第二章+++静电场与导体
电磁学02静电场中的导体与介质
A q -q
-q+q
UA
q'
4 0 R0
q ' 4 0R1
q q '
4 0 R2
0
可得 q ( q) 1(9略)
例4 接地导体球附近有一点电荷,如图所示。
求:导体上感应电荷的电量
R
解: 接地 即 U0
o
感应电荷分布在表面,
l
q
电量设为:Q’(分布不均匀!)
由导体等势,则内部任一点的电势为0
选择特殊点:球心o计算电势,有:
1) Dds
S
1 (
r
1) q0内
l i mq内
V0V
1 (
r
1) limq0内 V0V
1 (
r
1)0
00 0。 40
[例2] 一无限大各向同性均匀介质平板厚度为 d
表明:腔内的场与腔外(包括壳的外表面)
物理 内涵
的电荷及分布无关。
在腔内 E 腔 外表 E 腔 面外 0带
电 量 的电 体 的
二.腔内有带电体时
q
① 带电量: Q腔内 q (用高斯定理易证)
表面
23
② 腔内的电场: 不为零。
由空腔内状况决定,取决于:
*腔内电量q;
*腔内带电体及腔内壁的 几何因素、介质。
平行放置一无限大的不带电导体平板。
0 1 2 求:导体板两表面的面电荷密度。
E2 • E1 解: 设导体电荷密度为 1、 2 ,
E0 电荷守恒: 1 + 2 = 0
(1)
导体内场强为零:E0 +E1‐E2 = 0
0 1 2 0 20 20 20
(1)、(2)解得:
第二章 静电场中的导体
作扁圆柱形高斯面
E dS ES
S
σS / ε0
+ +
S
E 0
+
+
+ +
σ E ε0
+
结论:表面电场强度的大小与该表面电荷面 密度成正比
4、影响电荷在导体表面上的分布的因素:
①导体的几何形状; ②导体所带的电量; ③周围的带电体; ④周围不带电的导体。
5.孤立带电导体表面电荷分布
Q Q C U AB VA VB
3
电容器的分类
按可调分类:可调电容器、微调电容器、 双连电容器、固定电容器 按介质分类:空气电容器、云母电容器、陶瓷电容器、 纸质电容器、电解电容器 按体积分类:大型电容器、小型电容器、微型电容器 按形状分类:平板电容器、圆柱形电容器、球形电容器
球形
柱形
平行板
《静电场》复习
两条实验定律 两个出发点 两个物理量
●库仑定律 ●叠加原理 ●电荷受力 ●电场力作功 ● 电场强度 ●电势能
两个基本性质
● 高斯定理 ●环路定理
一、导体的特征 功函数
导体电结构的特点:
存在大量的可自由移动的电荷。 (1)分为: (P3)
第一类导体:金属
第二类导体:酸、碱、盐溶液
(2)金属导体的特征: (P54)
2、屏蔽腔内电场
接地空腔导体
将使外部空间不受 空腔内的电场影响.
+
+ + +
q
+
接地导体电势为零 问:
不接地行吗?
q
+
+
q
+
3、应用 (P59) (1)精密的电磁测量仪器:(为避免外界电场的干扰) 用金属制作仪器的外壳,常用金属网罩代替。
赵凯华-电磁学-第三版-第二章-静电场中的导体和电介质
R2 R1 R0
解: 1)导体电荷只分布在表面上 球A的电荷只可能在球的表面
B
Q
Aq
o
壳电B荷有可两能个分表布面在内、外两个表面R(2具体R1分布?)R0
由于A、B同心放置
带电体系具有球对称性
电量在表面上均匀分布(满足E内=0要求)
电量在表面上均匀分布 Q q
电量q在球A表面上均匀分
R 1
4 0
9109 m 103 RE 1F
106 F
法拉单位过大, 常用单位: 1nF 109 F
1pF 1012 F
二.导体组的电容
由静电屏蔽:导体壳内部的电场只由腔内的电 量和几何条件及介质决定电位差仅与电荷 Q,几何尺寸有关,不受外部电场的影响,可
以定义电容。
UB
E dr
R2
4 0r R2 4 0 R2
例3 如图所示,接地导体球附近有一点电荷 。
求:导体上感应电荷的电量
解: 接地,即 U 0
设:感应电量为 Q
R
由于导体是个等势体
O
l
q
O点的电势也为零 ,则
Q q 0 40 R 40l
Q Rq l
腔内无电场,E腔内=0 腔内电势处处相等
S
证明: 在导体壳内紧贴内表面作高斯面S
E ds 0 高斯定理 S
Qi 内表面 0
1.处处没有电荷
与等位矛盾 证明了上述 两个结论
2.内表面有一部分是正 则 会 从 正 电 荷 向 负 电荷,一部分是负电荷 电荷发出电力线
这就是物质对静电场的响应---第二章的研究内容:电场中的导体感应、 电解质极化, 并且分析感应、极化电荷对静电场的影响---静电场与物质的 相互作用(影响)
工程电磁场第二章静电场小结
SK k dS
1 2
n
K qK
K 1
即
We
1 2
n
K qK
K 1
3)自有能和互有能的概念
W
1 2
n
K qK
K 1
1 2
n k 1
qkk ( qk )
1 2
n
[qkk ( qk )]
k 1
一般计算没有必要把静电能分成自有能和互有能,计算也很不方便:但 对点电荷系统,因其自有能为无穷大,无法计算,才必须分开计算!
