锁相环电路的设计及相位噪声分析

合集下载

锁相环的相位噪声分析

锁相环的相位噪声分析

锁相环路相位噪声分析张文军 电信0802【摘要】本文对锁相电路的相位噪声进行了论述,并对其中各组成部件的相位噪声也做了较为详细的分析。

文中最后提出了改进锁相环相位噪声的办法。

【关键词】锁相环;相位噪声;分析 引言相位噪声是一项非常重要的性能指标,它对电子设备和电子系统的影响很大,从频域看它分布的载波信号两旁按幂律谱分布。

用这种信号无论做发射激励信号,还是接收机本振信号以及各种频率基准,这些信号在解调过程中都会和信号一样出现在解调终端,引起基带信噪比下降。

在通信系统中使环路信噪比下将,误码率增加;在雷达系统中影响目标的分辨能力,即改善因子。

接收机本振的相位噪声遇到强干扰信号时,会产生“倒混频”,使接收机有效噪声系数增加。

随着电子技术的发展,对频率源的信号噪声要求越来越严格,因此低相位噪声在物理、天文、无线电通信、雷达、航空、航天以及精密计量、仪器仪表等各种领域里都受到重视。

1 相位噪声概述相位噪声 ,就是指在系统内各种噪声作用下所表现的相位随机起伏,相位的随机起伏起必然引起频率随机起伏,这种起伏速度较快,所以又称之为短期频率稳定度。

理想情况下,合成器的输出信号在频域中为根单一的谱线,而实际上任何信号的频谱都不可能绝对纯净,总会受到噪声的调制产生调制边带。

由于相位噪声的存在,使波形发生畸变。

在频域中其输出信号的谱线就不再是一条单根的谱线,而是以调制边带的形式连续地分布在载波的两边,在主谱两边出现了一些附加的频谱,从而导致频谱的扩展,相位噪声的边带是双边的,是以0f 为中心对称的,但为了研究方便,一般只取一个边带。

其定义为偏离载频1Hz带宽内单边带相位噪声的功率与载频信号功率之比,它是偏离 载频的复氏频率m f 的函数 ,记为()m f ζ,单位为d B c / Hz ,即()010lg[/](1)m SSB f P P ζ=式中SSB P 为偏离载频m f 处,1Hz 带宽内单边带噪声功率;0P 为载波信号功率。

锁相环实验报告

锁相环实验报告

锁相环实验报告
《锁相环实验报告》
锁相环是一种常见的控制系统,广泛应用于通信、电力、自动控制等领域。


实验旨在通过搭建锁相环系统,验证其在信号同步和抑制噪声方面的性能。

实验设备包括信号发生器、锁相环模块、示波器等。

首先,我们将信号发生器
产生一个正弦波信号作为输入信号,然后将其输入到锁相环模块中。

锁相环模
块通过比较输入信号和反馈信号的相位差,控制其输出信号与输入信号同步。

最后,我们使用示波器观察输入信号、锁相环输出信号和反馈信号的波形,并
分析它们之间的相位关系和噪声抑制效果。

实验结果表明,锁相环系统能够有效地实现输入信号和输出信号的同步,且具
有良好的抑制噪声能力。

当输入信号频率发生变化时,锁相环系统能够迅速跟
随并调整输出信号,保持同步状态。

同时,锁相环系统还能够抑制输入信号中
的噪声,输出信号的波形更加稳定。

通过本次实验,我们深入了解了锁相环系统的工作原理和性能特点,为其在实
际应用中提供了有力的支持。

锁相环系统的同步性能和噪声抑制能力对于通信、电力系统等领域具有重要意义,本实验结果对于相关领域的研究和应用具有一
定的参考价值。

锁相环相噪计算公式

锁相环相噪计算公式

锁相环相噪计算公式锁相环相噪计算公式1. 引言锁相环是一种常见的电路技术,用于对输入信号进行频率、相位或时延的调整。

在锁相环中,相噪是一个重要的性能指标,用来描述输出信号中的相位噪声。

2. 相噪计算公式•公式1:相噪指数(ENOB) = 20log10(2pi f3dB T)–其中,f3dB表示锁相环的3dB截止频率,T表示锁相环的环路延迟时间。

•公式2:相噪功率密度(PN) = 20log10(Kv f)–其中,Kv表示锁相环的控制增益,f表示锁相环的偏置频率。

3. 解释与示例相噪指数(ENOB)相噪指数(ENOB)是一种常用的相噪度量单位,表示为dBc,表示输出信号中相位噪声相对于理想信号的衰减程度。

具体计算方法如下:ENOB = 20log10(2pi f3dB T)例如,一个锁相环的3dB截止频率为10 kHz,环路延迟时间为2 ns,则根据公式1计算其相噪指数为:ENOB = 20log10(2pi10^4 2*10^-9) = - dBc这意味着锁相环输出信号中的相位噪声相对于理想信号衰减了 dB。

相噪功率密度(PN)相噪功率密度(PN)是另一种常用的相噪度量单位,表示为dBc/Hz,表示单位频带中的相位噪声功率。

具体计算方法如下:PN = 20log10(Kv f)例如,一个锁相环的控制增益为30 dB/V,偏置频率为1 MHz,则根据公式2计算其相噪功率密度为:PN = 20log10(10^3 10^6) = 140 dBc/Hz这意味着在1 Hz的频带内,锁相环输出信号的相位噪声功率为-140 dBc/Hz。

