2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(三十九) 利用空间向量求空间角 含解析
【通用版】2018-2019学年高中理数新创新一轮复习 课时达标检测五 函数的单调性与最值含解析
课时达标检测(五) 函数的单调性与最值[小题对点练——点点落实]对点练(一) 函数的单调性1.(2018·阜阳模拟)给定函数①y =x 12,②y =log 12(x +1),③y =|x -1|,④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④解析:选B ①y =x 12在(0,1)上递增;②∵t =x +1在(0,1)上递增,且0<12<1,故y =log 12(x +1)在(0,1)上递减;③结合图象可知y =|x -1|在(0,1)上递减;④∵u =x +1在(0,1)上递增,且2>1,故y =2x +1在(0,1)上递增.故在区间(0,1)上单调递减的函数序号是②③.2.(2018·天津模拟)若函数f (x )满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”,则f (x )的解析式可以是( )A .f (x )=(x -1)2B .f (x )=e xC .f (x )=1xD .f (x )=ln(x +1)解析:选C 根据条件知,f (x )在(0,+∞)上单调递减.对于A ,f (x )=(x -1)2在(1,+∞)上单调递增,排除A ;对于B ,f (x )=e x 在(0,+∞)上单调递增,排除B ;对于C ,f (x )=1x 在(0,+∞)上单调递减,C 正确;对于D ,f (x )=ln(x +1)在(0,+∞)上单调递增,排除D.3.(2018·宜春模拟)函数f (x )=log 3(3-4x +x 2)的单调递减区间为( ) A .(-∞,2) B .(-∞,1),(3,+∞) C .(-∞,1)D .(-∞,1),(2,+∞)解析:选C 由3-4x +x 2>0得x <1或x >3.易知函数y =3-4x +x 2的单调递减区间为(-∞,2),函数y =log 3x 在其定义域上单调递增,由复合函数的单调性知,函数f (x )的单调递减区间为(-∞,1),故选C.4.(2018·贵阳模拟)下列四个函数中,在定义域上不是单调函数的是( ) A .y =-2x +1 B .y =1x C .y =lg xD .y =x 3解析:选B y =-2x +1在定义域上为单调递减函数;y =lg x 在定义域上为单调递增函数;y =x 3在定义域上为单调递增函数;y =1x 在(-∞,0)和(0,+∞)上均为单调递减函数,但在定义域上不是单调函数.故选B.5.若函数f (x )=8x 2-2kx -7在[1,5]上为单调函数,则实数k 的取值范围是( ) A .(-∞,8]B .[40,+∞)C .(-∞,8]∪[40,+∞)D .[8,40]解析:选C 由题意知函数f (x )=8x 2-2kx -7的图象的对称轴为x =k8,因为函数f (x )=8x 2-2kx -7在[1,5]上为单调函数,所以k 8≤1或k8≥5,解得k ≤8或k ≥40,所以实数k的取值范围是(-∞,8]∪[40,+∞).故选C.6.定义运算⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,若函数f (x )=⎪⎪⎪⎪⎪⎪x -1 2-x x +3在(-∞,m )上单调递减,则实数m 的取值范围是( )A .(-2,+∞)B .[-2,+∞)C .(-∞,-2)D .(-∞,-2]解析:选D ∵⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,∴f (x )=⎪⎪⎪⎪⎪⎪⎪⎪x -1 2-x x +3=(x -1)(x +3)-2×(-x )=x 2+4x -3=(x +2)2-7,∴f (x )的单调递减区间为(-∞,-2), ∵函数f (x )在(-∞,m )上单调递减,∴(-∞,m )⊆(-∞,-2),即m ≤-2.故选D. 对点练(二) 函数的最值1.已知a >0,设函数f (x )=2 018x +1+2 0162 018x +1(x ∈[-a ,a ])的最大值为M ,最小值为N ,那么M +N =( )A .2 016B .2 018C .4 032D .4 034解析:选D 由题意得f (x )=2 018x +1+2 0162 018x +1=2 018-22 018x+1.∵y =2 018x +1在[-a ,a ]上是单调递增的,∴f (x )=2 018-22 018x +1在[-a ,a ]上是单调递增的,∴M =f (a ),N =f (-a ),∴M +N =f (a )+f (-a )=4 036-22 018a +1-22 018-a +1=4 034.2.已知函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x在区间(1,+∞)上一定( )A .有最小值B .有最大值C .是减函数D .是增函数解析:选D 由题意知a <1,又函数g (x )=x +ax -2a 在[|a |,+∞)上为增函数,故选D.3.(2018·湖南雅礼中学月考)若函数f (x )=⎩⎪⎨⎪⎧-x +6,x ≤2,3+log a x ,x >2(a >0且a ≠1)的值域是[4,+∞),则实数a 的取值范围是( )A .(1,2]B .(0,2]C .[2,+∞)D .(1,2 2 ]解析:选A 当x ≤2时,-x +6≥4.当x >2时,⎩⎪⎨⎪⎧3+log a x ≥4,a >1,∴a ∈(1,2],故选A.4.(2018·安徽合肥模拟)已知函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,则M +m =( )A .4B .2C .1D .0解析:选A 设t =x -1,则y =(x 2-2x )sin(x -1)+x +1=(t 2-1)sin t +t +2,t ∈[-2,2].记g (t )=(t 2-1)sin t +t +2,则函数y =g (t )-2=(t 2-1)sin t +t 是奇函数.由已知得y =g (t )-2的最大值为M -2,最小值为m -2,所以M -2+(m -2)=0,即M +m =4.故选A.5.已知函数f (x )=⎩⎪⎨⎪⎧x +2x -3,x ≥1,lg (x 2+1),x <1,则f (x )的最小值是________.解析:当x ≥1时,x +2x -3≥2x ·2x -3=22-3,当且仅当x =2x ,即x =2时等号成立,此时f (x )min =22-3<0;当x <1时,lg(x 2+1)≥lg(02+1)=0,此时f (x )min =0.所以f (x )的最小值为22-3.答案:22-36.(2018·益阳模拟)已知函数f (x )的值域为⎣⎡⎦⎤38,49,则函数g (x )=f (x )+1-2f (x )的值域为________.解析:∵38≤f (x )≤49,∴13≤1-2f (x )≤12.令t =1-2f (x ),则f (x )=12(1-t 2)⎝⎛⎭⎫13≤t ≤12,令y =g (x ),则y =12(1-t 2)+t ,即y =-12(t -1)2+1⎣⎡⎦⎤13≤t ≤12.∴当t =13时,y 有最小值79;当t =12时,y 有最大值78.∴g (x )的值域为⎣⎡⎦⎤79,78. 答案:⎣⎡⎦⎤79,78[大题综合练——迁移贯通]1.已知函数f (x )=ax +1a (1-x )(a >0),且f (x )在[0,1]上的最小值为g (a ),求g (a )的最大值.解:f (x )=⎝⎛⎭⎫a -1a x +1a ,当a >1时,a -1a >0,此时f (x )在[0,1]上为增函数,∴g (a )=f (0)=1a ;当0<a <1时,a -1a<0,此时f (x )在[0,1]上为减函数,∴g (a )=f (1)=a ;当a =1时,f (x )=1,此时g (a )=1.∴g (a )=⎩⎪⎨⎪⎧a ,0<a <1,1a ,a ≥1,∴g (a )在(0,1)上为增函数,在[1,+∞)上为减函数,又a =1时,有a =1a=1,∴当a =1时,g (a )取最大值1.2.(2018·衡阳联考)已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值.解:(1)证明:设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2)=f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2).又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),∴f (x )在R 上为减函数.(2)∵f (x )在R 上是减函数,∴f (x )在[-3,3]上也是减函数,∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3).而f (3)=3f (1)=-2,且f (0)+f (0)=f (0),∴f (0)=0,又f (-3)+f (3)=f(-3+3)=0,∴f(-3)=-f(3)=2.∴f(x)在[-3,3]上的最大值为2,最小值为-2.3.已知f(x)=xx-a(x≠a).(1)若a=-2,试证明f(x)在(-∞,-2)内单调递增;(2)若a>0且f(x)在(1,+∞)上单调递减,求a的取值范围.解:(1)证明:任设x1<x2<-2,则f(x1)-f(x2)=x1x1+2-x2x2+2=2(x1-x2)(x1+2)(x2+2).∵(x1+2)(x2+2)>0,x1-x2<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)在(-∞,-2)上单调递增.(2)任设1<x1<x2,则f(x1)-f(x2)=x1x1-a-x2x2-a=a(x2-x1)(x1-a)(x2-a).∵a>0,x2-x1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0在(1,+∞)上恒成立,∴a≤1.综上所述知a的取值范围是(0,1].。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测 三角函数的图象与性质 Word版含解析
课时达标检测(二十) 三角函数的图象与性质[小题对点练——点点落实]对点练(一) 三角函数的定义域和值域) (是的值a -b ,则]b ,a [,值域为⎣⎢⎡⎦⎥⎤π3,π的定义域为x 2cos =y 已知函数)考安徽联·(2018.1 A .2 B .3 2+3C.3-2.D -b ,所以2,1]-[的值域为x 2cos =y ,所以函数⎣⎢⎡⎦⎥⎤π3,π的定义域为x 2cos =y 因为函数 B 选解析:a =1-(-2)=3,故选B.)(为的最大值与最小值分别x 2sin -x 2cos =y .函数2 A .3,-1 B .3,-2 C .2,-1D .2,-2 =y ,1,1]-[∈t ,则x sin =t ,令1+x 2sin -x 2sin -=x 2sin -x 2sin -1=x 2sin -x 2cos =y D 选解析: 2.-,最小值为2为,所以最大值2+21)+t (-=1+t 2-2t - )(为的值ab ,则[5,8]的值域是)x (f 时,函数]π,0[∈x ,若b +⎝ ⎛⎭⎪⎫2cos2x 2+sin x a =)x (f .已知函数3 224-42或51-215.A 15-215.B 224-42.C 224+42或51+215.D .b +a +⎝⎛⎭⎪⎫x +π4sin a 2=b +)x sin +x cos +1(a =)x (f A 选解析: ,5π4≤π4+x ≤π4∴,π≤x ≤0∵ 0.≠a ,依题意知1≤⎝⎛⎭⎪⎫x +π4sin ≤22-∴ 5.=b ,3-23=a ∴⎩⎨⎧ 2a +a +b =8,b =5,时,0>a 当① 8.=b ,23-3=a ∴⎩⎨⎧2a +a +b =5,b =8,时,0<a 当② 8.=b ,23-3=a 或5=b ,3-23=a 综上所述, .224-42或51-215=ab 所以)(1]如例⎩⎪⎨⎪⎧a ,a≤b,b ,a>b.=b *a 定义运算:)考湖南衡阳八中月·(2018.4 ⎣⎢⎡⎦⎥⎤-22,22A. 1,1]-[.B ⎣⎢⎡⎦⎥⎤22,1C. ⎣⎢⎡⎦⎥⎤-1,22D. 解析:选D 根据三角函数的周期性,我们只看两函数在一个最小正周期内的情况即可.设x ∈[0,2π],,x >sin x cos ,时π2≤x <5π4或π4<x ≤0当,⎣⎢⎡⎦⎥⎤-1,22∈)x (f ,x cos =)x (f ,x cos ≥x sin ,时5π4≤x ≤π4当.⎣⎢⎡⎦⎥⎤-1,22的值域为)x (f 综上知.]1,0-[∪⎣⎢⎡⎭⎪⎫0,22∈)x (f ,x sin =)x (f ________________.=x ,此时________为的最大值⎝⎛⎭⎪⎫x +π42cos -3=y .函数5 .)Z ∈k (πk 2+3π4=x ,即πk 2+π=π4+x ,此时5=2+3为的最大值⎝⎛⎭⎪⎫x +π42cos -3=y 函数解析: )Z ∈k (πk 2+3π45答案: 对点练(二) 三角函数的性质) (为的单调递增区间⎝ ⎛⎭⎪⎫π3-2x 2sin =y )考安徽六安一中月·(2018.1 )Z ∈k (⎣⎢⎡⎦⎥⎤kπ-π12,kπ+5π12A. )Z ∈k (⎣⎢⎡⎦⎥⎤kπ+5π12,kπ+11π12B. )Z ∈k (⎣⎢⎡⎦⎥⎤kπ-π3,kπ+π6C. )Z ∈k (⎣⎢⎡⎦⎥⎤kπ+π6,kπ+2π3D. 5π12+πk ,即)Z ∈k (3π2+πk 2≤π3-x 2≤π2+πk 2∴,⎝⎛⎭⎪⎫2x -π32sin -=y 函数可化为∵ B 选解析:.)Z ∈k (11π12+πk ≤x ≤ 2.(2018·云南检测)下列函数中,存在最小正周期的是( )A .y =sin|x |B .y =cos|x | |x tan|=y .C01)+2x (=y .D =T ,最小正周期x cos =|x cos|=y :B ;不是周期函数⎩⎪⎨⎪⎧sin x ,x≥0,-sin x ,x<0,=|x sin|=y :A B 选解析:,无最小正周期.1=01)+2x (=y :D ;不是周期函数⎩⎪⎨⎪⎧tan x ,x≥0,-tan x ,x<0,=|x tan|=y :C ;π2 π12=x 的图象关于直线)<14ω(1<⎝⎛⎭⎪⎫ωx-π43cos =)x (f 若函数)模辽宁抚顺一·(2018.3对称,则ω=( )A .2B .3C .6D .9 ,即Z ∈k ,πk =π4-ωπ12∴对称,π12=x 的图象关于直线)<14ω(1<⎝⎛⎭⎪⎫ωx-π43cos =)x (f ∵ B 选解析:ω=12k +3,k ∈Z .∵1<ω<14,∴ω=3.故选B.)(=⎝ ⎛⎭⎪⎫π6f ,则)x -(f =⎝ ⎛⎭⎪⎫π3+x f 都有x 对任意)φ+x ω2sin(=)x (f 若函数)考福建六校联·(2018.4 A .2或0 B .0 C .-2或0D .-2或2 ,可知函数图象的一条对称轴为)x -(f =⎝ ⎛⎭⎪⎫π3+x f 都有x 对任意)φ+x ω2sin(=)x (f 由函数 D 选解析:-或2=⎝ ⎛⎭⎪⎫π6f ∴时,函数取得最大值或者最小值.π6=x 根据三角函数的性质可知,当.π6=π3×12=x 直线 2.故选D.⎝ ⎛⎭⎪⎫π4+x f,都有x 对任意实数②是偶函数;)x (f ①同时具有以下两个性质:)x (f .若函数5)(是的解析式可以)x (f 则.⎝ ⎛⎭⎪⎫π4-x f = xcos =)x (f .A ⎝⎛⎭⎪⎫2x +π2cos =)x (f .B ⎝⎛⎭⎪⎫4x +π2sin =)x (f .Cx cos 6=)x (f .D 是偶函x cos =)x (f ∵对称,π4=x 数,且它的图象关于直线是偶函)x (f 由题意可得,函数 C 选解析:sin -=⎝⎛⎭⎪⎫2x +π2cos =)x (f 函数∵A.除对称,故排π4=x ,不是最值,故不满足图象关于直线22=⎝ ⎛⎭⎪⎫π4f 数,,是最小值,1-=⎝ ⎛⎭⎪⎫π4f 是偶函数,x cos 4=⎝⎛⎭⎪⎫4x +π2sin =)x (f 函数∵B.除是奇函数,不满足条件,故排x 2,不是最值,故0=⎝ ⎛⎭⎪⎫π4f 是偶函数.x cos 6=)x (f 函数∵满足条件.C 故对称,π4=x 故满足图象关于直线 D.除对称,故排π4=x 不满足图象关于直线∈x 对一切⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6≤)x (f 若.0≠ab ,R ∈b ,a ,其中x cos 2b +x sin 2a =)x (f 已知)考洛阳统·(2018.6) (是的单调递增区间)x (f ,则0>⎝ ⎛⎭⎪⎫π2f 恒成立,且R ) Z ∈k (⎣⎢⎡⎦⎥⎤kπ-π3,kπ+π6A. )Z ∈k (⎣⎢⎡⎦⎥⎤kπ+π6,kπ+2π3B. )Z ∈k (⎣⎢⎡⎦⎥⎤kπ,kπ+π2C. )Z ∈k (⎣⎢⎡⎦⎥⎤kπ-π2,kπD. 是π6=x ∴,⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6≤)x (f ∵.b a =φtan 中,其)φ+x sin(2a2+b2=x cos 2b +x sin 2a =)x (f B 选解析:的取值可以φ∴,0>⎝ ⎛⎭⎪⎫π2f .又)Z ∈k (πk +π6=φ,)Z ∈k (πk +π2=φ+π3的图象的一条对称轴,即)x (f 函数k (2π3+πk ≤x ≤π6+πk 得)Z ∈k (π2+πk 2≤5π6-x 2≤π2-πk 2由,⎝⎛⎭⎪⎫2x -5π6sin a2+b2=)x (f ∴,5π6是-∈Z ),故选B.⎝ ⎛⎭⎪⎫π2,0的图象关于)π<θ)(0<θ+x cos(2+)θ+x sin(23=)x (f 若函数)检河北石家庄一·(2018.7) (是上的最小值⎣⎢⎡⎦⎥⎤-π4,π6在)x (f 对称,则函数 1-.A 3.-B 12.-C 32.-D =⎝ ⎛⎭⎪⎫π2f ,则由题意,知⎣⎢⎡⎦⎥⎤2x +θ+π62sin =)θ+x cos(2+)θ+x sin(23=)x (f B 选解析:上是减函数,所以⎣⎢⎡⎦⎥⎤-π4,π4在)x (f ,x 2sin 2-=)x (f ,所以5π6=θ,所以π<θ0<又,0=⎝ ⎛⎭⎪⎫π+θ+π62sin B.选,故3=-π32sin -=⎝ ⎛⎭⎪⎫π6f 上的最小值为⎣⎢⎡⎦⎥⎤-π4,π6在)x (f 函数[大题综合练——迁移贯通].⎝ ⎛⎭⎪⎫x +π222sin +⎝⎛⎭⎪⎫2x -π3cos =)x (f 设函数)模湖南岳阳二·(2017.1 (1)求f (x )的最小正周期和对称轴方程;的值域.)x (f 时,求⎣⎢⎡⎦⎥⎤-π3,π4∈x 当)(2)π+x cos(2-1+x sin 232+x cos 212=)x (f (1)解: ,1+⎝⎛⎭⎪⎫2x +π3sin 3=1+x sin 232+x cos 232= 所以f (x )的最小正周期T =π. ,Z ∈k ,π2+πk =π3+x 2由 .Z ∈k ,π12+kπ2=x 得对称轴方程为 ,5π6≤π3+x 2≤π3,所以-π4≤x ≤π3因为-)(2 .⎣⎢⎡⎦⎥⎤-12,3+1的值域为)x (f 所以 1.-x 2 cos +2)x cos +x (sin =)x (f 已知函数)拟北京怀柔区模·(2018.2 (1)求函数f (x )的最小正周期;上的最大值和最小值.⎣⎢⎡⎦⎥⎤-π4,π4在区间)x (f 求函数)(2 ,⎝⎛⎭⎪⎫2x +π4sin 2=x cos2+x sin 2=x cos2+x cos x 2sin =1-x cos 2+2)x cos +x (sin =)x (f ∵(1)解: .π=2π2=T 的最小正周期)x (f 函数∴ .⎝⎛⎭⎪⎫2x +π4sin 2=)x (f 可知,)(1由)(2 ,⎣⎢⎡⎦⎥⎤-π4,3π4∈π4+x 2∴,⎣⎢⎡⎦⎥⎤-π4,π4∈x ∵ 1.-,2上的最大值和最小值分别为⎣⎢⎡⎦⎥⎤-π4,π4在区间)x (f 故函数.⎣⎢⎡⎦⎥⎤-22,1∈⎝⎛⎭⎪⎫2x +π4sin ∴ .)R ∈x (x cos 23-x cos x 2sin =)x (f 已知函数)模辽宁葫芦岛普通高中二·(2017.3 的值;αcos 2求,⎝ ⎛⎭⎪⎫5π12,2π3∈α且12=)α(f 若)(1 的最小值.a 上单调递增,求实数)b <a (]πb ,πa [在)x (f ,且函数b 上的最大值为⎣⎢⎡⎦⎥⎤π4,π2在)x (f 记函数)(2 .⎝⎛⎭⎪⎫2x -π32sin =x cos 23-x sin 2=)x (f (1)解: .14=⎝⎛⎭⎪⎫2α-π3sin ∴,12=)α(f ∵ ,⎝ ⎛⎭⎪⎫5π12,2π3∈α∵,⎝ ⎛⎭⎪⎫π2,π∈π3-α2∴ .154=-⎝⎛⎭⎪⎫2α-π3cos ∴ 32×14-12×154=-⎝⎛⎭⎪⎫2α-π3+π3cos =α2 cos ∴ .3+158=-∈k ,πk 2+π2≤π3-x 2≤πk 2+π2由-.2=b ∴,[1,2]∈)x (f ,⎣⎢⎡⎦⎥⎤π6,2π3∈π3-x 2,时⎣⎢⎡⎦⎥⎤π4,π2∈x 当)(2Z ,.Z ∈k ,πk +5π12≤x ≤πk +π12得- 又∵函数f (x )在[a π,2π](a <2)上单调递增,,⎣⎢⎡⎦⎥⎤-π12+2π,5π12+2π⊆]π2,πa [∴ ,π2<πa ≤π2+π12-∴ .2312的最小值是a 实数∴,2<a ≤2312∴。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测 直线与圆锥曲线 Word版含解析
课时达标检测(四十七) 直线与圆锥曲线[小题常考题点——准解快解]1.直线y =b a x +3与双曲线x 2a 2-y 2b 2=1的交点个数是( )A .1B .2C .1或2D .0解析:选A 因为直线y =b a x +3与双曲线的渐近线y =ba x 平行,所以它与双曲线只有1个交点.2.已知直线y =22(x -1)与抛物线C :y 2=4x 交于A ,B 两点,点M (-1,m ),若MA ―→MA ―→·MB ―→=0,则m =( )A. 2B.22C.12D .0解析:选B 由⎩⎨⎧y =22(x -1),y 2=4x ,得A (2,22),B ⎝⎛⎭⎫12,-2,又∵M (-1,m )且MA ―→·MB ―→=0,∴2m 2-22m +1=0,解得m =22. 3.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2 B.455 C.4105D.8105解析:选C 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 24+y 2=1,y =x +t消去y ,得5x 2+8tx +4(t 2-1)=0.则x 1+x 2=-85t ,x 1x 2=4(t 2-1)5.∴|AB |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=2· ⎝⎛⎭⎫-85t 2-4×4(t 2-1)5=425·5-t 2,故当t =0时,|AB |max =4105. 4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)上的一点到双曲线的左、右焦点的距离之差为4,若抛物线y =ax 2上的两点A (x 1,y 1),B (x 2,y 2)关于直线y =x +m 对称,且x 1x 2=-12,则m的值为( )A.32B.52 C .2D .3解析:选A 由双曲线的定义知2a =4,得a =2,所以抛物线的方程为y =2x 2.因为点A (x 1,y 1),B (x 2,y 2)在抛物线y =2x 2上,所以y 1=2x 21,y 2=2x 22,两式相减得y 1-y 2=2(x 1-x 2)(x 1+x 2),不妨设x 1<x 2,又A ,B 关于直线y =x +m 对称,所以y 1-y 2x 1-x 2=-1,故x 1+x 2=-12,而x 1x 2=-12,解得x 1=-1,x 2=12,设A (x 1,y 1),B (x 2,y 2)的中点为M (x 0,y 0),则x 0=x 1+x 22=-14,y 0=y 1+y 22=2x 21+2x 222=54,因为中点M 在直线y =x +m 上,所以54=-14+m ,解得m =32. 5.已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦AB 的长为________.解析:直线l 的方程为y =3x +1,由⎩⎨⎧y =3x +1,x 2=4y ,得y 2-14y +1=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=14,∴|AB |=y 1+y 2+p =14+2=16.答案:166.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与抛物线y =x 2+1只有一个公共点,则双曲线的离心率为________.解析:双曲线x 2a 2-y 2b2=1的一条渐近线为y =ba x ,由方程组⎩⎪⎨⎪⎧y =b a x ,y =x 2+1,消去y ,得x 2-b a x +1=0有唯一解,所以Δ=⎝⎛⎭⎫b a 2-4=0,b a =2,所以e =c a =a 2+b 2a = 1+⎝⎛⎭⎫b a 2= 5.答案: 57.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA ―→·MB ―→=0,则k =________.解析:如图所示,设F 为焦点,易知F (2,0),取AB 的中点P ,过A ,B 分别作准线的垂线,垂足分别为G ,H ,连接MF ,MP ,由MA ―→·MB ―→=0,知MA ⊥MB ,则|MP |=12|AB |=12(|AF |+|BF |)=12(|AG |+|BH |),所以MP 为直角梯形BHGA 的中位线,所以MP ∥AG ∥BH ,由|MP |=|AP |,得∠GAM =∠AMP =∠MAP ,又|AG |=|AF |,AM 为公共边,所以△AMG ≌△AMF ,所以∠AFM =∠AGM =90°,则MF ⊥AB ,所以k =-1k MF=2.答案:2[大题常考题点——稳解全解]1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点分别为F 1(-2,0),F 2(2,0),离心率为63.过点F 2的直线l (斜率不为0)与椭圆C 交于A ,B 两点,线段AB 的中点为D ,O 为坐标原点,直线OD 交椭圆于M ,N 两点.(1)求椭圆C 的方程;(2)当四边形MF 1NF 2为矩形时,求直线l 的方程. 解:(1)由题意可知⎩⎪⎨⎪⎧c =2,c a =63,a 2=b 2+c 2,解得a =6,b = 2.故椭圆C 的方程为x 26+y 22=1.(2)由题意可知直线l 的斜率存在.设其方程为y =k (x -2),点A (x 1,y 1),B (x 2,y 2),M (x 3,y 3),N (-x 3,-y 3),由⎩⎪⎨⎪⎧x 26+y 22=1,y =k (x -2)得(1+3k 2)x 2-12k 2x +12k 2-6=0,所以x 1+x 2=12k 21+3k 2,则y 1+y 2=k (x 1+x 2-4)=-4k 1+3k 2,所以AB 的中点D 的坐标为⎝ ⎛⎭⎪⎫6k 21+3k 2,-2k 1+3k 2,因此直线OD 的方程为x +3ky =0(k ≠0).由⎩⎪⎨⎪⎧x +3ky =0,x 26+y 22=1解得y 23=21+3k 2,x 3=-3ky 3.因为四边形MF 1NF 2为矩形,所以F 2M ―→·F 2N ―→=0,即(x 3-2,y 3)·(-x 3-2,-y 3)=0,所以4-x 23-y 23=0.