高考物理二轮复习 磁场专题训练2[1]
安徽庐江二中高三物理二轮复习----电场和磁场(2)
专题训练——电场和磁场(2)一.单项选择题1.右图是一张实验照片,显示一个带电粒子在云室中穿过某种金属板运动的径迹。
云室旋转在匀强磁场中,磁场方向垂直照片向里。
云室中横放的金属板对粒子的运动起阻碍作用。
分析此径迹可知粒子( ) A. 带正电,由下往上运动 B. 带正电,由上往下运动 C. 带负电,由上往下运动 D. 带负电,由下往上运动2. 如图所示,在竖直放置的光滑半圆形绝缘细管的圆心O 处放一点电荷。
将质量为m 、电荷量为q 的小球从半圆形管的水平直径端点A 静止释放,小球沿细管滑到最低点B 时,对管壁恰好无压力。
若小球所带电量很小,不影响O 点处的点电荷的电场,则点电荷在B 点处的电场强度的大小为( ) A .mg q B . 2mg q C .3mg q D .4mgq3.如图所示,一个半径为R 的导电圆环与一个轴向对称的发散磁场处处正交,环上各点的磁感应强度B 大小相等,方向均与环面轴线方向成θ角(环面轴线为竖直方向)。
若导线环上载有如图所示的恒定电流I ,则下列说法正确的是( )A .导电圆环所受安培力的大小为2BIRB .导电圆环所受安培力的大小为2πBIRsin θC .导电圆环所受安培力方向竖直向下D .导电圆环所受安培力方向斜向上4.如图所示,匀强电场中三点A 、B 、C 是一个三角形的三个顶点,∠ABC=∠CAB=30°,BC =2 3 m ,已知电场线平行于△ABC 所在的平面,一个电荷量q =-2×10-6C 的点电荷由A 移到B 的过程中,电势能增加了1.2×10-5J ,由B 移到C 的过程中电场力做功6×10-6J ,下列说法正确的是( ) A.该电场的场强为1 V/m B.A 点的电势低于B 点的电势C. B 、C 两点的电势差U BC =3 VD.负电荷由C 点移到A 点的过程中,电势能增加 5.如图,平行板电容器与电源相连,下极板接地.带电油滴位于两极板的中心P 点且恰好处于静止状态,现将平行板电容器两极板在纸面内绕OO ′迅速顺时针转过45°,则( )AC BA.P 点处的电势降低B.带电油滴仍将保持静止状态C.带电油滴将水平向右做匀加速直线运动D.带电油滴到达极板前具有的电势能不断增加6.如图甲是回旋加速器的原理示意图.其核心部分是两个D 型金属盒,在加速带电粒子时,两金属盒置于匀强磁场中(磁感应强度大小恒定),并分别与高频电源相连.加速时某带电粒子的动能E k 随时间t 变化规律如图乙所示,若忽略带电粒子在电场中的加速时间,则下列判断正确的是( )A.高频电源的变化周期等于t n -t n-1B.在E k -t 图象中t 4-t 3=t 3-t 2=t 2-t 1C.粒子加速次数越多,粒子获得的最大动能一定越大D.不同粒子获得的最大动能都相同7.两电荷量分别为q 1和q 2的点电荷放在x 轴上的O 、M 两点,两电荷连线上各点电势φ随x 变化的关系如图所示,其中A 、N 两点的电势为零,ND 段中C 点电势最高,则( ) A.M 点的电场强度大小为零 B.A 点的电场强度大小为零 C.NC 间场强方向沿x 轴正方向D.将一负点电荷从N 点移到D 点,电场力先做正功后做负功8.如图,光滑的水平桌面处在方向竖直向下的匀强磁场中,桌面上平放着一根一端开口、内壁光滑的绝缘细管,细管封闭端有一带电小球,小球直径略小于管的直径,细管的中心轴线沿y 轴方向。
2019年版本高考物理二轮复习专题训练:磁场(含答案详解)新人教版-Word版
高考磁场复习(附参考答案)1. 图甲是回旋加速器的示意图,其核心部分是两个“D”形金属盒,在加速带电粒子时,两金属盒置于匀强磁场中,并分别与高频电源相连.带电粒子在磁场中运动的动能E k随时间t的变化规律如图乙所示,若忽略带电粒子在电场中的加速时间,则下列说法中正确的是A.在E k-t图中应有t4-t3= t3-t2= t2-t1B.高频电源的变化周期应该等于t n-t n-1C.要使粒子获得的最大动能增大,可以增大“D”形盒的半径D.在磁感应强度B、“D”形盒半径尺、粒子的质量m及其电荷量q不变的情况下,粒子的加速次数越多,粒子的最大动能一定越大答案:AC解析:根据回旋加速器的原理可知,带电粒子运动周期相同,每经过半个周期加速一次,在E k-t图中应有t4-t3= t3-t2= t2-t1,选项A正确;高频电源的变化周期应该等于2(t n-t n-1),选项B错误;粒子的最大动能只与回旋加速器的D型盒半径和磁感应强度有关,与加速电压和加速次数无关,要使粒子获得的最大动能增大,可以增大“D”形盒的半径,选项C正确D错误。
2.如图所示,带异种电荷的粒子a、b以相同的动能同时从O点射入宽度为d的有界匀强磁场,两粒子的入射方向与磁场边界的夹角分别为30°和60°,且同时到达P点。
a、b两粒子的质量之比为A.1∶2B.2∶1C.3∶4D.4∶3答案:C解析:根据粒子a、b动能相同,m a v a2=m b v b2;a粒子在磁场中运动轨迹半径r a=d/,b粒子在磁场中运动轨迹半径r b=d,所对的圆心角为120°,轨迹弧长为s a=2πr a/3=2πd/3,运动时间t a= s a/v a;b粒子在磁场中运动轨迹所对的圆心角为60°,轨迹弧长为s b=πr b/3=πd/3,运动时间t b= s b/v b;联立解得为a、b两粒子的质量之比为T/6,根据周期公式,T=, a、b两粒子同时到达P点,的质量之比为m a∶m b=3∶4,选项C 正确。
高考物理二轮复习专题复习(练习)专题四 电场和磁场2
训练9 磁场及带电粒子在磁场中的运动一、选择题(本大题共8小题,每小题8分,共64分.第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.)1.(2016·北京卷)中国宋代科学家沈括在《梦溪笔谈》中最早记载了地磁偏角:“以磁石磨针锋,则能指南,然常微偏东,不全南也.”进一步研究表明,地球周围地磁场的磁感线分布示意如图.结合上述材料,下列说法不正确的是( )A .地理南、北极与地磁场的南、北极不重合B .地球内部也存在磁场,地磁南极在地理北极附近C .地球表面任意位置的地磁场方向都与地面平行D .地磁场对射向地球赤道的带电宇宙射线粒子有力的作用解析:本题考查地磁场以及地理知识,意在考查学生的理解能力. 由《梦溪笔谈》中的记载和题中磁感线分布示意图可知,地球内部也存在磁场,地磁南极在地理北极附近,地理南、北极与地磁场的南、北极不重合,在两极附近地球表面的地磁场方向不与地面平行,C 项错误,AB 项正确;射向地球赤道的带电宇宙射线粒子与地磁场的磁感线不平行,故受洛伦兹力的作用,D 项正确.答案:C2.(2015·海南高考)如图,a 是竖直平面P 上的一点,P 前有一条形磁铁垂直于P ,且S 极朝向a 点,P 后一电子在偏转线圈和条形磁铁的磁场的共同作用下,在水平面内向右弯曲经过a 点.在电子经过a 点的瞬间.条形磁铁的磁场对该电子的作用力的方向( )A .向上B .向下C .向左D .向右解析:条形磁铁的磁感线方向在a 点为垂直P 向外,粒子在条形磁铁的磁场中向右运动,所以根据左手定则可得电子受到的洛伦兹力方向向上,A 正确.答案:A 3.如图所示,圆形区域内有一垂直纸面的匀强磁场,磁感应强度的大小为B 1,P 为磁场边界上的一点.相同的带正电荷粒子,以相同的速率从P 点射入磁场区域,速度方向沿位于纸面内的各个方向.这些粒子射出边界的位置均处于边界的某一段弧上,这段圆弧的弧长是圆周长的13.若将磁感应强度的大小变为B 2,结果相应的弧长变为圆周长的14,不计粒子的重力和粒子间的相互影响,则B 2B 1等于( )A.34B.32C.62D.23解析:设圆形区域的半径为r ,磁感应强度为B 1时,从P 点射入的粒子与磁场边界的最远交点为M ,最远的点是轨迹上直径与磁场边界圆的交点,∠POM =120°,如图甲所示,所以粒子做圆周运动的半径R 为:sin60°=R r ,解得:R =32r ,磁感应强度为B 2时,从P 点射入的粒子与磁场边界的最远交点为N ,最远的点是轨迹上直径与磁场边界圆的交点,∠PON =90°,如图乙所示,所以粒子做圆周运动的半径R ′为:R ′=22r 由带电粒子做圆周运动的半径R =m v qB 得:B 2B 1=R R ′=3222=62.答案:C4.如图所示,比荷相同的带正电粒子A 和B ,同时以速度v A 和v B 从宽度为d 的有界匀强磁场的边界上的O 点分别以60°和30°(与边界的夹角)方向射入磁场,又恰好不从另一边界飞出,则下列说法中正确的是( )A .A 、B 两粒子的速度之比为(2+3)∶3 B .A 、B 两粒子在磁场中的位移之比为1∶1C .A 、B 两粒子在磁场中的路程之比为1∶2D .A 、B 两粒子在磁场中的时间之比为2∶1解析:设粒子速度方向和磁场边界的夹角为θ,粒子做圆周运动的半径为r ,如图所示,有r +r cos θ=d ,即r =d1+cos θ=m v qB ,所以v A v B =1+cos30°1+cos60°=2+33,A 正确;粒子在磁场中的位移x =2r sin θ,所以x A x B =v A sin60°v Bsin30°=23+33,B 错误;粒子在磁场中的路程s =r ×(2π-2θ),所以s A s B=8+4315,C 错误;粒子在磁场中的时间t =2π-2θ2πT,所以t A t B=2π-2θA 2π-2θB =45,D 错误.答案:A5.如图所示,带有正电荷的A 粒子和B 粒子同时以同样大小的速度从宽度为d 的有界匀强磁场的边界上的O 点分别以30°和60°(与边界的夹角)射入磁场,又恰好都不从另一边界飞出,则下列说法中正确的是( )A .A 、B 两粒子在磁场中做圆周运动的半径之比为13B .A 、B 两粒子在磁场中做圆周运动的半径之比为 3C .A 、B 两粒子的qm 之比是 3D .A 、B 两粒子的qm 之比是2+33解析:粒子运动轨迹如图所示,其中A 粒子的运动半径满足d =R +R cos30°,可得R =d 1+cos30°;同理可得B 粒子的运动半径r =d 1+cos60°,则R r =32+3,所以A 、B 选项错误;据R =m v qB 可知m q ∝R ,所以两粒子的qm 之比是2+33,C 错误,D 正确.答案:D6.在方向垂直纸面向里的匀强磁场中,电量都为q 的三个正、负离子从O 点同时沿纸面内不同方向射出,运动轨迹如图,已知m a >m b =m c ,磁场足够大,不计离子间的相互作用,可以判定( )A .a 、b 是正离子,c 是负离子B .a 、b 是负离子,c 是正离子C .a 最先回到O 点D .b 、c 比a 先回到O 点解析:根据左手定则知,c 带正电,a 、b 带负电,故B 正确,A 错误;根据T =2πmqB ,因为电量相等,m a >m b =m c ,可知b 、c 的周期相等,小于a 的周期,则b 、c 比a 先回到O 点,故D 正确,C 错误.答案:BD7.如图所示,在平面直角坐标系中有一个垂直于纸面向里的圆形匀强磁场,其边界过原点O 和y 轴上的点a (0,L ).一质量为m 、电荷量为e 的电子从a 点以初速度v 0平行于x 轴正方向射入磁场,并从x 轴上的b 点射出磁场,此时速度方向与x 轴正方向的夹角为60°.下列说法中正确的是( )A .电子在磁场中运动的时间为πLv 0B .电子在磁场中运动的时间为2πL3v 0C .磁场区域的圆心坐标(3L 2,L2)D .电子在磁场中做圆周运动的圆心坐标为(0,-2L ) 解析:电子的轨迹半径为R ,由几何知识,R sin30°=R -L ,得R =2L .电子在磁场中运动时间t =T 6,而T =2πR v 0,得:t =2πL3v 0,故A 错误,B 正确;设磁场区域的圆心坐标为(x ,y ),其中x =12R cos30°=32L ,y =L2,所以磁场圆心坐标为(32L ,L2),故C 正确;根据几何关系可得,电子在磁场中做圆周运动的圆心坐标为(0,-L ),故D 错误.答案:BC 8.如图所示,直角三角形ABC 区域中存在一匀强磁场,比荷相同的两个粒子(不计重力)从A 点沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则( )A .