人教版八年级数学上册 全册全套试卷测试卷(含答案解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学上册 全册全套试卷测试卷(含答案解析)

一、八年级数学三角形填空题(难)

1.如图1,△ABC 中,沿∠BAC 的平分线AB 1折叠,剪掉重叠部分;将余下部分沿∠B 1A 1C 的平分线A 1B 2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C 的平分线A n B n+1折叠,点B n 与点C 重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC 是△ABC 的好角.

(1)如图2,在△ABC 中,∠B>∠C ,若经过两次折叠,∠BAC 是△ABC 的好角,则∠B 与∠C 的等量关系是_______;

(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。

【答案】B 2C ∠∠= 140°、120°或80°

【解析】

【分析】

(1)根据折叠性质可得∠A 1B 1B 2=∠C ,∠AA 1B 1=∠B ,由三角形外角性质可得

∠AA 1B 1=2∠C ,根据等量代换可得∠B=2∠C ;(2)先求出经过三次折叠,∠BAC 是△ABC 的好角时,∠B 与∠C 的等量关系为∠B=3∠C ,进而可得经过n 次折叠,∠BAC 是△ABC 的好角时∠B 与∠C 的等量关系为∠B=n ∠C ,因为最小角是20º,是△ABC 的好角,根据好角定义,设另两角分别为20mº,4mn°,由题意得20m+20mn+20=180°,所以m(n+1)=8,再根据m 、n 都是正整数可得m 与n+1是8的整数因子,从而可以求得结果.

【详解】

(1)根据折叠性质得∠B=∠AA 1B 1,∠A 1B 1B 2=∠C ,

∵∠AA 1B 1=∠A 1B 1B 2+∠C ,

∴∠B=2∠C

故答案为:∠B=2∠C

(2)如图:∵根据折叠的性质知,∠B=∠AA 1B 1,∠C=∠A 2B 2C ,∠A 1B 1C=∠A 1A 2B 2, ∴根据三角形的外角定理知,∠A 1A 2B 2=∠C+∠A 2B 2C=2∠C ;

∵根据四边形的外角定理知,∠BAC+∠B+∠AA 1B 1-∠A 1B 1C=∠BAC+2∠B-2∠C=180°, 根据三角形ABC 的内角和定理知,∠BAC+∠B+∠C=180°,

∴∠B=3∠C ;

∴当∠B=2∠C时,∠BAC是△ABC的好角;当∠B=3∠C时,∠BAC是△ABC的好角;

故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;

∵最小角为20°,

∴设另两个角为20m°和20mn°,

∴20°+20m°+20mn°=180°,即m(1+n)=8,

∵m、n为整数,

∴m=1,1+n=8;或m=2,1+n=4;或m=4,1+n=2.

解得:m=1,n=7;m=2,n=3,m=4,n=1,

∴另两个角为20°、140°或40°、120°或80°、80°,

∴此三角形最大角为140°、120°或80°时,三个角均是此三角形的好角.

故答案为:140°、120°或80°

【点睛】

本题考查了翻折变换(折叠问题).充分利用三角形内角和定理、三角形外角定理以及折叠的性质是解题关键.

2.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=____.

【答案】105°.

【解析】

【分析】

先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.

【详解】

如图,∠ECD=45°,∠BDC=60°,

∴∠COB=∠ECD+∠BDC=45°+60°=105°.

故答案为:105°.

【点睛】

此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.

3.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.

【答案】12

【解析】

试题解析:根据题意,得

(n-2)•180-360=1260,

解得:n=11.

那么这个多边形是十一边形.

考点:多边形内角与外角.

4.已知一个三角形的三边长为3、8、a,则a的取值范围是_____________.

【答案】5<a<11

【解析】

【分析】

根据三角形的三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边可得8-3<a<8+3,再解即可.

【详解】

解:根据三角形的三边关系可得:8-3<a<8+3,

解得:5<a <11,

故答案为:5<a<11.

【点睛】

此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.

5.如图,∠1、∠2、∠3、∠4是五边形ABCDE的4个外角,若∠A=100°,则

∠1+∠2+∠3+∠4= .

【答案】280°

【解析】

试题分析:先根据邻补角的定义得出与∠EAB相邻的外角∠5的度数,再根据多边形的外角和定理即可求解.

解:如图,∵∠EAB+∠5=180°,∠EAB=100°,

∴∠5=80°.

∵∠1+∠2+∠3+∠4+∠5=360°,

∴∠1+∠2+∠3+∠4=360﹣80°=280°

故答案为280°.

考点:多边形内角与外角.

6.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.

【答案】40°

【解析】

【分析】

直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.

【详解】 如图所示:

∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,

∵∠1+∠2+∠3+∠4=220°,

∴∠1+∠2+∠6+∠3+∠4+∠7=360°,

∴∠6+∠7=140°,

∴∠5=180°-(∠6+∠7)=40°.

故答案为40°.

【点睛】

主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.

二、八年级数学三角形选择题(难)

7.如图,在ABC ∆中,点D 在BC 上,点O 在AD 上,如果3AOB S ∆=,2BOD S ∆=,1ACO S ∆=,那么COD S ∆=( )

相关文档
最新文档