2011年中考数学模拟试题分类汇编--勾股定理
中考数学勾股定理(讲义及答案)附解析
一、选择题1.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).A .36B .18C .12D .9 2.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是( )A .4B .5C .7D .63.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①④⑤B .③④⑤C .①③④D .①②③4.如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=15,则S 2的值是( )A .3B .154C .5D .1525.若直角三角形的三边长分别为-a b 、a 、+a b ,且a 、b 都是正整数,则三角形其中一边的长可能为()A .22B .32C .62D .826.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A .62B .22C .210D .67.如图,在△ABC 中,∠ACB =90°,AB 的中垂线交AC 于D ,P 是BD 的中点,若BC =4,AC =8,则S △PBC 为( )A .3B .3.3C .4D .4.58.将一根 24cm 的筷子,置于底面直径为 15cm ,高 8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为 hcm ,则 h 的取值范围是( )A .h≤15cmB .h≥8cmC .8cm≤h≤17cmD .7cm≤h≤16cm9.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点B 落在点B ′处,则重叠部分△AFC 的面积为( )A .12B .10C .8D .610.有下列的判断: ①△ABC 中,如果a 2+b 2≠c 2,那么△ABC 不是直角三角形②△ABC 中,如果a 2-b 2=c 2,那么△ABC 是直角三角形③如果△ABC 是直角三角形,那么a 2+b 2=c 2以下说法正确的是( )A .①②B .②③C .①③D .②二、填空题11.如图是一个三级台阶,它的每一级的长、宽和高分别为5 dm 、3 dm 和1 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点的最短路程是 dm .12.如图所示的网格是正方形网格,则ABC ACB ∠+∠=__________°(点A ,B ,C 是网格线交点).13.如图,在△ABC 中,OA =4,OB =3,C 点与A 点关于直线OB 对称,动点P 、Q 分别在线段AC 、AB 上(点P 不与点A 、C 重合),满足∠BPQ =∠BAO.当△PQB 为等腰三角形时,OP 的长度是_____.14.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.15.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若22AB =,42AC =,则DA 的长为______.16.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.17.如图,30AOB ∠=︒,点,M N 分别在,OA OB 上,且6,8OM ON ==,点,P Q 分别在,OB OA 上运动,则PM PQ QN ++的最小值为______.18.如图,△ABC 中,AB=AC=13,BC=10,AD 是BAC ∠的角平分线,E 是AD 上的动点,F 是AB 边上的动点,则BE+EF 的最小值为_____.19.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.20.如图,在等腰△ABC 中,AB =AC ,底边BC 上的高AD =6cm ,腰AC 上的高BE =4m ,则△ABC 的面积为_____cm 2.三、解答题21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点,E DF 与射线AC 相交于点F .()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于点F .求证:12BE CF AB +=.()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.22.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .(1)若∠AED =20°,则∠DEC = 度;(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2.23.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.24.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.25.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.26.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在 ABD 内部,90EAP ∠=︒,2AE AP ==,当E 、P 、D 三点共线时,7BP =.下列结论:①E 、P 、D 共线时,点B 到直线AE 的距离为5;②E 、P 、D 共线时, 13ADP ABP S S ∆∆+=+;=532ABD S ∆+③; ④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.27.如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为k . (1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?(2)已知ABC 为优三角形,AB c =,AC b =,BC a =,①如图1,若90ACB ∠=︒,b a ≥,6b =,求a 的值.②如图2,若c b a ≥≥,求优比k 的取值范围.(3)已知ABC 是优三角形,且120ABC ∠=︒,4BC =,求ABC 的面积.28.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠.求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可.请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.29.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.30.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.【详解】∵90BAC ︒∠=,∴AB ⊥AD,∵DE BC ⊥,BD 平分ABC ∠,∴DE=AD ,∠BED=90BAC ︒∠=,∴∠BDE=∠BDA ,∴BE=AB=AC ,∵CDE ∆的周长为6,∴DE+CD+CE=AC+CE=BC=6,∵,90︒=∠=AB AC BAC∴22236AB AC BC +==,∴2236AB =, 218AB =,∴ABC ∆的面积=211922AB AC AB ⋅⋅==, 故选:D.【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论. 2.D解析:D【解析】【分析】先利用勾股定理计算BC 的长度,然后阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积. 【详解】解:在中 ∵,, ∴, ∴BC=3,∴阴影部分的面积=以AB 为直径的半圆面积+以BC 为直径的半圆面积+-以AC 为直径的半圆面积=6.故选D. 【点睛】本题考查扇形面积的计算和勾股定理.在本题中解题关键是用重叠法去表示阴影部分的面积. 3.A解析:A【分析】作常规辅助线连接CF ,由SAS 定理可证△CFE 和△ADF 全等,从而可证∠DFE=90°,DF=EF .所以△DEF 是等腰直角三角形;由割补法可知四边形CDFE 的面积保持不变;△DEF 是等腰直角三角形2DF ,当DF 与BC 垂直,即DF 最小时,DE 取最小值42,△CDE 最大的面积等于四边形CDEF 的面积减去△DEF 的最小面积.【详解】连接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF;∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形.当D. E分别为AC、BC中点时,四边形CDFE是正方形.∵△ADF≌△CEF,∴S△CEF=S△ADF,∴S四边形CEFD=S△AFC.由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=12BC=4.∴22当△CEF面积最大时,此时△DEF的面积最小.此时S△CEF=S四边形CEFD−S△DEF=S△AFC−S△DEF=16−8=8,则结论正确的是①④⑤.故选A.【点睛】本题考查全等三角形的判定与性质, 等腰直角三角形性质.要证明线段或者角相等,一般证明它们所在三角形全等,如果不存在三角形可作辅助线解决问题.4.C解析:C【解析】将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=15,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=15,即3x+12y=15,x+4y=5,所以S2=x+4y=5,故答案为5.点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y表示出S 1,S 2,S 3,再利用S 1+S 2+S 3=15求解是解决问题的关键.5.B解析:B【解析】由题可知(a-b )2+a 2=(a+b )2,解得a=4b ,所以直角三角形三边分别为3b ,4b ,5b ,当b=8时,4b=32,故选B .6.C解析:C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE '为矩形,6, 2.B E CD EC B D BD ∴=====''2.AE ∴=22210.AB AE B E ''+=PA PB -的最大值为:210.故答案为:210.7.A解析:A【分析】根据线段垂直平分线的性质得到DA=DB ,根据勾股定理求出BD ,得到CD 的长,根据三角形的面积公式计算,得到答案.【详解】解:∵点D在线段AB的垂直平分线上,∴DA=DB,在Rt△BCD中,BC2+CD2=BD2,即42+(8﹣BD)2=BD2,解得,BD=5,∴CD=8﹣5=3,∴△BCD的面积=12×CD×BC=12×3×4=6,∵P是BD的中点,∴S△PBC=12S△BCD=3,故选:A.【点睛】本题考查的是线段垂直平分线的性质、直角三角形的性质、勾股定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.8.C解析:C【分析】筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.【详解】当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cmAD是筷子,AB长是杯子直径,BC是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长由题意得:AB=15cm,BC=8cm,△ABC是直角三角形∴在Rt△ABC中,根据勾股定理,AC=17cm∴8cm≤h≤17cm故选:C【点睛】本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.9.B解析:B【分析】已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F DF '=,设DF x =,则在Rt AFD △中,根据勾股定理求x ,于是得到CF CD DF =-,即可得到答案.【详解】解:由翻折变换的性质可知,AFD CFB '△≌△,'DF B F ∴=,设DF x =,则8AF CF x ==-,在Rt AFD △中,222AF DF AD =+,即222(8)4x x -=+,解得:3x =,835CF CD FD ∴=-=-=, 1102AFC S AF BC ∴=⋅⋅=△. 故选:B .【点睛】本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到AFD CFB '△≌△是解题的关键.10.D解析:D【分析】欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.【详解】①c 不一定是斜边,故错误;②正确;③若△ABC 是直角三角形,c 不是斜边,则a 2+b 2≠c 2,故错误,所以正确的只有②,故选D.【点睛】本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.二、填空题11.【解析】试题分析:将台阶展开,如图,331312,5,AC BC =⨯+⨯==222169,AB AC BC ∴=+=13,AB ∴=即蚂蚁爬行的最短线路为13.dm考点:平面展开:最短路径问题.12.45【分析】如下图,延长BA 至网络中的点D 处,连接CD. ABC ACB DAC ∠+∠=∠,只需证△ADC 是等腰直角三角形即可【详解】如下图,延长BA 至网络中的点D 处,连接CD设正方形网络每一小格的长度为1则根据网络,555BC=5,∴5其中BD 、DC 、BC 边长满足勾股定理逆定理∴∠CDA=90°∵AD=DC∴△ADC 是等腰直角三角形∴∠DAC=45°故答案为:45°【点睛】本题是在网格中考察勾股定理的逆定理,解题关键是延长BA ,构造处△ABC 的外角∠CAD13.1或78【分析】 分为三种情况:①PQ BP =,②BQ QP =,③BQ BP =,由等腰三角形的性质和勾股定理可求解.【详解】解:分为3种情况:①当PB PQ =时,4=OA ,3OB =,∴5BC AB ===, C 点与A 点关于直线OB 对称,BAO BCO ∴∠=∠,BPQ BAO ∠=∠,BPQ BCO ∴∠=∠,APB APQ BPQ BCO CBP ∠=∠+∠=∠+∠,APQ CBP ∴∠=∠,在APQ 和CBP 中,BAO BCP APQ B PQ B P C P ∠=∠⎧⎪∠=∠⎨=⎪⎩, ()APQ CBP AAS ∴△≌△,∴5AP BC ==,1OP AP OA ∴=-=;②当BQ BP =时,BPQ BQP ∠=∠,BPQ BAO ∠=∠,BAO BQP ∴∠=∠,根据三角形外角性质得:BQP BAO ∠>∠,∴这种情况不存在;③当QB QP =时,QBP BPQ BAO ∠=∠=∠,PB PA ∴=,设OP x =,则4PB PA x ==-在Rt OBP △中,222PB OP OB =+,222(4)3x x ∴-=+, 解得:78x =; ∴当PQB △为等腰三角形时,1OP =或78; 【点睛】本题考查了勾股定理,等腰三角形的性质,全等三角形的性质和判定的应用,解题的关键是熟练掌握所学的性质进行解题,注意分类讨论.14.【分析】延长AD至点E,使得DE=AD=4,结合D是中点证得△ADC≌△EDB,进而利用勾股定理逆定理可证得∠E=90°,再利用勾股定理求得BD长进而转化为BC长即可.【详解】解:如图,延长AD至点E,使得DE=AD=4,连接BE,∵D是BC边中点,∴BD=CD,又∵DE=AD,∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=6,又∵AB=10,∴AE2+BE2=AB2,∴∠E=90°,∴在Rt△BED中,2222=++=,BD BE DE64213∴BC=2BD=13故答案为:13【点睛】本题考查了全等三角形的判定及性质、勾股定理及其逆定理,正确作出辅助线是解决本题的关键.15.6或2.【分析】由于已知没有图形,当Rt△ABC固定后,根据“以BC为斜边作等腰直角△BCD”可知分两种情况讨论:①当D点在BC上方时,如图1,把△ABD绕点D逆时针旋转90°得到△DCE,证明A、C、E三点共线,在等腰Rt△ADE中,利用勾股定理可求AD长;②当D点在BC下方时,如图2,把△BAD绕点D顺时针旋转90°得到△CED,证明过程类似于①求解.【详解】解:分两种情况讨论:①当D点在BC上方时,如图1所示,把△ABD绕点D逆时针旋转90°,得到△DCE,则∠ABD=∠ECD,2,AD=DE,且∠ADE=90°在四边形ACDB中,∠BAC+∠BDC=90°+90°=180°,∴∠ABD+∠ACD=360°-180°=180°,∴∠ACD+∠ECD=180°,∴A、C、E三点共线.∴AE=AC+CE=42+22=62在等腰Rt△ADE中,AD2+DE2=AE2,即2AD2=(62)2,解得AD=6②当D点在BC下方时,如图2所示,把△BAD绕点D顺时针旋转90°得到△CED,则CE=AB=22,∠BAD=∠CED,AD=AE且∠ADE=90°,所以∠EAD=∠AED=45°,∴∠BAD=90°+45°=135°,即∠CED=135°,∴∠CED+∠AED=180°,即A、E、C三点共线.∴AE=AC-CE=42-22=22在等腰Rt△ADE中,2AD2=AE2=8,解得AD=2.故答案为:6或2.【点睛】本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解.1671【分析】分别找到两个极端,当M与A重合时,AP取最大值,当点N与C重合时,AP取最小,即可求出线段AP长度的最大值与最小值之差【详解】如图所示,当M 与A 重合时,AP 取最大值,此时标记为P 1,由折叠的性质易得四边形AP 1NB 是正方形,在Rt △ABC 中,2222AB=AC BC =54=3--,∴AP 的最大值为A P 1=AB=3如图所示,当点N 与C 重合时,AP 取最小,过C 点作CD ⊥直线l 于点D ,可得矩形ABCD ,∴CD=AB=3,AD=BC=4,由折叠的性质有PC=BC=4,在Rt △PCD 中,2222PD=PC CD =43=7--,∴AP 的最小值为AD PD=47-线段AP 长度的最大值与最小值之差为(1AP AP=347=71-- 71【点睛】本题考查勾股定理的折叠问题,可以动手实际操作进行探索.17.10【分析】首先作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值,易得△ONN ′为等边三角形,△OMM ′为等边三角形,∠N ′OM ′=90°,继而可以求得答案.【详解】作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M ′N ′,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°,OM ′=OM =6,ON ′=ON =8,∴△ONN ′为等边三角形,△OMM ′为等边三角形,∴∠N ′OM ′=90°.在Rt △M ′ON ′中,M ′N 22''OM ON +. 故答案为10.【点睛】本题考查了最短路径问题,根据轴对称的定义,找到相等的线段,得到直角三角形是解题的关键.18.12013【解析】 ∵AB=AC ,AD 是角平分线,∴AD ⊥BC ,BD=CD , ∴B 点,C 点关于AD 对称,如图,过C 作CF ⊥AB 于F ,交AD 于E ,则CF=BE+FF 的最小值,根据勾股定理得,AD=12,利用等面积法得:AB ⋅CF=BC ⋅AD ,∴CF=BC AD AB ⋅=101213⨯=12013故答案为12013. 点睛:本题主要考查的是翻折的性质、垂线段最短、勾股定理的应用及三角形面积的等积法.明确当CF ⊥AB 时,CF 有最小值是解题的关键.19.39或639【分析】通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG SS S =-即可求解. 【详解】①当点D 在H 点上方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒ .30,6A AE ∠=︒=,132EH AE ∴== , 22226333AH AE EH ∴=-=-=. 32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,333AD AH DH =-=,45EDH ∴∠=︒,15AED EDH A ∴∠=∠-∠=︒ .由折叠的性质可知,15DEF AED ∠=∠=︒,230AEG AED ∴∠=∠=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒ , 12GQ AG ∴=. 222GQ AQ AG += , 即2223(2)GQ GQ +=, 3GQ ∴= .2DGF AED AEG S S S =- ,112(333)36363922DGF S ∴=⨯⨯-⨯-⨯⨯=-; ②当点D 在H 点下方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒.30,6A AE ∠=︒= ,132EH AE ∴== , 22226333AH AE EH ∴=-=-=.3DE =,3DH ∴=== ,DH EH ∴=,3AD AH DH =+=,45DEH ∴∠=︒ ,90105AED A DEH ∴∠=︒-∠+∠=︒ .由折叠的性质可知,105DEF AED ∠=∠=︒,218030AEG AED ∴∠=∠-︒=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒,12GQ AG ∴= . 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=,综上所述,DGF △的面积为9或9.故答案为:9或9.【点睛】本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键.20.【分析】根据三角形等面积法求出32AC BC = ,在Rt△ACD 中根据勾股定理得出AC 2=14BC 2+36,依据这两个式子求出AC 、BC 的值.【详解】 ∵AD 是BC 边上的高,BE 是AC 边上的高, ∴12AC•BE=12BC•AD, ∵AD=6,BE =4,∴AC BC =32, ∴22AC BC =94, ∵AB=AC ,AD⊥BC,∴BD=DC =12BC , ∵AC 2﹣CD 2=AD 2,∴AC 2=14BC 2+36, ∴221364BC BC +=94, 整理得,BC 2=3648⨯, 解得:BC=∴△ABC 的面积为12×cm 2故答案为:【点睛】本题考查了三角形的等面积法以及勾股定理的应用,找出AC 与BC 的数量关系是解答此题的关键.