式,所以,所以,解得,所以该不等式的解集为.19.【详解】(1),当时,,故在区间[―1,0]上不具有性质;(2)函数的定义域为,对任意,则,在区间上具有性质,则,即,因为是正整数,化简可得:对任意恒成立,设,其对称轴为,则在区间上是严格增函数,所以,,解得,故正整数的最小值为2;[]12,1,1x x ∈-12x x <()()()()()()121212122222121221221111x x x x x x f x f x x x x x ------=-=++++12x x <120x x -<[]12,1,1x x ∈-1210x x ->()()120f x f x ->()()12f x f x >()()12f x f x >[]1,1-()()()210f t f tf -+>()00f =()()210f t f t -+>()()21f t f t >--()()21f t f t >-22111111t t t t ⎧-≤≤⎪-≤-≤⎨⎪<-⎩0t≤<()()221(1)21f x f x x x x +-=+-=+0.8x =-()()10.60f x f x +-=-<()f x ()1P ()3f x x x =-R []0,1x ∈x n +∈R ()f x [0,1]()P n ()()f x n f x +>33()()x n x n x x +-+>-n 223310x nx n ++->[]0,1x ∈22()331g x x nx n =++-02n x =-<()g x [0,1]2min ()(0)10g x g n ==->1n >n(3)法一:由是定义域为上的奇函数,则,解得,若,,有恒成立,所以符合题意,若,当时,,所以有,若在上具有性质,则对任意恒成立,在上单调递减,则,x 不能同在区间内,,又当时,,当时,,若时,今,则,故,不合题意;,解得,下证:当时,恒成立,若,则,当时,则,,所以成立;当时,则,可得,,即成立;当时,则,即成立;综上所述:当时,对任意x ∈R 均有成立,()f x R (0)0f a a =-=0a ≥0a =()f x x =6x x +>0a >0x <()()()f x f x x a a x a a =--=----=-++()2,,2,x a x a f x x a x a x a x a +<-⎧⎪=--≤≤⎨⎪->⎩()f x R (6)P (6)()f x f x +>x ∈R ()f x [,]a a -6x +[,]a a -6()2a a a ∴>--= [2,0]x a ∈-()0f x ≥[0,2]x a ∈()0f x ≤264a a <≤2x a =-6[0,2]x a +∈(6)()f x f x +≤46a ∴<302a <<302a <<()()6f x f x +>302a <<46a <6x a +≤-()662f x x a +=++()2f x x a =+()()6f x f x +>6a x a -<+<63x a a <-<-()()66f x x a +=-+>-()2f x x a a =+<-()()6f x f x +>6x a +>()()()6622f x x a x a f x +=+->+≥()()6f x f x +>302a ≤<()()6f x f x +>故实数的取值范围为.法二:由是定义域为上的奇函数,则,解得.作出函数图像:由题意得:,解得,若,,有恒成立,所以符合题意,若,则,当时,则,,所以成立;当时,则,可得,,即成立;当时,则,即成立;综上所述:当时,对任意x ∈R 均有成立,故实数的取值范围为.a 30,2⎡⎫⎪⎢⎣⎭()f x R (0)0f a a =-=0a ≥2(2)46a a a --=<302a ≤<0a =()f x x =6x x +>302a <<46a <6x a +≤-()662f x x a +=++()2f x x a =+()()6f x f x +>6a x a -<+<63x a a <-<-()()66f x x a +=-+>-()2f x x a a =+<-()()6f x f x +>6x a +>()()()6622f x x a x a f x +=+->+≥()()6f x f x +>302a ≤<()()6f x f x +>a 30,2⎡⎫⎪⎢⎣⎭。
河南省河大附中09-10学年高一下学期期中考试(数学)Word版含答案
河大附中2009-2010学年下学期高一年级期中考数学试卷一、选择题(本题共6小题,每小题5分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.角︒2010是A .第一象限角B .第二象限角C .第三象限角D .第四象限角 2.下列说法中, ①与角5π的终边相同的角有有限个 ②数据2,3,4,5的方差是数据4,6,8,10的方差的一半 ③正相关是指散点图中的点散布在从左上角到右下角的区域 ④0260cos >︒ 正确的个数是A .0个B .1个C .2个D .3个 3.已知135sin -=α,且α为第三象限角,则=αcos A .1312-B .1312C .1312± D .5124.用秦九韶算法计算多项式12345)(2345---++=x x x x x x f 在4x =-时的值时,需要进行的乘法、加法的次数分别是( )A .5,14B .5,5C .5,6D .5,75.在教学调查中,甲、乙、丙三个班的数学测试成绩分布如下图,假设三个班的平均分都是75分,123s s s ,,分别表示甲、乙、丙三个班数学测试成绩的标准差,则有( )A.312s s s >> B.213s s s >> C.123s s s >> D.s 3>s 2>s 1 6.记事件A 发生的概率为)(A P ,定义f (A)=lg [)(A P +)(1A P ]为事件A 发生的“测度” .现随机抛掷一个骰子,则下列事件中测度最大的一个是 ( )xA .向上的点数为1B .向上的点数不大于2C .向上的点数为奇数D .向上的点数不小于3二、填空题(本题共10个小题,每小题5分,共50分)7.用系统抽样法从123个零件中,抽取容量为20的样本,则样本中每个个体的分段间隔是 .8.某校有行政人员、教学人员和教辅人员共200人,其中教学人员与教辅人员的比为10:1,行政人员有24人,现采取分层抽样容量为50的样本,那么教学人员应抽取的人数 .9.两个数228、1995的最大公约数是_______________ 10.比较大小:)6(403 )8(21711.一个三位数字的密码锁,每位上的数字都在0到9这十个数字中任选,某人忘记了密码最后一个号码,那么此人开锁时,在对好前两位数码后,随意拨动最后一个数字恰好能开锁的概率为 ;12. =︒+︒133sin 43sin 22; 13.分析右边的程序:若输入38,运行右边的程序后,得到的结果是 。
高一数学必修一期中考试试题及答案
考试时间:100分钟,满分100分.一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列关系正确的是:A .Q ∈2B .}2{}2|{2==x x x C .},{},{a b b a = D .)}2,1{(∈∅2.已知集合}6,5,4,3,2,1{=U ,}5,4,2{=A ,}5,4,3,1{=B ,则)()(B C A C U U ⋃A .}6,3,2,1{B .}5,4{C .}6,5,4,3,2,1{D .}6,1{ 3.下列函数中,图象过定点)0,1(的是A .x y 2=B .x y 2log =C .21x y = D .2x y =4.若b a ==5log ,3log 22,则59log 2的值是: A .b a -2B .b a -2C .b a 2D .ba25.函数3log )(3-+=x x x f 的零点所在的区间是A .(0,1)B .(1,2)C .(2,3)D .(3,+∞) 6.已知函数ax x x f +=2)(是偶函数,则当]2,1[-∈x 时,)(x f 的值域是: A .]4,1[ B .]4,0[ C .]4,4[- D .]2,0[8.某林场计划第一年造林10 000亩,以后每年比前一年多造林20%,则第四年造林 A .14400亩 B .172800亩 C .17280亩 D .20736亩9.设c b a ,,均为正数,且a a21log 2=,b b 21log 21=⎪⎭⎫ ⎝⎛,c c2log 21=⎪⎭⎫ ⎝⎛.则A .c b a <<B .a b c <<C .b a c <<D .c a b <<10.已知函数()log a f x x =(0,1a a >≠),对于任意的正实数,x y 下列等式成立的是A .()()()f x y f x f y +=B .()()()f x y f x f y +=+C .()()()f xy f x f y =D . ()()()f xy f x f y =+二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卷中的横线上.11.若幂函数()f x 的图象过点2,2⎛ ⎝⎭,则()9f = _________12.函数()f x =的定义域是13. 用二分法求函数)(x f y =在区间]4,2[上零点的近似解,经验证有0)4()2(<⋅f f 。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,不是一次函数的是()A. y = 2x + 1B. y = 3x^2 + 5C. y = 1/xD. y = -4x2. 已知集合A={1, 2, 3},B={2, 3, 4},则A∪B等于()A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}3. 若sinα=0.6,则cosα的值是()A. 0.8B. -0.8C. -0.4D. 0.44. 函数f(x) = |x - 2| + |x + 3|的最小值是()A. 5B. 2C. 1D. 45. 不等式x^2 - 4x + 3 ≤ 0的解集是()A. (1, 3)B. (-∞, 3]C. [1, 3]D. (-∞, 1] ∪ [3, +∞)6. 已知数列1, 3, 5, 7, ...,其第n项an等于()A. 2n - 1B. 2n + 1C. 2nD. n + 17. 若a + b + c = 0,则a^2 + b^2 + c^2 =()A. 0B. 2abC. 2bcD. 2ac8. 函数y = x^3 - 6x^2 + 12x - 4的极大值点是()A. x = 1B. x = 2C. x = 3D. x = 49. 已知tanθ = 2,求sin^2θ + cos^2θ的值是()A. 1B. 5C. 3D. 410. 下列哪个选项是二元一次方程()A. x^2 + y = 7B. 3x + 2y = 10C. x^2 - y = 0D. 2x/3 + y/4 = 1二、填空题(每题4分,共20分)11. 等差数列的首项是5,公差是3,则其第10项是_________。
12. 若函数f(x) = x^2 - 2x在区间[1, 4]上是增函数,则f(1) = ________。
13. 已知三角形ABC中,∠A = 90°,a = 3,b = 4,则c=_________。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 已知集合A={1,2,3},B={2,3,4},求A∪B的值。