从P 点射出的粒子速度大B .从Q 点射出的粒子速度大C .从Q 点射出的粒子在磁场中运动的时间长D .两个粒子在磁场中运动的时间一样长解析:粒子在磁场中做匀速圆周运动,运动轨迹如图所示,根据几何关系(图示弦切角相等),粒子在磁场中偏转的圆心角相等,根据粒子在磁场中运动的时间t =θ2πT ,又因为粒子在磁场中圆周运动的周期T =2πmqB ,可知粒子在磁场中运动的时间相等,D 正确,C 错误;由图知,粒子运动的半径R P <R Q ,由粒子在磁场中做圆周运动的半径R =m vBq 知粒子运动速度v P <v Q ,A 错误,B 正确.答案:BD二、计算题(本大题共2小题,共36分.需写出规范的解题步骤)9.(2016·北京卷)如图所示,质量为m 、电荷量为q 的带电粒子,以初速度v 沿垂直磁场方向射入磁感应强度为B 的匀强磁场,在磁场中做匀速圆周运动.不计带电粒子所受重力.(1)求粒子做匀速圆周运动的半径R 和周期T ; (2)为使该粒子做匀速直线运动,还需要同时存在一个与磁场方向垂直的匀强电场,求电场强度E 的大小.解析:本题主要考查带电粒子在磁场中的运动以及在复合场中的匀速直线运动,意在考查学生的分析和推理能力.(1)洛伦兹力提供向心力,有f =q v B =m v 2R带电粒子做匀速圆周运动的半径R =m vqB匀速圆周运动的周期T =2πR v =2πmqB(2)粒子受电场力F =qE ,洛伦兹力f =q v B .粒子做匀速直线运动,则qE =q v B 电场强度的大小E =v B答案:(1)m v qB 2πmqB (2)v B10.如图所示的xOy 坐标系中,y 轴右侧空间存在范围足够大的匀强磁场,磁感应强度大小为B ,方向垂直于xOy 平面向外.Q 1、Q 2两点的坐标分别为(0,L )、(0,-L ),坐标为(-33L,0)处的C 点固定一平行于y 轴放置的绝缘弹性挡板,C 为挡板中点.带电粒子与弹性绝缘挡板碰撞前后,沿y 轴方向分速度不变,沿x 轴方向分速度反向,大小不变.现有质量为m 、电量为+q 的粒子,在P 点沿PQ 1方向进入磁场,α=30°,不计粒子重力.(1)若粒子从点Q 1直接通过点Q 2,求粒子初速度大小;(2)若粒子从点Q 1直接通过点O ,求粒子第一次经过x 轴的交点坐标;(3)若粒子与挡板碰撞两次并能回到P 点,求粒子初速度大小及挡板的最小长度.解析:(1)由题意画出粒子运动轨迹如图甲所示.粒子在磁场中做圆周运动的半径大小为R 1,由几何关系得: R 1cos30°=L粒子在磁场中做匀速圆周运动,由牛顿第二定律得:q v 1B =m v 21R 1解得v 1=23qBL3m(2)由题意画出粒子运动轨迹如图乙所示.设其与x 轴交点为M ,横坐标为x M ,由几何关系知 2R 2cos30°=L x M =2R 2sin30°则M 点坐标为(33L,0)(3)由题意画出粒子运动轨迹如图丙所示:粒子在磁场中做圆周运动的半径大小为R 3,偏转一次后在y 负方向偏移量为Δy 1,由几何关系得Δy 1=2R 3cos30°为保证粒子最终能回到P ,粒子每次射出磁场时速度方向与PQ 2连线平行,与挡板碰撞后,速度方向与PQ 1连线平行,每碰撞一次,粒子出进磁场在y 轴上距离Δy 2(如图中A 、E 间距)可由题给条件得Δy 2=23L3tan30°当粒子只碰两次,其几何条件是 3Δy 1-2Δy 2=2L联立解得R 3=103L27粒子磁场中做匀速圆周运动,由牛顿第二定律得:q v 3B =m v 23R 3解得v 3=103qBL27m 挡板的最小长度ΔL =Δy 1-Δy 2=2R 3cos30°-23L3·tan30°解得ΔL =4L9答案:(1)23qBL 3m (2)(33L,0) (3)103qBL 27m 4L9。
高考物理二轮总复习 专题过关检测 专题磁场(全含详细答案解析)
拾躲市安息阳光实验学校高考物理二轮总复习专题过关检测磁场(时间:90分钟满分:100分)第Ⅰ卷选择题一、选择题(本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1.20世纪50年代,一些科学家提出了地磁场的“电磁感应学说”,认为当太阳强烈活动影响地球而引起磁暴时,磁暴在外地核中感应产生衰减时间较长的电流,此电流产生了地磁场.连续的磁暴作用可维持地磁场,则外地核中的电流方向为(地磁场N极与S极在地球表面的连线称为磁子午线)( )A.垂直磁子午线由西向东B.垂直磁子午线由东向西C.沿磁子午线由南向北D.沿磁子午线由北向南解析:地磁场由南向北,根据安培定则可判断,外地核中电流方向由东向西.答案:B2.如图11-1所示,两根平行放置的长直导线a和b载有大小相同、方向相反的电流,a 受到的磁场力大小为F1,当加入一与导线所在平面垂直的匀强磁场后,a 受到的磁场力的大小变为F2,则此时b受到的磁场力的大小变为( )图11-1A.F2B.F1-F2C.F2-F1D.2F1-F2解析:对a导线,原来b导线对a导线作用力为F1,方向向左,假设加入的匀强磁场垂直向里,如图甲所示,则a导线受外加匀强磁场的作用力为F′,则F1、F′、F2之间有下列关系:F2=F1-F′(F′=F1-F2)同理对b导线分析受力,如图乙所示,故此时导线b受磁场作用力:F=F1-F′=F1-(F1-F2)=F2本题正确的答案为A.答案:A3.带电体表面突出的地方电荷容易密集.雷雨天当带电云层靠近高大建筑物时,由于静电感应,建筑物顶端会聚集异种电荷,避雷针通过一根竖直导线接通大地而避免雷击.你若想知道竖直导线中的电流方向,进而判断云层所带电荷,安全可行的方法是( )A.在导线中接入电流表B.在导线中接入电压表C.在导线中接入小灯泡D.在导线旁放一可自由转动的小磁针解析:根据小磁针静止时N极的指向判断出其所在处的磁场方向,然后根据安培定则判断出电流方向,既安全又可行.答案:D4.下列关于磁感线的说法正确的是( )A.磁感线可以形象地描述磁场中各点的磁场方向,它每一点的切线方向都与小磁针放在该点静止时S极所指的方向相同B.磁感线总是从磁体的N 极出发,到磁体的S 极终止C.磁场的磁感线是闭合曲线D.磁感线就是细铁屑在磁铁周围排列成的曲线,没有细铁屑的地方就没有磁感线解析:磁感线的切线方向就是该点的磁场方向,磁场的方向规定为小磁针N 极受力的方向,也就是小磁针静止时N 极的指向,所以A 项错误.在磁体的外部,磁感线从N 极出发指向S 极,在磁体的内部,磁感线从S 极指向N 极,并且内、外形成闭合曲线,所以B 项错误,C 项正确.虽然磁感线是为了研究问题的方便人为引入的,我们也可以用细铁屑形象地“显示”磁感线,但不能说没有细铁屑的地方就没有磁感线,所以D 项是错误的. 答案:C 图11-25.如图11-2所示,一带负电的质点在固定的正点电荷作用下绕该正电荷做匀速圆周运动,周期为T 0,轨道平面位于纸面内,质点的速度方向如图中箭头所示.现加一垂直于轨道平面的匀强磁场,已知轨道半径并不因此而改变,则( ) A.若磁场方向指向纸里,质点运动的周期将大于T 0 B.若磁场方向指向纸里,质点运动的周期将小于T 0 C.若磁场方向指向纸外,质点运动的周期将大于T 0 D.若磁场方向指向纸外,质点运动的周期将小于T 0解析:因电荷在电场力作用下做匀速圆周运动,根据圆周运动知识有r T m F 2)2(π=电,若所加的磁场指向纸里,因电荷所受的洛伦兹力背离圆心,电荷所受的向心力减小,所以质点运动的周期将增大,大于T 0.若所加的磁场指向纸外,因电荷所受的洛伦兹力指向圆心,电荷所受的向心力增大,所以质点运动的周期将减小,小于T 0,正确选项为A 、D.答案:AD6.在某地上空同时存在着匀强的电场与磁场,一质量为m 的带正电小球,在该区域内沿水平方向向右做直线运动,如图11-3所示.关于场的分布情况可能的是( ) 图11-3A.该处电场方向和磁场方向重合B.电场竖直向上,磁场垂直纸面向里C.电场斜向里侧上方,磁场斜向外侧上方,均与v 垂直D.电场水平向右,磁场垂直纸面向里解析:带电小球在复合场中运动一定受重力和电场力,是否受洛伦兹力需具体分析.A 选项中若电场、磁场方向与速度方向垂直,则洛伦兹力与电场力垂直,如果与重力的合力为零就会做直线运动.B 选项中电场力、洛伦兹力都向上,若与重力合力为零,也会做直线运动.C 选项电场力斜向里侧上方,洛伦兹力向外侧下方,若与重力合力为零,就会做直线运动.D 选项三个力合力不可能为零,因此本题选A 、B 、C. 答案:ABC7.如图11-4所示,水平正对放置的带电平行金属板间的匀强电场方向竖直向上,匀强磁场方向垂直纸面向里,一带电小球从光滑绝缘轨道上的a 点由静止释放,经过轨道端点P 进入板间后恰好沿水平方向做匀速直线运动.现在使小球从稍低些的b 点由静止释放,经过轨道端点P 进入两板之间的场区.关于小球和小球现在的运动情况,以下判断中正确的是( ) 图11-4A.小球可能带负电B.小球在电、磁场中运动的过程动能增大C.小球在电、磁场中运动的过程电势能增大D.小球在电、磁场中运动的过程机械能总量不变解析:如果小球带负电,则小球在金属板间受到向下的重力、向下的电场力、向下的洛伦兹力,则小球不能沿水平方向做匀速直线运动,所以小球只能带正电,此时洛伦兹力向上,电场力向上,且F 洛+F 电=mg ,当小球从稍低的b 点由静止释放时,小球进入金属板间的速度将减小,则F 洛减小,F 洛+F 电<mg ,小球将向下运动,电场力做负功,合外力做正功.所以小球在电磁场中运动的过程中动能增大,电势能增加,机械能减小,故B 、C 正确,A 、D 错.答案:BC8.如图11-5所示,两平行金属板的间距等于极板的长度,现有重力不计的正离子束以相同的初速度v 0平行于两板从两板正中间射入.第一次在两极板间加恒定电压,建立场强为E 的匀强电场,则正离子束刚好从上极板边缘飞出.第二次撤去电场,在两板间建立磁感应强度为B 、方向垂直于纸面的匀强磁场,正离子束刚好从下极板边缘飞出,则E 和B 的大小之比为( )图11-5A.045v B.021v C.041v D.v 0 解析:根据题意d =L ①两板间为匀强电场时,离子做类平抛运动.设粒子在板间的飞行时间为t ,则 水平方向:L =v 0t ② 竖直方向:222212t mqE at d ==③ 两板间为匀强磁场时,设偏转半径为r 由几何关系有222)2(L d r r +-=④又rvm B qv 20=⑤①②③④⑤联立得.450v B E = 答案:A9.如图11-6所示,空间有一垂直纸面向外的磁感应强度为0.5 T 的匀强磁场,一质量为0.2 kg 且足够长的绝缘塑料板静止在光滑水平面上.在塑料板左端无初速度放置一质量为0.1 kg 、带电荷量为+0.2 C 的滑块,滑块与绝缘塑料板之间的动摩擦因数为0.5,滑块受到的最大静摩擦力可认为等于滑动摩擦力.现对塑料板施加方向水平向左、大小为0.6 N 的恒力,g 取10 m/s 2,则( )图11-6A.塑料板和滑块一直做加速度为2 m/s 2的匀加速运动B.滑块开始做匀加速运动,然后做加速度减小的加速运动,最后做匀速直线运动C.最终塑料板做加速度为2 m/s 2的匀加速运动,滑块做速度为10 m/s 的匀速运动D.最终塑料板做加速度为3 m/s 2的匀加速运动,滑块做速度为10 m/s 的匀速运动解析:滑块随塑料板向左运动时,受到竖直向上的洛伦兹力,和塑料板之间的正压力逐渐减小.开始时,塑料板和滑块加速度相同,由F =(M +m )a 得,a =2 m/s 2,对滑块有μ(mg -qvB )=ma ,当v =6 m/s 时,滑块恰好相对于塑料板有相对滑动,开始做加速度减小的加速运动,当mg =qvB ,即v =10 m/s 时滑块对塑料板的压力为零F N =0,塑料板所受的合力为0.6 N,则2/3's m MFa ==,B 、D 正确.答案:BD10.环形对撞机是研究高能粒子的重要装置,其核心部件是一个高度真空的圆环状的空腔.若带电粒子初速度可视为零,经电压为U 的电场加速后,沿圆环切线方向注入对撞机的环状空腔内,空腔内存在着与圆环平面垂直的匀强磁场,磁感应强度大小为B.带电粒子将被限制在圆环状空腔内运动.