湖南省凤凰县华鑫实验中学2015-2016学年高二数学暑期补课效果检测暨8月月考试题 文
湖南省凤凰县华鑫实验中学2015-2016学年高二暑期补课效果检测暨8月月考化学试卷.pdf
是一种弱碱
15近年来,科学家正在探索利用铝粉作燃料的可能性,以期铝能成为一种石油的替代物。假如铝作为一种普遍使用
的新型能源被开发利用,关于其有利因素的下列说法,你认为 错误的选项是
()
A.铝质轻,便于运输,且安全
B.铝燃烧时放出的热量多,且燃烧后的产物对环境的污染容易得到有效控制
C.在地球上,铝矿资源丰富
18.(每空2分,共12分)
()5XeO3+6Mn2++9H2O====5Xe+6MnO4-+18H+_。
(2)配平 2 、 16=2 、 2 、 5 、 8 , 0.2 , 0.16 。
(3) D 。e2+
Cl- 和NO3-
(2) 3Fe2+ + 4H+ + NO3-==3Fe3+ + 2H2O + NO↑
(2)图中实验还存在的问题有:①
②
(3)大烧杯上如不盖硬纸板,求得的中和热数值__________________(填“偏大”“偏
小”“无影响”)。
(4)实验中改用60 mL 0.50 mol/L盐酸跟50 mL 0.55 mol/L NaOH溶液进行反应,与上述实验相比,所放出的热量
差减小,不便测
量.(5)由于弱酸弱碱的中和热等于H+与OH-生成H2O时的反应热加上其电离时吸热.
答案: (1)环形玻璃搅拌棒 (2)减少实验过程中的热量损失 (3)偏小 (4)不等 相等 因为中
和热是指酸跟碱发生中和反应生成1 mol H2O所放出的能量,与酸碱的用量无关 (5)偏小 偏小。
(3) SO42- 取少量原溶液,加入盐酸酸化BaCl2溶液,若产生白色沉淀,则证明有SO42-;
湖南省凤凰县华鑫实验中学2015-2016学年高二暑期补课效果检测暨8月月考语文试卷
资料概述与简介 2015-2016学年度华鑫中学8月月考试卷 2015-8-31 高二语文 选择题(每小题3分,共12分) 1. 阅读下面语段,解决问题。
人类是自然万物的一种,自然界到处是人类的弟兄。
看到流逝的江水,会想到时光的一去不();看到再生的小草,会想到生命力的顽强;在寂静的山林里,会平息烦()的心情;面对暴风雨,会释放被压抑的情感;单是一个秋天,就会带给人们许多不同的感受:它的()然而至,会使人联想到生命的代序;它的成熟,会令人感到喜悦和满足;它的()瑟,会让人觉得寂寞和悲伤。
1.下列汉字依次填入语段中括号内,字音和字形全部正确的一组是() A.返燥cào 悄qiāo 潇 B.返躁zào 悄qiǎo 萧 C.反躁cào 悄qiǎo 萧 D.反燥zào 悄qiāo 潇 2.将下列各句中没有语病的一句填入语段中画横线处,正确的一项是() A.人接触自然时,常常会产生一定的联想和感悟的原因,是因为人与自然之间存在这种天然的联系。
B.由于人在接触自然的过程中,常常会产生一定的感悟和联想,人与自然之间存在某种天然的联系。
C.由于人与自然之间存在这种天然的联系,人在接触自然的过程中,常常会产生一定的联想和感悟。
D.当人在接触自然的时候,由于人与自然之间存在这种天然的联系,常常会产生一定的联想和感悟。
3.下列各句中,加点熟语使用不正确的一项是() A.三星Galaxy S6一经推出便赢得市场一片赞美之声,它配备了最新的屏幕技术和优秀的影像系统,大可与苹果iPhone 6分庭抗礼。
B.埃及狮身人面像等外国文化遗产能够从彼传递到此,这样的传递本身就是宝贵的,我们对待它们的态度应该有着敝帚自珍的情怀。
C.“人与人之间,要谈感情”,这样一句质朴的话语,在我们的心灵被世俗打磨得日渐冷漠之际,如同空谷足音在你我心中久久回响。
D.口才并不是一种天赋的才能,古今中外历史上一切口若悬河、能言善辩的演讲家、雄辩家,他们无一不是靠刻苦训练而获得成功的。
【历史】湖南省凤凰县华鑫实验中学2015-2016学年高二暑期补课效果检测暨8月月考
华鑫中学2015-2016学年第一学期8月考试卷高二历史(必修3)一、选择题:共25题, 50分。
每小题只有一个选项符合题意。
1.电影《墨攻》讲述了由香港影星刘德华饰演的墨家智者革离孤身拯救遭十万赵国大军围攻的梁城的故事,下列介绍故事背景的资料违背史实的是A.思想界出现了“百家争鸣”的局面B.原先地位低的“士”阶层开始崛起C.有些墨家学派成员会使用铁犁牛耕D.“学在官府”导致墨家不能办私学2.孔子的教学内容,可称之为“六艺”。
其中“礼”谓天地阴阳之秩序,“乐”谓取得和谐。
后人学者曾评论:在孔子的哲学中,道德与音乐居于同等地位。
这表明孔子的教学特点是A.强调道德教化的功能 B.注重维护等级制度C.主张严格遵守礼法 D.教学与音乐相结合3.下图是韩非子“法、术、势”思想主张示意图,对此理解正确的是A.“法”是核心,是“术”和“势”的落脚点B.“势”是核心,是“法”和“术”的出发点和归宿C.“术”是核心,“法”和“势”为“术”服务D.“法、术、势”相辅相成,共同维护君主的权利4.下图为电视剧《三国演义》中的“桃园三结义”,图中情景所体现的精神是A.“仁政” B.“天人感应”C.“忠孝节义” D.“致良知”5.从董仲舒融合道家、法家、阴阳五行家创造出新儒学体系,到北宋完成“三教合一”,形成理学,说明了儒家思想①是诸子百家思想精华的堆砌②与时俱进,展现出极强的生命力和活力③不断理论化和思辨化④永远不会落后历史发展的主流A.②③④ B.②③ C.②④ D.①②③6.一位理学家看到山石中有贝壳,认为“此石即旧日之土,螺蚌即水中之物,下者却变而为高,柔者却变而为刚”。
这体现下列哪一种理论观点?A.理在气先 B.发明本心 C.格物致知 D.经世致用7.有学者对某位思想家有如下的叙述:“他想把濂溪、康节、橫渠、二程种种意见都包容和会通,再上通诸孔孟先秦儒,兼及释、道,而且组织一大系统……思想上还是沿袭二程,尤其沿袭伊川的最多。
湖南省凤凰县华鑫实验中学高二生物暑期补课效果检测暨8月月考试题
2015-2016学年度华鑫中学第一次月考试卷高二生物考试总分:100;考试时间:90分钟;姓名:___________班级:___________一、选择题(每空一分,共40题,每题只有一个正确的答案)1.下列有关人体内环境的叙述,不正确的是 ( )A.饥饿时,血液流经肝脏后血糖浓度会增加B.与淋巴相比,血浆中蛋白质的含量较髙C.突触前膜释放的神经递质可在内环境中被分解D.人体非特异性免疫不参与内环境稳态的调节2.下图表示内环境成分间的关系,正确的是( )3.人在静脉注射时所用的生理盐水的浓度必须与血浆浓度基本相同,其中原因是:( ) A.维持内环境渗透压的稳定 B.使体内增加水分C.使体内增加无机盐D.使体内营养物质保持稳定4.下列选项中,与其他三个选项的含义都有很大差别的一项是( )A.细胞外液 B.细胞内液C.血浆、淋巴、组织液 D.内环境5.下列有关人体内环境成分的归类,错误..的是( )A.细胞代谢废物类:尿素、二氧化碳等 B.有机大分子类:血浆蛋白、呼吸酶等C.免疫物质类:抗体、淋巴因子等 D.营养小分子类:葡萄糖、氨基酸等6.下列不属于内环境稳态实例的是()A.HCO3—与HPO42—等离子共同作用,维持血浆pH在7.35-7.45之间B.人体内的吞噬细胞清除衰老、破损和异常的细胞C.进行高强度的体育锻炼一星期,肌细胞内肌蛋白的含量基本不变D.剧烈运动出很多汗后,上厕所的次数会比平时少7.下列哪种成分不是人体内环境所含有的?()A.尿素 B.血浆蛋白 C.呼吸酶 D.葡萄糖8.人的体温调节中枢位于A.下丘脑B.骨髓C.大脑D.垂体9.下图为内环境示意图,下列有关说法错误的是()A.内环境稳态是机体进行正常生命活动的必要条件B.血浆与组织液、淋巴的成分和含量相比,主要区别是血浆中血红蛋白含量较高C.过程a、b、c均存在,有利于组织细胞的正常生理活动D.若血浆蛋白含量降低会引起血浆渗透压下降,进一步导致组织水肿10.某人因其大脑皮层某一区域受到损伤而不能说话,该区域是()A.W区 B.S区 C.V区 D.H区11.下列关于下丘脑的叙述不正确的是( )A.大量出汗失水过多,下丘脑分泌的抗利尿激素增加B.下丘脑是体温感觉的高级中枢,不是体温调节的高级中枢C.下丘脑具有渗透压感受器D.内环境渗透压的升高使下丘脑某部位产生的神经冲动传至大脑皮层引起渴觉12.图甲表示动作电位在神经纤维上向右传导的示意图。
湖南省凤凰县华鑫实验中学2015-2016学年高二上学期第二次月考数学(理)试卷
华鑫中学2015-2016学年第一学期第二次月考试卷高二数学(理工类)考试时间:120分钟 总分:150分一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1.已知向量()21=,a ,()2x =-,b ,若a ∥b ,则a +b 等于 A .()2,1--B .()2,1C .()3,1-D .()3,1-2.不等式13()()022x x +-≥的解集是A. 13{|}22x x -≤≤ B. 13{|}22x x x ≤-≥或 C. 13{|}22x x -<<D. 13{|}22x x x <->或 3.若)32lg(),12lg(,2lg +-x x成等差数列,则x 的值等于A .1B .0或32C .32D 5log 2 4.下面结论正确的是 A .若b a >,则有ba 11< B .若b a >,则有||||c b c a >C .若b a >,则有b a >||D .若b a >,则有1>ba5.在直角坐标系内,满足不等式x 2-y 2≥0的点(x ,y )的集合(用阴影表示)是6. 若,02522>-+-x x则221442-++-x x x 等于( )A .54-xB .3-C .3D .x 45-7.定义一种新的运算“*”对任意正整数n 满足下列两个条件:(1)111=*),1(21)1)(2(*+=*+n n 则=*12006A .2007B .4011C .4012D .20088.已知集合(){})(|,x f y y x A ==,若对于任意()A y x ∈11,,存在()A y x ∈22,,使得02121=+y y x x 成立,则称集合A 是“V 集合”,给出下列集合: ①()⎭⎬⎫⎩⎨⎧==x y y x M 1|, ②(){}1|,2-==x y y x M ③(){}x y y x M cos 1|,+== ④(){}x y y x M ln |,==。
湖南省凤凰县华鑫中学高二数学下学期第一次月考试题
一、选择题:本大题共10小题,每小题4分,共40分 1. 已知集合{1,0,1,2}A =-,{2,1,2}B =-,则A B =( ) .A. {1}B. {2}C. {1,2}D. {2,0,1,2}- 2. 若运行右图的程序,则输出的结果是( ).A. 4B. 13C. 9D. 223. 将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为6”的概率是( ). A . 13 B. 14C. 15D. 16 4. sincos44ππ的值为( ).A.12B. 22C. 2425. 已知直线l 过点(0,7),且与直线42y x =-+平行,则直线l 的方程为( ). A. 47y x =-- B. 47y x =- C. 47y x =-+D. 47y x =+6. 已知向量(1,2)=a ,(,1)=-b x ,若⊥a b ,则实数x 的值为( ). A. 2- B. 2 C. 1- D. 17. 已知函数()f x 的图象是连续不断的,且有如下对应值表:x1 2 3 4 5 ()f x 4-2-147在下列区间中,函数()f x 必有零点的区间为( ).A.(1,2)B. (2,3)C.(3,4)D. (4,5) 8. 已知直线l :1y x =+和圆C: 221x y +=,则直线l 和圆C 的位置关系为( ). A.相交 B. 相切 C.相离 D. 不能确定9. 下列函数中,在区间(0,)+∞上为增函数的是().A.1()3 =x yB.3logy x= C.1yx= D. cos=y x10. 已知实数x y、满足约束条件1x yxy+≤⎧⎪≥⎨⎪≥⎩,则z y x=-的最大值为().A. 1B. 0C. 1- D. 2-二、填空题:本大题共5小题,每小题4分,共20分.11. 已知函数2(0)()1(0)x x xf xx x⎧-≥=⎨+<⎩,则(2)f= .12. 把二进制数101(2)化成十进制数为 .13. 在△ABC中,角A、B的对边分别为a b、, 60,A=︒3,30,a B==︒则b= .14. 如图是一个几何体的三视图,该几何体的体积为 .15. 如图,在△ABC中,M是BC的中点,若AB AC AMλ+=,则实数λ= .三、解答题:本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤.16. (本小题满分6分)已知函数()2sin()3π=-f x x,∈x R.(1)写出函数()f x的周期;(2)将函数()f x图象上的所有的点向左平行移动3π个单位,得到函数()g x的图象,写出函数()g x的表达式,并判断函数()g x的奇偶性.17. (本小题满分8分)某市为节约用水,计划在本市试行居民生活用水定额管理,为了较为合理地确定居民日常用水量的标准,通过抽样获得了100位居民某年的月均用水量(单位:吨),右表是100位居民月均用水量的频率分布表,根据右表解答下列问题:(1)求右表中a和b的值;(2)请将频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.18. (本小题满分8分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AB.(1)求证:BD⊥平面PAC;(2)求异面直线BC与PD所成的角.分组频数频率[0,1) 10 0.10 [1,2) a0.20 [2,3) 30 0.30 [3,4) 20 b [4,5) 10 0.10 [5,6] 10 0.10 合计100 1.0019. (本小题满分8分)如图,某动物园要建造两间完全相同的矩形熊猫居室,其总面积为24平方米,设熊猫居室的一面墙AD 的长为x 米 (26)x ≤≤.(1)用x 表示墙AB 的长;(2)假设所建熊猫居室的墙壁造价(在墙壁高度一定的前提下)为每米1000元,请将墙壁的总造价y (元)表示为x(米)的函数; (3)当x 为何值时,墙壁的总造价最低?20. (本小题满分10分)在正项等比数列{}n a 中,14a =, 364a =. (1) 求数列{}n a 的通项公式n a ;(2) 记4log =n n b a ,求数列{}n b 的前n 项和n S ;(3) 记24,y m λλ=-+-对于(2)中的n S ,不等式n y S ≤对一切正整数n 及任意实数λ恒成立,求实数m 的取值范围.参考答案17.解:(1) a=20; ………2分b=0.20.………4分(2)根据直方图估计该市每位居民月均用水量的众数为2.5 ………………8分(说明:第二问中补充直方图与求众数只要做对一个得2分,两个全对的4分.)19.解:(1)24,⋅==AB AD AD x 24∴=AB x…………………2分 (2)163000()(26)y x x x=+≤≤………………5分(没写出定义域不扣分) (3)由16163000()3000224000x x x x+≥⨯⋅= 当且仅当16=x x,即4=x 时取等号 4∴=x (米)时,墙壁的总造价最低为24000元.答:当x 为4米时,墙壁的总造价最低.……………8分(3)解法1:由(2)知,22+=n n nS ,当n=1时,n S 取得最小值min 1=S ………8分 要使对一切正整数n 及任意实数λ有n y S ≤恒成立, 即241λλ-+-≤m即对任意实数λ,241λλ≥-+-m 恒成立,2241(2)33λλλ-+-=--+≤,所以3≥m ,故m 得取值范围是[3,).+∞……………10分 解法2:由题意得:2211422λλ≥-+--m n n 对一切正整数n 及任意实数λ恒成立, 即221133(2)(),228λ≥---++m n 因为2,1λ==n 时,221133(2)()228λ---++n 有最小值3,所以3≥m ,故m 得取值范围是[3,).+∞……………10分。