E Exex Eyey Ezez
• 积分是对源点 (x', y', z') 进行的,计算结果是场点(x, y, z) 的函数。
点电荷群
( r ) 1 N qi C
4 0 i1 r ri'
连续分布电荷
dq : dV , dS , dl
( r ) 1
dq C
4 0 v' r r'
若无限远处为电位参考点(场源有限)上式中的C为零。
• 唯一性定理为静电场问题的多种 解法(试探解、数值解、解析解 等)提供了思路及理论根据。 不同的求解方法,其解的形式 可能不一样,唯一性定理保证 它们彼此相等且均为有效。
(5)根据唯一性定理导出的镜像法(求场量) 1)无限大导体平面的镜像法
r1
e r2
e r1
r2
上半空间的场是两个点电荷产生的, 其场强和电位分别为:
在介质分界面上电位是连续的。
1
1
n
2
2
n
介质分界面上无自由面电荷时右端为零。
② 导体(1)与理想介质(2)分界面,用电位 表示的衔接条件
第二章(静电场中的导体和介质)
§2.1导体
导体(conductor):存在大量的可自由移动的 电荷,包括金属、电解液、等离子体、超导体。 导体放入静电场后,二者产生相互作用:导体 中的自由电荷在静电场的作用下,会重新分布; 静电场会受到导体中自由电荷的影响而发生变化。 我们这里只讨论金属导体,所得结论有的也适 用于其它导体。
一、静电平衡
E
E0
二、导体空腔
静电平衡条件下,导体空腔除了具有一般导 体的基本性质外 ,还有一些特殊的性质,分两种 情况: 1、腔内无电荷: (1)空腔的内表面不存在电荷; (2)腔内无电场; (3)腔内电位为常数。 因外部电场、电荷对腔内无影响,因此具有保 护内部空间的作用。
2、腔内有电荷: (1)导体空腔的内表面上的电荷与腔内的电 荷等值异号; (2)腔内的电场与电位分布都由腔内电荷决 定; (3)腔内表面电荷分布与腔外情况无关,整 个空间的电场和电位分布都受腔内电荷 影响; (4)将空腔外壁接地,腔外电场及电位分布 不受腔内电荷影响。
P分子 V
V 0
(2)电极化强度矢量通量 由于电介质发生极化后,在电介质的内 部或边界表面上出现极化电荷,所以电极化 强度矢量与极化电荷之间存在相互联系。 可以证明:闭合曲面的电极化强度矢量 通量等于该闭合曲面内的极化电荷的负值。
即: P dS q
S 内
(2)电极化类型: 当电介质受到外电场的作用时,要在电介质 的内部或电介质的边界上出现极化电荷,称 为电介质的极化,简称电极化。电极化有两 种类型:位移极化和取向极化。 无外场时:
有极分子 无极分子
有外场时: (a)有极分子电介质,主要是取向极化 ,也 有位移极化。 (b)无极分子介质,只有(电子)位移极化。
D o E o E o (1 )E
静电场中的导体与电介质
§2 静电场中的导体和电介质§2-1 静电场中的导体1. 导体的静电平衡条件当电荷静止不动时,电场散布不随转变,该体系就达到了静电平衡。
在导体中存在自由电荷,它们在电场的作用下可以移动,从而改变电荷的散布……导体内自由电荷无宏观运动的状态。
导体的静电平衡的必要条件是其体内图2-1导体的静电平衡场强处处为零。
从静电平衡的条件动身可以取得以下几点推论:推论1)导体是等位体,导体表面是等位面:2)导体表面周围的场强处处与它的表面垂直:因为电力线处处与等位面正交,所以导体外的场强必与它的表面垂直。
(注意:本章所用的方式与第一章不同,而是假定这种平衡以达图2-2导体对等位面的控制作用到,以平衡条件动身结合静电场的普遍规律分析问题。
)2.电荷散布1) 体内无电荷,电荷只散布在导体的表面上:当带电导体处于静电平衡时,导体内部不存在净电荷(即电荷的体密度)电荷仅散布在导体的表面。
可以用高斯定理来证明:设导体内有净电荷,则可在导体内部作一闭合的曲面,将包围起来,依静电条件知S面上处处, 即由高斯定理必有q=02) 面电荷密度与场强的关系:当导体静电平衡时,导体表面周围空间的 与该处导体表面的面电荷密度 有如下关系:论证: 在电荷面密度为 的点取面元设 点为导体表面之外周围空间的点,面元。
充分小,可以为 上的面电荷密度 是均匀的,以为横截面作扁圆柱形高斯面(S ),上底面过P 点,把电荷q= 包围起来. 通太高斯面的电通量是:3) 表面曲率的影响、尖端放电导体电荷如何散布,定量分析研究较复杂,这不仅与这个导体的形状有关,还和它周围有何种带电体有关。
对孤立导体,电荷的散布有以下定性的规律:图2-3导体表面场强与电荷面密度曲率较大的地方(凸出而尖锐处),电荷密度e 较大;曲率较小的地方(较平坦处)电荷密度e 较小;曲率为负的地方(凹进去向)电荷密度e 更小。
1) 端放电的利和弊3 导体壳(腔内无带电体情况)大体性质:当导体壳内无带电体时,在静电平衡当导体壳内无 带电体时,在静电平衡下:导体壳内表面上处处无电荷,电荷仅散布在外 表面;空腔内无带电场,空腔内电位处处相等。