三、解答题21.(1)BE =1;(2)见解析;(3)(2y x =【分析】(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据30°角的直角三角形的性质可得DMBM ,进而可得BE +CF(BE ﹣CF ),代入x 、y 后整理即得结果.【详解】解:(1)如图1,∵△ABC 是等边三角形,∴∠B =∠C =60°,BC =AC =AB =4.∵点D是线段BC的中点,∴BD=DC=12BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴∠BDE=30°,∴BE=12BD=1;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,∵∠BMD=∠CND,∠B=∠C,BD=CD,∴△MBD≌△NCD(AAS),∴BM=CN,DM=DN.在△EMD和△FND中,∵∠EMD=∠FND,DM=DN,∠MDE=∠NDF,∴△EMD≌△FND(ASA),∴EM=FN,∴BE+CF=BM+EM+CN-FN=BM+CN=2BM=BD=12BC=12AB;(3)过点D作DM⊥AB于M,如图3,同(2)的方法可得:BM=CN,DM=DN,EM=FN.∵DN =FN ,∴DM =DN =FN =EM ,∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,∴DM =22=3BD BM BM -,∴()3x y x y +=-,整理,得()23y x =-.【点睛】本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.22.(1)45度;(2)∠AEC ﹣∠AED =45°,理由见解析;(3)见解析【分析】(1)由等腰三角形的性质可求∠BAE =140°,可得∠CAE =50°,由等腰三角形的性质可得∠AEC =∠ACE =65°,即可求解;(2)由等腰三角形的性质可求∠BAE =180°﹣2α,可得∠CAE =90°﹣2α,由等腰三角形的性质可得∠AEC =∠ACE =45°+α,可得结论;(3)如图,过点C 作CG ⊥AH 于G ,由等腰直角三角形的性质可得EH 2EF ,CH =2CG ,由“AAS ”可证△AFB ≌△CGA ,可得AF =CG ,由勾股定理可得结论.【详解】解:(1)∵AB =AC ,AE =AB ,∴AB =AC =AE ,∴∠ABE =∠AEB ,∠ACE =∠AEC ,∵∠AED =20°,∴∠ABE =∠AED =20°,∴∠BAE =140°,且∠BAC =90°∴∠CAE =50°,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =∠ACE =65°,∴∠DEC =∠AEC ﹣∠AED =45°,故答案为:45;(2)猜想:∠AEC ﹣∠AED =45°,理由如下:∵∠AED =∠ABE =α,∴∠BAE =180°﹣2α,∴∠CAE =∠BAE ﹣∠BAC =90°﹣2α,∵∠CAE +∠ACE +∠AEC =180°,且∠ACE =∠AEC ,∴∠AEC =45°+α,∴∠AEC ﹣∠AED =45°;(3)如图,过点C 作CG ⊥AH 于G ,∵∠AEC ﹣∠AED =45°,∴∠FEH =45°,∵AH ⊥BE ,∴∠FHE =∠FEH =45°,∴EF =FH ,且∠EFH =90°,∴EH 2EF ,∵∠FHE =45°,CG ⊥FH ,∴∠GCH =∠FHE =45°,∴GC =GH ,∴CH 2CG ,∵∠BAC =∠CGA =90°,∴∠BAF +∠CAG =90°,∠CAG +∠ACG =90°,∴∠BAF =∠ACG ,且AB =AC ,∠AFB =∠AGC ,∴△AFB ≌△CGA (AAS )∴AF =CG ,∴CH 2AF ,∵在Rt △AEF 中,AE 2=AF 2+EF 2, 2AF )2+2EF )2=2AE 2,∴EH 2+CH 2=2AE 2.【点睛】本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.23.(1)90°;(2)证明见解析;(3)变化,234l +≤<.(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.24.(1)①见解析;②DE =297;(2)DE 的值为 【分析】(1)①先证明∠DAE =∠DAF ,结合DA =DA ,AE =AF ,即可证明;②如图1中,设DE =x ,则CD =7﹣x .在Rt △DCF 中,由DF 2=CD 2+CF 2,CF =BE =3,可得x 2=(7﹣x )2+32,解方程即可;(2)分两种情形:①当点E 在线段BC 上时,如图2中,连接BE .由△EAD ≌△ADC ,推出∠ABE =∠C =∠ABC =45°,EB =CD =5,推出∠EBD =90°,推出DE 2=BE 2+BD 2=62+32=45,即可解决问题;②当点D 在CB 的延长线上时,如图3中,同法可得DE 2=153.【详解】(1)①如图1中,∵将△ABE 绕点A 逆时针旋转90°后,得到△AFC ,∴△BAE ≌△CAF ,∴AE =AF ,∠BAE =∠CAF ,∵∠BAC =90°,∠EAD =45°,∴∠CAD +∠BAE =∠CAD +∠CAF =45°,∴∠DAE =∠DAF ,∵DA =DA ,AE =AF ,∴△AED ≌△AFD (SAS );②如图1中,设DE =x ,则CD =7﹣x .∵AB =AC ,∠BAC =90°,∴∠B =∠ACB =45°,∵∠ABE =∠ACF =45°,∴∠DCF =90°,∵△AED ≌△AFD (SAS ),∴DE =DF =x ,∵在Rt △DCF 中, DF 2=CD 2+CF 2,CF =BE =3,∴x 2=(7﹣x )2+32,∴x =297, ∴DE =297; (2)∵BD =3,BC =9,∴分两种情况如下:①当点E 在线段BC 上时,如图2中,连接BE .∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.25.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF,设BD=x,利用(1)、(2)求出EF=3x,再利用勾股定理求出x,即可得到答案.【详解】(1)证明:∵△ACB和△ECD都是等腰直角三角形∴AC=BC,EC=DC,∠ACB=∠ECD=90°∴∠ACB﹣∠ACD=∠ECD﹣∠ACD∴∠ACE=∠BCD,∴△ACE≌△BCD(SAS),∴AE=BD.(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x , ∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.26.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=,∵2AE AP ==,90EAP ∠=︒, ∴22PE AE ==,∴()22227BE +=, 解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒, ∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒,∴26sin 453HB BE =︒==, ∴点B 到直线AE 6,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+1122AE AP PE EB =⨯⨯+⨯⨯ 11222322=⨯ 13=,故②正确;③在Rt AHB 中,由①知:6EH HB ==∴622 AH AE EH=+=+,22222256623AB AH BH⎛⎫⎛⎫=+=++=+⎪ ⎪⎪ ⎪⎭⎝⎭,21153222ABDS AB AD AB∆=⋅==+,故③正确;④因为AC是定值,所以当A P C、、共线时,PC最小,如图,连接BC,∵A C、关于BD的对称,∴523AB BC==+∴225231043AC BC==+=+∴minPC AC AP=-,10432=+⑤∵ABD与AEP都是等腰直角三角形,∴90BAD∠=︒,90EAP∠=︒,AB AD=,AE AP=,在ABP和ADE中,AB ADBAP DAEAP AE=⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS≅,∴ABP ADE∠=∠,∵AN BN=,∴ABP NAB∠=∠,∴EAN ADE∠=∠,∵90EAN DAN∠+∠=︒,∴90ADE DAN∠+∠=︒,∴AN DE⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.27.(1)该命题是真命题,理由见解析;(2)①a 的值为92;②k 的取值范围为13k ≤<;(3)ABC ∆的面积为2033或1235. 【分析】 (1)根据等边三角形的性质、优三角形和优比的定义即可判断;(2)①先利用勾股定理求出c 的值,再根据优三角形的定义列出,,a b c 的等式,然后求解即可;②类似①分三种情况分析,再根据三角形的三边关系定理得出每种情况下,,a b c 之间的关系,然后根据优比的定义求解即可;(3)如图(见解析),设BD x =,先利用直角三角形的性质、勾股定理求出AC 、AB 的长及ABC ∆面积的表达式,再类似(2),根据优三角形的定义分三种情况分别列出等式,然后解出x 的值,即可得出ABC ∆的面积.【详解】(1)该命题是真命题,理由如下:设等边三角形的三边边长为a则其中两条边的和为2a ,恰好是第三边a 的2倍,满足优三角形的定义,即等边三角形为优三角形又因该两条边相等,则这两条边的比为1,即其优比为1故该命题是真命题;(2)①90,6CB b A ∠=︒=22236c a b a ∴=++根据优三角形的定义,分以下三种情况:当2a b c +=时,26236a a +=+,整理得24360a a -+=,此方程没有实数根。
中考数学直角三角形与勾股定理专题训练(含答案)
中考数学直角三角形与勾股定理专题训练一、选择题1. 如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD 的面积为()A.B.3 C.D.52. 如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则sin∠BAC的值为()A.B.C.D.3. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米4. 如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点,则点D的个数共有()B,C),若线段AD长为正整数...A. 5个B. 4个C. 3个D. 2个5.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB的长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于A.1和2之间B.2和3之间C.3和4之间D.4和5之间6. 如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE ⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.37. 如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A. x-y2=3B. 2x-y2=9C. 3x-y2=15D. 4x-y2=218. 已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.32B.332C.32D. 不能确定二、填空题9. 如图所示的网格是正方形网格,则∠P AB+∠PBA=°(点A,B,P是网格线交点).10. 如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8.分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F.过点E,F作直线EF,交AB于点D,连接CD,则CD的长是________.11. 三角板是我们学习数学的好帮手.将一对直角三角板如图放置,点C 在FD 的延长线上,点B 在ED 上,AB ∥CF ,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,则CD 的长度是 .12. 如图,△ABC中,∠ABC=90°,BA=BC=2,将△ABC 绕点C 逆时针旋转60°得到△DEC ,连接BD ,则BD 2的值是 .13. (2019•通辽)腰长为5,高为4的等腰三角形的底边长为__________.14. 如图,在Rt △ABC 中,∠BAC =90°,AB =15,AC =20,点D 在边AC 上,AD =5,DE ⊥BC 于点E ,连接AE ,则△ABE 的面积等于________.15. 在等腰直角三角形ABC 中,∠ACB =90°,AC =3,点P 为边BC 的三等分点,连接AP ,则AP 的长为________.16. (2019•伊春)一张直角三角形纸片ABC ,90ACB ∠=︒,10AB =,6AC =,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的△是直角三角形时,则CD的长为__________.点E处,当BDE三、解答题17. 如图,已知AC⊥BC,垂足为C,AC=4,BC=3,将线段AC绕点A按逆时针方向旋转60°,得到线段AD,连接DC,DB.(1)线段DC=;(2)求线段DB的长度.18. 已知:整式A=(n2-1)2+(2n)2,整式B>0.[尝试] 化简整式A.[发现] A=B2,求整式B.[联想] 由上可知,B2=(n2-1)2+(2n)2,当n>1时,n2-1,2n,B为直角三角形的三边长,如图.填写下表中B的值:直角三角形三边n2-1 2n B勾股数组Ⅰ8勾股数组Ⅱ3519. 如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF ∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.20. 在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完.............成解答过程.....21.如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港.(1)求A,C两港之间的距离(结果保留到0.1 km,参考数据:2≈1.414,3≈1. 732);(2)确定C港在A港的什么方向.22. 已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)求证:2CD2=AD2+DB2.答案一、选择题1. 【答案】B2. 【答案】D[解析]如图,过C作CD⊥AB于D,则∠ADC=90°,∴AC===5.∴sin∠BAC==.故选D.3. 【答案】C[解析]在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A'BD中,∵∠A'DB=90°,A'D=2米,BD2+A'D2=A'B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2(米).4. 【答案】C【解析】如解图,当AD⊥BC时,∵AB=AC,∴D为BC的中点,BD=CD=12BC=4,∴AD=AB2-BD2=3;又∵AB=AC=5,∴在BD和CD之间一定存在AD=4的两种情况,∴点D的个数共有3个.5. 【答案】C【解析】由作法过程可知,OA=2,AB=3,∵∠OAB=90°,∴OB=22222313+=+=,∴P点所表示的数就是OA AB13,∵91316<<,<<,∴3134即点P所表示的数介于3和4之间,故选C.6. 【答案】A[解析]过点D作DF⊥AC于F,如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1.在Rt△BED中,∠B=30°,∴BD=2DE=2.在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF=,∴BC=BD+CD=2+.7. 【答案】B【解析】连接DE,过点A作AF⊥BC,垂足为F,过E作EG⊥BC,垂足为G.∵AB=AC,AF⊥BC,BC=12,∴BF=FC=6,又∵E是AC的中点,EG⊥BC,∴EG∥AF,∴CG=FG=12CF=3,∵在Rt△CEG中,tan C=EG CG,∴EG=CG×tan C=3y;∴DG=BF+FG-BD=6+3-x=9-x,∵HD是BE的垂直平分线,∴BD=DE=x,∵在Rt△EGD中,由勾股定理得,ED2=DG2+EG2,∴x2=(9-x)2+(3y)2,化简整理得,2x-y2=9.8. 【答案】B【解析】如解图,△ABC是等边三角形,AB=3,点P是三角形内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于点H,则BH=32,AH=AB2-BH2=332.连接P A,PB,PC,则S△P AB+S△PBC+S△PCA=S△ABC,∴12AB·PD+12BC·PE+12CA·PF=12BC·AH,∴PD+PE+PF=AH=332.二、填空题9. 【答案】45[解析]本题考查三角形的外角,可延长AP交正方形网格于点Q,连接BQ,如图所示,经计算PQ=BQ=,PB=,∴PQ2+BQ2=PB2,即△PBQ为等腰直角三角形,∴∠BPQ=45°,∴∠P AB+∠PBA=∠BPQ=45°,故答案为45.10. 【答案】5【解析】由题意知EF垂直平分AB,∴点D是AB的中点,∵∠ACB=90°,∴CD为斜边AB的中线,∴CD=12AB.∵BC=6,AC=8,∴AB=AC2+BC2=82+62=10,∴CD=5.11. 【答案】15-5[解析]过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=10×tan60°=10.∵AB∥CF,∴∠BCM=∠ABC=30°,∴BM=BC×sin30°=10=5,CM=BC×cos30°=15.在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM-MD=15-5.12. 【答案】8+4[解析]如图,连接AD,设AC与BD交于点O,由题意得CA=CD,∠ACD=60°,∴△ACD为等边三角形,∴AD=CD,∠DAC=∠DCA=∠ADC=60°.∵∠ABC=90°,AB=BC=2,∴AC=CD=2.∵AB=BC,CD=AD,∴BD垂直平分AC,∴BO=AC=,OD=CD·sin60°=,∴BD=,∴BD 2=()2=8+4.13. 【答案】6或25或45【解析】①如图1,当5AB AC ==,4AD =,则3BD CD ==,∴底边长为6;②如图2,当5AB AC ==,4CD =时,则3AD =,∴2BD =,∴222425BC =+=,∴此时底边长为25;③如图3,当5AB AC ==,4CD =时,则223AD AC CD =-=,∴8BD =,∴45BC = ∴此时底边长为56或54514. 【答案】78 【解析】如解图,过A 作AH ⊥BC ,∵AB =15,AC =20,∠BAC=90°,∴由勾股定理得,BC =152+202=25,∵AD =5,∴DC =20-5=15,∵DE ⊥BC ,∠BAC =90°,∴△CDE ∽△CBA ,∴CE CA =CD CB ,∴CE =1525×20=12.法一:BC·AH =AB·AC ,AH =AB·AC BC =15×2025=12,S △ABE =12×12×13=78.法二:DE =152-122=9,由△CDE ∽△CAH 可得,CD CA =ED HA ,∴AH =9×2015=12,S △ABE =12×12×13=78.15. 【答案】13 或10 【解析】(1)如解图①所示,当P 点靠近B 点时,∵AC =BC =3,∴CP =2,在Rt △ACP 中,由勾股定理得AP =13;(2)如解图②所示,当P 点靠近C 点时,∵AC =BC =3,∴CP =1,在Rt △ACP 中,由勾股定理得AP =10.综上可得:AP 长为13 或10.16. 【答案】3或247【解析】分两种情况:①若90DEB ∠=︒,则90AED C ∠=︒=∠,CD ED =,连接AD ,则Rt Rt ACD EAD △≌△,∴6AE AC ==,1064BE =-=,设CD DE x ==,则8BD x =-,∵Rt BDE △中,222DE BE BD +=,∴2224(8)x x +=-,解得3x =,∴3CD =;②若90BDE ∠=︒,则90CDE DEF C ∠=∠=∠=︒,CD DE =,∴四边形CDEF 是正方形,∴90AFE EDB ∠=∠=︒,AEF B ∠=∠, ∴AEF EBD △∽△,∴AF EF ED BD=, 设CD x =,则EF DF x ==,6AF x =-,8BD x =-, ∴68x x x x -=-,解得247x =,∴247CD =, 综上所述,CD 的长为3或247,故答案为:3或247.三、解答题17. 【答案】解:(1)4(2)∵AC=AD ,∠CAD=60°,∴△CAD 是等边三角形,∴CD=AC=4,∠ACD=60°.过点D 作DE ⊥BC 于E ,∵AC ⊥BC ,∠ACD=60°,∴∠BCD=30°.在Rt △CDE 中,CD=4,∠BCD=30°,∴DE=CD=2,CE=2,∴BE=,在Rt△DEB中,由勾股定理得DB=.18. 【答案】解:[尝试] A=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2. [发现] ∵A=B2,B>0,∴B==n2+1.[联想] ∵2n=8,∴n=4,∴B=n2+1=42+1=17.∵n2-1=35,∴B=n2+1=37.∴填表如下:直角三角形三n2-1 2n B边勾股数组Ⅰ8 17勾股数组Ⅱ35 3719. 【答案】解:(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F.∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF.(2)∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3.∵AD⊥BC,BD=CD,∴AC=AB=3.20. 【答案】解:如解图,过点A作AD⊥BC,垂足为点D,设BD=x,则CD=14-x,根据勾股定理可得:AD2=AB2-BD2=AC2-CD2,即152-x2=132-(14-x)2,解得x=9.(3分)∴AD2=152-x2=152-92=144.(5分)∵AD>0,∴AD=12.(8分)∴S△ABC=12BC·AD=12×14×12=84.(10分)21. 【答案】(1)由题意可得,∠PBC=30°,∠MAB=60°,∴∠CBQ=60°,∠BAN=30°,∴∠ABQ=30°,∴∠ABC=90°.∵AB=BC=10,∴22AB BC102.答:A、C两地之间的距离为14.1 km.(2)由(1)知,△ABC为等腰直角三角形,∴∠BAC=45°,∴∠CAM=15°,∴C港在A港北偏东15°的方向上.22. 【答案】13证明:(1)∵△ACB 和△ECD 都是等腰直角三角形,∴CD =CE ,AC =BC ,∠ECD =∠ACB =90°,∴∠ECD -∠ACD =∠ACB -∠ACD ,即∠ACE =∠BCD ,(1分) 在△ACE 与△BCD 中,⎩⎪⎨⎪⎧EC =DC ∠ACE =∠BCD AC =BC,(3分)∴△ACE ≌△BCD(SAS ).(4分)(2)∵△ACE ≌△BCD ,∴AE =BD ,∠EAC =∠B =45°,(6分)∴∠EAD =∠EAC +∠CAD =90°,在Rt △EAD 中,ED 2=AD 2+AE 2,∴ED 2=AD 2+BD 2,(8分)又ED 2=EC 2+CD 2=2CD 2,∴2CD 2=AD 2+DB 2.(10分)。