湖南省凤凰县华鑫实验中学15—16学年高二暑期补课效果检测暨8月月考地理试题(附答案)
湖南省凤凰县华鑫实验中学15—16学年高二暑期补课效果检测暨8月月考地理试题一、选择题(本题共25小题,每小题2分,共50分。
在每题给出的4个选项中,只有一项是最符合题目要求的,并将其填到答卷表格中。
)下图为“某区域示意图”,读后回答1~2题。
1.图示区域中,区域界线(县界)划分的主要依据及其属性是()A.山脉、明确的B.河流、明确的C.交通线、模糊的D.湖泊、模糊的2.根据图示信息分析,该区域(东北部)最适宜发展的是()A.建材工业B.电子工业C.化学工业D.纺织工业读下面两图,完成3~4题。
3.两个河口附近平原发展农业的共同限制性因素主要是()A.风沙危害严重B.雨热不同期C.旱涝灾害D.土地沙漠化4.①②两河三角洲处的自然植被分别是()①荒漠②热带季雨林③亚热带常绿阔叶林④温带落叶阔叶林A.①③B.①④C.③④D.②④读下表和下图(上海第一产业有关数据与三大产业产值比例变化图)回答5~6题。
5.2000年到2009年上海农业产值不断增加的主要原因是()①种植业科技投入增大②渔业产值有增有减③农业服务业有所增强④农业人口持续减少A.②④B.①④C.②③D.①③6.根据上海社会经济发展现状和图表数据,上海农业发展的趋势可能是()①耕地面积保持稳定②牧业产值将持续下降③从业人口有所减少④农业产值比例将上升A.①②B.③④C.②③D.①④读“我国服装产业转移示意图”,回答7~9题。
7.新疆、四川吸引服装产业移入的突出优势区位条件分别是()A.市场、产业基础B.原料、劳动力C.交通位置、技术D.政策支持、资金8.服装产业的大量转移,对四川省人口流动的主要影响是()A.跨省人口流动减少,省内人口流动增加B.提高产品附加值,加快产业结构升级C.加快城市化进程,成为西部制造业基地D.产业升级困难,生态环境压力增大9.未来,我国服装产业()A.东部和中西部之间生产分工将更加明确B.专业化生产将突出,规模效应将减弱C.在西部地区的服装加工企业布局将更加分散D.研发设计和销售基地向西部转移南水北调东线工程是把长江的水调往北方的调水工程,调水线路主要为大运河。
湖南省凤凰县华鑫实验中学2015-2016学年高二暑期补课效果检测暨8月月考英语试题
2014-2015学年度华鑫实验中学高二英语第一次月考1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第一部分听力(共两节,每小题1.5分,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面五段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置,听完每项对话后,你都有10秒的时间回答有关小题和阅读下一小题。
每段对话仅读一遍。
现在你有5秒钟的时间阅读第一小题的有关内容。
1. What will the man do?A. He will go to the Great Wall.B. He will stay with the woman.C. He will stay at home.2. What is the woman planning to do the weekend after next?A. Climb mountains.B. Go skating.C. Go swimming.3. When must the book reports be handed in?A. Not later than November 13.B. Not earlier than November 13.C. On November 30.4. What will Mr. Smith do at 10:00 a. m. tomorrow?A. Go to hospital.B. Meet James Chen.C. Attend a meeting.5. What will the man do on Friday?A. Attend the sales conference.B. Attend the market conference.C. Attend the seminar.第二节(共15小题;每小题1.5分,满分22.5分)听下面五段对话或独白,每段对话和独白后有几个小题。
高二化学暑期补课效果检测暨8月月考试题
华鑫中学第一学期8月月考试卷高二化学可能用到的相对原子质量:H 1 C 12 N 14 O 16 Na 23 Cl 35.5 Ag 108 Ba 137一、选择题(每小题只有一个选项,共16题,每题3分,共48分)1.实验室里化学试剂的保存方法是不相同的,右图是常见的一些保存药品的试剂瓶。
下列用于存放这些试剂的试剂瓶使用正确的是棕色A.用①瓶盛装浓硝酸 B.用②瓶盛烧碱溶液C. 用③瓶盛大理石 D.用④瓶盛浓硫酸2.A、B、C、D都是含碳、氢、氧的单官能团化合物,A水解得B和C,B氧化可以得到C或D,D氧化也得到C。
若M(X)表示X的摩尔质量,则下式中正确的是A.M(A)=M(B)+M(C)B.2M(D)= M(B)+M(C)C.M(B)< M(D)<M(C)D.M(D)<M(B)<M(C)3.向盐酸和AlCl3的混合溶液中逐滴加入NaOH溶液至过量,生成沉淀Al(OH)3的量随着加入NaOH溶液体积的变化关系如图所示,下列说法正确的是A.在a点对应的溶液中,加入Mg2+、I―、NH4+、NO3―离子仍能大量共存B.图中B→C的过程中,实际发生的离子方程式为Al(OH)3+OH-=AlO2-+2H2OC.若b、c的纵坐标数值相同,则横坐标数值之比为1:3D.原溶液中盐酸和AlCl3物质的量的浓度之比为1:34.用N A表示阿伏加德罗常数的值。
下列叙述正确的是A.常温常压下,21.0 g乙烯和丁烯的混合气体中含有的碳原子数目为1.5N AB.常温下,1 L 0.1 mol·L-1碳酸钠溶液中,阴离子总数小于0.1N AC.标准状况下,2.24 LCl2溶于足量的水中,转移电子总数为0.1N AD.在某氧化还原反应中,还原剂只有I-,则每生成0.3mol I2反应中转移电子的物质的量必为0.6N A5.有A、B、C三种可溶性化合物,它们所含的离子是Ag+、CO32-、OH-、NO3-、Ba2+、Na+ 取相同质量的这三种物质,配成相同体积的三种溶液,测得其物质的量浓度大小依次为A>B>C,则A物质是A.AgNO3 B.Na2CO3 C.Ba(OH)2 D.NaOH6(08年四川理综·7)下列关于热化学反应的描述中正确的是A.HCl和NaOH反应的中和热ΔH=-57.3 kJ·mol-1,则H2SO4和Ca(OH)2反应的中和热ΔH=2×(-57.3)kJ·mol-1B.CO(g)的燃烧热是283.0 kJ·mol-1,则2CO2(g) =2CO(g)+O2(g)反应的ΔH=2×283.0 kJ·mol-1C.需要加热才能发生的反应一定是吸热反应D.1 mol甲烷燃烧生成气态水和二氧化碳所放出的热量是甲烷燃烧热7.向100 ml FeBr2的溶液中,通入3 mol Cl2 。
5—16学年高二暑期补课效果检测暨8月月考物理试题(附答案)
华鑫中学2015-2016学年第一学期第一次月考试卷高二物理时间:90分钟满分:100分一.选择题(本题共12小题;每小题4分,共48.在每小题有的小题只有一个选项正确,有的小题有多个选项正确.选对得4分,选不全得2分)1.如图所示,一带正电的金属球Q先缓慢的靠近导体A、B,然后接触再分开,Q、A、B 都与外界绝缘,对这一过程,下列说法正确的是()A、当Q靠近A、B时,A端出现负电荷,B出现正电荷B、当Q接触A、B然后移开,A、B都带上正电荷,因为Q的正电荷转移了一部分到A、B上来。
C、若将Q靠近A、B时,用手接触B,B上的正电荷会移到大地,从而使B不带电。
D、对于A、B,与Q还没接触之前,电荷的代数和为0,接触之后电荷代数和不为0 2.下列哪个情况中力做的功为零( )A.向上抛出一物体上升过程中,重力对物体做的功B.卫星做匀速圆周运动时,卫星受到的引力对卫星所做的功C.汽车匀速上坡时,车厢底部对货物的支持力对货物所做的功D.汽车匀速上坡时,车厢底部摩擦力对货物所做的功3.在同一水平直线上的两个不同的位置分别沿同方向抛出两小球A和B,其运动轨迹如图2所示,不计空气阻力.要使两球在空中相遇,则必须()A.先抛出A球B.先抛出B球C.同时抛出两球D.使两球质量相等4.如图所示,两个等量异号的点电荷在其连线的中垂线上有与连线中点O等距离的两点a、b,在连线上有距中点O等距离的两点c、d,则下列场强大小关系式正确的是()A.E a=E b<Ec B.E a=E O= E bC.Ea<E d D.E c>E O> E d5.如图在光滑的轨道上,小球滑下经过圆弧部分的最高点时,恰好不脱离轨道,此时小球受到的作用力是( ) A.重力、弹力和向心力 B.重力和弹力 C.重力和向心力 D.重力6.如图甲所示,物体沿斜面由静止滑下,在水平面上滑行一段距离后停止,物体与斜面和水平面间的动摩擦因数相同,斜面与水平面平滑连接.图乙中v 、a 、f 和s 分别表示物体速度大小、加速度大小、摩擦力大小和路程.图乙中正确的是()7.如图7所示,车内绳AB 与绳BC 拴住一小球,BC 水平,车由原来的静止状态变为向右加速直线运动,小球仍处于图中所示的位置,则( ) A .AB 绳、BC 绳拉力都变大 B .AB 绳拉力变大,BC 绳拉力变小 C .AB 绳拉力变大,BC 绳拉力不变 D .AB 绳拉力不变,BC 绳拉力变大8.将一物块分成相等的A 、B 两部分靠在一起,下端放置在地面上,上端用绳子拴在天花板,绳子处于竖直伸直状态,整个装置静止。
湖南省凤凰县华鑫实验中学高三数学暑期补课效果检测试题理
2016届华鑫实验学校高三上学期第一次月考试卷理科 数学一、选择题:共12题,60分.在下面所给的四个选项中,只有一个最符合题目意思. 1.已知集合{}2,1,0,1-=M 和{}3,2,1,0=N 的关系的韦恩图如图1所示,则阴影部分所示的集合A .{}0B .{}1,0C .{}2,1,0D .{}3,2,1,0,1- 2. 设ABC ∆的内角C B A ,,所对的边分别是cb a ,,,若()()ab c b a c b a =-+++,则角CA.6πB. 65πC.3πD.32π3.函数x xx f ln 3)(-=的零点所在的大致区间是 A .()2,1 B .()3,2 C .()4,3 D .()+∞,e4.已知函数⎩⎨⎧<≥+=0,0.1)(2x x x x x f ,则()[]2-f f 的值为A .1B .2C .4D .55.正三棱锥ABC P -中,2,3==AB PA ,则PA 与平面PBC 所成角的余弦值为.932 .126.1227 .42 6.已知长方体1111D C B A ABCD -中,21==AB AA ,若棱AB 上存在点P ,使得PC P D ⊥1,则AD 的取值范围是A .[)2,1B .(]2,1 C .(]1,0 D .()2,07.已知直线01:=--y x l ,022:1=--y x l ,若直线2l 与1l 关于l 对称,则2l 的方程是A .012=+-y xB .012=--y xC .01=-+y xD .012=-+y x8. 设圆()25122=++y x 的圆心为C ,)0,1(A 是圆内一定点,Q 为圆周上任一点,线段AQ的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为A.125421422=-y xB. 125421422=+y xC. 121425422=-y xD.121425422=+y x 9.已知函数()x x x x f 2cos 21cos sin 32)(+-⋅-=π,其中R x ∈,则下列结论中正确的是A .)(x f 的一条对称轴是2π=x B .)(x f 在⎥⎦⎤⎢⎣⎡-6,3ππ上单调递增 C .)(x f 是最小正周期为π的奇函数D .将函数x y 2sin 2=的图象左移6π个单位得到函数)(x f 的图象 10. 定义在R 上的偶函数)(x f 满足)()2(x f x f =+,且在[]2,3--上是减函数,若βα,是锐角三角形的两个内角,则A .)(cos )(sin βαf f >B .)(cos )(sin βαf f <C .)(sin )(sin βαf f >D .)(cos )(cos βαf f <11.设函数)0,,()(,1)(2≠∈+==a Rb a bx ax x g xx f ,若)(x f y =的图像与)(x g y =的图像有且仅有两个不同的公共点),,(11y x A ),,(22y x B 则下列判断正确的是A 、当0<a 时0,02121>+<+y y x xB 、当0>a 时0,02121<+<+y y x xC 、当0<a 时0,02121<+>+y y x x D 、当0>a 时0,02121>+>+y y x x12. 已知函数)(x f y =的定义域为R ,当0<x 时,1)(>x f ,且对任意的实数R y x ∈,,等式)()()(y x f y f x f +=恒成立.若数列{}n a 满足)0(1f a =,且)()2(1)(*1N n a f a f n n ∈--=+,则2011a 的值为A.4018B.4019C.4020D.4021二、填空题(共4题,每题5分,20分)13. 右图是一个算法的流程图.若输入x 的值为2,则输出y 的值是_______.14.在平面直角坐标系xoy 中,圆C 的方程为0422=-+x y x .若直线)1(+=x k y 上存在15.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为________.三、解答题:本大题分为必做题和选做题,其中17/18/19/20/21为必做部分.考生答题时必须写出必要过程及解题步骤,共70分. 17. (12分)已知函数⎥⎦⎤⎢⎣⎡∈-+=2,4,2cos 3)4(sin 2)(2πππx x x x f 。