第二章 静电场中的导体和电介质:电容器的电容
P e 0 E
§2.8 电容器的电容
一.孤立导体的电容
q C V
单位:F(法拉)
C是与导体的尺寸和形状以及周围的电介质有 关,与q,V无关的常数。
1F 10 F 10 PF
6 12
例1 .求半径为R的孤立导体球的电容。
q1:q2: · :qn = C1:C2: · :Cn · · · ·
q qi (V A VB ) C i ,
i 1 i 1
n
n
n q C Ci VA VB i 1
并联电容器的总电容等 于各电容器的电容之和 2. 串联
C Ci
i 1
n
A +
VA +q –q +q –q 。
q dA udq dq C
从开始极板上无电荷直到极板上电量为Q的过 程中,电源作的功为
2 q 1 Q 1Q dq 0 qdq C C 2 C
A dA 0
Q
Q CU
U为极板上电量为Q时两板间的电势差
1 Q2 1 1 2 A CU QU 2 C 2 2
E
0
( r R1 , r R2 )
λ er 2πεr
B A
( R1 r R2 )
2
VA VB
R E dl R Edr
1
λdr R1 2πεr
R2
R2 q R2 λ ln ln 2πε R1 2πεL R1
q 2πεL C V A VB ln( R2 / R1 )
②所求的C = q/VA–VB一定与q和VA–VB无关,仅 由电容器本身的性质决定。
第二章-静电场与导体
第二章静电场与导体教学目的要求:1、深入理解并掌握导体的静电平衡条件及静电平衡时导体的基本性质,加深对高斯定理和环路定理的理解,结合应用电场线这一工具,会讨论静电平衡的若干现象,会结合静电平衡条件去理解静电感应、静电屏蔽等现象,并会利用前章的知识求解电场中有导体存在时的场强和电势分布。
2、确理解电容的概念,并能计算几种特殊形式的电容器的电容值。
3、进一步领会静电能的概念、会计算一些特殊带电导体的静电能。
4、深刻理解电场能量的概念,会计算电场能。
教学重点:1、静电场中的导体2、电容和电容器教学难点:1、静电场的唯一定理§2.1 静电场中的导体§2.2 电容和电容器§2.3 静电场的能量§2.1 静电场中的导体1、导体的特征功函数(1)金属导体的特征金属可以看作固定在晶格点阵上的正离子(实际上在作微小振动)和不规则运动的自由电子的集合。
①大量自由电子的运动与理想气体中分子的运动相同,服从经典的统计规律。
②自由电子在电场作用下将作定向运动,从而形成金属中的电流。
③自由电子的平均速率远大与定向运动速率。
(2)功函数金属表面存在一种阻止自由电子从金属逸出的作用,电子欲从金属内部逸出到外部,就要克服阻力作功。
一个电子从金属内部跑到金属外部必须作的最小功称为逸出功,亦称功函数。
2、导体的静电平衡条件(1)什么是静电感应?当某种原因(带电或置于电场中)使导体内部存在电场时,自由电子受到电场力的作用而作定向运动,使导体一侧因电子的聚集而出现负电荷布另一侧因缺少电子而有正电荷分布,这就是静电感应,分布在导体上的电荷便是感应电荷。
(2)静电平衡状态当感应电荷在导体内产生的场与外场完全抵消时,电子的定向运动终止,导体处于静电平衡状态。
(3)静电平衡条件所有场源包括导体上的电荷共同产生的电场的合场强在导体内部处处为零。
静电平衡时:①导体是等势体。
②导体外表面附近的电场强度与导体表面垂直。
静电场中的导体和电介质电磁学
如前所述,导体壳的外表面保护了它所 包围的区域,使之不受导体壳外表面上的 电荷或外界电荷的影响,这个现象称为静 电屏蔽.
图2.12 <a> 腔内无电 荷
图2.12 <b>腔内有电荷
图2.12 <c> 导体腔接
图2.12 <d> c的等效图
地
图2.12 静电屏蔽
〔3〕静电场边值问题的唯一性定理
其中任意两导体之间都有电容,但并不完全取决 于自己的几何形状和相对位置,与周围其他导
§2.4 静电场中的电介质
1、电介质的极化 2、极化强度与退极化场 3、电介质的极化规律
§2.4.1 电介质的极化
1、电介质〔dielectrics〕 是绝缘体,内部大量的束缚电荷. 与导体和静电场的相互作用,既有相似之 处,但也有重要差别.
第二章 静电场中的导体和电介质
第二章 静电场中的导体和电介质
§2.1 物质的电性质 §2.2 静电场中的导体 §2.3 电容和电容器 §2.4 静电场中的电介质 §2.5 电介质中静电场的基本定理 §2.6 边值关系和有介质存在时的唯一性
定理
§2.1 物质的电性质
1、 导体、绝缘体与半导体 2、 物质的电结构
由于空气中存在离散的自由电荷,永电体 表面上的极化电荷会吸引一些自由电荷 而最终会被中和失去作用.
