数学人教版八年级上册三角新内角和定理

合集下载

三角形的内角和(林舒韵)

三角形的内角和(林舒韵)

剪拼
为逻辑推理三角形 内角和定理作铺垫
推理证明 辅助线的添加
方法一
方法二
教师示范证明过程 学生书写证明过程
得到定理 (三角形的内角和180°)
课堂练习 例题讲解 课堂小结
课后作业
一、情景导入
1、平角等于_1_80_度。
2、平行线的性质 (1)两直线平行,同位角相等。 (2)两直线平行,内错角相等。 (3)两直线平行,同旁内角互补。
谢谢观赏
You made my day!
我们,还在路上……
3、在运用三角形内角和定理解题时,关键是如何把与 条件和结论有关系的角放在同一个三角形当中,并找出 其中两角的度数。
六、课后作业
1、(必做题)在△ABC 中,∠A =50°, ∠B =80°,则∠C = 度。
2、(必做题) 在△ABC 中,∠A:∠B:∠C =1:2:3,则∠B 为多
少度?
A
3、(必做题)如图:已知在△ABC中,EF 与AC 交于点G,与BC 的延长线交于点F,∠B =45° ,∠F =30°,∠CGF =70°,求∠A

13、知人者智,自知者明。胜人者有 力,自 胜者强 。21.8.1 21.8.11 4:32:50 14:32:5 0Augus t 1, 2021

14、意志坚强的人能把世界放在手中 像泥块 一样任 意揉捏 。2021 年8月1 日星期 日下午2 时32分 50秒14 :32:502 1.8.1
D
∴ ∠ADB=180°-∠B-∠BAD
A
B
=180°-75°-20°=85°.
四、
例 如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80 °方向,
C岛在B岛的北偏西40 °方向。

人教版八年级数学上册精品教学课件 第十一章 三角形 多边形的内角和

人教版八年级数学上册精品教学课件 第十一章 三角形 多边形的内角和
解:∵360°÷180°=2, 630°÷180°=3......90°, ∴甲的说法对,乙的说法不对, 360°÷180°+2=4. 故甲同学说的边数n是4;
(2)若n边形变为(n+x)边形,发现内角和增加了360°, 用列方程的方法确定x.
解:依题意有 (n+x-2)×180°-(n-2)×180°=360°, 解得x=2. 故x的值是2.
A 方法1:如图,连接AC,
所以四边形被分为两个三角形,
所以四边形ABCD内角和为 180°×2=360°.
B C
方法2:如图,在CD边上任取一点E,连接AE,DE, 所以该四边形被分成三个三角形, 所以四边形ABCD的内角和为 180°×3-(∠AEB+∠AED+∠CED)=180°×3-180°=360°.
解:∵1800÷180=10, ∴原多边形边数为10+2=12. ∵一个多边形截去一个内角后,边数可能减1,
可能不变,也可能加1, ∴新多边形的边数可能是11,12,13, ∴新多边形的内角和可能是1620°,1800°,1980°.
能力提升:如图,求∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数.
【变式题】一个同学在进行多边形的内角和计算时,求得内角和为 1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内 角是多少度?他求的是几边形的内角和?
思路点拨:多边形的内角的度数在0°~180°之间. 解:设此多边形的内角和为x, 则有1125°<x<1125°+180°, 即180°×6+45°<x<180°×7+45°, 因为x为多边形的内角和,所以它是180°的倍数, 所以x=180°×7=1260°. 所以7+2=9,1260°-1125°=135°. 因此,漏加的这个内角是135°,这个多边形是九边形.