湖南省湘西州凤凰县华鑫实验中学高二数学上学期8月月考试题文(含解析)
2015-2016学年湖南省湘西州凤凰县华鑫实验中学高二(上)8月月考数学试卷(文科)一、选择题(共10题,每题5分,共50分.)1.已知M={y|y=x2},N={y|x2+y2=2},则M∩N=()A.{(1,1),(﹣1,1)} B.{1} C.[0,1] D.2.函数f(x)=2sinxcosx是()A.最小正周期为2π的奇函数 B.最小正周期为2π的偶函数C.最小正周期为π的奇函数D.最小正周期为π的偶函数3.△ABC中,已知a=x,b=2,B=60°,如果△ABC 有两组解,则x的取值范围()A.x>2 B.x<2 C.D.4.若函数f(sinx)=cos2x,则f(cos15°)的值为()A.B.﹣C.﹣D.5.已知与均为单位向量,它们的夹角为60°,那么等于()A.B. C. D.46.一个几何体的三视图及尺寸如图所示,则该几何体的体积为()A.48 B.72 C.12 D.247.执行如图所示的程序框图,如果输入a=2,b=2,那么输出的Ⅱ值为()A.4 B.16 C.256 D.655368.函数f(x)=lnx﹣的零点所在的大致区间是()A.(1,2)B.(2,3)C.(1,)D.(e,+∞)9.在区间[0,2]上随机取一个数x,sin x的值介于0到之间的概率为()A.B.C.D.10.已知函数y=f(x)是周期为2的周期函数,且当x∈[﹣1,1]时,f(x)=2|x|﹣1,则函数F(x)=f(x)﹣|lgx|的零点个数是()A.9 B.10 C.11 D.12二、填空题(共5题,每题5分,共25分.)11.有人收集了春节期间平均气温x(℃)与某取暖商品销售额y(万元)的有关数据(x,y)分别为:(﹣2,20),(﹣3,23),(﹣5,27),(﹣6,30),根据以上数据,用线性回归的方法,求得销售额y与平均气温x之间线性回归方程y=bx+a的系数b=﹣2.4,则预测平均气温为﹣8℃时该商品的销售额为万元.12.已知tan=2,则tanα的值为;的值为.13.在锐角△ABC中,若C=2B,则的范围是.14.在△AB C中,cos2=(a,b,c分别为角A,B,C的对边),则cos= .15.给出定义:若m﹣<x(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m.下列关于函数f(x)=|x﹣{x}|的四个命题:①函数y=f(x)的定义域为R,值域为[0,];②函数y=f(x)在[﹣,]上是增函数;③函数y=f(x)是周期函数,最小正周期为1;④函数y=f(x)的图象关于直线x=(k∈Z)对称.其中正确命题的序号是.三、解答题(共6题.16-18题,每题12分;19-21题,每题13分.共75分)16.(12分)该试题已被管理员删除17.(12分)(2014•徐州三模)在△ABC中,已知C=,向量=(sinA,1),=(1,cosB),且.(1)求A的值;(2)若点D在边BC上,且3=,=,求△ABC的面积.18.(12分)(2014春•路南区校级期末)已知向量,,若函数.(1)求f(x)的最小正周期;(2)若,求f(x)的最大值及相应的x值;(3)若x∈[0,π],求f(x)的单调递减区间.19.(13分)(2014春•彭州市校级期中)已知甲船正在大海上航行.当它位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即以10海里/小时的速度匀速前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,乙船当即决定匀速前往救援,并且与甲船同时到达.(供参考使用:tan41°=).(1)试问乙船航行速度的大小;(2)试问乙船航行的方向(试用方位角表示,譬如北偏东…度).20.(13分)(2012秋•凉州区校级期末)如图,在四棱锥P﹣ABCD中,底面ABCd是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于底面ABCD.(1)若G为AD的中点,求证:BG⊥平面PAD;(2)求证:AD⊥PB;(3)求二面角A﹣BC﹣P的大小.21.(13分)(2015春•泰安校级期中)已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若m,n∈[﹣1,1],m+n≠0时,有>0.(Ⅰ)证明f(x)在[﹣1,1]上是增函数;(Ⅱ)解不等式f(x2﹣1)+f(3﹣3x)<0(Ⅲ)若f(x)≤t2﹣2at+1对∀x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数t的取值范围.2015-2016学年湖南省湘西州凤凰县华鑫实验中学高二(上)8月月考数学试卷(文科)参考答案与试题解析一、选择题(共10题,每题5分,共50分.)1.已知M={y|y=x2},N={y|x2+y2=2},则M∩N=()A.{(1,1),(﹣1,1)} B.{1} C.[0,1] D.考点:交集及其运算.专题:计算题.分析:先化简两个集合,再利用两个集合的交集的定义求出M∩N.解答:解:∵M={y|y=x2}═{y|y≥0},N={y|x2+y2=2}={y|﹣≤y≤},∴M∩N={y|y≥0}∩={y|﹣≤y≤}={y|≥y≥0},故选 D.点评:本题考查两个集合的交集的定义以及求函数的值域的方法,确定两个集合中元素的取值范围是解题的关键和难点.2.函数f(x)=2sinxcosx是()A.最小正周期为2π的奇函数 B.最小正周期为2π的偶函数C.最小正周期为π的奇函数D.最小正周期为π的偶函数考点:二倍角的正弦.分析:本题考查三角函数的性质f(x)=2sinxcosx=sin2x,周期为π的奇函数.解答:解:∵f(x)=2sinxcosx=sin2x,∴f(x)为周期为π的奇函数,故选C点评:本题是最简单的二倍角的应用,几个公式中应用最多的是余弦的二倍角公式,它有三种表现形式,要根据题目的条件选择合适的,这几个公式要能正用、逆用和变形用,正弦的二倍角公式应用时最好辨认.3.△ABC中,已知a=x,b=2,B=60°,如果△ABC 有两组解,则x的取值范围()A.x>2 B.x<2 C.D.考点:正弦定理.专题:计算题.分析:△ABC 有两组解,所以asinB<b<a,代入数据,求出x的范围.解答:解:当asinB<b<a时,三角形ABC有两组解,所以b=2,B=60°,设a=x,如果三角形ABC有两组解,那么x应满足xsin60°<2<x,即.故选C.点评:本题是基础题,考查三角形的应用,计算能力,注意基本知识的应用,是解题的关键,常考题型.4.若函数f(sinx)=cos2x,则f(cos15°)的值为()A.B.﹣C.﹣D.考点:运用诱导公式化简求值.专题:三角函数的求值.分析:已知等式右边利用二倍角的余弦函数公式化简确定出f(x),将x=cos15°代入计算即可求出值.解答:解:∵f(sinx)=cos2x=1﹣2sin2x,∴f(x)=1﹣2x2,则f(cos15°)=1﹣2cos215°=﹣(2cos215°﹣1)=﹣cos30°=﹣.故选:C.点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.5.已知与均为单位向量,它们的夹角为60°,那么等于()A.B. C. D.4考点:向量的模;平面向量数量积的性质及其运算律.专题:计算题.分析:由题意并且结合平面数量积的运算公式可得:=,再根据=可得答案.解答:解:因为与均为单位向量,它们的夹角为60°,所以=.又因为=,所以=.故选A.点评:解决此类问题的关键是熟练掌握平面向量数量积的运算性质与公式,以及向量的求模公式,此题属于基础题主要细心的运算即可得到全分.6.一个几何体的三视图及尺寸如图所示,则该几何体的体积为()A.48 B.72 C.12 D.24考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由已知中三视图可得该几何体为一个以俯视图为底面的三棱锥,求出底面积和高后,代入锥体体积公式,可得答案.解答:解:由已知中三视图可得该几何体为一个以俯视图为底面的三棱锥,其底面面积S=×6×6=18,其高h==4,故该几何体的体积V==24,故选:D.点评:本题考查的知识点是由三视图,求体积,其中根据已知分析出几何体的形状是解答的关键.7.执行如图所示的程序框图,如果输入a=2,b=2,那么输出的Ⅱ值为()A.4 B.16 C.256 D.65536考点:程序框图.专题:算法和程序框图.分析:执行程序框图,写出每次循环得到的a的值,当a=256时,满足条件log3a>4,输出a的值为256.解答:解:执行程序框图,有a=2,b=2不满足条件log3a>4,有a=4;不满足条件log3a>4,有a=16不满足条件log3a>4,有a=256此时,满足条件log3a>4,输出a的值为256.故选:C.点评:本题主要考察了程序框图和算法,属于基本知识的考查.8.函数f(x)=lnx﹣的零点所在的大致区间是()A.(1,2)B.(2,3)C.(1,)D.(e,+∞)考点:二分法求方程的近似解.专题:计算题;函数的性质及应用.分析:直接通过零点存在性定理,结合定义域选择适当的数据进行逐一验证,并逐步缩小从而获得最佳解答.解答:解:函数的定义域为:(0,+∞),有函数在定义域上是递增函数,所以函数只有唯一一个零点.又∵f(2)﹣ln2﹣1<0,f(3)=ln3﹣>0∴f(2)•f(3)<0,∴函数f(x)=lnx﹣的零点所在的大致区间是(2,3).故选:B.点评:本题考查的是零点存在的大致区间问题.在解答的过程当中充分体现了定义域优先的原则、函数零点存在性定理的知识以及问题转化的思想.值得同学们体会反思.9.在区间[0,2]上随机取一个数x,sin x的值介于0到之间的概率为()A.B.C.D.考点:几何概型.专题:概率与统计.分析:求出sin x的值介于0到之间的等价条件,利用几何概型的概率公式即可得到结论.解答:解:由0<sin x<,得2kπ<x<2kπ+,或2kπ+<x<2kπ+π,k∈Z,即4k<x<4k+或4k+<x<4k+2,k∈Z,∵x∈[0,2],∴当x=0时,0<x<或<x<2,则sin x的值介于0到之间的概率为=,故选:A.点评:本题主要考查几何概型的概率公式的计算,根据三角函数的图象和性质求出的等价范围是解决本题的关键.10.已知函数y=f(x)是周期为2的周期函数,且当x∈[﹣1,1]时,f(x)=2|x|﹣1,则函数F(x)=f(x)﹣|lgx|的零点个数是()A.9 B.10 C.11 D.12考点:根的存在性及根的个数判断;函数的周期性.专题:函数的性质及应用.分析:在坐标系中画出两个函数y1=|lgx|,y2=f(x)的图象,分析两个图象交点的个数,进而可得函数F(x)=f(x)﹣|lgx|的零点个数.解答:解:∵函数F(x)=f(x)﹣|lgx|的零点,即为函数y1=|lgx|,y2=f(x)的图象的交点,又∵函数y=f(x)是周期为2的周期函数,且当x∈[﹣1,1]时,f(x)=2|x|﹣1,在同一坐标系中画出两个函数y1=|lgx|,y2=f(x)的图象,如下图所示:由图可知:两个函数y1=|lgx|,y2=f(x)的图象共有10个交点,故函数F(x)=f(x)﹣|lgx|有10个零点,故选:B.点评:本题考查了函数零点、对应方程的根和函数图象之间的关系,通过转化和作图求出函数零点的个数.二、填空题(共5题,每题5分,共25分.)11.有人收集了春节期间平均气温x(℃)与某取暖商品销售额y(万元)的有关数据(x,y)分别为:(﹣2,20),(﹣3,23),(﹣5,27),(﹣6,30),根据以上数据,用线性回归的方法,求得销售额y与平均气温x之间线性回归方程y=bx+a的系数b=﹣2.4,则预测平均气温为﹣8℃时该商品的销售额为34.6 万元.考点:根据实际问题选择函数类型.专题:概率与统计.分析:求出样本平均数,代入解得a,即可得到结论.解答:解:∵数据(x,y)分别为:(﹣2,20),(﹣3,23),(﹣5,27),(﹣6,30),∴平均数=,=,即样本中心为(﹣4,25),∵线性回归方程y=bx+a的系数b=﹣2.4,∴y=﹣2.4x+a,∵回归方程过点(﹣4,25),代入解得a=15.4,则回归方程为y=﹣2.4x+15.4,当x=﹣8时,y=﹣2.4×(﹣8)+15.4=34.6(万元),故答案为:34.6点评:本题主要考查线性回归方程的求解和应用,根据回归方程过样本数据中心()是解决本题的关键.12.已知tan=2,则tanα的值为﹣;的值为.考点:二倍角的正切.专题:三角函数的求值.分析:由条件利用二倍角公式的正切公式求得tanα,再利用同角三角函数的基本关系求得的值.解答:解:∵已知tan=2,则tanα===﹣.===,故答案为:﹣;.点评:本题主要考查同角三角函数的基本关系,二倍角公式的正切公式的应用,属于基础题.13.在锐角△ABC中,若C=2B,则的范围是.考点:解三角形.专题:计算题.分析:由已知C=2B可得A=180°﹣3B,再由锐角△ABC可得B的范围,由正弦定理可得,.