2、极化率与相对介电常数
设平行板电容器未填充电介质时极板间的场强
为E0<外场>,填充电介质后电场为E,由介质极
化规律知,介质极化强度为: P 0 E
与电容器正极板相对的介质表面有极化电荷面
密度:' P•nP,与负极板相对的介质表
§2.1.1 导体、绝缘体与半导体
导体静电场
电解电容器
3.1 孤立导体的电容
对于孤立带电小球
V
q 4 0 R
R
q
可以证明,电势与电荷的正比关系对任意形状的导体都成立。 因此有:
q CV
比例常数C叫孤立导体的电容
q C V
3.2电容器及其电容
q q ---- 一极板带电量(电容器的电量) c uA uB uAB ---- 两极板电势差(电容器的电压)
q
+
q
+
+
q
+
结论
1.不接地空腔导体,腔外电场对腔内无影响,
腔内电场对腔外有影响。
+q
-q
+q
2.接地空腔导体,则内外电场都无影响.
+q
-q
静电屏蔽的应用
例 1 有一外半径 R1 10cm 和内半径 R2 7cm 的金属球壳,在球壳内放一半径 R3 5cm 的同心金 8 属球,若使球壳和金属球均带有 q 10 C 的正电荷, 问 两球体上的电荷如何分布?球心的电势为多少? 解 根据静电平衡的条件求电荷分布 作球形高斯面 S1
导体静电场
§2-1 静电场中的导体
一.导体的电结构 : 导体中有大量自由电荷(自由电子)
和带正电晶体点阵。 . 通常情况下,正负电荷总量相等,导 体呈电中性。
,
放入电场中后,自由电荷发生移动,产
生静电感应现象。
导体与电介质相比: 电结构不同:导体中有大量自由电荷, 介质中为束缚电荷。
电阻率不同:导体: 108 ~ 106 m
8 18 10 ~ 10 m 介质:
二.导体的静电感应 静电平衡
1. 静电感应现象 (electrostatic induction) a)现象:导体在电场中,其自由电荷受电场力
电磁学(梁灿彬)第二章导体周围的静电场
电像法可以用来求解导体周围的静电场,并给出导体表面的电荷分布和电场强度。
静电场中的高斯定理和环路定理
CATALOGUE
03
环路定理表明在静电场中,电场强度沿任意闭合路径的线积分等于零,也就是说,电场线没有起点也没有终点,它们形成闭合的曲线或直线。
总结词
环路定理是静电场的另一重要定理,它表明在静电场中,电场强度沿任意闭合路径的线积分等于零。这意味着电场线没有起点也没有终点,它们形成闭合的曲线或直线。这个定理可以用公式表示为:∮E·dl = 0。
电场强度与导体表面的电荷密度成正比
02
导体表面的电场线与导体表面垂直,并且从导体内部指向导体外部。
电场线与导体表面垂直
03
随着距离的增加,电场强度逐渐减小。
电场强度随距离的增加而减小
电像法是一种通过引入虚拟电荷来描述静电场的数学方法。
在电像法中,虚拟电荷的位置和大小是根据静电平衡条件和电场线与导体表面垂直的条件来确定的。
CATALOGUE
02
导体内部无电荷
导体内部任意位置均无电荷分布,电荷只分布在导体的表面。
电场线与导体表面垂直
导体表面的电场线与导体表面垂直,并且从导体内部指向导体外部。
导体表面电场强度与导体表面的电荷密度成正比
导体表面的电荷密度越大,导体表面的电场强度越大。
01
导体表面的电荷密度越大,导体表面的电场强度越大。
01
电子设备中的隔直、旁路和耦合作用
电容器在电子设备中可以起到隔离直流信号的作用,同时也可以旁路掉不需要的交流信号,实现不同电路之间的耦合。
02
调谐和滤波
利用电容器的充放电特性,可以调整电路的频率响应,从而实现调谐和滤波的功能。
静电场中导体和电介质
第二章 静电场中的导体和电介质一、 选择题1、 有一接地的金属球,用一弹簧吊起,金属球原来不带电。
若在它的下方放置一电量为q 的点电荷,则:A 、只有当q>0时,金属球才能下移B 、只有当q<0是,金属球才下移C 、无论q 是正是负金属球都下移D 、无论q 是正是负金属球都不动 答案:C 2、一半径为R 的簿金属球壳,带电量为-Q ,设无穷远处电势为零,,则在球壳内各点的电势U I 可表示为()A 、R Q KU i-< B 、R Q K U i -= C 、R Q K U i -> D 、0<<-i U RQK答案:B 3、在带电量为+Q的金属球产生的电场中,为测量某点场强E ,在该点引入一带电量为Q +的点电荷,测得其受力F。
则该点场E的大小为()A 、QF E 3=B 、QF E 3>C 、QF E 3<D 、 无法判断 答案:B4、同心导体球与导体球壳周围电场的电力线分布如图所示,由电力线分布情况可知球壳上所带总电量为()A 、q>0B 、q=0C 、q<0D 、无法确定 答案:B5、 当一个带电导体达到静电平衡时()A 、表面上电荷密度较大处电势校高。
B 、表面曲率较大处电势较高C 、导体内部的电势比导体表面的电势高。
