完全平方公式 学案
完全平方公式教案【优秀3篇】
完全平方公式教案【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!完全平方公式教案【优秀3篇】作为一名教师,时常要开展教案准备工作,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。
人教八年级数学上册14.2.2完全平方公式优秀导学案
14.2.2 完全平方公式一、新课导入1.导入课题:一块边长为a米的正方形实验田,因实际需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(如图)用不同的形式表示实验田的总面积,并进行比较.你发现了什么呢?2.学习目标:(1)能用符号和文字表述完全平方公式.(2)能运用完全平方公式解题.(3)体验归纳添、去括号法则.3.学习重、难点:重点:完全平方公式及应用及添、去括号法则.难点:完全平方公式的几何意义的理解.二、师生互动师生互动一1.自学指导:(1)自学内容:探究完全平方公式.(2)自学时间:8分钟.(3)自学方法:计算、比较分析、猜想结论.(4)探究提纲:①计算下列多项式的积,观察它们的算式形式与运算结果有什么规律.a.(p+1)2=(p+1)(p+1)=p2+2p+1;b.(m+2)2=m2+4m+4;c.(2a+1)2=4a2+4a+1;d.(2x-3)2=4x2-12x+9.②猜想:根据你发现的规律,你能直接写出(a+b)2的计算的结果是a2+2ab+b2,(a-b)2的结果是a2-2ab+b2.③下列等式正确吗?若不对,对比②中发现的规律找出错在什么地方?(x-3)2=x2-9(2m+1)2=4m2+1都不对,都漏掉完全平方公式的“中间项”.④试用下图1,2验证(a±b)2的结果的正确性.请你根据图1,图2说出(a+b)2和(a-b)2的计算结果的几何意义.⑤试用文字表述②中发现的规律.两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.2.自学:学生结合探究提纲进行自学.3.助学:(1)师助生:①明了学情:了解学生的探究过程及归纳总结的规律是否正确,收集学习中存在的问题.②差异指导:教师询问个别学生从探究中如何总结规律并表述规律及如何借助图1、2验证猜想.(2)生助生:学生之间相互交流帮助.4.强化:(1)总结交流:公式的特点.等号左边等号右边符号特征(2)先用公式计算下列各题,再用多项式乘法法则验证.①(2x-3)2;②(x+y)2;③(m+2n)2;④(2x-4)2解:①4x2-12x+9 ②x2+2xy+y2③m2+4mn+4n2④4x2-16x+16师生互动二1.自学指导:(1)自学内容:教材第110页例3、例4.(2)自学时间:8分钟.(3)自学方法:认真观察例题中如何运用公式,分清题目中相当于公式中a、b的数或式是什么.(4)自学参考提纲:①式子(4m+n)2中,4m看作公式中的a,n看作公式中的b,所以(4m+n)2=(4m+n)(4m+n)=16m2+8mn+n2.②(y-)2=y2-2·y·()+=y2-y+.③因为102=100+2,所以1022=(100+2)2=(100)2+2×100×2+(2)2=10404.④怎样计算9982?说说你的想法.用完全平方公式,将998写成1000-2,则9982=(1000-2)2=10002-2×1000×2+22=996004.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否从例题中学会正确运用公式的思考过程.②差异指导:帮助学困生对照公式怎样确定“a”、“ b”.(2)生助生:完成自学提纲,同组内互相检查、交流帮助纠错.4.强化:(1)应用公式时,先确定公式中的“a”、“b”是什么?(2)运用完全平方公式计算:①(-x-y)2;②(2y-)2解:①x2+2xy+y2;②4y2-y+.(3)思考:(a+b)2与(-a-b)2相等吗?(a-b)2与(b-a)2相等吗?为什么?相等.相等.因为互为相反数的数或式子平方相等.师生互动三1.自学指导:(1)自学内容;教材第111页例5上面的内容.(2)自学时间:5分钟.(3)自学方法:认真看课本,并结合自学参考提纲进行学习,注意添加括号时,括号前面是正号和负号时,括号内各项符号的变化.(4)自学参考提纲:①整式中添加括号的依据是什么?②添括号法则是怎样的?③如何验证你添括号的正确性?④在等号右边的括号内填上适当的项.a+b-c=a+(b-c);a+b-c=a-(c-b);a-b+c=a-(b-c)a-b-c=a-(b+c);a+b+c=a-(-b-c);a+2b-6c=a+2(b-3c).2.自学:学生可结合自学提纲进行自学.3.助学:(1)师助生:①明了学情:了解学生对添括号法则是否学会,会不会检验添括号的正确性.②差异指导:对学生进行个别指导:括号前为负号时,添括号后注意什么.(2)生助生:学生之间相互指导.4.强化:(1)添括号法则.(2)括到括号内的各项符号的变与不变与什么有关.(3)注意各项都变或都不变的意思.(4)判断下列运算是否正确,若不正确,请改正过来.