要维持带电粒子在圆环内做半径确定的圆周运动,下列说法中正确的是 ( )A.对于给定的加速电压,带电粒子的比荷q /m 越大,磁感应强度B 越大B.对于给定的加速电压,带电粒子的比荷q /m 越大,磁感应强度B 越小C.对于给定的带电粒子和磁感应强度B ,加速电压U 越大,粒子运动的周期越小D.对于给定的带电粒子和磁感应强度B ,不管加速电压U 多大,粒子运动的周期都不变解析:带电粒子经过加速电场后速度为,2mUqv =带电粒子以该速度进入对撞机的环状空腔内,且在圆环内做半径确定的圆周运动,因此qB UmBq mv R 22==,对于给定的加速电压,即U 一定,则带电粒子的比荷q /m 越大,磁感应强度B 应越小,A 错误,B正确;带电粒子运动周期为BqmT π2=,与带电粒子的速度无关,当然就与加速电压U 无关,因此,对于给定的带电粒子和磁感应强度B ,不管加速电压U 多大,粒子运动的周期都不变.答案:BD第Ⅱ卷 非选择题二、填空计算题(共6题,每题10分,共60分)11.在原子反应堆中抽动液态金属时,由于不允许转动机械部分和液态金属接触,常使用一种电磁泵.如图11-7所示是这种电磁泵的结构示意图,图中A 是导管的一段,垂直于匀强磁场放置,导管内充满液态金属.当电流I 垂直于导管和磁场方向穿过液态金属时,液态金属即被驱动,并保持匀速运动.若导管内截面宽为a 、高为b ,磁场区域中的液体通过的电流为I ,磁感应强度为B ,求:图11-7(1)电流I 的方向;(2)驱动力对液体造成的压强差.解析:(1)驱动力即安培力方向与流动方向一致,由左手定则可判断出电流I 的方向由下向上.(2)把液体看成由许多横切液片组成,因通电而受到安培力作用,液体匀速流动,所以有安培力F =Δp ·S,,a BI ab BIb S F p ===∆即驱动力对液体造成的压强差为.aBI 答案:(1)电流方向由下向上 (2)aBI 12.一种半导体材料称为“霍尔材料”,用它制成的元件称为“霍尔元件”,这种材料有可定向移动的电荷,称为“载流子”,每个载流子的电荷量大小为q =1.6×10-19 C ,霍尔元件在自动检测、控制领域得到广泛应用,如录像机中用来测量录像磁鼓的转速、电梯中用来检测电梯门是否关闭以及自动控制升降电动机的电源的通断等.图11-8在一次实验中,一块霍尔材料制成的薄片宽ab =1.0×10-2 m 、长bc =4.0×10-2m 、厚h =1.0×10-3m,水平放置在竖直向上的磁感应强度B =2.0 T 的匀强磁场中,bc 方向通有I =3.0 A 的电流,如图11-8所示,由于磁场的作用,稳定后,在沿宽度方向上产生1.0×10-5V 的横向电压.(1)假定载流子是电子,ad 、bc 两端中哪端电势较高? (2)薄板中形成电流I 的载流子定向运动的速率为多大?(3)这块霍尔材料中单位体积内的载流子个数为多少?解析:(1)由左手定则可判断,电子受洛伦兹力作用偏向bc 边,故ad 端电势高. (2)稳定时载流子在沿宽度方向上受到的磁场力和电场力平衡abUq qvB =, (3)由电流的微观解释可得:I =nqvS .故n =I /qvS =3.75×1027个/m 3. 答案:(1)ad 端 (2)5×10-4m/s (3)3.75×1027个/m 313.将氢原子中电子的运动看做是绕氢核做匀速圆周运动,这时在研究电子运动的磁效应时,可将电子的运动等效为一个环形电流,环的半径等于电子的轨道半径r .现对一氢原子加上一个外磁场,磁场的磁感应强度大小为B ,方向垂直电子的轨道平面.这时电子运动的等效电流用I 1表示.现将外磁场反向,但磁场的磁感应强度大小不变,仍为B ,这时电子运动的等效电流用I 2表示.假设在加上外磁场以及外磁场反向时,氢核的位置、电子运动的轨道平面以及轨道半径都不变,求外磁场反向前后电子运动的等效电流的差,即|I 1-I 2|等于多少?(用m 和e 表示电子的质量和电荷量)解析:用r 表示电子的轨道半径,v 表示电子速度,则等效电流revI π2=①当加上一垂直于轨道平面的外磁场后,设顺着外磁场方向看,电子做逆时针转动,此时电子受到氢核对它的库仑力指向圆心,而受到洛伦兹力背向圆心.设此时速度为v 1,根据题意得rmv B ev r ke 21122=-②当外磁场反向后,轨道半径r 不变,此时运动速度变为v 2,此时电子受到氢核对它的库仑力不变,而洛伦兹力大小变为e Bv 2,方向变为指向圆心,根据牛顿运动定律可得rmv B ev r ke 22222=+③由②③式解得meBrv v =-12④ 由①④两式可得.2||221πm Be I I =-答案:πm Be 2214.在电子显像管内部,由炽热的灯丝上发射出的电子在经过一定的电压加速后,进入偏转磁场区域,最后打到荧光屏上,当所加的偏转磁场的磁感应强度为0时,电子应沿直线运动打在荧光屏的正中心位置.但由于地磁场对带电粒子运动的影响,会出现在未加偏转磁场时电子束偏离直线运动的现象,所以在精密测量仪器的显像管中常需要在显像管的外部采取磁屏蔽措施以消除地磁场对电子运动的影响.已知电子质量为m 、电荷量为e ,从炽热灯丝发射出的电子(可视为初速度为0)经过电压为U 的电场加速后,沿水平方向由南向北运动.若不采取磁屏蔽措施,且已知地磁场磁感应强度的竖直向下分量的大小为B ,地磁场对电子在加速过程中的影响可忽略不计.在未加偏转磁场的情况下,(1)试判断电子束将偏向什么方向;(2)求电子在地磁场中运动的加速度的大小;(3)若加速电场边缘到荧光屏的距离为l ,求在地磁场的作用下使到达荧光屏的电子在荧光屏上偏移的距离.解析:(1)根据左手定则,可以判断出电子束将偏向东方.(2)设从加速电场射出的电子速度为v 0,则根据动能定理有:eU mv =2021从加速电场射出的电子在地磁场中受到洛伦兹力的作用而做匀速圆周运动,设电子的加速度为a ,根据牛顿第二定律,ev 0B =ma 由以上各式解得(3)设电子在地磁场中运动的半径为R ,根据牛顿第二定律Rvm B ev 20=得eBmvR 0=设电子在荧光屏上偏移的距离为x ,根据图中的几何关系,有:22t R R x --=结合以上关系,得 答案:(1)东方 (2)meUm eB 2(3)22221l eBmU e mU B -- 15.回旋加速器的示意图如图11-9甲,置于真空中的金属D 形盒,其半径为R ,两盒间距为d ,在左侧D 形盒圆心处放有粒子源S,匀强磁场的磁感应强度为B ,方向如图所示.此加速器所接的高频交流电源如图11-9乙所示,电压有效值为U .粒子源射出的带电粒子质量为m 、电荷量为q .设粒子从粒子源S 进入加速电场时的初速度不计,且此时高频电源电压恰好达到最大值,忽略粒子在加速电场中的运动时间,加速粒子的电压按交流电的最大值且可近似认为保持不变.粒子在电场中的加速次数等于在磁场中回旋半周的次数.求: (1)粒子在加速器中运动的总时间t .(2)试推证当R >>d 时,粒子在电场中加速的总时间相对于在D 形盒中回旋的总时间可忽略不计(粒子在电场中运动时,不考虑磁场的影响).(3)粒子第1次和第n 次分别在右半盒中运动的轨道半径的比值R 1∶R n . 图11-9解析:由于加速粒子的电压按交流电的最大值且近似认为保持不变,故粒子在电场中做匀加速直线运动.(1)设粒子加速后的最大速度为v ,此时轨道半径最大为R ,由牛顿第二定律得:Rv m qvB 2=粒子的回旋周期为:vRT π2=粒子加速后的最大动能为:221mv E k =设粒子在电场中加速的次数为n ,则:E k =nqU m 高频电源电压的最大值U U 2m =又忽略粒子在加速电场中的运动时间,则运动的总时间2T nt = 联立解得:.422UBR t π=(2)粒子在电场中间断的加速运动,可等效成不间断的匀加速直线运动.粒子在电场中加速的总时间为:v ndv nd t 221==粒子在D 形盒中回旋的总时间:vR nt π=2故R dt t π221=,又R >>d ,所以121<<t t ,因此t 1可忽略不计.(3)设粒子第1、2、3……n 次在右半盒中运动的速度分别为v 1、v 2、v 3……v n ,则由动能定理得:qU m =mv 12/2 ……又Rv m qvB 2=联立解得12:1:1-=n R R n (n 取1,2,3,…). 答案:(1)UBR 422π (2)略(3)12:1-n16.(2010湖北部分重点中学高三二联,25)在xOy 平面内,x >0的区域存在垂直纸面向里的匀强磁场,磁感应强度为B =0.4 T ;x <0的区域存在沿x 轴正方向的匀强电场.现有一质量为m =4.0×10-9kg,带电荷量为q =2.0×10-7C 的正粒子从x 轴正方向上的M 点以速度v 0=20 m/s 进入磁场,如图11-10所示,v 0与x 轴正方向的夹角θ=45°,M 点与O 点相距为l =2 m.已知粒子能以沿着y 轴负方向的速度垂直穿过x 轴负半轴上的N 点,不计粒子重力.求:图11-10(1)粒子穿过y 轴正半轴的位置以及穿过y 轴正半轴时速度与y 轴的夹角; (2)x <0区域电场的场强;(3)试问粒子能否经过坐标原点O ?若不能,请说明原因;若能,请求出粒子从M 点运动到N 点所经历的时间.解析:(1)粒子在磁场中做匀速圆周运动时,由洛伦兹力提供向心力Bqv 0=mv 02/R得:R =1 m过M 点做初速度v 0的垂线交y 轴正方向于P 点,则PM =l /cos45° 得:PM =2 m=2R由几何关系得PM 为轨迹圆的直径,P 点即为粒子穿过y 轴正半轴的位置由圆的对称性得粒子经过此处时的速度与y 轴夹角为θ=45°. (2)设粒子由P 点到N 点历时t 1,则:x 轴方向:v 0sin45°-Eqt 1/m =0 y 轴方向:v 0t 1cos45°=OP联立求解,代入数据得:t 1=0.1 s,(3)粒子能到达O 点粒子在磁场中的运动周期为:T =2πm /Bq从M 点运动到O 点经过的轨迹如图经历的时间为:t =T /2+3T /4+2t 1代入数据得:t =(π/8+0.2) s≈0.59 s.答案:(1)45° (2)2.82 V/m (3)0.59 s。
解析版-2020年高考物理二轮复习对点集训-磁场
绝密★启用前2020年高考物理二轮复习对点集训-磁场一、单选题1.关于图所示的磁场,下列说法中正确的是()A.磁感线能相交B.磁场方向与小磁针静止时北极指向一致C.a、b两点在同一磁感线上位置不同,但它们的强弱相同D.若知道磁感应强度B与线圈的面积S,则可求出穿过这个面积的磁通量【答案】B【解析】磁感线不是磁场中真实存在的曲线,而是人为加上去的,它可以形象地描述磁场,它是闭合曲线,但不相交,且通过疏密来体现磁场强弱,因此a点磁感应强度大于b,故A、C错误.磁场方向的规定:磁场中某点的磁场方向与放在该处的小磁针N极所指的方向相同,故B正确;知道磁感应强度B与线圈的面积S,且两者垂直时,则才可求出穿过这个面积的磁通量,若不垂直,必须知道两者的夹角才能算出线圈的磁通量,故D错误.2.如图所示,在半径为R的圆形区域内,有方向垂直于圆平面的匀强磁场(未画出).一群相同的带电粒子以相同速率v0,由P点在纸平面内向不同方向射入磁场.当磁感应强度大小为B1时,所有粒子出磁场的区域占整个圆周长的,当磁感应强度增大为B2时,这些粒子在磁场中运动弧长最长的是.则磁感应强度B1、B2的比值是(粒子不计重力)()A.B.C.D.【答案】B【解析】如图所示,所有粒子运动轨迹应为落在圆O内的虚线圆弧,且这些圆弧半径相等,设为r.与圆O交点的最远处应由圆弧直径决定,最远交点为PA=2r,当磁感应强度大小为B1时,所有粒子出磁场的区域占整个圆周长的,其临界为PA为直径的圆由几何知识得:r=R①粒子做圆周运动由洛伦兹力提供向心力则:B1qv0=②①②联立得:B1==③当磁感应强度为B2时,粒子运动的周期T=相同,半径r′相同,则粒子在磁场中运动一个周期时对应的弧长最长,由题意得:R=2πr′解得:r′=④根据B2qv0=⑤④⑤联立:r′==解得:B2=⑥③⑥联立得:=所以A、C、D错误,B正确.3.如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场.