D 、导体内任一点与其表面上任一点的电势差等于零 答案:D6、把A ,B 两块不带电的导体放在一带正电导体的电场中,如图所示,设无限远处为电势零点, A 的电势为U A ,B 的电势为U B ,则()A 、UB >U A >0 B 、U B >U A ≠0C 、U B =U AD 、U B <U A 答案:D7、在一个原来不带电的外表面为球形的空腔导体A 内,放有一带电量为+Q 的带导体B , 如图所示,则比较空腔导体A 的电势U A 和导体B 的电势U B 时,可得以下结论()A 、U A =UB B 、U A >U BC 、U A <U BD 、因空腔形状不是球形,两者无法比较 答案:C8、在相对介电常数为的电介质中挖去一个细长的圆柱形空腔,直径d,高为h(h 》d),外电场E垂直穿过圆柱底面则空腔中心P点的场强为() A 、()E r 1-ε B 、1-r Eε C 、E h d r ε D 、E答案:D9、如图所示,一封闭的导体壳A 内有两个导体B 和C,A.C 不带电,B 带正电,则A.B.C 三导体的电势UA、U B 、U C 的大小关系是( )A 、 UA=UB =UC B 、 U B >UA=U CC 、 U B >U C >UAD 、 U B >UA>U C 答案:C10、一导体球外充满相对介电常数为r ε的均匀电介质,若测得导体表面附近场强为E,则导体球面上的自由电荷面密度σ为( )A 、E 0εB 、E r εε0C 、E r ε D 、E r )(00εεε- 答案:B11、设有一个带正电的导体球壳,若球壳内充满电介质球壳外是真空时,球壳外一点的场强大小和电势用E 1,U 1表示;若球壳内的场强大小和电势用E 2和U 2表示,则两种情况下壳外同一点处的场强大小和电势大小的关系为()A 、E 1=E 2,U 1=U 2B 、E 1=E 2,U 1>U 2C 、E 1>E 2,U 1>U 2D 、E 1<E 2,U 1<U 2 答案:A12、金属球A 与同心金属壳B 组成电容器,球A 上带电荷q 壳B 上带电荷Q ,测得球与壳间电势差为U AB ,可知该电容器的电容 值为()A 、ABU q B 、ABU Q C 、AB U Q q )(+ D 、ABU q2 答案:A13、C 1和C 2两个电容器,其上分别标明200PF (电容器),500v (耐压值)和300PF ,900v 。
电磁学第二章
最后, qA 1 S 2 S
qB 3 S 4 S
q A qB q A qB 1 4 、 2 3 2S 2S
en
(1)此时,平行板表面可看成无限大平面。 结论:
(2)无论A或B是否接地,总是有,
2 3、 1 4
(3)接地时 1 4 0 。 (?) (4)(2)、(3)的结论在解复杂问题时可 直接引用
静电场中的导体
例2、在上例两板间插入长宽相 同的中性金属平板C,求六个壁 PA 的电荷面密度。 2 3、 4 5 解:利用例1的结论有: 对于 PA 点有:
封闭金属壳内外的静电场
2、壳外有带电体的情况
无论壳接地与否或外壁电荷密度不一定处处为 零;可以证明壳外电场不受壳内电荷(包括壳内壁 电荷)影响。
【思考】移动腔内带电体或改变腔内带电体电 量,是否影响内、外表面电荷分布?
【思考题解答】
+
+ +
+
+ + + + +
+ + + + +
S
+
+
带电体
移动金属腔内带电体,或改变腔内带电体 的电量,不影响外表面电荷分布,只影响内表 面电荷分布。
例4、半径为R、电荷为Q的金属球外有一与球 心距离为 l 的点电荷 q ,求金属球的电势 (参考点在无穷远)。若球接地,求球面上 的电荷 q 。
静电场中的导体
六、平行扳导体组例题
例1、长宽相等的金属平板A和B在真空 中平行放置,如图,板间距离比长宽小 的多。分别令每板带 q A 及 qB的电荷, 求每板表面的电荷密度。 解: 法1 ,在导体A、B内取两点 P1 、 P2 1 2 3 4 则: E e e e e 0 n P n
第二章 静电场中的导体与电介质
第二章 静电场中的导体与电介质2.1 导体与电介质的区别:(1)宏观上,它们的电导率数量级相差很大(相差10多个数量级,而不同导体间电导率数量级最多就相差几个数量级)。
(2)微观上导体内部存在大量的自由电子,在外电场下会发生定向移动,产生宏观上的电流而电介质内部的电子处于束缚状态,在外场下不会发生定向移动(电介质被击穿除外)。
2.2静电场中的导体1. 导体对电场的响应:静电场中的导体,其内部的自由电子会发生定向漂移,电荷分布会发生变化,这是导体对电场的响应方式称为静电感应,导体表面会产生感应电荷,感应电荷激发的附加场会在导体内部削弱外电场直至导体内部不再有自由电子定向移动,导体内电荷宏观分布不再随时间变化,这时导体处于静电平衡状态。
2. 导体处于静电平衡状态的必要条件:0i E =(当导体处于静电平衡状态时,导体内部不再有自由电子定向移动,导体内电荷宏观分布不再随时间变化,自然其内部电场(指外场与感应电荷产生的电场相叠加的总电场)必为0。
3. 静电平衡下导体的电学性质:(1)导体内部没有净电荷,电荷(包括感应电荷和导体本身带的电荷)只分布在导体表面。
这个可以由高斯定理推得:ii sq E ds ε⋅=⎰⎰,S 是导体内“紧贴”表面的高斯面,所以0i q =。
(2)导体是等势体,导体表面是等势面。
显然()()0b a b i a V V E dl -=⋅=⎰,a,b 为导体内或导体表面的任意两点,只需将积分路径取在导体内部即可。
(3)导体表面以处附近空间的场强为:0ˆEn δε=,δ为邻近场点的导体表面面元处的电荷密度,ˆn为该面元的处法向。
简单的证明下:以导体表面面元为中截面作一穿过导体的高斯柱面,柱面的处底面过场点,下底面处于导体内部。
由高斯定理可得:12i s s dsE ds E ds δε⋅+⋅=⎰⎰⎰⎰,1s ,2s 分别为高斯柱面的上、下底面。
因为导体表面为等势面所以ˆE En=,所以1s E ds Eds ⋅=⎰⎰而i E =0所以0ds Eds δε=,即0ˆE n δε=(0δ>E 沿导体表面面元处法线方向,0δ<E 沿导体表面面元处法线指向导体内部)。