①2a-b-=2a-(b-)②m-3n+2a-b=m+(3n+2a-b)③2x-3y+2=-(2x+3y-2)④a-2b-4c+5=(a-2b)-(4c+5)解:①不正确,应等于2a-b+②不正确,应等于m-(3n-2a+b)③不正确,应等于-(-2x+3y-2)④不正确,应等于(a-2b)-(4c-5)师生互动四1.自学指导:(1)自学内容;教材第111页例5的内容.(2)自学方法:认真看教材,注意观察多项式相乘的特点,以便合理地添括号选用相应的公式.(3)自学参考提纲:①计算(x+2y-3)(x-2y+3)时,第一步将整式变形为[x+(2y-3)][x-(2y-3)],目的是什么?本题计算过程中,先后运用了几个公式?本题对应用公式计算有何启示?②计算(a+b+c)2时,例题是写成[(a+b)+ c]2,把a+b当作完全平方式中的a,把c当作完全平方式中的b,还有没有其它的添括号的方法计算本题,试试吧!③运用乘法公式计算(1)(a+2b-1)2;(2)(2x+y+z)(2x-y-z).解:(1)原式=(a+2b)2-2(a+2b)+12=a2+4ab+4b2-2a-4b+1;(2)原式=[2x+(y+z)][2x-(y+z)]=4x2-(y+z)2=4x2-y2-2yz-z2.2.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:了解学生是否灵活运用添括号的法则添加括号,并运用完全平方公式计算.②差异指导:对学生学习过程中存在的问题予以分类指导.(2)生助生:学生之间相互交流帮助.4.强化:(1)总结交流:在乘法运算时,一定要观察多项式的特点,选用对应的公式进行运算.(2)添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号是否正确.(3)练习:计算①(a+b+1)(a+b-1); ②(2x-y-3)2.解:①原式=a2+2ab+b2-1;②原式=(2x)2-2x·(y+3)+(y+3)2=4x2-2xy-6x+y2+6y+9三、评价1.学生的自我评价(围绕三维目标):学生代表交流自己的学习收获和学习体会.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、收效及不足进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学重点是引导学生观察分析完全平方公式的结构特征,教师可组织学生独立观察,再在小组内交流,最后由教师归纳评点,以便学生认识与完全平方公式相关的所有变式.练习题一、基础巩固(第1、2、3、4、5题每题8分,第6题20分,共60分)1.(-3x-1)2= ; (-2x+5)2= ;2.(x-y-1)2= ; (x-y)2= .3.(x+y)2-4xy= 99.82=(100-0.2)2=4.(1)若(x-5)2=x2+kx+25,则k= ;(2)若4x2+mx+9是完全平方式,则m= .5.下列各式中,与(x-1)2相等的是()A.x2-1B.x2-2x+1C.x2-2x-1D.x26.利用乘法公式计算:(1)(a-b+2c)2; (2)(-2x-y)2;(3)(x+y-z)(x-y+z);(4)(a+b+c)2-(a-b-c)2.解:二、综合应用(每题10分,共20分)7.化简求值:[2x2-(x+y)(x-y)][(-x-y)(y-x)+2y2],其中x=1,y=2. 解:8.已知a+b=-7,ab=12,求a2+b2-ab和 (a-b)2的值.解:三、拓展延伸(每题10分,共20分)9.已知a+b-c=5,a-b+c=-3,求a2-b2+2bc-c2的值. 解:10.已知x+=2,求x2+和x-的值.解:。
14.2.2 完全平方公式 导学案(新部编)
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校完全平方公式导学案【学习目标】:1.掌握完全平方公式的推导及其运用.2.理解完全平方公式的几何解释.【学习重点】:完全平方公式的推导过程、结构特点、几何解释,灵活应用.【学习难点】:理解完全平方公式的结构特征并能灵活应用公式进行计算.【学习过程】:一.温故知新:1.平方差公式:(a+b)(a-b)= ;2.运用平方差公式计算:(1))3)(3(yxyx+-= ;(2))1)(1(xx---= .二.合作探究,发现新知:1.计算下列各式,你能发现什么规律?(1)(p+1)²=(p+1)(p+1) = _________ ;(2)(m+2)²= _________ ;(3)(p-1)² = (p-1)(p-1)=________ ;(4)(m-2)²= __________ .(5)(a+b)²= , (a-b)²= .2.语言叙述:两数和(或差)的平方,等于它们的,加(或减)它们的 .3.完全平方公式的特点:(1)积为二次三项式;(2)其中两项为两数的平方和;(3)另一项是两数积的2倍,且与乘式中间的符号相同.(4)公式中的字母a,b可以表示数,单项式和多项式.三.自学例题:【课本P154例3】运用完全平方公式计算:(1)(4m﹢n)2;(2)(y-12)2解:(1)原式= (2)原式= = = (3)(-a-b)2;(4)(b-a)2(3)原式= (4)原式== =运用完全平方公式计算:(1)1022 ; (2)992解:(1)原式= (2)原式= = = = = = =四.跟踪训练:1.下面各式的计算结果是否正确?