中考数学频考点突破--勾股定理的应用
中考数学频考点突破--勾股定理的应用一、综合题1.已知Rt△ABC中,△C=90˚,AC=4,BC=8.动点P从点C出发,以每秒2个单位的速度沿射线..CB方向运动,连接AP.设运动时间为t s.(1)求斜边AB的长.(2)当t为何值时,△PAB的面积为6?(3)若t<4,请在所给的图中画出△PAB中AP边上的高BQ,问:当t为何值时,BQ长为4?并直接写出此时点Q到边BC的距离.2.如图,AB为△O的直径,弦CD△AB于E,点F在DC的延长线上,AF交△O于G.(1)求证:△FGC=△ACD;(2)若AE=CD=8,试求△O的半径.3.数学中,常对同一个量(图形的面积、点的个数等)用两种不同的方法计算,从而建立相等关系,我们把这种思想叫“算两次”.“算两次”也称作富比尼原理,是一种重要的数学思想,由它可以推导出很多重要的公式.(1)如图1,是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图2的方式拼成一个正方形.①用“算两次”的方法计算图2中阴影部分的面积:第一次列式为▲ ,第二次列式为▲ ,因为两次所列算式表示的是同一个图形的面积,所以可以得出等式▲ ;②在①中,如果a+b=7,ab=10,请直接用①题中的等式,求阴影部分的面积;(2)如图3,两个边长分别为a,b,c的直角三角形和一个两条直角边都是c的直角三角形拼成一个梯形,用“算两次”的方法,探究a,b,c之间的数量关系.4.关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.5.如图,在等边△ABC的AC,BC上各取一点D,E,使AD=CE,AE,BD相交于点M,过点B作直线AE的垂线BH,垂足为H.(1)求证:△ACE△△BAD;(2)若BE=2EC=4.①求△ABC的面积;②求MH的长.6.如图1,有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积是,边长是.(2)把10个小正方形组成的图形纸(如图2),剪开并拼成正方形.①请在4×4方格图内画出这个正方形.②以小正方形的边长为单位长度画一条数轴,并在数轴上画出表示- √10的点.(3)这种研究和解决问题的方式,主要体现了的数学思想方法.A.数形结合B.代入C.换元D.归纳7.如图,已知AB为⊙O的直径,点C为⊙O外一点,AC=BC,连接OC,DF是AC的垂直平分线,交OC于点F,垂足为点E,连接AD、CD,且∠DCA=∠OCA.(1)求证:AD是⊙O的切线;(2)若CD=6,OF=4,求cos∠DAC的值.8.(1)如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°,若AP=2,PC=2DP,则BC=;(2)如图2,四边形ABCD中,∠A=∠B=90°,AB=8,AD=10,点E在线段BC上且BE=6,连接DE,作FE⊥ED,交AB于点F,则四边形ADEF的面积是多少?(3)如图3,四边形ABCD中,AB=8,点C到AB的距离为10,∠C=90°,且BC=2CD.当四边形ABCD的面积是61时,求CD的长度是多少?9.如图,AD是▱ABDE的对角线,∠ADE=90°,延长ED至点C,使DC= ED,连接AC交BD于点O,连接BC.(1)求证:四边形ABCD是矩形;(2)连接OE,若AD=4,AB=2,求OE的长.10.阅读与计算,请阅读以下材料,并完成相应的问题.角平分线分线段成比例定理,如图1,在△ABC中,AD平分△BAC,则AB AC=BDCD.下面是这个定理的部分证明过程.证明:如图2,过C作CE△DA.交BA的延长线于E.…任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图3,已知Rt△ABC中,AB=3,BC=4,△ABC=90°,AD平分△BAC,则△ABD的周长是.11.如图,在等边三角形ABC中,点D,E分别在边BC、AC上,若CD=3,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求证:△CDE为等边三角形;(2)求EF的长.12.如图,(1)作△ABC的外接△O(用尺规作图,保留作图痕迹,不写作法);(2)若AB=6cm,AC=BC=5cm,求△O的半径.13.如图,在四边形ABCD中,AB=CD=6,BC=10,AC=8,∠ABC=∠BCD.过点D作DE⊥BC,垂足为点E,延长DE至点F,使EF=DE,连接BF,CF.(1)求证:四边形ABFC是矩形;(2)求DE的长.14.(1)如图所示,Rt△ABC中,△BAC =90 °,AB=√3,AC=√6,点D是斜边BC的中点,连接AD,求AD的长.(2)如图,在平行四边形ABCD中,DE△AB,BF△CD,垂足分别是E、F.求证:△ADE△△CBF15.平面直角坐标系中,直线y=12x﹣1的图象如图所示,它与直线y=﹣2x+4的图象都经过A (2,0),且两直线与y轴分别交于B、C两点.(1)直接画出一次函数y=﹣2x+4的图象;(2)直接写出B、C两点的坐标;(3)判断△ABC的形状,并说明理由.16.如图,AB是⊙O的直径,C为⊙O上一点,作CE⊥AB于点E,AB= 6OE,延长AB至点D,使得BD=AB,P是弧AB(异于A,B)上一个动点,连接AC,BC,CD,PD,PE.(1)求证:CD是⊙O的切线;(2)若AO=3,求AC的长度.答案解析部分1.【答案】(1)解:在Rt△ABC 中,△C=90˚,AC=4,BC=8,AB =√AC 2+BC 2=√16+64=4√5.(2)解:AC=4,BC=8, ∵△PAB 的面积为6, ∴PB=3. ∵CP=2t ,∴当点P 在点B 的左侧时,PB=8−2t ;当点P 在点B 的右侧时,PB=2t ,∴t =52或 t =112.(3)解:作△PAB 中AP 边上的高BQ ,在△ACP 与△BQP 中,{∠ACP =∠BQP ∠APC =∠BPQ AC =BQ , ∴△ACP ≌△BQP(AAS),∴AP =BP. 在 Rt △ACP 中,∵CP 2+CA 2=AP 2 ,即 42+(2t)2=(8−2t)2, 解得 t =32,∴当 t =32时, PQ =3.BQ =4,BP =5,根据等面积法求出点Q 到边BC 的距离: PQ⋅BQ BP=125.【知识点】三角形的面积;勾股定理;一元一次方程的实际应用-几何问题;三角形全等的判定(AAS )【解析】【分析】(1)根据勾股定理即可求出.(2)分点 P 在 B 点左侧与右侧两种情况进行讨论即可;(3)作△PAB 中AP 边上的高BQ ,先根据 AAS 定理得出 △ACP ≌△BQP , 再由勾股定理得出 t 的值,进而可得出结论.2.【答案】(1)证明:∵AB 为△O 的直径,CD△AB ,∴AB垂直平分CD,∴AC=AD,∴△ACD=△D,∵四边形AGCD内接于△O,∴△AGC+△D=180°,∵△AGC+△FGC=180°,∴△D=△FGC,∴△ACD=△FGC;(2)解:连接OC,∵AB为△O的直径,CD△AB,AE=CD=8,∴CE=ED=4,设OA=OC=r,则OE=8-r,在Rt△COE中,OE2+CE2=OC2,即(8−r)2+42=r2,解得r=5,即△O的半径为5.【知识点】线段垂直平分线的性质;勾股定理;垂径定理;圆内接四边形的性质【解析】【分析】(1)利用垂径定理可证得AB垂直平分CD,利用垂直平分线的性质可得到AC=AD;利用等边对等角可知△ACD=△D;再利用圆内接四边形的性质及补角的性质可证得△D=△FGC,由此可证得结论.(2)连接OC,利用垂径定理求出CE的长;设OA=OC=r,可表示出OE的长;在Rt△COE,利用勾股定理可得到关于r的方程,解方程求出r的值.3.【答案】(1)解:①因为小正方形的边长为:a−b,所以第一次计算的面积为:(a−b)2,第二次计算的面积为:(a+b)2−4ab,所以:(a−b)2=(a+b)2−4ab;或(a+b)2−4ab,(a−b)2,(a+b)2−4ab=(a−b)2②∵a+b=7,ab=10∴(a−b)2=(a+b)2−4ab=72−4×10=9(2)解:第一次利用梯形的面积公式图形面积为:12(a+b)2,第二次利用图形的面积和计算为:2×12ab+12c2,∴12(a+b)2=2×12ab+12c2整理得:a2+2ab+b2=2ab+c2∴a2+b2=c2【知识点】列式表示数量关系;完全平方公式的几何背景;勾股定理的证明【解析】【分析】(1)①利用所给图形,再结合完全平方公式求解即可;②根据a+b=7,ab=10,计算求解即可;(2)先求出12(a+b)2=2×12ab+12c2,再整理计算求解即可。
勾股定理练习题及答案
勾股定理练习题及答案问题一:已知直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。
解答一:根据勾股定理,斜边的平方等于两条直角边的平方和。
设斜边的长度为c,则有:c^2 = 3^2 + 4^2c^2 = 9 + 16c^2 = 25取平方根得到c = 5cm。
所以,斜边的长度为5cm。
问题二:已知直角三角形的斜边长度为10cm,一条直角边的长度为6cm,求另一条直角边的长度。
解答二:设另一条直角边的长度为a。
根据勾股定理,可得:a^2 + 6^2 = 10^2a^2 + 36 = 100a^2 = 100 - 36a^2 = 64取平方根得到a = 8cm。
所以,另一条直角边的长度为8cm。
问题三:已知直角三角形的一条直角边的长度为5cm,另一条直角边的长度为12cm,求斜边的长度。
解答三:设斜边的长度为c。
根据勾股定理,可得:c^2 = 5^2 + 12^2c^2 = 25 + 144c^2 = 169取平方根得到c = 13cm。
所以,斜边的长度为13cm。
问题四:已知直角三角形的斜边长度为15cm,一条直角边的长度为9cm,求另一条直角边的长度。
解答四:设另一条直角边的长度为a。
根据勾股定理,可得:a^2 + 9^2 = 15^2a^2 + 81 = 225a^2 = 225 - 81a^2 = 144取平方根得到a = 12cm。
所以,另一条直角边的长度为12cm。
问题五:已知直角三角形的一条直角边的长度为7cm,另一条直角边的长度为24cm,求斜边的长度。
解答五:设斜边的长度为c。
根据勾股定理,可得:c^2 = 7^2 + 24^2c^2 = 49 + 576c^2 = 625取平方根得到c = 25cm。
所以,斜边的长度为25cm。
以上是五道勾股定理练习题及答案的解答过程。
通过这些练习题,我们可以加深对勾股定理的理解,熟练掌握如何在已知条件下求解三角形的边长。
勾股定理在几何学和实际应用中都有广泛的应用,是数学中的重要概念之一。
中考数学-勾股定理
第19讲 勾股定理经典·考题·赏析【例1】 (达州)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3,5,2,3,则最大正方形E 的面积是( )A .13B .26C .47D .94【解法指导】 观察勾股树,发现正方形A 、B 的边长恰好是一直角三角形相邻的两直角边.此时直角三角形两直角边的平方和等于斜边的平方,即两个较小正方形面积之和等于较大正方形的面积,从而正方形E 的面积等于正方形A 、B 、C 、D 四个面积之和,故选C .【变式题组】01.(安徽)如图,直线l 过正方形ABCD 的顶点B ,点A ,C 到直线l 的距离分别是1和2,则正方形的边长是___________.02.(浙江省温州)在直线l 上的依次摆放着七个正方形(如图所示),己知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=______.03.(浙江省丽江)如图,已知△ABC 中,∠ABC =90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1、l 2、l 3上,且l 1、l 2之间的距离为2,l 2、l 3之间的距离为3,则AC 的长是( )A .217B .25C .42D .7【例2】(青岛)如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要_____cm ;如果从点A 开始经过4个侧面缠绕n 圈到达点B ,那么所用细线最短需要______cm .【解法指导】细线缠绕时绕过几个面,则将这几个面展开后在同一平面内利用线段的公理:两点之间线段最短.画出线路,然后利用勾股定理解决,应填10,22916n +. 【变式题组】01.(恩施)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( )A .521B .25C .1055+D .35lA 1D C B 2 第1题图第2题图第3题图ACBll 2lB A 3cm 1cm6cm 第2题图AB 吸管106 502.(荆州)如图所示的长方体是某种饮料的纸质包装盒,规格为5×6×10(单位:cm ),在上盖中开有一孔便于插吸管,吸管长为13cm ,小孔到图中边AB 距离为1cm ,到上盖中与AB 相邻的两边距离相等,设插入吸管后露在盒外面的长为hcm ,则h 的最小值大约为_____cm .(精确到个位,参考数据:2=1.4,3=1.7:5=2.2)03.(荆州)若一边长为40cm 的等边三角形硬纸板刚好能不受损地从用铁丝围成的圆形铁圈中穿过,则铁圈直径最小值为_____cm .(铁丝粗细忽略不计)【例3】(荆州)如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为NM ,则线段CN 的长是( )A .3cmB .4cmC .5cmD .6cm【解法指导】对折问题即对称问题,设CN =x ,DN =NE =8-x .在Rt △CEN 中,(8-x )2=42+x 2 x =5.故选C【变式题组】01.在四边形ABCD 中,∠B =90°,AB =4,BC =3,CD =13,AD =12.求S 四边形ABCD .02.如图,△ABC 中,AB =13,AD =6,AC =5 ,D 为BC 边的中点.求S △ABC .03.如图,△ABC 中,∠ACB =90°,AD 平分∠CAB ,BC =4,CD =32.求AC .【例4 】(四川省初二数学联赛试题)如图,直线OB 是一次函数y =-2x 的图象,点A 的坐标为(0,2),在直线OB 上找点C ,使得△ACO 为等腰三角形,求点C 坐标.【解法指导】求C 点坐标需分类讨论.B 10 15 A 2C第1题A DB E CF MNA BC D A OBy xy =-2x(1)若以O 为顶点,OA 为腰,则C 在以O 为圆心,OA 的长为半径的圆与y =-2x 的交点处.(2)若以A 为顶点,AO 为腰,则C 在以A 为圆心, AO 的长为半径的圆与y =-2x 的交点处.(3)若以C 为顶点,则C 在OA 的中垂线与y =-2x 的交点处.【解】⑴若以O 为顶点,OA 为腰,如图设C (t ,-2t ),则在Rt △COD 中,OC 2=OD 2+CD 2 4=t 2+(-2t )2 5t 2=4t=5±∴C 1(-,C 2,- ⑵若以A 为顶点,AO 为腰,如图,设C (t ,-2t ),在Rt △ACE 中 AC 2=CE 2+AE 2 22=t 2+(-2t -2)2t =0(舍去),t =85- ∴C 3(85-,165) ⑶若C 为顶点,C 在OA 的中垂线上.∴C 4(12-,1) 【变式题组】 01.若A (3,2),B 为x 轴上一点,O 为坐标原点.若△AOB 是等腰三角形.求B 点坐标.02.如图,在平面直角坐标系中,A (4,0),B 为y =2x 上一点,若△AOB 为等腰三角形.求B点坐标.03.如图.在平面直角坐标系中,A (0,4),B 为y =2x 上一点,若△AOB 为直角三角形.求B点坐标.【例5】(福建省漳州)几何模型:条件:如下左图,A 、B 是直线l 同旁的两个定点. 问题:在直线l 上确定一点P ,使PA +PB 的值最小.方法:作点A 关于直线l 的对称点A ',连接A 'B 交l 于点P ,则PA +PB =A 'B 的值最小(不必证明).模型应用:⑴如图1,正方形ABCD 的边长为2,E 为AB 的中点,P 是AC 上一动点.连接BD,由正方形对称性可知,B与D关于直线AC对称.连接ED交AC于P,则PB+PE的最小值是__________;(2)如图2,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.【解】(2)如图2,作P关于OB的对称点P1,关于OA的对称点P2,连接P1P2,交OB于R,交OA于Q,则△PRQ的周长最小,且此时△PRQ的周长为PR +RQ+QP=P1P2.连接OP1,OP2,∵∠1=∠2,∠3=∠4,∠2+∠3=45°∴∠P1OP2=90°,OP1=OP=OP2,在Rt△OP1P2中,P1P22=OP12+OP22,∴P1P2=【变式题组】01.(荆门)一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).⑴求该函数的解析式;⑵O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点坐标.02.(四川联赛试题)已知矩形ABCD的AB=12,AD=3,E、F分别是AB,DC上的点,则折线AFEC长的最小值为____________.03.(陕西)如图,在锐角△ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是___________.【例6.【解法指导】所求的两个根式之和的最小值,因被开方数不是完全平方式而无法化简,用代数方法求解困难,但被开方数的特点x2+4=x2+22,(8-x)2+16=(8-x)2+42均为平方和结构,由此联边的两边之和的最小值,于是根据数形结合的思想转化为构造图形问题来解决.图1图22CA BDMN【解】如图,作AB =8,AC ⊥AB ,BD ⊥AB ,AC =2,BD =4.E 是AB 上一动点.设AE =x .则BE =8-x .∴CE =222x +,DE =()2284x -+.所以求代数式最小值问题转化为在AB 上求一点E ,使CE +DE 值最小.根据线段公理,连接CD 交AB 于H ,则CD 为所求.作CF ⊥DB 交DB 延长线于F .在Rt △CDF 中,CD =22CF DF +=10.∴所求最小值为10.【变式题组】01.(恩施自治州)如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB =5,DE =1,BD =8,设CD =x . ⑴用含x 的代数式表示AC +CE 的长;⑵请问点C 满足什么条件时,AC +CE 的值最小?⑶根据⑵中的规律和结论,请构图求出代数式x +24+()2129x -+的最小值02.(咸宁)问题背景:在△ABC 中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网络(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积. ⑴请你将△ABC 的面积直接填写在横线上______; 思维拓展:⑵我们把上述求△ABC 面积的方法叫做构图法....若△ABC 三边的长分别为5a 、22a 、17a (a >0),请利用图2的正方形网格(每个小正方形的边长为a )画出相应的△ABC ,并求出它的面积; 探索创新:⑶若△ABC 三边的长分别为2216m n +、2294m n +、222m n +(m >0,n >0,且m ≠n ),试运用构图法...求出这三角形的面积.【例7】.(天津)已知Rt △ABC 中,∠ACB =90°,CA =CB ,有一个圆心角为45°,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE 、CF 分别与直线AB 交于点M 、N .⑴当扇形CEF 绕点C 在∠ACB 的内部旋转时,如图1,求证:MN 2 = AM 2+BN 2;【思路点拨】考虑MN 2=AM 2+BN 2符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM 沿直线CE 对折,得△DCM ,连接DN ,只需证DN =BN ,∠MDN =90°就可以了.A BCD E请你完成证明过程:⑵当扇形GEF绕点C旋转至图2的位置时,关系式MN2=AM2+BN2是否仍然成立?若成立,请证明;若不成立,请说明理由.【解法指导】观察求证的结论容易发现MN2=AM2+BN2符合匀股定理的结构形式.因此我们设法构造以MN为斜边的直角三角形.【解】(l)证明:将△ABM沿直线CM对折,得△DCM,连DN.∵△ACM≌△DCM∴∠1=∠2,AC=CD,∠A=∠MDC∵AC=BC∴CD=BC∵∠MCN=45°,∴∠1+∠4=∠2+∠3∴∠3=∠4在△DCN和△BCN中,CD=CB∠3=∠4 ∴△CDN≌△CBN,∴∠CDN=∠B=45°,BN=DNCN=CN∴∠MDN=90°在Rt△DMN中,MN2=DM2+DN2∴NM2=AM2+BN2⑵将△ACM沿直线CM对折,得△GCM,连接GN.∵△GCM≌△ACM,∴∠CGM=∠CAM=135°,∠1=∠2,AM=GM∵∠BCN=90°-∠3=90°-(45°-∠1)=45°+∠1=45°+∠2∠CGN=∠1+∠3+∠2=45°+∠2∴∠BCN=∠CGN在△BCN和△GCN中CN=CN∠BCN=∠CGN∴△BCN≌△GCN,∴∠CGN=∠B=45°,GN=BNCB=CG∴∠MGN=135°-45°=90°,在Rt△MGN中,MN2=MG2+GN2,∴MN2=AM2+BN2【变式题组】01.在Rt△ABC中,∠C=90°,D为AB边的中点,DE⊥DF.求证:EF2=AE2+BF202.我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.⑴写出你所学过的特殊四边形中是勾股四边形的一种图形的名称________;⑵如图1,请你在图中画出以格点为顶点,OA、OB为勾股边且对角线相等的勾股四边形OAMB;⑶如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD、DC,∠DCB=30°.