一个不计重力的带电粒子从坐标原点O处以一定的速度进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成120°角,若粒子穿过y轴时坐标为(0,a),则该粒子在磁场中到x轴的最大距离为()A.aB. 2aC.aD.a【答案】D【解析】由题意可知粒子沿顺时针方向运动,粒子的运动轨迹如图所示,设粒子所做圆周运动的半径为R,根据图中的几何关系可得,R=a,所以粒子在磁场中到x轴的最大距离为:y m=R+R sin 30°=a,所以D正确.4.如图所示,无限长、质量为m的通电细导体棒a,水平放置在倾角为45°的光滑斜面上,为使棒a能在斜面上保持静止,可将无限长、电流方向与a棒相同的通电细导体棒b,固定在以细导体棒a为中心的圆(如图虚线所示)上的()A.HGFE区域内B.AHG区域内C.ABCD区域内D.EFGH区域内【答案】C【解析】以a棒为研究对象,受到重力、斜面的支持力、和b棒电流对a棒的作用力,根据同向电流相互吸引,且A棒静止,可知b棒如果在竖直线AE左边,合力不可能为0,所以b棒不可能在AE竖直线的左边,可能在ABCDE区域;要使a棒静止,b棒不可能在HD的下方,否则合力不为0,可能在HABCD区域;取交集,即b棒只可能在ABCD区域,故C正确.5.在xOy坐标的原点处放置一根与坐标平面垂直的通电直导线,电流方向指向纸内(如图所示),此坐标范围内还存在一个平行于xOy平面的匀强磁场.已知在以直导线为圆心的圆周上的a、b、c、d四点中,a点的磁感应强度最大,则此匀强磁场的方向()A.沿x轴正方向B.沿x轴负方向C.沿y轴正方向D.沿y轴负方向【答案】D【解析】用右手螺旋定则判断通电直导线在a、b、c、d四个点上所产生的磁场方向,a点有电流产生的向下的磁场,若还有向下的磁场,则电流产生的磁感应强度和原磁感应强度方向相同,叠加合磁场最大.6.如图所示是质谱仪工作原理的示意图.重力均可忽略的带电粒子a、b经电压U加速(在A点的初速度为零)后,进入磁感应强度为B的匀强磁场做匀速圆周运动,最后分别打在感光板S上的x1、x2处.图中半圆形的虚线分别表示带电粒子a、b所通过的路径,则()A.a的质量一定大于b的质量B.a的电荷量一定大于b的电荷量C.在磁场中a运动的时间一定小于b运动的时间D.a的比荷一定大于b的比荷【答案】D.【解析】ABD、设粒子经电场加速后的速度大小为v,磁场中圆周运动的半径为r,电荷量和质量分别为q、m,打在感光板上的距离为S.根据动能定理,得qU=mv2解得:v=由qvB=m解得:r==则S=2r=得到:=由图,Sa<Sb,U、B相同,则>,故AB错误,D正确;C、根据粒子做匀速圆周运动,周期公式T=,可知,它们的周期相同,由于运动的时间是周期的一半,因此磁场中a运动的时间一定等于b运动的时间,故C错误;7.目前世界上正在研究一种新型发电机叫磁流体发电机,它可以把气体的内能直接转化为电能.如图所示为它的发电原理图.将一束等离子体(即高温下电离的气体,含有大量带正电和负电的粒子,从整体上来说呈电中性)喷射入磁感应强度为B的匀强磁场,磁场中有两块面积为S、相距为d的平行金属板,金属板与外电阻R相连构成一电路.设气流的速度为v,气体的电导率(电阻率的倒数)为g,则流过外电阻R的电流强度I及电流方向为()A.I=,A→R→BB.I=,A→R→BC.I=,B→R→AD.I=,B→R→A【答案】B【解析】根据左手定则知正电荷向上偏,负电荷向下偏,上极板带正电,下极板带负电,所以流过外电阻R的电流方向为A→R→B.最终电荷处于平衡有:qvB=q,解得电动势E=Bdv.内电阻r =ρ=,根据闭合电路欧姆定律有:I===,故B正确,A、C、D错误.8.狄拉克曾经预言,自然界应该存在只有一个磁极的磁单极子,其周围磁感线呈均匀辐射状分布(如图甲所示),其磁场分布与负点电荷Q的电场(如图乙所示)分布相似.现假设磁单极子S和负点电荷Q均固定,有带电小球分别在S极和Q附近做匀速圆周运动.则关于小球做匀速圆周运动的判断不正确的是()A.若小球带正电,其运动轨迹平面可在S的正上方,如图甲所示B.若小球带负电,其运动轨迹平面可在Q的正下方,如图乙所示C.若小球带负电,其运动轨迹平面可在S的正上方,如图甲所示D.若小球带正电,其运动轨迹平面可在Q的正下方,如图乙所示【答案】B【解析】在S附近,小球能做匀速圆周运动,则洛仑兹力与重力的合力应能充当向心力;在甲图中,若小球带正电荷且逆时针转动(由上向下看),则其受力斜向上,与重力的合力可以指向圆心,故A 正确;而若小球带负电荷,但顺时针转动,同理可知,合力也可以充当向心力,故C正确;在Q 附近,若小球带负电,则小球所受电场力背向Q,故电场力与重力的合力不可以提供向心力,小球不可以在Q正下方运动,故B错误;带正电荷的小球在图示位置各点受到的电场力指向Q,则电场力与重力的合力可能充当向心力,小球可能在Q正下方运动,故D正确.9.如图,一个带负电的物体从绝缘粗糙斜面顶端滑到底端时的速度为v,若加上一个垂直纸面向外的磁场,则滑到底端时()A.v变小B.v变大C.v不变D.不能确定v的变化【答案】A【解析】根据左手定则,带负电的物体沿斜面下滑时受到垂直斜面向下的洛伦兹力,所以物体与斜面间的摩擦力增大,从而使物体滑到斜面底端时速度变小,故A正确.10.一个不计重力的带正电荷的粒子,沿图中箭头所示方向进入磁场,磁场方向垂直于纸面向里,则粒子的运动轨迹为()A.圆弧aB.直线bC.圆弧cD.a、b、c都有可能【答案】A【解析】由左手定则可判断,粒子在刚进入磁场时受到向左的洛伦兹力,与速度方向不在一条直线上,做曲线运动,B、D错误;洛伦兹力方向与总速度方向垂直提供做圆周运动的向心力,A正确,C错误.二、多选题11.(多选)如图所示,半径为R的一圆柱形匀强磁场区域的横截面,磁感应强度大小为B,方向垂直于纸面向外,磁场外有一粒子源,能沿一直线发射速度大小不等的在某一范围内的同种带电粒子,带电粒子的质量为m,电荷量为q(q>0),不计重力.现粒子以沿正对cO中点且垂直于cO方向射入磁场区域,发现带电粒子恰能从bd之间飞出磁场.则()A.从b点飞出的带电粒子的速度最大B.从d点飞出的带电粒子的速度最小C.从d点飞出的带电粒子在磁场中运动的时间最长D.从b点飞出的带电粒子在磁场中运动的时间最短【答案】ABCD【解析】粒子在磁场中,受到洛伦兹力作用做匀速圆周运动,根据题意作出粒子运动轨迹如图所示:图中Ob为到达b点的轨迹的圆心,Od为到达d点的轨迹的圆心,根据几何关系可知,rb>rd,到达d点转过的圆心角比到达b点的圆心角大.根据r=可知,b的半径最大,d的半径最小,所以从b点飞出的带电粒子的速度最大,从d点飞出的带电粒子的速度最小,故A、B正确;周期T=可知,粒子运动的周期相等,而到达d点转过的圆心角最大,b点转过的圆心角最小,所以从d点飞出的带电粒子的时间最长,从b点飞出的带电粒子的时间最短,故C、D正确.12.(多选)如图所示,在半径为R的圆形区域内,有匀强磁场,磁感应强度为B,方向垂直于圆平面(未画出).一群比荷为的负离子体以相同速率v0(较大),由P点在圆平面内向不同方向射入磁场中,发生偏转后,又飞出磁场,则下列说法正确的是(不计重力)()A.离子飞出磁场时的动能一定相等B.离子在磁场中运动半径一定相等C.由Q点飞出的离子在磁场中运动的时间最长D.沿PQ方向射入的离子飞出时偏转角最大【答案】BC【解析】离子进入磁场后受到洛伦兹力作用,因洛仑兹力方向始终与离子的速度方向垂直,对离子不做功,故离子在磁场中运动时动能保持不变,但各离子的质量不一定相等,所以动能不一定相等,故A错误;由Bqv=m可知,r=,因离子的速率相同,比荷相同,故离子的运动半径一定相等,故B正确;由圆的性质可知,轨迹圆与磁场圆相交,当轨迹圆的弦长最大时偏向角最大,而轨迹圆弦长最长为PQ,故由Q点飞出的离子在磁场中运动的时间最长,故C正确;由C的分析可知,由Q点飞出的粒子偏转角最大,而由Q点飞出的离子一定不是沿PQ方向射入的,故D错误.13.(多选)如图所示是圆柱形匀强磁场区域的横截面(纸面),圆柱半径为R,磁感应强度大小为B,方向垂直于纸面向里.一质量为m、电荷量为q(q>0)的粒子从M点沿与直径MN成45°角的方向以速度v射入磁场区域.已知粒子射出磁场时与射入磁场时运动方向间的夹角为135°,P是圆周上某点,不计粒子重力,则()A.粒子做圆周运动的轨道半径为B.磁场区域的半径为C.粒子在磁场中运动的时间为D.若粒子以同样的速度从P点入射,则从磁场射出的位置必定与从M点入射时从磁场射出的位置相同【答案】ABD【解析】作出粒子的运动轨迹如图所示:由几何知识知图中圆周运动的两条半径与圆形区域的两条半径组成的图形,如虚线所示,为菱形,设圆周运动半径为r,则R=r,根据牛顿第二定律:qvB=m得:r==R,故A、B正确;粒子在磁场中运动的时间为t=×=,故C错误;粒子做圆周运动的圆心与入射速度是垂直的,且速度大小不变,则运动半径r不变,即仍为R,若粒子以同样的速度从P点入射,由圆心的运动轨迹变化知出射点的位置不变,D正确.14.如图所示,一单边有界磁场的边界上有一粒子源,以与水平方向成θ角的不同速率向磁场中射入两个相同的粒子1和2,粒子1经磁场偏转后从边界上的A点出磁场,粒子2经磁场偏转后从边界上的B点出磁场,OA=AB,则()A.粒子1与粒子2的速度之比为1∶2B.粒子1与粒子2的速度之比为1∶4C.粒子1与粒子2在磁场中运动的时间之比为1∶1D.粒子1与粒子2在磁场中运动的时间之比为1∶2【答案】AC【解析】粒子1进入磁场后速度的垂线与OA的垂直平分线的交点为粒子1在磁场中的轨迹圆的圆心;同理,粒子2进入磁场后速度的垂线与OB的垂直平分线的交点为粒子2在磁场中的轨迹圆的圆心;由几何关系可知,两个粒子在磁场中做圆周运动的半径之比为r1∶r2=1∶2,由r=可知,粒子1与粒子2的速度之比为1∶2,故A正确,B错误;由于粒子在磁场中做圆周运动,周期均为T=,且两粒子在磁场中做圆周运动的轨迹所对的圆心角相同,则两个粒子在磁场中运动的时间相等,故C正确,D错误.三、实验题15.1879年美国物理学家霍尔在研究载流导体在磁场中受力情况时,发现了一种新的电磁效应:将导体置于磁场中,并沿垂直磁场方向通入电流,则在导体中垂直于电流和磁场的方向会产生一个横向电势差,这种现象后来被称为霍尔效应,这个横向的电势差称为霍尔电势差.(1)如图甲所示,某长方体导体abcd-a′b′c′d′的高度为h、宽度为l,其中的载流子为自由电子,自由电子电荷量为e,导体处在与abb′a′面垂直的匀强磁场中,磁场的磁感应强度为B0.在导体中通有垂直于bcc′b′面的恒定电流,若测得通过导体的恒定电流为I,横向霍尔电势差为U H,此导体中单位体积内自由电子的个数为________.(2)对于某种确定的导体材料,其单位体积内的载流子数目n和载流子所带电荷量q均为定值,人们将H=定义为该导体材料的霍尔系数.利用霍尔系数H已知的材料可以制成测量磁感应强度的探头,有些探头的体积很小,其正对横截面(相当于图甲中的abb′a′面)的面积可以在0.1 cm2以下,因此可以用来较精确地测量空间某一位置的磁感应强度.如图乙所示为一种利用霍尔效应测磁感应强度的仪器,其中探头装在探杆的前端,且使探头的正对横截面与探杆垂直.这种仪器既可以控制通过探头的恒定电流的大小I,又可以监测探头所产生的霍尔电势差U H,并自动计算出探头所测位置磁场的磁感应强度的大小,且显示在仪器的显示窗内.①在利用上述仪器测量磁感应强度的过程中,对控杆的放置方位要求为:______________.②要计算出所测位置磁场的磁感应强度,除了要知道H、I、U H外,还需要知道物理量__________________.推导出用上述物理量表示所测位置磁感应强度大小的表达式:_____________.【答案】(1)(2)①应调整探杆的放置位置(或调整探头的方位),使霍尔电势差达到最大(或使探杆与磁场方向平行;使探头的正对横截面与磁场方向垂直;abb′a′面与磁场方向垂直)②探头沿磁场方向的宽度lB=【解析】(1)设单位体积内的自由电子数为n,自由电子定向移动的速率为v,则有I=nehlv当形成恒定电流时,自由电子所受电场力与洛伦兹力相等,因此有evB0=e解得n=.(2)①应调整探杆的放置方位(或调整探头的方位),使霍尔电势差达到最大(或使探杆与磁场方向平行;探头的正对横截面与磁场方向垂直;abb′a′面与磁场方向垂直).②设探头中的载流子所带电荷量为q,根据上述分析可知,探头处于磁感应强度为B的磁场中,当通有恒定电流I,产生最大稳定霍尔电压U H 时,有qvB=q又因I=nqhlv和H=联立可解得B=所以,还需要知道探头沿磁场方向的宽度l.四、计算题16.如图所示,水平导体棒AB被两根竖直细线悬挂,置于垂直纸面向里的匀强磁场中,已知磁场的磁感应强度B=0.5 T,导体棒长L=1 m,质量m=0.5 kg,重力加速度g=10 m/s2。