人教版八年级数学上册三角形的内角和定理

人教版八年级数学上册三角形的内角和定理

三角形的内角和定理人教八上初中数学试卷11-4一、学习目标理解“三角形的内角和等于180°”及证明过程;证明“三角形内角和定理”,体会证明中辅助线的作用,尝试用多种方法证明三角形内角和定理;运用三角形内角和定理解决问题.二、知识回顾拼拼看,将任意一个三角形的三个内角拼合在一起会形成什么角?三、新知讲解1.三角形内角和定理定理三角形三个内角的和等于180°符号语言在△ABC中,∠A+∠B+∠C=180°图示2.三角形内角和定理的证明已知:如图,已知△ABC,求证:∠A+∠B+∠C=180°.〖方法1〗证明:过A点作DE∥BC,∵DE∥BC,(已作)∴∠DAB=∠B,∠EAC=∠C,(两直线平行,内错角相等)∵∠DAB+∠BAC+∠EAC=180°,(平角=180°)∴∠BAC+∠B+∠C=180°,(等量代换)〖方法2〗证明:作BC的延长线CD,过点C作射线CE∥BA.∵CE∥BA,∴∠B=∠ECD(两直线平行,同位角相等),∠A=∠ACE(两直线平行,内错角相等),∵∠BCA+∠ACE+∠ECD=180°,(平角=180°)∴∠A+∠B+∠ACB=180°.(等量代换)3.三角形内角和定理的应用(1)已知三角形的两个内角,利用三角形内角和定理可求第三个角;(2)已知各角之间的关系,利用三角形内角和定理可求各角.四、典例探究扫一扫,有惊喜哦!1.三角形的内角和定理【例1】(2014春•靖江市校级月考)若一个三角形的三个内角之比为3:4:5,则它的最大内角的度数是()A.80° B.75° C.90° D.108°总结:给出三角形三个内角的比求内角度数时,通常要设未知数,通过列方程求解.【例2】(2014•重庆校级模拟)如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=45°,则∠A的度数为()A.65° B.75° C.85° D.95°总结:关于三角形与平行线结合的问题,求解时,先从平行线的性质入手,把有关角转化到三角形中,再利用三角形的内角和定理求解.【例3】(2014秋•太和县期末)如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A.100° B.110° C.115° D.120°总结:三角形中两内角平分线相交组成的角等于90°与第三个内角一半的和.练1.(2015•重庆模拟)在△ABC中,已知∠A=4∠B=104°,则∠C的度数是()A.50° B.45° C.40° D.30°练2.(2014秋•安庆期中)在△ABC中,∠A、∠B、∠C的度数之比为3:4:5,那么△ABC是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形练3.(2014春•通川区校级期中)如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.2.三角形内角和定理的实际应用【例4】如图,一轮船由B处向C处航行,在B处测得C处在B的北偏东75°方向上,在海岛上的观察所A测得B在A的南偏西30°方向上,若轮船行驶到C处时测得∠BAC=55°,那么从C处看A,B两处的视角∠ACB是多少度?总结:1.“三角形的内角和为180°”是隐含条件,在实际应用中必不可少.2.在有关方位角的计算中,常常构造三角形,在三角形中计算角的度数.练4.(2010•石家庄二模)如图所示是小李绘制的某大桥断裂的现场草图,若∠1=38°,∠2=23°,则桥面断裂处夹角∠BCD为________度.3.(2014春•江阴市校级期中)如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°4.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数为()A.30°B.40°C.50°D.60°二、填空题5.(2014秋•宁津县校级月考)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A= ,∠C= .6.(2014•徐州二模)如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C= .(2013春•苏州期末)如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE= .7.三、解答题8.(2014春•庐江县期末)如图,已知∠DAB=70°,AC平分∠DAB,∠1=35°,求∠D的度数.9.(2012春•中山区期中)已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E的度数.10.(2011春•宣威市校级月考)如图所示,已知图①五角星ABCDE,将图①中的A点向下移动得到图②,将图①中的C点向上移动得图③,对于五角星及五角星的变形图,∠A+∠B+∠C+∠D+∠E的和为多少度?并选择一图加以说明.典例探究答案:【例1】(2014春•靖江市校级月考)若一个三角形的三个内角之比为3:4:5,则它的最大内角的度数是()A.80° B.75° C.90° D.108°分析:设三角形的三个内角的度数分别为3x、4x、5x,根据三角形内角和定理得到3x+4x+5x=180°,然后解方程求出x后计算5x即可.解答:解:设三角形的三个内角的度数分别为3x、4x、5x,所以3x+4x+5x=180°,解得x=15°,所以5x=75°.故选B.点评:本题考查了三角形内角和定理,即三角形内角和是180°.(2014•重庆校级模拟)如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=45°,【例2】则∠A的度数为()A.65° B.75° C.85° D.95°分析:根据平行线的性质可得∠C=∠AED=45°,再利用三角形内角和为180°可以计算出∠A的度数.解答:解:∵DE∥BC,∴∠C=∠AED=45°,∴∠A=180°﹣∠B﹣∠C=180°﹣45°﹣60°=75°,故选:B.点评:此题主要考查了三角形内角和定理,即三角形内角和为180°.【例3】(2014秋•太和县期末)如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A.100° B.110° C.115° D.120°分析:根据三角形内角和定理计算.解答:解:∵∠ABC=50°,∠ACB=80°,且BP平分∠ABC,CP平分∠ACB,∴∠PBC=25°,∠PCB=40°,∴∠BPC=115°.故选C.点评:此题主要考查了三角形的内角和定理:三角形的内角和为180°.练1.(2015•重庆模拟)在△ABC中,已知∠A=4∠B=104°,则∠C的度数是()A.50° B.45° C.40° D.30°分析:根据已知条件求出∠B的度数,再根据三角形的内角和等于180°列式计算即可得解.解答:解:∵4∠B=104°,∴∠B=26°,∴∠C=180°﹣∠A﹣∠B=180°﹣104°﹣26°=50°.故选A.点评:本题考查了三角形的内角和定理,是基础题,求出∠B的度数,然后列出∠C的表达式是解题的关键.练2.(2014秋•安庆期中)在△ABC中,∠A、∠B、∠C的度数之比为3:4:5,那么△ABC 是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形分析:已知三角形三个内角的度数之比,可以设一份为k°,根据三角形的内角和等于180°列方程求三个内角的度数,从而确定三角形的形状.解答:解:设一份为k°,则三个内角的度数分别为3k°,4k°,5k°.则3k°+4k°+5k°=180°,解得k°=15°,∴5k°=75°,3k°=45°,4k°=60°,所以这个三角形是锐角三角形,故选A.点评:此题主要考查三角形的按边分类,直接根据三角形三个内角的度数比来判断是解题的关键.练3.(2014春•通川区校级期中)如图,已知△ABC中,∠B=65°,∠C=45°,AD是BC边上的高,AE是∠BAC的平分线,求∠DAE的度数.分析:由三角形的内角和定理,可求∠BAC=70°,又由AE是∠BAC的平分线,可求∠BAE=35°,再由AD是BC边上的高,可知∠ADB=90°,可求∠BAD=25°,所以∠DAE=∠BAE﹣∠BAD=10°.解答:解:在△ABC中,∵∠BAC=180°﹣∠B﹣∠C=70°,∵AE是∠BAC的平分线,∴∠BAE=∠CAE=35°.又∵AD是BC边上的高,∴∠ADB=90°,∵在△ABD中∠BAD=90°﹣∠B=25°,∴∠DAE=∠BAE﹣∠BAD=10°.点评:本题考查三角形的内角和定理及角平分线的性质,高线的性质,解答的关键是三角形的内角和定理,一定要熟稔于心.【例4】如图,一轮船由B处向C处航行,在B处测得处在B的北偏东75°方向上,在海岛上的观察所A测得B在A的南偏西30°方向上,若轮船行驶到C处时测得∠BAC=55°,那么从C处看A,B两处的视角∠ACB是多少度?分析:根据方位角就可求得BA与正北方向的夹角,即可得到∠ABC,在△ABC中,根据三角形内角和定理即可求得∠ACB的度数.解答:解:∵∠BAE=30°,∴∠ABD=30°,∴∠ABC=∠DBC-∠ABD=75°-30°=45°.在△ABC中,根据三角形内角和定理得到:∠ACB=180°-45°-55°=80°,即从C处看A,B两处的视角∠ACB是80°.点评:本题主要考查了方位角的定义,以及三角形的内角和定理.练4.(2010•石家庄二模)如图所示是小李绘制的某大桥断裂的现场草图,若∠1=38°,∠2=23°,则桥面断裂处夹角∠BCD为_____度.分析:连接BD,根据对顶角相等得到∠1=∠4=38°,∠2=∠3=23°,然后根据三角形内角和定理进行计算即可.解答:解:连接BD,如图,∵∠1=∠4=38°,∠2=∠3=23°,∴∠BCD=180°-∠4-∠3=180°-23°-38°=119°.故答案为:119.点评:本题考查了三角形内角和定理:三角形的内角和为180°.也考查了对顶角相等.课后小测答案:一、选择题1.(2014•江北区模拟)在△ABC中,已知∠A=3∠C=54°,则∠B的度数是()A.90° B.94° C.98° D.108°解:如图所示:∵∠A=3∠C=54°,∴∠C=18°,∴∠B的度数是:180°﹣∠A﹣∠C=108°.故选:D.(2014春•合川区校级期中)已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()2.A.锐角三角形 B.直角三角形 C.钝角三角形 D.正三角形解:∵∠A=20°,∴∠B=∠C=(180°﹣20°)=80°,∴三角形△ABC是锐角三角形.故选A.3.(2014春•江阴市校级期中)如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A=()A.50° B.40° C.70° D.35°解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.故选B.4.如图,是一块三角形木板的残余部分,量得∠A=100°,∠B=40°,这块三角形木板另外一个角∠C的度数为()A.30° B.40° C.50° D.60°解:∵△ABC中,∠A=100°,∠B=40°,∴∠C=180°-∠A-∠B=180°-100°-40°=40°.故选B.二、填空题5.(2014秋•宁津县校级月考)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A= ,∠C= .解:设∠A=2x°,则∠B=3x°,∠C=4x°,∵∠A+∠B+∠C=180°,即:2x°+3x°+4x°=180°,解得:x=20∴∠A=40°,则∠B=60°,∠C=80°,故答案为:40°、80°6.(2014•徐州二模)如图,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C= .解:∵∠A=35°,∠AOB=75°,∠A+∠B+∠C=180°,∴∠B=180°﹣35°﹣75°=70°.又∵AB∥CD,∴∠C=∠B=70°.7.(2013春•苏州期末)如图,CD、CE分别是△ABC的高和角平分线,∠A=30°,∠B=60°,则∠DCE= .解:∵∠A=30°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=90°,∵CD、CE分别是△ABC的高和角平分线,∴∠BCE=∠ACB=45°,∠BDC=90°,∴∠BCD=90°﹣∠B=30°,∴∠DCE=∠BCE﹣∠BCD=45°﹣30°=15°.故答案为:15°.三、解答题8.(2014春•庐江县期末)如图,已知∠DAB=70°,AC平分∠DAB,∠1=35°,求∠D的度数.解:∵∠DAB=70°,AC平分∠DAB,∴∠DAC=35°,又∵∠1=35°,∴∠D=180°﹣(∠1+∠DAC)=180°﹣(35°+35°)=110°.9.(2012春•中山区期中)已知,如图,AB∥CD,AE平分∠BAC,CE平分∠ACD,求∠E的度数.解:∵AB∥CD,AE平分∠BAC,CE平分∠ACD,又∠BAC+∠DCA=180°⇒∠CAE+∠ACE=(∠BAC+∠DCA)=90°,∠E=180°﹣(∠CAE+∠ACE)=90°,∴∠E=90°.10.(2011春•宣威市校级月考)如图所示,已知图①五角星ABCDE,将图①中的A点向下移动得到图②,将图①中的C点向上移动得图③,对于五角星及五角星的变形图,∠A+∠B+∠C+∠D+∠E的和为多少度?并选择一图加以说明.解:∠A+∠B+∠C+∠D+∠E=180°,图①:∵∠A+∠D=∠BNM,∠E+∠C=∠BMN,(三角形的外角等于与它不相邻的两个内角的和),又∵∠B+∠BNM+∠BMN=180∴∠A+∠B+∠C+∠D+∠E=180°.图②:延长AD交BE于点F,再根据三角形外角的性质解答;③同①,∵∠A+∠C=∠1,∠B+∠E=∠2,∠1+∠2+∠D=180°,∴∠A+∠B+∠C+∠D+∠E=180°.。