电磁学-自测题2
第二章 静电场与导体一、判断题(正确划“√”错误划“×” )1.由公式0εσ=E 知,导体表面任一点的场强正比于导体表面处的面电荷密度,因此该点场强仅由该点附近的导体面上的面电荷产生的。
( )2. 由于静电感应,在导体表面的不同区域出现异号电荷,因而导体不再是等势体. ( )3.一封闭的带电金属盒中,内表面有许多针尖,如图所示,根据静电平衡时电荷面密度按曲率分布的规律,针尖附近的场强一定很大。
( )4. 在无电荷的空间里电势不可能有极大值和极小值. ( )5. 若所有导体的电势为零,则导体以外空间的电势处处为零. ( )6.一个接地的导体空腔可以隔离内、外电场的影响。
( )7.静电平衡时,导体表面是等势面,所以导体表面附近的场强大小处处相等.( )8.用一个带电的导体小球于一个不带电的绝缘大导体球相接触,小球上的电荷会全部传到大球上去。
( )9.带电体的固有能在数值上等于该带电体从不带电到带电过程中外力反抗电力作的功。
( )10.静电平衡时,某导体表面的电荷在该导体内部产生的场强处处必为零。
( )11.两个带有同种电荷的金属球,一定相斥。
( )12.真空中有一中性的导体球壳,在球中心处置一点电荷q ,则壳外距球心为r 处的场强为204qE r πε=,当点电荷q 偏离中心时,则r 处的场强仍为204r qπε。
( )13.接地的导体腔,腔内、外导体的电荷分布,场强分布和电势分布都不影响。
( )14.凡接地的导体,其表面电荷处处必为零. ( )15.两个半径相同的金属球,其中一个是实心的,一个是空心的,通常空心球比实心球的电容大。
( )16.达到静电平衡时,导体内部不带电,所以导体内部场强必为零。
( )17.用一个带电的小球与一个不带电绝缘大金属球接触,小球上的电荷密度比大球上的电荷密度大( )18.一个接地的导体空腔,使外界电荷产生的电场不能进入空腔内,也使内部电荷产生的电场不能进入腔外。
电磁学-静电场中的导体和电介质a
❖ 表面突出尖锐部分曲率大, 电荷面密度大;
导体
❖ 表面比较平坦部分曲率小, 电荷面密度小;
❖ 表面凹进部分曲率为负, 电荷面密度最小。
证明: 设有两个相距很远的带电导体球,如图: 用很长的细导线连接两导体球,
忽略两球间的静电感应,导体球上的电荷仍均匀分布。
整个导体系统是等势体。
A
球:VA
1 4 0
例1: 无限大均匀带电平面的电场中平行放一无限大金属平板,
已知:带电平面的电荷面密度为 0 。
求:金属板两面的感应电荷面密度 。
解: 设金属板两面感应电荷面密度分别为 1 和 2 ,
假定均大于零 。
由电荷守恒: 1 2 0
(1)
0 1 2
导体内场强由三个带电平面产生并且 = 0 :
外表面接地,腔外电场消失。
导体空腔内电场不受外界的影响,或利用导体空腔接地 而使腔内带电体与外界隔绝的现象。
封闭导体壳(不 论接地与否)内部的 电场不受外电场的影 响;
接地封闭导体壳 (或金属丝网)外部 的场不受壳内电荷的 影响。
⑵ 应用:均压服
E
E
0+ +++
注意:腔内无带电体时,空腔导体外的电场由空腔导体外表面的 电荷分布和其它带电体的电荷分布共同决定。
腔内有带电体时,腔体外表面
所带的电量由电荷守恒定律决 定,腔外导体和电场不影响腔
内电场。
四.有导体存在时静电场
E,
V
的计算
电荷守恒定律
静电平衡条件
电荷分布
EV
第二章有导体时的静电场讲解
§4 带电体系的静电能
一、带电体系的静电能 在引力场中,两物体相互靠近时,引力作正功, 势能减少;反之势能增加。类似地,对静电体系, 也可引入静电势能的概念。如,q1、q2构成的静电 体系,体系从状态 1 变化到状态 2 ,则电场力在这 一过程中做的功可定义为体系在新旧两种状态中 静电(势)能之差。进一步约定q1、q2处于无限远 离时的静电能为 0,则它们处于任意状态时的静电 能便有了明确值。对多个点电荷构成的静电电系 也可类似地定义静电能。
q
i
i
0
s
E 0
2.面电荷密度 和场强E 关系:
E dS ES S / 0
侧 上
下
E 0
E
S
注意: E 仅在导体表面附近适用 0
3.导体表面曲率和电荷密度的关系
U2
U1 4 0r Q1
4 0 R
1 2 3
1 EB ( 1 2 3 4 ) 0 2 0
A 1 2 B 3 4
§ 2.2 封闭金属壳内的静电场 1.腔内无电荷(无论导体是否带电) (a) 导体内场强为零; (b) 腔内空间场强处处为零; (c) 导体、空腔为等势体; (d) 内表面处处没有电荷,电荷只分布在外表面。 2. 腔内有电荷 q q (a)导体内场强处处为零; (b)腔内表面感应电荷为 - q,腔外壁总电荷为Q+q; (c)腔内电场不再为零,具体分布与腔内电荷有关; (d)导体外表面上的电荷分布与无空腔的导体相同。
而平行板电容器内部为体积V的均匀电场, 很明显,单位体积内能量,(电场能量密度):
1 2 w E 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、选择题、
1、关于导体有以下几种说法:(B)
(A)接地的导体都不带电。
(B)接地的导体可带正电,也可带负电。
(C)一导体的电势零,则该导体不带电。
(D)任何导体,只要它所带的电量不变,则其电势也是不变的。
秆子的电量也随之增大,故指针和秆子的排斥力也
增大,指针偏转也就越大。
3、在能量公式 中,能否将 作为电场的能量密度?为什么?