4. 总结本文介绍了锁相环相噪计算公式和其含义,包括相噪指数(ENOB)和相噪功率密度(PN)的计算公式,并通过示例进行了说明。

相噪是衡量锁相环性能的重要指标之一,在设计和应用中需要对相噪进行合理估算和控制。

5. 其他相关公式和注意事项•公式3:锁定时间(Tlock) = 1/(2pi f3dB)–锁定时间表示锁相环从失锁状态到锁定状态所需的时间。

锁相环输出信号相位噪声噪声及杂散特性分析应用实践

锁相环输出信号相位噪声噪声及杂散特性分析应用实践

锁相环输出信号相位噪声噪声及杂散特性分析应用实践【摘要】本文详细地介绍了锁相环的鉴频鉴相器、分频器和输入参考信号的相位噪声对锁相环合成输出信号的近端相位噪声的具体贡献值。

并以CDMA 1X基站系统中800MHz的FS 单板的锁相环输出信号相位噪声指标进行理论计算。

为广大锁相环设计者提供理论计算方法的参考和实践设计的参考依据。

【关键词】锁相环设计,相位噪声一、术语和缩略语表格 1 术语和缩略语二、问题的提出锁相环工作原理图,由三部分组成:鉴相器(PFD)、环路滤波器(LPF)和压控晶体振荡器(VCXO),如图0-1所示。

图0-1锁相环原理框图锁相环输出信号指标主要有相位噪声、谐波抑制、杂散、输出功率、跳频时间。

在本文中以CDMA 1X基站系统中800MHz的FS单板应用为背景,在CDMA基站中不需要跳频,所以调频时间基本不做要求。

输出功率比较好控制,只要调整衰减网络就能保证。

锁相环输出信号的相位噪声、谐波抑制和杂散成为影响系统指标的主要因素,成为锁相环技术的关键指标项。

在锁相环设计中,相位噪声和杂散成为系统设计主要难点。

三、解决思路相位噪声分析相位噪声主要由VCO、鉴频鉴相器、分频器和输入参考信号的相位噪声这四部分引入。

环路滤波器对于由鉴频鉴相器、分频器和输入参考信号的相位噪声这三部分引入的相位噪声具有低通特性,对于VCO产生的相位噪声具有高通特性。

一般来说环路带宽内的相位噪声主要决定于由鉴频鉴相器、分频器和输入参考信号,环路带宽以外的相位噪声主要决定于VCO,在环路带宽周围,这四部分的噪声影响相当。

所以为了尽量降低输出信号的相位噪声环路滤波器的环路带宽的最佳点是由鉴频鉴相器、分频器和输入参考信号的相位噪声这三部分引入的相位噪声总和与VCO引入的相位噪声相同时的频率。

在实际运用中还礼滤波器的设计是非常重要的。

对于远端相位噪声如100KHz和1MHz处的一般远远高于环路带宽,其相位噪声主要决定于VCO,要保证其指标主要是选择良好的VCO。

锁相环电路设计

锁相环电路设计

锁相环电路设计PLL(锁相环)电路原理及设计在通信机等所使用的振荡电路,其所要求的频率范围要广,且频率的稳定度要高。

无论多好的LC振荡电路,其频率的稳定度,都无法与晶体振荡电路比较。

但是,晶体振荡器除了可以使用数字电路分频以外,其频率几乎无法改变。

如果采用PLL(锁相环)(相位锁栓回路,PhaseLockedLoop)技术,除了可以得到较广的振荡频率范围以外,其频率的稳定度也很高。

此一技术常使用于收音机,电视机的调谐电路上,以及CD唱盘上的电路。

一 PLL(锁相环)电路的基本构成PLL(锁相环)电路的概要图1所示的为PLL(锁相环)电路的基本方块图。

此所使用的基准信号为稳定度很高的晶体振荡电路信号。

此一电路的中心为相位此较器。

相位比较器可以将基准信号与VCO (Voltage Controlled Oscillator……电压控制振荡器)的相位比较。

如果此两个信号之间有相位差存在时,便会产生相位误差信号输出。

(将VCO的振荡频率与基准频率比较,利用反馈电路的控制,使两者的频率为一致。

)利用此一误差信号,可以控制VCO的振荡频率,使VCO的相位与基准信号的相位(也即是频率)成为一致。

PLL(锁相环)可以使高频率振荡器的频率与基准频率的整数倍的频率相一致。

由于,基准振荡器大多为使用晶体振荡器,因此,高频率振荡器的频率稳定度可以与晶体振荡器相比美。

只要是基准频率的整数倍,便可以得到各种频率的输出。

从图1的PLL(锁相环)基本构成中,可以知道其是由VCO,相位比较器,基准频率振荡器,回路滤波器所构成。

在此,假设基准振荡器的频率为fr,VCO的频率为fo。

在此一电路中,假设frgt;fo时,也即是VC0的振荡频率fo比fr低时。

此时的相位比较器的输出PD会如图2所示,产生正脉波信号,使VCO的振荡器频率提高。

相反地,如果frlt;fo时,会产生负脉波信号。

(此为利用脉波的边缘做二个信号的比较。

如果有相位差存在时,便会产生正或负的脉波输出。

[锁相技术]第3章 环路噪声性能

[锁相技术]第3章   环路噪声性能

4.采用无源比例积分滤波器的二阶环采用与有源比
例积分滤波器的二阶环相同的方法,可得
BL
n 8
[1
(2
n
K
)2 ]
(3-26)
当环路增益很高,即K>>ωn时,上式近似为
BL
n 8
(1
4 2 )
三、环路信噪比
在定义环路信噪比之前,先看看环路输入信噪比。 所谓输入信噪比(S/N)i,指的是输入信号载波功率U2i /2与通过环路前置带宽Bi的噪声功率NoBi之比,即
)L
(
S N
)i
Bi BL
(3-29)
(3-30) (3-31)
【计算举例】
在一部接收机的中频部分,使用了锁相环作载波提 取设备。已知接收机输入端等效噪声温度Teq=600K,输 入信号功率Ps=10-13mW。单边噪声功率谱密度No为
No=kTeq=138×10-23×600=8.3×10-21 W/Hz 式中k是波尔兹曼常数,也即No=8.3×10-18 mW/Hz
ui(t)=Uisinωot+θ1(t)
(3-1)
经环路前置带通滤波器的作用,n(t)为一个窄带白高 斯噪声电压,可表示为(见附录一)
n(t)=nc(t)cosωot-ns(t)sinωot
(3-2)
图3-1 有输入噪声时环路的基本组成
这样,加在环路输入端的电压是信号与噪声之和,即
ui(t)+n(t)=Uisinωot+θ1(t)+nc(t)cosωot-ns(t)sinωot 压控振荡器输出电压为
Kd
s
2s) H (s)ni (s)
(3-9) (3-10)
一、环路输出噪声相位方差