所以4-2(9k 2+1)1+3k2=0.解得k =±33.故直线l 的方程为3x -3y -23=0或3x +3y -23=0.2.已知中心在原点,焦点在x 轴上的椭圆C 的离心率为12,其一个顶点是抛物线x 2=-43y 的焦点.(1)求椭圆C 的标准方程;(2)若过点P (2,1)的直线l 与椭圆C 在第一象限相切于点M ,求直线l 的方程和点M 的坐标.解:(1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),由题意得b =3,c a =12,解得a =2,c =1.故椭圆C 的标准方程为x 24+y 23=1.(2)因为过点P (2,1)的直线l 与椭圆C 在第一象限相切,所以直线l 的斜率存在,故可设直线l 的方程为y =k (x -2)+1(k ≠0).由⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x -2)+1,得(3+4k 2)x 2-8k (2k -1)x +16k 2-16k -8=0.① 因为直线l 与椭圆C 相切,所以Δ=[-8k (2k -1)]2-4(3+4k 2)(16k 2-16k -8)=0, 整理,得96(2k +1)=0,解得k =-12.所以直线l 的方程为y =-12(x -2)+1=-12x +2.将k =-12代入①式,可以解得M 点的横坐标为1,故切点M 的坐标为⎝⎛⎭⎫1,32. 3.已知过点(2,0)的直线l 1交抛物线C :y 2=2px (p >0)于A ,B 两点,直线l 2:x =-2交x 轴于点Q .(1)设直线QA ,QB 的斜率分别为k 1,k 2,求k 1+k 2的值;(2)点P 为抛物线C 上异于A ,B 的任意一点,直线PA ,PB 交直线l 2于M ,N 两点,OM ―→·ON ―→=2,求抛物线C 的方程.解:(1)设直线l 1的方程为x =my +2,点A (x 1,y 1),B (x 2,y 2).联立方程⎩⎪⎨⎪⎧x =my +2,y 2=2px ,得y 2-2pmy -4p =0,则y 1+y 2=2pm ,y 1y 2=-4p . k 1+k 2=y 1x 1+2+y 2x 2+2=y 1my 1+4+y 2my 2+4=2my 1y 2+4(y 1+y 2)(my 1+4)(my 2+4)=-8mp +8mp(my 1+4)(my 2+4)=0.(2)设点P (x 0,y 0),直线PA :y -y 1=y 1-y 0x 1-x 0(x -x 1),当x =-2时,y M =-4p +y 1y 0y 1+y 0,同理y N =-4p +y 2y 0y 2+y 0.因为OM ―→·ON ―→=2,所以4+y N y M =2,即-4p +y 2y 0y 2+y 0·-4p +y 1y 0y 1+y 0=16p 2-4py 0(y 2+y 1)+y 20y 1y 2y 2y 1+y 0(y 2+y 1)+y 20=16p 2-8p 2my 0-4py 20-4p +2pmy 0+y 20=-4p (-4p +2pmy 0+y 20)-4p +2pmy 0+y 20=-2,故p =12,所以抛物线C 的方程为y 2=x .4.如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c,0),F 2(c,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程. 解:(1)由题设知⎩⎪⎨⎪⎧b =3,c a =12,b 2=a 2-c 2,解得⎩⎪⎨⎪⎧a =2,b =3,c =1,∴椭圆的方程为x 24+y 23=1.(2)由题设,以F 1F 2为直径的圆的方程为x 2+y 2=1, ∴圆心到直线l 的距离d =2|m |5.由d <1得|m |<52.(*) ∴|CD |=21-d 2=21-45m 2=255-4m 2. 设A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y =-12x +m ,x 24+y23=1,得x 2-mx +m 2-3=0,由根与系数的关系可得x 1+x 2=m ,x 1x 2=m 2-3. ∴|AB |= ⎣⎡⎦⎤1+⎝⎛⎭⎫-122[m 2-4(m 2-3)] =1524-m 2. 由|AB ||CD |=534得 4-m 25-4m 2=1,解得m =±33,均满足(*).12x+33或y=-12x-33.∴直线l的方程为y=-。
2018-2019学年高中新创新一轮复习理数通用版:第六章 数列 含解析-
第六章⎪⎪⎪数 列第一节 数列的概念与简单表示本节主要包括2个知识点: 1.数列的通项公式;2.数列的性质.突破点(一) 数列的通项公式[基本知识]1.数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第一项(通常也叫做首项).2.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.3.数列的递推公式如果已知数列{a n }的第一项(或前几项),且任何一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,即a n =f (a n -1)(或a n =f (a n -1,a n -2)等),那么这个式子叫做数列{a n }的递推公式.4.S n 与a n 的关系已知数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,这个关系式对任意数列均成立.[基本能力]1.判断题(1)所有数列的第n 项都能使用公式表达.( )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( ) (3)若已知数列{a n }的递推公式为a n +1=12a n -1,且a 2=1,则可以写出数列{a n }的任何一项.( ) (4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( ) 答案:(1)× (2)√ (3)√ (4)× 2.填空题(1)已知数列{a n }的前4项为1,3,7,15,则数列{a n }的一个通项公式为________. 答案:a n =2n -1(n ∈N *)(2)已知数列{a n }中,a 1=1,a n +1=a n2a n +3,则a 2=________. 答案:15(3)已知S n 是数列{a n }的前n 项和,且S n =n 2+1,则数列{a n }的通项公式是________________.答案:a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2[全析考法]利用数列的前几项求通项看看哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号间的关系.[例1] (1)(2018·江西鹰潭一中期中)数列1,-4,9,-16,25,…的一个通项公式是( ) A .a n =n 2 B .a n =(-1)n n 2 C .a n =(-1)n +1n 2D .a n =(-1)n (n +1)2(2)(2018·山西太原五中调考)把1,3,6,10,15,…,这些数叫做三角形数,这是因为这些数目的圆点可以排成一个正三角形(如图所示).则第7个三角形数是( ) A .27 B .28 C .29D .30[解析] (1)法一:该数列中第n 项的绝对值是n 2,正负交替的符号是(-1)n +1,故选C. 法二:将n =2代入各选项,排除A ,B ,D ,故选C.(2)观察三角形数的增长规律,可以发现每一项比它的前一项多的点数正好是该项的序号,即a n =a n -1+n (n ≥2).所以根据这个规律计算可知,第7个三角形数是a 7=a 6+7=a 5+6+7=15+6+7=28.故选B.[答案] (1)C (2)B[方法技巧]由数列的前几项求通项公式的思路方法(1)分式形式的数列,分别求分子、分母的通项,较复杂的还要考虑分子、分母的关系. (2)若第n 项和第n +1项正负交错,那么符号用(-1)n 或(-1)n+1或(-1)n-1来调控.(3)对于较复杂数列的通项公式,其项与序号之间的关系不容易发现,这就需要将数列各项的结构形式加以变形,可使用添项、通分、分割等方法,将数列的各项分解成若干个常见数列对应项的“和”“差”“积”“商”后再进行归纳.[提醒] 根据数列的前几项写出数列的一个通项公式利用了不完全归纳法,其蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验.利用a n 与S n 的关系求通项数列{a n }的前n 项和S n 与通项a n 的关系为a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2,通过纽带:a n =S n -S n -1(n ≥2),根据题目已知条件,消掉a n 或S n ,再利用特殊形式(累乘或累加)或通过构造成等差数列或者等比数列求解.[例2] 已知数列{a n }的前n 项和为S n . (1)若S n =(-1)n +1·n ,求a 5+a 6及a n ;(2)若S n =3n +2n +1,求a n .[解] (1)a 5+a 6=S 6-S 4=(-6)-(-4)=-2, 当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1) =(-1)n +1·[n +(n -1)] =(-1)n +1·(2n -1),又a 1也适合此式,所以a n =(-1)n +1·(2n -1). (2)因为当n =1时,a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2,由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2.[方法技巧]已知S n 求a n 的三个步骤(1)先利用a 1=S 1求出a 1.(2)用n -1替换S n 中的n 得到一个新的关系,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式. (3)对n =1时的结果进行检验,看是否符合n ≥2时a n 的表达式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n =1与n ≥2两段来写.利用递推关系求通项[例3] (1)在数列{a n }中,1n +1n n (2)在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),求数列{a n }的通项公式. (3)在数列{a n }中a 1=1,a n +1=3a n +2,求数列{a n }的通项公式. (4)已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.[解] (1)因为a n +1-a n =3n +2, 所以a n -a n -1=3n -1(n ≥2),所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=n (3n +1)2(n ≥2).当n =1时,a 1=2=12×(3×1+1),符合上式,所以a n =32n 2+n 2.(2)因为a n =n -1n a n -1(n ≥2), 所以a n -1=n -2n -1a n -2,…,a 2=12a 1.由累乘法可得a n =a 1·12·23·…·n -1n =a 1n =1n (n ≥2).又a 1=1符合上式,∴a n =1n .(3)因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3.又a 1+1=2,所以a n +1=2·3n -1,所以a n =2·3n -1-1.(4)∵a n +1=2a na n +2,a 1=1,∴a n ≠0, ∴1a n +1=1a n +12,即1a n +1-1a n =12,又a 1=1,则1a 1=1,∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.∴1a n =1a 1+(n -1)×12=n 2+12, ∴a n =2n +1(n ∈N *).[方法技巧] 典型的递推数列及处理方法[全练题点]1.[考点一](2018·湖南衡阳二十六中期中)在数列1,1,2,3,5,8,x,21,34,55,…中,x 的值为( ) A .11 B .12 C .13D .14解析:选C 观察所给数列的项,发现从第3项起,每一项都是与它相邻的前两项的和,所以x =5+8=13,故选C.2.[考点一]数列1,-58,715,-924,…的一个通项公式是( )A .a n =(-1)n +12n -1n 2+n(n ∈N *) B .a n =(-1)n-12n +1n 3+3n (n ∈N *) C .a n =(-1)n +12n -1n 2+2n (n ∈N *) D .a n =(-1)n-12n +1n 2+2n(n ∈N *) 解析:选D 所给数列各项可写成:31×3,-52×4,73×5,-94×6,…,通过对比各选项,可知选D.3.[考点二](2018·黑龙江双鸭山一中期末)已知数列{a n }的前n 项和为S n ,若S n =2a n -4,n ∈N *,则a n =( ) A .2n +1B .2nC .2n -1D .2n -2解析:选A 因为S n =2a n -4,所以n ≥2时,有S n -1=2a n -1-4, 两式相减可得S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1,整理得a n =2a n -1,即a na n -1=2(n ≥2).因为S 1=a 1=2a 1-4,所以a 1=4,所以a n =2n +1.4.[考点三](2018·山东潍坊期中)在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln nD .1+n +ln n解析:选A 法一:由已知得a n +1-a n =ln ⎝⎛⎭⎫1+1n =ln n +1n ,而a n =(a n -a n -1)+(a n -1+a n -2)+…+(a 2-a 1)+a 1,n ≥2,所以a n =ln n n -1+ln n -1n -2+…+ln 21+2=ln ⎝ ⎛⎭⎪⎫n n -1·n -1n -2·…·21+2=ln n +2,n ≥2.当n =1时,a 1=2=ln 1+2.故选A. 法二:由a n =a n -1+ln ⎝ ⎛⎭⎪⎫1+1n -1=a n -1+ln nn -1=a n -1+ln n -ln(n -1)(n ≥2),可知a n -ln n =a n -1-ln(n-1)(n ≥2).令b n =a n -ln n ,则数列{b n }是以b 1=a 1-ln 1=2为首项的常数列,故b n =2,所以2=a n -ln n ,所以a n =2+ln n .故选A.突破点(二) 数列的性质[基本知识]数列的分类*[基本能力](1)已知函数f (x )=x -1x ,设a n =f (n )(n ∈N *),则{a n }是________数列(填“递增”或“递减”). 答案:递增(2)数列{a n }的通项公式为a n =-n 2+9n ,则该数列第________项最大. 答案:4或5(3)现定义a n =5n +⎝⎛⎭⎫15n ,其中n ∈N *,则{a n }是_______数列(填“递增”或“递减”). 答案:递增(4)对于数列{a n },“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的____________条件. 答案:充分不必要[全析考法](1)的最大(小)项时,应注意数列中的项可以是相同的,故不应漏掉等号.(2)数列是自变量不连续的函数,不能对数列直接求导判断单调性.要先写出数列对应的函数,对函数进行求导,再将函数的单调性对应到数列中去.[例1] (1)已知数列{a n }的通项公式为a n =n ⎝⎛⎭⎫23n,则数列{a n }中的最大项为( ) A.89 B .23C.6481D .125243(2)已知数列{a n }的通项公式为a n =2n 2+tn +1,若{a n }是单调递增数列,则实数t 的取值范围是( ) A .(-6,+∞) B .(-∞,-6) C .(-∞,-3)D .()-3,+∞[解析] (1)法一(作差比较法):a n +1-a n =(n +1)⎝⎛⎭⎫23n +1-n ⎝⎛⎭⎫23n =2-n 3·⎝⎛⎭⎫23n ,当n <2时,a n +1-a n >0,即a n +1>a n ; 当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×⎝⎛⎭⎫232=89.故选A. 法二(作商比较法): a n +1a n =(n +1)⎝⎛⎭⎫23n +1n ⎝⎛⎭⎫23n=23⎝⎛⎭⎫1+1n , 令a n +1a n>1,解得n <2;令a n +1a n=1,解得n =2;令a n +1a n<1,解得n >2.又a n >0,故a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{a n }中的最大项为a 2或a 3,且a 2=a 3=2×⎝⎛⎭⎫232=89.故选A. (2)法一:因为{a n }是单调递增数列, 所以对于任意的n ∈N *,都有a n +1>a n , 即2(n +1)2+t (n +1)+1>2n 2+tn +1, 化简得t >-4n -2,所以t >-4n -2对于任意的n ∈N *都成立, 因为-4n -2≤-6,所以t >-6.故选A.法二:设f (n )=2n 2+tn +1,其图象的对称轴为n =-t 4,要使{a n }是递增数列,则-t 4<1+22,即t >-6.故选A.[答案] (1)A (2)A [方法技巧]1.判断数列单调性的两种方法 (1)作差比较法a n +1-a n >0⇔数列{a n }是单调递增数列;a n +1-a n <0⇔数列{a n }是单调递减数列;a n +1-a n =0⇔数列{a n }是常数列.(2)作商比较法2.(1)利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)找到数列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到数列的最小项.数列的周期性n 项观察规律.确定出数列的一个周期,然后再解决相应的问题.[例2] (1)(2018·黄冈质检)已知数列{x n }满足x n +2=|x n +1-x n |(n ∈N *),若x 1=1,x 2=a (a ≤1,a ≠0),且x n+3=x n 对于任意的正整数n 均成立,则数列{x n }的前2 017项和S 2 017=( ) A .672 B .673 C .1 342D .1 345(2)(2018·广东四校联考)数列{a n }满足a 1=2,a n +1=11-a n(n ∈N *),则a 2 018=( ) A .-2 B .-1 C .2D .12[解析] (1)∵x 1=1,x 2=a (a ≤1,a ≠0),∴x 3=|x 2-x 1|=|a -1|=1-a ,∴x 1+x 2+x 3=1+a +(1-a )=2,又x n +3=x n 对于任意的正整数n 均成立,∴数列{x n }的周期为3,所以数列{x n }的前2 017项和S 2 017=S 672×3+1=672×2+1=1 345.故选D.(2)数列{a n }满足a 1=2,a n +1=11-a n (n ∈N *),∴a 2=11-2=-1,a 3=11-(-1)=12,a 4=11-12=2,…,可知此数列有周期性,周期T =3,即a n +3=a n ,则a 2 018=a 672×3+2=a 2=-1.故选B.[答案] (1)D (2)B [方法技巧]周期数列的常见形式与解题方法(1)周期数列的常见形式①利用三角函数的周期性,即所给递推关系中含有三角函数; ②相邻多项之间的递推关系,如后一项是前两项的差;③相邻两项的递推关系,等式中一侧含有分式,又较难变形构造出特殊数列. (2)解决此类题目的一般方法根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.[全练题点]1.[考点二](2018·安徽名校联盟考前模拟)在数列{a n }中,若对任意的n ∈N *均有a n +a n +1+a n +2为定值,且a 1=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( )A .132B .299C .68D .99解析:选B 因为对任意的n ∈N *均有a n +a n +1+a n +2为定值,所以a n +a n +1+a n +2=a n +1+a n +2+a n +3,所以a n +3=a n ,所以数列{a n }是周期数列,且周期为3.故a 2=a 98=4,a 3=a 9=3,a 100=a 1=2,所以S 100=33(a 1+a 2+a 3)+a 100=299.故选B.2.[考点一](2018·山东枣庄第八中学阶段性检测)已知数列⎩⎨⎧⎭⎬⎫n +2n ,欲使它的前n 项的乘积大于36,则n 的最小值为( )A .7B .8C .9D .10解析:选B 由数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n +2n 的前n 项的乘积31·42·53·…·n +2n =(n +1)(n +2)2>36,得n 2+3n -70>0,解得n <-10或n >7.又因为n ∈N *,所以n 的最小值为8,故选B.3.[考点一]已知函数f (x )=⎩⎨⎧(3-a )x +2,x ≤2,a9-22+11x x ,x >2(a >0,且a ≠1),若数列{a n }满足a n =f (n )(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( )A .(0,1)B .⎣⎡⎭⎫83,3C .(2,3)D .(1,3)解析:选C因为{a n}是递增数列,所以⎩⎪⎨⎪⎧3-a >0,a >1,(3-a )×2+2<a 2,解得2<a <3,所以实数a 的取值范围是(2,3).4.[考点二](2018·辽宁重点中学协作体联考)在数列{a n }中,a 1=1,a n +1-a n =sin (n +1)π2,记S n 为数列{a n }的前n 项和,则S 2 018=( )A .0B .2 018C .1 010D .1 009解析:选C 由a 1=1及a n +1-a n =sin (n +1)π2,得a n +1=a n +sin (n +1)π2,所以a 2=a 1+sin π=1,a 3=a 2+sin3π2=0,a 4=a 3+sin 4π2=0,a 5=a 4+sin 5π2=1,a 6=a 5+sin 6π2=1,a 7=a 6+sin 7π2=0,a 8=a 7+sin 8π2=0,…,可见数列{a n }为周期数列,周期T =4,所以S 2 018=504(a 1+a 2+a 3+a 4)+a 1+a 2=1 010.[全国卷5年真题集中演练——明规律]1.(2015·全国卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.解析:∵a n +1=S n +1-S n ,a n +1=S n S n +1,∴S n +1-S n =S n S n +1.∵S n ≠0,∴1S n -1S n +1=1,即1S n +1-1S n =-1.又1S 1=-1,∴⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列.∴1S n=-1+(n -1)×(-1)=-n ,∴S n =-1n . 答案:-1n2.(2014·全国卷Ⅱ)数列 {a n }满足 a n +1=11-a n , a 8=2,则a 1 =________. 解析:将a 8=2代入a n +1=11-a n ,可求得a 7=12;再将a 7=12代入a n +1=11-a n,可求得a 6=-1;再将a 6=-1代入a n +1=11-a n,可求得a 5=2;由此可以推出数列{a n }是一个周期数列,且周期为3,所以a 1=a 7=12.答案:123.(2013·全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.解析:当n =1时,由已知S n =23a n +13,得a 1=23a 1+13,即a 1=1;当n ≥2时,由已知得到S n -1=23a n -1+13,所以a n =S n -S n -1=⎝⎛⎭⎫23a n +13-⎝⎛⎭⎫23a n -1+13 =23a n -23a n -1, 所以a n =-2a n -1,所以数列{a n }为以1为首项,以-2为公比的等比数列,所以a n =(-2)n -1. 答案:(-2)n -14.(2016·全国卷Ⅲ)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3; (2)求{a n }的通项公式.解:(1)由题意可得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0得 2a n +1(a n +1)=a n (a n +1).因此{a n }的各项都为正数,所以a n +1a n=12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.[课时达标检测][小题对点练——点点落实]对点练(一) 数列的通项公式 1.在数列{a n }中,a 1=1,a n +1=2a n a n +2(n ∈N *),则14是这个数列的( )A .第6项B .第7项C .第8项D .第9项解析:选B 由a n +1=2a n a n +2可得1a n +1=1a n +12,即数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,12为公差的等差数列,故1a n =1+(n -1)×12=12n +12,即a n =2n +1,由2n +1=14,解得n =7,故选B.2.(2018·南昌模拟)在数列{a n }中,a 1=1,a n a n -1=a n -1+(-1)n (n ≥2,n ∈N *),则a 3a 5的值是( )A.1516B .158 C.34 D .38解析:选C 由已知得a 2=1+(-1)2=2,∴2a 3=2+(-1)3,a 3=12,∴12a 4=12+(-1)4,a 4=3,∴3a 5=3+(-1)5,∴a 5=23,∴a 3a 5=12×32=34.3.(2018·河南郑州一中考前冲刺)数列{a n }满足:a 1=1,且对任意的m ,n ∈N *,都有a m +n =a m +a n +mn ,则1a 1+1a 2+1a 3+…+1a 2 018=( ) A.2 0172 018 B .2 0182 019 C.4 0342 018D .4 0362 019解析:选D ∵a 1=1,且对任意的m ,n ∈N *都有a m +n =a m +a n +mn ,∴a n +1=a n +n +1,即a n +1-a n =n +1,用累加法可得a n =a 1+(n -1)(n +2)2=n (n +1)2,∴1a n =2n (n +1)=2⎝ ⎛⎭⎪⎫1n -1n +1,∴1a 1+1a 2+1a 3+…+1a 2 018=2⎣⎡⎭⎫1-12+12-13+…+12 018-12 019=4 0362 019,故选D. 4.(2018·甘肃天水检测)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ) A .2n -1B .12n -1C.⎝⎛⎭⎫23n -1D .