A. {1,2,3}B. {1,2,3,4}C. {2,3}D. {1,4}2. 函数f(x)=2x^2-3x+1在区间[-1,2]上的最大值是多少?A. 1B. 5C. 7D. 93. 已知等差数列的首项a1=3,公差d=2,求第10项的值。
A. 23B. 25C. 27D. 294. 一个圆的半径为5,求其面积。
A. 25πB. 50πC. 75πD. 100π5. 已知直线y=-3x+5与x轴的交点坐标是什么?A. (0, 5)B. (1, 2)C. (5/3, 0)D. (0, 0)6. 已知sin(α)=3/5,α∈(0,π),求cos(α)的值。
A. 4/5B. -4/5C. √(1-(3/5)^2)D. -√(1-(3/5)^2)7. 一个函数f(x)是奇函数,且f(1)=2,求f(-1)的值。
A. 2B. -2C. 0D. 18. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 7C. 8D. 99. 已知一个函数f(x)=x^3-6x^2+11x-6,求f(2)的值。
A. -2B. 0C. 2D. 410. 已知一个等比数列的首项a1=2,公比q=3,求第5项的值。
A. 162B. 243C. 486D. 729二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,求对称轴的方程。
___________________________12. 已知等比数列的前n项和为S_n=3^n-1,求首项a1。
___________________________13. 已知正弦定理公式为a/sinA=b/sinB=c/sinC,求三角形ABC的面积,已知a=5,sinA=3/5。
___________________________14. 已知某函数的导数f'(x)=6x^2-4x+1,求f'(1)的值。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集D. 复数集C2. 函数f(x) = 2x^2 - 3x + 1在区间[0, 2]上的最大值是:A. 1B. 5C. 7D. 93. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B的元素个数。
A. 1B. 2C. 3D. 44. 若a > 0,b < 0,且|a| < |b|,则a + b的符号是:A. 正B. 负C. 零D. 不确定5. 下列哪个不等式是正确的?A. √2 < πB. e < 2.72C. √3 > √2D. log2(3) > log3(2)6. 已知等差数列的首项为a1 = 3,公差为d = 2,第5项a5的值是:A. 9B. 11C. 13D. 157. 函数y = x^3 - 6x^2 + 9x + 2的零点个数是:A. 0B. 1C. 2D. 38. 已知f(x) = x^2 - 4x + 4,求f(x)的最小值。
A. 0B. 4C. 8D. 169. 抛物线y = x^2 - 2x - 3与x轴的交点个数是:A. 0B. 1C. 2D. 310. 已知等比数列的首项为a1 = 2,公比为r = 3,求第4项a4的值。
A. 162B. 486C. 729D. 1458二、填空题(每题2分,共20分)11. 圆的一般方程为x^2 + y^2 + dx + ey + f = 0,其中d^2 + e^2 - 4f > 0时,表示______。
12. 若函数f(x) = 3x - 2在区间[1, 4]上是增函数,则f(1) =______。
13. 已知集合M = {x | x^2 - 5x + 6 = 0},则M的补集∁_R M = {x | ______ }。
14. 函数y = log_2(x)的定义域是{x | x > ______ }。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 函数f(x) = x^2 - 2x + 1的零点是:A. 1B. -1C. 0D. 23. 集合A = {1, 2, 3},B = {2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {4}D. {1, 2, 3, 4}4. 已知数列{a_n}的通项公式为a_n = 2n + 1,那么a_5等于:A. 11B. 9C. 13D. 155. 若函数f(x) = 3x - 5,则f(2)等于:A. 1B. -1C. 7D. 36. 直线y = 2x + 3与x轴的交点坐标是:A. (0, 3)B. (1, 5)C. (-3/2, 0)D. (3/2, 0)7. 圆的一般方程为x^2 + y^2 + 2x - 4y + 5 = 0,其圆心坐标是:A. (-1, 2)B. (1, -2)C. (-1, -2)D. (1, 2)8. 函数y = x^2 - 4x + 3的最小值是:A. -1B. 0C. 1D. 39. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定10. 函数y = √(x - 2)的定义域是:A. x ≥ 2B. x > 2C. x < 2D. x ≠ 2二、填空题(每题3分,共30分)1. 若函数f(x) = x^2 - 4x + 3的最大值为2,则x的值为______。
2. 已知数列{a_n}满足a_1 = 1,a_n = 2a_{n-1} + 1,那么a_3等于______。
3. 函数f(x) = 2x^2 - 3x + 1的对称轴方程是______。
4. 集合A = {x | x^2 - 5x + 6 = 0},则A的元素个数为______。
高一上学期期中考试数学试卷含答案(共3套,新课标版)
高一级第一学期期中调研考试数学考生注意:1.本试卷分选择题和非选择题两部分。
满分150分,考试时间120分钟。
2.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题....区域书写的答案无效.........,在试题卷....、草稿纸上作答无效........。
3.本卷命题范围:新人教版必修第一册第一章~第四章。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{123}A =,,,{}223B x x x =->,则A B =A .{12},B .∅C .{23},D .{1}2.命题“R x ∃∈,||0x ”的否定是A .R x ∀∈,||0x ≥B .R x ∃∈,||0x <C .R x ∀∈,||0x <D .R x ∃∉,||0x <3.若a b >,则下列不等式中成立的是 A .11<a bB .33a b >C .22a b >D .a b >4.函数y =的定义域为 A .(12)-,B .(02),C .[12)-,D .(12]-,5.某企业一个月生产某种商品x 万件时的生产成本为2()410C x x x =++(万元)。
一万件售价是30万元,若商品能全部卖出,则该企业一个月生产该商品的最大利润为 A .139万元B .149万元C .159万元D .169万元6.已知集合2{Z |Z}1A x x =∈∈-,则集合A 的真子集的个数为 A .13B .14C .15D .167.若0.33a =,3log 0.3b =,13log 3c =,则a ,b ,c 的大小关系为 A .b c a <<B .c a b <<C .a b c <<D .b a c <<8.若函数()f x 是奇函数,且在定义域R 上是减函数,(2)3f -=,则满足3(3)3f x -<-<的实数x 的取值范围是 A .(15),B .(24),C .(36),D .(25),二、选择题:本题共4小题,每小题5分,共20分。
北京市2023-2024学年高一上学期期中考试 数学含解析
北京2023-2024学年第一学期期中练习(答案在最后)高一数学2023.10说明:本试卷共4页,共120分.考试时长90分钟.一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}2,1,0,1M =--,{}30N x x =-≤<,则M N ⋂=()A.{}2,1,0,1-- B.{}0,1 C.{}2- D.{}2,1--2.命题“0(0,)x ∃∈+∞,20012x x +≤”的否定为A.(0,)x ∀∈+∞,21x x +>2 B.(0,)x ∀∈+∞,212x x +≤C.(,0)x ∀∈-∞,212x x+≤ D.(],0x ∀∈-∞,21x x+>23.已知关于x 的方程220x x m -+=的两根同号,则m 的取值范围是()A.1m ≤B.0m ≤C.01m <≤D.01m ≤≤4.已知函数()()()22111x x x f x x x ⎧-<⎪=⎨-+≥⎪⎩,则()()1f f -的值为()A.3B.0C.1- D.2-5.已知R a ∈,则“1a >”是“11a<”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件6.下列函数中,在区间()0,∞+上单调递增且是奇函数的是()A.1y x =+B.1y x x=-C.y x= D.2y x =7.已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是()A.b a c a-<+ B.2c ab< C.c c b a> D.b c a c<8.设()f x 为R 上的奇函数,且当0x <时,()31f x x =-,则(0)(4)f f +=()A.12B.12- C.13D.13-9.已知当0x >时,不等式2160x mx -+>恒成立,则实数m 的取值范围是()A.(),8∞- B.(],8∞- C.[)8,+∞ D.()6,+∞10.对于全集U 的子集A 定义函数()()()1A U x A f x x A ⎧∈⎪=⎨∈⎪⎩ð为A 的特征函数,设,A B 为全集U 的子集,下列结论中错误的是()A.若,A B ⊆则()()A B f x f x ≤B.()()1R A A f x f x =-ðC.()()()A B A B f x f x f x =⋅ D.()()()A B A B f x f x f x =+ 二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)11.函数()f x =__________.12.如图,函数()f x 的图象是折线段ABC ,其中,,A B C 的坐标分别为()()0,4,2,0,()6,4,则()2f x ≤的解集为________.13.定义在R 上的函数()f x ,给出下列三个论断:①()f x 在R 上单调递增;②1x >;③()()1f x f >.以其中的两个论断为条件,余下的一个论断为结论,写出一个正确的命题:__________,_________推出___________.(把序号写在横线上)14.为了保护水资源,提倡节约用水,某城市对居民生活用水,实行“阶梯水价”.计算方法如下表:每户每月用水量水价不超过312m 的部分3元/3m 超过312m 但不超过318m 的部分6元/3m 超过318m 的部分9元/3m 若某户居民本月交纳的水费为90元,则此户居民本月用水量为___________.15.设函数()243,01,0x x x f x x x⎧++≤⎪=⎨->⎪⎩.