八年级上册数学三角形的角知识点结论

八年级上册数学三角形的角知识点结论

八年级上册数学三角形的角知识点结论在学习八年级上册数学课程中,我们经常会接触到三角形的相关知识。

三角形是初中数学中一个重要的基础概念,而其中的角知识点更是我们需要深入掌握的内容之一。

接下来,我将从简单到复杂,由浅入深地探讨八年级上册数学三角形的角知识点结论。

1. 三角形的定义三角形是由三条线段所围成的一个平面图形,它是几何中的基本图形之一。

三角形中有三个角,我们需要了解它们各自的特点和性质。

2. 角的概念在三角形中,角是由两条线段所围成的图形部分。

角的大小通常用度来表示,一个完整的圆周角为360度。

在三角形中,我们通常会接触到三种角:内角、外角和对顶角。

3. 内角的性质在三角形ABC中,若角A、角B、角C分别为α、β、γ,则有以下结论:(1)三角形内角和等于180度:α+β+γ=180度;(2)三角形内角和小于等于180度:α+β+γ≤180度;(3)三角形内角和大于180度:α+β+γ≥180度。

4. 外角的性质在三角形ABC中,若角A、角B、角C分别为α、β、γ,则有以下结论:(1)三角形外角和等于360度:180度;(2)三角形外角和小于等于360度:α+β+γ≤360度;(3)三角形外角和大于360度:α+β+γ≥360度。

5. 对顶角的性质在三角形ABC中,若角A、角B、角C分别为α、β、γ,则有以下结论:(1)角A、角B的对顶角相等:α=β;(2)角B、角C的对顶角相等:β=γ;(3)角C、角A的对顶角相等:γ=α。

总结回顾:通过对三角形的角知识点进行全面的评估和分析,我们可以清晰地了解三角形内角、外角和对顶角的性质和关系。

对于三角形的内角和定理、外角和定理以及对顶角定理,我们需要掌握其基本概念和相关的推导过程。

通过反复练习和操练,我们可以更加深入、全面地理解和掌握这些知识点。

个人观点和理解:在学习三角形的角知识点时,我们不仅要注重理论的学习,更需要注重实际问题的应用和解决能力的培养。

11《三角形的内角》PPT课件人教版数学八年级上册

11《三角形的内角》PPT课件人教版数学八年级上册

A
证明:∵AD是BC边上的高,
∴∠DMC+∠DCM=90°.
∵∠DMC=∠AME,∠DCM=∠MAE,
E ∴∠AME+∠MAE=90°. ∴∠AEC =90°.
∴△ACE是直角三角形.
B
M ┌ DC
2.如图,在△ABC中,AD⊥BC,∠1=∠B. 求证:
△ABC是直角三角形.
A
证明:∵AD⊥BC,
1.如图,在△ABC中,CD平分∠ACB交AB于点D,过点
D作DE//BC交AC于点E,若∠A=54°,∠B=48°,则
∠CDE的大小是( C )
A.44°
B.40°
C.39°
D.38° A
解析:∵∠A=54°,∠B=48°, ∴∠ACB=180°-54°-48°=78°.
∵CD平分∠ACB,
D
E
∴∠DCB=39°.
答:从B岛看A,C两岛的视角 ∠ABC是60度,从C岛看A,B 两岛的视角∠ACB是90度.


D
CE
B A
例3 如图,从A处观测C处的仰角∠CAD=30°,从B处 观测C处的仰角∠CBD=45°,从C处观测A,B两处的视 角∠ACB是多少度?
解:∵∠CAD=30°,∠ADC=90°,
C
∴∠ACD=60°.
直∴∠角AC三B角=∠形AC的D-性∠B质C与D=判15定°. 求则证∠B:AC△+A∠BBC+是∠直C=角18三0°.角形.
与△ABC的边BC有什么关系?由这个图, 两解岛:的 ∠A视CD角与∠∠ABC大B是小9相0度等..
∴∠C∠=C9D0B°=,90即°,△A∠BBC+是∠直BC角D=三90角°. 形.