答: 是电荷系的总静电能,即包括自能又包括互能。积分遍及电荷分布空间。 是电场的能量,也包括自能和互能,积分遍及场分布空间,故不能将 作为电场的能量体密度。
五、证明题
1、将一带正电的导体A置于一中性导体B附近,B上将出现感应电荷。A上的电荷也将重新分布。证两个导体上不可能都出现异号电荷(如图所示)的分布
4题图5题图
5、两个导体分别带有电量-q和2q,都放在同一封闭的金属球壳内,证明:电荷为2q的导体的电势高于金属球壳的的电势。
证:在封闭金属壳的金属内部任意作一个包围着空腔的封闭曲面,静电平衡时,通过此闭合曲面的电通量为零,根据高斯定理,闭合曲面所包围的电荷的代数和为零,空腔内的电荷总量为2q-q=q,所以,金属球壳内表存在-q的电量。从电荷为+2q的导体表面发出的电力线将有一部分终止于金属壳内表面的负电荷,根据电力线起点电位高于终点电位,电荷为2q的导体的电位高于金属壳的电位。
若将B从盒中移走,A受();(2)若使B与金属盒内壁接触,
A受();(3)若让金属盒接地,则A受();
(4)当金属盒接地后,先把B从盒内移走,然后拆去接地线,
则A受()。(括号内填吸力或斥力)。
斥力、吸力、斥力、吸力、吸力
5、如图所示,金属球壳内外半径分别为a和b,带电量为Q,球壳腔内距球心O为r处 置一电量为q的点电荷,球心O点的电势()。
16、平行板电容器充电后两极板的面电荷密度分别为+σ与-σ,极板上单位面积的器,放在绝缘的台上。先使验电器带电,则金箔张开,见(a)图。若让验电器的小球与金属外壳相连,则金属下垂,见(b)图。撤除小球与外壳的连接后,若用手指触及验电器的小球,则金箔又重新张开,,见(c)图。试解释这一现象。
( )及电容()
。
9、如图所示,电容 (); (2)a、b间加上电压100V, 上的电量(); (3) ()
250uF
10、如图所示电路
()
11、四个电容器电容是 () (), ()
0
12、有一些相同的电容,电容都是 ,耐压都是200V,现在要获得耐压为1000V,电容 ,需要这种电容器()个,采用()连接方式。
三、填空题
1、导体在静电场中达到静电平衡的条件是()。
合场强在导体内部处处为零
2、在一电中性的金属球内,挖一任意形状的
空腔,腔内绝缘地放一电量为q的点电荷,
如图所示,球外离开球心为r处的P点的
场强()。
3、如图所示,在金属球A内有两个球形空腔,
此金属球整体上不带电,在两空腔中心绝缘
地各放置一点电荷q1和q2,球外远处有一固
7、若电荷间的相互作用不满足平方反比律,导体的屏蔽效应仍然存在。()×
8、用一个带电的导体小球于一个不带电的绝缘大导体球相接触,小球上的电荷会全部传到大球上去。()×
9、带电体的固有能在数值上等于该带电体从不带电到带电过程中外力反抗电力作的功。()√
10、静电平衡时,某导体表面的电荷在该导体内部产生的场强处处必为零。()×
(A)
(B)
(C)
(D) ,
4、两个平行放置的带电大金属板A和B,四个表面电荷面密度为 如图所示,则有(A)
(A)
(B)
(C)
(D)
5、如图所示两个同心球电容器的联接法是:(B)
(A)(a)串联(b)并联
(B)(a)并联(b)串联
(C)(a)(b)均并联
(D)(a)(b)均串联
(a)(b)
6、将一接地的导体B移近一带正电的孤立导体A时,A的电势。(B)
2、一封闭金属壳A内有一电量为q的导体B,求证,为使 ,唯一的方法是令q=0.此结论与A是否带电有无关系?