锁相环频率合成器的相位噪声分析

锁相环频率合成器的相位噪声分析

图 1 锁相式频率合成器的原理 框图
锁相式频率合成器 的基本原理如 下: 鉴相器 ( PD) 将参考信号 V i ( t ) (频率 f r )与输出信号 Vo ( t ) ( 频率 fo ) 的相位进行比较, 产生一个反映两信号 相位差大小的信号 Vd ( t) , Vd ( t ) 经过环路 滤波器 ( LPF )滤波滤除高频分量 , 得到控制电 压 Vc ( t ), 将 Vc ( t) 加到压控振荡器 ( VCO ) 的控制端, 通过
42
航空兵器
2010 年第 6 期
VCO 使得输出频率 fo 向 f r 靠拢 , 直到消除相差使 环路锁定。

pd
2 锁相环路中的相位噪声
锁相环频率合成器主要由倍频器、放大器、分 频器、混频器、鉴相器、 压控振荡器 ( VCO) 等基本 电路组成, 有的还包括辅助捕获电路、跳频控制电 路和电子开关等, 它们都不同程度地将噪声引入 频率合成器中, 因此对频率合成器各组成部件噪 声的研究就很有必要。 2 . 1 鉴相器对环路噪声的影响 鉴相器是 PLL 的关键部件之一, 它有许多不 同的类型和电路形式。目前较常用的鉴相器基本 上可分为两大类: 乘法器 ( 或逻辑组合 ) 电路和时 序电路。 这里主要讨论乘法器类鉴相器。 乘法器类 鉴相器将输 入信号波 形与本地 振荡器波 形相乘 , 并把乘积的平均值作为其有用的直流输出, 一个 设计正确的乘法器鉴相器可以对淹没在极大噪声 中的输入信号进行处理。 这里假设 PLL 环路是线性的, 鉴相器是理想 的。鉴相器引入的噪声用一个外加的等效干扰噪 声电压 vpd ( s) 代替 , 如图 2 所示。
1 频率合成器简介
频率合成技术自提出以来 , 目前已 经逐渐形 成了四种技术 : 直接模 拟式频率合成 技术、锁相 频率合成技术、直接数字 式频率合成技术和混合 式频率合成技术。本文主 要介绍锁相频率合成技 术。 锁相式频率合成器是采用锁相环 ( PLL ) 进行 频率合成的一种频率合成器, 它是目前频率合成 器的主流, 其原理框图如图 1 所示。 最简单的锁相 环合成器是单环锁相环频率合成器, 在压控振荡 器与鉴相器之间的锁相环反馈回路上增加整数分