⎝⎛⎭⎫32n -1解析:选D 因为a n +1=S n +1-S n ,所以S n =2a n +1=2(S n +1-S n ),所以S n +1S n=32,所以数列{S n }是以S 1=a 1=1为首项,32为公比的等比数列,所以S n =⎝⎛⎭⎫32n -1.故选D. 5.(2018·兰州模拟)在数列1,2,7,10,13,…中219是这个数列的第________项. 解析:数列1,2,7,10,13,…,即数列1,3×1+1,3×2+1,3×3+1,3×4+1,…,∴该数列的通项公式为a n =3(n -1)+1=3n -2,∴3n -2=219=76,∴n =26,故219是这个数列的第26项.答案:266.(2018·河北冀州中学期中)已知数列{a n }满足a 1=1,且a n =n (a n +1-a n )(n ∈N *),则a 3=________,a n =________.解析:由a n =n (a n +1-a n ),可得a n +1a n =n +1n ,则a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 2a 1·a 1=n n -1×n -1n -2×n -2n -3×…×21×1=n (n ≥2),∴a 3=3.∵a 1=1满足a n =n ,∴a n =n .答案:3 n7.(2018·福建晋江季延中学月考)已知数列{a n }满足a 1+2a 2+3a 3+…+na n =n +1(n ∈N *),则数列{a n }的通项公式为________________.解析:已知a 1+2a 2+3a 3+…+na n =n +1,将n =1代入,得a 1=2;当n ≥2时,将n -1代入得a 1+2a 2+3a 3+…+(n -1)a n -1=n ,两式相减得na n =(n +1)-n =1,∴a n =1n,∴a n =⎩⎪⎨⎪⎧2,n =1,1n ,n ≥2.答案:a n =⎩⎪⎨⎪⎧2,n =1,1n ,n ≥2对点练(二) 数列的性质1.已知数列{a n }的通项公式为a n =9n 2-9n +29n 2-1(n ∈N *).则下列说法正确的是( ) A .这个数列的第10项为2731B.98101是该数列中的项 C .数列中的各项都在区间⎣⎡⎭⎫14,1内 D .数列{a n }是单调递减数列解析:选C a n =9n 2-9n +29n 2-1=(3n -1)(3n -2)(3n -1)(3n +1)=3n -23n +1.令n =10,得a 10=2831.故选项A 不正确,令3n -23n +1=98101,得9n =300,此方程无正整数解,故98101不是该数列中的项.因为a n =3n -23n +1=3n +1-33n +1=1-33n +1,又n∈N *,所以数列{a n }是单调递增数列,所以14≤a n <1,所以数列中的各项都在区间⎣⎡⎭⎫14,1内,故选项C 正确,选项D 不正确,故选C.2.(2018·湖北黄冈中学期中)已知数列{a n }中,a 1=12,a n +1=1+a n 1-a n ,则a 2 018=( )A .-2B .12C .-13D .3解析:选D ∵a 1=12,∴a 2=1+a 11-a 1=3,a 3=1+a 21-a 2=-2,a 4=1+a 31-a 3=-13,a 5=1+a 41-a 4=12,…,∴数列{a n }是周期数列且周期T =4,∴a 2 018=a 2=3,故选D.3.(2018·河南郑州质量预测)已知数列{a n }满足a n +1=a n -a n -1(n ≥2),a 1=m ,a 2=n ,S n 为数列{a n }的前n 项和,则S 2 017的值为( )A .2 017n -mB .n -2 017mC .mD .n解析:选C 根据题意计算可得a 3=n -m ,a 4=-m ,a 5=-n ,a 6=m -n ,a 7=m ,a 8=n ,…,因此数列{a n }是以6为周期的周期数列,且a 1+a 2+…+a 6=0,所以S 2 017=S 336×6+1=a 1=m .故选C.4.(2018·安徽淮南模拟)已知{a n }中,a n =n 2+λn ,且{a n }是递增数列,则实数λ的取值范围是( ) A .(-2,+∞) B .[-2,+∞) C .(-3,+∞)D .[-3,+∞)解析:选C ∵{a n }是递增数列,∴∀n ∈N *,a n +1>a n ,∴(n +1)2+λ(n +1)>n 2+λn ,化简得λ>-(2n +1),∴λ>-3.故选C.5.(2018·北京海淀区模拟)数列{a n }的通项为a n =⎩⎪⎨⎪⎧2n -1,n ≤4,-n 2+(a -1)n ,n ≥5(n ∈N *),若a 5是{a n }中的最大值,则a 的取值范围是________.解析:当n ≤4时,a n =2n -1单调递增,因此n =4时取最大值,a 4=24-1=15.当n ≥5时,a n =-n 2+(a -1)n =-⎝⎛⎭⎪⎫n -a -122+(a -1)24.∵a 5是{a n}中的最大值,∴⎩⎨⎧a -12≤5.5,-25+5(a -1)≥15,解得9≤a ≤12.∴a 的取值范围是[9,12].答案:[9,12][大题综合练——迁移贯通]1.(2018·东营模拟)设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *. (1)求a 1的值;(2)求数列{a n }的通项公式. 解:(1)令n =1,T 1=2S 1-1, ∵T 1=S 1=a 1,∴a 1=2a 1-1,∴a 1=1. (2)n ≥2时,T n -1=2S n -1-(n -1)2, 则S n =T n -T n -1=2S n -n 2-[2S n -1-(n -1)2] =2(S n -S n -1)-2n +1 =2a n -2n +1.因为当n =1时,a 1=S 1=1也满足上式, 所以S n =2a n -2n +1(n ≥1),当n ≥2时,S n -1=2a n -1-2(n -1)+1, 两式相减得a n =2a n -2a n -1-2, 所以a n =2a n -1+2(n ≥2), 所以a n +2=2(a n -1+2), 因为a 1+2=3≠0,所以数列{a n +2}是以3为首项,公比为2的等比数列. 所以a n +2=3×2n -1, 所以a n =3×2n -1-2, 当n =1时也成立, 所以a n =3×2n -1-2.2.(2018·浙江舟山模拟)已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *).(1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N *)可得,a 1=12a 21+12a 1,解得a 1=1,a 1=0(舍).S 2=a 1+a 2=12a 22+12a 2, 解得a 2=2(负值舍去);同理可得a 3=3,a 4=4. (2)因为S n =12a 2n +a n 2,① 所以当n ≥2时,S n -1=12a 2n -1+a n -12,②①-②得a n =12(a n -a n -1)+12(a 2n -a 2n -1),所以(a n -a n -1-1)(a n +a n -1)=0.由于a n +a n -1≠0,所以a n -a n -1=1,又由(1)知a 1=1,所以数列{a n }是首项为1,公差为1的等差数列,所以a n =n .3.(2018·山西太原月考)已知等比数列{a n }是递增数列,a 2a 5=32,a 3+a 4=12,又数列{b n }满足b n =2log 2a n+1,S n 是数列{b n }的前n 项和. (1)求S n;(2)若对任意n ∈N *,都有S n a n ≤S ka k 成立,求正整数k 的值.解:(1)因为{a n }是等比数列,则a 2a 5=a 3a 4=32, 又a 3+a 4=12,且{a n }是递增数列, 所以a 3=4,a 4=8,所以q =2,a 1=1, 所以a n =2n -1.所以b n =2log 2a n +1=2log 22n =2n . 所以S n =2+4+…+2n =n (2+2n )2=n 2+n .(2)令c n =S n a n =n 2+n2n -1,则c n +1-c n =S n +1a n +1-S n a n =(n +1)(n +2)2n -n (n +1)2n -1=(n +1)(2-n )2n. 所以当n =1时,c 1<c 2; 当n =2时,c 3=c 2;当n ≥3时,c n +1-c n <0,即c 3>c 4>c 5>…, 所以数列{c n }中最大项为c 2和c 3.所以存在k =2或3,使得任意的正整数n ,都有S k a k≥S na n.第二节 等差数列及其前n 项和本节主要包括3个知识点: 1.等差数列基本量的计算;等差数列的基本性质及应用;等差数列的判定与证明.突破点(一) 等差数列基本量的计算[基本知识]1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项. 2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. [基本能力]1.判断题(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( ) (2)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (3)等差数列{a n }的单调性是由公差d 决定的.( )(4)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) 答案:(1)× (2)√ (3)√ (4)√ 2.填空题(1)已知等差数列{a n },a 5=-20,a 20=-35,则a n =________. 答案:-15-n(2)已知等差数列5,427,347,…,则该数列的第5项为________.答案:217(3)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6=________. 答案:12(4)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________. 答案:6[全析考法][典例] (1)(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A .1 B .2 C .4D .8(2)(2018·安徽江南十校模拟)《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知A ,B ,C ,D ,E 五人分5钱,A ,B 两人所得与C ,D ,E 三人所得相同,且A ,B ,C ,D ,E 每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E 所得为( )A.23钱 B .43钱C.56钱 D .32钱(3)(2018·南昌模拟)已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5. ①求数列{a n }的通项公式;②令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n .[解析] (1)设等差数列{a n }的首项为a 1,公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48, 即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得⎩⎪⎨⎪⎧a 1=-2,d =4,故选C. (2)由题意,设A 所得为a -4d ,B 所得为a -3d ,C 所得为a -2d ,D 所得为a -d ,E 所得为a ,则⎩⎪⎨⎪⎧5a -10d =5,2a -7d =3a -3d ,解得a =23,故E 所得为23钱.故选A.(3)①设等差数列{a n }的公差为d ,由S 3+S 4=S 5,可得a 1+a 2+a 3=a 5,即3a 2=a 5, 所以3(1+d )=1+4d ,解得d =2. ∴a n =1+(n -1)×2=2n -1.②由①,可得b n =(-1)n -1·(2n -1). ∴T 2n =1-3+5-7+…+(4n -3)-(4n -1) =(-2)×n=-2n .[答案] (1)C (2)A[方法技巧]解决等差数列基本量计算问题的思路(1)在等差数列{a n }中,a 1与d 是最基本的两个量,一般可设出a 1和d ,利用等差数列的通项公式和前n 项和公式列方程(组)求解即可.(2)与等差数列有关的基本运算问题,主要围绕着通项公式a n =a 1+(n -1)d 和前n 项和公式S n =n (a 1+a n )2=na 1+n (n -1)2d ,在两个公式中共涉及五个量:a 1,d ,n ,a n ,S n ,已知其中三个量,选用恰当的公式,利用方程(组)可求出剩余的两个量.[全练题点]1.(2018·武汉调研)已知数列{a n }是等差数列,a 1+a 7=-8,a 2=2,则数列{a n }的公差d 等于( ) A .-1 B .-2 C .-3D .-4解析:选C 法一:由题意可得⎩⎪⎨⎪⎧a 1+(a 1+6d )=-8,a 1+d =2,解得d =-3.法二:a 1+a 7=2a 4=-8,∴a 4=-4, ∴a 4-a 2=-4-2=2d ,∴d =-3.2.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则正整数m 的值为________. 解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m -1=5,即2a 1+2m -1=5,所以a 1=3-m . 由S m =(3-m )m +m (m -1)2×1=0,解得正整数m 的值为5. 答案:53.(2018·福州模拟)已知等差数列{a n }的各项均为正数,其公差为2,a 2a 4=4a 3+1. (1)求{a n }的通项公式; (2)求a 1+a 3+a 9+…+a 3n .解:(1)依题意知,a n =a 1+2(n -1),a n >0.因为a 2a 4=4a 3+1,所以(a 1+2)(a 1+6)=4(a 1+4)+1, 所以a 21+4a 1-5=0,解得a 1=1或a 1=-5(舍去), 所以a n =2n -1. (2)a 1+a 3+a 9+…+a 3n=(2×1-1)+(2×3-1)+(2×32-1)+…+(2×3n -1) =2×(1+3+32+…+3n )-(n +1) =2×1-3n +11-3-(n +1)=3n +1-n -2.突破点(二) 等差数列的基本性质及应用[基本知识]等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)数列S m ,S 2m -S m ,S 3m -S 2m ,…(m ∈N *)也是等差数列,公差为m 2d .(5)S 2n -1=(2n -1)a n ,S 2n =n (a 1+a 2n )=n (a n +a n +1),遇见S 奇,S 偶时可分别运用性质及有关公式求解. (6){a n },{b n }均为等差数列且其前n 项和为S n ,T n ,则a n b n =S 2n -1T 2n -1.(7)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也是等差数列,其首项与{a n }的首项相同,公差是{a n }的公差的12.[基本能力](1)(2018·岳阳模拟)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=________. 答案:100(2)设等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,若S n T n =n +1n -1,则a 1+a n b 1+b n =________.答案:n +1n -1(3)(2018·天水模拟)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 答案:60(4)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5.答案:S 5[全析考法]等差数列的性质[例1] (1)(2018·银川模拟)已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32,若a m =8,则m 的值为( )A .8B .12C .6D .4(2)(2018·山西太原模拟)在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 8+a 10)=36,则a 6=( ) A .8 B .6 C .4D .3(3)(2018·湖北武汉调研)若等差数列{a n }的前n 项和S n 满足S 4=4,S 6=12,则S 2=( ) A .-1 B .0 C .1D .3[解析] (1)由a 3+a 6+a 10+a 13=32,得(a 3+a 13)+(a 6+a 10)=32,得4a 8=32,∴a 8=8,∴m =8.故选A. (2)由等差数列的性质可知2(a 1+a 3+a 5)+3(a 8+a 10)=2×3a 3+3×2a 9=6×2a 6=36,得a 6=3,故选D. (3)根据等差数列的性质,可得S 2,S 4-S 2,S 6-S 4成等差数列,即2(S 4-S 2)=S 2+S 6-S 4,因此S 2=0. [答案] (1)A (2)D (3)B[方法技巧]利用等差数列性质求解问题的注意点(1)如果{a n }为等差数列,m +n =p +q ,则a m +a n =a p +a q (m ,n ,p ,q ∈N *).因此,若出现a m -n ,a m ,a m +n 等项时,可以利用此性质将已知条件转化为与a m (或其他项)有关的条件;若求a m 项,可由a m=12(a m -n +a m +n )转化为求a m -n ,a m +n 或a m +n +a m -n 的值.(2)要注意等差数列通项公式及前n 项和公式的灵活应用,如a n =a m +(n -m )d ,d =a n -a mn -m ,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等. [提醒] 一般地,a m +a n ≠a m +n ,等号左、右两边必须是两项相加,当然也可以是a m -n +a m +n =2a m .等差数列前n 项和最值问题等差数列的通项a n n n 项和S n的最值问题.[例2] 等差数列{a n }的首项a 1>0,设其前n 项和为S n ,且S 5=S 12,则当n 为何值时,S n 有最大值? [解] 设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.法一(函数法):S n =na 1+n (n -1)2d =na 1+n (n -1)2·⎝⎛⎭⎫-18a 1 =-116a 1(n 2-17n )=-116a 1⎝⎛⎭⎫n -1722+28964a 1, 因为a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值. 法二(通项变号法):设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a 1+(n -1)·⎝⎛⎭⎫-18a 1≥0,a 1+n ·⎝⎛⎭⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9,又n ∈N *,所以当n =8或n =9时,S n 有最大值.[方法技巧]求等差数列前n 项和S n 最值的两种方法(1)函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解. (2)通项变号法①a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[全练题点]1.[考点一](2018·陕西咸阳模拟)设等差数列{a n }的前n 项和为S n ,若S 9=54,则a 2+a 4+a 9=( ) A .9 B .15 C .18D .36解析:选C 由等差数列的通项公式及性质,可得S 9=9(a 1+a 9)2=9a 5=54,a 5=6,则a 2+a 4+a 9=a 1+a 5+a 9=3a 5=18.故选C.2.[考点一](2018·辽宁鞍山一中期末)等差数列{a n }的前n 项和为S n ,若m >1,且a m -1+a m +1-a 2m =0,S 2m -1=38,则m 等于( )A .38B .20C .10D .9解析:选C 因为a m -1+a m +1-a 2m =0,所以a m -1+a m +1=2a m =a 2m ,显然a m ≠0,所以a m =2.又因为S 2m-1=(2m -1)(a 1+a 2m -1)2=(2m -1)a m =38.所以将a m =2代入可得(2m -1)×2=38,解得m =10,故选C. 3.[考点二](2018·成都模拟)已知等差数列{a n }的前n 项和为S n ,a 4+a 7+a 10=9,S 14-S 3=77,则使S n 取得最小值时n 的值为( )A .4B .5C .6D .7解析:选B 根据等差数列的性质可得a 4+a 7+a 10=3a 7=9,得a 7=3.S 14-S 3=11a 9=77,解得a 9=7,所以等差数列的通项公式为a n =2n -11.当n =6时,a n >0;当n =5时,a n <0,所以使S n 取得最小值的n 的值为5.4.[考点二](2018·吉林长春外国语学校期末)已知等差数列{a n }的前n 项和为S n ,若S 13<0,S 12>0,则在数列中绝对值最小的项为( )A .第5项B .第6项C .第7项D .第8项解析:选C 根据等差数列{a n }的前n 项和公式S n =n (a 1+a n )2,因为⎩⎪⎨⎪⎧ S 13<0,S 12>0,所以⎩⎪⎨⎪⎧a 1+a 13<0,a 1+a 12>0,由⎩⎪⎨⎪⎧ a 1+a 13=2a 7,a 1+a 12=a 6+a 7,得⎩⎪⎨⎪⎧a 7<0,a 6+a 7>0,所以数列{a n }中绝对值最小的项为第7项.突破点(三) 等差数列的判定与证明[全析考法][典例] (2018·n 1n +1-1)=(n +1)(a n +n )(n ∈N *).(1)求证数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求其通项公式;(2)设b n =2a n -15,求数列{|b n |}的前n 项和T n . [解] (1)∵n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *), ∴na n +1-(n +1)a n =2n (n +1),∴a n +1n +1-a n n=2,∴数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,其公差为2,首项为2,∴a nn =2+2(n -1)=2n .(2)由(1)知a n =2n 2,∴b n =2a n -15=2n -15, 则数列{b n }的前n 项和S n =n (-13+2n -15)2=n 2-14n .令b n =2n -15≤0,解得n ≤7.5.∴当n ≤7时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b n =-S n =-n 2+14n .当n ≥8时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b 7+b 8+…+b n =-2S 7+S n =-2×(72-14×7)+n 2-14n =n 2-14n +98.∴T n =⎩⎪⎨⎪⎧14n -n 2,n ≤7,n 2-14n +98,n ≥8.[方法技巧] 等差数列的判定与证明方法解答题中的证明问题[提醒] 判断时易忽视定义中从第2项起,以后每项与前一项的差是同一常数,即易忽视验证a 2-a 1=d 这一关键条件.[全练题点]1.(2016·浙江高考)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n +2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n }是等差数列解析:选A 由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线(图略),高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n+1|×h n ,|B n B n +1|为定值,所以{S n }是等差数列.故选A.2.(2018·岳阳模拟)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.解:(1)证明:当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.[全国卷5年真题集中演练——明规律]1.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( ) A .-24 B .-3 C .3D .8解析:选A 设等差数列{a n }的公差为d ,因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23,即(a 1+d )(a 1+5d )=(a 1+2d )2.又a 1=1,所以d 2+2d =0.又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.2.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100B .99C .98D .97解析:选C 法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98.故选C.法二:∵{a n }是等差数列,∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5.故a 100=a 5+(20-1)×5=98.故选C.3.(2013·全国卷Ⅱ)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则nS n 的最小值为________.解析:由已知⎩⎨⎧S 10=10a 1+10×92d =0,S15=15a 1+15×142d =25,解得a 1=-3,d =23,那么nS n =n 2a 1+n 2(n -1)2d =n 33-10n 23.由于函数f (x )=x 33-10x 23在x =203处取得极小值,因而检验n =6时,6S 6=-48,而n =7时,7S 7=-49.∴nS n 的最小值为-49.答案:-494.(2014·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数. (1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)由题设,a n a n +1=λS n -1,a n +1a n +2=λS n +1-1. 两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1.由(1)知,a 3=λ+1.令2a 2=a 1+a 3,解得λ=4.故a n +2-a n=4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.[课时达标检测][小题对点练——点点落实]对点练(一) 等差数列基本量的计算1.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( ) A .5 B .6 C .7D .8解析:选D 由题意知S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8. 2.在等差数列{a n }中,a 1=0,公差d ≠0,若a m =a 1+a 2+…+a 9,则m 的值为( ) A .37 B .36 C .20D .19解析:选A a m =a 1+a 2+…+a 9=9a 1+9×82d =36d =a 37,∴m =37.故选A.3.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =( ) A .n (3n -1) B .n (n +3)2 C .n (n +1)D .n (3n +1)2解析:选C 依题意得a n +1=a n +a 1,即a n +1-a n =a 1=2,所以数列{a n }是以2为首项、2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n (2+2n )2=n (n +1),故选C.4.(2018·太原一模)在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14D .12解析:选B 由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0. 对点练(二) 等差数列的基本性质及应用1.设等差数列{a n }的前n 项和为S n ,且S 9=18,a n -4=30(n >9),若S n =336,则n 的值为( ) A .18 B .19 C .20D .21解析:选D 因为{a n }是等差数列,所以S 9=9a 5=18,a 5=2,S n =n (a 1+a n )2=n (a 5+a n -4)2=n2×32=16n =336,解得n =21,故选D.2.(2018·南阳质检)设数列{a n }是公差d <0的等差数列,S n 为其前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n 等于( )。