从而可求解答:解:因为锐角△ABC中,若C=2B所以A=180°﹣3B∴∴30°<B<45°由正弦定理可得,∵∴故答案为:点评:本题主要考查了三角形的内角和定理,正弦定理在解三角形的应用.属于基础试题.14.在△ABC中,cos2=(a,b,c分别为角A,B,C的对边),则cos= .考点:二倍角的余弦.专题:三角函数的求值.分析:由条件利用二倍角的余弦公式、诱导公式求得cosC=0,可得C为直角,再根据cos=cos=sin求得结果.解答:解:在△ABC中,∵cos2=,∴==•+,∴1+cosA=+1,∴cosAsinC=sinB=sin(A+C)=sinAcosC+cosAsinC,∴sinAcosC=0,又sinA≠0,∴cosC=0,∴C为直角,∴cos=cos=sin=sin=,故答案为:.点评:本题主要考查二倍角的余弦公式、诱导公式的应用,属于基础题.15.给出定义:若m﹣<x(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m.下列关于函数f(x)=|x﹣{x}|的四个命题:①函数y=f(x)的定义域为R,值域为[0,];②函数y=f(x)在[﹣,]上是增函数;③函数y=f(x)是周期函数,最小正周期为1;④函数y=f(x)的图象关于直线x=(k∈Z)对称.其中正确命题的序号是①③④.考点:命题的真假判断与应用.专题:新定义;函数的性质及应用.分析:此题是新定义,首先理解好什么是“m叫做离实数x最近的整数”,然后根据函数f(x)=|x﹣{x}|的表达式画出其图象,就可以判断出正确命题是①②④.解答:解:①∵m﹣<x(其中m为整数),∴,∴0,∴函数f(x)=|x﹣{x}|=|x﹣m|的值域为[0,].②由定义知:当时,m=﹣1,∴f(﹣)=|﹣﹣(﹣1)|=;当时,m=0,∴f(x)=|x﹣0|=|x|,故f(x)在上不是增函数,所以②不正确.③由得,∴{x+1}={x}+1=m+1,∴f(x+1)=|(x+1)﹣{x+1}|=|x﹣{x}|=f(x),所以函数y=f(x)是周期函数,最小正周期为1.④由②可知:在时,f(x)=|x|关于y周对称;又由③可知:函数y=f(x)是周期函数,最小正周期为1,∴函数f(x)的图象关于直线x=(k∈Z)对称.故答案为①③④.点评:此题是新定义,综合考查了函数的值域、单调性、周期性及对称性.理解好新定义的含义及画出函数f(x)=|x﹣{x}|的图象是做好本题的关键.三、解答题(共6题.16-18题,每题12分;19-21题,每题13分.共75分)16.(12分)该试题已被管理员删除17.(12分)(2014•徐州三模)在△ABC中,已知C=,向量=(sinA,1),=(1,cosB),且.(1)求A的值;(2)若点D在边BC上,且3=,=,求△ABC的面积.考点:余弦定理;平面向量数量积的运算;正弦定理.专题:三角函数的求值.分析:(1)由两向量的坐标及两向量垂直,利用平面向量的数量积运算法则列出关系式,根据C的度数,利用内角和定理表示出B,代入得出的关系式中计算即可求出A的度数;(2)设||=x,由3=,得||=3x,由A的度数与C度数相等,可得出||=3x,B=,利用余弦定理列出关于x的方程,求出方程的解得到x的值,确定出AB与BC的长,利用三角形面积公式即可求出三角形ABC面积.解答:解:(1)∵=(sinA,1),=(1,cosB),且⊥,∴sinA+cosB=0,又C=,A+B+C=π,∴sinA+cos(﹣A)=0,即sinA﹣cosA+sinA=sin(A﹣)=0,又0<A<,∴A﹣∈(﹣,),∴A﹣=0,即A=;(2)设||=x,由3=,得||=3x,由(1)知A=C=,∴||=3x,B=,在△ABD中,由余弦定理,得13=9x2+x2+3x2,解得:x=1,∴AB=BC=3,则S△ABC=BA•BC•sinB=×3×3×sin=.点评:此题考查了余弦定理,三角形的面积公式,以及平面向量的数量积运算,熟练掌握余弦定理是解本题的关键.18.(12分)(2014春•路南区校级期末)已知向量,,若函数.(1)求f(x)的最小正周期;(2)若,求f(x)的最大值及相应的x值;(3)若x∈[0,π],求f(x)的单调递减区间.考点:平面向量数量积的运算;正弦函数的单调性.专题:三角函数的图像与性质.分析:(1)根据向量的数量积和三角函数的恒等变形即可化为f(x)=,再根据求周期的公式T=即可求出;(2)根据x的取值范围求出2x﹣的范围,求出使six取得最大值的x的值,即使函数f(x)取得最大值的x的值;(3)根据函数y=sinx的图象知,在区间上单调递减,只要把f(x)中的看做一个整体求出即可.解答:解:∵向量,,∴===.(1)由上面f(x)的表达式可知:f(x)的最小正周期==π;(2)当时,,∴当,即时,,f(x)取得最大值;(3)当x∈[0,π]时,,由y=sinx的图象知,在区间上单调递减,而(k∈Z)=,由,解得.∴f(x)的单调递减区间为.点评:熟练掌握数量积的运算和三角函数的恒等变形及三角函数的单调性是解题的关键.19.(13分)(2014春•彭州市校级期中)已知甲船正在大海上航行.当它位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即以10海里/小时的速度匀速前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船,乙船当即决定匀速前往救援,并且与甲船同时到达.(供参考使用:tan41°=).(1)试问乙船航行速度的大小;(2)试问乙船航行的方向(试用方位角表示,譬如北偏东…度).考点:解三角形的实际应用.专题:应用题;解三角形.分析:(1)利用余弦定理,计算乙船运动到B处的距离,即可求出乙船航行速度的大小;(2)利用正弦定理,可求乙船航行的方向.解答:解:(1)设乙船运动到B处的距离为t海里.则t2=AC2+AB2﹣2AB•AC•cos120°=102+202﹣2×10×20×=700,∴t=10.∴乙船航行速度为10÷2=海里/小时;(2)设∠ACB=θ,则,则sinθ=,∴θ=41°.∴乙船应朝北偏东71°的方向沿直线前往B处求援.点评:本题主要考查了余弦定理的应用和正弦定理.作为解三角形常用的余弦和正弦定理公式,平时应熟练记忆.20.(13分)(2012秋•凉州区校级期末)如图,在四棱锥P﹣ABCD中,底面ABCd是∠DAB=60°且边长为a的菱形,侧面PAD是等边三角形,且平面PAD垂直于底面ABCD.(1)若G为AD的中点,求证:BG⊥平面PAD;(2)求证:AD⊥PB;(3)求二面角A﹣BC﹣P的大小.考点:二面角的平面角及求法;直线与平面垂直的判定.专题:空间位置关系与距离;空间角.分析:(1)根据△ABD为等边三角形且G为AD的中点,则BG⊥AD,又平面PAD⊥平面ABCD,根据面面垂直的判定定理可知BG⊥平面PAD;(2)根据△PAD是等边三角形且G为AD的中点,则AD⊥PG,且AD⊥BG,PG∩BG=G,满足线面垂直的判定定理,则AD⊥平面PBG,而PB⊂平面PBG,根据线面垂直的性质可知AD⊥PB;(3)证明∠PBG是二面角A﹣BC﹣P的平面角,即可求得结论.解答:(1)证明:∵△ABD为等边三角形且G为AD的中点,∴BG⊥AD又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴BG⊥平面PAD(2)证明:∵△PAD是等边三角形且G为AD的中点,∴AD⊥PG∵AD⊥BG,PG∩BG=G,∴AD⊥平面PBG,PB⊂平面PBG,∴AD⊥PB;(3)解:∵AD⊥PB,AD∥BC,∴BC⊥PB,∵BG⊥AD,AD∥BC,∴BG⊥BC,∴∠PBG是二面角A﹣BC﹣P的平面角,在直角△PBG中,PG=BG,∴∠PBG=45°,∴二面角A﹣BC﹣P的平面角是45°.点评:本题主要考查了直线与平面垂直的判定,以及空间中直线与直线之间的位置关系,考查面面角,同时考查了空间想象能力、划归与转化的思想,属于中档题.21.(13分)(2015春•泰安校级期中)已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若m,n∈[﹣1,1],m+n≠0时,有>0.(Ⅰ)证明f(x)在[﹣1,1]上是增函数;(Ⅱ)解不等式f(x2﹣1)+f(3﹣3x)<0(Ⅲ)若f(x)≤t2﹣2at+1对∀x∈[﹣1,1],a∈[﹣1,1]恒成立,求实数t的取值范围.考点:奇偶性与单调性的综合;函数单调性的判断与证明;函数奇偶性的判断.专题:综合题;函数的性质及应用.分析:(Ⅰ)任取﹣1≤x1<x2≤1,则,由已知,可比较f(x1)与f(x2)的大小,由单调性的定义可作出判断;(Ⅱ)利用函数的奇偶性可把不等式化为f(x2﹣1)<f(3x﹣3),在由单调性得x2﹣1<3x ﹣3,还要考虑定义域;(Ⅲ)要使f(x)≤t2﹣2at+1对∀x∈[﹣1,1]恒成立,只要f(x)max≤t2﹣2at+1,由f (x)在[﹣1,1]上是增函数易求f(x)max,再利用关于a的一次函数性质可得不等式组,保证对a∈[﹣1,1]恒成立;解答:解:(Ⅰ)任取﹣1≤x1<x2≤1,则,∵﹣1≤x1<x2≤1,∴x1+(﹣x2)≠0,由已知,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴f(x)在[﹣1,1]上是增函数;(Ⅱ)∵f(x)是定义在[﹣1,1]上的奇函数,且在[﹣1,1]上是增函数,∴不等式化为f(x2﹣1)<f(3x﹣3),∴,解得;(Ⅲ)由(Ⅰ)知f(x)在[﹣1,1]上是增函数,∴f(x)在[﹣1,1]上的最大值为f(1)=1,要使f(x)≤t2﹣2at+1对∀x∈[﹣1,1]恒成立,只要t2﹣2at+1≥1⇒t2﹣2at≥0,设g(a)=t2﹣2at,对∀a∈[﹣1,1],g(a)≥0恒成立,∴,∴t≥2或t≤﹣2或t=0.点评:本题考查抽象函数的单调性、奇偶性,考查抽象不等式的求解,可从恒成立问题,考查转化思想,考查学生灵活运用知识解决问题的能力.。
高二数学暑期补课效果检测暨8月月考试题 理-人教版高二全册数学试题
..华鑫中学2015-2016学年第一学期第一次月考高二年级 理科数学考试范围:解三角形、数列;考试时间:120分钟;满分:150分注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题(本大题共12个小题,每小题5分,共60分) 1.在ABC ∆中,,16045===c C B ,, 则=b ( )A .36 B .26 C .21 D .232.在等比数列{}n a 中,如果6969a a ==,,那么3a 等于( ) A .2 B .23 C .916D .4 3.在ABC ∆中,三边,,a b c 与面积S 的关系式为2221()4S a b c =+-,则角C 为( ) A .30︒ B .45︒ C .60︒ D .90︒4.在△ABC 中,角A ,B ,C 的对边分别为,,a b c ,若cos cos sin b C c B a A +=,则△ABC 的形状为( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不确定5.已知等差数列{}n a 的公差0d ≠,若5915,,a a a 成等比数列,那么公比为( ) A.34 B. 23 C. 32 D. 436.在内,分别为角所对的边,成等差数列,且,,则b 的值为( )A. 1B. 2C. 3D. 4 7.在等比数列{}n a 中,已知前n 项和n S =15n a ++,则a 的值为( )A .-1B .1C .-5D .5 8.在△OAB(O 为原点)中,=(2cos,2sin),=(5cos,5sin),若·=-5,则△OAB 的面积S =( )..A .B .C .D .9.数列{}n a 中,1160,3n n a a a +=-=+,则此数列前30项的绝对值的和为 ( )A.720B.765C.600D.63010.若G 是ABC ∆的重心,,,a b c 分别是角,,A B C 的对边,若30aGA bGB cGC ++=,则角A =( )A.90 B.60 C.45 D.3011.已知数列满足,则等于 ( )A .0B .C .D .12.设等差数列{}n a 的前n 项和为n S ,首项10a >,12130,0S S ><.则以下关于数列{}n a 的判断中正确的个数有( )①670a a >;②67a a >;③580a a +>;④前n 项和n S 中最大的项为第六项 (A )1 (B )2 (C )3 (D )4二、填空题(本大题共4个小题,每小题5分,共20分)13.设等差数列{}n a 的前n 项和为n S ,若911a =,119a =,则19S 等于 . 14.在ABC ∆中,已知sin :sin :sin 25A B C =则最大角等于 . 15.已知数列{}n a 满足11a =,*log (1)(2,)n n a n n n N =+≥∈,定义:使乘积12ka a a ⋅⋅⋅为正整数的k *()k N ∈叫做“简易数”.则在[3,2013]内所有“简易数”的和为 .16.已知对于任意的自然数n,抛物线22()(21)1y n n x n x =+-++与x 轴相交于A n ,B n 两点,则|A 1B 1|+|A 2B 2|+|A 3B 3|…+|A 2014B 2014|= .三、解答题(本大题共6个小题,共70分) {}n a *113)31n n n a a a n a +-==∈+N 2010a 3-3317.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c .已知222b c a bc +=+. (1)求A 的大小; (2)如果6cos =B ,2b =,求ABC ∆的面积.18.已知等差数列{}n a 的公差0> d ,其前n 项和为n S , 11=a ,3632=S S ; (1)求出数列{}n a 的通项公式n a 及前n 项和公式n S(2)若数列{}n b 满足)2(,211≥=-=-n d b b b n n n ,求数列{}n b 的通项公式n b19.如图所示,在山顶铁塔上B 处测得地面上一点A 的俯角为α,在塔底C 处测得A 处的俯角为β.已知铁塔BC 部分的高为h ,求出山高CD .20.已知:数列{a n }的前n 项和S n =n 2+2n(n ∈N *) (1)求:通项n a(2)求和:14332211111+++++n n a a a a a a a a21.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,22sincos 212A CB ++= (1)若3b a ==,求c 的值;(2)设sin sin t A C =,当t 取最大值时求A 的值。