锁相环 相位噪声

锁相环 相位噪声

锁相环相位噪声锁相环是一种常用的电路技术,用于抑制信号中的相位噪声。

相位噪声是指信号中的相位变化不稳定性,它可以导致信号的频偏和抖动,影响系统的性能和稳定性。

锁相环通过比较输入信号和参考信号的相位差,然后通过反馈调节输入信号的相位,以达到消除相位噪声的目的。

在现代通信系统中,相位噪声是一个非常重要的问题。

相位噪声的存在会导致信号的频谱扩展,降低系统的信噪比,影响通信质量。

因此,研究和解决相位噪声问题对于提高通信系统的性能至关重要。

锁相环通过利用负反馈原理来消除相位噪声。

它由相位检测器、低通滤波器、电压控制振荡器和除相器等组成。

首先,相位检测器将输入信号和参考信号进行比较,产生相位误差信号。

然后,低通滤波器对相位误差信号进行滤波,得到控制电压。

接下来,电压控制振荡器根据控制电压来调节输出信号的相位。

最后,除相器将输出信号和参考信号进行比较,得到反馈信号,闭环控制系统实现了相位的稳定。

锁相环的关键是相位检测器。

常用的相位检测器有边沿检测器、比较器和混频器等。

边沿检测器通过检测信号的边沿来获得相位信息,适用于高频信号。

比较器通过比较两个信号的幅值来获得相位信息,适用于低频信号。

混频器通过将信号与参考信号相乘,然后滤波得到直流分量来获得相位信息,适用于宽频带信号。

除了相位检测器,滤波器也是锁相环中的重要组成部分。

低通滤波器的作用是滤除高频噪声,使得控制电压变化平稳。

滤波器的带宽决定了锁相环对相位噪声的抑制能力。

带宽越宽,抑制能力越强,但相应的噪声增益也会增加。

因此,在选择滤波器带宽时需要进行权衡。

锁相环的另一个关键参数是环路带宽。

环路带宽决定了锁相环的跟踪能力和响应速度。

带宽越高,跟踪能力越好,但相应的稳定性也会降低。

因此,在设计锁相环时需要根据具体应用需求来选择合适的环路带宽。

除了上述基本结构,锁相环还可以通过添加频率鉴频器、倍频器和除频器等模块来实现更复杂的功能。

例如,可以利用频率鉴频器来实现频率锁定,将输入信号的频率锁定到参考信号的频率上。

锁相环的相位噪声传递函数

锁相环的相位噪声传递函数

锁相环的相位噪声传递函数锁相环(PLL)是一种常用的电路,用于将输入信号的相位与参考信号的相位保持一致。

相位噪声传递函数是描述锁相环中相位噪声传递的数学模型。

本文将介绍锁相环的基本原理和相位噪声传递函数,并探讨其在通信系统中的应用。

一、锁相环的基本原理锁相环由相位比较器、低通滤波器、电压控制振荡器(VCO)和分频器组成。

其基本原理是通过不断调节VCO的频率,使其输出信号的相位与参考信号的相位保持一致。

具体实现过程如下:1. 相位比较器:将输入信号和参考信号进行相位比较,产生一个误差信号。

2. 低通滤波器:对误差信号进行滤波,得到一个平滑的控制电压。

3. VCO:根据控制电压改变输出信号的频率,同时也改变其相位。

4. 分频器:将VCO的输出信号进行分频,得到参考信号。

通过不断的反馈调节,锁相环能够使VCO的输出信号与参考信号的相位保持一致,从而实现相位同步。

二、相位噪声传递函数的定义相位噪声传递函数是衡量锁相环中相位噪声传递特性的一种数学模型。

它描述了输入到输出的相位噪声传递情况,通常用频率响应函数的形式表示。

具体而言,相位噪声传递函数可以表示为:H(f) = K / (1 + jf/fc)其中,H(f)表示相位噪声传递函数,K表示增益,f表示频率,fc 表示截止频率。