给出下列四个结论:①函数()f x 的值域是R ;②()1212,(2,)x x x x ∀∈-+∞≠,有()()12120f x f x x x ->-;③00x ∃>,使得()()00f x f x -=;④若互不相等的实数123,,x x x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是()3,-+∞.其中所有正确结论的序号是_________.三、解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤)16.设关于x 的不等式2x a -<的解集为A ,不等式260x x --<的解集为B .(1)求集合A ,B ;(2)若A B ⊆,求实数a 的取值范围.17.已知函数()231x f x x -=+.(1)用函数单调性的定义证明:()f x 在()1,-+∞上是增函数;(2)求函数()f x 在区间[]1,4上的值域.18.已知二次函数()f x 的最小值为1,且()()023f f ==.(1)求()f x 的解析式;(2)在区间[]3,1--上,()y f x =的图象恒在221y x m =++的图象上方,确定实数m 的取值范围.19.为了减少能源损耗,房屋的屋顶和外墙通常需要建造隔热层,某地正在建设一座购物中心,现在计划对其建筑物建造可使用40年的隔热层,已知每厘米厚的隔热层建造成本为8万元.该建筑物每年的能源消耗费用P (单位:万元)与隔热层厚度x (单位:cm )满足关系:()3R,0845mP x x x =∈≤≤+.若不建隔热层,每年能源消耗费用为9万元.设S 为隔热层建造费用与40年的能源消耗费用之和.(1)求m 的值及用x 表示S ;(2)当隔热层的厚度为多少时,总费用S 达到最小,并求最小值.20.已知()f x 是定义域为R 的函数,若对任意12,x x ∈R ,12x x S -∈,均有()()12f x f x S -∈,则称()f x 是S 关联.(1)判断和证明函数()21f x x =+是否是[)0,∞+关联?是否是[]0,1关联?(2)若()f x 是{}3关联,当[)0,3x ∈时,()22f x x x =-,解不等式:()23f x ≤≤.北京2023-2024学年第一学期期中练习高一数学2023.10说明:本试卷共4页,共120分.考试时长90分钟.一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}2,1,0,1M =--,{}30N x x =-≤<,则M N ⋂=()A.{}2,1,0,1-- B.{}0,1 C.{}2- D.{}2,1--【答案】D 【解析】【分析】利用交集的定义可求得集合M N ⋂.【详解】因为集合{}2,1,0,1M =--,{}30N x x =-≤<,则{}2,1M N ⋂=--.故选:D.2.命题“0(0,)x ∃∈+∞,20012x x +≤”的否定为A.(0,)x ∀∈+∞,21x x +>2B.(0,)x ∀∈+∞,212x x +≤C.(,0)x ∀∈-∞,212x x +≤D.(],0x ∀∈-∞,21x x+>2【答案】A 【解析】【分析】特称命题的否定是全称命题,并将结论否定,即可得答案.【详解】命题“0(0,)x ∃∈+∞,20012x x +≤”的否定为“(0,)x ∀∈+∞,21x x +>2”.故选:A.【点睛】本题考查特称命题的否定的书写,是基础题.3.已知关于x 的方程220x x m -+=的两根同号,则m 的取值范围是()A.1m ≤B.0m ≤C.01m <≤D.01m ≤≤【答案】C【解析】【分析】利用判别式和韦达定理解决.【详解】关于x 的方程220x x m -+=的两根同号,则判别式大于等于0且两根之积大于零,则有Δ4400m m =-≥⎧⎨>⎩,解得01m <≤.故选:C4.已知函数()()()22111x x x f x x x ⎧-<⎪=⎨-+≥⎪⎩,则()()1f f -的值为()A.3B.0C.1- D.2-【答案】D 【解析】【分析】先求()1f -,进而求出()()1ff -.【详解】由题意得,()()()211213f -=--⨯-=,则()()()13312f f f -==-+=-.故选:D.5.已知R a ∈,则“1a >”是“11a<”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】先求11a <的解集,再利用充分必要条件的概念即可判断.【详解】由11a <得10a a->,此不等式与不等式(1)0a a ->同解,解得a<0或1a >.所以,当1a >时,11a<一定成立,故充分性成立;当11a<即a<0或1a >时,1a >不一定成立,故必要性不成立.综上所述,“1a >”是“11a<”的充分不必要条件.故选:A.6.下列函数中,在区间()0,∞+上单调递增且是奇函数的是()A.1y x =+ B.1y x x=-C.y x =D.2y x =【答案】B 【解析】【分析】根据函数的单调性和奇偶性的定义即可得到答案.【详解】对于A ,当0x =时,10y =≠,所以1y x =+不是奇函数,故A 错误;对于B ,因为()1y f x x x==-的定义域为{}|0x x ≠,又()()11f x x x f x x x ⎛⎫-=-+=--=- ⎪⎝⎭,所以1y x x =-为奇函数,因为1,y x y x==-在区间()0,∞+上单调递增,所以1y x x=-在区间()0,∞+上单调递增,故B 正确;对于C ,因为()y f x x ==的定义域为R ,又()()f x x f x -=-=,所以y x =为偶函数,故C 错误.对于D ,因为()2y f x x ==的定义域为R ,又()()()2f x x f x -=-=,所以2y x =为偶函数,故D 错误.故选:B.7.已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是()A.b a c a -<+B.2c ab< C.c c b a> D.b c a c<【答案】D 【解析】【分析】由数轴知0c b a <<<,不妨取=3,2,1c b a -=-=-检验选项得解.【详解】由数轴知0c b a <<<,不妨取=3,2,1c b a -=-=-,对于A ,2121-+>-- ,∴不成立.对于B ,2(3)(2)(1)->-- ,∴不成立.对于C ,3231-<---,∴不成立.对于D ,(3)1(3) 2-<´--´-,因此成立.故选:D .【点睛】利用不等式性质比较大小.要注意不等式性质成立的前提条件.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.8.设()f x 为R 上的奇函数,且当0x <时,()31f x x =-,则(0)(4)f f +=()A.12B.12- C.13D.13-【答案】C 【解析】【分析】根据()f x 为R 上的奇函数,求出()()0,4f f .【详解】因为()f x 为R 上的奇函数,所以()00f =,()()4413f f =--=,所以()()0413f f +=.故选:C9.已知当0x >时,不等式2160x mx -+>恒成立,则实数m 的取值范围是()A.(),8∞- B.(],8∞- C.[)8,+∞ D.()6,+∞【答案】A 【解析】【分析】将参数m 与自变量分离,利用基本不等式求得最值即可得出实数m 的取值范围.【详解】根据题意当0x >时,不等式2160x mx -+>恒成立,则2,01616m x x x xx +=+<>恒成立,只需min 16m x x ⎛⎫+ ⎪⎝⎭<即可;易知当0x >时,由基本不等式可得168x x +≥=,当且仅当4x =时取等号;所以min816x x ⎛⎫+= ⎪⎝⎭,即8m <,所以实数m 的取值范围是(),8∞-.故选:A10.对于全集U 的子集A 定义函数()()()1A Ux A f x x A ⎧∈⎪=⎨∈⎪⎩ð为A 的特征函数,设,A B 为全集U 的子集,下列结论中错误的是()A.若,A B ⊆则()()A B f x f x ≤B.()()1R A A f x f x =-ðC.()()()A B A B f x f x f x =⋅D.()()()A B A B f x f x f x =+ 【答案】D 【解析】【分析】根据()()()1A Ux A f x x A ⎧∈⎪=⎨∈⎪⎩ð,逐项分析,即可求得答案.【详解】 ()()()1A Ux A f x x A ⎧∈⎪=⎨∈⎪⎩ð对于A, A B ⊆,分类讨论:①当x A ∈,则,x B ∈此时()()1A B f x f x ==②当x A ∉且x B ∉,即U x B ∈ð,此时()()0A B f x f x ==,③当x A ∉且x B ∈,即()U x A B ∈⋂ð时,()0,()1A B f x f x ==,此时()()A B f x f x ≤综合所述,有()()A B f x f x ≤,故A 正确;对于B ,1, ()1()0,A UU A x A f x f x x A∈⎧==-⎨∈⎩ðð,故(2)正确;对于C ,1,()0,()A B U x A Bf x x C A B ⋂∈⋂⎧=⎨∈⋂⎩()1,0,U U x A B x C A C B ∈⋂⎧=⎨∈⋃⎩1,1,0,0,U U x A x B x C A x C B ⎧∈∈⎧⎪=⋅⎨⎨∈∈⎪⎩⎩()()A B f x f x =⋅,故C 正确;对于D ,0,()()()1,()A B A B U x A Bf x f x f x x C A B ⋃∈⋃⎧=≠+⎨∈⋃⎩,故D 错误.故选:D.【点睛】本题主要考查了函数新定义和集合运算,解题关键是充分理解新定义和掌握函数,集合基础知识,考查了分析能力和计算能力,属于难题.二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)11.函数()f x =__________.【答案】1[,)2+∞【解析】【详解】依题意,1210,2x x -≥≥.12.如图,函数()f x 的图象是折线段ABC ,其中,,A B C 的坐标分别为()()0,4,2,0,()6,4,则()2f x ≤的解集为________.【答案】{|14}x x ≤≤【解析】【分析】根据函数的图象,观察即可得出答案.【详解】当()2f x ≤时,由图象可知14x ≤≤,即()2f x ≤的解集为{|14}x x ≤≤.【点睛】本题主要考查了函数的图象,属于中档题.13.定义在R 上的函数()f x ,给出下列三个论断:①()f x 在R 上单调递增;②1x >;③()()1f x f >.以其中的两个论断为条件,余下的一个论断为结论,写出一个正确的命题:__________,_________推出___________.(把序号写在横线上)【答案】①.①(答案不唯一)②.②(答案不唯一)③.③(答案不唯一)【解析】【分析】根据单调性和范围即可推出不等式.【详解】①②推出③;证明:当()f x 在R 单调递增且当1x >时,有()(1)f x f >,得证.①③推出②;证明:当()f x 在R 单调递增且当()(1)f x f >时,有1x >,得证.①②无法推出③;取()()21f x x =-,此时满足1x >且()(1)f x f >,但不满足()f x 在R 单调递增.故答案为:①;②;③.(答案不唯一)14.为了保护水资源,提倡节约用水,某城市对居民生活用水,实行“阶梯水价”.