2018-2019学年高中新创新一轮复习理数江苏专版:课时
课时达标检测(九) 指数与指数函数[练基础小题——强化运算能力]1.下列函数中,满足“f (x +y )=f (x )·f (y )”的单调递增函数的序号是________. ①f (x )=x 3;②f (x )=3x;③f (x )=x 12;④f (x )=⎝⎛⎭⎫12x .解析:根据各选项知,②④中的指数函数满足f (x +y )=f (x )·f (y ).又f (x )=3x 是增函数,所以②正确.答案:② 2.函数f (x )=2|x-1|的大致图象是________.(填序号)解析:f (x )=⎩⎪⎨⎪⎧2x -1,x ≥1,⎝⎛⎭⎫12x -1,x <1,易知f (x )在[1,+∞)上单调递增,在(-∞,1)上单调递减,故②正确.答案:②3.(2018·江苏省赣榆高级中学模拟)函数f (x )=a |x+1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是________.解析:由题意知a >1,f (-4)=a 3,f (1)=a 2,由y =a t (a >1)的单调性知a 3>a 2,所以f (-4)>f (1).答案:f (-4)>f (1)4.若函数f (x )=a |2x -4|(a >0,且a ≠1)满足f (1)=19,则f (x )的单调递减区间是________.解析:由f (1)=19得a 2=19,又a >0,所以a =13,因此f (x )=⎝⎛⎭⎫13|2x -4|.因为g (x )=|2x -4|在[2,+∞)上单调递增,所以f (x )的单调递减区间是[2,+∞).答案:[2,+∞)5.(2018·南京摸底)已知函数f (x )=a x a x +1+b tan x +x 2(a >0,a ≠1),若f (1)=3,则f (-1)=________.解析:f (-x )+f (x )=a xa x +1+a -xa -x +1+2x 2=1+2x 2,所以f (-1)=1+2-f (1)=0.答案:0[练常考题点——检验高考能力]一、填空题1.已知a =20.2,b =0.40.2,c =0.40.75,则a ,b ,c 的大小关系是________.解析:由0.2<0.75<1,并结合指数函数的图象可知0.40.2>0.40.75,即b >c ;因为a =20.2>1,b =0.40.2<1,所以a >b .综上,a >b >c .答案:a >b >c2.已知奇函数y =⎩⎪⎨⎪⎧f (x ),x >0,g (x ),x <0.如果f (x )=a x (a >0,且a ≠1)对应的图象如图所示,那么g (x )=________.解析:由题图知f (1)=12,∴a =12,f (x )=⎝⎛⎭⎫12x ,由题意得g (x )=-f (-x )=-⎝⎛⎭⎫12-x = -2x .答案:-2x3.设函数y =f (x )的图象与y =2x+a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a =________.解析:设(x ,y )为y =f (x )图象上任意一点,则(-y ,-x )在y =2x+a的图象上,所以有-x =2-y +a,从而有-y +a =log 2(-x )(指数式与对数式的互化),所以y =a -log 2(-x ),即f (x )=a -log 2(-x ),所以f (-2)+f (-4)=(a -log 22)+(a -log 24)=(a -1)+(a -2)=1,解得a =2.答案:24.(2018·豫晋冀三省调研)设函数f (x )=a x (a >0,a ≠1)在x ∈[-1,1]上的最大值与最小值之和为g (a ),则函数g (a )的取值范围是________.解析:f (x )在x ∈[-1,1]上的最大值和最小值在两端点处取得,∴g (a )=f (1)+f (-1)=a +1a ,又a >0,且a ≠1,所以g (a )=a +1a >2.答案:(2,+∞)5.设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是________. 解析:当a <0时,不等式f (a )<1可化为⎝⎛⎭⎫12a -7<1,即⎝⎛⎭⎫12a <8,即⎝⎛⎭⎫12a <⎝⎛⎭⎫12-3,因为0<12<1,所以函数y =⎝⎛⎭⎫12x 是减函数,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1可化为a <1,所以0≤a <1.故a 的取值范围是(-3,1).答案:(-3,1)6.(2018·张家港市四校联考)已知a >0,且a ≠1,f (x )=x 2-a x .当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是________.解析:当x ∈(-1,1)时,均有f (x )<12,即a x >x 2-12在(-1,1)上恒成立,令g (x )=a x ,m (x )=x 2-12,由图象知:当0<a <1时,g (1)≥m (1),即a ≥1-12=12,此时12≤a <1;当a >1时,g (-1)≥m (1),即a -1≥1-12=12,此时1<a ≤2.综上,12≤a <1或1<a ≤2. 答案:⎣⎡⎭⎫12,1∪(1,2]7.已知函数f (x )=e x -e -x e x +e-x ,若f (a )=-12,则f (-a )=________.解析:∵f (a )=e a -e -a e a +e -a =-12.∴f (-a )=e -a -e a e -a +e a =-e a -e -a e a +e-a =-⎝⎛⎭⎫-12=12. 答案:128.若函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a =________. 解析:当a >1时,f (x )=a x -1在[0,2]上为增函数,则a 2-1=2,∴a =±3.又∵a >1,∴a = 3.当0<a <1时,f (x )=a x -1在[0,2]上为减函数,又∵f (0)=0≠2,∴0<a <1不成立.综上可知,a = 3.答案: 39.(2018·安徽十校联考)已知max(a ,b )表示a ,b 两数中的最大值.若f (x )=max{e |x |,e |x -2|},则f (x )的最小值为________.解析:由于f (x )=max{e |x |,e|x -2|}=⎩⎪⎨⎪⎧e x,x ≥1,e 2-x ,x <1.当x ≥1时,f (x )≥e ,且当x =1时,取得最小值e ;当x <1时,f (x )>e.故f (x )的最小值为f (1)=e.答案:e10.(2018·信阳质检)若不等式(m 2-m )2x -⎝⎛⎭⎫12x<1对一切x ∈(-∞,-1]恒成立,则实数m 的取值范围是________.解析:(m 2-m )2x -⎝⎛⎭⎫12x <1可变形为m 2-m <⎝⎛⎭⎫12x +⎣⎡⎦⎤⎝⎛⎭⎫12x 2.设t =⎝⎛⎭⎫12x ,则原条件等价于不等式m 2-m <t +t 2在t ≥2时恒成立.显然t +t 2在t ≥2时的最小值为6,所以m 2-m <6,解得-2<m <3.答案:(-2,3) 二、解答题11.已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )在x ∈[-3,0]的值域;(2)若关于x 的方程f (x )=0有解,求a 的取值范围. 解:(1)当a =1时,f (x )=2·4x -2x -1=2(2x )2-2x -1, 令t =2x ,因为x ∈[-3,0],则t ∈⎣⎡⎦⎤18,1.故y =2t 2-t -1=2⎝⎛⎭⎫t -142-98,t ∈⎣⎡⎦⎤18,1,故值域为⎣⎡⎦⎤-98,0. (2)关于x 的方程2a (2x )2-2x -1=0有解,等价于方程2am 2-m -1=0(m >0)在 (0,+∞)上有解.记g (m )=2am 2-m -1,m >0,当a =0时,g (m )=0的解为m =-1<0,不成立.当a <0时,g (m )的图象开口向下,对称轴m =14a <0,则g (m )在(0,+∞)上单调递减,且图象过点(0,-1),不成立.当a >0时,g (m )的图象开口向上,对称轴m =14a >0,则g (m )在⎝⎛⎦⎤0,14a 上单调递减,在⎣⎡⎭⎫14a ,+∞上单调递增,且图象过点(0,-1),必有一个根为正, 所以,a >0.综上所述,a 的取值范围是(0,+∞).12.(2018·连云港月考)设函数f (x )=ka x -a -x (a >0,a ≠1)是奇函数.(1)求常数k 的值;(2)若a >1,试判断f (x )的单调性,并用定义法加以证明;(3)若已知f (1)=83,且函数g (x )=a 2x +a -2x -2mf (x )在区间[1,+∞)上的最小值为-2,求实数m 的值.解:(1)因为函数f (x )=ka x -a -x (a >0,a ≠1)是奇函数,所以f (-x )+f (x )=0对于任意x ∈R 恒成立,即(ka -x -a x )+(ka x -a -x )=0;(k -1)(a x +a -x )=0恒成立,所以k -1=0,即k =1.(2)a >1时,f (x )=a x -a -x 在R 上为增函数.理由如下:设x 1<x 2则f (x 1)-f (x 2)=(ax 1-a -x 1)-(ax 2-a -x 2)=(ax 1-ax 2)(ax 1+x 2+1)ax 1+x 2.因为a >1,x 1<x 2,所以0<ax 1<ax 2,ax 1+x 2>0, 所以f (x 1)<f (x 2),即f (x )=a x -a -x 在R 上为增函数.(3)由f (1)=83得a -1a =83,即a =3或a =-13(舍).所以f(x)=3x-3-x,g(x)=32x+3-2x-2m(3x-3-x)=(3x-3-x)2-2m(3x-3-x)+2.设t=3x-3-x,x∈[1,+∞),则t=3x-3-x在[1,+∞)上为增函数,即t≥8 3,所以y=t2-2mt+2,t≥83,对称轴为t=m.当m≤83时,y min=⎝⎛⎭⎫832-163m+2=-2,解得m=2512.当m≥83时,y min=m2-2m2+2=-2,所以m=-2或m=2(均舍去).综上m=2512.。
2018-2019学年高中新创新一轮复习理数通用版课时达标检测(三十) 数列的综合问题 Word版含解析
课时达标检测(三十)数列的综合问题[小题常考题点——准解快解].(·安徽六安一中月考)已知数列{}的通项公式为=-,其前项和为,将数列{}的前项抽去其中一项后,剩下三项按原来顺序恰为等比数列{}的前项,记{}的前项和为.若存在∈*,使对任意∈*,≤+λ恒成立,则实数λ的取值范围是( ).(,+∞).[,+∞).(,+∞).[,+∞)解析:选依题意得==,根据二次函数的性质,=时,取得最大值为.另外,根据通项公式得数列{}的前项为=,=,=,=,观察易知抽掉第二项后,余下的三项可组成等比数列.所以数列{}中,=,公比=,所以==,所以≤<.因为存在∈*,对任意∈*,≤+λ恒成立,所以<+λ,所以λ>.故选..(·北京景山学校段测)已知数列{}满足=,(,+)(∈*)在直线-+=上,如果函数()=++…+(∈*,≥),那么函数()的最小值为( )..解析:选将点的坐标代入直线方程,得+-=,所以{}是首项为,公差为的等差数列,所以=,所以()=++…+,(+)=++…+,所以(+)-()=+->+-=,所以()单调递增,故()的最小值为()=,故选..(·江西金溪一中月考)据统计测量,已知某养鱼场,第一年鱼的质量增长率为,以后每年的增长率为前一年的一半.若饲养年后,鱼的质量预计为原来的倍.下列选项中,与值最接近的是( )....解析:选设鱼原来的质量为,饲养年后鱼的质量为,==,则=(+),==(+),…,=(+)×(+)×××=≈,即年后,鱼的质量预计为原来的倍,故选..(·湖北襄阳四校联考)我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列,,,,…,.①第二步:将数列①的各项乘以,得到一个新数列,,,…,.则+++…+-=( )..解析:选由题意知所得新数列为×,×,×,…,×,所以+++…+-====,故选..(·辽宁盘锦高中月考)数列{}满足=,+=,若不等式++…+<+λ对任何正整数恒成立,则实数λ的最小值为( )..解析:选因为数列{}满足=,+=,所以反复代入计算可得=,=,=,=,…,由此可归纳出通项公式=,经验证,成立.所以=+=+,所以++…+=++=+-.因为要求++…+<+λ对任何正整数恒成立,所以λ≥.故选..已知数列{}满足+-+=+-,∈*,且=,若函数()=+,记=(),则数列{}的前项和为( ).-...解析:选由已知可得,数列{}为等差数列,()=++,∴=.∵(π-)=(π-)+(π-)+=--+,∴(π-)+()=.∵+=+=…==π,∴()+…+()=×+=,即数列{}的前项和为..(·四川成都石室中学模拟)若()=+的导函数为′()=+,则数列(∈*)的前项和为( )..解析:选因为()=+,所以′()=-+.又因为′()=+,所以=,=,所以()=+=(+),所以==-,所以数列的前项和为++…+=++…+=-=.故选..(·河南新乡模拟)若数列{+-}是等比数列,且=,=,=,则=.解析:∵-=,-=,∴=,∴+-=-,∴-=-+-+…+---+--=++…+-=,∵=,∴=.答案:.(·广东潮州模拟)已知为数列{}的前项和,=·-(∈*),若=,则++…+=.解析:由=·-可知数列{}是以为首项,为公比的等比数列,所以==-,则===-,则++…+=++…+=-=-.答案:-.(·安徽六安一中段测)已知()是定义在上不恒为零的函数,对于任意的,∈都有()=()+()成立,数列{}满足=()(∈*),且=,则数列{}的通项公式=.解析:因为=(),所以+=(+)且==().又因为对于任意的,∈都有()=()+()成立,所以令=,=,则(+)=()+(),所以+=+·,所以-=,所以是以为首项,为公差的等差数列,所以=+(-)×=,所以=·.。
2019版高考政治一轮课时达标检测:(三十九)_寻觅社会的真谛 含答案解析
课时达标检测(三十九)寻觅社会的真谛一、选择题1.精准扶贫是针对粗放式扶贫提出来的。
我国领导人指出:要实现到2020年我国5 500多万农村贫困人口脱贫目标,越往后成本越高,难度越大,见效越慢,倘若不深入贫困地区,不了解贫困群众所思所想所需,没有针对性,失败是不可避免的。
材料中蕴含的哲理有()①具体问题具体分析是正确解决矛盾的关键②社会意识的产生有其物质原因③社会历史是人们活动的结果④统一物的分解、平衡的破坏不利于事物的发展A.①②B.①③C.②④D.③④解析:选A没有针对性,失败是不可避免的说明具体问题具体分析,①正确;精准扶贫是针对我国贫困人口实际提出来的,体现了社会存在决定社会意识,②正确;③④错误。
2.(2018·天一大联考)近年来,每到岁末,人们总会对一年中出现的热词进行盘点,进而推出年度网络流行语。
流行语,是社会发展的显示屏、生活时尚的风向标、民众心态的晴雨表。
从唯物史观角度看,对流行语的上述界定说明()①社会意识总先于社会存在而存在②社会存在的变化决定社会意识的变化③社会意识推动社会的变化和发展④网络流行语折射出了社会生活的变迁A.①②B.①③C.②④D.③④解析:选C流行语是社会发展的显示屏、生活时尚的风向标、民众心态的晴雨表,旨在强调社会存在决定社会意识,折射出了社会生活的变迁,②④正确。
社会意识有时会落后于社会存在,有时又会先于社会存在而变化、发展,①错误。
正确的社会意识推动社会的变化和发展,③表述不科学。
3.(2018·南昌十校联考)社会主义核心价值观体系倡导“富强、民主、文明、和谐、自由、平等、公正、法治、爱国、敬业、诚信、友善”的价值取向。
从唯物史观的角度看,培育和践行社会主义核心价值观是因为其属于()①思想意识,将推动社会实践的发展②生产关系,对生产力发展起推动作用③上层建筑,服务于先进的经济基础,推动社会进步④先进的社会意识,对社会存在具有能动的促进作用A.①②B.①③C.②④D.③④解析:选D本题考查了社会存在与社会意识的关系,经济基础与上层建筑的关系,本题使用排除法比较容易,正确的思想意识才能起到推动作用,①错误;核心价值观属于上层建筑不是生产关系,②错误;核心价值观属于先进的社会意识,是上层建筑,推动社会进步,对社会存在起推动作用,③④表述正确。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测 集 合 Word版含解析
课时达标检测(一) 集 合[小题对点练——点点落实]对点练(一) 集合的概念与集合间的基本关系 1.已知集合A ={1,2,3},B ={2,3},则( )A .A =BB .A ∩B =∅C .A BD .B A 解析:选D ∵A ={1,2,3},B ={2,3},∴B A .⊆C |C {=B ,}0≤3-x 2+2x |N ∈x {=A 已知集合)拟莱州一中模·(2018.2A },则集合B 中元素的个数为( )A .2B .3C .4D .5 B个子集,因此集合4=22有,共}{0,1=}1≤x ≤3-|N ∈x {=}0≤1)-x 3)(+x |(N ∈x {=A C 选解析:中元素的个数为4,选C.3.(2018·广雅中学测)(是图n Ven 的关系}0=x +2x |x {=N 和}1,0,1-{=M ,则正确表示集合R =U 若全集)试B.选,故M N ,所以}1,0,1-{=M ,而}1,0-{=}0=x +2x |x {=N 由题意知, B 选解析: .________为的值m ,则A ∈3若,}m +2m 2,2+m {=A .已知集合4 ,3=m +2m 2且3=2+m 时,1=m ,当32=-m 或1=m ,则3=m +2m 2或3=2+m 由题意得解析:.32=-m ,故3=m +2m 2则,12=2+m 时,32=-m 根据集合中元素的互异性可知不满足题意;当 32-答案: .________是的取值范围 b -a ,则实数B ⊆A ,若]b ,a [=B ,}16≤x 2≤|4x {=A .已知集合5,所4≥b ,2≤a ,所以B ⊆A ,因为[2,4]=}4≤x ≤|2x {=}42≤x 2≤2|2x {=}16≤x 2≤|4x {=A 集合解析:以a -b ≤2-4=-2,即实数a -b 的取值范围是(-∞,-2].答案:(-∞,-2]对点练(二) 集合的基本运算)(=N ∪M ,则}0≤x |lg x {=N ,}x =2x |x {=M .设集合1 A .[0,1]B .(0,1]C .[0,1)D .(-∞,1] .][0,1=N ∪M ,}1≤x <0|x {=}0≤x |lg x {=N ,}{0,1=}x =2x |x {=M A 选解析: )(=B ∩A ,则}A ∈x ,2x =y |y {=B ,}1,0,1-{=A .若集合2 A .{0}B .{1}C .{0,1}D .{0,-1} .}{0,1=B ∩A ,所以}{0,1=}A ∈x ,2x =y |y {=B 因为 C 选解析: )(=B ∪)A U ∁(则,}3≤y ≤|1y {=B ,}2≤x ≤|0x {=A ,集合R =U 设全集)考中原名校联·(2018.3 A .(2,3]B .(-∞,1]∪(2,+∞)C .[1,2)D .(-∞,0)∪[1,+∞).)∞,+1[∪0),∞-(=B ∪)A U ∁(以,所}3≤y ≤|1y {=B ,}<0x 或2>x |x {=A U ∁因为 D 选解析: 4.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉)(=Q -P ,那么}2|<1-x ||x {=Q ,}<1x 2|log x {=P ,如果}Q A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3} .由}<3x |1<x {=Q ,所以3<x 1<得,12|<-x |由;}<2x |0<x {=P ,所以2<x 0<得,1<x 2log 由 B 选解析:题意,得P -Q ={x |0<x ≤1}.∪P .若}0≤b +ax +2x |x {=Q ,}2>0-y -2y |y {=P 已知集合)考河北正定中学月·(2018.5Q =R ,且P ∩Q =(2,3],则a +b =( )A .-5B .5C .-1D .1 ,所以1,3]-[=Q ,得](2,3=Q ∩P 及R =Q ∪P .由}1-<y 或2>y |y {=}2>0-y -2y |y {=P A 选解析:-a =-1+3,b =-1×3,即a =-2,b =-3,a +b =-5,故选A.6.(2018·唐山统一考) (是,则图中阴影部分表示的集合}<1x |2x {=B ,}6<0-x 5-2x |x {=A ,集合R =U 若全集)试A .{x |2<x <3}B .{x |-1<x ≤0}C .{x |0≤x <6}D .{x |x <-1} =B ,所以0<x ,解得1<x 2由.}<6x 1<-|x {=A ,所以6<x 1<-,解得06<-x 5-2x 由 C 选解析: C.选,故}<6x ≤|0x {=A ∩)B U ∁(以,所}0≥x |x {=B U ∁,A ∩)B U ∁(为.又题图中阴影部分表示的集合}<0x |x { )(是的取值范围m ,则实数}>4x |x {=B ∩A .若}m ≥x |x {=B ,}12>0-x -2x |x {=A .已知集合7 A .(-4,3)B .[-3,4]C .(-3,4)D .(-∞,4] 解析:选B 集合A ={x |x <-3或x >4},∵A ∩B ={x |x >4},∴-3≤m ≤4,故选B.)(为}{1,4,7合,则集}0=21+x 8-2x |x {=N ,}{2,3,5=M ,集合}<8x |0<Z ∈x {=U .已知全集8 )N U ∁(∩M .A)N ∩M (U ∁.B )N ∪M (U ∁.C N ∩)M U ∁(.D =N ∩M ,}{3,5=}{1,3,4,5,7∩{2,3,5}=)N U ∁(∩M ,}{2,6=N ,}{1,2,3,4,5,6,7=U 由已知得 C 选解析:选,}{6=}{2,6∩{1,4,6,7}=N ∩)M U ∁(,}{1,4,7=)N ∪M (U ∁,}{2,3,5,6=N ∪M ,},3,4,5,6,7{1=)N ∩M (U ∁,}{2 C.[大题综合练——迁移贯通].}R ∈m ,R ∈x ,0≤4-2m +mx 2-2x |x {=B ,}0≤3-x 2-2x |x {=A .已知集合1 (1)若A ∩B =[0,3],求实数m 的值;的取值范围.m ,求实数B R ∁⊆A 若)(2 解:由已知得A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2}.(1)因为A ∩B =[0,3],2.=m 所以⎩⎪⎨⎪⎧ m -2=0,m +2≥3.所以,}2+m >x 或2-m <x |x {=B R ∁(2) ,1-<2+m 或32>-m ,所以B R ∁⊆A 因为 即m >5或m <-3. 因此实数m 的取值范围是(-∞,-3)∪(5,+∞). 2.已知集合A ={x |1<x <3},集合B ={x |2m <x <1-m }. (1)当m =-1时,求A ∪B ; (2)若A ⊆B ,求实数m 的取值范围; (3)若A ∩B =∅,求实数m 的取值范围. 解:(1)当m =-1时,B ={x |-2<x <2}, 则A ∪B ={x |-2<x <3}. ,2-≤m 解得⎩⎪⎨⎪⎧ 1-m >2m ,2m≤1,1-m≥3,知B ⊆A 由)(2 即实数m 的取值范围为(-∞,-2]. (3)由A ∩B =∅,得 ,符合题意;∅=B 时,13≥m ,即m -1≥m 2若① ⎩⎪⎨⎪⎧ m <13,2m≥3,或⎩⎪⎨⎪⎧ m <13,1-m≤1时,需13<m ,即m -1<m 2若② .13<m ≤0即,∅或13<m ≤0得 综上知m ≥0,即实数m 的取值范围为[0,+∞). .}>1x 2|log x {=B ,}27≤x 3≤|3x {=A 已知集合)考江西玉山一中月·(2018.3;A ∪)B R ∁(,B ∩A 分别求)(1 (2)已知集合C ={x |1<x <a },若C ⊆A ,求实数a 的取值范围. ,33≤x 3≤13即,72≤x 3≤3∵(1)解: ∴1≤x ≤3,∴A ={x |1≤x ≤3}. ,22>log x 2log 即,1>x 2log ∵ ∴x >2,∴B ={x |x >2}. ∴A ∩B ={x |2<x ≤3}.B R∁∴,x|x{=}2≤A)B R∁(∴=∪≤.}3x|x{(2)由(1)知A={x|1≤x≤3},C⊆A.当C为空集时,满足C⊆A,a≤1;当C为非空集合时,可得1<a≤3.综上所述,a≤3.实数a的取值范围是{a|a≤3}.。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(二) 命题及其关系、充分条件与必要条件