湖南省凤凰县华鑫中学高二数学下学期第一次月考试题
湖南省凤凰县华鑫中学2012-2013学年高二数学下学期第一次月考试题一、选择题:本大题共10小题,每小题4分,共40分 1. 已知集合{1,0,1,2}A =-,{2,1,2}B =-,则A B =( ) .A. {1}B. {2}C. {1,2}D. {2,0,1,2}- 2. 若运行右图的程序,则输出的结果是( ).A. 4B. 13C. 9D. 223. 将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为6”的概率是( ). A . 13 B. 14C. 15D. 16 4. sincos44ππ的值为( ).A.122225. 已知直线l 过点(0,7),且与直线42y x =-+平行,则直线l 的方程为( ). A. 47y x =-- B. 47y x =- C. 47y x =-+ D. 47y x =+6. 已知向量(1,2)=a ,(,1)=-b x ,若⊥a b ,则实数x 的值为( ). A. 2- B. 2 C. 1- D. 17. 已知函数()f x 的图象是连续不断的,且有如下对应值表:x1 2 3 4 5 ()f x 4-2-147在下列区间中,函数()f x 必有零点的区间为( ).A.(1,2)B. (2,3)C.(3,4)D. (4,5) 8. 已知直线l :1y x =+和圆C: 221x y +=,则直线l 和圆C 的位置关系为( ). A.相交 B. 相切 C.相离 D. 不能确定 9. 下列函数中,在区间(0,)+∞上为增函数的是( ).A.1()3=xy B.3log y x = C.1y x=D. cos =y x 10. 已知实数x y 、满足约束条件100x y x y +≤⎧⎪≥⎨⎪≥⎩,则z y x =-的最大值为( ).A. 1B. 0C. 1-D. 2- 二、填空题:本大题共5小题,每小题4分,共20分.11. 已知函数2(0)()1(0)x x x f x x x ⎧-≥=⎨+<⎩,则(2)f = .12. 把二进制数101(2)化成十进制数为 .13. 在△ABC 中,角A 、B 的对边分别为a b 、, 60,A =︒3,30,a B ==︒则b = . 14. 如图是一个几何体的三视图,该几何体的体积为 .15. 如图,在△ABC 中,M 是BC 的中点,若AB AC AM λ+=,则实数λ= . 三、解答题:本大题共5小题,共40分.解答应写出文字说明、证明过程或演算步骤. 16. (本小题满分6分) 已知函数()2sin()3π=-f x x ,∈x R .(1)写出函数()f x 的周期;(2)将函数()f x 图象上的所有的点向左平行移动3π个单位,得到函数()g x 的图象,写出函数()g x 的表达式,并判断函数()g x 的奇偶性.17. (本小题满分8分)某市为节约用水,计划在本市试行居民生活用水定额管理,为了较为合理地确定居民日常用水量的标准,通过抽样获得了100位居民某年的月均用水量(单位:吨),右表是100位居民月均用水量的频率分布表,根据右表解答下列问题:(1)求右表中a和b的值;(2)请将频率分布直方图补充完整,并根据直方图估计该市每位居民月均用水量的众数.18. (本小题满分8分)如图,在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AB.(1)求证:BD⊥平面PAC;(2)求异面直线BC与PD所成的角.分组频数频率[0,1) 10 0.10[1,2) a0.20[2,3) 30 0.30[3,4) 20 b[4,5) 10 0.10[5,6] 10 0.10合计100 1.0019. (本小题满分8分)如图,某动物园要建造两间完全相同的矩形熊猫居室,其总面积为24平方米,设熊猫居室的一面墙AD 的长为x 米 (26)x ≤≤.(1)用x 表示墙AB 的长;(2)假设所建熊猫居室的墙壁造价(在墙壁高度一定的前提下)为每米1000元,请将墙壁的总造价y (元)表示为x(米)的函数; (3)当x 为何值时,墙壁的总造价最低?20. (本小题满分10分)在正项等比数列{}n a 中,14a =, 364a =. (1) 求数列{}n a 的通项公式n a ;(2) 记4log =n n b a ,求数列{}n b 的前n 项和n S ;(3) 记24,y m λλ=-+-对于(2)中的n S ,不等式n y S ≤对一切正整数n 及任意实数λ恒成立,求实数m 的取值范围.参考答案17.解:(1) a=20; ………2分b=0.20.………4分(2)根据直方图估计该市每位居民月均用水量的众数为2.5 ………………8分(说明:第二问中补充直方图与求众数只要做对一个得2分,两个全对的4分.)19.解:(1)24,⋅==AB AD AD x 24∴=AB x…………………2分 (2)163000()(26)y x x x=+≤≤………………5分(没写出定义域不扣分) (3)由16163000()3000224000x x x x+≥⨯⋅= 当且仅当16=x x,即4=x 时取等号 4∴=x (米)时,墙壁的总造价最低为24000元.答:当x 为4米时,墙壁的总造价最低.……………8分(3)解法1:由(2)知,22+=n n nS ,当n=1时,n S 取得最小值min 1=S ………8分 要使对一切正整数n 及任意实数λ有n y S ≤恒成立, 即241λλ-+-≤m即对任意实数λ,241λλ≥-+-m 恒成立,2241(2)33λλλ-+-=--+≤,所以3≥m ,故m 得取值范围是[3,).+∞……………10分 解法2:由题意得:2211422λλ≥-+--m n n 对一切正整数n 及任意实数λ恒成立, 即221133(2)(),228λ≥---++m n 因为2,1λ==n 时,221133(2)()228λ---++n 有最小值3,所以3≥m ,故m 得取值范围是[3,).+∞……………10分。
湖南省凤凰县华鑫实验中学高三数学暑期补课效果检测试
2016届华鑫实验学校高三上学期第一次月考试卷理科 数学一、选择题:共12题,60分.在下面所给的四个选项中,只有一个最符合题目意思. 1.已知集合{}2,1,0,1-=M 和{}3,2,1,0=N 的关系的韦恩图如图1所示,则阴影部分所示的集合A .{}0B .{}1,0C .{}2,1,0D .{}3,2,1,0,1- 2. 设ABC ∆的内角C B A ,,所对的边分别是cb a ,,,若()()ab c b a c b a =-+++,则角CA.6π B. 65π C.3π D.32π3.函数x xx f ln 3)(-=的零点所在的大致区间是 A .()2,1 B .()3,2 C .()4,3 D .()+∞,e4.已知函数⎩⎨⎧<≥+=0,0.1)(2x x x x x f ,则()[]2-f f 的值为A .1B .2C .4D .55.正三棱锥ABC P -中,2,3==AB PA ,则PA 与平面PBC 所成角的余弦值为.932 .126.1227 .42 6.已知长方体1111D C B A ABCD -中,21==AB AA ,若棱AB 上存在点P ,使得PC P D ⊥1,则AD 的取值范围是A .[)2,1B .(]2,1 C .(]1,0 D .()2,07.已知直线01:=--y x l ,022:1=--y x l ,若直线2l 与1l 关于l 对称,则2l 的方程是A .012=+-y xB .012=--y xC .01=-+y xD .012=-+y x8. 设圆()25122=++y x 的圆心为C ,)0,1(A 是圆内一定点,Q 为圆周上任一点,线段AQ的垂直平分线与CQ 的连线交于点M ,则M 的轨迹方程为A.125421422=-y xB. 125421422=+y xC. 121425422=-y xD.121425422=+y x 9.已知函数()x x x x f 2cos 21cos sin 32)(+-⋅-=π,其中R x ∈,则下列结论中正确的是A .)(x f 的一条对称轴是2π=x B .)(x f 在⎥⎦⎤⎢⎣⎡-6,3ππ上单调递增 C .)(x f 是最小正周期为π的奇函数D .将函数x y 2sin 2=的图象左移6π个单位得到函数)(x f 的图象 10. 定义在R 上的偶函数)(x f 满足)()2(x f x f =+,且在[]2,3--上是减函数,若βα,是锐角三角形的两个内角,则A .)(cos )(sin βαf f >B .)(cos )(sin βαf f <C .)(sin )(sin βαf f >D .)(cos )(cos βαf f <11.设函数)0,,()(,1)(2≠∈+==a Rb a bx ax x g xx f ,若)(x f y =的图像与)(x g y =的图像有且仅有两个不同的公共点),,(11y x A ),,(22y x B 则下列判断正确的是A 、当0<a 时0,02121>+<+y y x xB 、当0>a 时0,02121<+<+y y x xC 、当0<a 时0,02121<+>+y y x x D 、当0>a 时0,02121>+>+y y x x12. 已知函数)(x f y =的定义域为R ,当0<x 时,1)(>x f ,且对任意的实数R y x ∈,,等式)()()(y x f y f x f +=恒成立.若数列{}n a 满足)0(1f a =,且)()2(1)(*1N n a f a f n n ∈--=+,则2011a 的值为A.4018B.4019C.4020D.4021 二、填空题(共4题,每题5分,20分)13. 右图是一个算法的流程图.若输入x 的值为2,则输出y 的值是_______.14.在平面直角坐标系xoy 中,圆C 的方程为0422=-+x y x .若直线)1(+=x k y 上存在点P ,使过P 所作的圆的两条切线相互垂直,则实数k 的取值范围是 .15.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为________.16. 设22)(x x f -=,若b a <<0,且)()(b f a f =,则ab 的取值范围是_______. 三、解答题:本大题分为必做题和选做题,其中17/18/19/20/21为必做部分.考生答题时必须写出必要过程及解题步骤,共70分. 17. (12分)已知函数⎥⎦⎤⎢⎣⎡∈-+=2,4,2cos 3)4(sin 2)(2πππx x x x f 。
湖南省湘西州凤凰县华鑫实验中学高二化学上学期第二次月考试卷(含解析)
湖南省湘西州凤凰县华鑫实验中学2015-2016学年高二(上)第二次月考化学试卷一、单项选择题(每小题只有1个正确的选项,每题2分,共54分)1.以节能减排为基础的低碳经济是保持社会可持续发展的战略举措.下列做法违背发展低碳经济的是()A.发展氢能和太阳能B.限制塑料制品的使用C.提高原子利用率,发展绿色化学D.尽量用纯液态有机物代替水作溶剂2.化学已渗透到人类生活的各个方面.下列说法不正确的是()A.阿司匹林具有解热镇痛作用B.可以用Si3N4、Al2O3制作高温结构陶瓷制品C.在入海口的钢铁闸门上装一定数量的铜块可防止闸门被腐蚀D.禁止使用四乙基铅作汽油抗爆震剂,可减少汽车尾气污染3.设N A表示阿伏加德罗常数的值.下列说法正确的是()A.标准状况下,0.1mol Cl2溶于水,转移的电子数目为0.1N AB.常温常压下,18g H2O 中含有的原子总数为3N AC.标准状况下,11.2L CH3CH2OH 中含有的分子数目为0.5N AD.常温常压下,2.24L CO 和CO2混合气体中含有的碳原子数目为0.1N A4.下列物质中,不属于高分子化合物的是()A.纤维素B.蛋白质C.油脂 D.塑料5.能增加反应物分子中活化分子的百分数的是()A.降低温度 B.使用催化剂C.增大压强 D.增加浓度6.下列各项与反应热的大小无关的是()A.反应物和生成物的状态 B.反应物量的多少C.反应物的性质 D.反应的快慢7.热化学方程式C(s)+H2O(g)═CO(g)+H2(g)△H=+131.3kJ/mol表示()A.碳和水反应吸收131.3kJ能量B.1mol碳和1mol水反应生成一氧化碳和氢气并吸收131.3kJ热量C.1mol固态碳和1mol水蒸气反应生成一氧化碳气体和氢气,并吸热131.3kJD.1个固态碳原子和1个水蒸气分子反应吸热131.1kJ8.下列过程中,需要吸收能量的是()A.H+H=H2B.H+Cl=HCl C.I2→I+I D.S+O2=SO29.已知有热化学方程式:SO2(g)+O2(g)═SO3(g)△H=﹣98.32kJ/mol现有4molSO2参加反应,当放出314.3kJ热量时,SO2的转化率最接近于()A.40% B.50% C.80% D.90%10.下列事实不能用勒夏特列原理解释的是()A.工业生产硫酸的过程中使用过量的氧气,以提高二氧化硫的转化率B.合成氨工厂通常采用高压(20MPa~50Mpa)条件,以提高原料的利用率C.在实验室里,可用碳酸钙粉末和稀硫酸制得二氧化碳气体D.实验室用排饱和食盐水的方法收集氯气11.在2A+B⇌3C+4D中,表示该反应速率最快的是()A.υ(A)=0.5mol•L﹣1•S﹣1B.υ(B)=0.3 mol•L﹣1•S﹣1C.υ(C)=0.8mol•L﹣1•S﹣1D.υ(D)=1 mol•L﹣1•S﹣112.一定条件下,可逆反应N2+3H2⇌2NH3(正反应为放热反应)达到平衡,当单独改变下述条件后,有关叙述错误的是()A.加催化剂,V正、V逆都发生变化,且变化的倍数相等B.加压,V正、V逆都增大,且V正增大的倍数大于V逆增大的倍数C.降温,V正、V逆都减小,且V正减小的倍数大于V逆减小的倍数D.增大氮气的浓度,V正、V逆都增大,且V正增大倍数大于V逆增大倍数;N2转化率减小,H2转化率增大13.在下列平衡2CrO42﹣(黄色)+2H+⇌Cr2O72﹣(橙红色)+H2O中,溶液介于黄和橙红色之间,今欲增加溶液的橙红色,则要在溶液中加入()A.H+B.OH﹣C.K+D.H2O14.