人教版八年级数学上册(RJ) 期末复习专题:三角形及其性质

人教版八年级数学上册(RJ) 期末复习专题:三角形及其性质

专题三角形及其性质☞解读考点☞2年中考【题组】(崇左)如果一个三角形的两边长分别是2和5,则第三边可能是()1.A.2 B.3 C.5 D.8【答案】C.【解析】试题分析:设第三边长为x,则由三角形三边关系定理得5﹣2<x<5+2,即3<x<7.故选C.考点:三角形三边关系.(来宾)如图,△ABC中,∠A=40°,点D为延长线上一点,且∠CBD=120°,2.则∠C=()A.40° B.60° C.80° D.100°【答案】C.【解析】试题分析:由三角形的外角性质得,∠C=∠CBD﹣∠A=120°﹣40°=80°.故选C.考点:三角形的外角性质.3.(柳州)如图,图中∠1的大小等于()A.40° B.50° C.60° D.70°【答案】D.考点:三角形的外角性质.4.(南通)下列长度的三条线段能组成三角形的是()A.5,6,10 B.5,6,11 C.3,4,8 D.4a,4a,8a (a>0)【答案】A.【解析】试题分析:A.∵10﹣5<6<10+5,∴三条线段能构成三角形,故本选项正确;B.∵11﹣5=6,∴三条线段不能构成三角形,故本选项错误;C.∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;D.∵4a+4a=8a,∴三条线段不能构成三角形,故本选项错误.故选A.考点:三角形三边关系.5.(宿迁)若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C. 7或9 D.9或12【答案】B.【解析】试题分析:当腰为5时,根据三角形三边关系可知此情况成立,周长=5+5+2=12;当腰长为2时,根据三角形三边关系可知此情况不成立;所以这个三角形的周长是12.故选B.考点:1.等腰三角形的性质;2.三角形三边关系;3.分类讨论.6.(雅安)已知等腰三角形的腰和底的长分别是一元二次方程的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.10【答案】B.考点:1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质;4.分类讨论.7.(绵阳)如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118° B.119° C.120° D.121°【答案】C.【解析】试题分析:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C 的平分线,∴∠CBE=∠ABC,∠BCD=∠BCA,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选C.考点:三角形内角和定理.8.(广州)已知2是关于x的方程的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10【答案】B.考点:1.解一元二次方程-因式分解法;2.一元二次方程的解;3.三角形三边关系;4.等腰三角形的性质;5.分类讨论.9.(北海)三角形三条中线的交点叫做三角形的()A.内心 B.外心 C.中心 D.重心【答案】D.【解析】试题分析:三角形的重心是三角形三条中线的交点.故选D.考点:三角形的重心.10.(百色)下列图形中具有稳定性的是()A.正三角形 B.正方形 C.正五边形 D.正六边形【答案】A.【解析】试题分析:∵三角形具有稳定性,∴A正确,B.C、D错误.故选A.考点:三角形的稳定性.11.(百色)△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A.4 B.4或5 C.5或6 D.6【答案】B.【解析】试题分析:设长度为4、12的高分别是a,b边上的,边c上的高为h,△ABC的面积是S,那么a=,b=,c=,又∵a﹣b<c<a+b,∴,即,解得3<h<6,∴h=4或h=5,故选B.考点:1.一元一次不等式组的整数解;2.三角形的面积;3.三角形三边关系;4.综合题.12.(广安)下列四个图形中,线段BE是△ABC的高的是()A. B.C.D.【答案】D.考点:三角形的角平分线、中线和高.13.(宜昌)下列图形具有稳定性的是()A.正方形 B.矩形 C.平行四边形 D.直角三角形【答案】D.【解析】试题分析:直角三角形具有稳定性.故选D.考点:1.三角形的稳定性;2.多边形.14.(长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.【答案】A.【解析】试题分析:为△ABC中BC边上的高的是A选项.故选A.考点:三角形的角平分线、中线和高.15.(鄂尔多斯)如图,A.B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是()A. B. C. D.【答案】A.考点:1.概率公式;2.三角形的面积.16.(淄博)如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB、AD的中点,则△AEF与多边形BCDFE的面积之比为()A. B. C. D.【答案】C.考点:1.相似三角形的判定与性质;2.三角形的面积;3.三角形中位线定理;4.综合题.17.(淮安)将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是.【答案】75°.【解析】试题分析:如图,∵含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,∴AB∥CD,∴∠3=∠4=45°,∴∠2=∠3=45°,∵∠B=30°,∴∠1=∠2+∠B=30°+45°=75°,故答案为:75°.考点:1.三角形的外角性质;2.三角形内角和定理.18.(宜宾)如图,AB∥CD,AD与BC交于点E.若∠B=35°,∠D=45°,则∠AEC= .【答案】80°.考点:1.平行线的性质;2.三角形的外角性质.19.(巴中)若a、b、c为三角形的三边,且a、b满足,则第三边c的取值范围是.【答案】1<c<5.【解析】试题分析:由题意得,,,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.考点:1.三角形三边关系;2.非负数的性质:偶次方;3.非负数的性质:算术平方根.(南充)如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,20.∠B=40°,则∠ACE的大小是度.【答案】60.【解析】试题分析:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°,∵CE平分∠ACD,∴∠ACE=60°,故答案为:60.考点:三角形的外角性质.21.(佛山)各边长度都是整数、最大边长为8的三角形共有个.【答案】10.【解析】试题分析:∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;故各边长度都是整数、最大边长为8的三角形共有10个.故答案为:10.考点:三角形三边关系.(广东省)如图,△ABC三边的中线AD、BE、CF的公共点为G,若,22.则图中阴影部分的面积是.【答案】4.考点:1.三角形的面积;2.综合题.23.(长春)如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为.【答案】5.【解析】试题分析:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE===5,故答案为:5.考点:1.正方形的性质;2.三角形的面积;3.勾股定理.24.(昆明)如图,△ABC是等边三角形,高AD、BE相交于点H,BC=,在BE上截取BG=2,以GE为边作等边三角形GEF,则△ABH与△GEF重叠(阴影)部分的面积为.【答案】.考点:1.等边三角形的判定与性质;2.三角形的重心;3.三角形中位线定理;4.综合题;5.压轴题.25.(临沂)如图,在△ABC中,BD,CE分别是边AC,AB上的中线,BD 与CE相交于点O,则= .【答案】2.【解析】试题分析:∵△ABC的中线BD、CE相交于点O,∴点O是△ABC的重心,∴=2.故答案为:2.考点:1.三角形的重心;2.相似三角形的判定与性质.26.(六盘水)如图,已知, l1∥l2,C1在l1上,并且C1A⊥l2,A为垂足,C2,C3是l1上任意两点,点B在l2上,设△ABC1的面积为S1,△ABC2的面积为S2,△ABC3的面积为S3,小颖认为S1=S2=S3,请帮小颖说明理由.【答案】理由见试题解析.考点:1.平行线之间的距离;2.三角形的面积.27.(达州)化简,并求值,其中a与2、3构成△ABC 的三边,且a为整数.【答案】,1.【解析】试题分析:原式第一项约分后,两项通分并利用同分母分式的减法法则计算得到结果,把a的值代入计算即可求出值.考点:1.分式的化简求值;2.三角形三边关系.28.(青岛)【问题提出】用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观察、类比、最后归纳、猜测得出结论.【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1.(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形.所以,当n=4时,m=0.(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形.所以,当n=5时,m=1.(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形.若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形.所以,当n=6时,m=1.综上所述,可得:表①【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?(仿照上述探究方法,写出解答过程,并将结果填在表②中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)表②你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1,4k,4k+1,4k+2,其中k是正整数,把结果填在表③中)表③【问题应用】:用根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了根木棒.