无锡市梁溪区2017-2018学年七年级上期末数学试题含答案

合集下载

2017~2018学年度七年级上学期期末复习数学试卷(附答案)

2017~2018学年度七年级上学期期末复习数学试卷(附答案)

2017~2018学年度七年级上学期期末复习数学试卷(附答案)(本满分:120分,时间:120分钟)一、选择题(每小题3分,共30分)1.如果表示增加,那么表示( ) A.增加B.增加C.减少D.减少 2.有理数在数轴上表示的点如图所示,则的大小关系是( )A.B. C. D. 3.下列各式正确的是( )。

A .B .C . D. 4.在下列选项中,既是分数,又是负数的是( ) A .9 B. 15 C .-0.125D .-72 5.有理数、在数轴上对应的位置如上图所示,则( )A.a-b <0B.a+b >0C.a-b =0D.a-b >06.在-5,-101,-3.5,-0.01,-2,-212各数中,最大的数是( )A.-212B.-101C .-0.01 D.-5 7.某市年在校初中生的人数约为0000,用科学记数法表示为( ) A. B. C.D. 8.用四舍五入法按要求对0.05019分别取近似值,其中错误的是( )A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.050 2(精确到0.0001)9.计算2220121(2)()(1)2-⨯-⨯-得( )。

A . 1 B . -1 C .1± D.201210.若规定“!”是一种数学运算符号,且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,⋯,则 的值为( )!98!10050.A !99.C 9900.B !2.D (第5题图)1132>1123->-0.1(0.01)->-- 3.14-π<-二、填空题(每小题3分,共30分) 11.31-的倒数是___,321-的绝对值是___, 的相反数是 。

12.在数轴上,点所表示的数为2,那么到点的距离等于3个单位长度的点所表示的数是 . 13.在211-,2.1,2-,0 ,()2--中,负数的个数有 个。

七年级上册无锡数学期末试卷测试卷(解析版)

七年级上册无锡数学期末试卷测试卷(解析版)