如果不正确,应当怎样改正?(1)(a+b)²=a ²+b ²( );(3)(x -y)²=x ²+2xy +y ²( )(2)(x -y)²=x ²-y ²( );(4)(x+y)²=x ²+xy +y ²( )2、下列各式计算正确的是 ( )A 、(a +b )²=a ²+b ²B 、(2a -b )²=4a ²-2ab +b ²C 、(a +2b )²=a ²+4b ²D 、(a +3)²=a ²+6a +93.运用完全平方公式计算:(1) (x+6)²; (2) (y-5)²;(3) (-2x+5)²; (4)(-2m-1)²;(5)(y x 3243-)²; (6) 103².4.(宁波·中考)若x+y=3,xy=1,则5.(福州·中考)化简(x+1)²+2(1-x)-x ²= .6、已知x +y =7,xy =10,则(x -y )²= .7、先化简,再求值:y (x +y )+(x -y )²-x ²-2y ²,其中x = ,y =3.五.课堂小结:通过本课时的学习,需要我们掌握:完全平方公式两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.22x y _____.+=13-。
完全平方公式与平方差公式教案
完全平方公式与平方差公式教案章节一:完全平方公式的探究与理解1. 导入:通过实际问题引入完全平方公式的概念,例如求(x + 2)²的值。
2. 探究:引导学生通过具体例子,如(x + 2)²= x²+ 4x + 4,发现完全平方公式的规律。
4. 练习:布置一些简单的练习题,让学生运用完全平方公式进行计算。
章节二:平方差公式的探究与理解1. 导入:通过实际问题引入平方差公式的概念,例如求(x 2)²的值。
2. 探究:引导学生通过具体例子,如(x 2)²= x²4x + 4,发现平方差公式的规律。
4. 练习:布置一些简单的练习题,让学生运用平方差公式进行计算。
章节三:完全平方公式与平方差公式的应用1. 导入:通过实际问题引入完全平方公式与平方差公式的应用,例如求(x +1)(x 1) 的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + 1)(x 1) 进行展开和简化。
4. 练习:布置一些实际问题,让学生运用完全平方公式与平方差公式进行解决。
章节四:完全平方公式与平方差公式的巩固与拓展1. 导入:通过实际问题引入完全平方公式与平方差公式的巩固与拓展,例如求(x + 2)(x 2) 的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + 2)(x 2) 进行展开和简化。
4. 练习:布置一些更复杂的实际问题,让学生运用完全平方公式与平方差公式进行解决。
1. 回顾:引导学生回顾本节课学习的完全平方公式与平方差公式。
3. 评价:对学生的学习情况进行评价,鼓励学生积极参与课堂讨论和练习。
4. 布置作业:布置一些相关的练习题,让学生巩固所学知识。
章节六:完全平方公式与平方差公式的综合应用1. 导入:通过实际问题引入完全平方公式与平方差公式的综合应用,例如求(x + y)²(x y)²的值。
2. 探究:引导学生运用完全平方公式与平方差公式,将(x + y)²(x y)²进行展开和简化。
初中数学《完全平方公式》教学设计范文(精选7篇)
初中数学《完全平方公式》教学设计初中数学《完全平方公式》教学设计范文(精选7篇)作为一名教师,编写教学设计是必不可少的,借助教学设计可以提高教学效率和教学质量。
那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的初中数学《完全平方公式》教学设计范文,欢迎阅读,希望大家能够喜欢。
初中数学《完全平方公式》教学设计篇1学习目标:1、经历探索完全平方公式的过程,发展学生观察、交流、归纳、猜测、验证等能力。
2、会推导完全平方公式,了解公式的几何背景,会用公式计算。
3、数形结合的数学思想和方法。
学习重点:会推导完全平方公式,并能运用公式进行简单的计算。
学习难点:掌握完全平方公式的结构特征,理解公式中a、b的广泛含义。
学习过程:一、学习准备1、利用多项式乘以多项式计算:(a+b)2 (a—b)22、这两个特殊形式的多项式乘法结果称为完全平方公式。
尝试用自己的语言叙述完全平方公式:3、完全平方公式的几何意义:阅读课本64页,完成填空。
4、完全平方公式的结构特征:(a+b)2=a2+2ab+b2(a—b)2=a2—2ab+b2左边是形式,右边有三项,其中两项是形式,另一项是()注意:公式中字母的含义广泛,可以是,只要题目符合公式的结构特征,就可以运用这一公式,可用符号表示为:(□±△)=□2±2□△+△25、两个完全平方公式的转化:(a—b)2= 2=()2+2()+()2=()二、合作探究1、利用乘法公式计算:(3a+2b)2 (2)(—4x2—1)2分析:要分清题目中哪个式子相当于公式中的a ,哪个式子相当于公式中的b2、利用乘法公式计算:992 (2)()2分析:要利用完全平方公式,需具备完全平方公式的结构,所以992可以转化()2,()2可以转化为()2。