计算方法如下表:每户每月用水量水价不超过312m 的部分3元/3m 超过312m 但不超过318m 的部分6元/3m 超过318m 的部分9元/3m 若某户居民本月交纳的水费为90元,则此户居民本月用水量为___________.【答案】320m ##20立方米【解析】【分析】根据题设条件可得水费与水价的关系式,根据该关系式可求用水量.【详解】设用水量为x 立方米,水价为y 元,则()3,01236612,1218729(18),18x x y x x x x ≤≤⎧⎪=+-<≤⎨⎪+->⎩,整理得到:3,012636,1218990,18x x y x x x x ≤≤⎧⎪=-<≤⎨⎪->⎩,当012x ≤≤时,036y ≤≤;1218x <≤时,3672y <≤;故某户居民本月交纳的水费为90元,则用水量大于18立方米,令99090x -=,则20x =(立方米),故答案为:320m .15.设函数()243,01,0x x x f x x x⎧++≤⎪=⎨->⎪⎩.给出下列四个结论:①函数()f x 的值域是R ;②()1212,(2,)x x x x ∀∈-+∞≠,有()()12120f x f x x x ->-;③00x ∃>,使得()()00f x f x -=;④若互不相等的实数123,,x x x 满足()()()123f x f x f x ==,则123x x x ++的取值范围是()3,-+∞.其中所有正确结论的序号是_________.【答案】①③④【解析】【分析】对于①,利用二次函数与反比例函数的图像性质画出函数图1,结合图像即可判断;对于②,举反例排除即可;对于③,将问题转化为243y xx =-+与1y x=-有交点,作出图2即可判断;对于④,结合图1对123,,x x x 进行分析即可.【详解】对于①,因为()243,01,0x x x f x x x⎧++≤⎪=⎨->⎪⎩,所以由二次函数与反比例函数的图像性质可画出函数图象,如图1,由()f x 的图像易知()f x 的值域是R ,故①正确;对于②,易得()03f =,()11f =-,显然()f x 在()2,-+∞上并不单调递增,所以②说法不成立,故②错误;对于③,假设存在00x ∃>,()()00f x f x -=,则()()2000143x x x -+-+=-,即200143x x x -+=-,即243y xx =-+与1y x=-有交点,作出图像,如图2,显然假设成立,故③正确;对于④,由图1易知1222+=-x x ,则124x x +=-,因为()21f -=-,所以()310f x -<<,即3110x -<-<,解得31x >,所以12334413x x x x ++=-+>-+=-,即123x x x ++的取值范围是()3,-+∞,故④正确;综上:①③④正确.故答案为:①③④.三、解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤)16.设关于x 的不等式2x a -<的解集为A ,不等式260x x --<的解集为B .(1)求集合A ,B ;(2)若A B ⊆,求实数a 的取值范围.【答案】(1){|22}A x a x a =-<<+,{|23}B x x =-<<(2)[0,1]【解析】【分析】(1)解绝对值不等式和二次不等式即可得解;(2)利用集合的包含关系得到关于a 的不等式组,解之即可得解.【小问1详解】因为||2x a -<,所以22x a -<-<,则22a x a -<<+,所以{|22}A x a x a =-<<+,因为260x x --<,所以(2)(3)0x x +-<,解得23x -<<,所以{|23}B x x =-<<【小问2详解】因为A B ⊆,因为22a a -<+恒成立,所以A ≠∅,所以2223a a -≥-⎧⎨+≤⎩,解得01a ≤≤,故a 取值范围为[0,1].17.已知函数()231x f x x -=+.(1)用函数单调性的定义证明:()f x 在()1,-+∞上是增函数;(2)求函数()f x 在区间[]1,4上的值域.【答案】(1)证明见解析(2)1,12⎡⎤-⎢⎥⎣⎦【解析】【分析】(1)任取()12,1,x x ∈-+∞,且12x x <,通过计算()()12f x f x -的正负来判断单调性;(2)由函数()f x 在区间[]1,4上单调性求出最值即可.【小问1详解】任取()12,1,x x ∈-+∞,且12x x <,则()()()()()()()()()()()122112121212121223123152323111111x x x x x x x x f x f x x x x x x x -+--+----=-==++++++,因为()12,1,x x ∈-+∞,12x x <,所以120x x -<,110x +>,210x +>,所以()()120f x f x -<,即()()12f x f x <,所以()f x 在()1,-+∞上是增函数.【小问2详解】由(1)知()f x 在区间[]1,4上单调递增,所以()()min 112f x f ==-,()()max 41f x f ==,所以函数()f x 在区间[]1,4上的值域为1,12⎡⎤-⎢⎥⎣⎦.18.已知二次函数()f x 的最小值为1,且()()023f f ==.(1)求()f x 的解析式;(2)在区间[]3,1--上,()y f x =的图象恒在221y x m =++的图象上方,确定实数m 的取值范围.【答案】(1)()2243f x x x =-+,x ∈R(2)5m <【解析】【分析】(1)利用二次函数解析式的顶点式、待定系数法分析运算即可得解.(2)由题意将图象的位置关系转化为不等式,利用分离参数法、二次函数的图象与性质分析运算即可得解.【小问1详解】解:由题意,设二次函数()()21=-+f x a x m ,0a >,∵()()023f f ==,∴()()22013213a m a m ⎧-+=⎪⎨-+=⎪⎩,解得:21a m =⎧⎨=⎩,∴()()22211243f x x x x =-+=-+,x ∈R .【小问2详解】解:∵在区间[]3,1--上,()y f x =的图象恒在221y x m =++的图象上方,∴2243221x x x m -+>++在区间[]3,1--上恒成立,即231m x x <-+在区间[]3,1--上恒成立,令()231g x x x =-+,则在区间[]3,1--上()m g x <恒成立,∴()min m g x <,∵函数()231g x x x =-+图象的对称轴为32x =,开口向上,∴函数()231g x x x =-+在区间[]3,1--上单调递减,∴()()min 15=-=g x g ,则5m <,∴实数m 的取值范围是(),5-∞.19.为了减少能源损耗,房屋的屋顶和外墙通常需要建造隔热层,某地正在建设一座购物中心,现在计划对其建筑物建造可使用40年的隔热层,已知每厘米厚的隔热层建造成本为8万元.该建筑物每年的能源消耗费用P (单位:万元)与隔热层厚度x (单位:cm )满足关系:()3R,0845mP x x x =∈≤≤+.若不建隔热层,每年能源消耗费用为9万元.设S 为隔热层建造费用与40年的能源消耗费用之和.(1)求m 的值及用x 表示S ;(2)当隔热层的厚度为多少时,总费用S 达到最小,并求最小值.【答案】(1)15m =,1800845S x x =++(08x ≤≤);(2)当隔热层的厚度为6.25cm 时,总费用S 取得最小值110万元.【解析】【分析】(1)利用给定条件,求出m 的值,进而可得能源消耗费用与隔热层建造成本之和.(2)利用基本不等式即可求最值,根据等号成立的条件可得隔热层厚度.【小问1详解】设隔热层厚度x ,依题意,每年的能源消耗费用为:345mP x =+,而当0x =时,9P =,则395m=,解得15m =,显然建造费用为8x ,所以隔热层建造费用与40年的能源消耗费用之和为:45180040840884545S P x x x x x =+=⨯+=+++(08x ≤≤).【小问2详解】由(1)知()180018008245104545S x x x x =+=++-++1026010110≥=⨯-=,当且仅当()180024545x x =++,即 6.25x =时取等号,所以当隔热层的厚度为6.25cm 时,总费用S 取得最小值110万元.20.已知()f x 是定义域为R 的函数,若对任意12,x x ∈R ,12x x S -∈,均有()()12f x f x S -∈,则称()f x 是S 关联.(1)判断和证明函数()21f x x =+是否是[)0,∞+关联?是否是[]0,1关联?(2)若()f x 是{}3关联,当[)0,3x ∈时,()22f x x x =-,解不等式:()23f x ≤≤.【答案】(1)()f x 是[)0,∞+关联,不是[]0,1关联(2){}15x x +≤≤【解析】【分析】(1)根据关联定义直接判断即可;(2)先根据关联定义确定函数()f x 满足的性质,再结合[)0,3x ∈时的解析式画出函数图像,结合图像即可求解.【小问1详解】任取12,x x ∈R ,若[)120,x x -∈+∞,则()()()[)121220,f x f x x x -=-∈+∞所以()f x 是[)0,∞+关联;若[]120,1x x -∈,则()()()[]121220,2f x f x x x -=-∈,所以()f x 不是[]0,1关联.【小问2详解】由题意知,当123x x -=时,()()123f x f x -=,即()()33f x f x +-=,由于当[)0,3x ∈时,()22f x x x =-,所以画出()f x 的图像如图,当[)0,3x ∈时,令()222f x x x =-=得1x =,令()220f x x x =-=得0x =或2x =,结合图像求出点()12A +,()5,3B ,所以当()23f x ≤≤时,15x +≤≤,。
高一数学期中考试测试题(必修一含答案)
高一年级上学期期中考试数学试题一、选择题(本大题共12小题,每小题5分,共60分。
给出的四个选项中,只有一项是符合题目要求的)1.设全集U={1,2,3,4,5},集合A={1,2},B={2,3},则A ∩C U B A .{}45, B .{}23, C .{}1 D .{}2 2.下列表示错误的是(A )0∉Φ (B ){}12Φ⊆,(C ){}{}21035(,)3,4x y x y x y +=-== (D )若,A B ⊆则A B A ⋂=3.下列四组函数,表示同一函数的是A .f (x ),g (x )=xB .f (x )=x ,g (x )=2x xC .2(),()2ln f x lnx g x x ==D.()log (),()x a f x a a g x =>0,α≠1=4.设1232,2,log (1), 2.(){x x x x f x -<-≥=则f ( f (2) )的值为A .0B .1C .2D .3 5.当0<a <1时,在同一坐标系中,函数xy a -=与log a y x =的图象是6.令0.760.76,0.7,log 6a b c ===,则三个数a 、b 、c 的大小顺序是A .b <c <aB .b <a <cC .c <a <bD .c <b <a 7.函数2()ln f x x x=-的零点所在的大致区间是 A .(1,2) B .(2,3) C .11,e ⎛⎫ ⎪⎝⎭和(3,4) D .(),e +∞ 8.若2log 31x =,则39xx+的值为A .6B .3C .52 D .129.若函数y = f (x )的定义域为[]1,2,则(1)y f x =+的定义域为A .[]2,3B .[]0,1C .[]1,0-D .[]3,2-- 10.已知()f x 是偶函数,当x <0时,()(1)f x x x =+,则当x >0时,()f x = A .(1)x x - B .(1)x x -- C (1)x x + D .(1)x x -+11.设()()f x x R ∈为偶函数,且()f x 在[)0,+∞上是增函数,则(2)f -、()f π-、(3)f 的大小顺序是A .()(3)(2)f f f π->>-B .()(2)(3)f f f π->->C .()(2)f f f π-<(3)<-D .()(2)(3)f f f π-<-<12 已知函数f(x)的图象是连续不断的,x 与f(x)的对应关系见下表,则函数f(x)在区间[1,6]第Ⅱ卷(非选择题共90分) 二、填空题(本大题共4小题,每小题4分,共16分。