课时达标检测(二) 命题及其关系、充分条件与必要条件[小题对点练——点点落实]对点练(一) 命题及其关系1.命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数解析:选C 由于“x ,y 都是偶数”的否定表达是“x ,y 不都是偶数”,“x +y 是偶数”的否定表达是“x +y 不是偶数”,故原命题的逆否命题为“若x +y 不是偶数,则x ,y 不都是偶数”,故选C.2.命题“若△ABC 有一内角为π3,则△ABC 的三内角成等差数列”的逆命题( ) A .与原命题同为假命题B .与原命题的否命题同为假命题C .与原命题的逆否命题同为假命题D .与原命题同为真命题解析:选D 原命题显然为真,原命题的逆命题为“若△ABC 的三内角成等差数列,则△ABC 有一内角为π3”,它是真命题. 3.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真解析:选D 对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.4.(2018·德州一中模拟)下列命题中为真命题的序号是________.①若x ≠0,则x +1x ≥2;②命题:若x 2=1,则x =1或x =-1的逆否命题为:若x ≠1且x ≠-1,则x 2≠1; ③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”.解析:当x<0时,x+1x≤-2,故①是假命题;根据逆否命题的定义可知,②是真命题;“a=±1”是“直线x-ay=0与直线x+ay=0互相垂直”的充要条件,故③是假命题;根据否命题的定义知④是真命题.答案:②④5.“在△ABC中,若∠C=90°,则∠A,∠B都是锐角”的否命题为:________________________________________________________________________.解析:原命题的条件:在△ABC中,∠C=90°,结论:∠A,∠B都是锐角.否命题是否定条件和结论.即“在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角”.答案:在△ABC中,若∠C≠90°,则∠A,∠B不都是锐角对点练(二)充分条件与必要条件1.(2016·山东高考)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.2.(2018·浙江名校联考)一次函数y=-mn x+1n的图象同时经过第一、三、四象限的必要不充分条件是()A.m>1,且n<1 B.mn<0C.m>0,且n<0 D.m<0,且n<0解析:选B因为y=-mn x+1n的图象经过第一、三、四象限,故-mn>0,1n<0,即m>0,n<0,但此为充要条件,因此,其必要不充分条件为mn<0.3.(2018·河南豫北名校联盟精英对抗赛)设a,b∈R,则“log2a>log2b”是“2a-b>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A log2a>log2b⇔a>b>0,2a-b>1⇔a>b,所以“log2a>log2b”是“2a-b>1”的充分不必要条件.故选A.4.(2018·重庆第八中学调研)定义在R上的可导函数f(x),其导函数为f′(x),则“f′(x)为偶函数”是“f(x)为奇函数”的()A.充分不必要条件B.必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B ∵f (x )为奇函数,∴f (-x )=-f (x ).∴[f (-x )]′=[-f (x )]′,∴f ′(-x )·(-x )′=-f ′(x ),∴f ′(-x )=f ′(x ),即f ′(x )为偶函数;反之,若f ′(x )为偶函数,如f ′(x )=3x 2,f (x )=x 3+1满足条件,但f (x )不是奇函数,所以“f ′(x )为偶函数”是“f (x )为奇函数”的必要不充分条件.故选B.5.(2018·山西怀仁一中期中)命题“∀x ∈[1,2),x 2-a ≤0”为真命题的一个充分不必要条件可以是( )A .a ≥4B .a >4C .a ≥1D .a >1解析:选B x 2-a ≤0⇔a ≥x 2.因为x 2∈[1,4),所以a ≥4.故a >4是已知命题的一个充分不必要条件.故选B.6.(2018·广东梅州质检)已知命题p :“方程x 2-4x +a =0有实根”,且綈p 为真命题的充分不必要条件为a >3m +1,则实数m 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(-∞,1)D .(0,1)解析:选B 命题p :“方程x 2-4x +a =0有实根”为真时,Δ=16-4a ≥0,∴a ≤4.∴綈p 为真命题时,a >4.又∵綈p 为真命题的充分不必要条件为a >3m +1,∴(3m +1,+∞)是(4,+∞)的真子集,∴3m +1>4,解得m >1,故选B.7.(2018·福建闽侯二中期中)设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.解析:由|4x -3|≤1,得12≤x ≤1;由x 2-(2a +1)·x +a (a +1)≤0,得a ≤x ≤a +1.∵綈p 是綈q 的必要不充分条件,∴q 是p 的必要不充分条件,∴p 是q 的充分不必要条件.∴⎣⎡⎦⎤12,1[a ,a +1].∴a ≤12.且a +1≥1,两个等号不能同时成立,解得0≤a ≤12.∴实数a 的取值范围是⎣⎡⎦⎤0,12. 答案:⎣⎡⎦⎤0,12[大题综合练——迁移贯通]1.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.2.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪y =x 2-32x +1,x ∈⎣⎡⎦⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝⎛⎭⎫x -342+716, ∵x ∈⎣⎡⎦⎤34,2,∴716≤y ≤2,∴A =⎩⎨⎧⎭⎬⎫y ⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2,∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件,∴A ⊆B ,∴1-m 2≤716,解得m ≥34或m ≤-34, 故实数m 的取值范围是⎝⎛⎦⎤-∞,-34∪⎣⎡⎭⎫34,+∞. 3.已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )(x -3a )<0}.(1)若x ∈A 是x ∈B 的充分条件,求a 的取值范围.(2)若A ∩B =∅,求a 的取值范围.解:A ={x |x 2-6x +8<0}={x |2<x <4},B ={x |(x -a )(x -3a )<0}.(1)当a =0时,B =∅,不合题意.当a >0时,B ={x |a <x <3a },要满足题意,则⎩⎪⎨⎪⎧a ≤2,3a ≥4,解得43≤a ≤2. 当a <0时,B ={x |3a <x <a },要满足题意,则⎩⎪⎨⎪⎧ 3a ≤2,a ≥4,无解. 综上,a 的取值范围为⎣⎡⎦⎤43,2.(2)要满足A ∩B =∅,当a >0时,B ={x |a <x <3a },则a ≥4或3a ≤2,即0<a ≤23或a ≥4.当a <0时,B ={x |3a <x <a },则a ≤2或a ≥43,即a <0. 当a =0时,B =∅,A ∩B =∅.综上,a 的取值范围为⎝⎛⎦⎤-∞,23∪[4,+∞).。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(十) 函数的图象及其应用 含解析
课时达标检测(十) 函数的图象及其应用[小题对点练——点点落实]对点练(一) 函数的图象1.(2018·陕西汉中教学质量检测)函数f (x )=⎝⎛⎭⎫x -1x sin x 的图象大致是( )解析:选D 令f (x )=0可得x =±1,或x =k π(k ≠0,k ∈Z),又f (-x )=⎝⎛⎭⎫-x +1x sin(-x )=⎝⎛⎭⎫x -1x sin x =f (x ),即函数f (x )=⎝⎛⎭⎫x -1x sin x 是偶函数,且经过点(1,0),(π,0),(2π,0),(3π,0),…,故选D.2.(2018·甘肃南裕固族自治县一中月考)已知函数f (x )=-x 2+2,g (x )=log 2|x |,则函数F (x )=f (x )·g (x )的图象大致为( )解析:选B f (x ),g (x )均为偶函数,则F (x )也为偶函数,由此排除A ,D.当x >2时,-x 2+2<0,log 2|x |>0,所以F (x )<0,排除C ,故选B.3.(2018·安徽蚌埠二中等四校联考)如图所示的图象对应的函数解析式可能是( )A .y =2x -x 2-1B .y =2x sin x 4x +1C .y =x ln xD .y =(x 2-2x )e x解析:选D A 中,y =2x -x 2-1,当x 趋于-∞时,函数y =2x 的值趋于0,y =x 2+1的值趋于+∞,所以函数y =2x -x 2-1的值小于0,故A 中的函数不满足.B 中,y =sin x 是周期函数,所以函数y =2x sin x4x +1的图象是以x 轴为中心的波浪线,故B 中的函数不满足.C中,函数y =x ln x的定义域为(0,1)∪(1,+∞),故C 中的函数不满足.D 中,y =x 2-2x ,当x <0或x >2时,y >0,当0<x <2时,y <0,且y =e x >0恒成立,所以y =(x 2-2x )e x 的图象在x 趋于+∞时,y 趋于+∞,故D 中的函数满足.4.(2018·昆明模拟)如图所示的图形是由一个半径为2的圆和两个半径为1的半圆组成的,它们的圆心分别是O ,O 1,O 2,动点P 从A 点出发沿着圆弧按A →O →B →C →A →D →B 的路线运动(其中A ,O ,O 1,O 2,B 五点共线),记点P 运动的路程为x ,设y =|O 1P |2,y 与x 的函数关系式为y =f (x ),则y =f (x )的大致图象是( )解析:选A 当x ∈[0,π]时,y =1.当x ∈(π,2π)时, O 1P ―→=O 2P ―→-O 2O 1―→,设O 2P ―→与O 2O 1―→的夹角为θ,因为|O 2P ―→|=1,|O 2O 1―→|=2,θ=x -π,所以y =|O 1P ―→|2=(O 2P ―→-O 2O 1―→)2=5-4cos θ=5+4cos x ,x ∈(π,2π),此时函数y =f (x )的图象是曲线,且单调递增,排除C ,D.当x ∈[2π,4π)时,因为O 1P ―→=OP ―→-OO 1―→,设OP ―→,OO 1―→的夹角为α,因为|OP ―→|=2,|OO 1―→|=1,α=2π-12x ,所以y =|O 1P ―→|2=(OP ―→-OO 1―→)2=5-4cos α=5-4cos 12x ,x ∈[2π,4π),此时函数y =f (x )的图象是曲线,且单调递减,排除B.故选A.对点练(二) 函数图象的应用问题1.(2018·福建厦门双十中学期中)已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,1e B .(-∞, e)。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(九) 对数与对数函数 Word版含解析
课时达标检测(九) 对数与对数函数[小题对点练——点点落实]对点练(一) 对数的运算1.(2018·山西重点协作体模拟)已知log 7[log 3(log 2x )]=0,那么x -12=( )A.13B.36C.33D.24解析:选D 由条件知,log 3(log 2x )=1,∴log 2x =3,∴x =8,∴x -12=24.故选D. 2.(2018·德阳模拟)计算:⎝⎛⎭⎫278-13+log 2(log 216)=________.解析:原式=⎝⎛⎭⎫23-3×⎛⎫⎪⎝⎭13-+log 24=23+2=83.答案:833.(2018·江西百校联盟模拟)已知14a =7b =4c =2,则1a -1b +1c=________.解析:14a =7b =4c =2,则a =log 142,b =log 72,c =log 42,∴1a =log 214,1b =log 27,1c =log 24,∴1a -1b +1c =log 214-log 27+log 24=log 28=3.答案:34.(2018·成都外国语学校模拟)已知2x =3,log 483=y ,则x +2y 的值为________.解析:由2x =3,log 483=y 得x =log 23,y =log 483=12log 283,所以x +2y =log 23+log 283=log 28=3.答案:35.若lg x +lg y =2lg(x -2y ),则xy 的值为________. 解析:∵lg x +lg y =2lg(x -2y ), ∴xy =(x -2y )2,即x 2-5xy +4y 2=0, 即(x -y )(x -4y )=0,解得x =y 或x =4y . 又x >0,y >0,x -2y >0,故x =y 不符合题意,舍去. ∴x =4y ,即xy =4. 答案:4对点练(二) 对数函数的图象及应用1.(2018·广东韶关南雄模拟)函数f (x )=x a 满足f (2)=4,那么函数g (x )=|log a (x +1)|的图象大致为( )解析:选C 法一:∵f (2)=4,∴2a =4,解得a =2,∴g (x )=|log 2(x +1)|=⎩⎪⎨⎪⎧log 2(x +1),x ≥0,-log 2(x +1),-1<x <0,∴当x ≥0时,函数g (x )单调递增,且g (0)=0;当-1<x <0时,函数g (x )单调递减.故选C.法二:由f (2)=4,即2a =4得a =2,∴g (x )=|log 2(x +1)|,函数g (x )是由函数y =|log 2x |向左平移一个单位得到的,只有C 项符合,故选C.2.(2018·深圳模拟)已知函数f (x )=|lg x |.若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是( )A .(22,+∞)B .[22,+∞)C .(3,+∞)D .[3,+∞)解析:选C f (x )=|lg x |的图象如图所示,由题知f (a )=f (b ),则有0<a <1<b ,∴f (a )=|lg a |=-lg a ,f (b )=|lg b |=lg b ,即-lg a =lg b ,则a =1b ,∴a +2b =2b +1b .令g (b )=2b +1b ,g ′(b )=2-1b2,显然当b∈(1,+∞)时,g ′(b )>0,∴g (b )在(1,+∞)上为增函数,∴g (b )=2b +1b>3,故选C.3.设平行于y 轴的直线分别与函数y 1=log 2x 及函数y 2=log 2x +2的图象交于B ,C 两点,点A (m ,n )位于函数y 2=log 2x +2的图象上,如图,若△ABC 为正三角形,则m ·2n =________.解析:由题意知,n =log 2m +2,所以m =2n -2.又BC =y 2-y 1=2,且△ABC 为正三角形,所以可知B (m +3,n -1)在y 1=log 2x 的图象上,所以n -1=log 2(m +3),即m =2n -1-3,所以2n =43,所以m =3,所以m ·2n =3×43=12.答案:124.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.解析:问题等价于函数y =f (x )与y =-x +a 的图象有且只有一个交点,结合函数图象可知a >1.答案:(1,+∞)对点练(三) 对数函数的性质及应用 1.(2018·湖北孝感统考)函数f (x )=1ln (3x +1)的定义域是( )A.⎝⎛⎭⎫-13,+∞ B.⎝⎛⎭⎫-13,0∪(0,+∞) C.⎣⎡⎭⎫-13,+∞ D .[0,+∞)解析:选B 由⎩⎪⎨⎪⎧3x +1>0,ln (3x +1)≠0,解得x >-13且x ≠0,故选B.2.(2018·河南新乡模拟)设a =60.4,b =log 0.40.5,c =log 80.4,则a ,b ,c 的大小关系是( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:选B ∵a =60.4>1,b =log 0.40.5∈(0,1),c =log 80.4<0,∴a >b >c .故选B. 3.若log a 23<1(a >0,且a ≠1),则实数a 的取值范围是( )A.⎝⎛⎭⎫0,23 B .(1,+∞) C.⎝⎛⎭⎫0,23∪(1,+∞) D.⎝⎛⎭⎫23,1解析:选C 当0<a <1时,log a 23<log a a =1,∴0<a <23;当a >1时,log a 23<log a a =1,∴a >1.∴实数a 的取值范围是⎝⎛⎭⎫0,23∪(1,+∞). 4.(2018·郴州模拟)设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)解析:选A 由f (x )是奇函数可得a =-1,∴f (x )=lg 1+x1-x ,定义域为(-1,1).由f (x )<0,可得0<1+x1-x<1,∴-1<x <0.5.(2018·长沙模拟)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)解析:选A 令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,其图象的对称轴为x=a ,要使函数f (x )在(-∞,1]上单调递减,则⎩⎪⎨⎪⎧ g (1)>0,a ≥1,即⎩⎪⎨⎪⎧2-a >0,a ≥1,解得1≤a <2,即a ∈[1,2),故选A.6.(2018·商丘模拟)已知f (x )=log a (1+x )+log a (3-x )(a >0,a ≠1),且f (1)=2,则f (x )在区间⎣⎡⎦⎤0,32上的最大值为( ) A .4 B .2 C .6D .8解析:选B ∵f (1)=2,∴log a 4=2(a >0,a ≠1),∴a =2,f (x )=log 2(1+x )+log 2(3-x )=log 2(1+x )(3-x )=log 2[-(x -1)2+4],∴当x ∈[0,1]时, f (x )是增函数;当x ∈⎝⎛⎦⎤1,32时,f (x )是减函数.故函数f (x )在⎣⎡⎦⎤0,32上的最大值是f (1)=2. 7.(2018·辽宁沈阳模拟)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm =________.解析:∵f (x )=|log 3x |,正实数m ,n 满足m <n ,且f (m )=f (n ),∴-log 3m =log 3n ,∴mn =1.∵f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,∴-log 3m 2=2或log 3n =2.若-log 3m 2=2,得m =13,则n =3,此时log 3n =1,满足题意.那么n m =3÷13=9.同理,若log 3n =2,得n =9,则m =19,此时-log 3m 2=4>2,不满足题意.综上可得nm =9.答案:9[大题综合练——迁移贯通]1.已知函数f (x )=log 21+axx -1(a 为常数)是奇函数.(1)求a 的值与函数f (x )的定义域;(2)若当x ∈(1,+∞)时,f (x )+log 2(x -1)>m 恒成立,求实数m 的取值范围. 解:(1)∵函数f (x )=log 21+axx -1是奇函数,∴f (-x )=-f (x ),∴log 21-ax -x -1=-log 21+ax x -1,即log 2ax -1x +1=log 2x -11+ax ,∴a =1,f (x )=log 21+xx -1.令1+x x -1>0,得⎩⎪⎨⎪⎧ 1+x >0,x -1>0,或⎩⎪⎨⎪⎧1+x <0,x -1<0,解得x <-1或x >1.∴函数f (x )的定义域为{x |x <-1或x >1}. (2)∵f (x )+log 2(x -1)=log 2(1+x ), 当x >1时,x +1>2,∴log 2(1+x )>log 22=1. ∵当x ∈(1,+∞)时,f (x )+log 2(x -1)>m 恒成立, ∴m ≤1.∴m 的取值范围是(-∞,1].2.(2018·枣庄模拟)设x ∈[2,8]时,函数f (x )=12log a (ax )·log a (a 2x )(a >0,且a ≠1)的最大值是1,最小值是-18,求实数a 的值.解:f (x )=12(log a x +1)(log a x +2)=12[(log a x )2+3log a x +2] =12⎝⎛⎭⎫log a x +322-18. 当f (x )取最小值-18时,log a x =-32.∵x ∈[2,8],∴a ∈(0,1). ∵f (x )是关于log a x 的二次函数,∴f (x )的最大值必在x =2或x =8处取得.若12⎝⎛⎭⎫log a 2+322-18=1,则a =2-13, 此时f (x )取得最小值时,x =(2-13)-23=2∉[2,8],舍去;若12⎝⎛⎭⎫log a 8+322-18=1,则a =12, 此时f (x )取得最小值时,x =⎝⎛⎭⎫12-32=22∈[2,8],符合题意.∴a =12. 3.(2018·江西师大附中诊断)已知函数f (x )=log a x +m (a >0且a ≠1)的图象过点(8,2),点P (3,-1)关于直线x =2的对称点Q 在f (x )的图象上.(1)求函数f (x )的解析式;(2)令g (x )=2f (x )-f (x -1),求g (x )的最小值及取得最小值时x 的值. 解:(1)点P (3,-1)关于直线x =2的对称点Q 的坐标为(1,-1).由⎩⎪⎨⎪⎧ f (8)=2,f (1)=-1,得⎩⎪⎨⎪⎧m +log a 8=2,m +log a 1=-1,解得m =-1,a =2,故函数f (x )的解析式为f (x )=-1+log 2x .(2)g (x )=2f (x )-f (x -1)=2(-1+log 2x )-[-1+log 2(x -1)]=log 2x 2x -1-1(x >1),∵x 2x -1=(x -1)2+2(x -1)+1x -1 =(x -1)+1x -1+2≥2(x -1)·1x -1+2=4,当且仅当x-1=1x-1,即x=2时,“=”成立,而函数y=log2x在(0,+∞)上单调递增,则log2x 2x-1-1≥log24-1=1,故当x=2时,函数g(x)取得最小值1.。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测 函数与方程 Word版含解析
课时达标检测(十一)函数与方程[小题对点练——点点落实]对点练(一)函数的零点问题1.(2018·河北武邑中学基础训练)方程ln(x+1)-2x=0(x>0)的根存在的大致区间是( )A.(0,1)B.(1,2)C.(2,e) D.(3,4)解析:选B令f(x)=ln(x+1)-2x,则f(1)=ln(1+1)-2=ln 2-2<0,f(2)=ln 3-1>0,所以函数f(x)的零点所在大致区间为(1,2).故选B.2.(2018·四川双流中学必得分训练)函数f(x)=2x+2x的零点所处的区间是( )A.[-2,-1]B.[-1,0]C.[0,1]D.[1,2]解析:选B f(-2)=2-2+2×(-2)<0,f(-1)=2-1+2×(-1)<0,f(0)=20+0>0,由零点存在性定理知,函数f(x)的零点在区间[-1,0]上.故选B.3.(2018·云南大理州统测)函数f(x)=错误!的零点个数是( )A.0B.1C.2D.3解析:选D当x>0时,令f(x)=0可得x=1;当x≤0时,令f(x)=0可得x=-2或x=0.因此函数的零点个数为3.故选D.4.关于x的方程|x2-2x|=a2+1(a>0)的解的个数是( )A.1B.2C.3D.4∵a>0,∴a2+1>1.而y=|x2-2x|的图象如图所示,∴y=|x2-2x|的图象解析:选B 图象总有2个交点,即方程|x2-2x|=a2+1(a>0)的解的个数是2.与y=a2+1的5.函数f(x)=2sin πx-x+1的零点个数为( )A.4B.5C.6D.7解析:选B令2sin πx-x+1=0,得2sin πx=x-1,令h(x)=2sin πx,g(x)=x-1,则f(x)=2sin πx-x+1的零点个数问题就转化为函数h(x)与g(x)的图象的交点个数问题.h(x)=2sin πx的最小正周期为T=2ππ=2,画出两个函数的图象,如图所示,因为h(1)=g(1),h⎝⎛⎭⎪⎫52>g⎝⎛⎭⎪⎫52,g(4)=3>2,g(-1)=-2,所以两个函数图象的交点共5个,所以f(x)=2sin πx-x+1的零点个数为5.对点练(二) 函数零点的应用问题1.已知函数f (x )=log 3x +2x-a 在区间(1,2)内有零点,则实数a 的取值范围是( )A .(-1,-log 32)B .(0,log 52)C .(log 32,1)D .(1,log 34)解析:选C ∵单调函数f (x )=log 3x +2x-a 在区间(1,2)内有零点,∴f (1)·f (2)<0,即(1-a )·(log 32-a )<0,解得log 32<a <1,故选C.2.(2018·甘肃天水一中月考)已知函数f (x )=lnx -ax 2+ax 恰有两个零点,则实数a 的取值范围为( )A .(-∞,0)B .(0,+∞)C .(0,1)∪(1,+∞)D .(-∞,0)∪{1}解析:选C 由题意,显然x =1是函数f (x )的一个零点,取a =-1,则f (x )=ln x +x 2-x ,f ′(x )=2x2-x +1x=2⎝ ⎛⎭⎪⎫x -142+78x>0恒成立.则f (x )仅有一个零点,不符合题意,排除A 、D ;取a =1,则f (x )=ln x -x 2+x ,f ′(x )=1-2x2+x x=错误!,f ′(x )=0得x =1,则f (x )在(0,1)上递增,在(1,+∞)上递减,f (x )max =f (1)=0,即f (x )仅有一个零点,不符合题意,排除B ,故选C.3.已知函数f (x )=⎩⎪⎨⎪⎧sin πx,0≤x≤1,log2 017x ,x>1,若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则a +b +c 的取值范围是( )A .(1,2 017)B .(1,2 018)C .[2,2 018]D .(2,2 018)解析:选D 作出函数f (x )的图象与直线y =m ,如图所示,不妨设a <b <c ,当0≤x ≤1时,函数f (x )的图象与直线y =m 的交点分别为A ,B ,由正弦曲线的对称性,可得A (a ,m )与B (b ,m )关于直线x =12对称,因此a +b =1,当直线y =m =1时,由log 2 017x =1,解得x =2 017.若满足f (a )=f (b )=f (c ),且a ,b ,c 互不相等,由a <b <c 可得1<c <2 017,因此可得2<a +b +c <2 018,即a +b +c ∈(2,2 018).故选D.4.(2018·孝感模拟)若函数f (x )=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,14B.⎝ ⎛⎭⎪⎫-14,12C.⎝ ⎛⎭⎪⎫14,12D.⎣⎢⎡⎦⎥⎤-14,12解析:选C 依题意并结合函数f (x )的图象可知,错误!即错误!解得14<m <12.5.(2018·广东七校联合体联考)若函数f (x )=2x +a 2x -2a 的零点在区间(0,1)上,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,12B .(-∞,1)C.⎝ ⎛⎭⎪⎫12,+∞ D .(1,+∞)解析:选C 易知函数f (x )的图象连续,且在(0,1)上单调递增.∴f (0)f (1)=(1-2a )(2+a 2-2a )<0,解得a >12.6.已知x 0是f (x )=⎝ ⎛⎭⎪⎫12x +1x的一个零点,x 1∈(-∞,x 0),x 2∈(x 0,0),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)>0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)<0,f (x 2)>0解析:选C 在同一坐标系下作出函数f (x )=⎝ ⎛⎭⎪⎫12x ,f (x )=-1x 的图象(图略),由图象可知当x ∈(-∞,x 0)时,⎝ ⎛⎭⎪⎫12x >-1x ;当x ∈(x 0,0)时,⎝ ⎛⎭⎪⎫12x<-1x ,所以当x 1∈(-∞,x 0),x 2∈(x 0,0)时,有f (x 1)>0,f (x 2)<0.7.(2018·龙岩质检)已知f (x )是奇函数,且是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是________.解析:令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ),因为f (x )是R 上的单调函数,所以2x 2+1=x -λ,即2x 2-x +1+λ=0只有一个实根,则Δ=1-8(1+λ)=0,解得λ=-78.答案:-788.已知函数f (x )=错误!若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.函数g (x )=f (x )-m 有3个零点,转化为f (x )-m =0的根有3个,进而转解析:f (x ),y =m 的交点有3个.画出函数y =f (x )的图象,则直线y =m 与其化为y =共点.又抛物线顶点为(-1,1),由图可知实数m 的取值范围是(0,1).有3个公答案:(0,1)[大题综合练——迁移贯通]1.已知a 是正实数,函数f (x )=2ax 2+2x -3-a .如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.2ax 2+2x -3-a 的对称轴为x =-12a .解:f (x )=12a ≤-1,即0<a ≤12时,须使错误!即错误!∴无解.①当-②当-1<-12a <0,即a >12时,须使错误!即错误!解得a ≥1,∴a 的取值范围是[1,+∞).2.(2018·德州模拟)已知函数f (x )=-x 2-2x .g (x )=⎩⎪⎨⎪⎧x +14x ,x>0,x +1,x≤0.(1)求g [f (1)]的值;(2)若方程g [f (x )]-a =0有4个实数根,求实数a 的取值范围.解:(1)∵f (1)=-12-2×1=-3,=g (-3)=-3+1=-2.∴g [f (1)]=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)内有2个不(2)令f (x )方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,同的解,则原作出函数y =g (t )(t <1)的图象,如图所示,由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎢⎡⎭⎪⎫1,54.3.(2018·信阳模拟)已知函数f (x )=log 2(2x +1). (1)求证:函数f (x )在(-∞,+∞)上单调递增;(2)若g (x )=log 2(2x -1)(x >0),且关于x 的方程g (x )=m +f (x )在[1,2]上有解,求m 的取值范围.解:(1)证明:∵函数f (x )=log 2(2x +1),任取x 1<x 2,则f (x 1)-f (x 2)=log 2(2x 1+1)-log 2(2x 2+1)=log 22x1+12x2+1,∵x 1<x 2,∴0<2x1+12x2+1<1,∴log 22x1+12x2+1<0,∴f (x 1)<f (x 2),∴函数f (x )在(-∞,+∞)上单调递增.(2)∵g (x )=m +f (x ),∴m =g (x )-f (x )=log 2(2x -1)-log 2(2x +1)=log 22x -12x +1=log 2⎝ ⎛⎭⎪⎫1-22x +1, ∵1≤x ≤2,∴2≤2x ≤4,∴log 213≤log 2⎝ ⎛⎭⎪⎫1-22x +1≤log 235, 故m 的取值范围为⎣⎢⎡⎦⎥⎤log213,log235.。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(三十) 数列的综合问题 Word版含解析