高考物理二轮复习题:电场和磁场
高考物理(电场和磁场)二轮习题含答案一、选择题。
1、(双选)质谱仪是用来分析同位素的装置,如图为质谱仪的示意图,其由竖直放置的速度选择器和偏转磁场构成。
由三种不同粒子组成的粒子束以某速度沿竖直向下的方向射入速度选择器,该粒子束沿直线穿过底板上的小孔O 进入偏转磁场,最终三种粒子分别打在底板MN 上的P 1、P2、P 3三点,已知底板MN 上下两侧的匀强磁场方向均垂直纸面向外,且磁感应强度的大小分别为B 1、B 2,速度选择器中匀强电场的电场强度大小为E 。
不计粒子的重力以及它们之间的相互作用,则( )A .速度选择器中的电场方向向右,且三种粒子均带正电B .三种粒子的速度大小均为E B 2C .如果三种粒子的电荷量相等,则打在P 3点的粒子质量最大D .如果三种粒子的电荷量均为q ,且P 1、P 3的间距为Δx ,则打在P 1、P 3两点的粒子质量差为qB 1B 2Δx E2、如图,在磁感应强度大小为B 0的匀强磁场中,两长直导线P 和Q 垂直于纸面固定放置,两者之间的距离为l.在两导线中均通有方向垂直于纸面向里的电流I 时,纸面内与两导线距离均为l 的a 点处的磁感应强度为零.如果让P 中的电流反向、其他条件不变,则a 点处磁感应强度的大小为( )A .0 B.33B 0 C.233B 0 D .2B 03、(多选)如图所示,在某空间的一个区域内有一直线PQ 与水平面成45°角,在PQ 两侧存在垂直于纸面且方向相反的匀强磁场,磁感应强度大小均为B 。
位于直线上的a点有一粒子源,能不断地水平向右发射速率不等的相同粒子,粒子带正电,电荷量为q,质量为m,所有粒子运动过程中都经过直线PQ上的b点,已知ab=d,不计粒子重力及粒子相互间的作用力,则粒子的速率可能为()A.2qBd6m B.2qBd4m C.2qBd2m D.3qBdm4、(双选)如图所示,绝缘中空轨道竖直固定,圆弧段COD光滑,对应圆心角为120°,C、D两端等高,O为最低点,圆弧圆心为O′,半径为R;直线段AC,HD粗糙,与圆弧段分别在C、D端相切;整个装置处于方向垂直于轨道所在平面向里、磁感应强度为B的匀强磁场中,在竖直虚线MC左侧和ND右侧还分别存在着场强大小相等、方向水平向右和向左的匀强电场。
2020高考物理二轮专题复习:磁场(通用型)练习和答案
2020届高考物理磁场(通用型)练习及答案**磁场**一、选择题1、现代质谱仪可用来分析比质子重很多倍的离子,其示意图如图所示,其中加速电压恒定。
质子在入口处从静止开始被加速电场加速,经匀强磁场偏转后从出口离开磁场。
若某种一价正离子在入口处从静止开始被同一加速电场加速,为使它经匀强磁场偏转后仍从同一出口离开磁场,需将磁感应强度增加到原来的12倍。
此离子和质子的质量比约为 ( )A.11B.12C.121D.1442、如图所示,一个边长为L的正方形金属框竖直放置,各边电阻相同,金属框放置在磁感应强度大小为B、方向垂直金属框平面向里的匀强磁场中。
若A、B 两端与导线相连,由A到B通以如图所示方向的电流(由A点流入,从B点流出),流过AB边的电流为I,则金属框受到的安培力大小和方向分别为()A.2BIL,竖直向下B.43BIL,竖直向上C.BIL,竖直向上D.34BIL,竖直向下3、如图所示,蹄形磁铁用悬线悬于O点,在磁铁的正下方有一水平放置的长直导线,当导线中通以由左向右的电流时,蹄形磁铁的运动情况将是()A.静止不动B.向纸外平动C.N极向纸外,S极向纸内转动D.N极向纸内,S极向纸外转动4、(2019·临沂市一模)1876年美国物理学家罗兰完成了著名的“罗兰实验”。
罗兰把大量的负电荷加在一个橡胶圆盘上,然后在圆盘附近悬挂了一个小磁针,将圆盘绕中心轴按如图所示方向高速旋转时,就会发现小磁针发生偏转。
忽略地磁场对小磁针的影响,则下列说法错误的是()A.小磁针发生偏转的原因是橡胶圆盘上产生了感应电流B.小磁针发生偏转说明了电荷的运动会产生磁场C.当小磁针位于圆盘的左上方时,它的N极向左侧偏转D.当小磁针位于圆盘的左下方时,它的N极向右侧偏转5、如图所示,一个理想边界为PQ、MN的匀强磁场区域,磁场宽度为d,方向垂直纸面向里。
一电子从O点沿纸面垂直PQ以速度v0进入磁场。
若电子在磁场中运动的轨迹半径为2d。
2021高考物理二轮复习知识点强化:磁场专题(二)(含答案)
2021年高考物理二轮复习知识点强化训练:磁场专题(二)一、单选题1.如图所示,将通电直导线AB(电流方向由A到B)用绝缘丝线悬挂在电磁铁的正上方,直导线水平且可自由转动,则接通开关S的瞬间()A.直导线A端向下运动,B端向上运动B.直导线A端向纸面外运动,B端向纸面内运动C.直导线A、B端都向纸面内运动D.直导线A、B端都向纸面外运动2.如图所示,在0≤x≤a的区域内存在与xOy平面垂直的匀强磁场,磁感应强度大小为B。
在t=0时刻,从原点O发射一束等速率的相同带电粒子,速度方向与y轴正方向的夹角分布在0°~90°范围内。
其中,沿y轴正方向发射的粒子在t=t0时刻刚好从磁场右边界上()P a点离开磁场,不计粒子重力,下列说法正确的是()A.粒子带正电B.粒子在磁场中做圆周运动的半径为atC.带电粒子在磁场中运动的最短时间为02D.带电粒子在磁场中运动的最长时间为2t03.下列各组物理量,全都是矢量的一组是()A.电场强度、磁感应强度、洛伦兹力B.电流、电场强度、磁通量C.安培力、磁感应强度、磁通量D.电动势、电流、库仑力4.如图所示,矩形线圈abcd放置在水平面内,磁场方向与水平方向成α=53°角,线圈面积为S,匀强磁场的磁感应强度为B,则通过线框的磁通量为(s i n53°=0.8,c o s53°=0.6)()A.BS B.0.6BSC.0.75BS D.0.8BS5.电流的磁效应揭示了电与磁的关系。
下面四幅图中描述磁场方向与电流方向之间的关系,其中磁感线分布正确的是()A.B.C .D .6.回旋加速器的核心部分是两个相距很近的D 形盒,分别和频率固定的高频交流电源相连接,在两个D 形盒的窄缝中产生方向周期性变化的匀强电场使带电粒子加速,窄缝中心处粒子源可以产生初速度为零的带电粒子,D 形盒区域有垂直D 形盒方向的匀强磁场。
则下列说法正确的是( )A .所加磁场的方向也应周期性变化,且变化周期与电场变化周期相同B .对于题中给定的回旋加速器可以对放入其中的任何带电粒子进行加速C .粒子第n 次加速后的速度大小与第()1n +次加速后的速度大小的比值为1n n + D .若仅将D 形盒中磁场加倍,则粒子经加速器获得的最大速度也将加倍7.图示装置叫质谱仪,最初是由阿斯顿设计的,是一种测量带电粒子的质量和分析同位素的重要工具。
[精品]新高三新人教版高中物理第二轮专题训练磁场新人教及答案
磁场1长为L的水平极板间,有垂直纸面向内的匀强磁场,如图所示,磁感强度为B,板间距离也为L,板不带电,现有质量为,电量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是:A.使粒子的速度v<BqL/4;B.使粒子的速度v>5BqL/4;.使粒子的速度v>BqL/;D.使粒子速度BqL/4<v<5BqL/4。
2如图,一段导线bcd位于磁感应强度大小为B的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直。
线段b、bc和cd的长度均为L,且∠=∠=。
流经导线的电流为135abc bcdI,方向如图中箭头所示。
导线段bcd所受到的磁场的作用力的合力A 方向沿纸面向上,大小为1)ILBB 方向沿纸面向上,大小为1)ILB方向沿纸面向下,大小为1)ILBD 方向沿纸面向下,大小为1)ILB3如图10-1,条形磁铁平放于水平桌面上,在它的正中央上方固定一根直导线,导线与磁场垂直,现给导线中通以垂直于纸面向外的电流,则下列说法正确的是:A.磁铁对桌面的压力减小B.磁铁对桌面的压力增大.磁铁对桌面的压力不变D.以上说法都不可能4关于磁感应强度,下列说法正确的是A、一小段通电导线放在B为零的位置,那么它受到的磁场力也一定为零B、通电导线所受的磁场力为零,该处的磁感应强度也一定为零、放置在磁场中1长的通电导线,通过1A的电流,受到的磁场力为1N,则该处的磁感应强度就是1TD、磁场中某处的B的方向跟电流在该处受到磁场力F的方向相同5如图10-4所示,水平放置的扁平条形磁铁,在磁铁的左端正上方有一线框,线框平面与磁铁垂直,当线框从左端正上方沿水平方向平移到右端正上方的过程中,穿过它的磁通量的变是:A.先减小后增大B.始终减小.始终增大D.先增大后减小6带电粒子垂直匀强磁场方向运动时,会受到洛伦兹力的作用。
下列表述正确的是A.洛伦兹力对带电粒子做功B.洛伦兹力不改变带电粒子的动能.洛伦兹力的大小与速度无关D.洛伦兹力不改变带电粒子的速度方向7如图10-6所示,螺线管两端加上交流电压,沿着螺线管轴线方向有一电子射入,则该电子在螺线管内将做 [A.加速直线运动B.匀速直线运动.匀速圆周运动D.简谐运动8图是质谱仪的工作原示意图。
高考物理二轮复习专题磁场测含解析.doc
磁场【满分:110分时间:90分钟】一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中, 1~8题只有一项符合题目要求; 9~12题有多项符合题目要求。
全部选对的得5分,选对但不全的得3分,有选错的得0分。
)1.关于磁感的磁感线,下列说法正确的是()A.条形磁铁的磁感线从磁铁的N极出发,终止于磁铁的S极B.磁感线的疏密表示磁场的强弱,磁感线疏的地方磁场弱,磁感线密的地方磁场强C.磁感线是客观存在的物质,没画磁感线的地方就表示磁场不存在D.通电长直导线周围的磁感线是以导线为圆心的均匀分布的同心圆【答案】 B错误!未指定书签。
2.有一长直螺线管通有正弦交流电(i=I m sinωt),当电子沿螺线管轴线射入后,若不计电子重力,则电子的运动情况是错误!未指定书签。
A.变速直线运动 B.匀速直线运动C.匀速圆周运动 D.沿轴线来回往复【答案】 B【解析】试题分析:由于长通电螺线管中产生的磁场方向平行于螺线管的中心轴线,与电子的运动方向平行,则电子在磁场中不受洛伦兹力,电子重力又不计,则电子做匀速直线运动.故B正确,ACD错误。
(3)用左手定则判断负电荷在磁场中运动所受的洛伦兹力方向时,要注意判断结果与正电荷恰好相反.(4)洛伦兹力对运动电荷(或带电体)不做功,不改变速度的大小,但它可改变运动电荷(或带电体)速度的方向,影响带电体所受其他力的大小,影响带电体的运动时间等.6.一束带电粒子以同一速度v0从同一位置进入匀强磁场,在磁场中它们的轨迹如图所示。
若粒子A的轨迹半径为r1,粒子B的轨迹半径为r2,且r2=2r1,q1、q2分别是它们的带电荷量,m1、m2分别是它们的质量。
则下列分析正确的是错误!未指定书签。
A.A带负电、B带正电,荷质比之比为错误!未指定书签。
B.A带正电、B带负电,荷质比之比为错误!未指定书签。
C.A带正电、B带负电,荷质比之比为错误!未指定书签。
D.A带负电、B带正电,荷质比之比为错误!未指定书签。
高考物理二轮复习专题训练:磁场(含答案详解)