2021-2022学年上海市杨浦高级中学高一下学期期中数学试题(含详解)
杨浦高级中学2021学年度第二学期期中测试高一数学试卷一、填空题(本大题共有10小题,满分40分)考生必须在答题纸相应编号的空格内填写结果,每个空格填对得4分,否则一律得零分.1.教室里的挂钟时间从中午12点到当天下午3点,时针转了__________弧度.2.若一扇形的圆心角为3π,弧长为2π,则该扇形的面积是________.3.已知角α的终边过点P (5,a ),且tan α=-125,则sin α+cos α的值为________.4.已知正方形ABCD 的边长为2,,,AB a BC b AC c ===,则a b c ++ =_____.5.已知1cos 3α=,3cos()3αβ-=且02πβα<<<,则cos β=_______.6.已知函数f (x )=a sin (πx +α)+b cos (πx +β),且f (4)=3,则f (2017)的值为________.7.已知向量a 、b,a = 2b =,且()a b a +⊥r r r ,则a 在b 上的投影为___________.8.在ABC 中,已知tan ,tan A B 是x 的方程2(1)10x m x +++=的两个实根,则C ∠=________.9.若函数()sin 2cos f x x x=+取最小值时x θ=,则sin θ=___________.10.已知函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 的图象关于直线3x π=对称,且在3,164ππ⎛⎫ ⎪⎝⎭上单调,则ω的最大值是______.二、选择题(本大题共有4小题,满分12分)每题有且只有一个正确答案,考生必须在答题纸相应编号的空格内填写代表答案的序号,选对得3分,否则一律得零分.11.函数()()2tan 11f x x x x =⋅-<<的图象可能是()A.B.C.D.12.已知向量()2,0a =,1,12b ⎛⎫=- ⎪⎝⎭,则2a b += ()A.B.C. D.513.已知点A,B,C,D 是直角坐标系中不同的四点,若()AC AB R λλ=∈ ,()AD AB R μμ=∈ ,且112uλ+=,则下列说法正确的是,A.C 可能是线段AB 的中点B.D 可能是线段AB 的中点C.C 、D 可能同时在线段AB 上D.C 、D 不可能同时在线段AB 的延长线上14.在平面直角坐标系xOy 中,α为第四象限角,角α的终边与单位圆O 交于点P (x 0,y 0),若cos(6πα+)=45,则x 0=()A.43310 B.43310+ C.33410- D.43310±三、解答题(本大题共有5小题,满分48分)考生必须在答题纸相应编号的规定区域内写出必要的解题步骤.15.已知函数()f x x =,()22sin 2x g x =.(1)若α是第一象限角,且()335f α=,求()g α的值;(2)求使()()f x g x =成立的x 的取值集合.16.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c22cos 02A CB +-=.(1)求角B 的大小;(2)若2sin 2sin sin B A C =,且ABC ∆的面积为,求ABC ∆的周长.17.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>≤⎪⎝⎭的图像如图.(1)根据图像,求()f x 的表达式及严格增区间;(2)将函数()y f x =的图像向右平移4π个单位长度得到曲线C ,把C 上各点的横坐标保持不变,纵坐标变为原来的2倍得到()g x 的图像,且关于x 的方程()0g x m -=在0,2π⎡⎤⎢⎥⎣⎦上有解,求m 的取值范围.18.探究与实践告诉我们:平面上不共线的三个点O 、A 、B ,对平面上任意一点P ,都有实数λ与μ,使得OP OA OB λμ=+,且A 、B 、P 三点共线的充要条件是1λμ+=.已知ABC 中,过重心G 的直线交线段AB 于P ,交线段AC 于Q ,设APQ 的面积为1S ,ABC 的面积为2S ,AP pPB = ,AQ qQC =.根据阅读材料的内容,解决以下问题:(1)求证:111p q+=;(2)求12S S 的取值范围.19.定义函数()()cos sin f x x =为“正余弦”函数.结合学过的知识,可以得到该函数的一些性质:容易证明2π为该函数的周期,但是否是最小正周期呢?我们继续探究:()()()cos sin cos sin f x πx πx +=+=-=⎡⎤⎣⎦()cos sin x ()f x =.可得:π也为函数()()cos sin f x x =的周期.但是否为该函数的最小正周期呢?我们可以分区间研究()()cos sin f x x =的单调性:函数()()cos sin f x x =在π0,2⎡⎤⎢⎥⎣⎦是严格减函数,在π,π2⎛⎤ ⎥⎝⎦上严格增函数,再结合()()πf x f x +=,可以确定:()()cos sin f x x =的最小正周期为π.进一步我们可以求出该函数的值域了.定义函数()()f x x=为“余正弦”函数,根据阅读材料的内容,解决下列问题:sin cos(1)求“余正弦”函数的定义域;(2)判断“余正弦”函数的奇偶性,并说明理由;(3)探究“余正弦”函数的单调性及最小正周期,说明理由,并求其值域.杨浦高级中学2021学年度第二学期期中测试高一数学试卷一、填空题(本大题共有10小题,满分40分)考生必须在答题纸相应编号的空格内填写结果,每个空格填对得4分,否则一律得零分.1.教室里的挂钟时间从中午12点到当天下午3点,时针转了__________弧度.【答案】2π-【解析】【分析】由时钟的时针在钟面上每转动一个整点的大刻度所得的度数求出中午12点到当天下午3点所转弧的度数即可得解.【详解】因时钟的时针在钟面上为顺时针转动,则每转动一个整点的大刻度所转弧的度数为30- ,从中午12点到当天下午3点,时针转了3个这样的大刻度,则时针所转弧的度数为30390-⨯=- ,所以时针转了2π-弧度.故答案为:2π-2.若一扇形的圆心角为3π,弧长为2π,则该扇形的面积是________.【答案】6π【解析】【分析】利用扇形的弧长公式求扇形的半径,进而应用扇形面积公式求其面积即可.【详解】由题意,令扇形的半径为R ,则23Rππ=,即有6R =,∴该扇形的面积是12662ππ⨯⨯=.故答案为:6π.3.已知角α的终边过点P (5,a ),且tan α=-125,则sin α+cos α的值为________.【答案】-713【解析】【分析】利用三角函数的定义求解.【详解】由三角函数的定义得,tan α=5a =-125,∴a =-12,∴P (5,-12).这时r =13,∴sin α=-1213,cos α=513,从而sin α+cos α=-713.故答案为:-7134.已知正方形ABCD 的边长为2,,,AB a BC b AC c === ,则a b c ++=_____.【答案】【解析】【分析】利用向量的加法计算即可.【详解】22a b c AB BC AC AC ++=++==⨯故答案为:5.已知1cos 3α=,cos()3αβ-=且02πβα<<<,则cos β=_______.【答案】9【解析】【分析】根据题意,可知02παβ<-<,结合三角函数的同角基本关系,可求出sin α和sin()αβ-再根据[]cos cos ()βααβ=--,利用两角差的余弦公式,即可求出结果.【详解】因为02πβα<<<,所以02παβ<-<,因为1cos 3α=,所以22sin 3α==,又cos()3αβ-=,所以sin()3αβ-==,所以()()()cos cos cos cos sin sin βααβααβααβ⎡⎤=--=-+-⎣⎦133339=⨯+⨯=.故答案为:539.6.已知函数f (x )=a sin (πx +α)+b cos (πx +β),且f (4)=3,则f (2017)的值为________.【答案】-3【解析】【分析】由题设,结合诱导公式可得f (4)=a sin α+b cos β,再应用正余弦函数的周期性、诱导公式可得f (2017)=-a sin α-b cos β即可求值.【详解】∵f (4)=a sin (4π+α)+b cos (4π+β)=a sin α+b cos β=3,∴f (2017)=a sin (2017π+α)+b cos (2017π+β)=a sin (π+α)+b cos (π+β)=-a sin α-b cos β=-3.故答案为:-3.7.已知向量a 、b ,a = 2b = ,且()a b a +⊥r r r ,则a 在b上的投影为___________.【答案】32-## 1.5-【解析】【分析】由已知得出()0a b a +⋅=r r r ,结合平面向量数量积的几何意义可得出a 在b上的投影.【详解】由已知可得()20a b a a b a +⋅=⋅+= ,所以,3a b ⋅=-,所以,a 在b上的投影为3cos ,2a b a a b b⋅<>==-.故答案为:32-.8.在ABC 中,已知tan ,tan A B 是x 的方程2(1)10x m x +++=的两个实根,则C ∠=________.【答案】34π##135︒【解析】【分析】根据根与系数关系可得tan tan A B m +=-,tan tan 1A B m =+,再由三角形内角和的性质及和角正切公式求tan C ,即可得其大小.【详解】由题设,tan tan A B m +=-,tan tan 1A B m =+,又()()tan tan tan tan tan 11tan tan A BC A B A B A Bπ+⎡⎤=-+=-+=-=-⎣⎦-,且0C π<<,∴34C π=.故答案为:34π.9.若函数()sin 2cos f x x x =+取最小值时x θ=,则sin θ=___________.【答案】55-【解析】【分析】利用三角函数的恒等变换,再利用诱导公式即可求解.【详解】()()sin 2cos f x x x x ϕ=+=+,其中sin ϕϕ==x θ= 时取最小值,()22k k Z πθϕπ∴+=-+∈,()22k k Z πθϕπ∴=--+∈sin sin 2sin 225k cos ππθϕπϕϕ⎛⎫⎛⎫∴=--+=--=-=-⎪ ⎪⎝⎭⎝⎭故答案为:55-.10.