求证:四边形ABCD是勾股四边形.ABC演练巩固·反馈提高01.如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC ,则AC 边上的高为( ) A .322B .3510C .355D .45502.(哈尔滨)如图,长方形纸片ABCD 中,AB =8cm ,把长方形纸片沿直线AC 折叠,点B 落在点E 处,AE 交DC 于点F ,若AF =254cm ,则AD 的长为( ) A .4cm B .5cm C .6cm D .7cm03.(滨州)已知△ABC 中,AB =17,AC =10,BC 边上的高AD 为8,则边BC 的长为( ) A .21 B .15 C .6 D .21或904.在同一平面内把边BC =3,AC =4,AB =5的三角形沿最长边AB 翻折后得到△ABC ',则CC '的长等于( )A .125B .135C .56D .24505.一个三角形三边长度之比为3:4:5,则这个三角形的三边上高的之比为( )A .3:4:5B .5:4:3C .20:15:12D .9:16:2506.(山西)如图,在Rt △ABC 中,∠ACB =90°,BC =3,AC =4,AB 的垂直平分线DE 交BC的延长线于点E ,则CE 的长为( )A .32B .76C .256D .207.(湖州)如图,在正三角形ABC 中,AB =1,D 、E 、F 分别是BC 、AC 、AB 上的点,DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,则△DEF 面积为_____.08.(安顺)如图是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是_______.09.(安徽)长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了_______m .10.(滨州)某楼梯的侧面视图如图所示,其中AB =4米,∠BAC =30°,∠C =90°,A BC DEF因某种活动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应为______.11.(湖州)如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC 、BC 为直径作半圆,面积分别记为S 1、S 2则S 1+S 2的值等于________. 12.(呼和浩特)如图,四边形ABDC 中,∠ABD =120°,AB ⊥AC ,BD ⊥CD ,AB =4,CD =53,则该四边形的面积是_______.13.已知等腰三角形ABC 的底边AB =20cm ,P 是腰AC 上一点,且AP =12cm ,BP =16cm ,则腰长是_________.14.(沪州)如图,△ABC 中,AB =BC =2,∠ABC =90°,D 是BC 的中点,且它关于AC 的对称点为D ′,则BD ′=_______. 15.如图,点A 在反比例函数6y x的图象上,OA =4,AC ⊥x 轴,OA 的中垂线交x 轴于B .求△ABC 的周长.16.有一人字形屋架(等腰三角形),其顶角为120°,两腰长均为4米,现拟定以其中一腰和底重新组成一个三角架,试问将屋架的第三边改为多少时,新的三角架为直角三角形? 17.(牡丹江)有一块直角三角形的绿地,量得两直角边分别为6m ,8m .现在要将绿地扩充成等腰三角形,且扩充部分是以原来绿地8m 长的边为直角边的直角三角形,求扩充后等腰三角形绿地的周长. 18.如图A (3,4),B (a ,1),AB =5,C 、D 分别为x 轴、y 轴上的两动点.求四边形ABCD 周长的最小值.培优升级•奥赛检测yxA (3,4)B (a ,1))xy O01.如图,在Rt △ABC 中,AB =AC ,D 、E 在斜边BC 上且∠DAE =45°,将△ADC 绕点A 顺时针旋转,使AC 与AB 重合,得到△AFB ,连接EF ,则下列结论:①△AED ≌AEF ;②△ABE ≌△ACD ;③BE +DC =DE ;④BE 2+DC 2=DE 2其中正确的是( ) A .②④ B .①④ C .②③ D .①③02.(四川联赛试题)BD 是△ABC 的中线,AC =6且∠ADB =45°,∠C =30°,则AB =( )A .6B .22C .32D .603.(江西竞赛)若将三条高线长度分别为x 、y 、z 的三角形记为(x ,y ,z ),现在以下四个三角形(6,8,10),(8,15,17),(12,15,20),(20,21,29)中,直角三角形的个数为( ) A .1个 B .2个 C .3个 D .4个04.(北京竞赛)如图,ABCD 是一张长方形纸片,将AD ,BC 折起、使A 、B 两点重合于CD边上的P 点,然后压平得折痕EF 与GH .若PE =8cm ,PG =6cm ,EG =10cm ,则长方形纸片ABCD 的面积为()cm 2 A .105.6 B .110.4 C .115.2 D .124.805.如图,在由单位正方形组成的网格图中标出了AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是( ) A .CD 、EF 、GH B .AB 、CD 、EF C .AB 、CD 、GH D .AB 、EF 、GH06.(四川省初二数学联赛试题)如图,等边三角形ABC 内有一点P ,过点P 向三边作垂线,垂足分别为S 、Q 、R ,且PQ =6,PR =S ,PS =10,则△ABC 的面积等于( )A .1903B .1923C .1943D .196307.(四川省初二数学联赛试题)如图所示,在△ABC 中,∠BAC =120°,AB =AC =103cm ,一动点P 从B 向C 以每秒2cm 的速度移动,当P 点移动____秒时,PA 与腰垂直.08.如图,在△ABC 中,D 是BC 边上一点,AB =AD =2,AC =4,且BD :DC =2:3则BC =______. 09.(黑龙江竞赛)小宇同学在布置班级文化园地时,想从一块长为20cm ,宽为8cm 的长方形彩色纸板上剪下一个腰长为10cm 的等腰三角形,并使其一个顶点在长方形的一边上,另两个顶点落在对边上,请你帮他计算出所剪下的等腰三角形的底边长.第5题图F E B D C 第6题图S R Q P第7题图B 224第8题图BD C10.如图,△ABC 是等腰直角三角形,AB =AC ,D 是BC 的中点,E 、F 分别是AB ,AC 上的点,且DE ⊥DF ,若BE =12,CF =5.求.S △DEF11.如图①,已知直线y =-2x +4与x 轴、y 轴分别交于点A 、C ,以OA 、OC 为边在第一象限内作长方形OABC . ⑴求点A 、C 的坐标; ⑵将△ABC 对折,使得点A 与点C 重合,折痕交AB 于点D ,求直线CD 的解析式(图②); ⑶在坐标平面内,是否存在点P (除点B 外),使得△APC 与△ABC 全等,若存在,请求出所有符合条件的点P 的坐标,若不存在,请说明理由.12.(浙江省义乌)如图1,已知∠ABC =90°,△ABE 是等边三角形,点P 为射线BC 上任意一点(点P 与B 不重合),连接AP ,将线段AP 绕点A 逆时针旋转60°得到线段AQ ,连接QE 并延长交射线BC 于点F .⑴如图2,当BP =BA 时,∠EBF =_____°,猜想∠QFC =_______°;⑵如图l ,当点P 为射线BC 上任意一点时,猜想∠QFC 的度数,并加以证明;⑶已知线段AB=BP =x ,点Q 到射线BC 的距离为y ,求y 关于x 的函数关系式.图② 图②图①。
中考数学复习《勾股定理》专项练习题-附带有答案
中考数学复习《勾股定理》专项练习题-附带有答案一、单选题1.线段a、b、c组成的三角形不是直角三角形的是()A.a=7,b=24,c=25 B.Ba= √41,b=4,c=5C.a= 34,b=1,c= 54D.a=40,b=50,c=602.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.65B.95C.125D.1653.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为7和9,则b的面积为()A.16 B.2 C.32 D.1304.如图,在5×5的正方形网格中,每个小正方形的边长为1,在图中找出格点C,使得△ABC是腰长为无理数的等腰三角形,点C的个数为()A.3 B.4 C.5 D.75.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中S A=10,S B=8,S C=9,S D=4则下列判断不正确的是()A.S E=18B.S F=13C.S M=31D.S M−S E=176.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.1B.√5C.2√2D.2√37.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么(a+b)2的值为().A.49 B.25 C.13 D.18.如图,在△ABC中∠C=60°,AC=4,BC=3 .分别以点A,B为圆心,大于12AB的长为半径作弧,两弧交于M、N两点,作直线MN交AC于点D,则CD的长为()A.1 B.75C.32D.3二、填空题9.如图,△ABC中AB=AC=10,BC=16,△ABC的面积是.10.如图,在Rt△ABC中,∠C=90°,AC=3,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,且OC=4 √2,则BC=.11.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是12.某小区两面直立的墙壁之间为安全通道,一架梯子斜靠在左墙DE时,梯子底端A到左墙的距离AE为0.7m,梯子顶端D到地面的距离DE为2.4m,若梯子底端A保持不动,将梯子斜靠在右墙BC上,梯子顶端C到地面的距离CB为2m,则这两面直立墙壁之间的安全通道的宽BE为m.13.活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等.如已知△ABC中∠A=30°,AC=3,∠A所对的边为√3,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为三、解答题14.如图,点C在∠DAB内部,CD⊥AD于点D,CB⊥AB于点B,CD=CB,若AD=5,求AB的长.15.如图,在△ABC中,CD⊥AB,垂足为D.AD=1,BD=4,CD=2.求证:∠ACB=90°.16.如图,一只小鸟旋停在空中A点,A点到地面的高度AB=20米,A点到地面C点(B、C两点处于同一水平面)的距离AC=25米.若小鸟竖直下降12米到达D点(D点在线段AB上),求此时小鸟到地面C 点的距离.17.如图,在△ABC中,∠ACB的平分线CD交AB于点D,E为AC边上一点,且满足∠AED=2∠DCB.(1)求证:DE∥BC;(2)若∠B=90°,AD=6,AE=9,求CE的长.18.如图,在正△ABC的AC,BC上各取一点D,E,使AD=CE,AE,BD相交于点M(1)如图1,求∠BME的度数;(2)如图2,过点B作直线AE的垂线BH,垂足为H①求证:2MH+DM=AE;②若BE=2EC=2,求BH的长.答案1.D2.C3.A4.C5.D6.B7.A8.B9.4810.511.1.512.2.213.2√3或√314.解:解法一:连结AC∵CD⊥AD于点D,CB⊥AB于点B∴∠CDA=∠CBA=90°在Rt△ABC与Rt△ADC中有AC=AC,CD=CB∴Rt△ABC≌Rt△ADC(HL)∴AB=AD=5解法二:连结AC∵CD⊥AD于点D,CB⊥AB于点B∴∠CDA=∠CBA=90°∵CD=CB∴由勾股定理得:AB= √AC2−BC2 = √AC2−CD2 =AD=515.证明:∵CD是△ABC的高∴∠ADC=∠BDC=90°.∵AD=1,BD=4,CD=2∴AC2=AD2+CD2=12+22=5,BC2=BD2+CD2=42+22=20,AB2=(1+4)2=25.∴AC2+BC2=AB2.∴△ABC是直角三角形∴∠ACB=90°.16.解:由勾股定理得;BC2=AC2−AB2=252−202=225∴BC=15(米)∵BD=AB−AD=20−12=8(米)∴在Rt△BCD中,由勾股定理得CD=√DB2+BC2=√82+152=17∴此时小鸟到地面C点的距离17米.答;此时小鸟到地面C点的距离为17米.17.(1)证明:∵CD平分∠ACB∴∠ACD=∠DCB即∠ACB=2∠DCB又∵∠AED=2∠DCB∴∠ACB=∠AED∴DE//BC;(2)解:∵DE//BC∴∠EDC=∠BCD,∠B=∠ADE=90°∵∠BCD=∠ECD∴∠EDC=∠ECD∴ED=CE∵AD=6,AE=9∴DE=√AE2−AD2=√92−62=3√5∴CE=3√5.18.(1)解:∵△ABC是等边三角形∴AB=AC,∠BAC=∠C=60°又∵AD=CE ∴△ABD≌△CAE(SAS)∴∠BME=∠ABD+∠BAE=∠CAE+∠BAE=∠BAC=60°(2)解:①∵BH⊥AE ∠BME=60°∴∠HBM=30°∴BM=2MH∵△ABD≌△CAE ∴AE=BD=BM+MD=2MH+MD②过点E作EG⊥AB于点GBE=2EC=2 ∴AB=BC=3∴使用ABC=60°∴BG=1,AG=2,由勾股定理可得,GE= √3,AE= √7设HE=x,则AH= √7 -x由勾股定理得32-(√7 -x)2=22-x2解得x= √77再由勾般定理可得:BH= 3√21.7。
中考数学真题分类汇编及解析(二十五)勾股定理
(2022•湖州中考)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD中,M,N分别是AB,BC上的格点,BM=4,BN=2.若点P是这个网格图形中的格点,连结PM,PN,则所有满足∠MPN=45°的△PMN中,边PM的长的最大值是()A.4√2B.6C.2√10D.3√5【解析】选C.如图所示:△MNP为等腰直角三角形,∠MPN=45°,此时PM最长,根据勾股定理得:PM=√22+62=√40=2√10.(2022•宁波中考)如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为()A.2√2B.3C.2√3D.4【解析】选D.因为D为斜边AC的中点,F为CE中点,DF=2,所以AE=2DF=4,因为AE=AD,所以AD=4,在Rt△ABC中,D为斜边AC的中点,所以BD=12AC=AD=4A .2B .32C .12D .√55【解析】选A .由已知可得,大正方形的面积为1×4+1=5,设直角三角形的长直角边为a ,短直角边为b ,则a 2+b 2=5,a ﹣b =1,解得a =2,b =1,所以tan α=a b =21=2(2022·遵义中考)如图1是第七届国际数学教育大会(ICME )会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若AB =BC =1,∠AOB =30°,则点B 到OC 的距离为( )A .√55B .2√55C .1D .2 【解析】选B .作BH ⊥OC 于H ,因为∠AOB =30°,∠A =90°,所以OB =2AB =2,在Rt △OBC 中,由勾股定理得,OC =√OB 2+BC 2=√22+12=√5,因为∠CBO =∠BHC =90°,所以∠CBH =∠BOC ,所以cos ∠BOC =cos ∠CBH ,所以OBOC =BHBC ,所以2√5=BH 1,所以BH =2√55.(2022•十堰中考)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D=180°,点E,F分别在BC,CD 上,若∠BAD=2∠EAF,则EF=BE+DF.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD=CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN=50(√3−1)m,若在M,N 之间修一条直路,则路线M→N的长比路线M→A→N的长少370 m(结果取整数,参考数据:√3≈1.7).【解析】解法一:如图,延长DC,AB交于点G,因为∠D=60°,∠ABC=120°,∠BCD=150°,所以∠A=360°﹣60°﹣120°﹣150°=30°,所以∠G=90°,所以AD=2DG,Rt△CGB中,∠BCG=180°﹣150°=30°,BC=50,CG=50√3,所以DG=CD+CG=100+50√3,所以BG=12所以AD=2DG=200+100√3,AG=√3DG=150+100√3,因为DM=100,所以AM=AD﹣DM=200+100√3−100=100+100√3,因为BG=50,BN=50(√3−1),所以AN=AG﹣BG﹣BN=150+100√3−50﹣50(√3−1)=150+50√3,AN=75+25√3,AH=√3NH=75√3+75,Rt△ANH中,因为∠A=30°,所以NH=12由勾股定理得:MN=√NH2+MH2=√(75+25√3)2+(25√3+25)2=50(√3+1),所以AM+AN﹣MN=100+100√3+150+50√3−50(√3+1)=200+100√3≈370(m).答:路线M→N的长比路线M→A→N的长少370m.解法二:如图,延长DC,AB交于点G,连接CN,CM,则∠G=90°,因为CD=DM,∠D=60°,所以△BCM是等边三角形,所以∠DCM=60°,由解法一可知:CG=50√3,GN=BG+BN=50+50(√3−1)=50√3,所以△CGN是等腰直角三角形,所以∠GCN=45°,所以∠BCN=45°﹣30°=15°,所以∠MCN=150°﹣60°﹣15°=75°=12∠BCD,由【阅读材料】的结论得:MN=DM+BN=100+50(√3−1)=50√3+50,因为AM+AN﹣MN=AD+AG﹣MN=100+100√3+150+50√3−50(√3+1)=200+100√3≈370(m).答:路线M→N的长比路线M→A→N的长少370m.答案:370.(2022•河南中考)如图,在Rt△ABC中,∠ACB=90°,AC=BC=2√2,点D为AB的中点,点P在AC上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为√5或√13.【解析】如图:因为∠ACB=90°,AC=BC=2√2,所以AB=√2AC=4,因为点D为AB的中点,所以CD=AD=12AB=2,∠ADC=90°,因为∠ADQ=90°,所以点C、D、Q在同一条直线上,由旋转得:CQ=CP=CQ′=1,分两种情况:当点Q在CD上,在Rt△ADQ中,DQ=CD﹣CQ=1,所以AQ=√AD2+DQ2=√22+12=√5,当点Q在DC的延长线上,在Rt△ADQ′中,DQ′=CD+CQ ′=3,所以AQ′=√AD2+DQ′2=√22+32=√13,综上所述:当∠ADQ=90°时,AQ的长为√5或√13.答案:√5或√13是25,小正方形的面积是1,则AE=3.【解析】因为大正方形的面积是25,小正方形的面积是1,所以AB=BC=CD=DA=5,EF=FG=GH=HE=1,根据题意,设AF=DE=CH=BG=x,则AE=x﹣1,在Rt△AED中,AE2+ED2=AD2,所以(x﹣1)2+x2=52,解得:x1=4,x2=﹣3(舍去),所以x﹣1=3.答案:3(2022•泰州中考)如图所示的象棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离为√2.【解析】走两步后的落点与出发点间的最短距离为√12+12=√2.答案:√2.(2022•内江中考)勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为4,则S1+S2+S3=48.【解析】设八个全等的直角三角形的长直角边为a,短直角边是b,则:S1=(a+b)2,S2=42=16,S3=(a﹣b)2,且:a2+b2=EF2=16,所以S1+S2+S3=(a+b)2+16+(a﹣b)2=2(a2+b2)+16=2×16+16=48.。
中考数学复习----勾股定理知识点总结与专项练习题(含答案解)
中考数学复习----勾股定理知识点总结与专项练习题(含答案解) 知识点总结1. 勾股民定理的内容:在直角三角形中,两直角边的平方的和等于斜边的平方。
若直角三角形的两直角边是b a ,,斜边是c ,则222b a c +=。
2. 勾股数:满足直角三角形勾股定理的三个正整数是一组勾股数。
3. 勾股定理的逆定理:若三角形的三条边分别是c b a ,,,且满足222b a c +=,则三角形是直角三角形,且∠C 是直角。
4. 特殊三角形三边的比:①含30°的直角三角形三边的比例为(从小打大):2:3:1。
②45°的等腰直角三角形三边的比例为(从小到大):2:1:1。
5. 两点间的距离公式:若点()11y x A ,与点()22y x B ,,则线段AB 的长度为:()()221221y y x x AB −+−=。