七年级上册无锡数学期末试卷测试卷(解析版)一、选择题1.如图所示,沿图中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A .B .C .D .2.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因( ) A .两点之间,线段最短 B .过一点有无数条直线 C .两点确定一条直线D .两点之间线段的长度,叫做这两点之间的距离 3.下列说法中不正确的是( ) A .两点之间线段最短B .过直线外一点有且只有一条直线与这条直线平行C .直线外一点与直线上各点连接的所有线段中,垂线段最短D .若 AC=BC ,则点 C 是线段 AB 的中点4.实数,a b 在数轴上的位置如图所示,给出如下结论:①0a b +>;②0b a ->;③a b ->;④a b >-;⑤0a b >>.其中正确的结论是( )A .①②③B .②③④C .②③⑤D .②④⑤5.有理数-53的倒数是( ) A .53 B .53-C .35D .356.截止到今年6月初,东海县共拥有镇村公交线路28条,投入镇村公交42辆,每天发班236班次,日行程5286公里,方便了98. 46万农村人口的出行.数据“98. 46万”可以用科学记数法表示为() A .498.4610⨯B .49.84610⨯C .59.84610⨯D .60.984610⨯7.如图,有一个正方体纸巾盒,它的平面展开图不可能的是( )A .B .C .D .8.下列图形中,线段AD 的长表示点A 到直线BC 距离的是( )A .B .C .D .9.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β一定相等的图形个数共有( )A .1个B .2个C .3个D .4个10.由n 个相同的小正方体搭成的几何体,其主视图和俯视图如图所示,则n 的最小值为( )A .10B .11C .12D .1311.某商品原价为m 元,由于供不应求,先提价30%进行销售,后因供应逐步充足,价格又一次性降价30%,售价为n 元,则m ,n 的大小关系为( ) A .m n =B .0.91n m =C .30%n m =-D .30%n m =-12.据江苏省统计局统计:2018年三季度南通市GDP 总量为6172.89亿元,位于江苏省第4名,将这个数据用科学记数法表示为( ) A .36.1728910⨯亿元 B .261.728910⨯亿元 C .56.1728910⨯亿元D .46.1728910⨯亿元13.如图,是一个正方体的展开图则“数”字的对面的字是( )A .核B .心C .素D .养 14.地球上陆地的面积约为1490000002km ,数149000000科学记数法可表示为( ) A .90.14910⨯, B .81.4910⨯C .714.910⨯D .614910⨯15.关于零的叙述,错误的是( )A .零大于一切负数B .零的绝对值和相反数都等于本身C .n 为正整数,则00n =D .零没有倒数,也没有相反数.二、填空题16.如图,已知∠AOB=75°,∠COD=35°,∠COD 在∠AOB 的内部绕着点O 旋转(OC 与OA 不重合,OD 与OB 不重合),若OE 为∠AOC 的角平分线.则2∠BOE -∠BOD 的值为______.17.单项式235a b-的次数为____________.18.比较大小:π1-+ _________3-(填“<”或“=”或“>”). 19.若4550a ∠=︒',则a ∠的余角为______.20.写出一个含a 的代数式,使a 不论取什么值,这个代数式的值总是负数__. 21.正方体切去一块,可得到如图几何体,这个几何体有______条棱.22.数轴上有A 、B 、C 三点,A 、B 两点所表示的数如图所示,若BC =3,则AC 的中点所表示的数是_______.23.将一张长方形纸条折成如图所示的图形,如果∠1=64°,那么∠2=_______.24.如图是一个数值转换机.若输出的结果为10,则输入a 的值为______.25.下列各数:3.141592、1.010010001、..4.21、π、813中,无理数有_______个三、解答题26.计算(1)2212 6.533-+--;(2)4210.5132(3)⎡⎤---÷⨯--⎣⎦.27.如图,线段 AB 的中点为 M ,C 点将线段 MB 分成 MC :CB=1:3 的两段,若 AC=10,求AB 的长.28.如图,点O 在直线AB 上,OC ⊥AB .在RtΔODE 中,∠ODE=90°,∠DOE=30°,先将ΔODE 一边OE 与OC 重合(如图1),然后将ΔODE 绕点O 按顺时针方向旋转(如图2),当OE 与OC 重合时停止旋转.(1)当∠AOD=80°时,则旋转角∠COE 的大小为____________ ; (2)当OD 在OC 与OB 之间时,求∠AOD -∠COE 的值;(3)在ΔODE 的旋转过程中,若∠AOE=4∠COD 时,求旋转角∠COE 的大小.29.某市电力部门对居民用电按月收费,标准如下:①用电不超过100度的,每度收费0.5元;②用电超过100度的,超过部分每度收费0.8元.请根据上述收费标准解答下列问题:(1)小明家1月份用电140度,应交电费______________元; (2)小明家2月交电费98元,则他家2月份用电多少度?30.先化简,再求值:()()22225343a b ab ab a b ---+,其中a=-2,b=12;31.