3、利用完全平方公式计算:(a+b+c)2 (2)(a—b)3三、学习对照学习目标,通过预习,你觉得自己有哪些方面的收获?又存在哪些方面的疑惑?四、自我测试1、下列计算是否正确,若不正确,请订正;(1)(—1+3a)2=9a2—6a+1(2)(3x2—)2=9x4—(3)(xy+4)2=x2y2+16(4)(a2b—2)2=a2b2—2a2b+42、利用乘法公式计算:(1)(3x+1)2(2)(a—3b)2(3)(—2x+ )2(4)(—3m—4n)23、利用乘法公式计算:99924、先化简,再求值;( m—3n)2—( m+3n)2+2,其中m=2,n=3五、思维拓展1、如果x2—kx+81是一个完全平方公式,则k的值是()2、多项式4x2+1加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是()3、已知(x+y)2=9,(x—y)2=5 ,求xy的值4、x+y=4 ,x—y=10 ,那么xy=()5、已知x— =4,则x2+ =()初中数学《完全平方公式》教学设计篇2一、教材分析:(一)教材的地位与作用本节内容主要研究的是完全平方公式的推导和公式在整式乘法中的应用。
《完全平方公式》教案【通用七篇】
《完全平方公式》教案【通用七篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、致辞讲话、短语口号、心得感想、条据书信、合同协议、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as summary reports, speeches, phrases and slogans, thoughts and feelings, evidence letters, contracts and agreements, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!《完全平方公式》教案【通用七篇】《完全平方公式》教案篇1一、教学目标:经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;重点是正确理解完全平方公式(a±b)2=a2±2ab+b2.并初步运用;难点是完全平方公式的运用。
学案解一元二次方程的完全平方公式
学案解一元二次方程的完全平方公式一、引言解一元二次方程是数学中的基础知识之一,学习并掌握解方程的方法对于数学学习的进一步发展至关重要。
在本学案中,我们将重点学习一元二次方程的完全平方公式,探讨其应用和解题方法。
通过理论的学习和实际的练习,我们将能够更深入地理解和掌握这一重要概念。
二、理论知识一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c为已知常数,x为未知数。
而完全平方公式是一种用于求解一元二次方程的公式,其表达形式为x = (-b ± √(b^2 - 4ac)) / (2a)。
借助完全平方公式,我们可以快速求解一元二次方程的解,并且能够得到方程的两个根,即方程图像与x轴交点的横坐标值。
三、应用举例为了更好地理解和应用完全平方公式,让我们通过一些具体的例子来进行实际操作。
例1:求解方程x^2 - 4x + 3 = 0首先,我们可以直观地观察到这是一个一元二次方程,将其与完全平方公式对照,可以得到a=1,b=-4,c=3。
根据完全平方公式,我们有:x = (-(-4) ± √((-4)^2 - 4 * 1 * 3)) / (2 * 1)x = (4 ± √(16 - 12)) / 2x = (4 ± √(4)) / 2x = (4 ± 2) / 2通过化简我们可以得到两个解:x1 = (4 + 2) / 2 = 3x2 = (4 - 2) / 2 = 1所以,方程x^2 - 4x + 3 = 0的解为x1 = 3和x2 = 1。
例2:应用完全平方公式解决实际问题假设一个矩形的长和宽分别是x和2,其面积为12平方单位。
我们可以通过建立一元二次方程来求解矩形的长。
已知矩形的面积为长乘以宽,即x * 2 = 12。
可以将这个方程转化为一元二次方程的标准形式,得到x^2 - 6x + 12 = 0。
根据完全平方公式,我们有:x = (6 ± √((-6)^2 - 4 * 1 * 12)) / 2x = (6 ± √(36 - 48)) / 2x = (6 ± √(-12)) / 2由于√(-12)为虚数,所以方程没有实数解。
完全平方公式学案
14.2.2完全平方公式(导学案)
你算我猜
一、复习旧知,导入新课
复习:多项式乘法:(a +b )(c +d )=
平方差公式:(a +b )(a −b )=
猜想:(a +b )2=
(a −b )2=
二、交流合作,探究公式
1、验证:
2、探究公式特征
完全平方公式:(a +b )2=
(a −b )2=
语言叙述:
速记口诀:
三、巩固知识,深化原理
你能利用几何图形的面积来解释公式吗?(利用手中的教具分别完成两个公式的拼图)
四、课堂演练,应用新知
b b a
a a
b
1、学一学:计算:(4m+n)2
2、练一练:计算:(1)(−3x+y)2 (2)(p−4q)2
3、辨一辨:指出下列各式中的错误,并加以改正:
(1) (2a−1)2=2a2−2a+1; (2) (2a+1)2=4a2+1;
(3)(−a+1)2=−a2−2a−1;(4) (−a−1)2=a2−2a+1.