已知450℃时,反应H2(g)+I2(g)⇌2HI(g)的K=50,由此推测在450℃时,反应 2HI (g)⇌H2(g)+I2(g)的化学平衡常数为()A.50 B.0.02 C.100 D.无法确定15.一定条件下,充分燃烧一定量的丁烷放出QkJ的热量,经测定完全吸收生成的二氧化碳需消耗5mol•L﹣1的KOH溶液100mL,恰好生成正盐.则此条件下反应C4H10(g)+O2(g)═4CO2(g)+5H2O(l)的△H为()A.+8Q kJ•mol﹣1B.+16Q kJ•mol﹣1C.﹣8Q kJ•mol﹣1D.﹣16Q kJ•mol﹣116.下列各图中能表示A(g)+B(g)⇌2C(g)(正反应为放热反应)这个可逆反应的图象为()A.B.C.D.17.已知氢气在氯气中燃烧时产生苍白色火焰,在反应过程中,破坏1mol氢气的化学键消耗的能量为Q1kJ,破坏1mol氯气的化学键消耗的能量为Q2kJ,形成1mol氯化氢中的化学键释放的能量为Q3kJ,下列关系式正确的是()A.Q1+Q3 B.Q1+Q2>2Q3C.Q1+Q2<Q3D.Q1+Q2<2Q318.已知:2A(g)+B(g)═C(g)△H1;D(g)+B(g)═E(g)△H2;若A、D、混合气体1mol完全与B反应,放出热△H3,则A、D的物质的量之比是()A.(△H2﹣△H3):2(△H1﹣△H3) B.(△H3﹣△H2):(﹣△H3)C.(△H3﹣△H2):(△H3﹣) D.(﹣△H2):(△H3﹣△H2)19.下列对于化学反应的认识正确的是()A.有气体生成的复分解反应能自发进行B.有热量放出的反应一定能自发进行C.需要吸收热量的过程不能自发进行D.凡是熵增加的反应一定能自发进行20.下列热化学方程式中,△H能正确表示物质的燃烧热的是()A.CO(g)+O2(g)═CO2(g);△H=﹣283.0 kJ/molB.C(s)+O2(g)═CO(g);△H=﹣110.5 kJ/molC.H2(g)+O2(g)═H2O(g);△H=﹣241.8 kJ/molD.2C8H18(l)+25O2(g)═16CO2(g)+18H2O(l);△H=﹣11036 kJ/mol21.在容积固定的密闭容器中存在如下反应:A(g)+3B(g)⇌2C(g)该反应正反应为放热反应.某研究小组研究了其他条件不变时,改变某一条件对上述反应的影响,并根据实验数据作出下列关系图:下列判断一定错误的是()A.图Ⅱ研究的是温度对反应的影响,且甲的温度较高B.图Ⅲ研究的是不同催化剂对反应的影响,且甲使用的催化剂效率较高C.图I研究的是不同催化剂对反应的影响,且乙使用的催化剂效率较高D.图I研究的是压强对反应的影响,且乙的压强较高22.某温度下在密闭容器中发生如下反应3M(g)+N(g)⇌2G(g),若开始时只充入2molG(g),达平衡时,混合气体的压强比起始时增加20%,若开始时只充入3molM和1molN的混合气体,达平衡时M的转化率为()A.20% B.40% C.60% D.80%23.下列陈述Ⅰ、Ⅱ正确并且有因果关系的是()选项陈述Ⅰ陈述ⅡA SO2有漂白性SO2可使溴水褪色B SiO2有导电性SiO2可用于制备光导纤维C 浓硫酸有强氧化性浓硫酸可用于干燥H2和COD Fe3+有氧化性FeCl3溶液可用于回收废旧电路板中的铜A.A B.B C.C D.D24.在两个恒容容器中有平衡体系:A(g)⇌2B(g)和2C(g)⇌D(g),X1和X2分别是A和C 的转化率.在温度不变情况下,均增加相同的A和C的物质的量,下列判断正确的是()A.X1降低,X2增大B.X1、X2均降低C.X1增大,X2降低D.X1、X2均增大25.体积相同的甲、乙两个容器中,分别都充有等物质的量的SO2和O2,在相同温度下发生下列反应:2SO2(g)+O2(g)⇌2SO3(g),并达到平衡.在这过程中甲容器压强保持不变,乙容器保持体积不变,若甲容器中SO2的转化率为p%,则乙容器中SO2的转化率()A.等于p% B.大于p% C.小于p% D.无法判断26.一定温度下,在容积一定的容器中,可逆反应A(s)+3B(g)⇌3C(g)达到平衡的标志是()A.容器内每减少1mol A,同时生成3mol CB.容器内每减少1mol A,同时消耗3mol BC.混合气体总的物质的量不变D.容器内的气体密度不再改变27.一定条件下将2mol SO2和2mol SO3气体混合于一固定容积的容器中,发生反应:2SO2+O2⇌2SO3,平衡时SO3为n mol,在相同温度下,分别按下列配比在上述容器中放入起始物质,平衡时SO3的物质的量可能大于n的是()A.2 mol SO2+1 mol O2B.1mol SO2+1 mol O2C.2 mol SO2+1 mol O2+2 mol SO3D.1 mol SO2+2 mol SO3二.填空题(共38分)28.(4分)盖斯定律在生产和科学研究中有很重要的意义.有些反应的反应热虽然无法直接测得,但可通过间接的方法测定.现根据下列的3个热化学反应方程式:Fe203(s)+3CO(g)═2Fe(s)+3C02(g)△H=﹣25kJ/molFe203(s)+CO(g)═Fe3O4(s)+C02(g)△H=﹣15.7kJ/molFe304(s)+CO(g)═3FeO(s)+C02(g)△H=+19kJ/mol试写出CO气体还原FeO固体得到Fe固体和CO2气体的热化学反应方程式:.29.(7分)已知A的产量通常用来衡量一个国家的石油化工水平,D的结构可用图乙模型表示.现以A为主要原料合成F和高分子化合物E,其合成路线如图甲所示.(1)B中含官能团名称为;(2)写出反应的化学方程式①:反应类型:②:反应类型:.30.(10分)可逆反应3A(g)⇌3B(?)+C(?)△H>0达到化学平衡后,(1)升高温度,用“变大”、“变小”、“不变”或“无法确定”填空.①若B、C都是气体,气体的平均相对分子质量;②若B、C都不是气体,气体的平均相对分子质量;③若B是气体,C不是气体,气体的平均相对分子质量;(2)如果平衡后保持温度不变,将容器体积增加一倍,新平衡时A的浓度是原来的60%,则B是态,C是态.(3)如果B为气体,C为固体,取3molA恒温下在1L容器中充分反应,平衡时测得B的浓度为2.1mol/L.若使反应从逆反应开始,起始时在容器中加入3molB,同样条件下,要使平衡时B的浓度仍为2.1mol/L,则C的取值范围应该是.31.(10分)在固定容积的密闭容器中,有可逆反应nA(g)+mB(g)⇌pC(g)处于平衡状态(已知n+m>p,△H>0).升高温度时的比值,混合气体的密度;降温时,混合气体的平均相对分子质量;加入催化剂,气体的总物质的量;充入C,则A、B的物质的量.(增大、减小、不变、不确定)32.(7分)如图所示,温度不变的某容器分隔成A、B两部分,A容器容积固定不变,B有可移动的活塞,现在A中充入2molSO2和1molO2,在B中充入2molSO3和1molN2,在相同条件下发生可逆反应:2SO2(g)+O2(g)⇌2SO3(g),填空:(1)固定活塞位置在3处不动,达到平衡后,设A中压强为P1,B中压强为P2,则P1与P2的大小是:P1P2(填“<”、“>”、“=”).(2)若要使A中与B中平衡状态相同,可移动活塞的位置应在处.(3)若活塞右移到5处,达到平衡后,B中SO3为x mol,A中SO3为y mol,则x y (填“<”、“>”、“=”),理由是.三.选做题(共8分)注意;不同班级做不同题目33.(8分)在一定温度下,10L密闭容器中加入5mol SO2、4.5mol O2,经10min后反应达平衡时有3mol SO2发生了反应.试计算:(1)O2的转化率为多少?(2)用SO2表示该反应的反应速率为多少?(3)平衡时容器内气体压强与反应前的压强之比为多少?(最简整数比)(4)平衡时体系中SO3的百分含量(体积分数)为多少?(5)平衡常数K为多少?34.超音速飞机在平流层飞行时,尾气中的NO会破坏臭氧层.科学家正在研究利用催化技术将尾气中的NO和CO转变成CO2和N2,其反应为:2NO+2CO2CO2+N2.为了测定在某种催化剂作用下的反应速率,在某温度下用气体传感器测得不同时间的NO和CO浓度如表:时间(s)0 1 2 3 4 5c(NO)(mol/L)1.00×10﹣34.50×10﹣42.50×10﹣41.50×10﹣41.00×10﹣41.00×10﹣4c(CO)(mol/L)3.60×10﹣33.05×10﹣32.85×10﹣32.75×10﹣32.70×10﹣32.70×10﹣3请回答下列问题(均不考虑温度变化对催化剂催化效率的影响):(1)在上述条件下反应能够自发进行,则反应的△H0(填写“>”、“<”、“=”).(2)前2s内的平均反应速率v(N2)= .(3)在该温度下,反应的平衡常数K= .(4)假设在密闭容器中发生上述反应,达到平衡时下列措施能提高NO转化率的是.A.选用更有效的催化剂B.升高反应体系的温度C.降低反应体系的温度D.缩小容器的体积(5)研究表明:在使用等质量催化剂时,增大催化剂比表面积可提高化学反应速率.为了分别验证温度、催化剂比表面积对化学反应速率的影响规律,某同学设计了三组实验,部分实验条件已经填在下面实验设计表中.实验编号T(℃)NO初始浓度(mol/L)CO初始浓度(mol/L)催化剂的比表面积(m2/g)Ⅰ280 1.20×10﹣3 5.80×10﹣382 Ⅱ124 Ⅲ350 124请在上表空格中填入剩余的实验条件数据.湖南省湘西州凤凰县华鑫实验中学2015-2016学年高二(上)第二次月考化学试卷参考答案与试题解析一、单项选择题(每小题只有1个正确的选项,每题2分,共54分)1.以节能减排为基础的低碳经济是保持社会可持续发展的战略举措.下列做法违背发展低碳经济的是()A.发展氢能和太阳能B.限制塑料制品的使用C.提高原子利用率,发展绿色化学D.尽量用纯液态有机物代替水作溶剂【考点】化学的发展趋势;绿色化学.【分析】本题考查低碳经济.这类题关注社会热点,密切联系实际.【解答】解:所谓低碳经济,是指在可持续发展理念指导下,通过技术创新、制度创新、产业转型、新能源开发等多种手段,尽可能地减少煤炭石油等高碳能源消耗,减少温室气体排放,达到经济社会发展与生态环境保护双赢的一种经济发展形态.发展氢能和太阳能,限制塑料的使用,和发展绿色化学,都符合低碳经济.故选D.【点评】这类题考查化学与STES.这类题主要考查化学与日常生活、社会热点问题、食品、医药、能源、环保、化工生产、高新产品等方面的内容.解题中联系到平时积累的知识.2.化学已渗透到人类生活的各个方面.下列说法不正确的是()A.阿司匹林具有解热镇痛作用B.可以用Si3N4、Al2O3制作高温结构陶瓷制品C.在入海口的钢铁闸门上装一定数量的铜块可防止闸门被腐蚀D.禁止使用四乙基铅作汽油抗爆震剂,可减少汽车尾气污染【考点】化学科学的主要研究对象;绿色化学;金属的电化学腐蚀与防护;陶瓷的主要化学成分、生产原料及其用途;药物的主要成分和疗效.【分析】因化学与社会、科学、生活、环境息息相关,则利用化学反应原理知识及生活常识来解决此类问题.【解答】解:A、阿司匹林是生活中的常用解热镇痛药物,一般用来治疗感冒发烧,故A对;B、因氮化硅陶瓷、三氧化二铝陶瓷为常见的新型陶瓷材料,故B对;C、因铁铜相比,铁更活泼,由原电池原理可知铁更易发生氧化发应而损耗,则利用牺牲阳极的阴极保护法来保护闸门,故C错;D、因铅能使人体中毒,则禁止使用四乙基铅作汽油防爆剂来减少铅污染,故D对;故选:C.【点评】本题考查了化学与社会、科学、生活、环境等问题,此考点属于学习化学的基本素养,也是高考化学试题的热点问题,这一考点往往为常识性的知识与运用化学原理解决实际问题,应予以重视.3.设N A表示阿伏加德罗常数的值.下列说法正确的是()A.标准状况下,0.1mol Cl2溶于水,转移的电子数目为0.1N AB.常温常压下,18g H2O 中含有的原子总数为3N AC.标准状况下,11.2L CH3CH2OH 中含有的分子数目为0.5N AD.常温常压下,2.24L CO 和CO2混合气体中含有的碳原子数目为0.1N A【考点】阿伏加德罗常数.【专题】阿伏加德罗常数和阿伏加德罗定律.【分析】A.Cl2溶于水中,发生的反应为:Cl2+H2O⇌HCl+HClO,该反应为可逆反应;B.根据质量、摩尔质量、分子数、原子数、阿伏伽德罗常数之间的关系计算;C.标准状况下,CH3CH2OH 为液态;D.从气体摩尔体积的应用条件分析判断;【解答】解:A.Cl2+H2O⇌HCl+HClO中得到的电子为Cl2~HCl~e﹣,失去的电子为Cl2~HClO~e﹣,1molCl2完全反应,转移1mol电子,0.1molCl2转移的电子数为0.1N A,但该反应为可逆反应,转移电子数应小于0.1N A,故A错误;B.常温常压下,18 g H2O 中n===1mol,1mol水中含有3mol氧原子,所以18 g H2O中含有的原子总数为3N A,故B正确;C.标准状况下,CH3CH2OH为液态,所以11.2 L CH3CH2OH的物质的量不为0.5 mol,含有的分子数目不为0.5N A,故C错误;D.常温常压下,2.24 L CO 和CO2混合气体的物质的量不是0.1mol,所以2.24 L CO 和CO2混合气体所含的分子数不一定是0.1N A,含有的碳原子数目不一定为0.1N A,故D错误;故选B.【点评】本题考查了阿伏伽德罗常数的应用,主要考查气体摩尔体积的条件应用,质量换算物质的量计算等是解答的关键,题目较简单.4.下列物质中,不属于高分子化合物的是()A.纤维素B.蛋白质C.油脂 D.塑料【考点】有机高分子化合物的结构和性质.【专题】物质的分类专题.【分析】高分子化合物的相对分子质量特别大,一般达1万以上、一般具有重复结构单元.有机高分子化合物可以分为天然有机高分子化合物(如淀粉、纤维素、蛋白质、天然橡胶等)和合成有机高分子化合物(如聚乙烯、聚氯乙烯等),它们的相对分子质量可以从几万直到几百万或更大,但他们的化学组成和结构比较简单,往往是由无数(n)结构小单元以重复的方式排列而成的.【解答】解:A.纤维素为多糖,相对分子质量在一万以上,属于高分子化合物,故A错误;B.蛋白质相对分子质量较大,属于高分子化合物,故B错误;C.油脂相对分子质量较小,不是高分子化合物,故C正确;D.塑料是聚合物,相对分子质量在一万以上,是合成有机高分子化合物,故D错误.故选C.【点评】本题考查高分子化合物,难度不大,平时注意知识的积累.5.能增加反应物分子中活化分子的百分数的是()A.降低温度 B.使用催化剂C.增大压强 D.增加浓度【考点】活化能及其对化学反应速率的影响.【专题】化学反应速率专题.