高考磁场复习 ( 附参照答案 )1.图甲是盘旋加快器的表示图,此中心部分是两个“D”形金属盒,在加快带电粒子时,两金属盒置于匀强磁场中,并分别与高频电源相连. 带电粒子在磁场中运动的动能E k随时间t 的变化规律如图乙所示,若忽视带电粒子在电场中的加快时间,则以下说法中正确的选项是A. 在E k-t图中应有t 4-t 3= t3-t 2=t2-t 1B. 高频电源的变化周期应当等于t n- t n-1C. 要使粒子获取的最大动能增大,能够增大“D”形盒的半径D. 在磁感觉强度B、“D”形盒半径尺、粒子的质量 m及其电荷量q不变的状况下,粒子的加快次数越多,粒子的最大动能必定越大答案: AC分析:依据盘旋加快器的原理可知,带电粒子运动周期同样,每经过半个周期加速一次,在E k-t图中应有 t 4-t 3= t 3- t 2= t 2-t 1,选项A正确;高频电源的变化周期应当等于 2( t-tn-1) ,选项 B 错误;粒子的最大动能只与盘旋加快器的 D 型盒半径和磁感觉强度有关,n与加快电压和加快次数没关,要使粒子获取的最大动能增大,能够增大“D”形盒的半径,选项 C 正确 D错误。
2.如下图,带异种电荷的粒子、b 以同样的动能同时从点射入a O 宽度为 d 的有界匀强磁场,两粒子的入射方向与磁场界限的夹角分别为30°和 60°,且同时到达P 点。
a、b 两粒子的质量之比为A.1∶2B.2∶1C.3∶ 4D.4∶ 3答案: C分析:依据粒子 a 、b 动能同样,121 2r a =d/3 ,2 m a v a = 2m b v b ;a 粒子在磁场中运动轨迹半径b 粒子在磁场中运动轨迹半径 r =d ,所对的圆心角为120 °,轨迹弧长为 s =2π r /3=2 πbaad/3 3 ,运动时间 t a = s a / v a ;b 粒子在磁场中运动轨迹所对的圆心角为60°,轨迹弧长为 s b =π r b /3= πd/3 ,运动时间 t b = s b / v b ;联立解得为 a 、 b 两粒子的质量之比为T/6 ,依据周期公式, T= 2 mP 点,的质量之比为 m ∶ m =3∶ 4,选项 C 正确。
高考物理二轮复习专题磁场练含解析
磁场1.如下图,真空中四个同样的矩形匀强磁场地区,高为4d ,宽为d ,中间两个磁场地区间隔为2d ,中轴线与磁场地区双侧订交于O 、O ′点,各地区磁感觉强度大小相等.某粒子质量为m 、电荷量为+q ,从O 沿轴线射入磁场.当入射速度为v 0时,粒子从O 上方处射出磁场.取sin53°=0.8,cos53°=0.6.(1)求磁感觉强度大小B ;(2)入射速度为5v 0时,求粒子从O 运动到O ′的时间t ;(3)入射速度仍为5v 0,经过沿轴线OO ′平移中间两个磁场(磁场不重叠),可使粒子从O 运动到O ′的时间增添Δt ,求Δt 的最大值.【根源】2018年全国一般高等学校招生一致考试物理(江苏卷)【答案】 (1)04m v B q d = (2) (3)m 05d t v ∆=直线运动的时间22d t v =,解得2025d t v = 则点睛:本题考察带电粒子在组合磁场中的运动,第(1)小题先确立粒子圆周运动的半径,再依据洛伦兹力供给向心力列式求解;第(2)小题解答重点是定圆心、画轨迹,分段剖析和计算;第(3)小题求Δt的最大值,重点是要注意带电粒子在磁场中运动的时间不变和速度大小不变,所以中间磁场挪动后改变的是粒子在无磁场地区运动的倾斜轨迹的长度,要使Δt最大,则要倾斜轨迹最长,所以粒子轨迹跟中间磁场的上面相切时运动时间最长,再依据运动的对称性列式求解。
②由题给条件,进入磁场时速度的方向与x轴正方向夹角。
进入磁场时速度的y重量的大小为③联立以上各式得④由牛顿第二定律有⑪设第一次射入磁场时的速度大小为,速度的方向与x轴正方向夹角为,入射点到原点的距离为,在电场中运动的时间为。
由运动学公式有⑫⑬⑭3.【2016·四川卷】如下图,正六边形abcdef地区内有垂直于纸面的匀强磁场。
一带正电的粒子从f点沿fd方向射入磁场地区,当速度大小为v b时,从b点走开磁场,在磁场中运动的时间为t b,当速度大小为v c时,从c点走开磁场,在磁场中运动的时间为t c,不计粒子重力。
2021年高考物理二轮复习 磁场、带电粒子在磁场中运动提能专训
年高考物理二轮复习磁场、带电粒子在磁场中运动提能专训一、选择题(本题共11小题,每小题4分,共44分.多选全部选对的得4分,选对但不全的得2分,有选错的得0分)1.(xx·沈阳市协作校期中联考)地球是一个大磁体:①在地面上放置一个小磁铁,小磁铁的南极指向地磁场的南极;②地磁场的北极在地理南极附近;③赤道附近地磁场的方向和地面平行;④北半球地磁场方向相对地面是斜向上的;⑤地球上任何地方的地磁场方向都是和地面平行的.以上关于地磁场的描述正确的是( )A.①②④B.②③④C.①⑤D.②③答案:D解析:地球本身是一个巨大的磁体,地磁北极在地理南极附近,地磁南极在地理北极附近;北半球的磁场斜向下,南半球磁场斜向上,赤道处的磁场与地面平行.2.(xx·河南十校高三联考)有两根长直导线a、b互相平行放置,如图所示为垂直于导线的截面图.在如图所示的平面内,O点为两根导线连线的中点,M、N为两导线连线的中垂线上的两点,与O点的距离相等,aM与MN夹角为θ.若两导线中通有大小相等、方向相反的恒定电流I,单根导线中的电流在M处产生的磁感应强度为B0,则关于线段MN上各点的磁感应强度,下列说法中正确的是( )A.M点和N点的磁感应强度方向一定相反B.M点和N点的磁感应强度大小均为2B0cos θC.M点和N点的磁感应强度大小均为2B0sin θD.在线段MN上有磁感应强度为零的点答案:C解析:根据安培定则,手握通电直导线,大拇指指向电流方向,四指环绕方向即磁场方向,如图:a的磁场以a为圆心沿逆时针方向,b的磁场以b为圆心沿顺时针方向,a、b在M、N点的磁场方向如图所示.两导线中通有大小相等的电流,且关于MN对称分布,几何关系如图,磁场的合成是矢量合成,遵循平行四边形法则,M点和N点的磁感应强度方向一定相同,A项错误.且根据对称性,大小都等于2B0sin θ,C项正确,B项错误.在MN上面找不到两个磁场方向相反的点,因此合磁场不可能等于0,D项错误.3.(xx·河北石家庄质检)(多选)如图所示,水平长直导线MN中通以M到N方向的恒定电流,用两根轻质绝缘细线将矩形线圈abcd悬挂在其正下方.开始时线圈内不通电流,两细线内的张力均为T,当线圈中通过的电流为I时,两细线内的张力均减小为T′.下列说法正确的是( )A.线圈中通过的电流方向为a→d→c→b→aB.线圈中通过的电流方向为a→b→c→d→aC.当线圈中电流变为TT-T′I时,两细线内的张力均为零D.当线圈中电流变为T′T-T′I时,两细线内的张力均为零答案:BC解析:线圈不通电流时,由力的平衡有2T=mg,当通过的电流为I时,张力减小为T′,由安培定则知通电导线MN在ab处产生的磁场比dc处强,则可判知ab上必受向上的安培力,且大于cd上所受向下的安培力,再结合左手定则判断电流顺时针流动,所以A项错,B项正确.当两细线内张力均为T′时,B ab IL-B cd IL+2T′=mg,当两细线内的张力均为零时,B ab I′L-B cd I′L=mg,且又知2T=mg,联立以上方程得I′=TT-T′I,故C项对,D项错.4.如图所示,两根平行放置、长度均为L 的直导线a 和b ,放置在与导线所在平面垂直的匀强磁场中.当a 导线通有电流强度为I 、b 导线通有电流强度为2I 、且电流方向相反时,a 导线受到的磁场力大小为F 1,b 导线受到的磁场力大小为F 2.则a 通电导线的电流在b 导线处产生的磁感应强度大小为( )A.F 22IL B.F 1IL C.2F 1-F 22IL D.2F 1-F 2IL答案:C解析:设a 、b 两电流间的相互作用力大小为F ,则对导线a ,有F +ILB =F 1,对导线b ,有F +2ILB =F 2,联立可得F =2F 1-F 2,设导线a 在b 线的磁感强度为B ′,可变形为2ILB ′=2F 1-F 2,所以B ′=2F 1-F 22IL,选项C 正确. 5.(xx·山东临沂高三质检)(多选)如图所示,两根长直导线竖直插入光滑绝缘水平桌面上的M 、N 两小孔中,O 为M 、N 连线中点,连线上a 、b 两点关于O 点对称.导线通有大小相等、方向相反的电流.已知通电长直导线在周围产生的磁场的磁感应强度B =k I r,式中k 是常数、I 是导线中电流、r 为点到导线的距离.一带正电的小球以初速度v 0从a 点出发沿连线运动到b 点.关于上述过程,下列说法正确的是( )A .小球先做加速运动后做减速运动B .小球一直做匀速直线运动C .小球对桌面的压力先增大后减小D .小球对桌面的压力一直在增大答案:BC解析:由题意可知桌面内的磁场方向,进而可知小球所受洛伦兹力的方向垂直桌面向上,对小球受力分析,受重力、桌面的支持力、洛伦兹力三个力作用,小球沿桌面方向不受力,故从a 点到b 点,小球一直做匀速直线运动,A 错误,B 正确;由于从a 至b 合磁感应强度先减小后增大,则小球所受洛伦兹力先减小后增大,桌面对小球的支持力先增大后减小,由作用力与反作用力的关系知小球对桌面的压力先增大后减小,C 正确,D 错误.6.(xx·新课标全国卷Ⅱ)(多选如图为某磁谱仪部分构件的示意图.图中,永磁铁提供匀强磁场,硅微条径迹探测器可以探测粒子在其中运动的轨迹.宇宙射线中有大量的电子、正电子和质子.当这些粒子从上部垂直进入磁场时,下列说法正确的是( )A .电子与正电子的偏转方向一定不同B .电子与正电子在磁场中运动轨迹的半径一定相同C .仅依据粒子运动轨迹无法判断该粒子是质子还是正电子D .粒子的动能越大,它在磁场中运动轨迹的半径越小答案:AC解析:根据洛伦兹力提供向心力,利用左手定则解题.根据左手定则,电子、正电子进入磁场后所受洛伦兹力的方向相反,故两者的偏转方向不同,选项A 正确;根据qvB =mv 2r ,得r =mv qB ,若电子与正电子在磁场中的运动速度不相等,则轨迹半径不相同,选项B 错误;对于质子、正电子,它们在磁场中运动时不能确定mv 的大小,故选项C 正确;粒子的mv 越大,轨道半径越大,而mv =2mE k ,粒子的动能大,其mv 不一定大,选项D 错误.7.如图所示,在y >0的区域内存在匀强磁场,磁场垂直于图中的xOy 平面向外,原点O 处有一离子源,沿各个方向射出速率相等的同价负离子,对于进入磁场区域的离子,它们在磁场中做圆周运动的圆心所在的轨迹,可用下面给出的四个半圆中的一个来表示,其中正确的是( )答案:C解析:磁场垂直xOy 平面向外并位于y 轴上方,离子带负电,利用左手定则判断出离子运动方向,并画出草图找出圆心,可判断出C 图是正确的.8.(xx·河北高阳模拟两个带电粒子以同一速度、同一位置进入匀强磁场,在磁场中它们的运动轨迹如图所示.粒子a 的运动轨迹半径为r 1,粒子b 的运动轨迹半径为r 2,且r 2=2r 1,q 1、q 2分别是粒子a 、b 所带的电荷量,则( )A .a 带负电、b 带正电,比荷之比为q 1m 1∶q 2m 2=2∶1B .a 带负电、b 带正电,比荷之比为q 1m 1∶q 2m 2=1∶2C .a 带正电、b 带负电,比荷之比为q 1m 1∶q 2m 2=2∶1D .a 带正电、b 带负电,比荷之比为q 1m 1∶q 2m 2=1∶2答案:C解析:由粒子的运动轨迹及左手定则可判断,a 带正电、b 带负电,根据Bvq =mv 2r ,可得q m =v Br ,所以q 1m 1∶q 2m 2=r 2∶r 1=2∶1,选项C 正确.9.如图所示,在纸面内半径为R 的圆形区域中充满了垂直于纸面向里、磁感应强度为B 的匀强磁场,一点电荷从图中A 点以速度v 0垂直磁场射入,当该电荷离开磁场时,速度方向刚好改变了180°,不计电荷的重力,下列说法正确的是( )A .该点电荷离开磁场时速度方向的反向延长线通过O 点B .该点电荷的比荷为q m =2v 0BRC .该点电荷在磁场中的运动时间t =πR 3v 0D .该点电荷带正电答案:B解析:根据左手定则可知,该点电荷带负电,选项D 错误;粒子在磁场中做匀速圆周运动,其速度方向的偏向角等于其运动轨迹所对应的圆心角,根据题意,该粒子在磁场中的运动轨迹刚好是半个圆周,画出其运动轨迹并找出圆心O 1,如图所示.根据几何关系可知,轨道半径r =R 2,根据r =mv 0Bq 和t =T 2=πr v 0可求出,该点电荷的比荷为q m =2v 0BR和该点电荷在磁场中的运动时间t =πR 2v 0,所以选项B 正确,C 错误;该点电荷离开磁场时速度方向的反向延长线不通过O 点,选项A 错误.本题答案为B 项.10.