课时达标检测(三十) 数列的综合问题[小题常考题点——准解快解]1.(2018·安徽六安一中月考)已知数列{a n }的通项公式为a n =5-n ,其前n 项和为S n ,将数列{a n }的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列{b n }的前3项,记{b n }的前n 项和为T n .若存在m ∈N *,使对任意n ∈N *,S n ≤T m +λ恒成立,则实数λ的取值范围是( )A .[2,+∞)B .(3,+∞)C .[3,+∞)D .(2,+∞)解析:选D 依题意得S n =(4+5-n )n 2=n (9-n )2,根据二次函数的性质,n =4,5时,S n 取得最大值为10.另外,根据通项公式得数列{a n }的前4项为a 1=4,a 2=3,a 3=2,a 4=1,观察易知抽掉第二项后,余下的三项可组成等比数列.所以数列{b n }中,b 1=4,公比q =12,所以T n =4⎝⎛⎭⎫1-12n 1-12=8⎝⎛⎭⎫1-12n ,所以4≤T n <8.因为存在m ∈N *,对任意n ∈N *,S n ≤T m +λ恒成立,所以10<8+λ,所以λ>2.故选D.2.(2018·北京景山学校段测)已知数列{a n }满足a 1=1,P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上,如果函数f (n )=1n +a 1+1n +a 2+…+1n +a n(n ∈N *,n ≥2),那么函数f (n )的最小值为( )A.13 B .14C.712D .512解析:选C 将点P 的坐标代入直线方程,得a n +1-a n =1,所以{a n }是首项为1,公差为1的等差数列,所以a n =n ,所以f (n )=1n +1+1n +2+…+1n +n ,f (n +1)=1n +2+1n +3+…+1n +n +2,所以f (n +1)-f (n )=1n +n +1+1n +n +2-1n +1>12n +2+12n +2-1n +1=0,所以f (n )单调递增,故f (n )的最小值为f (2)=712,故选C.3.(2018·江西金溪一中月考)据统计测量,已知某养鱼场,第一年鱼的质量增长率为200%,以后每年的增长率为前一年的一半.若饲养5年后,鱼的质量预计为原来的t 倍.下列选项中,与t 值最接近的是( )A .11B .13C .15D .17解析:选B 设鱼原来的质量为a ,饲养n 年后鱼的质量为a n ,q =200%=2,则a 1=a (1+q ),a 2=a 1⎝⎛⎭⎫1+q 2=a (1+q )⎝⎛⎭⎫1+q 2,…,a 5=a (1+2)×(1+1)×⎝⎛⎭⎫1+12×⎝⎛⎭⎫1+122×⎝⎛⎭⎫1+123=40532a ≈12.7a ,即5年后,鱼的质量预计为原来的12.7倍,故选B. 4.(2018·湖北襄阳四校联考)我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列1,12,13,14,…,1n .①第二步:将数列①的各项乘以n2,得到一个新数列a 1,a 2,a 3,…,a n .则a 1a 2+a 2a 3+a 3a 4+…+a n -1a n =( ) A.n 24 B .(n -1)24C.n (n -1)4D .n (n +1)4解析:选C 由题意知所得新数列为1×n 2,12×n 2,13×n 2,…,1n ×n2,所以a 1a 2+a 2a 3+a 3a 4+…+a n-1a n=n 24⎣⎢⎡⎦⎥⎤11×2+12×3+13×4+…+1(n -1)×n =n 24⎣⎢⎡⎦⎥⎤⎣⎡⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎣⎢⎡⎭⎪⎫1n -1-1n =n 24⎣⎡⎭⎫1-1n =n (n -1)4,故选C. 5.(2018·辽宁盘锦高中月考)数列{a n }满足a 1=14,a n +1=14-4a n,若不等式a 2a 1+a 3a 2+…+a n +2a n +1<n +λ对任何正整数n 恒成立,则实数λ的最小值为( ) A.74 B .34C.78D .38解析:选A 因为数列{a n }满足a 1=14,a n +1=14-4a n,所以反复代入计算可得a 2=26,a 3=38,a 4=410,a 5=512,…,由此可归纳出通项公式a n =n 2(n +1),经验证,成立.所以a n +1an=1+1n (n +2)=1+12⎝ ⎛⎭⎪⎫1n -1n +2,所以a 2a 1+a 3a 2+…+a n +2a n +1=n +1+12⎝ ⎛⎭⎪⎫1+12-1n +2-1n +3=n+74-12⎣⎢⎡⎭⎪⎫1n +2+1n +3.因为要求a 2a 1+a 3a 2+…+a n +2a n +1<n +λ对任何正整数n 恒成立,所以λ≥74.故选A.6.已知数列{a n }满足a n +2-a n +1=a n +1-a n ,n ∈N *,且a 5=π2,若函数f (x )=sin 2x +2cos 2x2,记y n =f (a n ),则数列{y n }的前9项和为( )A .0B .-9C .9D .1解析:选C 由已知可得,数列{a n }为等差数列,f (x )=sin 2x +cos x +1,∴f ⎝⎛⎭⎫π2=1.∵f (π-x )=sin(2π-2x )+cos(π-x )+1=-sin 2x -cos x +1,∴f (π-x )+f (x )=2.∵a 1+a 9=a 2+a 8=…=2a 5=π,∴f (a 1)+…+f (a 9)=2×4+1=9,即数列{y n }的前9项和为9.7.(2018·四川成都石室中学模拟)若f (x )=x m +ax 的导函数为f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N *)的前n 项和为( ) A.n n +1 B .n +2n +1C.n n -1D .n +1n解析:选A 因为f (x )=x m +ax ,所以f ′(x )=mx m -1+a .又因为f ′(x )=2x +1,所以m =2,a =1,所以f (n )=n 2+n =n (n +1),所以1f (n )=1n (n +1)=1n -1n +1,所以数列⎩⎨⎧⎭⎬⎫1f (n )的前n 项和为1f (1)+1f (2)+…+1f (n )=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1.故选A.8.(2018·河南新乡模拟)若数列{a n +1-a n }是等比数列,且a 1=1,a 2=2,a 3=5,则a n=________.解析:∵a 2-a 1=1,a 3-a 2=3,∴q =3,∴a n +1-a n =3n -1,∴a n -a 1=a 2-a 1+a 3-a 2+…+a n -1-a n -2+a n -a n -1=1+3+…+3n -2=3n -1-12,∵a 1=1,∴a n =3n -1+12.答案:3n -1+129.(2018·广东潮州模拟)已知S n 为数列{a n }的前n 项和,a n =2·3n -1(n ∈N *),若b n =a n +1S n S n +1,则b 1+b 2+…+b n =________.解析:由a n =2·3n -1可知数列{a n }是以2为首项,3为公比的等比数列,所以S n =2(1-3n )1-3=3n-1,则b n =a n +1S n S n +1=S n +1-S n S n S n +1=1S n -1S n +1,则b 1+b 2+…+b n =⎝⎛⎭⎫1S 1-1S 2+⎝⎛⎭⎫1S 2-1S 3+…+⎝⎛⎭⎪⎫1S n -1S n +1=1S 1-1S n +1=12-13n +1-1.答案:12-13n +1-110.(2018·安徽六安一中段测)已知f (x )是定义在R 上不恒为零的函数,对于任意的x ,y ∈R 都有f (xy )=xf (y )+yf (x )成立,数列{a n }满足a n =f (3n )(n ∈N *),且a 1=3,则数列{a n }的通项公式a n =________.解析:因为a n =f (3n ),所以a n +1=f (3n +1)且a 1=3=f (3).又因为对于任意的x ,y ∈R 都有f (xy )=xf (y )+yf (x )成立,所以令x =3n ,y =3,则f (3n +1)=3n f (3)+3f (3n ),所以a n +1=3a n +3·3n,所以a n +13n +1-a n 3n =1,所以⎩⎨⎧⎭⎬⎫a n 3n 是以1为首项,1为公差的等差数列,所以a n3n =1+(n-1)×1=n ,所以a n =n ·3n .答案:n ·3n[大题常考题点——稳解全解]1.(2018·山西八校联考)已知等比数列{a n }的公比q >1,a 1=1,且2a 2,a 4,3a 3成等差数列.(1)求数列{a n }的通项公式;(2)记b n =2na n ,求数列{b n }的前n 项和T n .解:(1)由2a 2,a 4,3a 3成等差数列可得2a 4=2a 2+3a 3, 即2a 1q 3=2a 1q +3a 1q 2, 又q >1,a 1=1,故2q 2=2+3q , 即2q 2-3q -2=0,得q =2,因此数列{a n }的通项公式为a n =2n -1. (2)b n =2n ×2n -1=n ×2n ,T n =1×2+2×22+3×23+…+n ×2n ,① 2T n =1×22+2×23+3×24+…+n ×2n +1.② ①-②得-T n =2+22+23+…+2n -n ×2n +1, -T n =2(2n -1)2-1-n ×2n +1,T n =(n -1)×2n +1+2.2.(2017·山东高考)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2. (1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2),…,P n +1(x n +1,n +1)得到折线P 1P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .解:(1)设数列{x n }的公比为q ,由已知得q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2.所以3q 2-5q -2=0.因为q >0,所以q =2,x 1=1,因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,…,Q n +1.由(1)得x n +1-x n =2n-2n -1=2n -1,记梯形P n P n +1Q n +1Q n 的面积为b n ,由题意得b n =(n +n +1)2×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+…+b n =3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2.①又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1.② ①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n +12.3.(2018·河北二市联考)在等比数列{a n }中,a n >0(n ∈N *),a 1a 3=4,且a 3+1是a 2和a 4的等差中项,若b n =log 2a n +1.(1)求数列{b n }的通项公式; (2)若数列{c n }满足c n =a n +1+1b 2n -1·b 2n +1,求数列{c n }的前n 项和.解:(1)设等比数列{a n }的公比为q ,且q >0, 在等比数列{a n }中,由a n >0,a 1a 3=4得,a 2=2,① 又a 3+1是a 2和a 4的等差中项, 所以2(a 3+1)=a 2+a 4,②把①代入②得,2(2q +1)=2+2q 2, 解得q =2或q =0(舍去), 所以a n =a 2q n -2=2n -1, 则b n =log 2a n +1=log 22n =n . (2)由(1)得,c n =a n +1+1b 2n -1·b 2n +1=2n +1(2n -1)(2n +1)=2n+12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以数列{c n }的前n 项和S n =2+22+…+2n +12⎣⎢⎡⎦⎥⎤(1-13)+⎝⎛⎭⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1 =2(1-2n )1-2+12⎝ ⎛⎭⎪⎫1-12n +1 =2n +1-2+n2n +1.4.(2018·河北定州中学阶段性检测)已知数列{a n }的前n 项和为S n ,且S n =n 22+3n2.(1)求数列{a n }的通项公式; (2)若数列{b n }满足b n =a n +2-a n +1a n +2·a n,且数列{b n }的前n 项和为T n ,求证:T n <2n +512. 解:(1)因为S n =n 22+3n2,①所以当n ≥2时,S n -1=(n -1)22+3(n -1)2,②所以由①②两式相减得a n =S n -S n -1=n 22+3n 2-(n -1)22-3(n -1)2=n +1.又因为n =1时,a 1=S 1=2适合a n =n +1, 所以a n =n +1.(2)证明:由(1)知b n =n +3-(n +1)+1(n +3)(n +1)=2+12⎝ ⎛⎭⎪⎫1n +1-1n +3,所以T n =b 1+b 2+b 3+…+b n=2n +12⎝ ⎛⎭⎪⎫12-14+13-15+…+1n +1-1n +3 =2n +12⎝ ⎛⎭⎪⎫12+13-1n +2-1n +3=2n +512-12⎝ ⎛⎭⎪⎫1n +2+1n +3<2n +512.。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(五十二) 排列、组合 Word版含解析
课时达标检测(五十二)排列、组合[小题对点练——点点落实]对点练(一)两个计数原理1.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一个有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9B.14C.15 D.21解析:选B当x=2时,x≠y,点的个数为1×7=7个.当x≠2时,由P⊆Q,∴x=y,∴x可从3,4,5,6,7,8,9中取,有7种方法,因此满足条件的点的个数是7+7=14.2.(2018·云南调研)设集合A={-1,0,1},集合B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y∈A∪B},则A*B中元素的个数是()A.7 B.10C.25D.52解析:选B因为集合A={-1,0,1},集合B={0,1,2,3},所以A∩B={0,1},A∪B={-1,0,1,2,3},所以x有2种取法,y有5种取法,所以根据分步乘法计数原理得有2×5=10(个).3.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种解析:选B赠送1本画册,3本集邮册.需从4人中选取1人赠送画册,其余赠送集邮册,有4种方法.赠送2本画册,2本集邮册,只需从4人中选出2人赠送画册,其余2人赠送集邮册,有6种方法.由分类加法计数原理,不同的赠送方法有4+6=10(种).4.(2018·绍兴模拟)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为() A.243 B.252C.261 D.279解析:选B0,1,2,…,9共能组成9×10×10=900个三位数,其中无重复数字的三位数有9×9×8=648个,∴有重复数字的三位数的个数为900-648=252.5.有4件不同颜色的衬衣,3件不同花样的裙子,另有2套不同样式的连衣裙.需选择一套服装参加“五一”节歌舞演出,则不同的选择方式种数为()A.24 B.14C.10 D.9解析:选B第一类:一件衬衣,一件裙子搭配一套服装有4×3=12种方式;第二类:选2套连衣裙中的一套服装有2种选法,由分类加法计数原理,共有12+2=14种选择方式.6.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法总数为________.解析:先染顶点S,有5种染法,再染顶点A有4种染法,染顶点B有3种染法,顶点C的染法有两类:若C与A同色,则顶点D有3种染法;若C与A不同色,则C有2种染法,D有2种染法,所以共有5×4×3×3+5×4×3×2×2=420种染色方法.答案:420对点练(二)排列、组合问题1.(2018·福建漳州八校联考)有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有()A.34种B.48种C.96种D.144种解析:选C特殊元素优先安排,先让甲从头、尾中选取一个位置,有C12种选法,乙、丙相邻,捆绑在一起看作一个元素,与其余三个元素全排列,最后乙、丙可以换位,故共有C12·A44·A22=96种排法,故选C.2.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为()A.10 B.20C.30 D.40解析:选B将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么必然是一个宿舍2名,而另一个宿舍3名,共有C35C22A22=20(种).3.“住房”“医疗”“教育”“养老”“就业”成为现今社会关注的五个焦点.小赵想利用国庆节假期调查一下社会对这些热点的关注度.若小赵准备按照顺序分别调查其中的4个热点,则“住房”作为其中的一个调查热点,但不作为第一个调查热点的种数为()A.13 B.24C.18 D.72解析:选D可分三步:第一步,先从“医疗”“教育”“养老”“就业”这4个热点中选出3个,有C34种不同的选法;第二步,在调查时,“住房”安排的顺序有A13种可能情况;第三步,其余3个热点调查的顺序有A33种排法.根据分步乘法计数原理可得,不同调查顺序的种数为C34A13A33=72.4.(2017·舟山二模)将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.18种B.24种C.36种D.72种解析:选C1个路口3人,其余路口各1人的分配方法有C13A33种.1个路口1人,2个路口各2人的分配方法有C23A33种,由分类加法计数原理知,甲、乙在同一路口的分配方案为C13A33+C23A33=36(种).5.(2018·豫南九校联考)某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有()A.72种B.36种C.24种D.18种解析:选B A12(C23C13+C13C23)=36(种).6.7位身高均不等的同学排成一排照相,要求中间最高,依次往两端身高逐渐降低,共有________种排法.解析:先排最中间位置有1种排法,再排左边3个位置,由于顺序一定,共有C36种排法,再排剩下右边三个位置,共1种排法,所以排法种数为C36=20.答案:207.把座位编号为1,2,3,4,5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为________(用数字作答).解析:先将票分为符合条件的4份,由题意,4人分5张票,且每人至少一张,至多两张,则三人每人一张,一人2张,且分得的票必须是连号,相当于将1,2,3,4,5这五个数用3个板子隔开,分为四部分且不存在三连号.在4个空位插3个板子,共有C34=4种情况,再对应到4个人,有A44=24种情况,则共有4×24=96种情况.答案:968.若把英语单调“good”的字母顺序写错了,则可能出现的错误种数共有________种.解析:把g,o,o,d 4个字母排一行,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o,共1种排法,所以总的排法种数为A24=12种.其中正确的有一种,所以错误的共A24-1=12-1=11(种).答案:11[大题综合练——迁移贯通]1.从4名男同学中选出2人,6名女同学中选出3人,并将选出的5人排成一排.(1)共有多少种不同的排法?(2)若选出的2名男同学不相邻,共有多少种不同的排法?(用数字表示)解:(1)从4名男生中选出2人,有C24种选法,从6名女生中选出3人,有C36种选法,根据分步乘法计数原理知选出5人,再把这5个人进行排列共有C24C36A55=14 400(种).(2)在选出的5个人中,若2名男生不相邻,则第一步先排3名女生,第二步再让男生插空,根据分步乘法计数原理知共有C24C36A33A24=8 640(种).2.有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文科代表;(3)某男生必须包括在内,但不担任数学科代表;(4)某女生一定要担任语文科代表,某男生必须担任科代表,但不担任数学科代表.解:(1)先选后排,可以是2女3男,也可以是1女4男,先选有C35C23+C45C13种情况,后排有A55种情况,则符合条件的选法数为(C35C23+C45C13)·A55=5 400.(2)除去该女生后,先选后排,则符合条件的选法数为C47·A44=840.(3)先选后排,但先安排该男生,则符合条件的选法数为C47·C14·A44=3 360.(4)先从除去该男生该女生的6人中选3人有C36种情况,再安排该男生有C13种情况,选出的3人全排有A33种情况,则符合条件的选法数为C36·C13·A33=360.3.有编号分别为1,2,3,4的四个盒子和四个小球,把小球全部放入盒子.(1)共有多少种放法?(2)恰有一个空盒,有多少种放法?(3)恰有2个盒子内不放球,有多少种放法?解:(1)∵1号球可放入任意一个盒子内,有4种放法.同理,2,3,4号小球也各有4种放法,∴共有44=256种放法.(2)恰有一个空盒,则这4个盒子中只有3个盒子内有小球,且小球数只能是1,1,2. 先从4个小球中任选2个放在一起,有C 24种方法,然后与其余2个小球看成三组,分别放入4个盒子中的3个盒子中,有A 34种放法.∴由分步乘法计数原理知共有C 24A 34=144种不同的放法.(3)恰有2个盒子内不放球,也就是把4个小球只放入2个盒子内,有两类放法: ①一个盒子内放1个球,另一个盒子内放3个球.先把小球分为两组,一组1个,另一组3个,有C 14种分法,再放到2个盒子内,有A 24种放法,共有C 14A 24种放法;②把4个小球平均分成2组,每组2个,有C 242种分法,放入2个盒子内,有A 24种放法,共有12C 24A 24种放法. ∴由分类加法计数原理知共有C 14A 24+12C 24A 24=84种不同的放法.。
配套K122018-2019学年高中新创新一轮复习理数通用版:课时达标检测(十) 函数的图象及其应用