(只填结果)【答案】【探究二】:2;1;2;2;【问题解决】:k;k﹣1;k;k;【问题应用】:672.考点:1.作图—应用与设计作图;2.三角形三边关系;3.等腰三角形的判定与性质;4.探究型.【题组】1.(福建南平)下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()A.1,2,1 B.1,2,2 C.1,2,3 D.1,2,4 【答案】B.【解析】试题分析:根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可:A、1+1=2,不能组成三角形,故此选项错误;B、1+2>2,能组成三角形,故此选项正确;C、1+2=3,不能组成三角形,故此选项错误;D、1+2<4,能组成三角形,故此选项正确.故选B.考点:三角形的三边关系.2.(浙江台州)如图,跷跷板AB的支柱OD经过它的中点O,且垂直于地面BC,垂足为D,OD=50cm,当它的一端B着地时,另一端A离地面的高度AC为()A.25cm B.50cm C.75cm D.100cm【答案】D.考点:三角形的中位线.3.(•北海)如图△ABC中,D、E分别是边AB、AC的中点,已知DE=5,则BC的长为()A.8 B.9 C.10 D.11【答案】C.【解析】试题分析:∵D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴BC=2DE=2×5=10.故选C.考点:三角形中位线定理.4.(•营口)如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145° B.152° C.158° D.160°【答案】B.考点:翻折变换(折叠问题);三角形中位线定理.5.(•威海)如图,在△ABC中,∠ABC=50°,∠ACB=60°,点E在BC的延长线上,∠ABC的平分线BD与∠ACE的平分线CD相交于点D,连接AD,下列结论中不正确的是()A.∠BAC=70°B.∠DOC=90°C.∠BDC=35°D.∠DAC=55°【答案】B.【解析】试题分析:根据三角形的内角和定理列式计算即可求出∠BAC=70°,再根据角平分线的定义求出∠ABO,然后利用三角形的内角和定理求出∠AOB 再根据对顶角相等可得∠DOC=∠AOB,根据邻补角的定义和角平分线的定义求出∠DCO,再利用三角形的内角和定理列式计算即可∠BDC,判断出AD为三角形的外角平分线,然后列式计算即可求出∠DAC.试题解析:∵∠ABC=50°,∠ACB=60°,∴∠BAC=180°-∠ABC-∠ACB=180°-50°-60°=70°,故A选项正确,∵BD平分∠ABC,∴∠ABO=∠ABC=×50°=25°,在△ABO中,∠AOB=180°-∠BAC-∠ABO=180°-70°-25°=85°,∴∠DOC=∠AOB=85°,故B选项错误;∵CD平分∠ACE,∴∠ACD=(180°-60°)=60°,∴∠BDC=180°-85°-60°=35°,故C选项正确;∵BD、CD分别是∠ABC和∠ACE的平分线,∴AD是△ABC的外角平分线,∴∠DAC=(180°-70°)=55°,故D选项正确.故选B.考点:角平分线的性质;三角形内角和定理.6.(江苏淮安)若一个三角形三边长分别为2,3,x,则x的值可以为(只需填一个整数)【答案】4(答案不唯一).考点:三角形的三边关系.7、(广东广州)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是___________°.【答案】140..【解析】试题分析:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.考点:三角形的外角的性质.8.(湖北随州)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.【答案】75.【解析】试题分析:如答图.∵∠3=60°,∠4=45°,∴∠1=∠5=180°﹣∠3﹣∠4=75°.考点:1.三角形内角和定理;2.对顶角的性质.☞考点归纳归纳 1:三角形的有关线段基础知识归纳:中线:连接一个顶点与它对边中点的线段,三角形的三条中线的交点叫做三角形的重心高线:从三角形一个顶点到它对边所在直线的垂线段.角平分线:一个内角的平分线与这个角的对边相交,顶点与交点之间的线段中位线:连接三角形两边中点的线段基本方法归纳:三角形的中位线平行线于第三边,且等于第三边的一半注意问题归纳:三角形的中线将三角形分成面积相等的两部分【例1】如图,EF是△ABC的中位线,BD平分∠ABC交EF于点D,若AB =4,BC=6,则DF=_____.【答案】1.考点:1.三角形中位线定理;2.等腰三角形的判定与性质.归纳 2:三角形的三边关系基础知识归纳:三角形两边的和大于第三边,两边的差小于第三边.基本方法归纳:三角形的三边关系是判断三条线段能否构成三角形的依据,并且还可以利用三边关系列出不等式求某些量的取值范围.注意问题归纳:三角形的三边关系是中考的热点问题之一,是解决三角形的边的有关问题的重要依据.【例2】已知三角形两边长分别为3和8,则该三角形第三边的长可能是()A.5 B.10 C.11 D.12【答案】B.考点:三角形三边关系.归纳 3:内角和定理基础知识归纳:三角形三个内角的和等于180°.基本方法归纳:在同一个三角形中,大边对大角,小边对小角.注意问题归纳:三角形的内角和定理是求三角形一个角的度数或证明角相等的重要工具.【例3】如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC 于D,DE∥AB,交AC于E,则∠ADE的大小是()A.45°B.54°C.40°D.50°【答案】C.【解析】试题分析:∵∠B=46°,∠C=54°,∴∠BAC=180°-∠B-∠C=180°-46°-54°=80°,∵AD平分∠BAC,∴∠BAD=∠BAC=×80°=40°,∵DE∥AB,∴∠ADE=∠BAD=40°.故选C.考点:平行线的性质;三角形内角和定理.归纳 4:三角形的外角基础知识归纳:(1)三角形的外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任何一个和它不相邻的内角.基本方法归纳:三角形的外角等于与它不相邻的两个内角的和.注意问题归纳:三角形的外角是解决角的计算与角的大小比较的重要工具.【例4】如图,AB∥CD,AD与BC相交于点O,∠B=30°,∠D=40°,则∠AOC的度数为()A.60°B.70°C.80°D.90°【答案】B.考点:1.平行线的性质;2.三角形的外角性质.☞1年模拟1.(北京市平谷区中考二模)如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10° B.15° C.20° D.25°【答案】D.【解析】试题分析:根据平行线的性质及三角形的内角和定理,有图像可知∠1与∠2互余,因此∠2=90°-65°=25°.故选D.考点:1.平行线的性质;2.三角形内角和定理.2.(安徽省安庆市中考二模)如图所示,AB∥CD,∠D=26°,∠E=35°,则∠ABE的度数是()A.61° B.71° C.109° D.119°【答案】A .考点:1.平行线的性质;2.三角形的外角性质.3.(山西省晋中市平遥县九年级下学期4月中考模拟)如图,直线a∥b,直角三角形如图放置,∠DCB=90°.若∠1+∠B=70°,则∠2的度数为()A.20° B.40° C.30° D.25°【答案】A.【解析】试题分析:由三角形的外角性质,∠3=∠1+∠B=70°,∵a∥b,∠DCB=90°,∴∠2=180°﹣∠3﹣90°=180°﹣70°﹣90°=20°.故选A.考点:1.三角形的外角性质;2.平行线的性质.4.(广东省佛山市初中毕业班综合测试)如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,则∠1+∠2的度数为()A.120° B.135° C.150° D.180°【答案】D.考点:1.翻折变换(折叠问题);2.三角形内角和定理.5.(山东省济南市平阴县中考二模)如图,△ABC的各个顶点都在正方形的格点上,则sinA的值为()A. B. C. D.【答案】A.【解析】试题分析:如图所示:延长AC交网格于点E,连接BE,∵AE=2,BE=,AB=5,∴AE2+BE2=AB2,∴△ABE是直角三角形,∴sinA=,故选A.考点:1.锐角三角函数的定义;2.三角形的面积;3.勾股定理;4.表格型.6.(山东省威海市乳山市中考一模)如图,已知S△ABC=8m2,AD平分∠BAC,且AD⊥BD于点D,则S△ADC= m2.【答案】4.考点:1.等腰三角形的判定与性质;2.三角形的面积.7.(四川省成都市外国语学校中考直升模拟)长为1、2、3、4、5的线段各一条,从这5条线段中任取3条,能构成钝角三角形的概率是.【答案】.【解析】试题分析:从长度分别为1,2,3,4,5的五条线段中,任取三条,所有的情况共有10种,其中,取出的三边能构成钝角三角形时,必须最大边的余弦值小于零,即:较小的两个边的平方和小于第三边的平方,故满足构成钝角三角形的取法只有:2、3、4 和2、4、5 两种,故取出的三条线段为边能构成钝角三角形的概率是.考点:1.列表法与树状图法;2.三角形三边关系.8.(广东省佛山市初中毕业班综合测试)如图,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=度.【答案】220.考点:1.三角形的外角性质;2.三角形内角和定理.9.(湖北省黄石市6月中考模拟)如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn﹣1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An﹣1AnBn﹣1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于的阴影三角形共有__________个.【答案】;6.【解析】试题分析:由题意得,△A2B1B2∽△A3B2B3,因此可知==,==,再由考点:1.相似三角形的判定与性质;2.平行线的性质;3.三角形的面积;4.规律型.。