运用完全平方公式计算时应注意:
4、编一编:请你尝试编一道能运用完全平方公式计算的题目,并完成计算.
5、你算我猜:你知道这里的奥秘吗?
五、总结提升,作业布置
课堂总结:
作业布置:
【巩固性作业】完成课本P112第2、4题
【拓展性作业】(a+b)2=a2+2ab+b2
猜想:(a+b+c)2= ?
你能设计一个几何图形解释它们吗?
【放飞性作业】阅读《完全平方公式的远亲》。
《完全平方公式》学案
《完全平方公式》学案《《完全平方公式》学案》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!一、学习目标:1、会推导完全平方公式:(a+b)2=a2+2ab+b2,了解公式的几何解释,并能运用公式进行计算。
2、经历探索完全平方公式的推导过程,发展符号感,体会“特殊——一般——特殊”的认识规律。
二、尝试练习:1、完全平方公式为,就是说,两数和的平方等于这两个数的平方和。
2、与都叫做完全平方公式。
三、探究活动:1、直接运用完全平方公式计算。
计算:(1)(a+36)2;(2)(-x+2y)2;(3)(-x-y)2(4) 1022(5)9922.书110页练习四、课堂练习:1、下列运算正确的是()A、(a+b)2=a2+b2B、a3·a2=a5C、a6÷a3=a2D、2a+3b=5ab2、若a+b=4,则a2+2ab+b2的值是()A、8B、16C、2D、43、化简(a+1)2-(a-1)2等于()A、2B、4C、4aD、2a2+2五、课堂检测:1、若一个多项式的平方的结果为4a2+12ab+m2,则m=()A、9b2B、3b2C、-9b2D、3b2、若要得到(a-b)2,则a2+3ab+b2应加上()A、-abB、-3abC、-5abD、-7ab3、已知x2-2mx+1是完全平方式,则m的值为()A、1B、-1C、±1D、04、多项式9x2+1加上一个单项式后,使它成为一个整式的完全平方,那么加上的单项式可以是(填上一个你认为正确的即可)。
5、4a2+12ab+9b2=()2。
完全平方公式的灵活运用1、已知a+b=3,ab=-12,求下列各式的值。
(1)a2+b2;(2)(a-b)22、计算:(1)(x+y+2z)(x-y+2z);(2)(a+b+c)2(3)(2m-n)2-(2m)2;(4)(x+2y+1)(x+2y-1)。
分享:《完全平方公式》学案这篇文章共1708字。
完全平方公式学案
《完全平方公式》学案教学目标:1. 了解完全平方公式的几何意义,能推导完全平方公式。
2. 能运用完全平方公式进行简单的计算。
教学过程 1. 计算:(2) (a b)(a b) (3) (a-b)(a-b)二•导 2. 填空?图1求整个图形的面积SS= ______________________ 3■完全平方公式:(1) a b 2 = ________________________文字表述为: 图2 求阴影部分的面积SS= ______________________2(2) (a —b) = ___________________两个数的 _ (或_)的平方,等于它们的 _____________ ,加上(或减去)它们的的—倍。
上述两个公式统称为完全平方公式。
4.火眼金睛:判羽断题:下面的计算正确打“2”,错误的打“x”,并加以改正。
(1) (2+mj =4+2m+m2()改正:⑵(s -t $ =s2 -12()改正:⑶(1 f 2 12x + —丨=4x +2x +-I 2丿 4()改正:⑷(x + y S = x2+ y2()改正:5■小试牛刀:计算尹*2(1) y -— [ (2) (2a+3bf(3) -2x 526 •攻城拔寨:运用完全平方公式计算(1)1022(2)982三、升7.计算:2 . 2(1) (―a —b) (2) (b — a)四、小结今天你学到什么了?课堂评价测试题1、下列计算正确的是()A、(a+3)2=a2+9B、(x-9y )2=x2-18xy+9y2C、(2a+3)2 =4a2+6a+9D、(-x+y)2=x2-2xy+y22、运算结果为1-6x+9x2的是()A、(1-3x)2B、(1+3x)2C、(1+3x)(1-3x)D、(1-6x)23、填空:(a-7)2=a2+ _____ +494、计算:(x+y)(x-y)-(x+y)2。
14.2.2完全平方公式导学案(1)
1422完全平方公式导学案(一)【学习目标】:1、理解完全平方公式的意义。
2、准确掌握两个公式的结构特征,熟练运用公式进行计算。
3、通过对完全平方公式的理解,培养思维的条理性和表达能力。
学习重点:完全平方公式的推导过程、结构特征、正确运用公式进行计算。
学习难点:灵活应用公式进行计算。
学习过程、预习新知(课本卩153_口55)1、复习回顾:计算下列各式,你能发现什么规律?(1)、(P+1 2N P+H P TA。
(2)(m+22=(3)、(P-1 2=(P-HP-1)= 。
(4)、吩22二2、尝试归纳:(a■卩? = (a_b)2 = 公式中的字母a、b可以表示也可以表示单项式或。
3、完全平方公式用语言叙述是:。
4、(小组之间深入探究)你能根据图(1)、图(2)中的面积说明完全平方公式吗?- +5•自学教材P154例3。
试一试、用完全平方公式计算,并指出里面的a和b。
(1)、(x+2y 2(2)、(x-、课堂展示例1、运用完全平方公式计算:— 2 2 2题的运算,请问a,与b-a相等吗? a b与-a-b相等变式练习:课本练习题第1题。