三、相位噪声传递函数的分析相位噪声传递函数可以用于分析锁相环中相位噪声的特性。

从函数的形式可以看出,当频率接近截止频率时,相位噪声传递函数的值较小,说明锁相环对低频相位噪声具有较好的抑制能力。

而当频率远离截止频率时,相位噪声传递函数的值逐渐增大,说明锁相环对高频相位噪声的抑制能力较弱。

四、锁相环在通信系统中的应用锁相环在通信系统中有着广泛的应用。

其中,最常见的应用是时钟恢复和频率合成。

1. 时钟恢复:在数字通信系统中,接收端需要从接收到的信号中恢复出发送端的时钟信号。

锁相环可以通过将接收到的信号与本地时钟进行比较,并通过调节VCO的频率来实现时钟的恢复。

锁相环路(PLL)电路设计实例

锁相环路(PLL)电路设计实例

软件实现PLL的代码示例
01
```systemverilog
02
// 定义PLL模块
03
module pll(input wire clk_in, output reg clk_out);
软件实现PLL的代码示例
01
parameter FREF = 100e3; // 参考频率
02
parameter N = 10; // 分频比
相位保持一致。
电荷泵型PLL的电路实现
电荷泵由两个开关和两个电容 组成,一个开关用于充电,另
一个用于放电。
当输入信号与VCO输出信号 的相位存在误差时,电荷泵 的开关会根据误差信号的极 性进行切换,从而在电容上
积累或释放电荷。
电容上的电荷量会转换为电压 信号,该电压信号通过低通滤 波器平滑后,用于调整VCO的
频率。
电荷泵型PLL的性能分析
01
电荷泵型PLL具有较高的带宽和较快的响应速度,因此适用于高 速数据传输和无线通信等应用。
02
由于电荷泵型PLL采用电荷传输方式,因此对电源噪声和电磁干
扰较为敏感,需要采取相应的措施进行抑制。
电荷泵型PLL的另一个优点是易于集成,因此适合于大规模生产
03
和应用。
04
软件实现PLL的代码示例
assign clk_out = div_by_n;
always @(posedge clk_in) begin phase_error <= #1 ($posedge clk_in ? 32'hFFFFFFFF : phase_error 1);
软件实现PLL的代码示例
PLL电路设计实例:模拟型 PLL

锁相环相噪计算公式

锁相环相噪计算公式

锁相环相噪计算公式(原创版)目录1.锁相环的基本概念和模块2.锁相环相噪的计算公式3.锁相环相噪对输出频率的影响4.降低锁相环相噪的方法正文锁相环(PLL)是一种用于生成稳定、精确频率信号的电路系统。

它在通信、导航、广播等领域有广泛的应用。

锁相环的基本模块包括误差检波器、环路滤波器、电压控制振荡器(VCO)和反馈分频器。

负反馈机制使得误差信号在反馈分频器输出和基准频率处接近于零,从而实现锁相和锁频状态。

在锁相环中,相位噪声是一个重要参数。

相位噪声指的是载波功率相对于给定频率偏移处的相位变化。

通常情况下,频率合成器定义 1kHz 频率偏移处为 1-Hz。

对于一个给定的载波功率的输出频率来说,相位噪声会对其产生影响。

锁相环相噪的计算公式如下:相噪 = 2 * (fref - f0) / (f0 + fref)其中,fref 为基准频率,f0 为反馈分频器输出频率。

由公式可以看出,当 f0 接近 fref 时,相噪会接近于零。

这是因为在锁相环中,反馈分频器使得误差信号接近于零,从而使得相噪最小。

然而,在实际应用中,由于各种因素的影响,例如元器件性能、电路噪声等,锁相环的相噪往往无法达到理想状态。

因此,需要采取一定的措施来降低锁相环的相噪。

降低锁相环相噪的方法主要有以下几种:1.选择高质量的元器件,提高电路性能。

2.优化电路设计,减小电路噪声。

3.增加环路滤波器的阶数,提高滤波效果。

4.调整反馈分频器的参数,使得误差信号更接近于零。

总之,锁相环相噪是评价锁相环性能的重要指标。

数字锁相环的相位噪声分析

数字锁相环的相位噪声分析

电气传动2021年第51卷第11期摘要:随着信息化社会的发展,数字锁相环越发受研发人员的重视。

而相位噪声是衡量数字锁相环性能的关键技术,更是研究的重点。

介绍数字锁相环的组成结构和工作原理,建立环路各个模块的相位噪声模型,从闪烁噪声和白噪声的特性入手,定性分析相位噪声的影响因素,并针对电荷泵增益和环路滤波器阻抗对锁相环电路相位噪声的影响进行了仿真,进一步验证了分析结果,为设计高性能的数字锁相环提供理论基础。

关键词:数字锁相环;相位噪声;振荡器;电荷泵;环路滤波器中图分类号:TM28文献标识码:ADOI :10.19457/j.1001-2095.dqcd21463Analysis of Phase Noise in Digital Phase -locked Loop ZHANG Zhanrong 1,WANG Yunfei 2,QU Meixia 2,ZHAO Li 3(1.Department of Mechanical and Electrical Engineering ,Ordos Vocational College ofEco-environment ,Ordos 017010,Nei Moggol ,China ;2.Basic Department ,Ordos Vocational College of Eco-environment ,Ordos 017010,Nei Moggol ,China ;3.School of Software ,Shanxi University ,Taiyuan 030013,Shanxi ,China )Abstract:With the development of information society ,digital phase-locked loop (DPLL )attracts more and more attention of researchers.As the key technology to evaluate the performance of DPLL ,phase noise becomes the key point of the study.The structure and work principle of DPLL were introduced ,the phase noise model of each module of the loop was established.Starting from the characteristics of flicker noise and white noise ,the influence factors of phase noise were analyzed qualitatively ,and the