人教版八年级数学上册《三角形内角和定理》教学设计

人教版八年级数学上册《三角形内角和定理》教学设计

人教版八年级上学期第11章11.2 三角形内角和定理教学设计学校: 教师:一、内容和内容解析(一)内容:三角形内角和定理(二)内容解析三角形内角和定理是八年级上册第十一章的重要内容,也是“图形与几何”必备的知识基础.它从“角”的角度刻画了三角形的特征.三角形内角和定理的探究体现了由实验几何到论证几何的研究过程,同时说明了证明的必要性.三角形内角和定理的证明以平行线的相关知识为基础.定理的验证方法从剪拼图的实验活动中获得添加辅助线的思路和方法,定理的证明思路是不同位置的三个内角转化为平角或同旁内角.基于以上分析,确定本节课的教学重点:体会证明的必要性;探索并证明三角形内角和定理,二、目标和目标解析(一)目标1.探索并证明三角形内角和定理.2.能运用三角形内角和定理解决简单问题.(二)目标解析达成目标1的标志是:学生能通过度量或剪拼图等实验进一步感知三角形的内角和等于180°,发现操作实验的局限性,进而了解证明的必要性;在实验的过程中能发现其中蕴含的辅助线,并运用平行线的性质证明三角形内角和定理.达成目标2的标志是:学生能运用三角形内角和定理解决简单的与三角形中角有关的计算和证明问题.三、学情分析学生学习技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生认识了三角形掌握了平行线的性质、判定等知识的基础上展开的,因此,学生具有良好的知识基础.数学活动经验基础:本节课主要采取的活动形式是学生自主探究与合作交流的学习方式,学生具有较熟悉的数学活动经验.证明三角形内角和定理需要添加辅助线,这是学生第一次遇到添加辅助线证明定理的问题.由于添加辅助线是一种尝试性活动,规律性不强,要根据需要而定,学生会感到困难.教学时,教师要让每个学生都亲自动手进行剪图、拼图,引导学生在实验的过程中感悟添加辅助线的方法,进而发现思路、证明定理.基于以上分析,确定本节课的教学难点:如何添加辅助线,证明三角形内角和定理.四、教学过程设计为达到本节课教学目标,本节课的设计分为五个环节:知识回顾、新课引入——操作验证、探索新知——巩固练习、强化应用——课堂小结、升华提升——作业布置、反馈教学.第一环节:知识回顾、新课引入新课导入:上一节课,我们认识了三角形.(出示课件)我们知道,组成三角形的基本元素有边和角;然后我们又重点研究了三边的关系.那么你认为,接下来我们可以研究哪些内容呢?(三角的关系、角与边的关系)问题1:关于三角形的内角,你都知道哪些知识呢?回忆小学的时候,我们是通过哪些方法验证这个结论的呢?师:具体的,你是如何操作的?方法1:度量法.分别测量出三个内角的度数,然后计算它们的和;方法2:剪拼法.将三角形的三角剪下,随意将它们拼凑在一起.设计意图:在初步认识三角形的基础上,将研究的视角定格在研究角之间的关系,在提问中引导学生回顾三个内角的关系:三个角的和是定值.在启发如何知道这个结论时,引导学生回到思维的起点,让学生回顾小学的研究方法:度量法、剪拼法.第二环节:操作验证、探索新知活动1 实验论证请同学们利用手中的三角形纸片,进行剪拼,再次验证这个结论.学生活动:1学生动手操作.2. 班级展讲.(学生在黑板右上方展示两种图形).无论是度量法还是剪拼法,我们能够验证有限个三角形,它们的内角和等于180°;但是,形状不同的三角形有无数多个;如果我们要说明“所有三角形的内角和等于180°”,那我们应该用什么方法呢?生:推理论证.设计意图:在启发中引导学生找到这些方法存在的缺憾,老师适当留给学生思维的空白,目的是为了让学生感受要进行推理证明的“必要性”,突出了本节课的第一个重点:体会证明的必要性.同时,通过实验操作的方法验证结论的合理性,发展学生合情推理的能力,为下一步作辅助线提供方法.活动2 推理论证接下来,我们要证明:三角形的内角和等于180°.这是一个文字命题.对于文字命题的证明,一般要先画出图形,写出已知、求证.我们一起完成已知、求证的书写.探究一:转化两个角师:要证明的结论是什么?生:NA+NB+NC=180° .观察图形,4ABC中,NA、NB、NC处在不同的位置,没有明显的联系.那我们应该怎么做呢?(学生思考半分钟)回顾一下我们的拼图过程,我们把NB “搬”到了NA的左侧, /^搬”到了NA的右侧,组成了一个角/DAE.请同学们思考:剪拼的目的是什么?(三个角建立起关系)师:剪拼的过程,实际上进行了“角的转化”,从而让三个角建立起关系.问题2那么,请同学们思考,通过什么数学方法,可以实现ZB的转化呢?设计意图:本环节设计目的是通过教师引导学生作出辅助线,同时画出思路分析流程图,流程图直观,易于理解,能够更好的培养学生有序分析问题的能力.结合剪拼图,教师引导学生,在黑板上画出思路分析的流程图.证明1:过点A作直线DE〃BC 分析流程图:・.・DE〃BC・・・NB=N1, ZC=Z2 ・Z1+ZBAC+Z2=180°丁•NBAC+NB +ZC=180°ZBAC+Z1+Z2 =1800 0ZB = N1,N C = N2.n转化Z A+ZB + ZC =追问:回顾刚才的证明过程,请同学们思考:证明的“关键”是什么?为达到“转化”的目的,使用的方法是什么?问题2 (教师动手移动NB,如右图)结合这个拼图,你能想证明方法吗?B学生活动:1.学生思考,在学案上独立完成证明过程.2.班级展讲.证明2:(/8转化为它的同位角N1)延长BA至D,过点A作AE〃BC.・.・AE〃BC・・・NB=N1,ZC=Z2「NBAC+N1+N2=180°・•・ZBAC+ZB+ZC=180°(平角的定义)(等量代换)问题3 刚才我们通过转化两个角,证明了结论.如果我们同时转化三个角,你能证明这个结论吗?请同学们小组讨论.学生活动:小组讨论, 班级展讲.追问:/8除了可以转化为点A出的同位角,还能转化为其他点处的同位角吗?教师活动:几何画板演示,引导学生有序的思考怎样进行三个角的转化. ^3^\二探究二:转化三个角①点P在直线AB上时:②点P在直线AB外时:FFNNBD GD G问题4 刚才我们对两个角、三个角进行了转化,如果只转化一个角能证明这个结论吗?请同学们试试看. (此环节根据时间情况决定是否讲解.)探究三:只转化一个角证明3:过点A作直线AD〃BC・.・AD〃BC・・.NC=N1 (两直线平行,同位角相等)NB+NBAC+N1=180°(两直线平行,同旁内角互补)/. ZB+ZB AC+NC=180。

八年级数学上册《三角形内角和定理》教案、教学设计

八年级数学上册《三角形内角和定理》教案、教学设计
1.针对不同学生的学习特点,采取分层教学,使每个学生都能在原有基础上得到提高。
2.注重启发引导,激发学生的求知欲和探究精神,帮助他们建立几何直观。
3.创设生活情境,让学生在实际问题中感受三角形内角和定理的价值,提高学习的积极性。
4.加强对学生的个别辅导,关注他们的学习困惑,及时给予指导和鼓励,帮助他们克服学习难题,增强自信心。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握角形内角和定理。
2.学会运用三角形内角和定理解决实际问题。
3.掌握三角形内角和定理的证明方法。
(二)教学设想
1.创设情境,导入新课
通过展示生活中的三角形实例,如自行车三角架、衣架等,引导学生观察、思考三角形内角和的特点,激发学生的学习兴趣。
2.自主探究,发现规律
4.总结、归纳三角形内角和定理的运用方法,提高解决问题的能力。
(三)情感态度与价值观
1.增强对数学美的感受,认识到数学在生活中的重要性。
2.养成主动探究、合作学习的良好习惯,提高自主学习能力。
3.培养严谨、踏实的科学态度,树立正确的价值观。
4.在解决实际问题的过程中,体验数学带来的成就感,增强自信心。
(四)课堂练习,500字
课堂练习环节,教师设计难易程度不同的题目,让学生独立完成。题目包括:计算给定三角形的内角和、解决实际问题等。学生在解题过程中,可以巩固所学知识,提高解题能力。教师巡回指导,针对学生的疑问给予及时解答,帮助他们克服困难。
(五)总结归纳,500字
在总结归纳环节,教师首先引导学生回顾本节课所学内容,对三角形内角和定理进行总结。学生分享自己在课堂上的收获和感悟,教师给予积极评价。接着,教师对本节课的重点知识进行梳理,强调三角形内角和定理在几何学中的重要性。最后,教师布置课后作业,要求学生在课后巩固所学知识,为下一节课的学习打下基础。