例2、运用完全平方公式计算:2、下列计算正确的是()A、(m-1)2=m2-1C、(2x-y)2= 4x2-xy-y23、将正方形的边长由acm增加6cm,则正方形的面积增加了()A. 36cm2B. 12acm2C.(36+12a)cm2 D .以上都不对4、课本习题14.2的第2大题。
1 +a =3 A + a2(1)、已知a ,求a 的值。
四、小结与反思(1)、4a_b (2)、. 2(3)、” c =21.2a —?b2丿(4)、b -a (5)、-a - b思考:吗?通过例题1中(4 )、(5)(1 )、炫三、随堂练习⑵ 1992(3)79.82B、(x+1 )(x+1)=x2+x+1D、(x+y)(x-y)(x2-y2)=x4-y4。
完全平方公式(第1课时)导学案
完全平方公式(第1课时)导学案2完全平方公式一、学习目标会推导完全平方公式,了解公式的几何解释,并能运用公式计算。
二、学习重点:掌握公式的结构特征和字母表示的广泛含义,正确运用公式进行计算。
三、学法指导:.教学方法:尝试指导法、讲练结合法、小组合作。
.学生运用完全平方公式计算时,要注意:切勿把此公式与公式混淆,而随意写成。
切勿把“乘积项”2ab中的2丢掉.计算时,要先观察题目是否符合公式的条件。
若不符合,应先变形为符合公式的条件的形式,再利用公式进行计算;若不能变为符合条件的形式,则应运用乘法法则进行计算。
要想用好公式,关键在于辨认题目的结构特征。
四、学习过程:【课前准备及预习感悟】依据预习提纲预习并完成相关的问题一、复习回顾:叙述平方差公式的内容并用字母表示;用简便方法计算①103×97②103×103请同学们自编一个符合平方差公式结构的计算题,并算出结果.二、探究发现:计算学生活动:计算,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.由学生概括:两数和的平方等于这两个数的平方和加上。
结合图形,理解公式,与同学交流。
根据图形完成下列问题:如图:A、B两图均为正方形,图A中正方形的面积为____________,图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为_______________________。
图B中,正方形的面积为____________________,Ⅲ的面积为______________,Ⅰ、Ⅱ、Ⅳ的面积和为____________,用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积_________________。
分别得出结论:预习疑难摘要【课堂学习研讨交流】1、小组研讨预习中碰到的疑难问题,不会的要向其他同学或老师请教哦!2、说说完全平方公式的特征,和你的伙伴交流认识。
【知识应用与能力形成】引例:计算讲解:在中,把x看成a,把2y看成b,在中把2x看成a,把-3y看成b,则、,就可用完全平方公式来计算,即=a2+2ab+b2[2x+2=4x2+2•2x•2=a2+2ab+b2例1运用完全平方公式计算:012解:1012=2=1002+2ⅹ100ⅹ1+1=做课本例1、例2学生活动:学生独立在练习本上尝试解题,2个学生板演.【课内训练巩固】教科书38页练习第1、2、3题。
数学《完全平方公式》教案
•••••••••••••••••数学《完全平方公式》教案数学《完全平方公式》教案作为一名专为他人授业解惑的人民教师,时常需要用到教案,教案是实施教学的主要依据,有着至关重要的作用。
那么优秀的教案是什么样的呢?下面是小编为大家收集的数学《完全平方公式》教案,仅供参考,欢迎大家阅读。
数学《完全平方公式》教案1教学目标:1、经历探索完全平方公式的过程,并从完全平方公式的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力。
2、体会公式的发现和推导过程,理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算。
3、了解完全平方公式的几何背景,培养学生的数形结合意识。
4、在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感爱数学的内在美。
教学重点:1、弄清完全平方公式的来源及其结构特点,用自己的语言说明公式及其特点;2、会用完全平方公式进行运算。
教学难点:会用完全平方公式进行运算教学方法:探索讨论、归纳总结。
教学过程:一、回顾与思考活动内容:复习已学过的平方差公式1、平方差公式:(a+b)(a—b)=a2—b2;公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积。
右边是两数的平方差。
2、应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式。
二、情境引入活动内容:提出问题:一块边长为a米的正方形实验田,由于效益比较高,所以要扩大农田,将其边长增加b米,形成四块实验田,以种植不同的新品种(如图)。
用不同的形式表示实验田的总面积,并进行比较。
三、初识完全平方公式活动内容:1、通过多项式的乘法法则来验证(a+b)2=a2+2ab+b2的正确性。
并利用两数和的完全平方公式推导出两数差的完全平方公式:(a—b)2=a2—2ab+b2。
2、引导学生利用几何图形来验证两数差的完全平方公式。
3、分析完全平方公式的结构特点,并用语言来描述完全平方公式。
《完全平方公式》教学设计