数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴时,我们发现有许多重要的规律:例如,若数轴上点 A , B 表示的数分别为 a , b ,则 A , B 两点之间的距离AB=a-b ,线段 AB 的中点M 表示的数为2a b+.如图,在数轴上,点A,B,C 表示的数分别为-8,2,20.(1)如果点A 和点C 都向点B 运动,且都用了4秒钟,那么这两点的运动速度分别是点A 每秒_______个单位长度、点C 每秒______个单位长度;(2)如果点A 以每秒1个单位长度沿数轴的正方向运动,点C 以每秒3个单位长度沿数轴的负方向运动,设运动时间为t 秒,请问当这两点与点B 距离相等的时候,t 为何值? (3)如果点A 以每秒1个单位长度沿数轴的正方向运动,点B 以每秒3个单位长度沿数轴的正方向运动,且当它们分别到达C 点时就停止不动,设运动时间为t 秒,线段AB 的中点为点P ;① t 为何值时PC=12; ② t 为何值时PC=4. 32.解方程:(1)-5x +3=-3x -5; (2)4x -3(1-x )=11.33.我们定义:若两个角差的绝对值等于60,则称这两个角互为“正角”,其中一个角是另一个角的“正角”,如:1110∠=,250∠=,|12|60-=∠∠,则1∠和2∠互为“正角”.如图,已知120AOB ∠=,射线OC 平分AOB ∠, EOF ∠在AOB ∠的内部,若60EOF ∠=,则图中互为“正角”的共有___________对.四、压轴题34.一般情况下2323a b a b ++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b++=+成立的一对数,a b 为“相伴数对”,记为(),a b . (1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由; (3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对”. 35.在有些情况下,不需要计算出结果也能把绝对值符号去掉,例如:|6+7|=6+7;|7﹣6|=7﹣6;|6﹣7|=7﹣6;|﹣6﹣7|=6+7.(1)根据上面的规律,把下列各式写成去掉绝对值符号的形式: ①|7+21|=______;②|﹣12+0.8|=______;③23.2 2.83--=______; (2)用合理的方法进行简便计算:1111924233202033⎛⎫-++---+ ⎪⎝⎭(3)用简单的方法计算:|13﹣12|+|14﹣13|+|15﹣14|+…+|12004﹣12003|. 36.某市两超市在元旦节期间分别推出如下促销方式: 甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折; 已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少? (2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由. 37.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.38.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .39.如图,已知点A 、B 是数轴上两点,O 为原点,12AB =,点B 表示的数为4,点P 、Q 分别从O 、B 同时出发,沿数轴向不同的方向运动,点P 速度为每秒1个单位.点Q 速度为每秒2个单位,设运动时间为t ,当PQ 的长为5时,求t 的值及AP 的长.40.如图,A 、B 、C 三点在数轴上,点A 表示的数为10-,点B 表示的数为14,点C 为线段AB 的中点.动点P 在数轴上,且点P 表示的数为x .(1)求点C 表示的数;(2)点P 从点A 出发,向终点B 运动.设BP 中点为M .请用含x 的整式表示线段MC 的长.(3)在(2)的条件下,当x 为何值时,2AP CM PC -=?41.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有 条. (2)总结规律:一条直线上有n 个点,线段共有 条.(3)拓展探究:具有公共端点的两条射线OA 、OB 形成1个角∠AOB (∠AOB <180°);在∠AOB 内部再加一条射线OC ,此时具有公共端点的三条射线OA 、OB 、OC 共形成3个角;以此类推,具有公共端点的n 条射线OA 、OB 、OC…共形成 个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?42.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).43.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:根据该图形的上下底边平行且相等的特点可得旋转一周后得到的平面应是平行且全等的关系,即可得到结果.由题意得该图形旋转后可得上下底面是平行且半径相同的2个圆,应为圆柱,故选B.考点:本题考查的是旋转的性质点评:解答本题的关键是熟练掌握长方形绕长或宽旋转一周得到的几何体是圆柱.2.A解析:A【解析】【分析】根据两点之间,线段最短解答即可.【详解】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,其原因是两点之间,线段最短,故选:A . 【点睛】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.3.D解析:D 【解析】 【分析】根据线段公理,平行公理,垂线段最短等知识一一判断即可. 【详解】A.两点之间,线段最短,正确;B.