人教版八年级上册数学第11章 三角形 三角形的内角——三角形内角和

人教版八年级上册数学第11章 三角形 三角形的内角——三角形内角和
答:从C处观测A,B两处的视角∠ACB是15°.
知2-练
2 (中考·邵阳)如图,在△ABC中,∠B=46°,∠C= 54°,AD平分∠BAC,交BC于点D,DE∥AB,交 AC于点E,则∠ADE的大小是( C ) A.45°B.54°C.40°D.50°
知2-练
3 (中考·威海)直线l1∥l2,一块含45°角的直角三角 尺如图放置,∠1=85°,则∠2=__4_0_°____.
辅助线 通过本课时的学习,需要我们掌握:
三角形的 内角和等 于180°
证法 应用
转化为一个平角 或同旁内角互补
求角度
完成教材P16T1、T3P17T7、T9
第十一章三角形
11.2与三角形有关的角
第1课时三角形的内角——三 角形的内角和
1 课堂讲解 2 课时流程
三角形内角和定理 三角形内角和的应用
逐点 导讲练
课堂 小结
作业 提升
知识点 1 三角形内角和定理
知1-导
问题1 在小学我们已经知道任意一个三角形三个内 角的和等于180°,你还记得是怎么发现这个结论的 吗?请大家利用手中的三角形纸片进行探究.
数.
解:由∠BAC=40°,AD是
C
△ABC的角平分线,
得∠BAD=∠12 BAC=20°.
在△ABD中,
A
D B
∠ADB=180°-∠B-∠BAD
=180°-75°-20°=85°.
知2-讲
三角形的三内角和是180º,所以三内角可能出现的情况:
一个钝角两个锐角 一个直角两个锐角
三个都为锐角
钝角三角形 直角三角形 锐角三角形
线l,直线l与边BC有什么位置关系?
直线l与边BC平行.

人教版八年级数学:与三角形有关的角(提高) 知识讲解

人教版八年级数学:与三角形有关的角(提高) 知识讲解

与三角形有关的角(提高)知识讲解【学习目标】1.理解三角形内角和定理的证明方法;2.掌握三角形内角和定理及三角形的外角性质;3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.【要点梳理】要点一、三角形的内角1. 三角形内角和定理:三角形的内角和为180°.要点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.2. 直角三角形:如果一个三角形是直角三角形,那么这个三角形有两个角互余.反过来,有两个角互余的三角形是直角三角形.要点诠释:如果直角三角形中有一个锐角为45°,那么这个直角三角形的另一个锐角也是45°,且此直角三角形是等腰直角三角形.要点二、三角形的外角1.定义:三角形的一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD是△ABC的一个外角.要点诠释:(1)外角的特征:①顶点在三角形的一个顶点上;②一条边是三角形的一边;③另一条边是三角形某条边的延长线.(2)三角形每个顶点处有两个外角,它们是对顶角.所以三角形共有六个外角,通常每个顶点处取一个外角,因此,我们常说三角形有三个外角.2.性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.要点诠释:三角形内角和定理和三角形外角的性质是求角度及与角有关的推理论证明经常使用的理论依据.另外,在证角的不等关系时也常想到外角的性质.3.三角形的外角和:三角形的外角和等于360°.要点诠释:因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内角和是180°,可推出三角形的三个外角和是360°.【典型例题】类型一、三角形的内角和1.在△ABC中,若∠A=12∠B=13∠C,试判断该三角形的形状.【思路点拨】由∠A=12∠B=13∠C,以及∠A+∠B+∠C=180°,可求出∠A、∠B和∠C的度数,从而判断三角形的形状.【答案与解析】解:设∠A=x,则∠B=2x,∠C=3x.由于∠A+∠B+∠C=180°,即有x+2x+3x=180°.解得x=30°.故∠A=30°.∠B=60°,∠C=90°.故△ABC是直角三角形.【总结升华】本题利用设未知数的方法求出三角形三个内角的度数,解法较为巧妙.举一反三:【变式1】三角形中至少有一个角不小于________度.【答案】60.【变式2】(2015春•新沂市校级月考)如图,BE、CF都是△ABC的角平分线,且∠BDC=110°,则∠A= .【答案】40°.解:∵BE、CF都是△ABC的角平分线,∴∠A=180°﹣(∠ABC+∠ACB),=180°﹣2(∠DBC+∠BCD)∵∠BDC=180°﹣(∠DBC+∠BCD),∴∠A=180°﹣2(180°﹣∠BDC)∴∠BDC=90°+∠A,∴∠A=2(110°﹣90°)=40°.2.在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=30°,则∠C的度数是多少?【思路点拨】按△ABC为锐角三角形和钝角三角形两种情况,分类讨论.【答案与解析】解:分两种情况讨论:(1)当△ABC为锐角三角形时,如图所示,在△ABD中,。

八年级数学上册三角形的内角和

八年级数学上册三角形的内角和

1
6
5
4
3
2
∠1+∠2+∠3+∠4+∠5 +∠6=3×180°-180°=360°
解:
7
8
9
如图,则∠1+∠2+∠3+∠4=____
解:连结BD,则 ∠1+∠2+∠3+∠4=180°+180°=360°
A
B
C
2
3
1
4
Dห้องสมุดไป่ตู้
思考题:
如图,已知∠AMN+∠MNF+∠NFC=360°, 求证:AB∥CD(用两种方法证明)
三角形内角和定理
已知
90°
直角三角形的性质:两个锐角互余.
B
C
A
直角三角形的表示 ------Rt△ABC
(1)如图(1),∠B=∠C=90°,AD交BC于点O,∠A与∠D有什么关系?请说明理由. (2)如图(2),∠B=∠D=90°,AD交BC于点O,∠A与∠C有什么关系?请说明理由.
证法1:过A作EF∥BA, ∴∠B=∠2 (两直线平行,内错角相等) ∠C=∠1 (两直线平行,内错角相等) 又∵∠2+∠1+∠BAC=180° ∴∠B+∠C+∠BAC=180°
F
2
1
E
C
B
A
三角形的内角和等于1800.
证法2:延长BC到D,过C作CE∥BA, ∴ ∠A=∠1 (两直线平行,内错角相等) ∠B=∠2 (两直线平行,同位角相等) 又∵∠1+∠2+∠ACB=180° ∴∠A+∠B+∠ACB=180°
解:在△CGF中, ∠GCF=180°-∠CGF-∠F=180°-70°-30°=80° ∴∠ACB=180°-∠GCF=180°-80°=100° 在△ABC中,∠A=180°-∠B-∠ACB =180°-45°-100° =35°