已知函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 的图象关于直线3x π=对称,且在3,164ππ⎛⎫⎪⎝⎭上单调,则ω的最大值是______.【答案】13【解析】【分析】根据()f x 的对称轴,以及其单调性,初步求得ω的取值范围,再对取值进行验证,即可求得结果.【详解】由题意可得362k ωππππ+=+,Z k ∈,则31k ω=+,Z k ∈.因为()f x 在3,164ππ⎛⎫⎪⎝⎭上单调,所以34162T ππ-≤,所以8T π≥,即28ππω≥,解得16ω≤,则3116k +≤,即5k ≤.当5k =时,()2sin 166f x x π⎛⎫=+⎪⎝⎭在3,164ππ⎛⎫⎪⎝⎭上不单调,所以5k =,即16ω=不符合题意;当4k =,即13ω=时,()2sin 136f x x π⎛⎫=+ ⎪⎝⎭在3,164ππ⎛⎫⎪⎝⎭上单调,所以4k =,即13ω=符合题意,故ω的最大值是13.故答案为:13.【点睛】本题考察三角函数中的参数范围问题,解决问题的关键是充分挖掘函数对称性和单调性,属困难题.二、选择题(本大题共有4小题,满分12分)每题有且只有一个正确答案,考生必须在答题纸相应编号的空格内填写代表答案的序号,选对得3分,否则一律得零分.11.函数()()2tan 11f x x x x =⋅-<<的图象可能是()A.B.C.D.【答案】B 【解析】【分析】结合函数的奇偶性和特殊点的处的函数值的符号可得正确的选项.【详解】因为()()2tan 11f x x x x =⋅-<<,故()()()()2tan f x x x f x -=-⋅-=,故()f x 为偶函数,故排除AC.而()12tan10f =>,故排除D ,故选:B.12.已知向量()2,0a =,1,12b ⎛⎫=- ⎪⎝⎭,则2a b += ()A.B.C. D.5【答案】A 【解析】【分析】先求2a b +的坐标,再用平面向量模长的坐标运算求解即可.【详解】()21,2a b += ,所以2a b +== .故选:A.13.已知点A,B,C,D 是直角坐标系中不同的四点,若()AC AB R λλ=∈ ,()AD AB R μμ=∈,且112uλ+=,则下列说法正确的是,A.C 可能是线段AB 的中点B.D 可能是线段AB 的中点C.C 、D 可能同时在线段AB 上D.C 、D 不可能同时在线段AB 的延长线上【答案】D 【解析】【分析】根据向量共线定理得到,,,A B C D 四点共线,再根据反证法求证,问题可逐一解决.【详解】解:由()AC AB R λλ=∈ ,()AD AB R μμ=∈,可得:,,,A B C D 四点共线,对于选项A ,若C 是线段AB 的中点,则12AC AB = ,则1,02λμ==,不满足112u λ+=,即选项A 错误;对于选项B ,若D 是线段AB 的中点,则12AD AB = ,则10,2λμ==,不满足112uλ+=,即选B 错误;对于选项C ,若C 、D 同时在线段AB 上,则01,01λμ<<<<,则112u λ+>,不满足112uλ+=,即选项C 错误;对于选项D ,假设C 、D 同时在线段AB 的延长线上,则1,1λμ>>,则112u λ+<,则不满足112uλ+=,即假设不成立,即C 、D 不可能同时在线段AB 的延长线上,即选项D 正确;故选:D.【点睛】本题考查了向量共线定理,重点考查了反证法,属中档题.14.在平面直角坐标系xOy 中,α为第四象限角,角α的终边与单位圆O 交于点P (x 0,y 0),若cos(6πα+)=45,则x 0=()A.43310 B.43310+ C.33410- D.43310±【答案】A【解析】【分析】由三角函数的定义知x 0=cos α,因为cos α=cos 66ππα⎡⎤⎛⎫+- ⎪⎢⎝⎭⎣⎦,所以利用两角差的余弦公式可求.【详解】解:由题意,x 0=cos α.α∈,02π⎛⎫- ⎪⎝⎭,6πα+∈,36ππ⎛⎫- ⎪⎝⎭,又cos(6πα+)=4532<,∴6πα+∈,03π⎛-⎫ ⎪⎝⎭,∴sin 6πα⎛⎫+ ⎪⎝⎭=35-,∴x 0=cos α=cos 66ππα⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦=cos 6πα⎛⎫+ ⎪⎝⎭cos 6π+sin 6πα⎛⎫+ ⎪⎝⎭sin 6π=43315252⨯-⨯=43310-.故选:A.【点睛】关键点点睛:本题的解题关键点是根据cos(6πα+)=452<,缩小角的范围,从而确定sin 6πα⎛⎫+ ⎪⎝⎭的正负.三、解答题(本大题共有5小题,满分48分)考生必须在答题纸相应编号的规定区域内写出必要的解题步骤.15.已知函数()f x x =,()22sin 2x g x =.(1)若α是第一象限角,且()335f α=,求()g α的值;(2)求使()()f x g x =成立的x 的取值集合.【答案】(1)15(2)11{2π,x x k k Z =∈或222π2π,}3x k k Z =+∈.【解析】【分析】(1)先求出3sin 5α=,结合α所在象限求得cos α,进而利用半角公式进行求解;(2)利用半角公式,辅助角公式求得π1sin 62x ⎛⎫+= ⎪⎝⎭,进而求出使()()f x g x =成立的x 的取值集合.【小问1详解】()5f αα==,解得:3sin 5α=,因为α是第一象限角,所以4cos 5α==()212sin 1cos 25g ααα==-=;【小问2详解】()()f x g x =,22sin 1cos 2x x x ==-,cos 1+=x x ,利用辅助角公式得:2πsin 16x ⎛⎫+= ⎪⎝⎭,π1sin 62x ⎛⎫+= ⎪⎝⎭所以11ππ2π,66x k k Z +=+∈,或22π5π2π,66x k k Z +=+∈,解得:112π,x k k Z =∈,或222π2π,3x k k Z =+∈,故使()()f x g x =成立的x 的取值集合为11{2π,x x k k Z =∈或222π2π,}3x k k Z =+∈16.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c 22cos 02A C B +-=.(1)求角B 的大小;(2)若2sin 2sin sin B A C =,且ABC ∆的面积为,求ABC ∆的周长.【答案】(1)23B π=;(2).【解析】【分析】(1)直接利用三角函数关系式的恒等变换求出B 的值.(2)利用正弦定理余弦定理和三角形的面积公式的应用求出结果,进一步求出三角形的周长.22cos (1cos())2A CB B AC +-=-++∵A B C π++=(1cos())(1cos )B AC B B -++=--cos 12sin 106B B B π⎛⎫=+-=+-= ⎪⎝⎭1sin 62B π⎛⎫+= ⎪⎝⎭∵(0,)B π∈,∴7,666B πππ⎛⎫+∈ ⎪⎝⎭∴566B ππ+=,23B π=解法2:∵A BC π++=,2222cos 2cos 2sin 222A CB B B B B π+--=-=-2cos 2sin 2sin sin 0222222B B B B B B ⎫=-=-=⎪⎭∵(0,)B π∈,∴sin02B ≠sin 022B B -=∴tan 2B =,∵0,22B π⎛⎫∈ ⎪⎝⎭,∴23B π=,∴23B π=(2)由(1)知23B π=,所以ABC 的面积为12sin 234ac ac π==16ac =因为2sin 2sin sin B A C =,由正弦定理可得2232b ac ==,b =由余弦定理222222cos ()323b ac ac a c ac π=+-⋅=+-=∴2()3248a c ac +=+=,∴a c +=所以ABC 的周长为【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦定理余弦定理和三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.17.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>≤ ⎪⎝⎭的图像如图.(1)根据图像,求()f x 的表达式及严格增区间;(2)将函数()y f x =的图像向右平移4π个单位长度得到曲线C ,把C 上各点的横坐标保持不变,纵坐标变为原来的2倍得到()g x 的图像,且关于x 的方程()0g x m -=在0,2π⎡⎤⎢⎥⎣⎦上有解,求m 的取值范围.【答案】(1)()πsin 23f x x ⎛⎫=+⎪⎝⎭,增区间为5πππ,π,1212k k k ⎡⎤-++∈⎢⎥⎣⎦Z ;(2)[-1,2].【解析】【分析】(1)由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,从而可得函数()f x 的解析式,再利用正弦函数的单调性,即可求解()f x 的单调递增区间.(2)利用函数sin()y A x ωϕ=+的图象变换规律,得到()g x 的解析式,根据正弦函数的定义域和值域,即可求得m 的范围.【小问1详解】根据函数()sin()(00||2f x A x A πωϕωϕ=+>>,, 的图象,可得1A =,124312πππω⋅=-,所以2ω=,()sin(2)f x x ϕ=+,由五点法作图,可得2122ππϕ⨯+=,3πϕ∴=,故()sin(2)3f x x π=+,令222232k x k πππππ-++ ,求得51212k x k ππππ-++ ,k ∈Z ,()f x 的单调递增区间5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,k ∈Z .【小问2详解】将函数()y f x =的图象向右平移4π个单位长度得到曲线:sin 26C y x π⎛⎫=- ⎪⎝⎭的图象,把C 上各点的横坐标保持不变,纵坐标变为原来的2倍得到()2sin 26g x x π⎛⎫=- ⎪⎝⎭的图象,由()0g x m -=在0,2π⎡⎤⎢⎥⎣⎦上有解,即2sin 26m x π⎛⎫=- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上有解,因为0,2x π⎡⎤∈⎢⎥⎣⎦,52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,所以[]2sin(21,26x π-∈-,所以m 的取值范围为[]1,2-.18.探究与实践告诉我们:平面上不共线的三个点O 、A 、B ,对平面上任意一点P ,都有实数λ与μ,使得OP OA OB λμ=+ ,且A 、B 、P 三点共线的充要条件是1λμ+=.已知ABC 中,过重心G 的直线交线段AB 于P ,交线段AC 于Q ,设APQ 的面积为1S ,ABC 的面积为2S ,AP pPB = ,AQ qQC = .根据阅读材料的内容,解决以下问题:(1)求证:111p q+=;(2)求12S S 的取值范围.【答案】(1)证明见解析;(2)41[,)92.【解析】【分析】(1)将AG 表示为xAP y AQ + 形式,根据题意可知当P 、G 、Q 三点共线时,x +y =1,据此即可证明;(2)利用三角形面积公式及(2)中结论可得1221119()24S S p =--+,由p 的范围及二次函数的性质即可求得12S S 的取值范围.