课时达标检测(十) 函数的图象及其应用[小题对点练——点点落实]对点练(一) 函数的图象1.(2018·陕西汉中教学质量检测)函数f (x )=⎝⎛⎭⎫x -1x sin x 的图象大致是( )解析:选D 令f (x )=0可得x =±1,或x =k π(k ≠0,k ∈Z),又f (-x )=⎝⎛⎭⎫-x +1x sin(-x )=⎝⎛⎭⎫x -1x sin x =f (x ),即函数f (x )=⎝⎛⎭⎫x -1x sin x 是偶函数,且经过点(1,0),(π,0),(2π,0),(3π,0),…,故选D.2.(2018·甘肃南裕固族自治县一中月考)已知函数f (x )=-x 2+2,g (x )=log 2|x |,则函数F (x )=f (x )·g (x )的图象大致为( )解析:选B f (x ),g (x )均为偶函数,则F (x )也为偶函数,由此排除A ,D.当x >2时,-x 2+2<0,log 2|x |>0,所以F (x )<0,排除C ,故选B.3.(2018·安徽蚌埠二中等四校联考)如图所示的图象对应的函数解析式可能是( )A .y =2x -x 2-1B .y =2x sin x 4x +1C .y =x ln xD .y =(x 2-2x )e x解析:选D A 中,y =2x -x 2-1,当x 趋于-∞时,函数y =2x 的值趋于0,y =x 2+1的值趋于+∞,所以函数y =2x -x 2-1的值小于0,故A 中的函数不满足.B 中,y =sin x 是周期函数,所以函数y =2x sin x 4x +1的图象是以x 轴为中心的波浪线,故B 中的函数不满足.C中,函数y =xln x的定义域为(0,1)∪(1,+∞),故C 中的函数不满足.D 中,y =x 2-2x ,当x <0或x >2时,y >0,当0<x <2时,y <0,且y =e x >0恒成立,所以y =(x 2-2x )e x 的图象在x 趋于+∞时,y 趋于+∞,故D 中的函数满足.4.(2018·昆明模拟)如图所示的图形是由一个半径为2的圆和两个半径为1的半圆组成的,它们的圆心分别是O ,O 1,O 2,动点P 从A 点出发沿着圆弧按A →O →B →C →A →D →B 的路线运动(其中A ,O ,O 1,O 2,B 五点共线),记点P 运动的路程为x ,设y =|O 1P |2,y 与x 的函数关系式为y =f (x ),则y =f (x )的大致图象是( )解析:选A 当x ∈[0,π]时,y =1.当x ∈(π,2π)时, O 1P ―→=O 2P ―→-O 2O 1―→,设O 2P ―→与O 2O 1―→的夹角为θ,因为|O 2P ―→|=1,|O 2O 1―→|=2,θ=x -π,所以y =|O 1P ―→|2=(O 2P ―→-O 2O 1―→)2=5-4cos θ=5+4cos x ,x ∈(π,2π),此时函数y =f (x )的图象是曲线,且单调递增,排除C ,D.当x ∈[2π,4π)时,因为O 1P ―→=OP ―→-OO 1―→,设OP ―→,OO 1―→的夹角为α,因为|OP ―→|=2,|OO 1―→|=1,α=2π-12x ,所以y =|O 1P ―→|2=(OP ―→-OO 1―→)2=5-4cos α=5-4cos 12x ,x ∈[2π,4π),此时函数y =f (x )的图象是曲线,且单调递减,排除B.故选A.对点练(二) 函数图象的应用问题1.(2018·福建厦门双十中学期中)已知函数f (x )=x 2+e x -12(x <0)与g (x )=x 2+ln(x +a )的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A.⎝⎛⎭⎫-∞,1e B .(-∞, e)C.⎝⎛⎭⎫1e ,+∞ D .( e ,+∞)解析:选B 原命题等价于在x <0时,f (x )与g (-x )的图象有交点,即方程e x -12-ln(-x +a )=0在(-∞,0)上有解,令m (x )=e x -12-ln(-x +a ),显然m (x )在(-∞,0)上为增函数.当a >0时,只需m (0)=e 0-12-ln a >0,解得0<a <e ;当a ≤0时,x 趋于-∞,m (x )<0,x 趋于a ,m (x )>0,即m (x )=0在(-∞,a )上有解.综上,实数a 的取值范围是(-∞,e).2.若函数f (x )=ax -2x -1的图象关于点(1,1)对称,则实数a =________. 解析:函数f (x )=ax -2x -1=a +a -2x -1(x ≠1),当a =2时,f (x )=2,函数f (x )的图象不关于点(1,1)对称,故a ≠2,其图象的对称中心为(1,a ),即a =1.答案:13.(2018·绵阳诊断)用min{a ,b ,c }表示a ,b ,c 中的最小值.设f (x )=min{2x ,x +2,10-x }(x ≥0),则f (x )的最大值为________.解析:f (x )=min{2x ,x +2,10-x }(x ≥0)的图象如图中实线所示.令x +2=10-x ,得x =4.故当x =4时,f (x )取最大值,又f (4)=6,所以f (x )的最大值为6.答案:64.已知偶函数f (x )满足f (1-x )=f (1+x ),且当x ∈[0,1]时,f (x )=2x -x 2,若直线kx -y +k =0(k >0)与函数f (x )的图象有且仅有三个交点,则k 的取值范围是________.解析:因为f (1-x )=f (1+x ).所以函数f (x )的图象关于直线x =1对称,又f (x )是偶函数,所以f (x -1)=f (1+x ),即f (2+x )=f (x ),所以f (x )是周期为2的函数.由当x ∈[0,1]时,y =f (x )=2x -x 2,得x 2-2x +y 2=0(y ≥0),即(x -1)2+y 2=1(y ≥0),画出函数f (x )的大致图象如图所示.若直线y =k (x +1)与曲线y =f (x )切于点A ,则|k -0+k |k 2+1=1,得k =33;若直线y =k (x +1)与曲线y =f (x )切于点B ,则|3k -0+k |k 2+1=1,得k =1515.因为直线kx -y +k=0(k >0)与函数f (x )的图象有且仅有三个交点,所以根据图象易知1515<k <33.答案:⎝⎛⎭⎫1515,33 5.已知f (x )是以2为周期的偶函数,当x ∈[0,1]时,f (x )=x ,且在[-1,3]内,关于x 的方程f (x )=kx +k +1(k ∈R ,k ≠-1)有四个根,则k 的取值范围是________.解析:由题意作出f (x )在[-1,3]上的示意图如图,记y =k (x +1)+1,∴函数y =k (x +1)+1的图象过定点A (-1,1).记B (2,0),由图象知,方程有四个根,即函数y =f (x )与y =kx +k +1的图象有四个交点,故k AB <k <0,k AB =0-12-(-1)=-13,∴-13<k <0.答案:⎝⎛⎭⎫-13,0 6.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集为________.解析:令g (x )=y =log2(x +1),作出函数g (x )图象如图.由⎩⎪⎨⎪⎧x +y =2,y =log 2(x +1),得 ⎩⎪⎨⎪⎧x =1,y =1.∴结合图象知不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}. 答案:{x |-1<x ≤1}[大题综合练——迁移贯通]1.设函数f (x )=⎪⎪⎪⎪1-1x (x >0). (1)作出函数f (x )的图象;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围. 解:(1)函数f (x )的图象如图所示.(2)∵f (x )=⎪⎪⎪⎪1-1x =⎩⎨⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,在(1,+∞)上是增函数, 由0<a <b 且f (a )=f (b )得0<a <1<b ,且1a -1=1-1b ,∴1a +1b=2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 2.已知函数f (x )=x |m -x |(x ∈R),且f (4)=0. (1)求实数m 的值; (2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间;(4)若方程f (x )=a 只有一个实数根,求a 的取值范围. 解:(1)∵f (4)=0,∴4|m -4|=0,即m =4.(2)f (x )=x |x -4|=⎩⎪⎨⎪⎧x (x -4)=(x -2)2-4,x ≥4,-x (x -4)=-(x -2)2+4,x <4.f (x )的图象如图所示.(3)f (x )的单调递减区间是[2,4].(4)从f (x )的图象可知,当a >4或a <0时,f (x )的图象与直线y =a 只有一个交点,即方程f (x )=a 只有一个实数根,所以a 的取值范围是(-∞,0)∪(4,+∞).3.已知函数f (x )=2x ,x ∈R.(1)当m 取何值时方程|f (x )-2|=m 有一个解?两个解?(2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求m 的取值范围.解:(1)令F (x )=|f (x )-2|=|2x -2|,G (x )=m ,画出F (x )的图象如图所示.由图象看出,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个解;当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个解. (2)令f (x )=t (t >0),H (t )=t 2+t ,因为H (t )=⎝⎛⎭⎫t +122-14在区间(0,+∞)上是增函数, 所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0,即所求m 的取值范围为(-∞,0].。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(四) 函数及其表示
课时达标检测(四) 函数及其表示[小题对点练——点点落实]对点练(一) 函数的定义域1.(2018·吉林省实验中学模拟)下列函数中,与函数y =13x的定义域相同的函数为( )A .y =1sin xB .y =ln xx C .y =x e xD .y =sin xx解析:选D 函数y =13x 的定义域为{x |x ≠0};y =1sin x的定义域为{x |x ≠k π,k ∈Z };y=ln x x 的定义域为{x |x >0};y =x e x 的定义域为R ;y =sin x x的定义域为{x |x ≠0}.故选D.2.(2018·河南南阳一中月考)函数f (x )=-x 2-3x +4lg (x +1)的定义域为( )A .(-1,0)∪(0,1]B .(-1,1]C .(-4,-1]D .(-4,0)∪(0,1]解析:选A 要使函数f (x )有意义,应有⎩⎪⎨⎪⎧-x 2-3x +4≥0,x +1>0,x +1≠1,解得-1<x <0或0<x ≤1.故选A.3.(2018·山东枣庄期末)已知函数f (x )的定义域为[0,2],则函数g (x )=f (2x )+8-2x 的定义域为( )A .[0,1]B .[0,2]C .[1,2]D .[1,3]解析:选A 由题意,得⎩⎪⎨⎪⎧0≤2x ≤2,8-2x≥0,解得0≤x ≤1.故选A. 4.(2018·山西名校联考)设函数f (x )=lg(1-x ),则函数f [f (x )]的定义域为( ) A .(-9,+∞) B .(-9,1) C .[-9,+∞)D .[-9,1)解析:选B f [f (x )]=f [lg(1-x )]=lg[1-lg(1-x )],其定义域为⎩⎪⎨⎪⎧1-x >0,1-lg (1-x )>0的解集,解得-9<x <1,所以f [f (x )]的定义域为(-9,1).故选B.5.函数y =ln(x 2-x -m )的定义域为R ,则m 的范围是________.解析:由条件知,x 2-x -m >0对x ∈R 恒成立,即Δ=1+4m <0,∴m <-14.答案:⎝⎛⎭⎫-∞,-14 对点练(二) 函数的表示方法1.设函数f (x )满足f ⎝ ⎛⎭⎪⎫1-x 1+x =1+x ,则f (x )的解析式为( )A.21+xB.21+x 2C.1-x 21+x 2D.1-x 1+x解析:选A 令1-x 1+x =t ,则x =1-t 1+t ,代入f ⎝ ⎛⎭⎪⎫1-x 1+x =1+x ,得f (t )=1+1-t 1+t =21+t ,故选A.2.如果f ⎝⎛⎭⎫1x =x 1-x ,则当x ≠0且x ≠1时,f (x )=( ) A.1x B.1x -1 C.11-xD.1x -1 解析:选B 令1x =t ,得x =1t ,∴f (t )=1t1-1t=1t -1,∴f (x )=1x -1.3.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________. 解析:设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax+5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∴⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7.答案:2x +74.(2018·洛阳质检)若函数f (x )=2x +3,g (x +2)=f (x ),则函数g (x )的解析式为________________.解析:令x +2=t ,则x =t -2.因为f (x )=2x +3, g (x +2)=f (x )=2x +3,所以g (t )=2(t -2)+3=2t -1.故函数g (x )的解析式为g (x )=2x -1.答案:g (x )=2x -1对点练(三) 分段函数1.(2018·湖北襄阳四校联考)已知f (x )=⎩⎪⎨⎪⎧cos πx 2,x ≤0,f (x -1)+1,x >0,则f (2)=( )A.12 B .-12C .-3D .3解析:选D f (2)=f (1)+1=f (0)+2=cos ⎝⎛⎭⎫π2×0+2=1+2=3.故选D.2.(2017·山东高考)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1.若f (a )=f (a +1),则f ⎝⎛⎭⎫1a =( ) A .2 B .4 C .6D .8解析:选C 当0<a <1时,a +1>1,f (a )=a ,f (a +1)=2(a +1-1)=2a ,∵f (a )=f (a +1),∴a =2a ,解得a =14或a =0(舍去).∴f ⎝⎛⎭⎫1a =f (4)=2×(4-1)=6.当a ≥1时,a +1≥2,∴f (a )=2(a -1),f (a +1)=2(a +1-1)=2a ,∴2(a -1)=2a ,无解.综上,f ⎝⎛⎭⎫1a =6.3.(2018·江西师范大学附属中学月考)已知函数f (x )=⎩⎪⎨⎪⎧-log 2(3-x ),x <2,2x -2-1,x ≥2.若f (2-a )=1,则f (a )=( )A .-2B .-1C .1D .2解析:选A 当2-a ≥2,即a ≤0时,f (2-a )=22-a -2-1=1,解得a =-1,则f (a )=f (-1)=-log 2[3-(-1)]=-2;当2-a <2,即a >0时,f (2-a )=-log 2[3-(2-a )]=1,解得a =-12,舍去.综上,f (a )=-2.故选A.4.(2018·福建泉州质检)已知函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x ≥0,-3x ,x <0.若a [f (a )-f (-a )]>0,则实数a 的取值范围为( )A .(1,+∞)B .(2,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,-2)∪(2,+∞)解析:选D 根据题意,当a >0时,f (a )-f (-a )>0,即a 2+a -[-3(-a )]>0,∴a 2-2a >0,解得a >2;当a <0时,f (a )-f (-a )<0,即-3a -[(-a )2+(-a )]<0,∴a 2+2a >0,解得a <-2.综上,实数a 的取值范围为(-∞,-2)∪(2,+∞).故选D.5.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)[大题综合练——迁移贯通]1.(1)已知f (2x +1)=4x 2+2x +1,求f (x )的解析式;(2)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求f (x )的解析式. 解:(1)令t =2x +1,则x =12(t -1),所以f (t )=4⎣⎡⎦⎤12(t -1)2+2×12(t -1)+1=(t -1)2+(t -1)+1=t 2-t +1,即f (x )=x 2-x +1.(2)当x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1),① 以-x 代替x 得2f (-x )-f (x )=lg(-x +1).②由①②消去f (-x ),得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).2.已知函数f (x )对任意实数x 均有f (x )=-2f (x +1),且f (x )在区间[0,1]上有解析式f (x )=x 2.(1)求f (-1),f (1.5);(2)写出f (x )在区间[-2,2]上的解析式.解:(1)由题意知f (-1)=-2f (-1+1)=-2f (0)=0, f (1.5)=f (1+0.5)=-12f (0.5)=-12×14=-18.(2)当x ∈[0,1]时,f (x )=x 2;当x ∈(1,2]时,x -1∈(0,1],f (x )=-12f (x -1)=-12(x -1)2;当x ∈[-1,0)时,x +1∈[0,1),f (x )=-2f (x +1)=-2(x +1)2;当x ∈[-2,-1)时,x +1∈[-1,0),f (x )=-2f (x +1)=-2×[-2(x +1+1)2]=4(x +2)2.所以f (x )=⎩⎪⎨⎪⎧4(x +2)2,x ∈[-2,-1),-2(x +1)2,x ∈[-1,0),x 2,x ∈[0,1],-12(x -1)2,x ∈(1,2].3.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数解析式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0, 所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测 二项式定理 Word版含解析
课时达标检测(五十三) 二项式定理[小题对点练——点点落实]对点练(一) 二项式的通项公式及应用) (是的展开式中的常数项10⎝ ⎛⎭⎪⎫x +2x2.二项式1 A .180 B .90 C .45D .360 得,0=k 52-5令,k 52-5x k 10C k 2=k ⎝ ⎛⎭⎪⎫2x2k -01)x ·(k 10C =1+k T 的展开式的通项为10⎝⎛⎭⎪⎫x +2x2A 选:解析180.=210C 22故常数项为,2=k ()=a 则,03的项的系数为32x 的展开式中含5⎝⎛⎭⎪⎫x -a x 已知.2 3A. 3.-B C .6D .-6 -=a 得,03=)a -(15C 由1.=r 解得,32=5-2r 2由,5-2r2x r)a -(r5C =r ⎝ ⎛⎭⎪⎫-a x ·r -5)x (r 5C =1+r T D 选:解析 6.故选D.) (为项的系数3x 的展开式中,含6)x +1(x 在.3 A .30 B .20 C .15D .10 =3x 26C 为的项3x 的展开式中含6)x +1(x ,则r x r 6C =1+r T 项为1+r 的展开式的第6)x +1( C 选解析:15.为,所以系数3x 15 ) (为项的系数3x 展开式中101)+x -2x (.4 A .-210 B .210 C .30D .-30 -x (10C +91)-x (2x 910C -…+)1-x (9)2x (10C -10)2x (010C =101)]-x (-2x [=101)+x -2x ( A 选解析: A.选,故021-=)710C -(10C +89C 910C -项的系数为:3x ,所以含101) ________.=n ,则45是项的系数2x 的展开式中含有n )x 3+1(知已)考山东高·(2017.5 4.=n ∴,45=232n C 为项的系数2x 含有∴,r x r 3r n C =1+r T 的展开式的通项n )x 3+1(解析: 答案:4.________为的值x d 2x ⎠⎛a -2,则3的展开式的第二项的系数为-6⎝ ⎛⎭⎪⎫ax +366. =x d 22x -⎠⎛a ,因此1-=a 得,解3=-5a 16C 36,由5a 16C 36该二项展开式的第二项的系数为解析:.73=83+13=-1-2|x33=x d 2x ⎠⎛-2-1 73答案:.________是的项的系数3x 含的展开式中,8x)-1(+7x)-1(+6x)-1(+5x)-1(在.7 121.-=31)-(38C +31)-(37C +31)-(36C +31)-(35C 项的系数为3x 含展开式中解析: 答案:-121)案用数字填写答(.________为的系数7y 2x 中的展开式8y)+x y)(-x (.8 82-8=68C -78C 的系数为7y 2x ∴,68C ,其系数为-)6y 2y·(x =7y 2x ,78C ,其系数为)7x·(xy =7y 2x 解析:=-20.答案:-20对点练(二) 二项式系数的性质及应用)(为的值m 数,则实36=6a +…+2a +1a 且,6x 6a +…+2x 2a +x 1a +0a =6mx)+1(若.1 A .1或3 B .-3 C .1D .1或-3 …+3a +2a +1a 又.6a +…+2a +1a +0a =6m)+1(得,1=x 令.1=60)+1(=0a 得,0=x 令 D 选解析: 3.-=m 或1=m ∴,62=46=6m)+1(∴,36=6a + )(=7a +…+2a +1a 则,8x 8a +…+2x 2a +x 1a +0a =72x)-1x)(+1(若.2 A .-2 B .-3 C .125D .-131 以,所812-=72)-(7C =8a 又.1=0a 则,0=x 令,2-=8a +…+2a +1a +0a 则,1=x 令 C 选解析:125.=)128-(-1-2-=7a +…+2a +1a 3.(2018·河北省“五校联盟”质量检)(为,则展开式的中间项的系数812为的展开式中,偶数项的二项式系数之和n 2x)-1(式在二项)测 A .-960 B .960 C .1 120D .1 680 的展开式中,二项式系n 2x)-1(在,所以812为根据题意,奇数项的二项式系数之和也应 C 选解析:,41 120x =4x 42)-(48C =5T 且项,5第的展开式的中间项为82x)-1(则,8=n ,625=n 2即,625为数之和即展开式的中间项的系数为1 120,故选C .) (是,则展开式中常数项314的展开式中第三项与第五项的系数之比为n ⎝⎛⎭⎪⎫x2-1x .若4 A .-10 B .10 C .-45D .45,314=C2n C4n ,所以5r 2-n x2r 1)-(r n C =r 2-x r 1)-(·r -n )2·(x r n C =1+r T 为因为展开式的通项公式 D 选解析:45.=81)-(810C =9T 为常数项∴8.=r ∴,0=5r2-02令,5r 2-0·x2r 1)-(·r 10C =1+r T ∴,01=n ∴ ⎝⎛⎭⎪⎪⎫9x -133x .在二项式5.________为的系数x 中,则展开式625为的展开式中,偶数项的二项式系数之和n 所.9=n 得,解625=1-n 2以因为二项式展开式中,偶数项与奇数项的二项式系数之和相等,所解析:,1=r 43-9令.r 43-9x r ⎝ ⎛⎭⎪⎫-13·r -99r 9C =r ⎝ ⎛⎭⎪⎪⎫-133x ·r -9(9x)r 9C =1+r T 为的展开式中,通项9⎝ ⎛⎭⎪⎪⎫9x -133x 以二项式84.=6⎝ ⎛⎭⎪⎫-13×39×69C 的系数为x 中,所以展开式6=r 得解 答案:84⎝ ⎛⎭⎪⎫x -1x .在二项式6.________是项的系数2x 含项的二项式系数最大,则展开式中5第的展开式中恰好n 的展开式的通8⎝ ⎛⎭⎪⎫x -1x ∵8.=n ∴项的二项式系数最大,5第的展开式中恰好n ⎝ ⎛⎭⎪⎫x -1x 在二项式∵解析:56.-=38C 项的系数是-2x 含展开式中∴,3=r 则,2=r 2-8令,2r -8x r 8C r 1)-(=1+r T 为项 答案:-56.____________于的值可能等n 则项系数最大,7第的展开式中,若n y)+x (在.7 系数相等且6T 与7T 若②;21=n ,项31有系数最大,则共7T 仅若①根据题意,分三种情况:解析:11,12,13.于的值可能等n 以所.13=n ,项41有系数相等且最大,则共8T 与7T 若③;11=n ,项21有最大,则共 答案:11,12,13[大题综合练——迁移贯通],求:7x 7a +…+2x 2a +x 1a +0a =72x)-1(知.已1 ;7a +…+2a +1(1)a ;7a +5a +3a +1(2)a ;6a +4a +2a +0(3)a |.7|a +…+|2|a +|1|a +|0(4)|a 解:令x =1,①1.-=7a +6a +5a +4a +3a +2a +1a +0a 则令x =-1,②.73=7a -6a +5a -4a +3a -2a +1a -0a 则 ,1=07C =0a ∵(1) 2.-=7a +…+3a +2a +1a ∴ 1 094.-=-1-372=7a +5a +3a +1a 得,2)÷②-①(2)( 1 093.=-1+372=6a +4a +2a +0a 得,2)÷②+①)((3 |7|a +…+|2|a +|1|a +|0|a ∴小于零,7a ,5a ,3a ,1a 而大于零,6a ,4a ,2a ,0a 中展开式72x)-1(∵(4) )7a +5a +3a +1(a -)6a +4a +2a +0(a = =1 093-(-1 094)=2 187.112.为项的系数x 含,展开式中625为的展开式的二项式系数之和)数是正实m (n )x m +1(知.已2 (1)求m ,n 的值;(2)求展开式中奇数项的二项式系数之和;项的系数.2x 含的展开式中)x -1(n )x m +1(求)(3 m或2=m 得,解211=2m 28C 项的系数为x 含,r2x r m r n C =1+r 8.T =n 得,解625=n 2得由题意可)(1解:=-2(舍去).故m ,n 的值分别为2,8.128.=1-82=8C +68C +48C +28C +08C 展开式中奇数项的二项式系数之和为)(2 ,8)x 2+1x(-8)x 2+1(=)x -1(8)x 2+1(3)( 1 008.=2228C -4248C 的系数为2x 含所以 11.为的系数x 的展开式中)*N ∈n ,m (n 2x)+1(+m x)+1(=)f(x 知.已3 的值;n 的系数取最小值时2x 求)(1 的奇次幂项的系数之和.x 展开式中)x (f 的系数取得最小值时,求2x 当)(2 11.=n 2+m ∴,11=1n 2C +1m C 得由已知)(1解: .错误!+2错误!=错误!)m -1(1+错误!=)1-n (n 2+错误!=2n C 22+2m C 为的系数2x 3.=n ,此时22值的系数取得最小2x 时,5=m ∴,*N ∈m ∵ 3.=n ,5=m 的系数取得最小值时,2x 知,当)(1由)(2 .3)x 2+1(+5)x +1(=)x (f ∴ ,5x 5a +…+2x 2a +x 1a +0a =)x (f 的展开式为)x (f 设,95=33+52=5a +4a +3a +2a +1a +0a ,1=x 令 ,1-=5a -4a +3a -2a +1a -0a ,1-=x 令 30.为的奇次幂项的系数之和x ,故展开式中06=)5a +3a +1a 2(得两式相减。