经过直线外一点,有且只有一条直线与这条直线平行,正确;C.直线外一点与这条直线上各点连接的所有线段中,垂线段最短,正确;D.当A 、B 、C 三点在一条直线上时,当AC=BC 时,点 C 是线段 AB 的中点;故错误; 故选:D . 【点睛】本题考查线段公理,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.C解析:C 【解析】 【分析】根据数轴上点的距离判断即可. 【详解】由图可得: 0a b +<;0b a ->;a b ->;a b <-;0a b >>; ∴②③⑤正确 故选C. 【点睛】本题考查数轴相关知识,关键在于熟悉数轴的定义与性质.5.D解析:D 【解析】 【分析】根据倒数的定义,即乘积是1的两数互为倒数可得答案. 【详解】解:-53的倒数是-35, 故选:D . 【点睛】本题考查了倒数的定义,熟练掌握倒数的求法是解题的关键.6.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:将98.46万用科学记数法表示为59.84610 . 故选:C . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.B解析:B 【解析】 【分析】由平面图形的折叠及正方体的展开图解题. 【详解】解:观察图形可知,A 选项中的圆和纸巾是对面,不是邻面,是对面. 故选A .考点:几何体的展开图.8.D解析:D 【解析】 【分析】点到直线的距离是指垂线段的长度. 【详解】解:线段AD 的长表示点A 到直线BC 距离的是图D ,故选:D . 【点睛】本题考查了点到直线的距离的定义,注意是垂线段的长度,不是垂线段是解题关键.9.B【解析】【分析】根据直角三角板可得第一个图形∠α+∠β=90°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α+∠β=90°,根据同角的余角相等可得第二个图形∠α=∠β,第三个图形∠α和∠β互补,根据等角的补角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有2个,故选B.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.10.C解析:C【解析】【分析】根据主视图、俯视图是分别从物体正面和上面看,所得到的图形即可求出答案.【详解】由俯视图知,最少有7个立方块,∵由正视图知在最左边前后两层每层3个立方体,中间3个每层2个立方体和最右边前两排每层3个立方体,∴n的最小值是:7+5=12,故选C.【点睛】此题主要考查了由三视图判断几何体,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.11.B解析:B【解析】【分析】首先表示出提价30%的价格,进而表示出降价30%的价格即可得出答案.【详解】解:∵商品原价为m元,先提价30%进行销售,∴价格是: m (1+30%)∵再一次性降价30% ,∴售价为:n= m (1+30%) (1-30%) =0.91m【点睛】此题主要考查了一元一次方程的应用,根据已知得出升降价后实际价格是解题关键.12.A解析:A【解析】【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】6172.89亿=6.17289×103亿.故选A .【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.13.D解析:D【解析】【分析】根据正方体的展开图即可得出答案.【详解】根据正方体的展开图可知:“数”的对面的字是“养”“学”的对面的字是“核”“心”的对面的字是“素”故选:D .【点睛】本题主要考查正方体的展开图,掌握正方体展开图的特点是解题的关键.14.B解析:B【解析】【分析】用科学记数法表示较大的数时,注意a ×10n 中a 的范围是1≤a <10,n 是正整数,n 与原数的整数部分的位数-1.【详解】解:8149000000 1.4910=⨯故选:B .【点睛】本题考查用科学记数法表示绝对值大于1的数.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,能正确确定a和n是解决此题的关键.15.D解析:D【解析】【分析】根据数轴、绝对值、相反数、倒数、乘方的定义依次对各选项进行判断即可.【详解】解:A.零大于所有的负数,说法正确;因为在数轴上,负数都在0的左边,正数都在0的右边,越往右,数越来越大,越往左,数越来越小;B.根据绝对值和相反数的定义,零的绝对值和相反数都等于本身,说法正确;n ,说法正确;C.根据乘方的定义,当n为正整数时,0n代表n个0相乘,故00D.零的相反数是它本身,故本选项说法错误.故选:D.【点睛】本题考查数轴、绝对值、相反数、倒数和乘方,理解这些基本定义是解决此题的关键.二、填空题16.110°【解析】【分析】由角平分线的定义可知∠AOC=2∠AOE,由角的和差可知∠BOE=∠AOB-∠AOE,代入2∠BOE-∠BOD整理即可.【详解】∵OE为∠AOC的角平分线,∴∠A解析:110°【解析】【分析】由角平分线的定义可知∠AOC=2∠AOE,由角的和差可知∠BOE=∠AOB-∠AOE,代入2∠BOE-∠BOD整理即可.【详解】∵OE为∠AOC的角平分线,∴∠AOC=2∠AOE,∵∠BOE=∠AOB-∠AOE,∴2∠BOE-∠BOD=2(∠AOB-∠AOE) -∠BOD=2∠AOB-2∠AOE -∠BOD=2∠AOB-∠AOC -∠BOD=2∠AOB-(∠AOC +∠BOD)=2∠AOB-(∠AOB -∠COD)=∠AOB+∠COD=75°+35°=110°.