练习题 1、(2022•攀枝花)如图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能够组合得到如图2所示的四边形OABC .若OC =,BC =1,∠AOB =30°,则OA 的值为( )A .3B .23C .2D .1【分析】根据勾股定理和含30°角的直角三角形的性质即可得到结论.【解答】解:∵∠OBC=90°,OC=,BC=1,∴OB===2,∵∠A=90°,∠AOB=30°,∴AB=OB=1,∴OA===,故选:A.2、(2022•荆门)如图,一座金字塔被发现时,顶部已经荡然无存,但底部未曾受损.已知该金字塔的下底面是一个边长为120m的正方形,且每一个侧面与地面成60°角,则金字塔原来高度为()A.120m B.603m C.605m D.1203m【分析】根据底部是边长为120m的正方形求出BC的长,再由含30°角的直角三角形的性质求解AB的长,利用勾股定理求出AC的长即可.【解答】解:如图,∵底部是边长为120m的正方形,∴BC=×120=60m,∵AC⊥BC,∠ABC=60°,∴∠BAC=30°,∴AB =2BC =120m ,∴AC ==m . 故选:B .3、(2022•百色)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等.如已知△ABC 中,∠A =30°,AC =3,∠A 所对的边为,满足已知条件的三角形有两个(我们发现其中如图的△ABC 是一个直角三角形),则满足已知条件的三角形的第三边长为( )A .23B .23﹣3C .23或3D .23或23﹣3【分析】根据题意知,CD =CB ,作CH ⊥AB 于H ,再利用含30°角的直角三角形的性质可得CH ,AH 的长,再利用勾股定理求出BH ,从而得出答案.【解答】解:如图,CD =CB ,作CH ⊥AB 于H ,∴DH =BH ,∵∠A =30°,∴CH =AC =,AH =CH =,在Rt △CBH 中,由勾股定理得BH ==,∴AB =AH +BH ==2,AD =AH ﹣DH ==, 故选:C . 4、(2022•荆州)如图,在Rt △ABC 中,∠ACB =90°,通过尺规作图得到的直线MN 分别交AB ,AC 于D ,E ,连接CD .若CE =31AE =1,则CD = .【分析】如图,连接BE ,根据作图可知MN 为AB 的垂直平分线,从而得到AE =BE =3,然后利用勾股定理求出BC ,AB ,最后利用斜边上的中线的性质即可求解.【解答】解:如图,连接BE ,∵CE =AE =1,∴AE =3,AC =4,而根据作图可知MN 为AB 的垂直平分线,∴AE =BE =3,在Rt △ECB 中,BC ==2,∴AB ==2, ∵CD 为直角三角形ABC 斜边上的中线,∴CD =AB =.故答案为:. 5、(2022•广元)如图,在△ABC 中,BC =6,AC =8,∠C =90°,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于21AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .25B .3C .22D .310 【分析】利用勾股定理求出AB ,再利用相似三角形的性质求出AE 即可.【解答】解:在Rt △ABC 中,BC =6,AC =8,∴AB ===10, ∵BD =CB =6,∴AD =AB ﹣BC =4,由作图可知EF 垂直平分线段AD ,∴AF =DF =2,∵∠A =∠A ,∠AFE =∠ACB =90°,∴△AFE ∽△ACB ,∴=, ∴=,∴AE =,故选:A .6、(2022•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD 中,M ,N 分别是AB ,BC 上的格点,BM =4,BN =2.若点P 是这个网格图形中的格点,连结PM ,PN ,则所有满足∠MPN =45°的△PMN 中,边PM 的长的最大值是( )A .42B .6C .210D .35【分析】在网格中,以MN 为直角边构造一个等腰直角三角形,使PM 最长,利用勾股定理求出即可.【解答】解:如图所示:∵BM=NC=4,BN=CP=2,且∠B=∠C=90°,∴△BMN≌△CNP(SAS),∴MN=NP,∠BMN=∠CNP,∵∠BMN+∠BNM=90°,∴∠BNM+∠CNP=90°,∴∠MNP=90°,∴△NMP为等腰直角三角形,此时PM最长,在Rt△BMN和Rt△NCP中,根据勾股定理得:MN=NP==2,则PM==2.故选:C.7、(2022•金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,﹣2),下列各地点中,离原点最近的是()A.超市B.医院C.体育场D.学校【分析】根据题意可以画出相应的平面直角坐标系,然后根据勾股定理,可以得到点O到超市、学校、体育场、医院的距离,再比较大小即可.【解答】解:如右图所示,点O到超市的距离为:=,点O到学校的距离为:=,点O到体育场的距离为:=,点O到医院的距离为:=,∵<=<,∴点O到超市的距离最近,故选:A.8、(2022•舟山)如图,在Rt△ABC和Rt△BDE中,∠ABC=∠BDE=90°,点A在边DE 的中点上,若AB=BC,DB=DE=2,连结CE,则CE的长为()A.14B.15C.4D.17【分析】方法一:根据题意先作出合适的辅助线,然后根据勾股定理可以得到AB和BC的长,根据等面积法可以求得EG的长,再根据勾股定理求得EF的长,最后计算出CE的长即可.方法二:延长ED到F,使得DE=DF,连接CF,BF,然后根据全等三角形的判定和性质,以及勾股定理,可以求得CE的长.【解答】解:方法一:作EF⊥CB交CB的延长线于点F,作EG⊥BA交BA的延长线于点G,∵DB=DE=2,∠BDE=90°,点A是DE的中点,∴BE===2,DA=EA=1,∴AB===,∵AB=BC,∴BC=,∵=,∴,解得EG=,∵EG⊥BG,EF⊥BF,∠ABF=90°,∴四边形EFBG是矩形,∴EG=BF=,∵BE=2,BF=,∴EF===,CF=BF+BC=+=,∵∠EFC=90°,∴EC===,故选:D.方法二:延长ED到F,使得DE=DF,连接CF,BF,如图所示,∵BD=DE=2,∠BDE=90°,∴∠BDE=∠BDF=90°,EF=4,∴△BDE≌△BDF(SAS),∴BE=BF,∠BEA=∠BF A=45°,∵∠EBA+∠ABF=90°,∠ABF+∠FBC=90°,∴∠EBA=∠FBC,∵BE=BF,BA=BC,∴△EBA≌△FBC(SAS),∴∠BEA=∠BFC=45°,AE=CF,∴∠CFE=∠BFC+∠AFB=90°,∵点A为DE的中点,∴AE=1,∴CF=1,∴EC===,故选:D.9、(2022•成都)若一个直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,则这个直角三角形斜边的长是.【分析】设直角三角形两条直角边分别为a、b,斜边为c,由一元二次方程根与系数的关系可得a+b=6,ab=4,再由勾股定理即可求出斜边长.【解答】解:设直角三角形两条直角边分别为a、b,斜边为c,∵直角三角形两条直角边的长分别是一元二次方程x2﹣6x+4=0的两个实数根,∴a+b=6,ab=4,∴斜边c====2,故答案为:2.10、(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE ∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9【分析】根据角平分线的性质和和勾股定理,可以求得CD和CE的长,再根据平行线的性质,即可得到AE的长,从而可以判断B和C,然后即可得到AC的长,即可判断D;再根据全等三角形的判定和性质即可得到BF的长,从而可以判断A.【解答】解:∵AD平分∠BAC,∠C=90°,DF⊥AB,∴∠1=∠2,DC=FD,∠C=∠DFB=90°,∵DE∥AB,∴∠2=∠3,∴∠1=∠3,∴AE=DE,∵DE=5,DF=3,∴AE=5,CD=3,故选项B、C正确;∴CE==4,∴AC=AE+EC=5+4=9,故选项D正确;∵DE∥AB,∠DFB=90°,∴∠EDF=∠DFB=90°,∴∠CDE+∠FDB=90°,∵∠CDE+∠DEC=90°,∴∠DEC=∠FDB,∵tan∠DEC=,tan∠FDB=,∴,解得BF=,故选项A错误;故选:A.11、(2022•通辽)在Rt△ABC中,∠C=90°,有一个锐角为60°,AB=6,若点P在直线AB上(不与点A,B重合),且∠PCB=30°,则AP的长为.【分析】题中60°的锐角,可能是∠A也可能是∠B;∠PCB=30°可以分为点P在在线段AB上和P在线段AB的延长线上两种情况;直角三角形中30°角所对的直角边等于斜边的一半,同时借助勾股定理求得AP的长度.【解答】解:当∠A=30°时,∵∠C=90°,∠A=30°,∴∠CBA=60°,BC=AB=×6=3,由勾股定理得,AC=3,①点P在线段AB上,∵∠PCB=30°,∠CBA=60°∴∠CPB=90°,∴∠CP A=90°,在Rt△ACP中,∠A=30°,∴PC=AC=×3=.∴在Rt△APC中,由勾股定理得AP=.②点P在线段AB的延长线上,∵∠PCB=30°,∴∠ACP=90°+30°=120°,∵∠A=30°,∴∠CP A=30°.∵∠PCB=30°,∴∠PCB=∠CP A,∴BP=BC=3,∴AP=AB+BP=6+3=9.当∠ABC=30°时,∵∠C=90°,∠ABC=30°,∴∠A=60°,AC=AB=×6=3,由勾股定理得,BC=3,①点P在线段AB上,∵∠PCB=30°,∴∠ACP=60°,∴△ACP是等边三角形∴AP=AC=3.②点P在线段AB的延长线上,∵∠PCB=30°,∠ABC=30°,∴CP∥AP这与CP与AP交于点P矛盾,舍去.综上所得,AP的长为,9或3.故答案为:,9或3.12、(2022•武汉)如图,在Rt△ABC中,∠ACB=90°,AC>BC,分别以△ABC的三边为边向外作三个正方形ABHL,ACDE,BCFG,连接DF.过点C作AB的垂线CJ,垂足为J,分别交DF,LH于点I,K.若CI=5,CJ=4,则四边形AJKL的面积是.【分析】过点D作DM⊥CI于点M,过点F作FN⊥CI于点N,由正方形的性质可证得△ACJ≌△CDM,△BCJ≌△CFN,可得DM=CJ,FN=CJ,可证得△DMI≌△FNI,由直角三角形斜边上的中线的性质可得DI=FI=CI,由勾股定理可得MI,NI,从而可得CN,可得BJ与AJ,即可求解.【解答】解:过点D作DM⊥CI,交CI的延长线于点M,过点F作FN⊥CI于点N,∵△ABC为直角三角形,四边形ACDE,BCFG为正方形,过点C作AB的垂线CJ,CJ=4,∴AC=CD,∠ACD=90°,∠AJC=∠CMD=90°,∠CAJ+∠ACJ=90°,BC=CF,∠BCF=90°,∠CNF=∠BJC=90°,∠FCN+∠CFN=90°,∴∠ACJ+∠DCM=90°,∠FCN+∠BCJ=90°,∴∠CAJ=∠DCM,∠BCJ=∠CFN,∴△ACJ≌△CDM(AAS),△BCJ≌△CFN(AAS),∴AJ=CM,DM=CJ=4,BJ=CN,NF=CJ=4,∴DM=NF,∴△DMI≌△FNI(AAS),∴DI=FI,MI=NI,∵∠DCF=90°,∴DI=FI=CI=5,在Rt△DMI中,由勾股定理可得:MI===3,∴NI=MI=3,∴AJ=CM=CI+MI=5+3=8,BJ=CN=CI﹣NI=5﹣3=2,∴AB=AJ+BJ=8+2=10,∵四边形ABHL为正方形,∴AL=AB=10,∵四边形AJKL为矩形,∴四边形AJKL的面积为:AL•AJ=10×8=80,故答案为:80.13、(2022•内江)勾股定理被记载于我国古代的数学著作《周髀算经》中,汉代数学家赵爽为了证明勾股定理,创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”.图②由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若正方形EFGH的边长为4,则S1+S2+S3=.【分析】由勾股定理和乘法公式完成计算即可.【解答】解:设八个全等的直角三角形的长直角边为a,短直角边是b,则:S1=(a+b)2,S2=42=16,S3=(a﹣b)2,且:a2+b2=EF2=16,∴S1+S2+S3=(a+b)2+16+(a﹣b)2=2(a2+b2)+16=2×16+16=48.故答案为:48.14、(2022•永州)我国古代数学家赵爽创制了一幅“赵爽弦图”,极富创新意识地给出了勾股定理的证明.如图所示,“赵爽弦图”是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是25,小正方形的面积是1,则AE=.【分析】根据题意得出AB=BC=CD=DA=5,EF=FG=GH=HE=1,设AF=DE=CH =BG=x,结合图形得出AE=x﹣1,利用勾股定理列方程求解.【解答】解:∵大正方形的面积是25,小正方形的面积是1,∴AB=BC=CD=DA=5,EF=FG=GH=HE=1,根据题意,设AF=DE=CH=BG=x,则AE=x﹣1,在Rt△AED中,AE2+ED2=AD2,∴(x﹣1)2+x2=52,解得:x1=4,x2=﹣3(舍去),∴x﹣1=3,故答案为:3.15、(2022•湖北)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,径隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是(结果用含m的式子表示).【分析】根据题意得2m为偶数,设其股是a,则弦为a+2,根据勾股定理列方程即可得到结论.【解答】解:∵m为正整数,∴2m为偶数,设其股是a,则弦为a+2,根据勾股定理得,(2m)2+a2=(a+2)2,解得a=m2﹣1,∴弦是a+2=m2﹣1+2=m2+1,故答案为:m2+1.16、(2022•常州)如图,将一个边长为20cm的正方形活动框架(边框粗细忽略不计)扭动成四边形ABCD,对角线是两根橡皮筋,其拉伸长度达到36cm时才会断裂.若∠BAD=60°,则橡皮筋AC断裂(填“会”或“不会”,参考数据:3≈1.732).【分析】设AC与BD相交于点O,根据菱形的性质可得AC⊥BD,AC=2AO,OD=BD,AD=AB=20cm,从而可得△ABD是等边三角形,进而可得BD=20cm,然后再在Rt△ADO中,利用勾股定理求出AO,从而求出AC的长,即可解答.【解答】解:设AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,AC=2AO,OD=BD,AD=AB=20cm,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=20cm,∴DO=BD=10(cm),在Rt△ADO中,AO===10(cm),∴AC=2AO=20≈34.64(cm),∵34.64cm<36cm,∴橡皮筋AC不会断裂,故答案为:不会.17、(2022•常州)如图,在Rt△ABC中,∠C=90°,AC=9,BC=12.在Rt△DEF中,∠F=90°,DF=3,EF=4.用一条始终绷直的弹性染色线连接CF,Rt△DEF从起始位置(点D与点B重合)平移至终止位置(点E与点A重合),且斜边DE始终在线段AB上,则Rt△ABC的外部被染色的区域面积是.【分析】如图,连接CF交AB于点M,连接CF′交AB于点N,过点F作FG⊥AB于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.求出梯形的上下底以及高,可得结论.【解答】解:如图,连接CF交AB于点M,连接CF′交AB于点N,过点F作FG⊥AB于点H,过点F′作F′H⊥AB于点H,连接FF′,则四边形FGHF′是矩形,Rt△ABC的外部被染色的区域是梯形MFF′N.在Rt△DEF中,DF=3,EF=4,∴DE===5,在Rt△ABC中,AC=9,BC=12,∴AB===15,∵•DF•EF=•DE•GF,∴FG=,∴BG===,∴GE=BE﹣BG=,AH=GE=,∴F′H=FG=,∴FF′=GH=AB﹣BG﹣AH=15﹣5=10,∵BF∥AC,∴==,∴BM=AB=,同法可证AN=AB=,∴MN=15﹣﹣=,∴Rt△ABC的外部被染色的区域的面积=×(10+)×=21,故答案为:21.18、(2022•泰州)如图所示的象棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离为.【分析】根据勾股定理即可得到结论.【解答】解:如图,第一步到①,第二步到②,故走两步后的落点与出发点间的最短距离为=,故答案为:.。
勾股定理选择题(含答案)
最新中考数学模拟试卷分类汇编易错易错压轴选择题精选:勾股定理选择题(含答案)一、易错易错压轴选择题精选:勾股定理选择题1.如图,在Rt ABC ∆中,90, 5 ,3ACB AB cm AC cm ︒∠=== ,动点P 从点B 出发,沿射线BC 以1 /cm s 的速度移动,设运动的时间为t 秒,当∆ABP 为等腰三角形时,t 的值不可能为( )A .5B .8C .254D .2582.若直角三角形的三边长分别为-a b 、a 、+a b ,且a 、b 都是正整数,则三角形其中一边的长可能为()A .22B .32C .62D .823.在平面直角坐标系中,已知平行四边形ABCD 的点A (0,﹣2)、点B (3m ,4m +1)(m ≠﹣1),点C (6,2),则对角线BD 的最小值是( )A .32B .213C .5D .6 4.在ΔABC 中,211a b c =+,则∠A( ) A .一定是锐角 B .一定是直角 C .一定是钝角 D .非上述答案5.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为( )A .2539+B .2539C .18253+D .253186.将6个边长是1的正方形无缝隙铺成一个矩形,则这个矩形的对角线长等于( ) A 37B 13C 3713 D 371377.如图,是一长、宽都是3 cm ,高BC =9 cm 的长方体纸箱,BC 上有一点P ,PC =23BC ,一只蚂蚁从点A 出发沿纸箱表面爬行到点P 的最短距离是( )A .62cmB .33cmC .10 cmD .12 cm8.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =5,AC =53,CB 的反向延长线上有一动点D ,以AD 为边在右侧作等边三角形,连CE ,CE 最短长为( )A .5B .53C .532D .5349.如图,在ABC ∆中,,90︒=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).A .36B .18C .12D .910.在直角三角形中,自两锐角所引的两条中线长分别为5和210,则斜边长为( )A .10B .410C .13D .213 11.如图,四边形ABCD 中,AC ⊥BD 于O ,AB =3,BC =4,CD =5,则AD 的长为( )A .1B .2C .4D .312.如图,在等边△ABC 中,AB =15,BD =6,BE =3,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 右侧按如图方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是( )A .8B .10C .43D .1213.如图钢架中,∠A =15°,现焊上与AP 1等长的钢条P 1P 2,P 2P 3…来加固钢架,若最后一根钢条与射线AB 的焊接点P 到A 点的距离为4+23,则所有钢条的总长为( )A .16B .15C .12D .1014.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么ab 的值为( )A .49B .25C .12D .1015.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为12cm ,在容器内壁离容器底部4 cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,且离容器上沿4 cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为15 cm ,则该圆柱底面周长为( )cm .A .9B .10C .18D .2016.如图,ABC 中,90ACB ∠=︒,2AC =,3BC =.设AB 长是m ,下列关于m 的四种说法:①m 是无理数;②m 可以用数轴上的一个点来表示;③m 是13的算术平方根;④23m <<.其中所有正确说法的序号是( )A .①②B .①③C .①②③D .②③④17.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =;②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④18.如图:在△ABC 中,∠B=45°,D 是AB 边上一点,连接CD ,过A 作AF ⊥CD 交CD 于G ,交BC 于点F .已知AC=CD ,CG=3,DG=1,则下列结论正确的是( )①∠ACD=2∠FAB ②27ACD S ∆= ③272CF=- ④ AC=AF A .①②③B .①②③④C .②③④D .①③④ 19.在ABC 中,AB 边上的中线3,6,8CD AB BC AC ==+=,则ABC 的面积为( )A .6B .7C .8D .920.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为15cm ,在容器内壁离容器底部3cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿3cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为25cm ,则该圆柱底面周长为( )A .20cmB .18cmC .25cmD .40cm21.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A,C为圆心,大于12AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为()A.22B.4 C.3 D.1022.将一根 24cm 的筷子,置于底面直径为 15cm,高 8cm 的装满水的无盖圆柱形水杯中,设筷子浸没在杯子里面的长度为hcm,则 h 的取值范围是()A.h≤15cm B.h≥8cm C.8cm≤h≤17cm D.7cm≤h≤16cm 23.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C'处,B C'交AD于点E,则线段DE的长为()A.3 B.154C.5 D.15224.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是()A.1 B.2021 C.2020 D.201925.以下列各组数为边长,能构成直角三角形的是()A236、、B345C347D23426.如图,ABC 中,有一点P 在AC 上移动.若56AB AC BC ===,,则AP BP CP ++的最小值为( )A .8B .8.8C .9.8D .1027.已知三组数据:①2,3,4;②3,4,5;③1,2,5,分别以每组数据中的三个数为三角形的三边长,能构成直角三角形的是( ) A .② B .①② C .①③ D .②③28.在直角三角形ABC 中,90C ∠=︒,两直角边长及斜边上的高分别为,,a b h ,则下列关系式成立的是( )A .222221a b h +=B .222111a b h +=C .2h ab =D .222h a b =+29.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知90A ∠=︒正方形ADOF 的边长是2,4BD =,则CF 的长为( )A .6B .42C .8D .1030.三个正方形的面积如图,正方形A 的面积为( )A .6B .36C .64D .8【参考答案】***试卷处理标记,请不要删除一、易错易错压轴选择题精选:勾股定理选择题1.C解析:C【分析】根据ABP △为等腰三角形,分三种情况进行讨论,分别求出BP 的长度,从而求出t 值即可.【详解】在Rt ABC 中,222225316BC AB AC =-=-=,4BC cm ∴=,①如图,当AB BP =时, 5 ,5BP cm t ==;②如图,当AB AP =时,∵AC BP ⊥,∴28 BP BC cm ==,8t =;③如图,当BP AP =时,设AP BP xcm ==,则4,3( )CP x cm AC cm =-=,∵在Rt ACP 中,222AP AC CP =+,∴()22234x x =+-, 解得:258x =,∴258t =, 综上所述,当ABP △为等腰三角形时,5t =或8t =或258t =. 