2018-2019学年高中新创新一轮复习理数通用版课时达标检测(四) 函数及其表示 Word版含解析
课时达标检测(四)函数及其表示[小题对点练——点点落实]对点练(一)函数的定义域.(·吉林省实验中学模拟)下列函数中,与函数=的定义域相同的函数为( ).=).=).=).=解析:选函数=的定义域为{≠};=)的定义域为{≠π,∈};=)的定义域为{>};=的定义域为;=)的定义域为{≠}.故选..(·河南南阳一中月考)函数()=的定义域为( ).(-].(-)∪(].(-)∪(].(-,-]解析:选要使函数()有意义,应有(\\(--+≥,+>,+≠,))解得-<<或<≤.故选..(·山东枣庄期末)已知函数()的定义域为[],则函数()=()+的定义域为( ).[].[].[].[]解析:选由题意,得(\\(≤≤,-≥,))解得≤≤.故选..(·山西名校联考)设函数()=(-),则函数[()]的定义域为( ).(-,+∞).(-).[-).[-,+∞)解析:选[()]=[(-)]=[-(-)],其定义域为(\\(->,-(-(>))的解集,解得-<<,所以[()]的定义域为(-).故选..函数=(--)的定义域为,则的范围是.解析:由条件知,-->对∈恒成立,即Δ=+<,∴<-.答案:对点练(二)函数的表示方法.设函数()满足=+,则()的解析式为( )解析:选令=,则=,代入=+,得()=+=,故选..如果=,则当≠且≠时,()=( )-解析:选令=,得=,∴()==,∴()=..已知()是一次函数,且满足(+)-(-)=+,则()=.解析:设()=+(≠),则(+)-(-)=++-+-=++,即++=+不论为何值都成立,∴(\\(=,+=,))解得(\\(=,=,))∴()=+.答案:+.(·洛阳质检)若函数()=+,(+)=(),则函数()的解析式为.解析:令+=,则=-.因为()=+, (+)=()=+,所以()=(-)+=-.故函数()的解析式为()=-.答案:()=-对点练(三)分段函数.(·湖北襄阳四校联考)已知()=(\\((π),≤,(-(+,>,))则()=( ).-..-解析:选()=()+=()+=+=+=.故选..(·山东高考)设()=(\\((),<<,(-(,≥.))若()=(+),则=( )....解析:选当<<时,+>,()=,(+)=(+-)=,∵()=(+),∴=,解得=或=(舍去).∴=()=×(-)=.当≥时,+≥,∴()=(-),(+)=(+-)=,∴(-)=,无解.综上,=..(·江西师范大学附属中学月考)已知函数()=(\\(-(-(,<,--,≥.))若(-)=,则()=( ).-.-..解析:选当-≥,即≤时,(-)=---=,解得=-,则()=(-)=-[-(-)]=-;当-<,即>时,(-)=-[-(-)]=,解得=-,舍去.综上,()=-.故选..(·福建泉州质检)已知函数()=(\\(+,≥,,-,<.))若[()-(-)]>,则实数的取值范围为( ).(,+∞).(,+∞).(-∞,-)∪(,+∞).(-∞,-)∪(,+∞)解析:选根据题意,当>时,()-(-)>,即+-[-(-)]>,∴->,解得>;当<时,()。
2018-2019学年高中新创新一轮复习理数通用版:课时达标检测(七) 二次函数与幂函数 Word版含解析
课时达标检测(七) 二次函数与幂函数[小题对点练——点点落实]对点练(一) 幂函数1.函数y =x 13的图象是( )解析:选B 由幂函数y =x α,若0<α<1,在第一象限内过(1,1),排除A 、D ,又其图象上凸,则排除C ,故选B.2.图中C 1,C 2,C 3为三个幂函数y =x k 在第一象限内的图象,则解析式中指数k 的值依次可以是( )A .-1,12,3B .-1,3,12C.12,-1,3 D.12,3,-1 解析:选A 根据幂函数图象的规律知,选A.3.(2018·绵阳模拟)幂函数y =(m 2-5m +7)x m 的图象过点(2,4),则m =( ) A .-2 B .-1 C .1D .2解析:选D ∵幂函数y =(m 2-5m +7)x m 的图象过点(2,4),∴⎩⎪⎨⎪⎧m 2-5m +7=1,2m=4,解得m =2.故选D.4.(2018·云南曲靖一中月考)已知幂函数f (x )=x n 的图象过点⎝⎛⎭⎫8,14,且f (a +1)<f (2),则a 的取值范围是( )A .(-3,1)B .(-∞,-3)∪(1,+∞)C .(-∞,1)D .(1,+∞)解析:选B 因为幂函数f (x )=x n 的图象过点⎝⎛⎭⎫8,14,所以8n =14,即23n =2-2,解得n=-23.因此f (x )=x -23是偶函数,且在(0,+∞)上单调递减,在(-∞,0)上单调递增.由f (a+1)<f (2)得|a +1|>2,解得a <-3或a >1.故选B.5.若a =⎝⎛⎭⎫1223,b =⎝⎛⎭⎫1523,c =⎝⎛⎭⎫1213,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .b <c <aD .b <a <c解析:选D ∵y =x 23(x >0)是增函数,∴a =⎝⎛⎭⎫1223>b =⎝⎛⎭⎫1523.∵y =⎝⎛⎭⎫12x 是减函数, ∴a =⎝⎛⎭⎫1223<c =⎝⎛⎭⎫1213,∴b <a <c . 6.(2018·陕西黄陵中学月考)若幂函数f (x )=(m 2-3m +3)·x 2--2m m 的图象不经过坐标原点,则实数m 的值为________.解析:由于函数f (x )为幂函数,故m 2-3m +3=1,解得m =1或m =2,当m =2时,f (x )=x 0不经过原点;当m =1时,f (x )=x -2不经过原点,故m =1或m =2.答案:1或2对点练(二) 二次函数1.为了美观,在加工太阳镜时将下半部分轮廓制作成二次函数图象的形状(如图所示).若对应的两条曲线关于y 轴对称,AE ∥x 轴,AB =4 cm ,最低点C 在x 轴上,高CH =1 cm ,BD =2 cm ,则右轮廓线DFE 所在的二次函数的解析式为( )A .y =14(x +3)2B .y =12(x -3)2C .y =12(x +3)2D .y =14(x -3)2解析:选D 由题图可知,对应的两条曲线关于y 轴对称,AE ∥x 轴,AB =4 cm ,最低点C 在x 轴上,高CH =1 cm ,BD =2 cm ,所以点C 的纵坐标为0,横坐标的绝对值为3,即C (-3,0),因为点F 与点C 关于y 轴对称,所以F (3,0),因为点F 是右轮廓线DFE 所在的二次函数图象的顶点,所以设该二次函数为y =a (x -3)2(a >0),将点D (1,1)代入得,a =14,即y =14(x -3)2.2.(2018·郑州模拟)若函数f(x)=dax2+bx+c(a,b,c,d∈R)的图象如图所示,则a∶b∶c∶d=()A.1∶6∶5∶8 B.1∶6∶5∶(-8)C.1∶(-6)∶5∶8 D.1∶(-6)∶5∶(-8)解析:选D由图象可知,x≠1,5,所以ax2+bx+c=k(x-1)(x-5),所以a=k,b=-6k,c=5k,根据图象可得当x=3时,y=2,所以d=-8k,所以a∶b∶c∶d=1∶(-6)∶5∶(-8).3.已知二次函数f(x)=ax2+bx+5的图象过点P(-1,11),且其对称轴是x=1,则a+b的值是()A.-2 B.0C.1 D.2解析:选A因为二次函数f(x)=ax2+bx+5的图象的对称轴是x=1,所以-b2a=1,又f(-1)=a-b+5=11,所以a-b=6,解得a=2,b=-4,所以a+b=-2,故选A.4.(2018·山东济南模拟)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,记p=|a-b+c|+|2a+b|,q=|a+b+c|+|2a-b|,则()A.p>qB.p=qC.p<qD.以上都有可能解析:选C因为二次函数y=ax2+bx+c(a≠0)的图象开口向下,经过原点且对称轴在x=1的右侧,故a<0,-b2a>1,c=0,所以b>0,2a+b>0,2a-b<0.又当x=-1时,y=a -b+c<0,当x=1时,y=a+b+c>0,所以p=|a-b+c|+|2a+b|=-a+b-c+2a+b=a +2b-c,q=|a+b+c|+|2a-b|=a+b+c-2a+b=-a+2b+c,所以p-q=2(a-c)=2a<0,所以p<q.5.已知函数f (x )=-2x 2+bx ,若对任意的实数t 都有f (4+t )=f (4-t ),则f (-2),f (4),f (5)的大小关系为( )A .f (5)>f (-2)>f (4)B .f (4)>f (5)>f (-2)C .f (4)>f (-2)>f (5)D .f (-2)>f (4)>f (5)解析:选B 因为对任意的实数t 都有f (4+t )=f (4-t ),所以函数f (x )=-2x 2+bx 的图象关于直线x =4对称,所以f (-2)=f (10),又函数f (x )=-2x 2+bx 的图象开口向下,所以函数f (x )在[4,+∞)上是减函数,因为4<5<10,所以f (4)>f (5)>f (10),即f (4)>f (5)>f (-2).6.(2018·西安八校联考)若函数f (x )=x 2-2x +m (x ∈R )有两个不同的零点,且f (1-x )≥-1恒成立,则实数m 的取值范围是( )A .(0,1)B .[0,1)C .(0,1]D .[0,1]解析:选B 因为函数f (x )=x 2-2x +m (x ∈R )有两个不同的零点,所以方程x 2-2x +m =0有两个不同的实根,所以Δ>0,4-4m >0,m <1.因为f (1-x )≥-1恒成立,所以(1-x )2-2(1-x )+m ≥-1恒成立,所以x 2+m ≥0恒成立,所以m ≥0,所以m ∈[0,1).7.已知二次函数f (x )=ax 2+bx +c ,其中b >0,若f (x )的值域为[0,+∞),则f (1)b 的最小值为________.解析:∵f (x )的值域为[0,+∞),∴⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac =0,∴c =b 24a .∵f (1)=a +b +c ,∴f (1)b =1+a +c b =1+a +b 24a b =1+4a 2+b 24ab ≥1+24a 2b 24ab =2,当且仅当4a 2=b 2时等号成立, ∴f (1)b 的最小值为2. 答案:28.(2018·福建莆田模拟)已知函数f (x )=x 2+bx +1满足f (-x )=f (x +1),若存在实数t ,使得对任意实数x ∈[1,m ],都有f (x +t )≤x 成立,则实数m 的最大值为________.解析:函数f (x )=x 2+bx +1满足f (-x )=f (x +1),则f (x )图象的对称轴为x =12,则-b 2=12,解得b =-1,∴f (x )=x 2-x +1,由f (x +t )≤x 得(x +t )2-(x +t )+1≤x ,即(x +t -1)2≤-t (t ≤0),∴1-t --t ≤x ≤1-t +-t ,由题意可得1-t --t ≤1,解得-1≤t ≤0,令y =1-t +-t =⎝⎛⎭⎫-t +122+34,可得1≤y ≤3,∴m ≤3,可得m 的最大值为3.答案:3[大题综合练——迁移贯通]1.(2018·成都诊断)已知函数f (x )=x 2+ax +3-a ,若x ∈[-2,2],f (x )≥0恒成立,求a 的取值范围.解:f (x )=⎝⎛⎭⎫x +a 22-a24-a +3,令f (x )在[-2,2]上的最小值为g (a ). (1)当-a2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,∴a ≤73.又a >4,∴a 不存在.(2)当-2≤-a2≤2,即-4≤a ≤4时,g (a )=f ⎝⎛⎭⎫-a 2=-a24-a +3≥0, ∴-6≤a ≤2.又-4≤a ≤4,∴-4≤a ≤2.(3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0,∴a ≥-7.又a <-4,∴-7≤a <-4.综上可知,a 的取值范围为[-7,2].2.(2018·杭州模拟)已知函数f (x )=ax 2+bx +1(a ,b ∈R ),x ∈R .(1)若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间; (2)在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的取值范围. 解:(1)由题意得f (-1)=a -b +1=0,a ≠0,且-b2a =-1,∴a =1,b =2.∴f (x )=x 2+2x +1,单调递减区间为(-∞,-1],单调递增区间为[-1,+∞).(2)f (x )>x +k 在区间[-3,-1]上恒成立, 转化为x 2+x +1>k 在区间[-3,-1]上恒成立. 设g (x )=x 2+x +1,x ∈[-3,-1], 则g (x )在[-3,-1]上递减. ∴g (x )min =g (-1)=1.∴k <1,即k 的取值范围为(-∞,1).3.(2018·宁夏育才中学月考)已知函数f (x )=x 2-4x +a +3,a ∈R . (1)若函数f (x )在(-∞,+∞)上至少有一个零点,求实数a 的取值范围; (2)若函数f (x )在[a ,a +1]上的最大值为3,求a 的值. 解:(1)由Δ=16-4(a +3)≥0,得a ≤1. 故实数a 的取值范围是(-∞,1]. (2)f (x )=(x -2)2+a -1.当a +1<2,即a <1时,f (x )max =f (a )=a 2-3a +3=3, 解得a =0,a =3(舍去); 当a +1>2,a +a +12≤2,即1≤a ≤32时,f (x )max =f (a )=3,解得a =0或3(均舍);当a ≤2,a +a +12>2,即32<a ≤2时,f (x )max =f (a +1)=a 2-a =3, 解得a =1±132(均舍).当a >2时,f (x )max =f (a +1)=a 2-a =3, 解得a =1+132,a =1-132(舍去).综上,a =0或a =1+132.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时达标检测(三十九) 利用空间向量求空间角[一般难度题——全员必做]1.已知直三棱柱ABC -A 1B 1C 1,∠ACB =90°,CA =CB =CC 1,D 为B 1C 1的中点,求异面直线BD 和A 1C 所成角的余弦值.解:如图所示,以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设CA =CB =CC 1=2,则A 1(2,0,2),C (0,0,0),B (0,2,0),D (0,1,2), ∴BD ―→=(0,-1,2), A 1C ―→=(-2,0,-2),∴cos 〈BD ―→,A 1C ―→〉=BD ―→·A 1C ―→| BD ―→||A 1C ―→|=-105.∴异面直线BD 与A 1C 所成角的余弦值为105. 2.(2018·河南洛阳模拟)已知三棱锥A -BCD ,AD ⊥平面BCD ,BD⊥CD ,AD =BD =2,CD =23,E ,F 分别是AC ,BC 的中点,P 为线段BC 上一点,且CP =2PB .(1)求证:AP ⊥DE ;(2)求直线AC 与平面DEF 所成角的正弦值. 解:(1)证明:作PG ∥BD 交CD 于点G .连接AG . ∴CG GD =CPPB =2, ∴GD =13CD =233.∵AD ⊥平面BCD ,∴AD ⊥DC , ∵在△ADG 中,t an ∠GAD =33, ∴∠DAG =30°,在R t △ADC 中,AC 2=AD 2+CD 2=4+12=16,∴AC =4,又E 为AC 的中点,∴DE =AE =2,又AD =2,∴∠ADE =60°,∴AG ⊥DE . ∵AD ⊥平面BCD ,∴AD ⊥BD ,又∵BD ⊥CD ,AD ∩CD =D ,∴BD ⊥平面ADC , ∴PG ⊥平面ADC ,∴PG ⊥DE .又∵AG ∩PG =G ,∴DE ⊥平面AGP ,又AP ⊂平面AGP , ∴AP ⊥DE .(2)以D 为坐标原点,直线DB 、DC 、DA 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D -xyz ,则D (0,0,0),A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),∴DF ―→=(1,3,0),DE ―→=(0,3,1),AC ―→=(0,23,-2).设平面DEF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DF ―→·n =0, DF ―→·n =0,即⎩⎨⎧x +3y =0,3y +z =0,令x =3,则n =(3,-3,3). 设直线AC 与平面DEF 所成角为θ,则sin θ=|cos 〈AC ―→,n 〉|=|AC ―→·n ||AC ―→|·|n |=|-6-6|421=217, 所以AC 与平面DEF 所成角的正弦值为217.3.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =30°,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E .(1)证明:CF ⊥平面ADF ; (2)求二面角D -AF -E 的余弦值.解:(1)证明:∵PD ⊥平面ABCD ,AD ⊂平面ABCD ,∴PD ⊥AD . 又CD ⊥AD ,PD ∩CD =D ,∴AD ⊥平面PCD . 又PC ⊂平面PCD ,∴AD ⊥PC . 又AF ⊥PC ,AD ∩AF =A ,∴PC ⊥平面ADF ,即CF ⊥平面ADF .(2)设AB =1,则在R t △PDC 中,CD =1,又∠DPC =30°, ∴PC =2,PD =3,∠PCD =60°. 由(1)知CF ⊥DF ,∴DF =CD sin 60°=32, CF =CD cos 60°=12.又FE ∥CD ,∴DE PD =CF PC =14,∴DE =34.同理EF =34CD =34.如图所示,以D 为原点,建立空间直角坐标系,则A (0,0,1),E⎝⎛⎭⎫34,0,0,F ⎝⎛⎭⎫34,34,0,P (3,0,0),C (0,1,0). 设m =(x ,y ,z )是平面AEF 的一个法向量,则⎩⎪⎨⎪⎧m ⊥AE ―→,m ⊥EF ―→.又AE ―→=⎝⎛⎭⎫34,0,-1,EF ―→=⎝⎛⎭⎫0,34,0,∴⎩⎨⎧m ·AE ―→=34x -z =0,m ·EF ―→=34y =0.令x =4,得m =(4,0,3).由(1)知平面ADF 的一个法向量为PC ―→=(-3,1,0), 设二面角D -AF -E 的平面角为θ,可知θ为锐角, 故cos θ=|cos 〈m ,PC ―→〉|=|m ·PC ―→||m ||PC ―→|=4319×2=25719.故二面角D -AF -E 的余弦值为25719.[中档难度题——学优生做]1.(2018·郑州质量预测)如图,三棱柱ABC -A 1B 1C 1中,各棱长均相等.D ,E ,F 分别为棱AB ,BC ,A 1C 1的中点.(1)证明:EF ∥平面A 1CD ;(2)若三棱柱ABC -A 1B 1C 1为直棱柱,求直线BC 与平面A 1CD 所成角的正弦值.解:(1)证明:在三棱柱ABC -A 1B 1C 1中,AC ∥A 1C 1,且AC =A 1C 1,连接ED (图略),在△ABC 中,因为D ,E 分别为棱AB ,BC 的中点,所以DE ∥AC ,DE =12AC .又F 为A 1C 1的中点,可得A 1F =12A 1C 1,所以A 1F ∥DE ,A 1F =DE ,因此四边形A 1FED 为平行四边形,所以EF ∥A 1D , 又EF ⊄平面A 1CD ,A 1D ⊂平面A 1CD , 所以EF ∥平面A 1CD .(2)法一:因为底面ABC 是正三角形,D 为AB 的中点,所以CD ⊥AB ,又AA 1⊥CD ,AA 1∩AB =A ,所以CD ⊥平面A 1ABB 1.如图在平面A 1ABB 1内,过点B 作BG ⊥A 1D ,交直线A 1D 于点G ,连接CG ,则BG ⊥平面A 1CD ,所以∠BCG 为直线BC 与平面A 1CD 所成的角.设三棱柱的棱长为a ,可得A 1D =5a 2,由△A 1AD ∽△BGD ,可得BG =5a 5, 在R t △BCG 中,sin ∠BCG =BG BC =55.所以直线BC 与平面A 1CD 所成角的正弦值为55.法二:设A1B 1的中点为O ,连接OC 1,OD ,因为三棱柱ABC -A 1B 1C 1为直棱柱,所以OD ⊥平面A 1B 1C 1,所以OD ⊥OC 1,OD ⊥OA 1.又△A 1B 1C 1为等边三角形,所以OC 1⊥A 1B 1.以O 为坐标原点, OA 1―→,OD ―→, OC 1―→的方向分别为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系O -xyz .设三棱柱的棱长为a ,则O (0,0,0),B ⎝⎛⎭⎫-a 2,a ,0,C ⎝⎛⎭⎫0,a ,32a ,A 1⎝⎛⎭⎫a 2,0,0,D (0,a ,0).所以BC ―→=⎝⎛⎭⎫a 2,0,32a ,A 1D ―→=⎝⎛⎭⎫-a 2,a ,0,DC ―→=⎝⎛⎭⎫0,0,32a . 设平面A 1CD 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·A 1D ―→=0,n ·DC ―→=0,得⎩⎨⎧-a2x +ay =0,32az =0.令x =2,得n =(2,1,0).设直线BC 与平面A 1CD 所成的角为θ, 则sin θ=|n ·BC ―→||n |·|BC ―→|=a 5·a 2=55. 所以直线BC 与平面A 1CD 所成角的正弦值为55. 2.如图①,正方形ABCD 的边长为4,AB =AE =BF =12EF ,AB ∥EF ,把四边形ABCD沿AB 折起,使得AD ⊥平面AEFB ,G 是EF 的中点,如图②.(1)求证:AG ⊥平面BCE ; (2)求二面角C -AE -F 的余弦值.解:(1)证明:连接BG ,因为BC ∥AD ,AD ⊥底面AEFB ,所以BC ⊥底面AEFB ,又AG ⊂底面AEFB ,所以BC ⊥AG ,因为AB 綊EG ,AB =AE ,所以四边形ABGE 为菱形,所以AG ⊥BE ,又BC ∩BE =B ,BE ⊂平面BCE ,BC ⊂平面BCE , 所以AG ⊥平面BCE .(2)由(1)知四边形ABGE 为菱形,AG ⊥BE ,AE =EG =BG =AB =4, 设AG ∩BE =O ,所以OE =OB =23,OA =OG =2, 以O 为坐标原点,建立如图所示的空间直角坐标系,则O (0,0,0),A (-2,0,0),E (0,-23,0),F (4,23,0),C (0,23,4),D (-2,0,4), 所以AC ―→=(2,23,4),AE ―→=(2,-23,0), 设平面ACE 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧AC ―→·n =0, AE ―→·n =0,所以⎩⎨⎧2x +23y +4z =0,2x -23y =0,令y =1,则x =3,z =-3,即平面ACE 的一个法向量为n =(3,1,-3), 易知平面AEF 的一个法向量为AD ―→=(0,0,4), 设二面角C -AE -F 的大小为θ,由图易知θ∈⎝⎛⎭⎫0,π2, 所以cos θ=|n ·AD ―→||n ||AD ―→|=437×4=217.[较高难度题——学霸做]1.(2018·安徽省百所重点高中模拟)如图所示的几何体由平面PECF 截棱长为2的正方体得到,其中P ,C 为原正方体的顶点,E ,F 为原正方体侧棱长的中点,正方形ABCD 为原正方体的底面,G 为棱BC 上的动点.(1)求证:平面APC ⊥平面PECF ;(2)设BG ―→=λBC ―→(0≤λ≤1),当λ为何值时,平面EFG 与平面ABCD 所成的角为π3?解:(1)证明:由已知可知,EB ∥FD ,且EB =FD , 如图,连接BD ,则四边形EFDB 是平行四边形, ∴EF ∥BD .∵底面ABCD 为正方形,∴BD ⊥AC . ∵AP ⊥底面ABCD ,∴BD ⊥AP .又AC ∩AP =A ,∴BD ⊥平面APC , ∴EF ⊥平面APC .∵EF ⊂平面PECF ,∴平面APC ⊥平面PECF . (2)以D 为原点建立如图所示的空间直角坐标系D -xyz ,则B (2,2,0),F (0,0,1),E (2,2,1),G (2,2-2λ,0),FE ―→=(2,2,0), GE ―→=(0,2λ,1), 设m =(x ,y ,z )是平面EFG 的法向量, 故⎩⎪⎨⎪⎧m ·FE ―→=0,m ·GE ―→=0,即⎩⎪⎨⎪⎧x =-y ,z =-2λy ,令y =-1,可得m =(1,-1,2λ)为平面EFG 的一个法向量, 而平面ABCD 的一个法向量为n =(0,0,1).于是cos π3=|cos 〈m ,n 〉|=|2λ|2+4λ2,解得λ=±66, 又0≤λ≤1,∴λ=66. 2.(2018·山西太原模拟)如图甲,在平面六边形ABFCDE 中,四边形ABCD 是矩形,且AB =4,BC =2,AE =DE =2,BF =CF =5,点M ,N 分别是AD ,BC 的中点,分别沿直线AD ,BC 将△ADE ,△BCF 翻折成如图乙的空间几何体ABCDEF .(1)利用下面的结论①或结论②,证明:E ,F ,M ,N 四点共面; 结论①:过空间一点作已知直线的垂面,有且只有一个. 结论②:过平面内一条直线作该平面的垂面,有且只有一个.(2)若二面角E -AD -B 和二面角F -BC - A 都是60°,求二面角A -BE -F 的余弦值.解:(1)证明:如图,连接MN ,ME ,NF ,∵四边形ABCD 是矩形,点M ,N 分别是AD ,BC 的中点,∴AM ∥BN ,AM =BN ,∠DAB =90°,∴四边形ABNM 是矩形,∴AD ⊥MN .∵AE =DE ,点M 是AD 的中点,∴AD ⊥ME ,又MN ∩ME =M ,∴AD ⊥平面EMN ,∴平面EMN ⊥平面ABCD ,同理可得平面FMN ⊥平面ABCD ,由结论②可得平面EMN 与平面FMN 是同一个平面,∴E ,F ,M ,N 四点共面.(2)由(1)知平面EMNF ⊥平面ABCD ,过点E 作EO ⊥MN ,垂足为O ,∴EO ⊥平面ABCD .以过点O 作垂直于MN 的直线为x 轴,ON ,OE 所在直线分别为y 轴,z 轴,建立如图所示的空间直角坐标系O -xyz .∵AD =2,AE =DE =2,点M 是AD 的中点, ∴AE ⊥DE ,EM =1,∵二面角E -AD -B 是60°,∴∠EMN =60°, ∴OM =12,OE =32.同理,过点F 作FO ′⊥MN ,可得O ′N =1,FO ′= 3.∴A ⎝⎛⎭⎫1,-12,0,B ⎝⎛⎭⎫1,72,0,E ⎝⎛⎭⎫0,0,32,F ⎝⎛⎭⎫0,52,3,则AB ―→=(0,4,0),BE ―→=⎝⎛⎭⎫-1,-72,32,EF ―→=⎝⎛⎭⎫0,52,32.设m =(x 1,y 1,z 1)是平面ABE 的法向量, 则⎩⎪⎨⎪⎧ m ·AB ―→=0,m ·EF ―→=0,∴⎩⎪⎨⎪⎧4y 1=0,-x 1-72y 1+32z 1=0, 令z 1=2,得m =(3,0,2).设n =(x 2,y 2,z 2)是平面BEF 的法向量, 则⎩⎪⎨⎪⎧n ·EF ―→=0,m ·BE ―→=0,∴⎩⎨⎧52y 2+32z 2=0,-x 2-72y 2+32z 2=0,令z 2=2,得n =⎝⎛⎭⎫1235,-235,2.而cos 〈m ,n 〉=m ·n |m |·|n |=23817,易知二面角A -BE -F 是钝角, ∴二面角A -BE -F 的余弦值为-23817.。