故答案为:110°.【点睛】本题考查了角平分线的有关计算,以及角的和差,结合图形找出不同角之间的数量关系是解答本题的关键.17.3【解析】【分析】根据单项式次数的定义来求解.【详解】解:单项式的次数为3.【点睛】本题考查了单项式、多项式的有关定义,是基础知识,需牢固掌握.解析:3【解析】【分析】根据单项式次数的定义来求解.【详解】解:单项式235a b的次数为3.【点睛】本题考查了单项式、多项式的有关定义,是基础知识,需牢固掌握.18.>【解析】【分析】根据两个负数比较大小,绝对值大的反而小,即可得到答案. 【详解】解:∵,且,∴,故答案为:.【点睛】本题考查了实数的大小比较,解题的关键是掌握实数比较大小的法则. 解析:>【解析】【分析】根据两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵1(1)ππ-+=--,且13π-<,∴13π-+>-,故答案为:>.【点睛】本题考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.19.【解析】【分析】根据余角的定义(两个角的和为,则这两个角互为余角)可求解.【详解】解:,所以的余角为.故答案为:.【点睛】本题考查了余角,熟练掌握余角的定义是解题的解析:4410'︒【解析】【分析】根据余角的定义(两个角的和为90︒,则这两个角互为余角)可求解.【详解】解:9045041504︒'='︒︒-,所以a ∠的余角为4410'︒.故答案为:4410'︒.【点睛】本题考查了余角,熟练掌握余角的定义是解题的20.-a2-1(答案不唯一)【解析】【分析】要求所写代数式的值恒为负数,联系平常所学知识,正数的相反数是负数及初中阶段所学三种数具有非负性:绝对值,偶次方,二次根式,不难得出结果.【详解】由题解析:-a 2-1(答案不唯一)【分析】要求所写代数式的值恒为负数,联系平常所学知识,正数的相反数是负数及初中阶段所学三种数具有非负性:绝对值,偶次方,二次根式,不难得出结果.【详解】由题意,可知符合条件的代数式可以是-|a|-1,-a2-1,-2a-5等,答案不唯一.【点睛】本题是开放性试题,答案不唯一.通过对此题的训练,有利于培养学生的发散思维.21.12【解析】【分析】通过观察图形即可得到答案.【详解】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点睛】此题主要考查了认识正方体,关键是看正方体切的位置.解析:12【解析】【分析】通过观察图形即可得到答案.【详解】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点睛】此题主要考查了认识正方体,关键是看正方体切的位置.22.5或4.5【解析】【分析】分两种情况得到C点所表示的数,再根据中点坐标公式可求AC的中点所表示的数.解:∵B为5,BC=3,∴C点为2或8,∴AC的中点所表示的数是(1+2)÷解析:5或4.5【解析】【分析】分两种情况得到C点所表示的数,再根据中点坐标公式可求AC的中点所表示的数.【详解】解:∵B为5,BC=3,∴C点为2或8,∴AC的中点所表示的数是(1+2)÷2=1.5或(1+8)÷2=4.5.故答案为:1.5或4.5.【点睛】本题考查了数轴,解题的关键是确定C点所表示的数,注意分类思想的应用.23.58°.【解析】【分析】由折叠可得,∠2=∠CAB,依据∠1=64°,即可得到∠2= (180°-64°)=58°.【详解】由折叠可得,∠2=∠CAB,又∵∠1=64°,∴∠2=(18解析:58°.【解析】【分析】由折叠可得,∠2=∠CAB,依据∠1=64°,即可得到∠2=12(180°-64°)=58°.【详解】由折叠可得,∠2=∠CAB,又∵∠1=64°,∴∠2=12(180°-62°)=58°,故答案为58°.【点睛】本题考查了折叠性质,平行线性质的应用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.24.【解析】【分析】根据题意列出关于a的方程,利用平方根定义求出a的值即可.【详解】解:根据题意得:0.5(a2+4)=10,整理得:a2=16,解得:a=±4,故答案为:±4.【点睛解析:4【解析】【分析】根据题意列出关于a的方程,利用平方根定义求出a的值即可.【详解】解:根据题意得:0.5(a2+4)=10,整理得:a2=16,解得:a=±4,故答案为:±4.【点睛】此题考查了开平方运算,熟练掌握运算法则是解本题的关键.25.2【解析】【分析】根据无理数的定义进行判断即可.【详解】下列各数:、、、、中,无理数为:、共有2个故答案为:2【点睛】本题考查了无理数的定义,掌握无理数的定义是解题的关键.解析:2【解析】【分析】根据无理数的定义进行判断即可.【详解】下列各数:3.141592、1.010010001、..4.21、π、813中,无理数为:1.010010001、π共有2个故答案为:2【点睛】本题考查了无理数的定义,掌握无理数的定义是解题的关键.三、解答题26.(1)-5.5;(2)1 6 .【解析】【分析】根据有理数的计算法则计算即可.【详解】(1)解:原式=1 6.52--+=-5.5.(2)解:原式=111(29)23--⨯⨯-=7 16 -+=1 6 .【点睛】本题考查有理数的计算,关键在于熟练掌握计算方法.27.16【解析】试题分析:本题需先设MC=x,根据已知条件C点将线段MB分成MC:CB=1:3的两段,求出MB=4x,利用M为AB的中点,列方程求出x的长,即可求出试题解析:设MC=x,∵MC:CB=1:3∴BC=3x,MB=4x.∵M为AB的中点.