故选:C .【点睛】本题考查了勾股定理,等腰三角形的性质,注意分类讨论.2.B解析:B【解析】由题可知(a-b )2+a 2=(a+b )2,解得a=4b ,所以直角三角形三边分别为3b ,4b ,5b ,当b=8时,4b=32,故选B .3.D解析:D【分析】先根据B (3m ,4m+1),可知B 在直线y=43x+1上,所以当BD ⊥直线y=43x+1时,BD 最小,找一等量关系列关于m 的方程,作辅助线:过B 作BH ⊥x 轴于H ,则BH=4m+1,利用三角形相似得BH 2=EH•FH ,列等式求m 的值,得BD 的长即可.【详解】解:如图,∵点B(3m ,4m+1),∴令341m x m y =⎧⎨+=⎩, ∴y=43x+1, ∴B 在直线y=43x+1上, ∴当BD ⊥直线y=43x+1时,BD 最小, 过B 作BH ⊥x 轴于H ,则BH=4m+1,∵BE在直线y=43x+1上,且点E在x轴上,∴E(−34,0),G(0,1)∵F是AC的中点∵A(0,−2),点C(6,2),∴F(3,0)在Rt△BEF中,∵BH2=EH⋅FH,∴(4m+1)2=(3m+34)(3−3m)解得:m1=−14(舍),m2=15,∴B(35,95),∴,则对角线BD的最小值是6;故选:D.【点睛】本题考查了平行四边形的性质,利用待定系数法求一次函数的解析式,三角形相似的判定,圆形与坐标特点,勾股定理等知识点.本题利用点B的坐标确定其所在的直线的解析式是关键.4.A解析:A【解析】【分析】根据211a b c=+以及三角形三边关系可得2bc>a 2,再根据(b-c)2≥0,可推导得出b 2 +c 2>a 2,据此进行判断即可得.【详解】∵211a b c =+,∴2b ca bc+ =,∴2bc=a(b+c),∵a、b、c是三角形的三条边,∴b+c>a,∴2bc>a·a,即2bc>a 2,∵(b-c)2≥0,∴b 2 +c 2 -2bc≥0,b 2 +c 2≥2bc,∴b 2 +c 2>a 2,∴一定为锐角,故选A.【点睛】本题考查了三角形三边关系、完全平方公式、不等式的传递性、勾股定理等,题目较难,得出b 2 +c 2>a 2是解题的关键.5.A解析:A【解析】分析:将△BPC绕点B逆时针旋转60°得△BEA,根据旋转的性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点F.AP=3,PE=4,根据勾股定理的逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数,在直角△APF中利用三角函数求得AF和PF的长,则在直角△ABF中利用勾股定理求得AB的长,进而求得三角形ABC的面积.详解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=12AP=32,PF=32AP=332.∴在直角△ABF中,AB2=BF2+AF2=(4+332)2+(32)2=25+123.则△ABC的面积是34•AB2=34•(25+12)253故选A.点睛:本题考查了等边三角形的判定与性质、勾股定理的逆定理以及旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.6.C解析:C【分析】如图1或图2所示,分类讨论,利用勾股定理可得结论.【详解】当如图1所示时,AB=2,BC=3,∴AC=2223=13+;当如图2所示时,AB=1,BC=6,∴221+6=37故选C.【点睛】本题主要考查图形的拼接,数形结合,分类讨论是解答此题的关键.7.A解析:A【解析】【分析】将图形展开,可得到安排AP较短的展法两种,通过计算,得到较短的即可.【详解】解:(1)如图1,AD=3cm,DP=3+6=9cm,在Rt△ADP中,22+10cm39((2)如图2, AC=6cm,CP=6cm,Rt△ADP中,226662综上,蚂蚁从点A出发沿纸箱表面爬行到点P的最短距离是62.故选A.【点睛】题考查了平面展开--最短路径问题,熟悉平面展开图是解题的关键.8.C解析:C【分析】在CB的反向延长线上取一点B’,使得BC=B’C,连接AB’,易证△AB’D≌△ABE,可得∠ABE=∠B’=60°,因此点E的轨迹是一条直线,过点C作CH⊥BE,则点H即为使得BE最小时的E点的位置,然后根据直角三角形的性质和勾股定理即可得出答案.【详解】解:在CB的反向延长线上取一点B’,使得BC=B’C,连接AB’,∵∠ACB=90°,∠ABC=60°,∴△AB’B是等边三角形,∴∠B’=∠B’AB=60°,AB’=AB,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠B’AD+∠DAB=∠DAB+∠BAE,∴∠B’AD=∠BAE,∴△AB’D≌△ABE(SAS),∴∠ABE=∠B’=60°,∴点E在直线BE上运动,过点C作CH⊥BE于点H,则点H即为使得BE最小时的E点的位置,∠CBH=180°-∠ABC-∠ABE=60°,∴∠BCH=30°,∴BH=12BC=52,∴CH =22BC BH -=532. 即BE 的最小值是532. 故选C .【点睛】本题是一道动点问题,综合考查了全等三角形的判定和性质,等边三角形的判定和性质,直角三角形的性质和勾股定理等知识,将△ACB 构造成等边三角形,通过全等证出∠ABC 是定值,即点E 的运动轨迹是直线是解决此题的关键.9.D解析:D【分析】利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出218AB =,即可求得ABC ∆的面积.【详解】∵90BAC ︒∠=,∴AB ⊥AD,∵DE BC ⊥,BD 平分ABC ∠,∴DE=AD ,∠BED=90BAC ︒∠=,∴∠BDE=∠BDA ,∴BE=AB=AC ,∵CDE ∆的周长为6,∴DE+CD+CE=AC+CE=BC=6,∵,90︒=∠=AB AC BAC∴22236AB AC BC +==,∴2236AB =,218AB =,∴ABC ∆的面积=211922AB AC AB ⋅⋅==, 故选:D.【点睛】此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论.10.D解析:D【分析】根据已知设AC=x,BC=y,在Rt△ACD和Rt△BCE中,根据勾股定理分别列等式,从而求得AC,BC的长,最后根据勾股定理即可求得AB的长.【详解】如图,在△ABC中,∠C=90°,AD、BE为△ABC的两条中线,且AD=210,BE=5,求AB的长.设AC=x,BC=y,根据勾股定理得:在Rt△ACD中,x2+(12y)2=(210)2,在Rt△BCE中,(12x)2+y2=52,解之得,x=6,y=4,∴在Rt△ABC中,2264213AB=+=,故选:D.【点睛】此题考查勾股定理的运用,在直角三角形中,已知两条边长时,可利用勾股定理求第三条边的长度.11.B解析:B【分析】设OA=a,OB=b,OC=c,OD=d,根据勾股定理求出a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,即可证得a2+d2=18,由此得到答案.【详解】设OA=a,OB=b,OC=c,OD=d,由勾股定理得,a2+b2=AB2=9,c2+b2=BC2=16,c2+d2=CD2=25,则a2+b2+c2+b2+c2+d2=50,∴a2+d2+2(b2+c2)=50,∴a2+d2=50﹣16×2=18,∴AD=221832a d+==,故选:B.【点睛】此题考查勾股定理的运用,根据题中的已知条件得到直角三角形,再利用勾股定理求出未知的边长,解题中注意直角边与斜边.12.D解析:D【分析】首先利用等边三角形的性质和含30°直角三角形的运用,判定△DPE≌△FDH,△DF2Q≌△ADE,然后利用全等三角形的性质,得出点F运动的路径长.【详解】∵△ABC为等边三角形,∴∠B=60°,过D点作DE′⊥AB,过点F作FH⊥BC于H,如图所示:则BE′=12BD=3,∴点E′与点E重合,∴∠BDE=30°,DE33∵△DPF为等边三角形,∴∠PDF=60°,DP=DF,∴∠EDP+∠HDF=90°∵∠HDF+∠DFH=90°,∴∠EDP=∠DFH,在△DPE和△FDH中,90PED DHFEDP DFHDP FD︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△DPE≌△FDH(AAS),∴FH=DE3∴点P从点E运动到点A时,点F运动的路径为一条线段,此线段到BC的距离为3当点P在E点时,作等边三角形DEF1,∠BDF1=30°+60°=90°,则DF1⊥BC,当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则四边形DF1F2Q是矩形,∵∠BDE=30°,∠ADF2=60°,∴∠ADE+∠F2DQ=180°﹣30°﹣60°=90°,∵∠ADE+∠DAE=90°,∴∠F2DQ=∠DAE,在△DF2Q和△ADE中,222F QD DEA90F DQ DAEDF AD︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△DF2Q≌△ADE(AAS),∴DQ=AE=AB﹣BE=15﹣3=12,∴F1F2=DQ=12,∴当点P从点E运动到点A时,点F运动的路径长为12,故选:D.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是作好辅助线. 13.D解析:D【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,求出钢条的根数,然后根据最后一根钢条与射线AB的焊接点P到A点的距离即AP5为AP1=a,作P2D⊥AB于点D,再用含a的式子表示出P1P3,P3P5,从而可求出a的值,即得出每根钢条的长度,从而可以求得所有钢条的总长.【详解】解:如图,∵AP1与各钢条的长度相等,∴∠A=∠P1P2A=15°,∴∠P2P1P3=30°,∴∠P1P3P2=30°,∴∠P3P2P4=45°,∴∠P3P4P2=45°,∴∠P4P3P5=60°,∴∠P3P5P4=60°,∴∠P5P4P6=75°,∴∠P4P6P5=75°,∴∠P6P5B=90°,此时就不能再往上焊接了,综上所述总共可焊上5根钢条.设AP1=a,作P2D⊥AB于点D,∵∠P2P1D=30°,∴P2D=12P1P2,∴P1D,∵P1P2=P2P3,∴P1P3=2P1,∵∠P4P3P5=60°,P3P4=P4P5,∴△P4P3P5是等边三角形,∴P3P5=a,∵最后一根钢条与射线AB的焊接点P到A点的距离为∴AP5=a+a=解得,a=2,∴所有钢条的总长为2×5=10,故选:D.【点睛】本题考查了三角形的内角和、等腰三角形的性质、三角形外角的性质、等边三角形的判定与性质以及勾股定理等知识,发现并利用规律找出钢条的根数是解答本题的关键.14.C解析:C【解析】试题解析:如图,∵大正方形的面积是25,∴c2=25,∴a2+b2=c2=25,∵直角三角形的面积是(25-1)÷4=6,又∵直角三角形的面积是12ab=6,∴ab=12.故选C.15.C解析:C【分析】将容器侧面展开,建立A关于上边沿的对称点A’,根据两点之间线段最短可知A’B的长度为最短路径15,构造直角三角形,依据勾股定理可以求出底面周长的一半,乘以2即为所求.【详解】解:如图,将容器侧面展开,作A 关于EF 的对称点'A ,连接'A B ,则'A B 即为最短距离, 根据题意:'15A B cm =,12412BD AE cm =-+=,2222'15129A D A B BD ∴--'==.所以底面圆的周长为9×2=18cm.故选:C .【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.16.C解析:C【分析】根据勾股定理即可求出答案.【详解】解:∵∠ACB =90°,∴在Rt ABC 中,m =AB 22AC BC +13故①②③正确,∵m 2=13,9<13<16,∴3<m <4,故④错误,故选:C .【点睛】本题考查勾股定理及算术平方根、无理数的估算,解题的关键是熟练运用勾股定理,本题属于基础题型. 17.A解析:A【分析】先判断△DBE 是等腰直角三角形,根据勾股定理可推导得出2,故①正确;根据∠BHE 和∠C 都是∠HBE 的余角,可得∠BHE=∠C ,再由∠A=∠C ,可得②正确;证明△BEH ≌△DEC ,从而可得BH=CD ,再由AB=CD ,可得③正确;利用已知条件不能得到④,据此即可得到选项.【详解】解:∵∠DBC=45°,DE ⊥BC 于E ,∴在Rt △DBE 中,BE 2+DE 2=BD 2,BE=DE ,∴BD=2BE ,故①正确;∵DE ⊥BC ,BF ⊥DC ,∴∠BHE 和∠C 都是∠HBE 的余角,∴∠BHE=∠C ,又∵在▱ABCD 中,∠A=∠C ,∴∠A=∠BHE ,故②正确;在△BEH 和△DEC 中,BHE C HEB CED BE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BEH ≌△DEC ,∴BH=CD ,∵四边形ABCD 为平行四边形,∴AB=CD ,∴AB=BH ,故③正确;利用已知条件不能得到△BCF ≌△DCE ,故④错误,故选A.【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定与性质、勾股定理、全等三角形的判定与性质等,熟练掌握相关性质与定理是解题的关键.18.B解析:B【分析】过点C 作CH AB ⊥于点H ,根据等腰三角形的性质得到1802ACD CDA ∠=︒-∠,根据AF CD ⊥得到90FAB CDA ∠=︒-∠,可以证得①是正确的,利用勾股定理求出AG 的长,算出三角形ACD 的面积证明②是正确的,再根据角度之间的关系证明AFC ACF ∠=∠,得到④是正确的,最后利用勾股定理求出CF 的长,得到③是正确的.【详解】解:如图,过点C 作CH AB ⊥于点H ,∵AC CD =,∴CAD CDA ∠=∠,1802ACD CDA ∠=︒-∠,∵AF CD ⊥,∴90AGD ∠=︒,∴90FAB CDA ∠=︒-∠,∴2ACD FAB ∠=∠,故①正确;∵3CG =,1DG =,∴314CD CG DG =+=+=,∴4AC CD ==,在Rt ACG 中,AG ==∴12ACD S AG CD =⋅= ∵90CHB ∠=︒,45B ∠=︒,∴45HCB ∠=︒,∵AC CD =,CH AD ⊥, ∴12ACH HCD ACD ∠=∠=∠, ∵45AFC B FAB FAB ∠=∠+∠=︒+∠,45ACF ACH HCB ACH ∠=∠+∠=∠+︒,12ACH ACD FAB ∠=∠=∠, ∴AFC ACF ∠=∠,∴4AC AF ==,故④正确;∴4GF AF AG =-=在Rt CGF 中,2CF ===,故③正确.故选:B .【点睛】本题考查几何的综合证明,解题的关键是掌握等腰三角形的性质和判定,勾股定理和三角形的外角和定理. 19.B解析:B【分析】本题考查三角形的中线定义,根据条件先确定ABC 为直角三角形,再根据勾股定理求得228AC BC = ,最后根据12ABC AC BC ∆=⋅求解即可. 【详解】 解:如图,在ABC 中,AB 边上的中线,∵CD=3,AB= 6,∴CD=3,AB= 6,∴CD= AD= DB ,12∠∠∴=,34∠=∠ ,∵1234180∠+∠+∠+∠=︒,∴1390∠+∠=︒,∴ABC 是直角三角形,∴22236AC BC AB +==,又∵8AC BC +=,∴22264AC AC BC BC +⋅+=,∴22264()643628AC BC AC BC ⋅=-+=-=,又∵12ABC AC BC ∆=⋅, ∴128722ABC S ∆=⨯=, 故选B.【点睛】本题考查三角形中位线的应用,熟练运用三角形的中线定义以及综合分析、解答问题的能力,关键要懂得:在一个三角形中,如果获知一条边上的中线等于这一边的一半,那么就可考虑它是一个直角三角形,通过等腰三角形的性质和内角和定理来证明一个三是直角三角形.20.D解析:D【分析】将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为最短路径,由勾股定理求出A ′D 即圆柱底面周长的一半,由此即可解题.【详解】解:如图,将圆柱展开,EG 为上底面圆周长的一半,作A 关于E 的对称点A ',连接A B '交EG 于F ,则蚂蚁吃到蜂蜜需爬行的最短路径为AF BF +的长,即 25cm AF BF A B '+==,延长BG ,过A '作A D BG '⊥于D ,3cm AE A E '==,153315cm BD BG DG BG AE ∴=+=+=-+=,Rt A DB '∴△中,由勾股定理得:2222251520cm A D A B BD ''=-=-=, ∴该圆柱底面周长为:20240cm ⨯=,故选D .【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.21.A解析:A【分析】连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出=AF FC .再根据ASA 证明FOA BOC ∆≅∆,那么==3AF BC ,等量代换得到==3FC AF ,利用线段的和差关系求出==1FD AD AF -.然后在直角FDC ∆中利用勾股定理求出CD 的长.【详解】解:如图,连接FC ,则=AF FC .AD BC ∵∥,FAO BCO ∴∠=∠.在FOA ∆与BOC ∆中,FAO BCO OA OCAOF COB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()FOA BOC ASA ∴∆≅∆,3AF BC ∴==,3FC AF ∴==,431FD AD AF =-=-=.在FDC ∆中,90D ︒∠=,222CD DF FC ∴+=,22213CD ∴+=, 22CD ∴=.故选A .【点睛】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与DF 是解题的关键.22.C解析:C【分析】筷子浸没在水中的最短距离为水杯高度,最长距离如下图,是筷子斜卧于杯中时,利用勾股定理可求得.【详解】当筷子笔直竖立在杯中时,筷子浸没水中距离最短,为杯高=8cmAD 是筷子,AB 长是杯子直径,BC 是杯子高,当筷子如下图斜卧于杯中时,浸没在水中的距离最长由题意得:AB=15cm ,BC=8cm ,△ABC 是直角三角形∴在Rt △ABC 中,根据勾股定理,AC=17cm∴8cm≤h≤17cm故选:C【点睛】本题考查勾股定理在实际生活中的应用,解题关键是将题干中生活实例抽象成数学模型,然后再利用相关知识求解.23.B解析:B【分析】首先根据题意得到BE=DE,然后根据勾股定理得到关于线段AB、AE、BE的方程,解方程即可解决问题.【详解】解:设ED=x,则AE=6-x,∵四边形ABCD为矩形,∴AD∥BC,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6-x)2,解得:x=154,∴ED=154.故选:B.【点睛】本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.24.B解析:B【分析】根据勾股定理求出“生长”了1次后形成的图形中所有的正方形的面积和,结合图形总结规律,根据规律解答即可.【详解】解:由题意得,正方形A的面积为1,由勾股定理得,正方形B的面积+正方形C的面积=1,∴“生长”了1次后形成的图形中所有的正方形的面积和为2,同理可得,“生长”了2次后形成的图形中所有的正方形的面积和为3,∴“生长”了3次后形成的图形中所有的正方形的面积和为4,……∴“生长”了2020次后形成的图形中所有的正方形的面积和为2021,故选:B.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.25.C解析:C【分析】利用勾股定理的逆定理依次计算各项后即可解答.【详解】选项A ,222(2)(3)(6)+≠,不能构成直角三角形;选项B ,222(3)(4)(5)+≠,不能构成直角三角形;选项C ,222(3)(4)(7)+=,能构成直角三角形;选项D ,222(2)(3)(4)+≠,不能构成直角三角形.故选C .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.26.C解析:C【分析】由AP+CP=AC 得到AP BP CP ++=BP+AC ,即计算当BP 最小时即可,此时BP ⊥AC ,根据三角形面积公式求出BP 即可得到答案.【详解】∵AP+CP=AC ,∴AP BP CP ++=BP+AC ,∴BP ⊥AC 时,AP BP CP ++有最小值,设AH ⊥BC ,∵56AB AC BC ===,∴BH=3, ∴224AH AB BH -=, ∵1122ABC S BC AH AC BP =⋅=⋅,∴1164522BP ⨯⨯=⨯, ∴BP=4.8,∴AP BP CP ++=AC+BP=5+4.8=9.8,故选:C.【点睛】此题考查等腰三角形的三线合一的性质,勾股定理,最短路径问题,正确理解AP BP CP ++时点P 的位置是解题的关键.27.D解析:D【分析】根据三角形勾股定理的逆定理符合222a b c +=即为直角三角形 ,所以将数据分别代入,符合即为能构成直角三角形.【详解】由题意得:①2222+3=134≠ ;②2223+4=25=5 ;③2221+2=5=5 , 所以能构成直角三角形的是②③.故选D .【点睛】考查直角三角形的构成,学生熟悉掌握勾股定理的逆定理是本题解题的关键,利用勾股定理的逆定理判断是否能够成直角三角形. 28.B 解析:B【分析】设斜边为c ,根据勾股定理得出22a b +【详解】解:设斜边为c ,根据勾股定理得出22a b +∵12ab=12ch , ∴22a b +,即a 2b 2=a 2h 2+b 2h 2,∴22222a b a b h =22222a h a b h +22222b h a b h,即21a +21b =21h . 故选:B .【点睛】 本题考查勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题关键.29.A解析:A【分析】设CF=x ,则AC=x+2,再由已知条件得到AB=6,BC=6+x ,再由AB 2+AC 2=BC 2得到62+(x+2)2=(x+4)2,解方程即可.【详解】设CF=x ,则AC=x+2,∵正方形ADOF 的边长是2,BD=4,△BDO ≌△BEO ,△CEO ≌△CFO ,∴BD=BE ,CF=CE ,AD=AF=2,∴AB=6,BC=6+x ,∵∠A=90°,∴AB 2+AC 2=BC 2,∴62+(x+2)2=(x+4)2,解得:x=6,即CF=6,故选:A .【点睛】考查正方形的性质、勾股定理,解题关键是设CF=x ,则AC=x+2,利用勾股定理得到62+(x+2)2=(x+4)2.30.B解析:B【分析】根据直角三角形的勾股定理,得:两条直角边的平方等于斜边的平方.再根据正方形的面积公式,知:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.【详解】解:A 的面积等于100-64=36;故选:B .【点睛】本题主要考查勾股定理的证明:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.。
