(高三)平抛运动问题归类求解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平抛运动问题归类求解
题1、如图所示,一物体自倾角为θ的固定斜面顶端沿水平方向抛出后落在斜面上.物体与斜面接触时速度与水平方向的夹角φ满足( )
A.tan φ=sin θ
B.tan φ=cos θ
C.tan φ=tan θ
D.tan φ=2tan θ
平抛运动的常见问题及求解思路:
关于平抛运动的问题,有直接运用平抛运动的特点、规律的问题,有平抛运动与圆周运动组合的问题、有平抛运动与天体运动组合的问题、有平抛运动与电场(包括一些复合场)组合的问题等。
1、从同时经历两个运动的角度求平抛运动的水平速度
求解一个平抛运动的水平速度的时候,我们首先想到的方法,就应该是从竖直方向上的
[例1]如图1所示,要在A 处越过x =5m 的壕沟,沟面对面比A 处低h 摩托车的速度至少要有多大?
2、从分解速度的角度进行解题
对于一个做平抛运动的物体来说,分解速度”的角度来研究问题。
[例2]如图2甲所示,以9.8m/s 的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角θ为30°的斜面上。可知物体完成这段飞行的时间是
A.
s
33
B.3
3
2
s C.
s
3 D.s 2
对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”)
[例3] 若质点以V 0正对倾角为θ的斜面水平抛出,如果要求质点到达斜面的位移最小,求飞行时间为多少?
[例4] 在倾角为α的斜面上的P 点,以水平速度0v 向斜面下方抛出一个物体,落在斜面上的Q 点,证明落在Q 点物体速度α
2
0tan 41+=v v
。
图3
4. 从竖直方向是自由落体运动的角度出发求解
在研究平抛运动的实验中,由于实验的不规范,有许多同学作出的平抛运动的轨迹,常常不能直接找到运动的起点(这种轨迹,我们暂且叫做“残缺轨迹”),这给求平抛运动的初速度带来了很大的困难。为此,我们可以运用竖直方向是自由落体的规律来进行分析。
[例6] 某一平抛的部分轨迹如图45. 从平抛运动的轨迹入手求解问题
[例6] 从高为H 的A 点平抛一物体,其水平射程为s 2,在A 点正上方高为2H 的B 点,向同一方向平抛另一物体,其水平射程为s 。两物体轨迹在同一竖直平面内且都恰好从同一屏的顶端擦过,求屏的高度。
6. [例7] 如图6所示,在倾角为θ的斜面上以速度0v 水平抛出一小球,该斜面足够长,
图6
7. 利用平抛运动的推论求解
推论1:任意时刻的两个分速度与合速度构成一个矢量直角三角形。
[例8]
推论2
[例9] 宇航员站在一星球表面上的某高度处,沿水平方向抛出一个小球,经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为l,若抛出时初速度增大到两倍,则抛出点与落地点之间的距离为l3。已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G,求该星球的质量M。
推论3:平抛运动的末速度的反向延长线交平抛运动水平位移的中点。
[例11] 一质量为m
若物体到达B点时的动能为35J
空气阻力)
[例12] 如图所示,从倾角为θ斜面足够长的顶点A ,先后将同一小球以不同的初速度水平向右抛出,第一次初速度为1v ,球落到斜面上前一瞬间的速度方向与斜面的夹角为1α,第二次初速度2v ,
比较1α和2α的大小。
推论5:平抛运动的物体经时间t 初动能的关系为)tan
41(2
0β+=k kt E E
[例13] 如图17所示,从倾角为︒30
动能为9J
平抛运动是较为复杂的匀变速曲线运动,有关平抛运动的命题也层出不穷。若能切实掌握其基本处理方法和这些有用的推论,就不难解决平抛问题。因此在复习时应注意对平抛运动规律的总结,从而提高自己解题的能力。