∴AM=MB=4x.∴AC=AM+MC=4x+x=10,即x=2.∴AB=2AM=8x=16.28.(1)20;(2)60°;(3)6°或70°.【解析】【分析】(1)根据旋转的性质,求出旋转角的度数,即可得到答案;(2)由旋转的性质可知,''D OD E OE ∠=∠,由(1)知'60AOD ∠=︒,根据角的和差关系,即可得到∠AOD -∠COE 的值;(3)根据题意,可分为两种情况进行分析:①OD 在OA 与OC 之间时;②OD 在OC 与OB 之间时;设∠COE 为x ,根据角的和差关系列出等式,分别求出答案即可.【详解】解:(1)由图1可知,∠AOD=903060︒-︒=︒,如图2,当∠AOD=80°时,有:∠COE=80°-60°=20°,故答案为:20°.(2)如图:由(1)知,'60AOD ∠=︒,由旋转的性质,可知''D OD E OE ∠=∠,∴''''60AOD COE AOD D OD E OE AOD ∠-∠=∠+∠-∠=∠=︒;(3)根据题意,设∠COE 为x ,则①如图,当OD 在OA 与OC 之间时,∴∠AOE=90°+x ,∠COD=30°x -,∵∠AOE=4∠COD ,∴904(30)x x ︒+=︒-,解得:6x =︒;②如图,当OD 在OC 与OB 之间时,∴∠AOE=90°+x ,∠COD=x 30-︒, ∵∠AOE=4∠COD , ∴904(30)x x ︒+=-︒, 解得:70x =︒;∴旋转角∠COE 的大小为:6°或70°. 【点睛】本题考查了旋转的性质,以及角的有关计算的应用,能根据题意求出各个角的度数是解此题的关键,注意利用分类讨论的思想进行解题,题目比较好,难度不大. 29.(1)82(2)160度; 【解析】 【分析】(1)根据总电价=0.5×用电度数以及总电价=100×0.5+(用电度数−100)×0.8,代入数据即可得出结论;(2)先确认小明家2月交电费98元时,用电量大于100度,根据总电价=100×0.5+(用电度数−100)×0.8即可得出关于x 的一元一次方程,解之即可得出结论. 【详解】:解:(1)100×0.5=50(元), 100×0.5+(140−100)×0.8=82(元) 故答案是:82;(2)因为当月用电量为100度时,应收费50元,而小明家2月交电费90元, 所以小明家2月份用电量超过100度. 设小明家2月份用电x 度,根据题意,得: 100×0.5+0.8×(x−100)=98, 解方程,得:x =160. 答:小明家2月份用电160度. 【点睛】本题考查了一元一次方程的应用,根据数量关系总价=单价×数量列出一元一次方程是解题的关键. 30.3a 2b-ab 2,132【解析】 【分析】先根据去括号法则和合并同类项法则将整式化简,然后代入求值即可.【详解】 解:()()22225343a b ababa b ---+=2222155412a b ab ab a b -+- =223a b ab - 将a=-2,b=12代入,得 原式=()()221113322222⎛⎫⨯-⨯--⨯= ⎪⎝⎭【点睛】此题考查的是整式的化简求值题,掌握去括号法则和合并同类项法则是解决此题的关键. 31.(1)2.5;4.5;(2)t =4或7;(3)①112;②20 【解析】 【分析】(1)根据数轴上两点之间的距离公式求出AB 的长和BC 的长,然后根据速度=路程÷时间即可得出结论;(2)分点A 和点C 相遇前AB=BC 、相遇时AB=BC 和相遇后AB=BC 三种情况,分别画出对应的图形,然后根据AB=BC 列出方程求出t 的即可;(3)①分点B 到达点C 之前和点B 到达点C 之后且点A 到点C 之前两种情况,分别画出对应的图形,利用中点公式、两点之间的距离公式和PC=12列方程即可求出t 的值; ②分点B 到达点C 之前和点B 到达点C 之后且点A 到点C 之前两种情况,分别画出对应的图形,利用中点公式、两点之间的距离公式和PC=12列方程即可求出t 的值; 【详解】解:(1)∵点A,B,C 表示的数分别为-8,2,20. ∴AB=2-(-8)=10,BC=20-2=18∵点A 和点C 都向点B 运动,且都用了4秒钟,∴点A 的速度为每秒:AB ÷4=2.5个单位长度,点C 的速度为每秒:BC ÷4=4.5个单位长度,故答案为:2.5;4.5. (2)AC=20-(-8)=28∴点A 和点C 相遇时间为AC ÷(1+3)=7s当点A 和点C 相遇前,AB=BC 时,此时0<t <7,如下图所示此时点A 运动的路程为1×t=t ,点C 运动的路程为3×t=3t ∴此时AB=10-t ,BC=18-3t ∵AB=BC ∴10-t=18-3t解得:t=4;当点A 和点C 相遇时,此时t=7,如下图所示此时点A 和点C 重合 ∴AB=BC 即t=7;当点A 和点C 相遇后,此时t >7,如下图所示由点C 的速度大于点A 的速度 ∴此时BC >AB故此时不存在t ,使AB=BC .综上所述:当A 、C 两点与点B 距离相等的时候,t =4或7.(3)点B 到达点C 的时间为:BC ÷3=6s ,点A 到达点C 的时间为:AC ÷1=28s ①当点B 到达点C 之前,即0<t <6时,如下图所示此时点A 所表示的数为-8+t ,点B 所表示的数为2+3t ∴线段AB 的中点P 表示的数为()()823232t t t -+++=-∴PC=20-(2t -3)=12 解得:t=112; 当点B 到达点C 之后且点A 到点C 之前,即6≤t <28时,如下图所示此时点A 所表示的数为-8+t ,点B 所表示的数为20 ∴线段AB 的中点P 表示的数为()820622t t-++=+ ∴PC=20-(62t+)=12 解得:t=4,不符合前提条件,故舍去.。