中考数学专题复习《利用勾股定理求最短路径》测试卷-附带答案
中考数学专题复习《利用勾股定理求最短路径》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________1.如图一个牧童在小河的南4km的A处牧马而他正位于他的小屋B的西8km北7km 处他想把他的马牵到小河边去饮水然后回家他要完成这件事情所走的最短路径是km.2.如图长方体的长为3cm 宽为2cm 高为1cm的长方体蚂蚁沿着表面从A爬行到B 的最短路程是.3.如图在△ABC中AD是BC边上的高垂足为D已知BD=1,AD=CD=2,BC上方有一动点P且点P到A,D两点的距离相等则△BCP的周长最小值为.4.如图这是一个供滑板爱好者使用的U型池的示意图该U型池可以看成是长方体去掉m的半圆其边缘AB=CD=15m 一个“半圆柱”而成中间可供滑行部分的截面是直径为32π点E在CD上CE=3m一滑板爱好者从A点滑到E点则他滑行的最短距离约为m.(边缘部分的厚度忽略不计)5.如图四边形ABCD∠BAD=60° ∠ADC=150° 且BD∠DC已知AC的最大值是3 则BC=.6.如图在一个长为5m宽为3m的长方形草地上放着一根长方体的木块它的棱和草地宽AD平行且棱长大于AD木块从正面看是边长为1m的正方形一只蚂蚁从点A处到达点C处需要走的最短路程约为m.(精确到1m)7.如图C为线段BD上一动点分别过B D作AB⊥BD ED⊥BD连接AC EC已知AB=5DE=1BD=8设CD=x.请用含x的代数式表示AC+CE的长为根据上述方法求出√x2+4+√(12−x)2+9的最小值为.8.如图四边形ABCD为矩形AD=3AB=4点E是AD所在直线的一个动点点F 是对角线BD上的动点且BF=DE则AF+BE的最小值是.9.如图长方形BCFG是一块草地折线ABCDE是一条人行道BC=12米CD=5米.为了避免行人穿过草地(走虚线BD践踏绿草管理部门分别在B D处各挂了一块牌子牌子上写着“少走米踏之何忍”.10.如图BD是RtΔABC的角平分线点F是BD上的动点已知AC=2AE=2√3−2∠ABC=30°则(1)BE=(2)AF+EF的最小值是.11.如图AB是半圆O的直径半圆的半径为4 点C D在半圆上OC⊥AB,BD=2CD 点P是OC上的一个动点则BP+DP的最小值为.12.如图一大楼的外墙面ADEF与地面ABCD垂直点P在墙面上若P A=AB=5米点P到AD的距离是4米有一只蚂蚁要从点P爬到点B它的最短行程是米13.如图在Rt∠AOB中∠AOB=90° OA=4 OB=6 以点O为圆心3为半径的∠O与OB交于点C过点C作CD∠OB交AB于点D点P是边OA上的动点则PC+PD的最小值为.14.如图台阶阶梯每一层高20cm宽40cm长50cm.一只蚂蚁从A点爬到B点最短路程是.15.已知正方形ABCD的边长为1 点E F分别是边BC CD上的两个动点且满足BE= CF连接AE AF则AE+AF的最小值为.16.如图在菱形ABCD中AB=4∠ABC=60°M为AD中点P为对角线BD上一动点连接PA和PM则PA+PM的最小值是.17.如图圆柱形容器高为18cm 底面周长为24cm 在杯内壁离杯底4cm的点B处有乙滴蜂蜜此时一只蚂蚁正好在杯外壁离杯上沿2cm与蜂蜜相对的点A处则蚂蚁从外币A 处到达内壁B处的最短距离为.18.如图直线y=﹣x+7与两坐标轴分别交于A B两点点C的坐标是(1 0)DE分别是AB OA上的动点当∠CDE的周长最小时点E的坐标是.19.如图菱形ABCD的边长为4 ∠BAD=120° E是边CD的中点F是边AD上的一个动点将线段EF绕着点E顺时针旋转60°得到线段EF' 连接AF' BF' 则∠ABF'的周长的最小值是.20.如图已知矩形ABCD中AB=4 AD=3 E F分别为AB DC上的两个动点且EF∠AC则AF+FE+EC的最小值为.参考答案1.解:如图做出点A关于小河MN的对称点A` 连接A`B交MN于点P则A`B就是牧童要完成这件事情所走的最短路程长度.在Rt∠A`DB中由勾股定理求得A`B=√A`D2+DB2=√(7+4+4)2+82=17(km).则他要完成这件事情所走的最短路程是17km.2.解:如图1AB= √52+12=√26(cm)如图2AB= √32+32=3√2(cm)如图3AB= √22+42=√20=2√5(cm)故沿长方体的表面爬到对面顶点B处只有图2最短其最短路线长为:3√2cm.故答案为:3√2.3.解:∠P到AD两点的距离相同∠P在线段AD的垂直平分线上取AD的中点H作HF//BC作B关于HF的对称点E连接CE与直线FH交于P点P 即为所求∠∠BFH=90° BF=EF EP=BP∠要使∠BCP的周长最小∠BP+CP最小即为CE长又∠EF//BC∠ADC=90°∠∠FHD=∠HDB=90°∠四边形BDHF是矩形AD=1∠FBD=90°∠BF=DH=EF=12∠BE=2∠CE=√BC2+BE2∠CE=√13∠BCP的周长最小值=BC+BP+CP=3+√13故答案为:3+√13.4.解:如图是其侧面展开图:AD=12π⋅32π=16(m)AB=CD=15m.DE=CD-CE=15-3=12(m)在Rt∠ADE中AE=√AD2+DE2=√162+122=20(m).故他滑行的最短距离约为20m.故答案为:20.5.解:如图取BC的中点F以BC为边在∠BCD另一侧作等边三角形∠BCG连接DG DF FG∠∠ADC=150° 且BD∠DC∠∠ADB=150°﹣90°=60°∠∠BAD=60°∠∠ADB=∠BAD=60°∠∠ABD是等边三角形而∠BCG也是等边三角形∠AB=DB BC=BG∠ABD=∠CBG=60°∠∠ABD+∠DBC=∠CBG+∠DBC即∠ABC=∠DBG在∠ABC和∠DBG中{AB=DB ∠ABC=∠DBG BC=BG∠∠ABC∠∠DBG(S A S)∠AC=DG∠AC 的最大值是3∠DG 的最大值也是3在∠DGF 中 DG ≤DF +FG∠当DF FG 在同一条直线上时 DG 取最大值3 即DG =DF +FG =3 ∠BD ∠DC BC 的中点F∠DF =BF =CF =12BC∠等边三角形∠BCG BC 的中点F∠GF ∠BC ∠BGF =∠CGF =12∠BGC =30°∠BF =CF =12BG =12BC∠设DF =BF =CF =x 则BC =BG =2x∠FG =√BG 2−BF 2=√(2x)2−x 2=√3x∠DF +FG =x +√3x =3解得:x =3√3−32∠BC =2x =2×3√3−32=3√3﹣3故答案为3√3﹣3.6.解:由题意可知 将木块展开 如图长相当于是AB +2个正方形的宽∠长为5+2×1=7m 宽为3 m .于是最短路径为:√32+72=√58≈8 m .故答案为8.7. 解:AC +CE =√BC 2+AB 2+√CD 2+DE 2=√(8−x)2+25+√x 2+1 当A C E 三点共线时 AC +CE 的值最小如右图所示 作BD =12 过点B 作AB ∠BD 过点D 作ED ∠BD 使AB =2 ED =3连接AE交BD于点C设BC=x则AE的长即为代数式√x2+4+√(12−x)2+9的最小值.过点A作AF∠BD交ED的延长线于点F得矩形ABDF则AB=DF=2 AF=BD=12 EF=ED+DF=3+2=5所以AE=√AF2+EF2=√122+52=13即√x2+4+√(12−x)2+9的最小值为13故答案为:√(8−x)2+25+√x2+113.8.解:如图延长BC至G使得BG=BD连接GF∵四边形ABCD是矩形∴∠DAB=∠ABC=90°,AD//CB∴∠EDB=∠FBC在△EDB与△FBG中{ED=BF ∠EDB=∠FBG BD=BG∴△EDB≌△FBG∴BE=GF∴AF+BE=AF+GF≥AG 在Rt△ABD中AD=3,AB=4BD=√AD2+AB2=5∴BG=5在Rt△ABG中BG=5,AB=4AG=√AB2+BG2=√42+52=√41∴AF+BE的最小值是√41.故答案为:√41.9.解:在Rt△BCD中∴BD=√BC2+CD2=13则BC+CD−BD=12+5−13=4(米)故答案为:410.解:(1)∠AC=2∠ABC=30°∠BAC=90°∠BC=2AC=4∠AB=√BC2−AC2=√42−22=2√3∠BE=AB−AE=2√3−(2√3−2)=2故答案为:2(2)如图所示作E点关于BD的对称点G连接EG AG GF∠BD是∠ABC的平分线∠点G在线段BC上∠根据对称性可得EF=GF BG=BE=2∠EF+AF=GF+AF≥AG∠当点A F G三点共线时GF+AF的长度最短即EF+AF的最小值为AG的长度.∠GC=BC-BG=4-2=2又∠∠ABC=30°∠BAC=90°∠∠C=60°又∠AC=2∠△AGC是等边三角形∠AG=AC=2.∠AF+EF的最小值是2.故答案为:2.11.解:作点D关于OC的对称点为D1连接BD1OD1过点D1作D1Q⊥AB由题知OC⊥AB BD=2CD∠BC=3CD可得CD对应的圆心角∠COD=30°又点D关于OC的对称点为D1∠∠COD1=30°∠AOD1=60°∠BD1长为BP+DP的最小值在RtΔQOD1中OD1=4∠OQ=2D1Q=2√3在RtΔQD1B中BQ=OQ+OB=6D1Q=2√3∠BD1=√62+(2√3)2=4√3故填:4√312.解:如图过P作PG∠BF于G连接PB∠AG=4 AP=AB=5∠PG=√AP2−AG2=3BG=9∠PB=√GB2+GP2=3√10故这只蚂蚁的最短行程应该是3√10故答案为:3√1013.解:延长CO交∠O于点E连接ED交AO于点P则PC+PD的值最小最小值为线段DE的长.∠CD∠OB∠∠DCB=90°∠∠AOB=90°∠∠DCB=∠AOB ∠CD∠AO∠CD AO =BCBO∠CD 4=36∠CD=2在Rt∠CDE中DE=√CD2+CE2=√22+62=2√10∠PC+PD的最小值为2√10.故答案为:2√10.14.解:如图所示∠楼梯的每一级的高宽长分别为20cm宽40cm长50cm ∠AB=√502+[2(20+40)]2=130(cm)即蚂蚁从点A沿着台阶面爬行到点B的最短路程是130cm.故答案为:130cm.15.解:连接DE∠BE=CF且四边形ABCD为正方形∠CD-CF=BC-BE即DF=CE在△ADF和△DCE中{AD=DC ∠ADF=∠DCE DF=CE∴△ADF∠∠DCE∠AF=DE AE+AF=AE+DE以BC为对称轴作A点关于BC的对应点A′连接DA′与BC交点即为点E∠点A和点A′关于BC对称∠AE=A′EAE+DE=A′E+DE=A′D由勾股定理可得:A′D=√AD2+A′A2=√22+12=√5∠AE+AF的最小值为√5故答案为:√516.解:作点M关于BD的对称点N交CD于点N连接AN则AN就是P A+PM的最小值∠在菱形ABCD 中 AB =4 ∠ABC =60° M 为AD 中点 AC ∠BD∠∠ADC =60° DA =DC 点N 为CD 的中点∠∠DAC 是等边三角形 AN ∠CD∠AC =AD =AB =4∴AN =√AD 2−DN 2=√42−22=2√3故答案为:2√317.解∠如图 将杯子侧面展开 作A 关于EF 的对称点A ′ 连接A ′B 则A ′B 即为最短距离. 根据勾股定理 得A ′B =√A ′D 2+BD 2=√122+162=20m .故答案为:20cm .18.解:如图 点C 关于OA 的对称点C ′(-1 0) 点C 关于直线AB 的对称点C ″ ∠直线AB 的解析式为y =-x +7∠直线C C ″的解析式为y =x -1由{y =−x +7y =x −1得{x =4y =3∠F(4 3)∠F是C C″中点∠可得C″(7 6).连接C′C″与AO交于点E与AB交于点D此时∠DEC周长最小∠DEC的周长=DE+EC+CD=E C′+ED+D C″=C′C″=√82+62=10.故答案为10.19.解:取AD中点G连接EG F'G BE作BH∠DC的延长线于点H∠四边形ABCD为菱形∠AB=AD∠∠BAD=120°∠∠CAD=60°∠∠ACD为等边三角形又∠DE=DG∠∠DEG也为等边三角形.∠DE=GE∠∠DEG=60°=∠FEF'∠∠DEG﹣∠FEG=∠FEF'﹣∠FEG即∠DEF=∠GEF'由线段EF绕着点E顺时针旋转60°得到线段EF'所以EF=EF'.在∠DEF和∠GEF'中{DE=GE∠DEF=∠GEF′EF=EF′∠∠DEF∠∠GEF'(SAS).∠∠EGF'=∠EDF=60°∠∠F'GA=180°﹣60°﹣60°=60°则点F'的运动轨迹为射线GF'.观察图形可得A E关于GF'对称∠AF'=EF'∠BF'+AF'=BF'+EF'≥BE在Rt∠BCH中∠∠H=90° BC=4 ∠BCH=60°∠CH=12BC=2,BH=2√3,在Rt∠BEH中BE=√BH2+EH2=√12+16=2√7∠BF'+EF'≥2√7∠∠ABF'的周长的最小值为AB+BF'+EF'=4+2√7故答案为:4+2√7.20.解:过B作BH∠EF交CD于H过A作AG∠EF且使AG=EF连接GE∠四边形AGEF是平行四边形∠AF=GE∠当G E C三点共线时AF+EC最小∠EF ∠AC∠BH ∠AC∠∠HBC +∠BCA =90° ∠BCA +∠ACH =90° ∠∠HBC =∠ACH∠tan∠HBC =tan∠ACD 即HC BC =AD CD∠AB =4 AD =3∠ HC 3=34∠HC =94∠BH =√BC 2+CH 2=√9+(94)2=154∠AF +EF +EC ≥GC +BH∠GA ∠AC∠∠ACG 为直角三角形∠AB =4 AD =3∠AC =5∠EF =BH =AG∠AG =154∠GC =√AG 2+AC 2=√52+(154)2=254∠GC +EF =254+154=10∠AF +FE +EC 的最小值为10故答案为:10.。
2011年全国各地中考数学真题分类汇编
) .
D.x ≤ -2.
【答案】C 30. (2011 湖北黄石,10,3 分)已知梯形 ABCD 的四个顶点的坐标分别为 A(-1,0),B (5,0),C(2,2),D(0,2),直线 y=kx+2 将梯形分成面积相等的两部分,则 k 的值为 A. -
2 3
B. -
2 9
C. -
4 7
D. -
2 7
【答案】B 3. (2011 广东广州市,9,3 分)当实数 x 的取值使得 x-2有意义时,函数 y=4x+1 中 y 的取值范围是( ). A.y≥-7 B.y≥9 C.y>9 D.y≤9 【答案】B 4. (2011 山东滨州,6,3 分)关于一次函数 y=-x+1 的图像,下列所画正确的是( )
【答案】A 25. (2011 四川乐山 3,3 分)下列函数中,自变量 x 的取值范围为 x<1 的是 A. y 【答案】 D 26. (2011 四川乐山 8,3 分)已知一次函数 y ax b 的图象过第一、二、四象限,且与 x 轴交于点(2,0),则关于 x 的不等式 a( x 1) b 0 的解集为 A.x<-1 【答案】A B.x> -1 C. x>1 D.x<1
x 中自变量x的取值范围是( x 1
)
33. (2011贵州安顺,7,3分)函数x≠l C.x<0 D.x≥0且 x≠l 【答案】D 34. (2011 河北,5,2 分)一次函数 y=6x+1 的图象不经过( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 【答案】D 35.. (2011 浙江绍兴,9,4 分)小敏从 A 地出发向 B 地行走,同时小聪从 B 地出发向 A 地行走, 如图所示, 相交于点 P 的两条线段 l1、l2 分别表示小敏、 小聪离 B 地的距离 y (km)
2011年全国各地市中考数学模拟试题分类汇编--31.解直角三角形的应用
解直角三角形的应用一、选择题A 组1. (2011年北京四中中考全真模拟15)从小明家到学校有两条路。
一条沿北偏东45度方向可直达学校前门,另一条从小明家一直往东,到商店处向正北走200米,到学校后门。
若两条路的路程相等,学校南北走向。
学校的后门在小明家北偏东67.5度处。
学校从前门到后门的距离是( )米.;D.200米 答案:B2.(2011.河北廊坊安次区一模)如图4,市政府准备修建一座高AB =6m 的过街天桥,已知天桥的坡面AC 与地面BC 的夹角∠ACB 的余弦值为45,则坡面AC 的长度为 A .152m B .10 m Cm D.2m 答案:B3. (2011浙江省杭州市10模)如图,小亮同学在晚上由路灯A 走向路灯B ,当他走到点P 时,发现他的身影顶部正好接触路灯B 的底部,这时他离路灯A 25米,离路灯B 5米,如果小亮的身高为1.6米,那么路灯高度为 ( ▲ ) A .6.4米 B . 8米 C .9.6米 D . 11.2米 答案:C(第3题)第2题图4. (浙江省杭州市瓜沥镇初级中学2011年中考数学模拟试卷) 如图所示,平地上一棵树高为6米,两次观察地面上的影子,•第一次是当阳光与地面成60°时,第二次是阳光与地面成30°时,第二次观察长…………………( )A. B. 3- 3答案:B5.(河北省中考模拟试卷)石家庄市在“三年大变样”城中村改造建设中,计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a 元,则购买这种草皮至少需要……( )A .450a 元B .225a 元C .150a 元D .300a 元 答案:CB 组1.(2011杭州上城区一模)Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对 边,那么c 等于( )A.cos sin a A b B +B.sin sin a A b B +C.sin sin a b A B +D.cos sin a b A B +答案:B2.(2011浙江杭州义蓬一中一模)如图,小明发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8米,BC=20米,CD 与地面成30º角,且此时测得1米杆的影长为2米,则电线杆的高度为( )A .14米B .28米C .314+米D .3214+米 答案:D3.(安徽芜湖2011模拟)小明沿着坡度为1:2的山坡向上走了1000m ,则他升高了 ( )A .500mB .5200mC .3500mD .1000m 答案: B4.(浙江杭州进化2011一模)如图折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处. 已知AB=38, ∠B=30°, 则DE 的长是( ). A. 6 B. 4 C. 34 D. 23第5题(第1题)答案: B5、(2011年北京四中34模)如图,矩形ABCD 中,AB>AD ,AB=a ,过点A 作射线AM ,使得∠DAM=60°,DE ⊥AM 与E ,DF ⊥AM 与F ,则DE+CF 的值是7.13=)( ) A .a B . a 2017 C .a 275 D . 2a答案:D6.(2011年浙江省杭州市模2)如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,BE=2,则tan ∠DBE 的值是( )A.12B .2 C答案:B二、填空题A 组1、(2011年北京四中模拟28)如图,一人乘雪橇沿坡比172米,那么他下降的高度为 __米. 答案:362. (2011浙江杭州模拟7)如图为护城河改造前后河床的横断面示意图,将河床原竖直迎水面BC 改建为坡度1:0.5的迎水坡AB ,已知AB=4 5 米,则河床 面的宽减少了_______ 米.(即求AC 的长)A CB.5 i 1:(第2题图)答案:43. (2011浙江省杭州市8模)如图,小明在A 时测得某树的影长为3米,B 时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_____米.答案:64.(2011年宁夏银川)为了测量水塔的高度,取一根竹杆放在阳光下,已知2米长的竹杆投影长为1.5米,在同一时刻测得水塔的投影长为30米,则水塔高为_________米. 答案:40 B 组1.(2011灌南县新集中学一模)在△ABC 中,∠C =90°,AB =20,cosB =14,则BC 等于 . 答案:52.(2011灌南县新集中学一模)如图,在△ABC 中,∠C =90°,AC =8,CB =6,在斜边AB 上取一点M ,使MB =CB ,过M 作MN ⊥AB 交AC 于N ,则MN = .答案: 33. (河南新乡2011模拟)如图,甲、乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的A 处目测得点A 与甲、乙楼顶B C 、刚好在同一直线上,若小明的身高忽略不计,则乙楼的高度是 米. 答案:60米(第3题)A 时B 时 (第2题图)NMCBA4、(北京四中2011中考模拟13)如图,沿倾斜角为30º的山坡植树, 要求相邻两棵树间的水平距离AC 为m 2,那么相邻两棵树的斜坡距离 AB 约为_________m ;(结果精确到0.1m ,可能用到的数据:3≈1.732, 2≈1.414).答案:约为3.25.(北京四中2011中考模拟14)如图:为了测量河对岸旗杆AB 的高度,在 点C 处测得顶端A 的仰角为30°,沿CB 方向前进20m 达到D 处,在D 点测得 旗杆顶端A 的仰角为45°,则旗杆AB 的高度为__________m.(精确到0.1m)答案:27.36. (2011深圳市模四) 如图所示,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,•这时测得大树在地面上的影子约为10米,则大树的高约为________米.(•保留根号) 答案:3107、(2011年北京四中33模)如图所示,某河堤的横断面是梯形ABCD ,BC//AD ,迎水坡AB 长10m ,且34tan =∠BAE ,则河堤的高BE 为 m 。
2011中考模拟分类汇编.一次函数(正比例函数)的图像与性质
答案:B
9、(2011年黄冈浠水模拟1)从2,3,4,5这四个数中,任取两个数 和 ( ≠ ),构成函数 和 ,使两个函数图象的交点在直线 =2的左侧,则这样的有序数组( , )共有().
A.4组B.5组C.6组D.不确定
答案:B
二、填空题
1.(淮安市启明外国语学校2010-2011学年度第二学期初三数学期中试卷)已知一次函数y=-2x+p(p为常数)的图象一次平移后经过点A(-1,y1)、B(-2,y2),则y1
一次函数(正比例函数)的图像与性质
一、选择题
A组
1、(浙江省杭州市2011年中考数学模拟)如图,是一次函数y=kx+b与反比例函数y = 的图像,则关于x的不等式kx+b> 的解为( )【根据习题改编】
A.x>1B.-2<x<1
C.-2<x<0或x>1D.x<-2
答案:C
2、(浙江省杭州市2011年中考数学模拟)如下图所示,半径为1的圆和边长为3的正方形在同一水平线上,圆沿该水平线从左向右匀速穿过正方形,设穿过时间为 ,正方形除去圆部分的面积为 (阴影部分),则 与 的大致图象为()【根据习题改编】
答案:①④
13、(2011年浙江杭州六模)如图,直线 经过 ,
两点,则不等式 的解集为.