(xx·湖南四县一中联考)如图所示,一个理想边界为PQ 、MN 的匀强磁场区域,磁场宽度为d ,方向垂直纸面向里,一电子从O 点沿纸面垂直PQ 以速度v 0进入磁场,若电子在磁场中运动的轨道半径为2d .O ′在MN 上,且OO ′与MN 垂直.下列判断正确的是( )A .电子将向右偏转B .电子打在MN 上的点与O ′点的距离为dC .电子打在MN 上的点与O ′点的距离为3dD .电子在磁场中运动的时间为πd 3v 0 答案:D解析:电子带负电,进入磁场后,根据左手定则判断可知,所受的洛伦兹力方向向左,电子将向左偏转,如图所示,A 项错误;设电子打在MN 上的点与O ′点的距离为x ,则由几何知识得:x =r -r 2-d 2=2d -2d 2-d 2=(2-3)d ,故B 、C 项错误;设轨迹对应的圆心角为θ,由几何知识得:sin θ=d 2d =0.5,得θ=π6,则电子在磁场中运动的时间为t =θr v 0=πd 3v 0,故D 项正确. 11.(xx·湖北省重点中学联考)(多选)如图,在x >0,y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy 平面向里,大小为B ,现有四个相同的带电粒子,由x 轴上的P 点以不同初速度平行于y 轴射入此磁场,其出射方向如图所示,不计重力影响,则( )A .初速度最大的粒子是沿①方向出射的粒子B .初速度最大的粒子是沿②方向出射的粒子C .在磁场中运动经历时间最长的是沿③方向出射的粒子D .在磁场中运动经历时间最长的是沿④方向出射的粒子答案:AD解析:由R =mv qB 可知,速度越大,粒子在磁场中做圆周运动的半径越大,A 项正确,B项错误;由T =2πm qB知,各粒子的运动周期相同,沿④方向出射的粒子的轨迹对应的圆心角最大,用时最长,C 项错误,D 项正确.二、计算题(本题包括4小题,共56分.解答应写出必要的文字说明、方程式和重要演算步骤,只写出最后答案不能得分)12.(xx·山西四校第二次联考)(12分)如图所示,三角形区域磁场的三个顶点a 、b 、c 在直角坐标系内的坐标分别为(0,2 3 cm),(-2 cm,0),(2 cm,0),磁感应强度B =4×10-4 T ,大量比荷q m =2.5×105 C/kg不计重力的正离子,从O 点以v =2 3 m/s 相同的速率沿不同方向垂直磁场射入该磁场区域.求:(1)离子运动的半径;(2)从ac 边离开磁场的离子,离开磁场时距c 点最近的位置坐标;(3)从磁场区域射出的离子中,在磁场中运动的最长时间.答案:见解析解析:(1)由qvB =m v 2R 得,R =mv qB,代入数据可解得R =2 3 cm (2)沿Oc 方向入射的粒子离开磁场时距c 点最近,设从ac 边离开磁场的离子距c 最近的点的坐标为M (x ,y ),则x =R sin 30°= 3 cmy =R -R cos 30°=(23-3) cm离c 最近的点的坐标为M [ 3 cm ,(23-3) cm](3)从a 点离开磁场的离子在磁场中运动时间最长,其轨迹所对的圆心角为60° T =2πm Bq =π50 s t =T 6=π300s. 13.(14分)如图所示,在一个边长为a 的正六边形区域内存在磁感应强度为B 、方向垂直于纸面向里的匀强磁场,三个相同带正电的粒子,比荷为q m ,先后从A 点沿AD 方向以大小不等的速度射入匀强磁场区域,粒子在运动过程中只受磁场力作用.已知编号为①的粒子恰好从F 点飞出磁场区域,编号为②的粒子恰好从E 点飞出磁场区域,编号为③的粒子从ED 边上的某一点垂直边界飞出磁场区域,求:(1)编号为①的粒子进入磁场区域的初速度大小;(2)编号为②的粒子在磁场区域内运动的时间;(3)编号为③的粒子在ED 边上飞出的位置与E 点的距离.答案:见解析解析:(1)设编号为①的粒子在正六边形区域磁场中做圆周运动的半径为r 1,初速度大小为v 1,则qv 1B =m v 21r 1由几何关系可得,r 1=a 2sin 60°解得v 1=3Bqa 3m(2)设编号为②的粒子在正六边形区域磁场中做圆周运动的半径为r 2,线速度大小为v 2,周期为T 2,则qv 2B =m v 22r 2,T 2=2πr 2v 2解得T 2=2πm Bq由几何关系可得,粒子在正六边形区域磁场运动过程中,转过的圆心角为60°,则粒子在磁场中运动的时间t =T 6=πm 3Bq(3)设编号为③的粒子在正六边形区域磁场中做圆周运动的半径为r 3,由几何关系可得 AE =2a cos 30°=3a r 3=AE sin 30°=23a OE =AEtan 30°=3a EG =r 3-OE =(23-3)a14.(xx·大连模拟)(14分) 如图所示,在一半径为R 的圆形区域内有磁感应强度为B 的匀强磁场,方向垂直纸面向外.一束质量为m 、电量为q 带正电的粒子沿平行于直径MN 的方向进入匀强磁场,粒子的速度大小不同,重力不计.入射点P 到直径MN 的距离为h ,求:(1)某粒子经过磁场射出时的速度方向恰好与其入射方向相反,求粒子的入射速度是多大?(2)恰好能从M 点射出的粒子速度是多大?(3)若h =R2,粒子从P 点经磁场到M 点的时间是多少? 答案:(1)qBh m (2)qBR R -R 2-h 2mh (3)7πm 6qB解析:(1)粒子出射方向与入射方向相反,即在磁场中运动了半个周期,其半径r 1=h则qv 1B =m v 21r 1解得v 1=qBh m.粒子从M 点射出,其运动轨迹如图,在△MQO 1中r 22=(R -R 2-h 2)2+(h -r 2)2 得r 2=R 2-R R 2-h 2hqv 2B =m v 22r 2所以v 2=qBR R -R 2-h 2mh. (3)若h =R 2,sin ∠POQ =h R ,可得∠POQ =π6由几何关系得粒子在磁场中偏转所对圆心角为α=7π6周期T =2πm Bq所以t =α2πT =7πm 6Bq. 15.(xx·广西四校调研(16分)如图所示,以O 为原点建立平面直角坐标系Oxy ,沿y 轴放置一平面荧光屏,在y >0,0<x <0.5 m 的区域有垂直于纸面向里的匀强磁场,磁场的磁感应强度大小B =0.5 T .在原点O 放一个开有小孔的粒子源,粒子源能同时放出比荷为q m =4.0×106kg/C 的不同速率的正离子束,沿与x 轴成30°角从小孔射入磁场,最后打在荧光屏上,使荧光屏发亮,入射正离子束的速率在0到最大值v m =2.0×106 m/s 的范围内,不计离子之间的相互作用,也不计离子的重力. (1)求离子从粒子源放出到打到荧光屏上所用的时间;(2)求离子打到荧光屏上的范围;(3)实际上,从O 点射入的正离子束有一定的宽度,设正离子将在与x 轴成30°~60°角内进入磁场,则某时刻(设为t =0时刻)在这一宽度内向各个方向射入各种速率的离子,经过5π3×10-7 s 时这些离子可能出现的区域面积是多大? 答案:(1)π3×10-6 s (2)y =0到y = 3 m (3)0.26 m 2解析:(1)离子在磁场中运动的周期为:T =2πm qB=π×10-6 s 由几何关系知,能够打到荧光屏上的离子从粒子源放出到打到荧光屏上转过的圆心角α都相等α=2π3离子从粒子源放出到打到荧光屏所用时间t =α2πT =π3×10-6 s(2)由qvB =mv 2r 得r =mv qB, 则r m =mv m qB=1 m 离子在磁场中运动的最大轨道半径r m =1 m由几何关系知,最大速度的离子刚好沿磁场边缘打在荧光屏上,如图,所以OA 1长度为:y =2r m cos 30°= 3 m即离子打到荧光屏上的范围为:y =0到y = 3 m(3)经过时间t =5π3×10-7 s 时离子转过的圆心角φ=2πT t =π3与x 轴成60°方向入射的离子,在t =5π3×10-7 s 时刚好打在y 轴上,与x 轴成30°方向入射的离子,在t =5π3×10-7 s 时都到达线段OC 1,所以在t =0时刻与x 轴成30°~60°内进入磁场的正离子在t =5π3×10-7 s 时刻全部出现在以O 为圆心的扇形OA 2C 1范围内,如图所示则离子可能出现的区域面积:S =πr 2m 12=π12 m 2=0.26 m 2。
高三物理二轮复习 作业卷二十六 磁场2(含解析)
× × × × × × × × ×× × × × × × ×× ×× × × × × ×× × ×× × × × × vθc dabM N l磁场2一、单选题(本大题共4小题 。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.(2015广东高考真题)在同一匀强磁场中,α粒子(He 42)和质子(H 21)做匀速圆周运动,若它们的动量大小相等,则α粒子和质子A .运动半径之比是2∶1B .运动周期之比是2∶1C .运动速度大小之比是4∶1D .受到的洛伦兹力之比是2∶12.(2015四川高考真题)小型手摇发电机线圈共N 匝,每匝可简化为矩形线圈abcd ,磁极间的磁场视为匀强磁场,方向垂直于线圈中心轴OO ′,线圈绕OO ′匀速转动,如图所示。
矩形线圈ab 边和cd 边产生的感应电动势的最大值都为e 0,不计线圈电阻,则发电机输出电压A .峰值是e 0B .峰值是2e 0C .有效值是022Ne D .有效值是02Ne 3.(2015北京高考真题)实验观察到,静止在匀强磁场中A 点的原子核发生β衰变,衰变产生的新核与电子恰在纸面内匀速圆周运动,运动方向和轨迹示意如图,则( )A 、轨迹1是电子的,磁场方向垂直纸面向外B 、轨迹2是电子的,磁场方向垂直纸面向外C 、轨迹1是新核的,磁场方向垂直纸面向里D 、轨迹2是新核的,磁场方向垂直纸面向里 4.(2015安徽高考真题)如图所示,abcd 为水平放置的平行“”形光滑金属导轨,间距为l ,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计。
高考物理二轮复习 专题12 磁场 专题练(信阳高中)(含答案)
专题12磁场专题练1.如图所示,平行线PQ、MN之间有方向垂直纸面向里的匀强磁场,电子从P沿平行于PQ且垂直于磁场方向射入磁场,其中速率为v1的电子与MN成60°角,速率为v2的电子与MN成45°角射出磁场,v1:v2等于()A.(2:1 B.—1):1 C 1 D2.关于电场强度和磁感应强度,下列说法错误的是()A.电荷在某处不受电场力作用,则该处电场强度一定为零B.某点的电场强度的方向,与该检验正电荷受到的电场力方向一致C.一小段通电导线在某处不受磁场力作用,则该处磁感应强度一定为零D.某点磁感应强度的方向,与该点一小段通电导线受到的磁场力方向不一致。
3.如图甲是磁电式电流表的结构示意图,蹄形磁铁和铁芯间的磁场均匀辐向分布,如图乙所示,边长为l的正方形线圈中通以电流I,线圈中的某一条a导线电流方向垂直纸面向外,b导线电流方向垂直纸面向内,a、b两条导线所在处的磁感应强度大小均为B.则()A.该磁场是匀强磁场B.该线圈的磁通量为Bl2C.a导线受到的安培力方向向下D.b导线受到的安培力大小为BIl4.如图是质谱仪的工作原理示意图,带电粒子被加速电场加速后,进入速度选择器.速度选择器内互相垂直的匀强磁场和匀强电场的强度分别为B和.E挡板S上有可让粒子通过的狭缝P 和记录粒子位置的胶片12.A A 平板S 下方有强度为0B 的匀强磁场.下列表述正确的是( )A .质谱仪是分析同位素的重要工具B .速度选择器中的磁场方向垂直纸面向里C .能通过狭缝P 的带电粒子的速率等于B ED .粒子打在胶片上的位置越靠近狭缝P ,粒子的比荷越小5.如图所示为速度选择器,两平行金属板水平放置,板间存在相互垂直的匀强电场和匀强磁场,电场强度大小为E (图中未标出),磁感应强度大小为B 。
一束带正电的粒子(不计重力)以速度v 0从左端沿水平方向进入两板间,恰好做直线运动。