无锡市七年级上册数学期末试题及答案解答

无锡市七年级上册数学期末试题及答案解答

无锡市七年级上册数学期末试题及答案解答一、选择题1.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .592 2.计算(3)(5)-++的结果是( ) A .-8B .8C .2D .-23.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( ) A .3 B .4 C .5 D .64.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .22B .22﹣1C .22+1D .15.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .346.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+57.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13D .x =138.若a<b,则下列式子一定成立的是( ) A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 9.一个几何体的表面展开图如图所示,则这个几何体是( )A .四棱锥B .四棱柱C .三棱锥D .三棱柱 10.如果+5米表示一个物体向东运动5米,那么-3米表示( ). A .向西走3米B .向北走3米C .向东走3米D .向南走3米11.下列等式的变形中,正确的有( ) ①由5 x =3,得x =53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得mn=1. A .1个B .2个C .3个D .4个12.3的倒数是( ) A .3B .3-C .13D .13-13.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-14.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0m B .0.8m C .0.8m - D .0.5m - 15.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定二、填空题16.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 17.已知x=5是方程ax ﹣8=20+a 的解,则a= ________18.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.19.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.20.把5,5,35按从小到大的顺序排列为______.21.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.22.如果一个数的平方根等于这个数本身,那么这个数是_____.23.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋. 24.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________.25.当x= 时,多项式3(2-x )和2(3+x )的值相等.26.已知一个角的补角是它余角的3倍,则这个角的度数为_____.27.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.28.若代数式x 2+3x ﹣5的值为2,则代数式2x 2+6x ﹣3的值为_____.29.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.30.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.三、压轴题31.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.32.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD . (1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.33.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a +24|+|b +10|+(c -10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由. 34.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.35.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.36.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2. ①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O 以每秒5°的速度沿顺时针方向旋转的同时,射线OC 也绕点O 以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC 第一次平分∠MON ?请说明理由.37.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.38.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项. 【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++, 第二行四个数分别为7,8,9,10x x x x ++++, 第三行四个数分别为14,15,16,17x x x x ++++, 第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C. 【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.2.C解析:C 【解析】 【分析】根据有理数加法法则计算即可得答案. 【详解】(3)(5)-++=5+-3- =2 故选:C. 【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.3.C解析:C【解析】【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解.【详解】解:∵﹣2xy n+2与 3x3m-2y 是同类项,∴3m-2=1,n+2=1,解得:m=1,n=-1,∴|n﹣4m|=|-1-4|=5,故选C.【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键.4.D解析:D【解析】【分析】根据题意列出算式,计算即可得到结果.【详解】解:∵A,B﹣1,∴A,B﹣1)=1;故选:D.【点睛】此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.5.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.6.A解析:A【解析】试题分析:设段数为x,根据题意得:当n=0时,x=1,当 n=1时,x=1+4=5,当 n=2时,x=1+4+4=9,当 n=3时,x=1+4+4+4=13,所以当n=n时,x=4n+1.故选A.考点:探寻规律.7.D解析:D【解析】【分析】方程移项,把x系数化为1,即可求出解.【详解】解:方程3x﹣1=0,移项得:3x=1,解得:x=13,故选:D.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键. 9.A解析:A【解析】试题分析:根据四棱锥的侧面展开图得出答案.试题解析:如图所示:这个几何体是四棱锥.故选A.考点:几何体的展开图.10.A解析:A 【解析】∵+5米表示一个物体向东运动5米, ∴-3米表示向西走3米, 故选A.11.B解析:B 【解析】 ①若5x=3,则x=35, 故本选项错误; ②若a=b ,则-a=-b , 故本选项正确; ③-x-3=0,则-x=3, 故本选项正确; ④若m=n≠0时,则nm=1, 故本选项错误. 故选B.12.C解析:C 【解析】根据倒数的定义可知. 解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.13.C解析:C 【解析】 【分析】根据相反数的定义进行判断即可. 【详解】A. 2的相反数是-2,所以2与12不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意; C. 2与-2互为相反数,符合题意;D. 211=--,所以-1与21-不是相反数,不符合题意;故选:C.【点睛】本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.14.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】+,解∵水位升高0.6m时水位变化记作0.6m-,∴水位下降0.8m时水位变化记作0.8m故选:C.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.15.C解析:C【解析】【分析】由题意直接根据根据绝对值的性质,即可求出这个数.【详解】-或6.解:如果一个有理数的绝对值是6,那么这个数一定是6故选:C.【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.二、填空题16.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.17.