答案:
14、(2011年浙江杭州七模)一次函数 与 的图象如图,则下列结论① ;② ;③当 时, ;④方程kx+b=x+a的解是x=3中正确的是.(填写序号)
答案:①④
15、(2011年浙江杭州八模)已知正整数a满足不等式组 ( 为未知数)无解,则函数 图象与 轴的坐标为
(3)求 的面积;
(4)在直线 上存在异于点 的另一点 ,使得
2011年全国各地100份中考数学试卷分类汇编实数
2011年全国各地100份中考数学试卷分类汇编第2章 实数一、选择题1. (2011福建泉州,1,3分)如在实数0,-3,32-,|-2|中,最小的是( ). A .32-B . -3C .0D .|-2|【答案】B2. (2011广东广州市,1,3分)四个数-5,-0.1,12,3中为无理数的是( ).A. -5B. -0.1C. 12D. 3【答案】D3. (2011山东滨州,1,3分)在实数π、13、2、sin30°,无理数的个数为( ) A.1 B.2 C.3 D.4 【答案】B4. (2011福建泉州,2,3分)(-2)2的算术平方根是( ).A . 2B . ±2C .-2D .2【答案】A5. (2011四川成都,8,3分)已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是 (A)0>m (B)0<n (C)0<mn (D)0>-n m0m1n【答案】C6. (2011江苏苏州,1,3分)2×(-21)的结果是( ) A.-4 B.-1 C. -41 D.23【答案】B7. (2011山东济宁,1,3分)计算 ―1―2的结果是 A .-1 B .1 C .- 3 D .3 【答案】C8. (2011四川广安,2,3分)下列运算正确的是( ) A .(1)1x x --+=+ B .954-=C .3223-=- D .222()a b a b -=-【答案】C9. ( 2011重庆江津, 1,4分)2-3的值等于( ) A.1 B.-5 C.5 D.-1· 【答案】D ·10. (2011四川绵阳1,3)如计算:-1-2=A.-1B.1C.-3D.3 【答案】C11. (2011山东滨州,10,3分)在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为 ( )[来源:] A.1,2 B.1,3 C.4,2 D.4,3 【答案】A12. (2011湖北鄂州,10,3分)计算()221222-+---1(-)=( ) A .2 B .-2 C .6 D .10【答案】A13. (2011山东菏泽,6,3分)定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则、计算2☆3的值是A . 56B . 15C .5D .6【答案】A14. (2011四川南充市,5,3分) 下列计算不正确的是( )(A )31222-+=- (B )21139⎛⎫-= ⎪⎝⎭ (C )33-= (D )1223= 【答案】A15. (2011浙江温州,1,4分)计算:(一1)+2的结果是( ) A .-1 B .1 C .-3 D .3 【答案】B16. (2011浙江丽水,4,3分)有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A .+2 B .-3 C .+3 D .+4 【答案】A17. (2011台湾台北,2)计算(-3)3+52-(-2)2之值为何?A .2B . 5C .-3D .-6 【答案】D18. (2011台湾台北,11)计算45.247)6.1(÷÷--之值为何?A .-1.1B .-1.8C .-3.2D .-3.9【答案】C19. (2011台湾台北,19)若a 、b 两数满足a 567⨯3=103,a ÷103=b ,则b a ⨯之值为何?A .9656710B .9356710C .6356710 D .56710[来源:学科网ZXXK] 【答案】C20.(2011四川乐山1,3分)小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为A .4℃B .9℃C .-1℃D .-9℃ 【答案】 C21. (2011湖北黄冈,10,3分)计算()221222-+---1(-)=( ) A .2 B .-2 C .6 D .10 【答案】A22. (2011湖北黄石,2,3分)黄石市2011年6月份某日一天的温差为11o C ,最高气温为t o C ,则最低气温可表示为A. (11+t )oCB.(11-t ) oCC.(t -11) oCD. (-t -11) oC 【答案】C23. (2011广东茂名,1,3分)计算:0)1(1---的结果正确..的是 A .0 B .1C .2D .2-【答案】D24. (2011山东德州1,3分)下列计算正确的是(A )088=--)( (B )1221=⨯)()(-- (C )011--=() (D )22-|-|= 【答案】B25. (2011河北,1,2分)计算03的结果是( ) A .3B .30C .1D .0【答案】C26. (2011湖南湘潭市,1,3分)下列等式成立是 A. 22=- B. 1)1(-=-- C.1÷31)3(=- D.632=⨯- 【答案】A27.(2011台湾全区,2)计算33)4(7-+之值为何?A .9B . 27C . 279D . 407【答案】C28. (2011台湾全区,12)12.判断312是96的几倍?A . 1B . (31)2C . (31)6 D . (-6)2 【答案】A29. (2011台湾全区,14)14.计算)4(433221-⨯++之值为何?A .-1B .-611C .-512D .-323 【答案】B30. (2011湖南常德,9,3分)下列计算错误的是( )A.020111=B.819=±C.1133-⎛⎫= ⎪⎝⎭D.4216=【答案】B31. (2011湖北襄阳,6,3分)下列说法正确的是A.0)2(π是无理数B.33是有理数 C.4是无理数 D.38-是有理数【答案】D32.(20011江苏镇江,1,2分)在下列实数中,无理数是( ) A.2 B.0 C.5 D.13答案【 C 】33. (2011贵州贵阳,6,3分)如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是(第6题图)(A )2.5 (B )2 2 (C ) 3 (D ) 5 【答案】D34(2011湖北宜昌,5,3分)如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A . a < b B.a = b C. a > b D .ab > 0(第5题图)【答案】C35. (2011广东茂名,9,3分)对于实数a 、b ,给出以下三个判断: ①若b a =,则 b a =. ②若b a <,则 b a <.③若b a -=,则 22)(b a =-.其中正确的判断的个数是 A .3 B .2 C .1 D .0 【答案】C二、填空题1. (2011安徽,12,5分)根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为E =10n ,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 . 【答案】1002. (2011广东省,8,4分)按下面程序计算:输入x =3,则输出的答案是__ _ .【答案】263. (2011山东日照,13,4分)计算sin30°﹣2-= . 【答案】23-; 4. (2011四川南充市,11,3分)计算(π-3)0= .【答案】15. (2011江西,9,3分)计算:-2-1= .[来源:学科网ZXXK] 【答案】-36. (2011湖南常德,8,3分)先找规律,再填数:1111111111111111,,,,122342125633078456............111+_______.2011201220112012+-=+-=+-=+-=-=⨯则 【答案】110067. (2011江苏连云港,13,3分)如图,是一个数值转换机.若输入数为3,则输出数是______.【答案】658. (2011江西南昌,9,3分)计算:-2-1= . 【答案】-3输入数 ( )2-1 ( )2+1 输出数 减去59. (2011湖南怀化,11,3分)定义新运算:对任意实数a 、b ,都有ab=a 2-b,例如,32=32-2=7,那么21=_____________. 【答案】310.(2011安徽,14,5分)定义运算a ✞b=a (1-b ),下面给出了关于这种运算的几个结论:①2✞(-2)=6 ②a ✞b= b ✞ a[来源:学,科,网Z,X,X,K]③若a +b=0,则(a ✞ a )+(b ✞ b )=2 ab ④若a ✞b=0,则a =0其中正确结论的序号是 .(在横线上填上你认为所有正确结论的序号) 【答案】①③11. (2011广东汕头,8,4分)按下面程序计算:输入x =3,则输出的答案是__ _ .【答案】2612. (20011江苏镇江,9,2分)计算:-(-12)=______;12-=______;012⎛⎫- ⎪⎝⎭=______; 112-⎛⎫- ⎪⎝⎭=_______. 答案:12,12,1,-2 13.(2011广东湛江20,4分)已知:23233556326,54360,5432A A A A =⨯==⨯⨯==⨯⨯⨯=, ,观察前面的计算过程,寻找计算规律计算27A = (直接写出计算结果),并比较59A 310A (填“>”或“<”或“=”)【答案】>14. (2010湖北孝感,17,3分)对实数a 、b ,定义运算★如下:a ★b=(,0)(,0)bb a a b a a a b a -⎧>≠⎪⎨≤≠⎪⎩,例如2★3=2-3=18.计算[2★(﹣4)]×[(﹣4)★(﹣2)] 【答案】115. (2011湖南湘潭市,16,3分)规定一种新的运算:ba b a 11+=⊗,则=⊗21____. 【答案】112三、解答题1. (2011浙江金华,17,6分)计算:|-1|-128-(5-π)0+4cos45°.【解】原式=1-12×22-1+4×22=1-2-1+22=2.2. (2011广东东莞,11,6分)计算:001(20111)18sin452--+-【解】原式=1+2322⨯-4 =03. (1) (2011福建福州,16(1),7分)计算:016|-4|+2011- 【答案】解:原式414=+-1=[来源:Z|xx|]4. (2011江苏扬州,19(1),4分)(1)30)2(4)2011(23-÷+---【答案】(1)解:原式=)8(4123-÷+-=21123--=0 5. (2011山东滨州,19,6分)计算:()1013-3cos3012 1.22π-︒⎛⎫+-++- ⎪⎝⎭【答案】解:原式=332123122=23--++-+6. (2011山东菏泽,15(1),6分)计算:027(4)6cos302--π-+- 解:原式=333-16+22-⨯=1 7. (2011山东济宁,16,5分)计算:084sin 45(3)4-︒+-π+-【答案】.解:原式2224142=-⨯++ 5=8. (2011山东济宁,18,6分)观察下面的变形规律:211⨯ =1-12; 321⨯=12-31;431⨯=31-41;…… 解答下面的问题:(1)若n 为正整数,请你猜想)1(1+n n = ;(2)证明你猜想的结论; (3)求和:211⨯+321⨯+431⨯+…+201020091⨯ .【答案】(1)111n n -+ ············································································································ 1分 (2)证明:n 1-11+n =)1(1++n n n -)1(+n n n =1(1)n nn n +-+=)1(1+n n . ·························· 3分(3)原式=1-12+12-31+31-41+…+20091-20101=12009120102010-=. ………………5分 9. (2011 浙江湖州,17,6)计算:0022sin304(2)π--++- 【答案】解:原式=1222142-⨯++= 10.(2011浙江衢州,17(1),4分) 计算:()0232cos 45π---+︒.【答案】解:(1)原式2212122=-+⨯=+ 11. (2011浙江绍兴,17(1),4分)(1)计算:0182cos454π--+︒+(-2);[来源:Z§xx§]【答案】解:原式21=221224-+⨯+ 3=32.4-12. (2011浙江省,17(1),4分)(1)计算:12)21(30tan 3)21(01+-+---【答案】(1)解:12)21(30tan 3)21(01+-+---= 3213332++⨯--=13-13. (2011浙江台州,17,8分)计算:203)12(1+-+- 【答案】解:原式= 1+1+9=1114. (2011浙江温州,17(1),5分)计算:20(2)(2011)12-+--; 【答案】解:20(2)(2011)124123523-+--=+-=-15. (2011浙江义乌,17(1),6分)(1)计算: 45sin 2820110-+;【答案】(1)原式=1+22-2=1+ 216. (2011广东汕头,11,6分)计算:001(20111)18sin452--+-【解】原式=1+2322⨯-4 =017. (2011浙江省嘉兴,17,8分)(1)计算:202(3)9+--. 【答案】原式=4+1-3=218. (2011浙江丽水,17,6分)计算:|-1|-128-(5-π)0+4cos45°.【解】原式=1-12×22-1+4×22=1-2-1+22=2.19. (2011福建泉州,18,9分)计算:()()2201131313272π-⎛⎫-+-⨯--+ ⎪⎝⎭.【答案】解:原式=3+(-1)⨯1-3+4…………………………(6分) =3…………………………(9分)20.(2011湖南常德,17,5分)计算:()317223-÷-⨯【答案】2921. (2011湖南邵阳,17,8分)计算:0201043-+-。
2011年中考数学试题分类汇总--直角三角形与勾股定理
第24章直角三角形与勾股定理一、选择题1.(2011山东滨州,9,3分)在△ABC中,∠C=90°, ∠C=72°,AB=10,则边AC的长约为(精确到0.1)()A.9.1B.9.5C.3.1D.3.5【答案】C2. (2011山东烟台,7,4分)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A2m B.3m(第7题图)【答案】C3. (2011台湾全区,29)已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走多少公尺后,他与神仙百货的距离为340公尺?A.100 B.180 C.220 D.260【答案】C4. (2011湖北黄石,7,3分)将一个有45度角的三角板的直角顶点放在一张宽为3cm的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30度角,如图(3),则三角板的最大边的长为A. 3cmB. 6cmC. 32cmD. 62cm【答案】D5. (2011贵州贵阳,7,3分)如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是(第7题图)(A )3.5 (B )4.2 (C )5.8 (D )7【答案】D6. (2011河北,9,3分)如图3,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB,AC 上,将△ABC 沿DE 折叠,使点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为( )A .21B .2C .3D .4图3A '【答案】B二、填空题1. (2011山东德州13,4分)下列命题中,其逆.命题成立的是______________.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形.【答案】① ④2. (2011浙江温州,16,5分)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3.若S 1,S 2,S 3=10,则S 2的值是.【答案】1033. (2011重庆綦江,16,4分) 一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A =30°,∠B =90°,BC =6米. 当正方形DEFH 运动到什么位置,即当AE = 米时,有DC 2=AE 2+BC 2.【答案】:3144. (2011四川凉山州,15,4分)把命题“如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么222a b c +=”的逆命题改写成“如果……,那么……”的形式:。
中考数学-勾股定理知识点与常见题型总结
勾股定理复习一.知识归纳1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证. c ba HG FEDCB A方法二:b ac b a cca b c a b四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a b ccb a E DCB A3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则c,b =,a②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 常见图形:A B C 30°D CB A AD B CCB D A题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长分析:直接应用勾股定理222a b c +=解:⑴10AB⑵8BC ==题型二:应用勾股定理建立方程例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD =⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为分析:在解直角三角形时,要想到勾股定理,及两直角边的乘积等于斜边与斜边上高的乘积.有时可根据勾股定理列方程求解解:⑴4AC , 2.4AC BC CD AB⋅== DB A C⑵设两直角边的长分别为3k ,4k ∴222(3)(4)15k k +=,3k ∴=,54S =⑶设两直角边分别为a ,b ,则17a b +=,22289a b +=,可得60ab =1302S ab ∴==2cm 例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长21E DCBA分析:此题将勾股定理与全等三角形的知识结合起来解:作DE AB ⊥于E ,12∠=∠,90C ∠=︒∴ 1.5DE CD ==在BDE ∆中90,2BED BE ∠=︒=Rt ACD Rt AED ∆≅∆AC AE ∴=在Rt ABC ∆中,90C ∠=︒222AB AC BC ∴=+,222()4AE EB AC +=+3AC ∴=例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积答案:6题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 mAB CD E分析:根据题意建立数学模型,如图8AB =m ,2CD =m ,8BC =m ,过点D 作DE AB ⊥,垂足为E ,则6AE =m ,8DE =m在Rt ADE ∆中,由勾股定理得10AD ==答案:10m题型四:应用勾股定理逆定理,判定一个三角形是否是直角三角形例6.已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c = 解:①22221.52 6.25a b +=+=,222.5 6.25c ==∴ABC ∆是直角三角形且90C ∠=︒ ②22139b c +=,22516a =,222bc a +≠ABC ∴∆不是直角三角形 例7.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形 理由:222()264a b a b ab +=+-=,且264c =222a b c ∴+= 所以此三角形是直角三角形。
勾股定理选择题(及答案)(10)
中考数学模拟试卷分类汇编易错易错压轴选择题精选:勾股定理选择题(及答案)(10)一、易错易错压轴选择题精选:勾股定理选择题1.如图,在四边形ABCD 中,90B C ∠=∠=,DAB ∠与ADC ∠的平分线相交于BC边上的M 点,则下列结论:①90AMD ∠=;②1=2ADM ABCDS S ∆梯形;③AB CD AD +=;④M 到AD 的距离等于BC 的13;⑤M 为BC 的中点;其中正确的有( )A .2个B .3个C .4个D .5个2.如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,BD 平分∠ABC ,E 是AB 中点,连接DE ,则DE 的长为( )A .102B .2C .512+ D .323.在平面直角坐标系中,已知平行四边形ABCD 的点A (0,﹣2)、点B (3m ,4m +1)(m ≠﹣1),点C (6,2),则对角线BD 的最小值是( ) A .2B .13C .5D .64.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为( )A .20B .24C .994D .5325.如图,□ABCD 中,对角线AC 与BD 相交于点E ,∠AEB=45°,BD=2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B′,则DB′的长为( )A .1B .2C .32D .3 6.如图所示,在中,,,.分别以,,为直径作半圆(以为直径的半圆恰好经过点,则图中阴影部分的面积是( )A .4B .5C .7D .67.如图所示,用四个全等的直角三角形和一个小正方形拼成一个大正方形已知大正方形的面积为49,小正方形的面积为4.用,表示直角三角形的两直角边(),请仔细观察图案.下列关系式中不正确的是( )A .B .C .D .8.如图,已知45∠=MON ,点A B 、在边ON 上,3OA =,点C 是边OM 上一个动点,若ABC ∆周长的最小值是6,则AB 的长是( )A .12B .34C .56D .19.如图,所有的四边形都是正方形,所有的三角形都是直角三角形。
中考模拟试题分类汇编 直角三角形与勾股定理
(第3题)直角三角形与勾股定理一、选择题1、(2011浙江杭州模拟14)如图折叠直角三角形纸片的直角,使点C 落在斜边AB 上的点E 处. 已知AB=38, ∠B=30°, 则DE 的长是( ). A. 6 B. 4 C. 34 D. 23答案:B 2.(2011湖北崇阳县城关中学模拟)直角三角形两直角边和为7,面积为6,则斜边长为( )A. 5B.C. 7D.答案:A3.(2011年杭州市上城区一模)梯形ABCD 中AB ∥CD ,∠ADC +∠BCD =90°,以AD 、AB 、BC 为斜边向形外作等腰直角三角形,其面积分别是S 1、S 2、S 3 , 且S 1 +S 3 =4S 2,则CD =( ) A. 2.5AB B. 3AB C. 3.5AB D. 4AB答案:B4.(2011年浙江省杭州市模2)直角三角形两直角边和为7,面积为6,则斜边长为( )A. 5B.C. 7D.答案:A二、填空题1、(2011年北京四中三模)如图是一个艺术窗的一部分,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为5cm ,则正方形A 、B 、C 、D 的面积和是 . 答案:25cm 22.(2010-2011学年度河北省三河市九年级数学第一次教学质量检测试题)如图是两个全等的三角形纸片,其三边长之比为3:4:5,按图中方法分别将其对折,使折痕(图中虚线)过其中的一个顶点,且使该顶点所在两边重合,记折叠后不重叠部分面积分别为S A ,S B ,已知S A +S B =13,则纸片的面积是.答案:363、(2011浙江杭州模拟15)如图,将含30°角的直角三角尺ABC 绕点B 顺时针旋转150°后得到△EBD ,连结CD.若AB=4cm. 则△BCD 的面积为 . 答案:23cm4.(2011年宁夏银川)将一副三角尺如图所示叠放在一起,若AB =14cm ,则阴影部分的面积_________cm 2. 答案:2495.(2011浙江省杭州市8模)如图1,是我国古代著名的“赵爽弦图”的示意图,它是由四全等的直角三角形围成的,若AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是__________;(第5题图)答案:766、(2011年浙江杭州二模)如图是小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是 米. 答案:8第2题图S AS B第4题图AEB图2ABC图1AB CBP 第6题图7、(2011年浙江杭州八模)如图,小明在A时测得某树的影长为3米,B时又测得该树的影长为12米,若两次日照的光线互相垂直,则树的高度为_____米.答案:6第8题图8、(2011年浙江杭州八模)如图1,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是__________;答案:769. (浙江省杭州市党山镇中2011年中考数学模拟试卷)如图,将边长为33+的等边△ABC折叠,折痕为DE,点B与点F重合,EF和DF分别交AC于点M、N,DF⊥AB,垂足为D,AD=1,则重叠部分的面积为.94B组1.( 2011年杭州三月月考)将一副三角板按如图1位置摆放,使得两块三角板的直角边AC和MD重合.已知AB=AC=8 cm,将△MED绕点A(M)逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积是▲ cm2答案:31648-2.(2011年重庆江津区七校联考一模)一元二次方程27120x x-+=的两根恰好是一直角三角形的两边长,则该直角三角形的面积为。
2011年中考数学试卷分类汇编:47 压轴题
2011年中考数学试卷分类汇编:47 压轴题(黄冈市2011)24.(14分)如图所示,过点F (0,1)的直线y =kx +b 与抛物线214y x =交于M (x 1,y 1)和N (x 2,y 2)两点(其中x 1<0,x 2<0).⑴求b 的值. ⑵求x 1•x 2的值⑶分别过M 、N 作直线l :y =-1的垂线,垂足分别是M 1、N 1,判断△M 1FN 1的形状,并证明你的结论.⑷对于过点F 的任意直线MN ,是否存在一条定直线m ,使m 与以MN 为直径的圆相切.如果有,请法度出这条直线m 的解析式;如果没有,请说明理由.答案:24.解:⑴b =1⑵显然11x x y y =⎧⎨=⎩和22x x y y =⎧⎨=⎩是方程组2114y kx y x =+⎧⎪⎨=⎪⎩的两组解,解方程组消元得21104x kx --=,依据“根与系数关系”得12x x =-4⑶△M 1FN 1是直角三角形是直角三角形,理由如下:由题知M 1的横坐标为x 1,N 1的横坐标为x 2,设M 1N 1交y 轴于F 1,则F 1M 1•F 1N 1=-x 1•x 2=4,而FF 1=2,所以F 1M 1•F 1N 1=F 1F 2,另有∠M 1F 1F =∠FF 1N 1=90°,易证Rt △M 1FF 1∽Rt △N 1FF 1,得∠M 1FF 1=∠FN 1F 1,故∠M 1FN 1=∠M 1FF 1+∠F 1FN 1=∠FN 1F 1+∠F 1FN 1=90°,所以△M 1FN 1是直角三角形.⑷存在,该直线为y =-1.理由如下:FMNN 1M 1F 1 Oyx l第22题图直线y =-1即为直线M 1N 1. 如图,设N 点横坐标为m ,则(黄石市2011年)24.(本小题满分9分)已知⊙1O 与⊙2O 相交于A 、B 两点,点1O 在⊙2O 上,C 为⊙2O 上一点(不与A ,B ,1O 重合),直线CB 与⊙1O 交于另一点D 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、选择题
1.( 2010 年杭州月考)如图,在Rt△ABC 中,.ACB = 90°
BC =3, AC =4, AB 的垂
直平分线DE交BC的延长线于点E,则CE的长为(
3 7
(A) ^H(B) - (C)
2 6
答案:B
二、填空题
1. ( 2010年广西桂林适应训练)、如图,在正方形ABCD勺
边AB上连接等腰直角三角形,然后在等腰直角三角形的直角边上
连接正方形,无限重复上述过程,如果第一个正方形ABCD的边
长为1 ,那么第n个正方形的面积
二、解答题
1. (2010天水模拟)△ ABC中,BC=a,AC=b,AB=c.若/ C=90°,如图
1,根据勾股定理,则a2+b2=c2,若
△ ABC不是直角三角形,如图2和图3,请你类比勾股定理,试猜想
a2+b2与c2的关系,并证明你的结论。
答案:b2-x 2=AD J=c2-(a+x) 2
.2 2 2 2 2
b -x =
c -a +2ax+x
又T 2ax>0
2.2 2 /• a +b >c b2-x2=AD2=tf-(a+x) 2
.2 2 2 2 2
b -x =
c -a -2ax+x
2.2 2
a +
b =
c -2ax
又T 2ax>0
2 . 2 2 /• a +b <c
勾股定理
)
(D)2
25
2. (2010年 湖里区 二次适应性考试)如图,线段 AB 与O O 相切于点C 连结OA OB
2 2
OB 交O O 于点 D,已知 0A =0B =6,AB =6 .3 .
(1) 求O O 的半径;
(2) 求图中阴影部分的面积.
答案:(1)连结OC T AB 与O O 相切于点C
••• OC 丄 AB •
•/ OA =OB , --AC = BC AB 6」'3 = 3-•
2 2 在 Rt △ AOC 中,OC ’OA 2 _ AC H 62 _(3、3)2 =
3 • • O O 的半径为3.
1
(2)在 Rt A AOC 中••• O(=-OB , • /B =30°, / COD 6O °. 2 •扇形OCD 勺面积为
S 扇形OCD = 2 _60 n 3 . _3 —n 2 360
阴影部分的面积为
S
阴影=S Rt △OBC 一 S 扇形 OCD
1 = _oc CB - ? n=^
2 2
3 —n.。