【分析】增大压强或者增大反应物浓度,可使活化分子的浓度增大,但百分数不变,升高温度或加入催化剂可增大反应物中的活化分子百分数.【解答】解:A.降低温度减小反应物分子中活化分子的百分数,故A错误;B.使用催化剂可增大反应物中的活化分子百分数,故B正确;C.增大压强可使活化分子的浓度增大,但百分数不变,故C错误;D.增加浓度可使活化分子的浓度增大,但百分数不变,故D错误.故选B.【点评】本题考查影响活化分子的因素,题目难度不大,注意外界条件对活化分子的影响不同,把握相关基础知识的积累.6.下列各项与反应热的大小无关的是()A.反应物和生成物的状态 B.反应物量的多少C.反应物的性质 D.反应的快慢【考点】反应热和焓变.【专题】化学反应中的能量变化.【分析】热量是一个状态函数,与物质的状态、量及反应所处条件均有关,而单位与反应热大小无关,反应热单位:KJ/mol不是对反应物而言,不是指每摩尔反应物可以放热多少千焦,而是对整个反应而言,是指按照所给的化学反应式的计量系数完成反应时,每摩尔反应所产生的热效应,从定义和公式中可得出反应热与反应物和生成物的状态(固态,气态,液态)、量的多少、性质有关,而单位只是用来计算反应热,是恒定的,不影响反应热大小.【解答】解:A、反应物和生成物的状态,例如同一个化学反应,生成液态水或水蒸气,反应热肯定不一样,故A错误B、反应物量的多少,例如氢气与氧气反应生成水的化学反应中,氢气和氧气反应的量不同,反应放热不同,故B错误;C、反应物性质,例如锌和浓硫酸,锌和稀硫酸反应的反应热肯定不一样,反应热和物质的聚集状态有关,和物质的性质有关,故C错误;D、反应的快慢和反应物以及生成物间没有联系,这不会影响反应热大小,故D正确.故选D【点评】本题考查了化学反应的焓变分析判断,反应热有关的影响因素判断,题目难度中等.7.热化学方程式C(s)+H2O(g)═CO(g)+H2(g)△H=+131.3kJ/mol表示()A.碳和水反应吸收131.3kJ能量B.1mol碳和1mol水反应生成一氧化碳和氢气并吸收131.3kJ热量C.1mol固态碳和1mol水蒸气反应生成一氧化碳气体和氢气,并吸热131.3kJD.1个固态碳原子和1个水蒸气分子反应吸热131.1kJ【考点】热化学方程式.【专题】化学反应中的能量变化.【分析】A、相同物质的量的物质,状态不同,所含的能量不同,在表述热化学方程式时,应表述出物质的状态;B、物质的聚集状态影响到物质所具有的能量;C、相同物质的量的物质,状态不同,所含的能量不同;D、热化学方程式的系数只表示物质的量不表示微粒个数.【解答】解:A、反应热量变化需要说明物质的聚集状态,物质状态不同,反应能量变化不同,故A错误;B、反应热量变化需要说明物质的聚集状态,物质状态不同,反应能量变化不同,故B错误;C、反应热量变化需要说明物质的聚集状态,物质状态不同,反应能量变化不同,故C正确;D、热化学方程式的系数只表示物质的量不表示微粒个数,故D错误;故选C.【点评】本题考查了热化学方程式的书写方法和注意问题,系数只表示物质的量不表示微粒个数是易错点,题目难度中等.8.下列过程中,需要吸收能量的是()A.H+H=H2B.H+Cl=HCl C.I2→I+I D.S+O2=SO2【考点】吸热反应和放热反应.【专题】化学反应中的能量变化.【分析】A.成键放出能量;B.成键放出能量;C.断键吸收能量;D.绝大多数化合反应是放热反应.【解答】解:A.成键放出能量,故A错误;B.成键放出能量,故B错误;C.断键吸收能量,故C正确;D.S+O2=SO2是化合反应是也放热反应,故D错误.故选C.【点评】本题考查需要吸收能量的变化,难度不大,注意成键放出能量,断键吸收能量.9.已知有热化学方程式:SO2(g)+O2(g)═SO3(g)△H=﹣98.32kJ/mol现有4molSO2参加反应,当放出314.3kJ热量时,SO2的转化率最接近于()A.40% B.50% C.80% D.90%【考点】热化学方程式;有关反应热的计算;化学平衡的计算.【专题】计算题.【分析】由SO2(g)+O2(g)═SO3(g)△H=﹣98.32kJ/mol,则1molSO2完全反应,放出98.2kJ的热量,利用物质的量与放出的热量成正比计算反应的二氧化硫,以此计算SO2的转化率.【解答】解:设反应的二氧化硫为x,则SO2(g)+O2(g)═SO3(g)△H=﹣98.32kJ/mol,1mol 98.32kJx 314.3kJ,解得x=3.196mol,所以SO2的转化率为×100%≈80%,故选C.【点评】本题考查热化学反应方程式的计算,明确热化学方程式的意义及物质的量与热量的关系即可解答,题目难度不大.10.下列事实不能用勒夏特列原理解释的是()A.工业生产硫酸的过程中使用过量的氧气,以提高二氧化硫的转化率B.合成氨工厂通常采用高压(20MPa~50Mpa)条件,以提高原料的利用率C.在实验室里,可用碳酸钙粉末和稀硫酸制得二氧化碳气体D.实验室用排饱和食盐水的方法收集氯气【考点】化学平衡移动原理.【专题】化学平衡专题.【分析】勒夏特列原理为:如果改变影响平衡的条件之一,平衡将向着能够减弱这种改变的方向移动.使用勒夏特列原理时,该反应必须是可逆反应,否则勒夏特列原理不适用.【解答】解:A.工业生产硫酸的过程中使用过量的氧气,有利用平衡向正反应方向移动,可用勒夏特列原理解释,故A不选;B.合成氨工厂通常采用高压(20MPa~50Mpa)条件,有利用平衡向正反应方向移动,可用勒夏特列原理解释,故B不选;C.实验室不能用碳酸钙粉末和稀硫酸反应制备二氧化碳气体,应用稀盐酸,不能用勒夏特列原理解释,故C选;D.氯气和水反应生成盐酸和次氯酸,该反应存在溶解平衡,饱和食盐水中含有氯化钠电离出的氯离子,饱和食盐水抑制了氯气的溶解,所以实验室可用排饱和食盐水的方法收集氯气,可用勒夏特列原理解释,故D不选.故选C.【点评】本题考查了勒夏特列原理的使用条件,难度不大,注意使用勒夏特列原理的前提必须是可逆反应.11.在2A+B⇌3C+4D中,表示该反应速率最快的是()A.υ(A)=0.5mol•L﹣1•S﹣1B.υ(B)=0.3 mol•L﹣1•S﹣1C.υ(C)=0.8mol•L﹣1•S﹣1D.υ(D)=1 mol•L﹣1•S﹣1【考点】化学反应速率和化学计量数的关系.【分析】不同物质表示的速率之比等于其化学计量数之比,故不同物质表示的速率与其化学键离子比值越大,表示的速率越快,注意单位要一致.【解答】解:不同物质表示的速率之比等于其化学计量数之比,故不同物质表示的速率与其化学键离子比值越大,表示的速率越快,A.=0.25mol•L﹣1•S﹣1;B.=0.3mol•L﹣1•S﹣1;C.=0.267mol•L﹣1•S﹣1;D.=0.25mol•L﹣1•S﹣1;反应速率v(B)>v(C)>v(A)=v(B),故选B.【点评】本题考查化学反应速率比较,难度不大,利用比值法可以迅速判断,也可以转化为同一物质表示的速率进行比较.12.一定条件下,可逆反应N2+3H2⇌2NH3(正反应为放热反应)达到平衡,当单独改变下述条件后,有关叙述错误的是()A.加催化剂,V正、V逆都发生变化,且变化的倍数相等B.加压,V正、V逆都增大,且V正增大的倍数大于V逆增大的倍数C.降温,V正、V逆都减小,且V正减小的倍数大于V逆减小的倍数D.增大氮气的浓度,V正、V逆都增大,且V正增大倍数大于V逆增大倍数;N2转化率减小,H2转化率增大【考点】化学平衡的影响因素.【专题】化学平衡专题.【分析】A、催化剂改变反应速率,不改变化学平衡;B、加压平衡正向进行,反应速率增大;C、降温反应速率减小,平衡正向进行;D、增大氮气浓度平衡正向进行,正逆反应速率增大,氮气转化率减小氢气转化率增大.【解答】解:A、催化剂同等程度改变反应速率,不改变化学平衡,加催化剂,V正、V逆都发生变化,且变化的倍数相等,故A正确;B、反应时气体体积减小的反应,加压平衡正向进行,V正、V逆都增大,且V正增大的倍数大于V逆增大的倍数,故B正确;C、降温反应速率减小,平衡正向进行,V正、V逆都减小,且V正减小的倍数小于V逆减小的倍数,故C错误;D、增大氮气浓度平衡正向进行,正逆反应速率增大,氮气转化率减小,氢气转化率增大,故D正确;故选C.【点评】本题考查了化学平衡的影响因素分析判断,注意把握反应的特征及掌握平衡移动原理是解题关键,题目难度中等.13.在下列平衡2CrO42﹣(黄色)+2H+⇌Cr2O72﹣(橙红色)+H2O中,溶液介于黄和橙红色之间,今欲增加溶液的橙红色,则要在溶液中加入()A.H+B.OH﹣C.K+D.H2O【考点】化学平衡的影响因素.【专题】化学平衡专题.【分析】欲增加溶液的橙红色,则平衡应该向正反应方向移动,可以采用增大反应物浓度的方法.【解答】解:A.向溶液中加入氢离子,氢离子浓度增大,平衡向正反应方向移动导致溶液橙红色加深,故A正确;B.向溶液中加入氢氧根离子,氢氧根离子和氢离子反应导致氢离子浓度降低,平衡向逆反应方向移动,则溶液橙红色变浅,故B错误;C.向溶液中加入钾离子,钾离子不参加反应,所以对平衡无影响,故C错误;D.向溶液中加入水,导致Cr2O72﹣浓度降低,则溶液橙红色变浅,故D错误;故选A.【点评】本题考查了外界条件对化学反应平衡的影响,难度不大,根据勒夏特里原理来分析解答即可.14.已知450℃时,反应H2(g)+I2(g)⇌2HI(g)的K=50,由此推测在450℃时,反应 2HI (g)⇌H2(g)+I2(g)的化学平衡常数为()A.50 B.0.02 C.100 D.无法确定【考点】化学平衡常数的含义.【专题】化学平衡专题.。
高二化学月考试题及答案-湖南凤凰县华鑫实验中学2015-2016学年高二上学期第二次月考试题
华鑫中学2015-2016学年第一学期第二次月考高二化学(时间90分钟,满分100分)相对原子质量:H:1 C:12 N:14 O:16 Na:23 Mg:24 Al:27 Fe:56 Zn:65 Cu:64一、单项选择题(每小题只有1个正确的选项,每题2分,共54分)1、以节能减排为基础的低碳经济是保持社会可持续发展的战略举措。
下列做法违背发展低碳经济的是A.发展氢能和太阳能B.限制塑料制品的使用C.提高原子利用率,发展绿色化学D.尽量用纯液态有机物代替水作溶剂2、化学已渗透到人类生活的各个方面。
下列说法不正确的是A.阿司匹林具有解热镇痛作用B.可以用Si3N4、Al2O3制作高温结构陶瓷制品C.在入海口的钢铁闸门上装一定数量的铜块可防止闸门被腐蚀D.禁止使用四乙基铅作汽油抗爆震剂,可减少汽车尾气污染3、[2012·江苏化学卷8]设NA为阿伏伽德罗常数的值。
下列说法正确的是A.标准状况下,0.1molCl2溶于水,转移的电子数目为0.1NAB.常温常压下,18g H2O含有的原子总数为3NAC.标准状况下,11.2LCH3CH2OH中含有分子的数目为0.5NAD.常温常压下,2.24LCO和CO2混合气体中含有的碳原子数目为0.1NA4、下列物质不属于高分子化合物的是( )A.纤维素B.淀粉C.蛋白质D.油脂5、能增加反应物分子中活化分子的百分数的是()A.降低温度 B.使用催化剂 C.增大压强 D.增加浓度6、下列各项与反应热的大小无关..的是()A.反应物和生成物的状态B.反应物量的多少C.反应物的性质D.反应的快慢7、热化学方程式C(s)+H 2O(g) CO(g)+H2(g);△H =+131.3kJ/mol表示()A.碳和水反应吸收131.3kJ能量B.1mol碳和1mol水反应生成一氧化碳和氢气并吸收131.3kJ热量C.1mol固态碳和1mol水蒸气反应生成一氧化碳气体和氢气,并吸热131.3kJD.1个固态碳原子和1分子水蒸气反应吸热131.1kJ8、下列过程中,需要吸收能量的是()A、H+H=H2B、H+Cl=HClC、I2→I+ID、S+O2=SO29、已知热化学方程式:SO 2(g)+ 1/2O2(g) SO3(g) △H =-98.32kJ/mol现有4molSO2参加反应,当放出314.3kJ热量时,SO2的转化率最接近于( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学年度华鑫中学8月月考卷高二数学(文科)1-必修5第一章;考试时间:120分钟;第I 卷(选择题) 一、选择题(共10题,每题5分,共50分。
)}{}222||2R y x N x R x y ==∈+=,则 M N =.{1} C .[0,1] D .⎡⎣是( )B .最小正周期为2π的偶函数 D .最小正周期为π的偶函数==B b x ,2,60°,如果△ABC 有两组解,则x 的取值范围( ) 334<x C .2<x D .3342≤<x ,则)15(cos f 的值等于21(C )23 (D )23-它们的夹角为60︒,那么|3|a b - 等于( ).4) a=2,b=2,那么输出的Ⅱ值为.256 D .65536 8.函数2()ln f x x x=-的零点所在的区间是( ) A .(1,2) B .(2,)e C .(,3)e D .(3,)+∞ 9.在区间[]2,0上随机取一个数x ,x 2sinπ的值介于0到21之间的概率为 ( )A.31 B.π2 C.21 D.3210.已知函数()y f x =是周期为2的周期函数,且当[1,1]x ∈-时,||()21x f x =-,则函数()()|lg |F x f x x =-的零点个数是( )A .9B .10C .11D .12第II 卷(非选择题)二、填空题(共5题,每题5分,共25分。
)11.有人收集了春节期间平均气温x (℃)与某取暖商品销售额y (万元)的有关数据(x ,y )分别为:(﹣2,20),(﹣3,23),(﹣5,27),(﹣6,30),根据以上数据,用线性回归的方法,求得销售额y 与平均气温x 之间线性回归方程y=bx+a 的系数b=﹣2.4,则预测平均气温为﹣8℃时该商品的销售额为 _________ 万元.12.已知tan2α=2,则αtan 的值为_________;6sin cos 3sin 2cos αααα+-的值为____________ 13.在锐角ABC ∆中,若2C B =,则cb 的范围 .14.在△ABC 中,2cos 22A b c c+=(c b a ,,分别为角C B A ,,的对边),则cos 2A B += .15.给出定义:若m -12<x≤m+12(其中m 为整数),则m 叫做离实数x 最近的整数,记作{x}=m ,在此基础上给出下列关于函数f(x)=|x -{x}|的四个命题:①函数y =f(x)的定义域为R ,值域为[0,12];②函数y =f(x)在[-12,12]上是增函数;③函数y =f(x)是周期函数,最小正周期为1;④函数y =f(x)的图象关于直线x =2k(k ∈Z)对称.其中正确命题的序号是________.三、解答题(共6题。