下列说法正确的是( )A .上极板带负电B .速度v 0的大小满足0E v BC .只改变粒子的电性,粒子在两板间将做曲线运动D .使该粒子以速度v 0从右端沿水平方向进入,粒子在两板间仍能做直线运动6.关于磁感应强度B =F IL,下列说法正确的是 A .磁感应强度大小是由磁场本身因素决定的,而与有无检验电流无关B .磁感应强度大小与电流元IL 的乘积成反比,与F 成正比C .磁感应强度方向与电流元IL 在此点的受力方向相同D .电流元在磁场中受力为F ,则磁感应强度B 一定等于F IL7.关于物理学史,下列说法中不正确的是( )A .电荷量e 的数值最早是由美国物理学家密立根测得的C.库仑在前人工作的基础上,通过实验研究确认了真空中两个静止点电荷之间的相互作用力的规律D.安培首先发现电流周围存在磁场8.在地球赤道上,某放射源产生的一束α粒子(即氦原子核、带正点粒子)沿竖直向上的方向射出,考虑到地磁场的影响,这一束α粒子的运动轨迹将A.向东偏转B.向西偏转C.向南偏转D.向北偏转9.如图所示,两根平行固定放置的长直导线a和b载有大小、方向均相同的电流,a 受到的磁场力大小为F,当加入一与导线所在平面垂直的匀强础场后,a受到的磁场力大小变为2F,则此时b受到的磁场力大小可能为()A.4F B.3F C.2F D.010.如图所示,把柔软的铝箔条折成天桥状并用胶纸粘牢两端固定主桌面上,使蹄形磁铁横跨过“天桥”,当电池与铝箔接通时( )A.铝箔条中部向下方运动B.铝箔条中部向上方运动C.蹄形磁铁对桌面的压力增大D.蹄形磁铁对桌面的压力减小11.如图所示,在xOy平面内存在着破感应强度大小为B的匀强磁场,第一、二、四O)、Q(O ,L)为坐标轴上的两个点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011高考物理二轮复习 磁场专题训练2 一、选择题 1.浙江省金华一中2011届高三12月联考如图所示,在倾角为α的光滑斜面上,垂直纸面放置一根长为L ,质量为m 的直导体棒。
当导体棒中的电流Ⅰ垂直纸面向里时,欲使导体棒静止在斜面上,可将导体棒置于匀强磁场中,当外加匀强磁场的磁感应强度B 的方向在纸面内由垂直向上沿逆时针转至水平向左的过程中,下列关于B 的大小变化的说法中,正确的是 ( C )A .逐渐增大B .逐渐减小C .先减小后增大D .先增大后减小2. 山东省潍坊市2011届高三上学期阶段性测试如图所示,一带负电的滑块从粗糙斜面的顶端滑至底端时的速率为v ,若加一个垂直纸面向外的匀强磁场,并保证滑块能滑至底端,则它滑至底端时的速率( B )A 、变大B 、变小C 、不变D 、条件不足,无法判断3.江苏省盐城、泰州联考2011届高三学情调研如图所示,在Oxyz 坐标系所在的空间中,可能存在着匀强电场E 或匀强磁场B ,也可能两者都存在。
现有一质量为m 、电荷量为q 的正点电荷沿z 轴正方向射入此空间,发现它做速度为v 0的匀速直线运动。
若不计此点电荷的重力,则下列关于电场E 和磁场B 的分布情况中有可能的是 ( B )A .E ≠0,B =0,且E 沿z 轴正方向或负方向B .E =0,B ≠0,且B 沿x 轴正方向或负方向C .E ≠0,B ≠0,B 沿x 轴正方向,E 沿y 轴正方向D .E ≠0,B ≠0,B 沿x 轴正方向,E 沿y 轴负方向4.湖南省雅礼中学2011届高三上学期第五次月考如图所示为一个质量为m 、带电量为+q 的圆环,可在水平放置的足够长的粗糙细杆上滑动,细杆处于磁感应强度为B 的匀强磁场中。
现给圆环向右初速度v 0,在以后的运动过程中,圆环克服摩擦力所做的功可能为:( ABC )C .22232221B q g m mv o -D .无法确定 A .0 B .2021mv 5.山东省兖州市2011届高三上学期模块检测一束带电粒子以同一速度,并从同一位置进入匀强磁场,在磁场中它们的轨迹如图所示.粒子1q 的轨迹半径为1r ,粒子2q 的轨迹半径为2r ,且212r r =,1q 、2q 分别是它们的带电量,则 ( C )× × × × × × × × × × × ×BA .1q 带负电、2q 带正电,荷质比之比为1212:2:1q q m m =B .1q 带负电、2q 带正电,荷质比之比为1212:1:2q q m m = C .1q 带正电、2q 带负电,荷质比之比为1212:2:1q q m m = D .1q 带正电、2q 带负电,荷质比之比为1212:1:1q q m m = 6.江苏省盐城、泰州联考2011届高三学情调研如图所示,圆形区域内有垂直纸面的匀强磁场,三个质量和电荷量都相同的带电粒子a 、b 、c ,以不同的速率对准圆心O 沿着AO 方向射入磁场,其运动轨迹如图。
若带电粒子只受磁场力的作用,则下列说法正确的是 ( B )A .a 粒子动能最大B .c 粒子速率最大C .c 粒子在磁场中运动时间最长D .它们做圆周运动的周期c b a T T T <<7.湖南师大附中2011届高三第五次月考试卷在图中实线框所示的区域内同时存在着匀强磁场和匀强电场.一个带电粒子(不计重力)恰好能沿直线MN 从左至右通过这一区域.那么匀强磁场和匀强电场的方向可能..为下列哪种情况A .匀强磁场方向竖直向上,匀强电场方向垂直于纸面向外B .匀强磁场方向竖直向上,匀强电场方向垂直于纸面向里C .匀强磁场方向垂直于纸面向里,匀强电场方向竖直向上D .匀强磁场和匀强电场的方向都水平向右8.福建省龙岩二中2011届高三摸底考试如图所示,水平放置的平行金属板a 、b 带有等量异种电荷,a 板带正电,两板间有垂直于纸面向里的匀强磁场,若一个带正电的液滴在两板间做直线运动,其运动的方向是 ( D )A .沿竖直方向向下B .沿竖直方向向上C .沿水平方向向左D .沿水平方向向右9.海南省海口市2011届高三调研测试如图所示,一束电子以大小不同的速率沿图示方向飞入横截面为一正方形的匀强磁场区,在从ab 边离开磁场的电子中,下列判断正确的是 ( AD )A.从b 点离开的电子速度最大B.从b 点离开的电子在磁场中运动时间最长C.从b 点离开的电子速度偏转角最大D.在磁场中运动时间相同的电子,其轨迹线一定重合10.北京市第八十中学2009——2011学年度第一学期月考由中国提供永磁体的阿尔法磁谱仪如图所示,它曾由航天飞机携带升空,将来安装在阿尔法国际空间站中,主要使命之一是探索宇宙中的反物质。
所谓的反物质即质量与正粒子相等,带电量与正粒子相等但相反,例如反质子即为,假若使一束质子、反质子、α粒子和反α粒子组O b A N M成的射线,以相同的速度通过OO'进入匀强磁场B2而形成的4条径迹,则:( C )A .1、3是反粒子径迹B .2、4为反粒子径迹C .1、2为反粒子径迹D .4为反α粒子径迹11.江西省九江市上学期六校2011届高三联考如图所示,一闭合的小金属环用一根绝缘细杆挂在固定点O 处,使金属圆环在竖直线OO ′的两侧来回摆动的过程中穿过水平方向的匀强磁场区域,磁感线的方向和水平面垂直。
若悬点摩擦和空气阻力均不计,则 ( AC )A .金属环每次进入和离开磁场区域都有感应电流,而且感应电流的方向相反B .金属环进入磁场区域后越靠近OO ′线时速度越大,而且产生的感应电流越大C .金属环开始摆动后,摆角会越来越小,摆角小到某一值后不再减小D .金属环在摆动过程中,机械能将全部转化为环中的电能12.海南省海口市2011届高三调研测试如图所示,电源电动势为E ,内阻为r ,滑动变阻器电阻为R ,开关K 闭合。
两平行极板间有匀强磁场,一带电粒子(不计重力)正好以速度v 匀速穿过两板。
以下说法正确的是: ( AB )A .保持开关闭合,将滑片p 向上滑动一点,粒子将可能从下极板边缘射出B .保持开关闭合,将滑片p 向下滑动一点,粒子将可能从下极板边缘射出C .保持开关闭合,将a 极板向下移动一点,粒子将一定向下偏转D .如果将开关断开,粒子将继续沿直线穿出13.湖南省雅礼中学2011届高三上学期第五次月考如图,在x >0、y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于oxy 平面向里,大小为B 。
现有一质量为m 电量为q 的带电粒子,在x 轴上到原点的距离为x 0的P 点,以平行于y 轴的初速度射入此磁场, 在磁场作用下沿垂直于y 轴的方向射出此磁场。
不计重力的影响。
由这些条件可知 ( ABC )A .能确定粒子通过y 轴时的位置B .能确定粒子速度的大小C .能确定粒子在磁场中运动所经历的时间D .以上三个判断都不对 14.吉林省长白县2011届高三质量检测如图所示,虚线EF 的下方存在着正交的匀强电场和匀强磁场,电场强度为E ,磁感应强度为B .一带电微粒自离EF 为h 的高处由静止下落,从B 点进入场区,做了一段匀速圆周运动,从D 点射出. 下列说法正确的是 ( ABD )A .微粒受到的电场力的方向一定竖直向上B .微粒做圆周运动的半径为g h B E2 C .从B 点运动到D 点的过程中微粒的电势能和重力势能之 和在最低点C 最小D .从B 点运动到D 点的过程中微粒的电势能先增大后减小h B CD E F× × × × × ×× × × × × × × × × × × × × × × × × × P B x y O15.浙江省温州市十校联合体2011届高三期中联考在一绝缘、粗糙且足够长的水平管道中有一带电量为q 、质量为m 的带电球体,管道半径略大于球体半径。
整个管道处于磁感应强度为B 的水平匀强磁场中,磁感应强度方向与管道垂直。
现给带电球体一个水平速度v 0,则在整个运动过程中,带电球体克服摩擦力所做的功可能为( AC )A 、0B 、221⎪⎪⎭⎫ ⎝⎛qB mg m C 、2021mv D 、⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+22021qB mg v m 。
16.浙江省金华一中2011届高三12月联考环形对撞机是研究高能粒子的重要装置,其工作原理的示意图如图所示。
正、负离子由静止经过电压为U 的直线加速器加速后,沿圆环切线方向射入对撞机的真空环状空腔内,空腔内存在着与圆环平面垂直的匀强磁场,磁感应强度大小为B 。
两种带电粒子将被局限在环状空腔内,沿相反方向做半径相等的匀速圆周运动,从而在碰撞去迎面相撞。
为维持带电粒子在环状空腔中的匀速圆周运动,下列说法中正确的是 ( BC )A .对于给定的加速电压,带电粒子的比荷q/m 越大,磁感应强度B 越大B .对于给定的加速电压,带电粒子的比荷q/m 越大,磁感应强度B 越小C .对于给定的带电粒子,加速电压U 越大,粒子运动的周期越小D .对于给定的带电粒子,不管加速电压U 多大,粒子运动的周期都不变二、非选择题17.四川省宜宾市2011届高三摸底测试如图所示,竖直平面内有两根相距为L 电阻不计的光滑平行金属杆轨道,轨道与水平放置的平行金属板相连,极板距离为d ,轨道间有垂直轨道平面向里磁感应强度为B 的匀强磁场,一电阻为R 与轨道接触良好的金属杆在轨道上匀速滑动时,极板间一电量为q 质量为m的带正电粒子恰好静止,则杆的运动方向为 ,速度大小为 。
答案:向左 mgd/qBL18.广东省蓝田中学2011届高三摸底考试如图所示,宽度为L 的足够长的平行金属导轨MN 、PQ 的电阻不计,垂直导轨水平放置一质量为m 电阻为R 的金属杆CD ,整个装置处于垂直于导轨平面的匀强磁场中,导轨平面与水平面之间的夹角为θ,金属杆由静止开始下滑,动摩擦因数为μ,下滑过程中重力的最大功率为P ,求磁感应强度的大小. 解:金属杆先加速后匀速运动,设匀速运动的速度为v ,此时有最大功率,金属杆的电动势为:E=BLv ) × × × × × ×× × × × × ×× × × × × × B v 0回路电流 I = E R 安培力 F = BIL 金属杆受力平衡,则有:mgsinθ= F + μmgcosθ 重力的最大功率P = mgvsinθ (1分)解得:B = mg L Rsin θ(sin θ-μcos θ)P19.福建省龙岩二中2011届高三摸底考试如图所示,在x <0且y <0的区域内存在匀强磁场,磁场方向垂直于xy 平面向里.磁感应强度大小为B ,在x >0且y <0的区域内存在沿y 轴正方向的匀强电场. 一质量为m 、电荷量为q 的带电粒子从x 轴上的M 点沿y 轴负方向垂直射入磁场,结果带电粒子从y 轴的N 点射出磁场而进入匀强电场,经电场偏转后打到x 轴上的P 点,已知OM =ON =OP =l 。