证:若 。金属壳的内表面带负电,有电场线从B出发,终止于A内表面上,因此有 ,由此可见,要使 ,其必要条件是B不带电,q=0。
若q=0,A壳内表面没有电荷,壳外部的场又不能影响它内部的场,A与B之间没有电场存在,它们之间没有电位差,因此,要使 的充要条件是q=0。
(A)该处无穷小面元上的电荷产生的。(B)该面元以外的电荷产生的。
(C)该导体上的全部电荷产生的。(D)所有导体表面上的电荷产生的。
11、一半径为R的孤立导体球,带有正电荷q,其电势分布曲线 —r是:(B)
(A)(B)
(C)(D)
12、平行板电容器两极板的面积都是S,相距为d,其间有一厚度为t的金属板与极板平行放置面积亦是S则系统电容是:(B)
第二章静电场与导体
一、判断题(正确划“ ”错误码划“ ”)
1、由公式 知,导体表面任一点的场强正比于导体表面处的面电荷密度,因此该
点场强仅由该点附近的导体上的面上的面电荷产生的。()×
2、一导体处静电场中,静电平衡后导体上的感应电荷分布如图,根据电场线的性质,必有一部分电场线从导体上的正电荷发出,并终止在导体的负电荷上。()×
5串联
13、半径为R的孤立金属圆盘,盘的厚度忽略不计,其电容是()。
14、静电天平,如图所示,当电容器不带电时,天平正好平衡当天平一端加上质量为m的砝码时,电容器两极板需加电压()时,天平才能重新达到平衡。
15、一平行板电容器极板面积为S,间距为d,接在电源上以保持电压为U,将极板的距离垃开一倍。(1)静电能的改变(), (2)电场对电源作的功()(3)外力对极板作的功( )。
6、在金属球壳外距球心O为d处置一点电荷q,球心O处电势()。
7、演示用的范德格喇夫静电起电机,它的铝球半径为10cm,该起电机能达到的最高的电势()(设空气的击穿场强为3×10 )
3×10 V
8、一球形电容器内外两壳的半径分别为R 和R (如图),
今在壳之间放一个内外半径分别为R 的同心导体球壳
当给内壳(R )以电量Q时,半径分别为 两壳的电势差
2、如图所示是一种用静电计测量电容器两极板间电压的装置。试问:电容器两极板上的电压越大,静电计的指针的偏转偏转是否也越大,为什么?
答:静电计可看作一个电容器,与平行板电容器
并联,二者极板上的电压相等,当电容一定时,电
量与电压成正比,当平行板电容器的电压增大时,
静电计构成的电容器上的电压也增大,从而指针和
(A) (B)
(C) (D)-
15、如图所示,一半径为 的导体球,带电量为Q,在距球心为d处挖一半径为 ( <d, < -d)的球形空腔,在此腔内置一半径为 的同心导体球( < ),此球带有电量q,整个带电系统的静电能。(B)
(A)
(B)
(C)
(D)
16、平行板电容器充电后与电源断开,然后将距离拉大,则电容C,电压U,电场能量W,将有如下变化:(A)
3、一封闭的带电金属盒中,内表面有许多针尖,如图所示,根据静电平衡时电荷面密度按曲率分布的规律,针尖附近的场强一定很大。()×
4、孤立带电导体圆盘上的电荷应均匀分布在圆盘的两个圆面上。()√
5、对于一个孤立带电导体,当达到静电平衡时,面电荷的相对分布与导体表面的曲率成正比。()√
6、一个接地的导体空腔,使外界电荷产生的场强不能进入腔内,也使内部电荷产生的场不进入腔外。()×
答:(a)使验电器带电,金箔张开,是因为金箔与棒带同号电荷,在斥力的作用下而张开。
(b)验电器的小球与金属外壳相连金箔下垂,是因为电荷只能分布在金属外壳,棒与金箔不带电而下垂。
(c)用手指触及验电器的小球,金箔又重新张开,是因为通人手、人体使小球与大地相连,相当于接地。金属外壳与大地之间形成电场,使大地表面带负电荷。又由于大地与小球相连,小球也带负电荷。因此金箔与棒带同号负电荷,在斥力的作用下而张开。
定的点电荷q,q到球心的距离r比球的球的
半径大得多。
(1)q受到的静电力();
(2)q1受到的q的作用力();
(3)q受到q2的作用力();
(4)q1受到q2的作用力()。
、0、 、0
4、在一电中性的绝缘金属盒内悬挂一带正电的金属小球B如图所示。
(1)、带正电的试探电荷A位于金属荷附近,A受( ),
4、多个彼此绝缘的未带电导体处于无场的空间。试证明:若其中任一导体(如A)带正电,则各个导体的电势都高于零,而且其余导体的电势都低于A的电势。
证:当某一导体(如A)带正电时,由于静电感应其它导体离A近端带负电荷,远端带正电荷,从A发出的电力线一部分终止于负感应电荷上,正的感应电荷发出的电力线延
伸至无限远,由于同一电力线其起点的电位总是高于终点的电位。若选无限远处的电位为零,则其它导体的电势都高于零,但它们的电势都低于A的电势。
证明:假设此二导体达到静电平衡时,每一个导体都带有异号电荷,则其中一导体(如A)正电荷所发电场线,必有部分终止于它邻近的另一导体(如B)负电荷上。由于电场线的指向是由高电位指向低电位,因而A上正电荷处的电位 就高于B上负电荷处的电位 即 ,B上正电荷所发电场线由于不可能终止于本身负电荷上(否则,如图a所示,则 ,与等势体相矛盾),则必由部分终止于A的负电荷上(图b),因而 ,于是 ,与等势体相矛盾。因此,若一带电导体A由电场线终止于另一带电导体B时,B就不可能再有电力线终止于A上。这有两种可能。一是一个导体A只带正电(图C)或者另一导体B只带负电(图d)。即此二带电体中至少有一个只带同种电荷,因而两个导体上都出现异号电荷是不可能的。
11、两个带有同种电荷的金属球,一定相斥。()×