influence of charge pump gain and loop filter impedance on phase noise of PLL circuit was simulated to further verify the analysis results.The theoretical basis was provided for improving the phase noise performance of DPLL.Key words:digital phase-locked loop (DPLL );phase noise ;oscillator ;charge pump ;loop filter基金项目:山西省科技厅基础研究计划项目—青年科技研究基金(2014021039-6)作者简介:张占荣(1969—),男,本科,副教授,Email :131****************数字锁相环的相位噪声分析张占荣1,王云飞2,屈美霞2,赵丽3(1.鄂尔多斯生态环境职业学院机电工程系,内蒙古鄂尔多斯017010;2.鄂尔多斯生态环境职业学院基础部,内蒙古鄂尔多斯017010;3.山西大学软件学院,山西太原030013)现代频率源一般是由直接频率合成、间接频率合成和直接数字频率合成这三种合成技术实现的[1]。

锁相频率源混频信号的相位噪声分析

锁相频率源混频信号的相位噪声分析

锁相频率源混频信号的相位噪声分析为了研究锁相频率源的混频信号的相位噪声问题,本文将锁相源的相位噪声构成作为基础,构建起两路相关锁相源混频相位噪声近似数学模型,并开展了相关实验。

实验数据表明,模型仿真能够得到与实验一致的结果,可以在很大程度上降低相位噪声估值偏差。

标签:锁相频率源;混频信号;相位噪声1 相位噪声概述通常来讲,信号频率或者相位本身的短期性、随机性起伏是引发相位噪声的主要原因,理想的频率源信号得到的频谱近似直线,数学上一般用带有幅度的Delta函数表示。

而从实际测量的角度,频谱信号两侧可以看到宽度较大的连续分布谱,其形成的原因是热能与其他噪声源随机起伏对于频率信号的调整,这里的连续分布谱实际上就是相位噪声。

假定θ(t)表示噪声形成的调制信号,考虑到相位噪声同样属于较小的信号调制,满足θ(t)《1,可以将频率源信号表示为:(1)公式中,fc表示载波信号,对于公式进行相应的Fourier变换,可以得到(2)这里的S(f)表示S(t)的Fourier頻率谱,Sθ=F(θ(t)),表示相位与频率抖动的功率谱密度。

结合上述公式,参考相位噪声的内涵,可以通过分贝值的形式来对频率源相位噪声进行表示,有(3)公式中,=f-fc,该公式实际上是偏离载波位置1Hz带宽的相位噪声。

调制信号本身属于非平稳性的随机过程,而结合相应的文献研究以及工程实践,可以将其近似看做是平稳的高斯过程,能够得到近乎实际工程值的结果。

设相应的高斯过程θ(t)为N(0,),均值E=0,相位与频率会于载波信号附近抖动。

方差表示为相位噪声的功率,依照上述公式,可以得到相应的公式(4)2 锁相频率源相位噪声结构就目前而言,比较常见的锁相源一般都是有压控振荡器、鉴相器、环路滤波器以及分频器等构成,所有元器件的噪声都会影响最终输出频率的相位噪声,而其中最为关键,最不可避免的,是鉴相器鉴相基底倍频以及参考信号锁相倍频的恶化。

参考公式(4),可以将锁相源相位噪声表示为(5)在公式中,表示锁相源最终输出的相位噪声功率,和分别表示晶振锁相倍频恶化以及鉴相基底倍频恶化后的相位噪声功率,结合上述分析,参照公式(4)和公式(5),可以将相位噪声改写成分贝值的形式,得到锁相源相位噪声计算公式:(6)3 加入混频器后的相位噪声分析理想状态下,混频器的输出包含了两个输入信号的和频与差频,而实际上,混频器具备多个交调分量,不过和频与差频是主要分量。

锁相环近端相位噪声

锁相环近端相位噪声

锁相环近端相位噪声锁相环近端相位噪声是现代通信和信号处理领域中一个重要的概念。

在本文中,我们将深入研究锁相环近端相位噪声的定义、原因,以及其对系统性能的影响。

通过从简到繁的方式,逐步展开论述,希望能给读者带来全面、深刻和灵活的理解。

1. 什么是锁相环近端相位噪声锁相环近端相位噪声是指在锁相环内部产生的相位抖动。

在锁相环中,相位噪声是由多种因素产生的,如参考源、振荡器、放大器等。

近端相位噪声可以通过衡量锁相环输出信号的相位变化来评估,通常以分贝(dBc)为单位表示。

2. 锁相环近端相位噪声的原因锁相环近端相位噪声的主要原因可以归结为以下几点:- 振荡器的噪声:振荡器是锁相环中最重要的组成部分之一,其本身的噪声会对系统性能产生较大影响。

振荡器的噪声主要由两方面因素决定,即抖动和频率噪声。

- 参考源的不稳定性:锁相环的性能主要取决于参考源的稳定性。

如果参考源的相位不稳定,将会导致锁相环输出的相位抖动。

- 放大器的噪声:放大器在信号处理过程中发挥着重要的作用,然而放大器本身也会引入噪声,这些噪声会增加锁相环近端相位噪声的水平。

3. 锁相环近端相位噪声对系统性能的影响锁相环近端相位噪声对于系统的性能有着重要的影响。

它会显著降低系统的信号质量、容易引发震荡,同时还会增加系统的位错误率。

锁相环近端相位噪声还可能导致时钟抖动、时钟漂移等问题,特别是在高精度的通信和信号处理系统中,这种影响更为显著。

4. 个人观点和理解在我看来,锁相环近端相位噪声是一个令人头疼的问题。

虽然锁相环本身是一种非常强大的技术,可以用来抑制相位噪声和频率噪声,提高系统性能,但近端相位噪声的存在限制了其应用范围。

研究如何减小锁相环近端相位噪声,提高系统稳定性和性能是非常重要的。

为了应对锁相环近端相位噪声带来的挑战,我认为我们应该采取以下几个方面的策略:- 加强振荡器的设计和优化,提高其抗噪声能力和稳定性;- 优化参考源的设计,减小相位抖动;- 采用低噪声放大器,降低放大器引入的噪声水平;- 引入噪声补偿技术,抵消近端相位噪声的影响;- 进一步研究和开发新的锁相环结构和算法,以提高系统的稳定性和性能。

锁相环相位噪声与环路带宽的关系分析

锁相环相位噪声与环路带宽的关系分析

锁相环相位噪声与环路带宽的关系分析0 引言电荷泵锁相环是闭环系统,系统各个部分都是一个噪声源,各部分噪声的大小不仅与电路本身有关,而且还与环路带宽等因素有关。

因此,设计时必须分析其各频率范围内噪声源影响力的大小,权衡确定环路带宽与各噪声源的相互制约关系。

以下利用锁相环的等效噪声模型,重点分析电荷泵锁相环系统的相位噪声特性,得出系统噪声特性的分布特点以及与环路带宽的关系。

1 电荷泵锁相环的基本原理图1 为电荷泵锁相环的示意图,主要由鉴相鉴频器(PFD)、电荷泵、滤波器、压控振荡器(VCO)、分频器等5 部分组成,鉴相鉴频器主要用来检测输入信号x(t)与反馈信号xf(t)的频率、相位误差,并产生UP,DOWN 信号控制电荷泵的开关。