【小问1详解】AP pPB = ,AQ qQC = ,∴1p AB AP p += ,1q AC AQ q+= ,∵G 是△ABC 重心,∴()21113233p q AG AB AC AP AQ p q ++=⨯⨯+=+ 由材料可知,∵P 、G 、Q 三点共线,∴11133p q p q+++=,化简即为111p q +=;【小问2详解】由(1)1p AP AB p=+uu u ruu u r ,1q AQ AC q =+ ,∴121||||sin ||||2111||||||||sin 2AP AQ BAC S AP AQ p q S p q AB AC AB AC BAC ⋅⋅∠⋅===⋅++⋅⋅⋅∠ , 111p q +=,1p q p =-,可知1p >,∴112111p q p p p q p p -==+-+-,∴212222111111911121212()24S p q p p p S p q p p p p p p p =⋅=⋅===+++-+--++--+,1p > ,∴101p<<,则当112p =时,12S S 取得最小值49,当11p =或0时,12S S 取得最大值12, 11p≠或0,故12S S 的取值范围是41[,)92.19.定义函数()()cos sin f x x =为“正余弦”函数.结合学过的知识,可以得到该函数的一些性质:容易证明2π为该函数的周期,但是否是最小正周期呢?我们继续探究:()()()cos sin cos sin f x πx πx +=+=-=⎡⎤⎣⎦()cos sin x ()f x =.可得:π也为函数()()cos sin f x x =的周期.但是否为该函数的最小正周期呢?我们可以分区间研究()()cos sin f x x =的单调性:函数()()cos sin f x x =在π0,2⎡⎤⎢⎥⎣⎦是严格减函数,在π,π2⎛⎤ ⎥⎝⎦上严格增函数,再结合()()πf x f x +=,可以确定:()()cos sin f x x =的最小正周期为π.进一步我们可以求出该函数的值域了.定义函数()()sin cos f x x =为“余正弦”函数,根据阅读材料的内容,解决下列问题:(1)求“余正弦”函数的定义域;(2)判断“余正弦”函数的奇偶性,并说明理由;(3)探究“余正弦”函数的单调性及最小正周期,说明理由,并求其值域.【答案】(1)R(2)偶函数,理由见解析(3)()()sin cos f x x =在[]()2π,2ππZ k k k +∈是严格减函数,在[]()2ππ,2π2πZ k k k ++∈上严格增函数;最小正周期为2π;理由见解析.值域为[]sin1,sin1-.【解析】【分析】(1)根据函数定义域的求法,求得()()sin cos f x x =的定义域.(2)根据函数奇偶性的定义,求得()()sin cos f x x =的奇偶性.(3)结合题目所给的解题思路,求得()()sin cos f x x =的单调区间、最小正周期、值域.【小问1详解】()()sin cos f x x =的定义域为R .【小问2详解】对于函数()()sin cos f x x =,()()()()sin cos sin cos f x x x f x -=-==⎡⎤⎣⎦,所以()f x 是偶函数.【小问3详解】()()()()2πsin cos 2πsin cos f x x x f x +=+==⎡⎤⎣⎦,cos y x =在区间[]0,π上递减,sin y x =在区间[]1,1-上递增,所以()()sin cos f x x =在[]0,π上递减.cos y x =在区间[]π,2π上递增,sin y x =在区间[]1,1-上递增,所以()()sin cos f x x =在[]0,π上递增.所以()f x 的最小正周期为2π,()f x 在[]()2π,2ππZ k k k +∈上是严格减函数,在[]()2ππ,2π2πZ k k k ++∈上是严格增函数.结合()()sin cos f x x =的单调性可知,()f x 的值域为[]sin1,sin1-.。
高一数学期中试卷带答案
高一数学期中试卷带答案考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,在正四棱锥中,分别是的中点,动点在线段上运动时,下列四个结论:①;②;③面;④面.其中恒成立的为( )A .①③B .③④C .①②D .②③④ 2.设、,集合{1,+,}={0,,},求、的值。
3.方程2x 2+9xy+10y 2–7x –15y+k=0表示两条直线,则过这两直线的交点且与x –y+2=0垂直的直线方程是A .x+y –1=0B .x+y –2=0C .x+y+1=0D .x+y+2=0 4.设函数,则是( )A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数 5.已知函数,则=( )A .B .C .D .6.角α的终边上有一点P (a ,a ),a ∈R ,a ≠0,则tan α的值是 A .B .-C .或-D .17.是虚数单位,复数( ) A .B .C .D .8.已知集合,则正确表示集合和关系的韦恩(Venn )图是( )9.则( )A .B .C .D .10.一只蚂蚁在三边长分别为3、4、5的三角形的内部爬行,某时间该蚂蚁距离三角形的三个顶点的距离均超过1的概率为( ) A .B .C .D .11.在等比数列{a n }中,a 4=6,则a 2a 6的值为( ) A .4 B .8 C .36 D .32 12.若直线与互相垂直,则a 等于( )A .3B .1C .0或D .1或-3 13.若是方程的解,则属于区间( ) A . B .C .D .14.直线与直线互相垂直,则实数( )A .2B .C .D .-315.已知三条直线a,b,c,若a 和b 是异面直线,b 和c 是异面直线,那么直线a 和c 的位置关系是( )A .平行B .相交C .异面D .平行、相交或异面16.已知集合M="{" -1,1, -2,2},集合N="{" y ∣y =,x M},则M∩N 是( )A .{ 1, 2}B .{ 1,4}C .{ 1}D .17.圆心角为1350,面积为B的扇形围成一个圆锥,若圆锥的表面积为A,则A:B等于 A .B .C .D .18.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0”,求证”索的因应是()A.a﹣b>0B.a﹣c>0C.(a﹣b)(a﹣c)>0D.(a﹣b)(a﹣c)<019.如图所示的韦恩图中,是非空集合,定义集合为阴影部分表示的集合,则=()A.B.C.D.20.已知函数的图象恒过定点A,若点A也在函数的图象上,则=()A.0 B.1 C.2 D.3二、填空题21.设等差数列的公差,,若是与的等比中项,则k 的值为 .22.古希腊毕达哥拉斯学派的数学家研究过各种多边形数。
2024高一数学期中试卷及答案
2024高一数学期中试卷及答案一、选择题(每题5分,共25分)1. 设集合A = {x | x = 2k, k ∈ Z},B = {x | x = 3k, k ∈ Z},则A∩B =____。
A. {x | x = 6k, k ∈ Z}B. {x | x = 2k, k ∈ Z}C. {x | x = 3k, k ∈Z}D. ∅2. 若f(x) = x² - 4x + 3,则f(2 - x) =____。
A. x² - 4x + 3B. 4 - xC. x² + 4x - 3D. 4 - x²3. 已知等差数列{an}的前5项和为25,第5项为15,则该数列的首项为____。
A. 1B. 3C. 5D. 94. 设函数f(x) = 2x + 1,若f(a) + f(b) = 3,则a + b =____。
A. 0B. 1C. -1D. 25. 下列函数在区间(-∞, 1)上单调递减的是____。
A. y = x²B. y = -x²C. y = 2xD. y = 1/x二、填空题(每题5分,共25分)6. 若|x - 2| ≤ 3,则____ ≤ x ≤ ____。
7. 已知log₂(x - 1) = 3,则x - 1 =____,x =____。
8. 函数f(x) = 2x + 1的反函数为____。
9. 若向量a = (1, 2),向量b = (-2, 3),则向量a + b =____,向量a - b =____。
10. 若矩阵A = \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\),矩阵B = \(\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}\),则矩阵A + B =____。
三、解答题(共50分)11. (10分)已知函数f(x) = 2x + 1,求f(f(x))的表达式。
高一数学试卷期中试题及答案参考
高一数学试卷期中试题及答案参考一、选择题(本大题共12小题,每小题5分,共60分.)1.设全集U=R,集合A={x|x≥1},B={x|0≤x<5},则集合(?UA)∩B=().A.{x|02.如果集合A={x|x=2kπ+π,k∈Z},B={x|x=4kπ+π,k∈Z},则( )A.A BB.B AC.A = BD.A∩B=3.设A={x∈Z||x|≤2},B={y|y=x2+1,x∈A},则B的元素个数是( )A.5B.4C.3D.24. 若log2 a<0, >1,则( ).A.a>1,b>0B.a>1,b<0C.0<a0D.0<a<1,b<0< p="">5.已知集合A=B=R,x∈A,y∈B,f:x→y=ax+b,若4和10的原象分别对应是6和9,则19在f作用下的象为( )A.18B.30C. 272D.286.已知函数的周期为2,当,那么函数的图像与函数的图像的交点共有( )A.10个B.9个C.8个D.1个7.已知f(x)是一次函数,且2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)的解析式为( )A.3x-2B.3x+2C.2x+3D.2x-38.下列四组函数中,表示同一函数的是( ).A.f(x)=|x|,g(x)=B.f(x)=lg x2,g(x)=2lg xC.f(x)= ,g(x)=x+1D.f(x)= ? ,g(x)=9. 已知函数f(x)= ,则f(-10)的值是( ).A.-2B.-1C.0D.110.设f(x)为定义在R上的奇函数.当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)等于( ).A.-3B.-1C.1D.311.已知2lg(x-2y)=lgx+lgy,则xy 的值为( )A.1B.4C.1或4D. 14 或412.方程2x=2-x的根所在区间是( ).A.(-1,0)B.(2,3)C.(1,2)D.(0,1)二、填空题(每小题5分,共20分.)13. 求满足 > 的x的取值集合是14. 设,则的大小关系是15. .若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围是__ _ ___.16. 已知函数内有零点,内有零点,若m为整数,则m的值为三、解答题(本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤)17.(12分)计算下列各式的值:(1)18. (12分)集合。
人教版高一上学期数学期中(必修一)试卷(含答案解析,可下载)
-2-
18.(本小题满分 12 分)
已知函数 f x log4 4x 1 kx k R 是偶函数.