16-18题,每题12分;19-21题,每题13分。
共75分)16.某校从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六组[40,50),[50,60)...[90,100]后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)求成绩落在[70,80)上的频率,并补全这个频率分布直方图; (Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分;(Ⅲ)从成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.17.在△ABC 中,已知π6C =,向量()sin ,1m A = ,()1,cos n B = ,且m n ⊥ .(1)求A 的值;(2)若点D 在边BC 上,且3BD BC =,AD =ABC 的面积.18.已知向量(sin ,sin )a x x = ,(cos ,sin )()b x x x R =∈,若函数b a x f ⋅=)(.(1)求)(x f 的最小正周期; (2)若]2,0[π∈x ,求)(x f 的最大值及相应的x 值;(3)若],0[π∈x ,求)(x f 的单调递减区间.19.已知甲船正在大海上航行,当它位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救,甲船立即以10海里/小时的速度匀速前往救援,同时把消息告知在甲船的南偏西30︒,相距10海里C 处的乙船,乙船当即决定匀速前往救援,并且与甲船同时到达。
(供参考使用:2341tan =︒). (1)试问乙船航行速度的大小;(2)试问乙船航行的方向(试用方位角表示,如北偏东…度).20.如图,在四棱锥P ABCD -中,底面ABCD 是︒=∠60DAB 且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD ⊥底面ABCD .(1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小. 21.已知)(x f 是定义在[]1,1-上的奇函数,且1)1(=f ,若[]0,1,1,≠+-∈n m n m 时,有0)()(>++nm n f m f(1)证明)(x f 在[]1,1-上是增函数;(2)解不等式0)33()1(2<-+-x f x f(3)若12)(2+-≤at t x f 对[][]1,1,1,1-∈-∈∀a x 恒成立,求实数t 的取值范围参考答案1.D 【解析】试题分析:由题知M=[0,+∞),,所以M N = [0,,故选D . 考点:二次函数值域,圆的性质,集合运算 2.C 【解析】试题分析:由二倍角公式可知f (x )=2sinxcosx=sin2x ,因此答案选C. 考点:1.二倍角公式;2.三角函数的周期性与奇偶性 3.B 【解析】试题分析:当asinB <b <a 时,三角形ABC 有两组解 ,所以b=2,B=60°,设a=x ,,如果三角形ABC 有两组解, 那么x 应满足xsin60°<2<x ,即2<x 考点:解三角形. 4.D 【解析】试题分析:由于15cos 不易计算,且已知函数中含有x sin ,故需对原函数变形(变为所求函数形式).xx x f x x x f 2cos cos 21)(cos sin 212cos )(sin 22-=-=⇒-==,所以23)15(cos -= f ,故选D. 考点:三角函数倍角公式,半角公式应用. 5.A 【解析】试题分析:3a b -====.考点:向量的模. 6.D 【解析】 试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4,所以该几何体的体积为1166432⨯⨯⨯⨯=24,故选D . 考点:三视图,简单几何体体积公式 7.C 【解析】试题分析:执行第1次,a=2,b=2,3log 4a >,否,循环, b a a ==4, 执行第2次,a=4,b=2,3log 4a >,否,循环, b a a ==16, 执行第3次,a=16,b=2,3log 4a >,否,循环, b a a ==256, 执行第4次,a=256,b=2,3log 4a >,是,输出a=256,故选C . 考点:程序框图 8.B 【解析】试题分析:011)(,012ln )2(,02)1(>-<-=<-=ee f f f ,0)()2(<⋅∴e f f ,所以在区间),2(e 上存在零点. 考点:零点存在定理. 9.A 【解析】试题分析:由10sin22x π≤≤,可得026x ππ≤≤或562x πππ≤≤,即103x ≤≤或523x ≤≤,则sin 2x π的值介于0到12之间的概率为:15213323+-=. 故选A.考点:几何概型的问题. 10.B 【解析】试题分析:先作出||()21x f x =-,[1,1]x ∈-的图像,周期是2,沿着x 轴正半轴延展,然后做出f(x)=︱lgx ︳在(0,+∞)的图像观察他们的交点个数,就是()()|lg |F x f x x =-的零点个数,如图所示,故选B.考点:函数零点的几何意义. 11.34.6. 【解析】 试题分析: 25430272320,446532=+++=-=----=y x∴这组数据的样本中心点是(-4,25)∵4.2^-=b , ∴y=-2.4x+a ,把样本中心点代入得a=34.6∴线性回归方程是y=-2.4x+15.4当x=-8时,y=34.6,故应填入:34.6. 考点:线性回归方程. 12.67,34-. 【解析】 试题分析:由倍角的正切公式得,342tan12tan2tan 2-=-=ααα,6sin cos 6sin cos 6tan 17cos 3sin 2cos 3sin 2cos 3tan 26cos αααααααααααα+++===---.考点:二倍角的正切公式. 13. 【解析】试题分析:由正弦定理可知sin sin 22cos sin sin c C BB b B B===,而在锐角ABC ∆中,290C B =<︒,90CB +>︒ ,所以3045B ︒<<︒,2cos B <,因此答案为.考点:正弦定理与倍角公式 14.2【解析】试题分析:由2cos22A b c c +=得1cos 22A b c c ++=,即c o s b A c=,结合正弦定理得sin cos sin BA C=,即有cos sin sin cos sin sin()A C B A C A C =⇒=+,展开整理得sin cos 0A C =,在0,A C π<<条件下,只能有c o s 0C =,即2C π=,从而coscos 242A B π+==.在三角形中要注意边角互化的数学思想的使用,即将边与角混杂在一起的条件统一转化为边或统一转化为角,这里是统一转化为角. 考点:三角恒等变换与解三角形. 【答案】①③④ 【解析】m =1时,x ∈(12,32],f(x)=|x -1|=f 1(x),m =2时,x ∈(32,52],f(x)=|x -2|=f 2(x),显然,f 2(x)的图象是由f 1(x)的图象右移1个单位而得,一般地,m =k 时,x ∈(212k -,212k +],f(x)=|x -k|=f k (x),m =k +1时,x ∈(212k +,232k +],f(x)=|x -k -1|=f k +1(x),f k +1(x)的图象是由f k (x)的图象右移1个单位而得,于是可画出f(x)的图象如下:16.(1)图见解析;(2)%75,71;(3)7029=P . 【解析】 试题分析:(1)解决频率分布直方图的问题,关键在于找出图中数据之间的关系,这些数据中,比较明显的有组距、组距频率,间接的有频率,小长方形的面积,合理使用这些数据,再结合两个等量关系:小长方形的面积等于频率,小长方形的面积之和等于1,因此频率之和为1;(2)最高矩形的底边的中点的横坐标即是众数,中位数左边和右边的小长方形的面积和相等的;(3)古典概型的概率问题,关键是正确找出基本事件总数和所求事件包含的基本事件数,然后利用古典概型的概率计算公式计算;当基本事件总数较少时,用列举法把所有的基本事件一一列举出来,要做到不重不漏,有时可借助列表,树状图列举. 试题解析:解(Ⅰ)成绩落在[70,80)上的频率是 0.3,频率分布直方图如下图.(Ⅱ)估计这次考试的及格率(60分及以上为及格)为1-0.01×10-0.015×10=75﹪ 平均分:45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71(Ⅲ)成绩是70分以上(包括70分)的学生人数为(0.03+0.025+0.005)×10×60=36 所以所求的概率为702935362314151718=⨯⨯+⨯+⨯考点:(1)频率分布直方图的认识;(2)求随机事件的概率. 17.(1)6π;(2)439. 【解析】试题分析:解题思路:(1)先由平面向量的垂直关系得出sin sin 0m n A B ⊥=+=,再利用三角形的三角关系求角A ;(2)先由(1)中的三角关系得出三边关系,再利用余弦定理求出有关边长,进而利用三角形的面积公式求三角形的面积.规律总结:解三角形问题,往往要综合正弦定理CcB b A a sin sin sin ==、余弦定理A bc c b a cos 2222-+=、三角形的面积公式A bc S sin 21=以及三角恒等变形等知识,综合性较强,主要思路是利用有关定理实现边、角的合理互化.试题解析:(1)由条件m n ⊥ 可得sin sin 0m n A B ⊥=+=,(方法一): 由6C π=,A+B+C=π,所以5sin cos 06A A π⎛⎫+-=⎪⎝⎭, 又506A π<<,所以2663A πππ⎛⎫⎛⎫-∈- ⎪ ⎪⎝⎭⎝⎭,, 所以06A π-=,即6A π=(方法二):因为sin A+cos B 0=,所以sin cos ,sin sin 2A B A B π⎛⎫=-=-⎪⎝⎭因为50,6A B π<<,所以2A B π=-, 而56A B π+=,因此6A π=;(2)由(1)得6,32,6πππ===C B A ,由正弦定理得3:1:1::=b c a ,x =,则x x 33==,在ABD ∆中,由余弦定理,得32cos 32)3()13(222π⨯⨯-+=x x x ,解得1=x ,所以3==BC AB ;所以439233321sin 21=⨯⨯⨯=⋅⋅=∆B BC BA S ABC . 考点:1.三角形的三角关系、三边关系、边角关系2.正弦定理;3.余弦定理. 18.(1)π;(2)83π=x ,()x f 有最大值212+,(3)()x f 的单调减区间⎥⎦⎤⎢⎣⎡87,83ππ. 【解析】试题分析:(1)利用两角和正弦公式和降幂公式化简,得到()ϕω+=x A y sin 的形式,利用公式ωπ2=T 计算周期.(2)利用正弦函数的单调区间,求在⎥⎦⎤⎢⎣⎡2,0π的单调性.(3)求三角函数的最小正周期一般化成()ϕω+=x A y sin ,()ϕω+=x A y cos ,()ϕω+=x A y tan 形式,利用周期公式即可.(4)求解较复杂三角函数的单调区间时,首先化成()ϕω+=x A y sin 形式,再()ϕω+=x A y sin 的单调区间,只需把ϕω+x 看作一个整体代入x y sin =相应的单调区间,注意先把ω化为正数,这是容易出错的地方.试题解析:解:22c o s 12s i n 21s i n c o s s in )(2x x x x x b a x f -+=+=⋅==21)42(sin22+-πx ()x f 的最小正周期为π当⎥⎦⎤⎢⎣⎡∈2,0πx 时,⎥⎦⎤⎢⎣⎡-∈-43,442πππx ,当242ππ=-x ,即83π=x 时,()x f 有最大值 212+ 当[]π,0∈x 时,⎥⎦⎤⎢⎣⎡-∈-47,442πππx ,由x y sin =的图像知,⎥⎦⎤⎢⎣⎡∈-23,242πππx ,即⎥⎦⎤⎢⎣⎡∈87,83ππx 时,()x f 单调递减. 所以()x f 的单调减区间⎥⎦⎤⎢⎣⎡87,83ππ 考点:(1)三角函数的周期性;(2)三角函数的最值;(3)三角函数的单调性.19.(1)/小时;(2)乙船应朝北偏东71︒的方向沿直线前往B 处救援.【解析】试题分析:本试题主要考查解三角形在实际生活中的运用.先根据题意画出A B C 、、的方位图(如下图),从中得到在ABC ∆中,20,10,3090120AB AC CAB ==∠=︒+︒=︒,设BC s =,由余弦定理2222cos BC AC AB AC AB CAB =+-⨯⨯∠得到BC 的长即s 的值,然后在ABC ∆中,运用正弦定理得到sin sin s AB CAB ACB=∠∠,从中计算出sin ACB ∠,根据已知的条件,即可得到乙船航行的速度及方向.试题解析:依题意画出A B C 、、的方位图,如下在ABC ∆中,20,10,3090120AB AC CAB ==∠=︒+︒=︒,设乙船运动到B 处的距离为s 海里则由余弦定理2222cos BC AC AB AC AB CAB =+-⨯⨯∠得22211020210207002s =++⨯⨯⨯=s ∴=,又因为甲、乙两船行驶的时间20210t ==小时,从而乙船的速度为2s v t ===在ABC ∆中,由正弦定理可得sin sin s AB CAB ACB=∠∠所以321s i n s i nAB ACB CAB s ∠=⨯∠==,所以cos ACB ∠=,tan 2ACB ∠= 所以41ACB ∠=︒∴乙船应朝北偏东304171︒+︒=︒的方向沿直线前往B 处救援,速度为/小时. 考点:1.正弦定理;2.余弦定理;3.解斜三角形.20.(1)见解析(2)见解析 (3)045PBG ∠=【解析】试题分析: ( 1)ABD ∆为等边三角形且G 为AD 的中点,⇒BG AD ⊥,平面PAD ⊥平面ABCD⇒BG ⊥平面PAD ;(2)PAD 是等边三角形且G 为AD 的中点,⇒AD PG ⊥ 且 AD BG ⊥⇒AD ⊥平面PBG ⇒AD PB ⊥;(3)AD PB ⊥,AD ∥BC ⇒BC PB ⊥,BG AD ⊥,AD ∥BC ⇒BG BC ⊥ ⇒PBG ∠为二面角A BC P --的平面角。