电荷泵由两个对称的电流源和开关组成。

电荷泵的开关会对滤波器上的电容充放电,电流经过滤波器滤波后滤掉高频信号,在滤波器上产生能调整压控振荡器频率和相位的电压v(t)。

当v(t)上的电压被调整为一个合适的电压值时,xi(t)的频率和相位与x(t)的一致,系统最终处于平衡状态,从而实现对输入信号的跟踪。

2 电荷泵锁相环的噪声模型与相位噪声特性分析电荷泵锁相环的环路等效噪声模型可以用锁相环各子模块附加噪声源表示。

图2 给出了带有无源滤波器锁相环噪声源模的型。

设fm 为距离调制频率的偏移量,该图中主分频器、参考时钟分频器的均方噪声功率谱密度分别被表示为ψd(fm)和ψrcf(fm);鉴相鉴频器的相位噪声被表示为ψpd(fm);晶体振荡器的相位噪声被表示为ψx(fm);相位噪声源的单位是电荷泵的噪声被等价为电流源inp(fm)(单位:);滤波器的噪声被等价为电压源Vnf(fm)(单位:的自由振荡噪声被表示为环路输出信号的均方噪声功率谱密度被表示为它是闭环情况下所有噪声源。

高稳定度和相位噪声的锁相环设计论文

高稳定度和相位噪声的锁相环设计论文

高稳定度和相位噪声的锁相环设计论文一、引言本文介绍一种高稳定度和相位噪声的锁相环设计,适用于对频率源指标要求较高,锁定时间要求较低的场合,而且相对于单个高稳定度和相位噪声的频率源来说成本较低。

锁相环电路是一种以消除频率误差为目的的反馈控制电路,它的基本原理是利用相位误差电压取消除频率误差,所以当电路达到平衡之后,虽然有剩余相位误差存在,但频率误差可以降低到零,从而实现无频差的频率跟踪和相位跟踪。

而且锁相环电路还具有科研不用电感线圈、易于集成化、*能优越等许多有点,因此广泛用于通信、雷达、制导、*、仪表和电机都方面。

图1是一个锁相环的构成框图,pll电路基本上由下述三大部分组成:鉴相器(phasedetector或phaseparator)鉴相器用于检测两个输入信号的相位差;环路滤波器(loopfilter)是将鉴相器输出含有纹波的电流信号平均化,将此变换为交流成分少的直流信号的低通滤波器。

环路滤波器除滤除纹波功能外,还有一种重要作用,即决定稳定进行pll 环路控制的传输特*;压控振荡器(voltagecontrolledosillator)就是用输入直流信号控制振荡频率,他是一种可变频率振荡器。

随着电子技术的发展,要求信号的频率越来越稳定,一般的振荡器已经不能满足要求,于是出现了高准确度和高稳定度的时钟振荡源。

但是高稳定度的时钟振荡源价格比较昂贵,对于成本的节约上有很大的限制。

于是利用锁相环技术产生高精度高稳定度的频率源应运而生,只需要一个成本不高的时钟源和一个高稳晶振就可以实现高精度和高稳定度的时钟频率输出,图2是一个高稳定度锁相环的框图电路。

二、电路框图本文利用的是单片机stc12c5410ad和鉴相器芯片adf4001以及一个高稳压控晶振实现锁相环电路,电路框图如图3所示。

1.器件选择单片机用普通的单片机即可,本设计使用的是stc系列单片机,也可以使用51系列的单片机;adf4001是ad公司的一款鉴相器芯片,最大输出频率可到200mhz,它内部含有一个13位、一个14位的分频器,可以对输入频率进行分频,使鉴相频率一致;高稳定度的压控晶振可以自己选择,适合自己要求的,表1是我们自己选择的恒温晶振部分指标。

[锁相环的相位噪声杂散抑制锁相时间.]锁相环的相位噪声

[锁相环的相位噪声杂散抑制锁相时间.]锁相环的相位噪声

[锁相环的相位噪声杂散抑制锁相时间.]锁相环的相位噪声相位噪声对一个给定载波功率的输出而言阻抗来说,相位噪声是载波功率相对于给定的频率处及偏移处(频率合成器通常定义1kHz 频率偏移)1-Hz 的带宽上的功率,单位为dBc/Hz@offset frequency。

锁相环频率合成器的带内相位主要取决于频率合成器,VCO 的贡献很小。

相位噪声的需用测量需要有频谱分析仪。

注意一点,普通频谱分析仪读出的数据需要需要考虑分辨辨认带宽的影响。

即,频谱分析仪的读数减掉10log (RBW )才是正确的相位噪声数值。

高端的频谱分析仪可以直接给出单边带相位噪声。

相位噪声是信号在频域的度量。

在时域,与之相关联的是时钟抖动(jitter ),它是相位噪声在时间域里的印证,大的时钟抖动在高速ADC 应用中会严重恶化采样数据的应用信号强度,尤其是当ADC 模拟前端信号的频率很低时,无一不是要求低抖动的时钟。

图1形象地描述了时钟抖动。

图表 1 相位噪声和时钟眩晕计时器抖动可以通过相位谐波噪声积分得到,具体实现如下如下:计算从给定的起始频率偏移处到结束频率(往往定义为两倍输出频率)偏移处的相位噪声和A ,单位为dBc ;对A 进行取对数操作;求相位抖动均方值(rms phase jitter),单位为弧度;将弧度值转换成时间直属单位,秒或者皮秒。

图表 2. 时钟抖动与相位噪声和白噪声之间的关系参考杂散锁相环中最常见的杂散信号就是参考杂散。

这些杂散信号会由于电荷泵源电流与汇电流的失配,电荷泵漏电流,以及电源退耦缺乏而增大。

在接收机设计中,杂散信号与其他干扰信号相混频有可能产生有用信号频率从而降低接收机的灵敏度。

锁相环处于锁定状态时,电荷泵须要周期性的(频率相等于鉴相频率)产生交替变换(正负)脉冲电流给环路滤波器。

功率环路滤波器对其进行积分产生稳定的控制电压。

图表 3 环路锁定时,PLL 电荷泵电流输出波形当鉴相频率较低之时,由电荷泵的漏电流引起的杂散占主要地位。

锁相环频率合成器相位噪声改善方法分析

锁相环频率合成器相位噪声改善方法分析

锁相环频率合成器相位噪声改善方法分析在众多电子设备中,如:雷达探测、检测仪器、通信等,锁相环频率合成器作为接收机的核心部件,其的性能直接影响着电子设备的整体性能,尤其是相位噪声,直接关系着频率稳定性,影响着电子设备的精确度。

对此,积极改善相位噪声,提高锁相环频率合成器的稳定性,满足人们对电子技术的高质量需求,具有重要意義。

文章对相位噪声的改善方式展开探析。

标签:锁相环;频率合成器;相位噪声;改善方式1 锁相环频率合成器的简单概述当前,频率合成器的常见实现方式主要包含三种:直接模拟(DAS)、锁相环频率合成(PLL)以及直接数字频率合成(DDS)。

频率合成器主要以高精准的晶体振荡器为基准,利用合成技术,产生一系列拥有一定的频率间隔且高清度的频率源,因此,频率合成器又被分为直接合成器与锁相环合成器[1]。

2 锁相环频率合成器的结构与相位噪声在三种频率合成方式中,PLL相比于DAS、DDS,杂散抑制更高,频谱更纯净。

与DDS相比,PLL的频段更加宽泛;相比于DAS,PLL的结构更加简单。

因为种种优势,在我国通信、雷达、仪表等电子设备中,锁相环频率合成器的应用较为广泛。