人教版八年级上册数学第11章 三角形 三角形的内角——三角形的内角和

人教版八年级上册数学第11章 三角形 三角形的内角——三角形的内角和

(3)在图②中,若∠D和∠B为任意角,其他条件不变,试 探究∠P,∠B,∠D之间是否存在确定的数量关系, 并说明理由.
【点拨】借助(2)的求解过程可解.
解:∠P=12(∠B+∠D).理由同(2).
14.如图,请猜想∠A+∠B+∠C+∠D+∠E+∠F的度 数,并说明你的理由.
【点拨】此题不能直接求出每个角的度数,但是可将这些 角放置在不同三角形中,根据三角形内角和定理和邻补角 的定义,得出∠BMP=∠A+∠B,∠ENM=∠E+∠F, ∠MPC=∠C+∠D,然后运用这些结论并结合三角形内 角和定理可求出∠A+∠B+∠C+∠D+∠E+∠F的度 数.本题体现了数学中的转化思想和整体思想.
(2)若DE⊥AC于点E,求∠EDC的度数.
解:∵DE⊥AC,∴∠DEC=90°, ∴∠EDC=180°-∠DEC-∠C=20°.
13.如图①,线段AB与CD相交于点O,连接AD,CB.如 图②,在图①的条件下,∠DAB的平分线AP和∠BCD 的平分线CP相交于点P,并且AP交CD于点M,CP交 AB于点N,试解答下列问题:
1 2
解:根据(1)可知,∠1+∠2+∠D=∠3+∠4+∠B,同 理∠1+∠D=∠3+∠P. ∵AP,CP 分别是∠DAB 和∠BCD 的平分线, ∴∠1=∠2,∠3=∠4,∴2∠1+∠D=2∠3+∠B, 而 2∠1+2∠D=2∠3+2∠P,∴2∠P=∠B+∠D, ∴∠P=12(∠B+∠D)=12(38°+42°)=40°.
11.如图,在△ABC中,BD交AC于点D,DE交AB于点E, ∠EBD=∠EDB,∠ABC ∠A:∠C=2:3:7, ∠BDC=60°.
(1)试计算∠BED的度数;
解:∵∠ABC:∠A:∠C=2:3:7,∠A+∠C+ ∠ABC=180°, ∴∠ABC=30°,∠A=45°,∠C=105°. ∵∠BDC=60°,∴∠DBC=15°, ∴∠EDB=∠EBD=∠ABC-∠DBC=30°- 15°=15°, ∴∠BED=180°-15°-15°=150°.

人教版同步教参数学八年级-三角形:三角形的角

人教版同步教参数学八年级-三角形:三角形的角

三角形第2节三角形的角【知识梳理】1.三角形内角和定理(1)定理:三角形三个内角的和等于180°.(2)证明方法:证法多样,主要是运用平行线知识把三个角转移成一个平角,从而得到内角和是180°.如图所示,过C作CM∥AB,将求∠A+∠B+∠ACB转化为求∠1+∠2+∠ACB,或过A点作DE∥BC,把求∠BAC+∠B+∠C转化为求∠BAC+∠DAB+∠EAC.备注:因为三角形内角和为180°,所以延伸出三角形中很多的角的特定关系如:①一个三角形中最多只有一个钝角或直角;②一个三角形中最少有一个角不小于60°;③直角三角形两锐角互余;④等边三角形每个角都是60°等.2.三角形的外角(1)定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.如图,∠ACD就是△ABC其中的一个外角.(2)特点:①三角形的一个外角和与它同顶点的内角互为邻补角,这是内、外角联系的纽带.②一个三角形有6个外角,其中两两互为对顶角,如图所示.备注:外角是相对于内角而言的,也是三角形中重要的角,一个角对一个三角形来说是外角,而对于另一个三角形来说可能是内角;三角形的角是指的三角形的内角,这点要注意.(3)外角的性质三角形的外角等于与它不相邻的两个内角的和,且大于任意一个与其不相邻的内角.如图所示:∠1=∠B+∠C(或∠B=∠1-∠C,∠C=∠1-∠B).4、三角形外角和(1)定义(规定):如图所示,在每一个顶点上取一个外角,如∠1,∠2,∠3,它们的和叫做三角形的外角和.(2)三角形外角和定理:三角形的外角和等于360°.注意:三角形的外角和不是所有外角的和,是每个顶点处取一个外角,是一半数目外角的和.5.直角三角形的性质与判定(1)直角三角形的性质:直角三角形的两个锐角互余.如图所示,在Rt△ABC中,如果∠C=90°,那么∠A+∠B=90°.(2)直角三角形的判定:有两个角互余的三角形是直角三角形.如图所示,在△ABC中,如果∠A+∠B=90°,那么∠C=90°,即△ABC是直角三角形.提示:由三角形的内角和定理可知,三角形的三个内角之和为180°,如果有两个角的和为90°,那么第三个角自然是直角.由直角三角形定义可知,该三角形为直角三角形.【诊断自测】1、三角形内角和性质是____________________2、三角形的一边与______________叫做三角形的外角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学人教版初中8年级上册
第11章第3课时三角形内角和定理
一、预习案
数学史话
同学们,你们知道“三角形内角和等于180度”这个结论最早是谁提出的吗?
帕斯卡:(1623—1662)法国著名的数学家
帕斯卡自幼聪颖,求知欲极强,很小时就精通欧氏几何,他自己独立地发现出欧几里得的前32条定理,而且顺序也完全正确,12岁独立发
现了“三角形的内角和等于180度”.后来通过不断的自学探究,帕斯卡成
了非常有成就的数学家、物理学家和哲学家.
二、探究案
1.探究
问题1在小学我们已经知道任意一个三角形三个内角的和等于180°,你还记得是怎么发现这个结论的吗?请大家利用手中的三角形纸片进行探究.
请同学们按下图所示剪拼,验证三角形内角和为180°.
方法⑴方法⑵
猜想:三角形内角和为____________.
2.证明三角形内角和为180°
按剪拼的方法找到添加辅助线的方法,完成三角形内角和定理证明.
方法⑴方法⑵
3.试一试运用三角形内角和定理解决以下两道题.
例1 已知:在△ABC中,∠BAC=40°,∠B=75°,AD是△ABC的角平分线,求∠ADB的度数.
例2.如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80 °方向,C岛在B岛的北偏西40 °方向.从C岛看A、B两岛的视角∠ACB是多少度?
三、测试案
1.判断正误:
⑴一个三角形中最多只有一个钝角或直角.()
⑵一个等腰三角形一定是锐角三角形.()
⑶把一个三角形分成两个三角形,每个三角形的内角和是90°.()
2.(1)在△ABC中,∠A=35°,∠B=45°,则∠C=_______.
(2)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A=________,∠B=________,∠C=________. 3.如图△ABC中,CD平分∠ACB,DE∥BC,∠A=70°,∠ADE=50°,求∠BDC的度数.
四、拓展案
1.习题11.2第1、5、6题.
2.收集更多的三角形内角和的生活实例
请仍然存在问题的同学根据课后练习安排,完成自己的个性学习活.
3.预习下一课时内容.
五、反馈案
1.这节课你的收获是什么?
2.能力提升
如图,在△ABC中,BO、CO分别是∠ABC、∠ACB的角平分线,求:
(1)若∠A=50°,求∠BOC的度数.
(2)在其他条件不变的情况下,若∠A=n°,则∠A与∠BOC之间有怎样的数量关系?。

相关文档
最新文档