(1)证明:对任意实数 b ,函数 y
f
x 的图象与直线 y
3 2
x b 最多只有一个交点;
(2)若方程 f x log4
a 2 x
4 3
有且只有一个解,求实数 a 的取值范围.
19.(12 分)某投资公司投资甲乙两个项目所获得的利润分别是 M (亿元)和 N (亿元),它们与
投资额 t (亿元)的关系有经验公式: M
1 3
t,
N
1 6
t
,今该公司将
3
亿元投资这个项目,若设甲
项目投资 x 亿元,投资这两个项目所获得的总利润为 y 亿元.
集为
.
14.幂函数 y
x
1 2
p
2
p
3 2
p Z 为偶函数,且
f
1
f
4 ,则实数 p
.
15.用 min a, b, c 表示 a 、 b 、 c 三个数中的最小值设 f x min 2x, x 2,10 x x 0 ,则
f x 的最大值为
22.(12
分)已知函数
f
x
11x1x1
, ,
0 x1
. x 1
(1)当 0
a
log1 a ,
3
1 3
b
log1 b,
3
1 3
c
lo g3 c ,则
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学期中测试题一、选择题:(本大题共12小题,每小题5分, 共60分)1.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是 ( )A .(M ∩P)∩SB .(M∩P)∪SC .(M∩P)∩()S C ID .(M∩P)∪()S C I2.已知集合M={(x ,y )|x +y =2},N={(x ,y )|x -y =4},那么集合M ∩N 为 ( )A .x =3,y =-1B .(3,-1)C .{3,-1}D .{(3,-1)} 3.不等式0|)|1)(1(>-+x x 的解集是( )A .}10|{<≤x xB .}10|{-≠<x x x 且C .{11|<<-x x }D .}11|{-≠<x x x 且4.设A={x |-1≤x <2=, B= {x |x <a =,若A ∩B ≠,则a 的取值范围是( )A .a < 2B .a >-2C .a >-1D .-1<a ≤2 5.“p 或q 是假命题”是“非p 为真命题”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 6.集体{}5,4,3,2,1=M 的子集个数是( )A.32B.31C.16D.157.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( ) A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞8.若集合=⋂-====-P M x y y P y y M x 则},1|{},2|{( )A .}1|{>y yB .}1|{≥y yC .}0|{>y yD .}0|{≥y y9.已知(2,1)在函数f (x )=b ax +的图象上,又知f -1)5(=1,则f (x )等于( )A .94+-xB .73+-xC .53-xD .74-x10.函数f (x )与g (x )=(21)x的图象关于直线y =x 对称,则f (4—x 2)的单调递增区间是 ( ) A .[)+∞,0B .(]0,∞-C .[)2,0D .(]0,2- 11.已知0>>b a ,则ab a 3,2,2的大小关系是( )A .ab a 322>> B . aab322<< C . aab232<<D . baa232<<12.据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%.”如果“十·五”期间(2001年—2005年)每年的国内生产总值都按此年增长率增长,那么到“十·五”末我国国内年生产总值约为( )A .115,000亿元B .120,000亿元C .127,000亿元D .135,000亿元二、填空题:(本大题共4个小题,每小题4分,共16分)13.设集合A={x ||x |<4=,B={x |x 2-4x +3>0}, 则集合{x |x ∈A 且}B A x ⋂∉= . 14.函数y =-(x -1)2(x ≤0)的反函数为 ____. 15.已知集合M ={x |22x +x≤(41)x -2,x ∈R },则函数y =2x 的值域是___ _______. 16.周长为l 的铁丝弯成下部为矩形,上部为半圆形的框架(半径为r ),若矩形底边长为2x ,此框架围成的面积为y ,则y 与x 的函数解析式是 .三、解答题:(本大题共6个小题, 共74分) 17.(本小题满分12分)求下列函数1(0,1)1x xa y a a a -=>≠+的定义域、值域和单调区间.18.(本小题满分12分)已知集合{}{}(2)(1)0,(1)()0,.A x x x B x ax x a A B a =++≤=-+>⊆,且求的范围19.(本小题满分12分)已知f (x )=13-+x ax ,且点M (2,7)是y =f -1(x )的图象上一点. (1)求f (x )和f -1(x )的解析式; (2)求y =f -1(x )的值域;(3)求y =f (x )的值域,并作y =f (x )的图象.20.(本小题满分12分)已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)=T f(x)成立.(1)函数f(x)= x是否属于集合M?说明理由;(2)设函数f(x)=a x(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=a x∈M。
21.(本小题满分13分)已知函数f (x )=xax x ++22,x ∈[1,+∞)(1)当a =21时利用函数单调性的定义判断其单调性,并求其值域. (2)若对任意x ∈[1,+∞),f (x )>0 恒成立,求实数a 的取值范围.22.(本小题满分13分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元. 该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元. (1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x 个,零件的实际出厂单价为P 元,写出函数)(x f P =的表达式;(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)参考答案一、选择题: CDDCA ADCAC BC二、填空题:13. [1,3]. 14.x x y (1--=≤-1). 15.[161,2]. 16.y =-(π+2)x 2+lx +2πr 2(0<x <2+πl ). 三、解答题:17.解析:①原函数的定义域是R ;②由1(0,1)1x x a y a a a -=>≠+,得11x y a y +=--,,∴101y y +->-,∴11y -<<,∴原函数的值域是()1,1-; ③∵()12121(0,1)111x x x x x a a y a a a a a +--===->≠+++, 又当2111x xa a R R a >++时在上单调递增,-在上也单调递增, 从而11xxa y a -=+R 在上也单调递增;当20111x xa a R R a <<++时在上单调递减,-在上也单调递减, 从而11x xa y a -=+R 在上也单调递减. 18.解析: {}12-≤≤-=x x A①0=a 时,{}0<=x x B 满足B A ⊆;②0>a 时,⎭⎬⎫⎩⎨⎧-<>=a x a x x B 或1 , ∵B A ⊆ , ∴⎩⎨⎧>->-01a a 10<<⇒a ③0<a 时,⎭⎬⎫⎩⎨⎧-<<=a x a x B 1, ∵B A ⊆ ∴⎪⎪⎩⎪⎪⎨⎧<->--<0121a a a 021<<-⇒a综合①②③可知:a 的取值范围是:⎭⎬⎫⎩⎨⎧<<-121a a 19.解析:(1)由已知条件可知,点(7,2)在函数y =f (x )的图象上,∴f (7)=2,即1737-+a =2,解得a =79∴f (x )=77219-+x x ,f -1(x )=97217-+x x(2)要使函数f (x )有意义,必须且只须7x -7≠0,即x ≠1,∴函数f (x )的定义域为{x ∈R |x ≠1}即y =f -1(x )的值域为(-∞,1)∪(1,+∞)(3) 要使函数f -1(x )有意义,必须且只须7x -9≠0,即x ≠79, ∴函数f -1(x )的定义域为{x ∈R |x ≠79} 即y =f (x )的值域为{x ∈R |x ≠79} (或直接求:f (x )= 77219-+x x =71×79)1309(71130)1(971130)1(9≠-+=-+-⨯=-+-x x x x x ) 20.解析:(1)对于非零常数T ,f (x +T)=x +T , T f (x )=T x .因为对任意x ∈R ,x +T= T x 不能恒成立,所以f (x )=.M x ∉ (2)因为函数f (x )=a x (a >0且a ≠1)的图象与函数y=x 的图象有公共点,所以方程组:⎩⎨⎧==xy a y x有解,消去y 得a x =x ,显然x =0不是方程a x =x 的解,所以存在非零常数T ,使a T =T . 于是对于f (x )=a x 有)()(x Tf a T a a a T x f x x T Tx =⋅=⋅==++ 故f (x )=a x ∈M .21.解析:(1)f (x )=x +2+xa,任取x 1,x 2∈[1,+∞)且x 1<x 2 f (x 1)-f (x 2)=x 1+21+x a -x 2-22-x a =(x 1-x 2)(1-21x x a) 当a =21时,f (x 1)-f (x 2)=(x 1-x 2)(12121x x -) ∵1≤x 1<x 2,∴x 1-x 2<0, 12121x x ->0 ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴f (x )是增函数 当x =1时,f (x )取得最小值为f (1)=1+27221=+ ∴值域为),27[+∞(2)f (x )=恒成立只需恒成立02),,1[,0222>++∴+∞∈>++a x x x xax x . 设g (x )=x 2+2x +a ,x ∈[1,+∞)∵g (x )的对称轴为x =-1 ∴只需g (1)>0 便可,g (1)=3+a >0,∴a >-3 另解:g (x )>0得a >-x 2-2x =-(x +1)2+1∵x ∈[1,+∞),∴当x =1时,-x 2-2x 取得最大值为-3. ∴a ﹥322.解析:(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为0x 个,则.55002.051601000=-+=x 因此,当一次订购量为550个时,每个零件的实际出厂价恰好降为51元. (2)当1000≤<x 时,P=60;当550100<<x 时,5062)100(02.060x x P -=--=;当.51,550=≥P x 时所以⎪⎪⎩⎪⎪⎨⎧≥∈<<-≤<==.550,51)(,550100,5062,1000,60)(x N x x x x x f P(3)设销售商的一次订购量为x 个时,工厂获得的利润为L 元,则⎪⎪⎩⎪⎪⎨⎧≥∈<<-≤<=-=.550,11)(,550100,5022,1000,20)40(2x x N x x x x x x x P L当x =500时,L=6000;当x =1000时,L=11000.因此,当销售商一次订购500个零件时,该厂获得的利润是6000元; 如果订购1000个,利润是11000元.。