在锁相环合成器中,其主要采用PLL展开频率合成,而单环锁相环最为简单,只需要在压控振荡器、鉴相器两者间连接的锁相环反馈电路之上添加整数分频器,即可形成整数频率合成器。

分频系数变动,则压控振荡器将产生的输出信号频率相应不同,因为,该种合成器的频率为所参考信号的整数倍频率,因此,其被叫做整数频率合成器。

不过,PLL也存在一定缺陷,即相位噪声更大。

相位噪声的存在,电子设备性能受到影响,如:在通信设备中,相位噪声影响,话路信噪比因此下降,增大了误码率;在雷达设备中,相位噪声的存在,雷达对扫描目标的分辨率下降;若相位噪声进入接收机,将形成较强干扰信号,产生倒混频,增大接收机的噪声系数[2]。

基于此,在电子技术不断发展的时代,改善相位噪声,成为锁相环频率合成器不断不断研发的重点。

电荷泵锁相环系统设计及噪声分析的开题报告

电荷泵锁相环系统设计及噪声分析的开题报告

电荷泵锁相环系统设计及噪声分析的开题报告
一、选题背景
电荷泵锁相环系统是一种常用的时钟信号提取器件,具有高精度、稳定性好、抗噪性强等特点。

在现代电子电路设计中,电荷泵锁相环系统广泛应用于通信、计算机、控制等领域。

本文将对电荷泵锁相环系统的设计及噪声分析进行研究。

二、研究内容和意义
本文主要研究内容包括电荷泵锁相环系统的基本原理、设计方法、电路实现以及噪声性能分析。

具有以下意义:
1. 揭示电荷泵锁相环系统的设计原理与技术实现方法,可以为相关领域的研究者提供参考。

2. 简要阐述电荷泵锁相环系统中常见的噪声源及其对系统性能的影响,为系统性能的提升提供一定的支持。

3. 对电荷泵锁相环系统进行噪声分析,为电路设计者提供一定的参考。

三、研究方法
通过文献综述和实验验证相结合的方法对电荷泵锁相环系统进行研究。

四、预期结果
本文预计可以研究出一种基于电荷泵锁相环系统的高精度、低噪声的时钟信号提取方案,并通过实验验证其性能表现,为该领域的研究和应用提供支持。

五、研究进度安排
1. 文献综述和理论分析:1个月。

2. 电路设计和实验验证:2个月。

3. 结果分析和论文撰写:1个月。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

和响应速度之间折衷考虑,相位裕度越大,系统越稳定,但是响应速度变慢。

这里取相位裕度为60度。

同样的,这两个环路参数是估计出来的,在实际电路中仍然需要多次考虑。

最后根据上面的两个环路参数,利用第二章第六节的公式2-22到2-24可以计算出低通滤波器的电阻和电容的值大约为:R2=12K,C2=138PF,CI=1IPF。

根据以上估算的参数可以将锁相环系统的幅频和相频特性曲线画出,如图4.2所示。

图4-2PLL的幅频与相频特性曲线
4.3锁相环系统级模型
4.3.1Matlab构造数学模型
Mauab是MathWorks公司开发的具有强大科学运算功能的数学工具,其中的软件包--Simulink是专门用于数学建模的工具。

通过建立锁相环系统的线性模型,如图4—3所示,分别建立环路中每个模块的传输函数,然后设置输入输出点。

该线性模型不仅可以分析系统的冲击响应和阶跃响应,还可以分析零极点与波特图。

冲击响应和阶越响应的模拟结果如图4-4所示,此模型可以很方便的修改参
数,仿真速度非常快,模拟结果也非常直观,对于理解二阶系统的特性非常有帮
助。

t№啦*血瞻呻目删e,ra口aap蝌m鼬rtrartim'哥缸眦h恤啪蚓of恤VCO
图4-3Matlab建立PLL的线性模型
图4—4PLL的阶跃响应与冲击响应
4.3.2VerilogA构造行为级模型
VerilogA语言是Verilog硬件描述语言的扩展,主要用来描述模拟系统的结构和行为,包括电子,机械,流体力学和热力学系统等㈣。

下面给出VerilogA描述锁相环的行为级模型,并应用Mica进行仿真。

首先,以电阻的行为级模型为例,简单的说明一下VerilogA语言的特点和应用。

、include“disciplines.”’
’include“constants.h,’
moduleres(a,b);
inouta,b;
electricala,b;
parameterrealR21.O:
analogbegin
I(a,b)<+V(a,b)/R;
//Altemative:V(a,b)<+I(a,b)4R;
第五章锁相环电路设计及模拟
第五章锁相环电路设计及模拟
5.1整体设计
本章主要是关于锁相环的晶体管级电路的设计,不但详细的分析了电路的结构,而且给出了模拟结构及相关的解释。

锁相环电路是一个混合信号电路,既有数字部分也有模拟部分。

如图5—1所示,数字部分主要是PFD与分频器,模拟部分有基准源,电荷泵和VCO。

图5-1PLL电路整体结构图
在基准源中用到了电流基准源和运算放大器,VCO的设计中考虑了两种结构的环形VCO,一种是双端差分结构的VCO,另一种是单端结构的CSA(CurrentSteeringAmplifier)型的VCO。

对比了两种结构VCO并详细分析了它们各自的优缺点。

最后给出了整个PLL环路的模拟结果,包括在不同工艺、温度以及电源电压条件下的模拟结果。

5.2基准源的设计
该模块为整个系统的所有电路提供稳定的基准电流源和电压源。

通常要求基准源与电源电压无关,更精确的基准源还需要和工艺无关,并且还需要具有确定的温度特性。

电路中所用到的运算放大器的电流偏置不需要非常精确,因此应用了简单结构的基准源;但是电荷泵电路中要求充放电流要有良好的匹配精度,所
第五章锁相环电路设计及模拟
制(dynamicsupply蝎ection);其次是利用差分结构可以很好的抑制由电源或是外界干扰引起的共模噪声;此外,replica偏值电路和buffer级的联合使用可以提供对衬底噪声的较强抑制能力,尽管buffer的尾电流源没有使用cascode结构来增加对地的输出阻抗,但是由于replica偏值电路和buffer级形成了反馈电路,对尾电流进行动态得调整,相当于增大了对的输出阻抗。

具体分析放到replica偏值的特性中。

*:*c雠symmetricloadCir-c1.iitDesi9n}料}
1S0.000
130.OB0
110.008
90,000
78.000
g:orPG.IO"t(vfl)
S0.000
319.800
suet々O
图5-23symmetric型负载的模拟结果
圈5.24差分结构VCO增益模拟结果
此外,要想维持4级buf/er的ringVCO稳定的振荡,则每一级buffer在理论上需要√2的增益,但是在实际设计中需要将每一级的增益大于这个数值.例如8倍,因为在不同的控制电压下,有不同大小的电流对节点电容充放电形成不同的频率,因而每一级buffer的增益也是一个变化的量,而且symmetric负载的等效阻抗在不同的电压下也是变化的,所以为了保证稳定的振荡,需要将增益做的。

相关文档
最新文档