《完全平方公式》教学设计《完全平方公式》教学设计作为一位不辞辛劳的人民教师,时常需要编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
那么大家知道规范的教学设计是怎么写的吗?下面是小编整理的《完全平方公式》教学设计,希望能够帮助到大家。
《完全平方公式》教学设计1总体说明:完全平方公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结.同时,完全平方公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过完全平方公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.而且完全平方公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较大作用,更是以后学习分解因式、分式运算、解一元二次方程以及二次函数的恒等变形的重要基础,同时也具有培养学生逐渐养成严密的逻辑推理能力的作用.因此学好完全平方公式对于代数知识的后继学习具有相当重要的意义.本节是北师大版七年级数学下册第一章《整式的运算》的第8小节,占两个课时,这是第一课时,它主要让学生经历探索与推导完全平方公式的过程,培养学生的符号感与推理能力,让学生进一步体会数形结合的思想在数学中的作用.一、学生学情分析学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的'乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.二、教学目标知识与技能:(1)让学生会推导完全平方公式,并能进行简单的应用.(2)了解完全平方公式的几何背景.数学能力:(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.(2)发展学生的数形结合的数学思想.情感与态度:将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”.三、教学重难点教学重点:1、完全平方公式的推导;2、完全平方公式的应用;教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;2、完全平方公式结构的认知及正确应用.四、教学设计分析本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习.第一环节:学生练习、暴露问题活动内容:计算:(a+2)2设想学生的做法有以下几种可能:①(a+2)2=a2+22②(a+2)2=a2+2a+22③正确做法;针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:(a+2)2=a2+22,如果不将这种定式思维x,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.第二环节:验证(a+2)2=a2–4a+22活动内容:(a+2)2=(a+2)(a+2)=a2+2a+2a+22活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.第三环节:推广到一般情况,形成公式活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.第四环节:数形结合活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?展示动画,用几何图形诠释完全平方公式的几何意义.学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.第五环节:进一步拓广活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab+b2 方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.第六环节:总结口诀、认识特征活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)口诀:首平方,尾平方,首尾相乘的两倍在中央.活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.第七环节:公式应用活动内容:例:计算:①(2x–3)2;②(4x+)2解:①(2x–3)2=(2x)2–2(2x)3+32=4x2–12x+9②(4x+)2=(4x)2+2(4x)()+()2=16x2+2xy+活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识——模仿——再认识.从而上升到理性认识的阶段.第八环节:随堂练习活动内容:计算:①;②;③(n+1)2–n2活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.第九环节:学生PK活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.第十环节:学生反思活动内容:通过今天这堂课的学习,你有哪些收获?收获1:认识了完全平方公式,并能简单应用;收获2:了解了两数和与两数差的完全平方公式之间的差异;收获3:感受到数形结合的数学思想在数学中的作用.活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙.第十一环节:布置作业:课本P43习题1.13《完全平方公式》教学设计2教学目标1、知识与技能:体会公式的发现和推导过程,了解公式的几何背景,理解公式的本质,会应用公式进行简单的计算.2、过程与方法:通过让学生经历探索完全平方公式的过程,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展推理能力和有条理的表达能力.培养学生的数形结合能力.3、情感态度价值观:体验数学活动充满着探索性和创造性,并在数学活动中获得成功的体验与喜悦,树立学习自信心.教学重难点教学重点:1、对公式的理解,包括它的推导过程、结构特点、语言表述(学生自己的语言)、几何解释.2、会运用公式进行简单的计算.教学难点:1、完全平方公式的推导及其几何解释.2、完全平方公式的结构特点及其应用.教学工具课件教学过程一、复习旧知、引入新知问题1:请说出平方差公式,说说它的结构特点.问题2:平方差公式是如何推导出来的?问题3:平方差公式可用来解决什么问题,举例说明.问题4:想一想、做一做,说出下列各式的结果.(1)(a+b)2(2)(a-b)2(此时,教师可让学生分别说说理由,并且不直接给出正确评价,还要继续激发学生的学习兴趣.)二、创设问题情境、探究新知一块边长为a米的正方形实验田,因需要将其边长增加b米,形成四块实验田,以种植不同的新品种.(如图)(1)四块面积分别为:、、、;(2)两种形式表示实验田的总面积:①整体看:边长为的大正方形,S=;②部分看:四块面积的和,S=.总结:通过以上探索你发现了什么?问题1:通过以上探索学习,同学们应该知道我们提出的'问题4正确的结果是什么了吧?问题2:如果还有同学不认同这个结果,我们再看下面的问题,继续探索.(a+b)2表示的意义是什么?请你用多项式的乘法法则加以验证.(教学过程中教师要有意识地提到猜想、感觉得到的不一定正确,只有再通过验证才能得出真知,但还是要鼓励学生大胆猜想,发表见解,但要验证)问题3:你能说说(a+b)2=a2+2ab+b2这个等式的结构特点吗?用自己的语言叙述.(结构特点:右边是二项式(两数和)的平方,右边有三项,是两数的平方和加上这两数乘积的二倍)问题4:你能根据以上等式的结构特点说出(a-b)2等于什么吗?请你再用多项式的乘法法则加以验证.总结:我们把(a+b)2=a2+2ab+b2(a–b)2=a2–2ab+b2称为完全平方公式.问题:①这两个公式有何相同点与不同点?②你能用自己的语言叙述这两个公式吗?语言描述:两数和(或差)的平方等于这两数的平方和加上(或减去)这两数积的2倍.强化记忆:首平方,尾平方,首尾二倍放中央,和是加来差是减.三、例题讲解,巩固新知例1:利用完全平方公式计算(1)(2x-3)2(2)(4x+5y)2(3)(mn-a)2解:(2x-3)2=(2x)2-2o(2x)o3+32=4x2-12x+9(4x+5y)2=(4x)2+2o(4x)o(5y)+(5y)2=16x2+40xy+25y2(mn-a)2=(mn)2-2o(mn)oa+a2=m2n2-2mna+a2交流总结:运用完全平方公式计算的一般步骤(1)确定首、尾,分别平方;(2)确定中间系数与符号,得到结果.四、练习巩固练习1:利用完全平方公式计算练习2:利用完全平方公式计算练习3:(练习可采用多种形式,学生上黑板板演,师生共同评价.也可学生独立完成后,学生互相批改,力求使学生对公式完全掌握,如有学生出现问题,学生、教师应及时帮助.)五、变式练习六、畅谈收获,归纳总结1、本节课我们学习了乘法的完全平方公式.2、我们在运用公式时,要注意以下几点:(1)公式中的字母a、b可以是任意代数式;(2)公式的结果有三项,不要漏项和写错符号;(3)可能出现①②这样的错误.也不要与平方差公式混在一起.七、作业设置《完全平方公式》教学设计3课题教案:完全平方公式学科:数学年级:七年级1内容本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)已知 , ,求下列各式的值。
①
②
③
(2)已知 ,试求 的值。
2.阅读课本 读一读《杨晖三角》.
五.师生互动课堂小结
知识点:
思想方法:、
学
生
笔
记
A组:(x+3)2B组:(x-3)2
(2m+3n)2(2m-3n)2
2.回顾平方差公式的学习过程.
二.小组讨论小结归纳
观察A组两个式子,回答下列问题:
(1)原式的特点?
(2)结果有几项?每一项的特点?每一项系数的特点?
归纳:
结构特点:左边:;
右边:.
语言描述:.
字母表示:.
总结完全平方公式:.
三.基础巩固独立完成
义安一中七年级数学导学案
课题
1.6.1完全平方公式
课时
1
课型
新授
班级
182
学生
姓名
主备
教师
张锐芳
授课
教师
张锐芳
备写
日期
2017.03
组别
学习
目标
1.理解完全平方公式,会应用完全平方公式进行计算。
2.了解完全平方公式的几何背景。
学习过程
一.复习回顾(课前完成)
1.整式的乘法法则:___________________________________
1.计算(x+2)2的结果为x2+□x+4,则“□”中的数为( )
A.-2 B.2 C.-4 D.4
2.下列计算正确的是()
A.
B.
C.
D.
3.已知 是完全平方式,则常数k等于()
A.64 B.48CБайду номын сангаас32 D.16
4.利用完全平方公式计算:
(1) (2)
(3) (4)
5.计算
(1)
(2)
四.能力拓展拓展提升