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.18.【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解. 【详解】根据题意可得:∠AOB=(90解析:141【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90-54)+90+15=141°.故答案为141°.【点睛】此题主要考查角度的计算与方位,熟练掌握,即可解题.19.-2【解析】【分析】根据图和题意可得出答案.【详解】解:表示的数互为相反数,且,则A 表示的数为:.故答案为:.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.解析:-2【解析】【分析】根据图和题意可得出答案.【详解】解:,A B 表示的数互为相反数,且4AB =,则A 表示的数为:2-.故答案为:2-.【点睛】本题考查的是数轴上距离的含义,解题关键是对数轴距离的理解.20.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,<<,55<<.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 21.2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n解析:2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n−a=3时,|m-n|=8;当a−m=5,n−a=-3时,|m-n|=2;当a−m=-5,n−a=3时,|m-n|=2;当a−m=-5,n−a=-3时,|m-n|=8故本题答案应为:2或8【点睛】绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键22.0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵±=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】解析:0【解析】【分析】由于任何一个正数的平方根都有两个,它们互为相反数,由此可以确定平方根等于它本身的数只有0.【详解】∵=±0=0,∴0的平方根等于这个数本身.故答案为0.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.23.5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得:2(x﹣1)﹣1﹣1=x+1解得:x=5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 25.【解析】试题解析:根据题意列出方程3(2-x )=2(3+x )去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x )=2(3+x )去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.26.45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α解析:45°【解析】【分析】根据互为余角的和等于90°,互为补角的和等于180°用这个角表示出它的余角与补角,然后列方程求解即可.【详解】设这个角为α,则它的余角为90°﹣α,补角为180°﹣α,根据题意得,180°-α=3(90°-α),解得α=45°.故答案为:45°.【点睛】本题考查了余角与补角,能分别用这个角表示出它的余角与补角是解题的关键.27.72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 28.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x+3x=7,则原式=2(2x+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键29.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是-︒解析:18.4C【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.30.﹣3cm【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm 时水位变化记作﹣3cm .故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm 时水位变化记作﹣3cm . 故答案为:﹣3cm .【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.三、压轴题31.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON ═12(360°-∠AOB )═12×240°=120°, ∵∠MOI=3∠POI ,∴180°-3t=3(60°-61202t -)或180°-3t=3(61202t --60°), 解得t=30或45, 综上所述,满足条件的t 的值为152s 或15s 或30s 或45s . 【点睛】 此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.32.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.33.(1) a=-24,b=-10,c=10;(2) 点P的对应的数是-443或4;(3) 当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8,理由见解析【解析】【分析】(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a、b、c的值;(2)分两种情况讨论可求点P的对应的数;(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.【详解】(1)∵|a+24|+|b+10|+(c-10)2=0,∴a+24=0,b+10=0,c-10=0,解得:a=-24,b=-10,c=10;(2)-10-(-24)=14,①点P在AB之间,AP=14×221=283,-24+283=-443,点P的对应的数是-443;②点P在AB的延长线上,AP=14×2=28,-24+28=4,点P的对应的数是4;(3)∵AB=14,BC=20,AC=34,∴t P=20÷1=20(s),即点P运动时间0≤t≤20,点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;当P在Q点左侧时,且Q点追上P点后,2t-8=14+t,解得t=22>17(舍去);当Q点到达C点后,当P点在Q点左侧时,14+t+8+2t-34=34,t=463<17(舍去);当Q点到达C点后,当P点在Q点右侧时,14+t-8+2t-34=34,解得t=623>20(舍去),当点P到达终点C时,点Q到达点D,点Q继续行驶(t-20)s后与点P的距离为8,此时2(t-20)+(2×20-34)=8,解得t=21;综上所述:当Q 点开始运动后第6、21秒时,P 、Q 两点之间的距离为8.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,掌握非负数的性质,再结合数轴解决问题.34.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.35.(1)-12,8-5t ;(2)94或114;(3)10;(4)MN 的长度不变,值为10. 【解析】【分析】(1)根据已知可得B 点表示的数为8﹣20;点P 表示的数为8﹣5t ;(2)运动时间为t 秒,分点P 、Q 相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10,②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=10,∴线段MN的长度不发生变化,其值为10.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.36.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC平分∠MON列方程求解即可.【详解】(1)①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC.(2)∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°;(3)设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.即t=5时,射线OC第一次平分∠MON.【点睛】本题考查了一元一次方程的应用以及角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.37.(1)AC=4cm, BC=8cm;(2)当45t=时,AP PQ=;(3)当2t=时,P与Q第一次相遇;(4)35191cm.224t PQ=当为,,时,【解析】【分析】(1)由于AB=12cm,点C是线段AB上的一点,BC=2AC,则AC+BC=3AC=AB=12cm,依此即可求解;(2)分别表示出AP、PQ,然后根据等量关系AP=PQ列出方程求解即可;(3)当P与Q第一次相遇时由AP AC CQ=+得到关于t的方程,求解即可;。

2017-2018第一学期七年级数学期末试题参考答案

2017-2018第一学期七年级数学期末试题参考答案

2017—2018学年第一学期期末学业水平检测七年级数学试题参考答案各位老师:提前祝假期快乐,阅卷时请注意:评分标准仅做参考,只要学生作答正确,均可得分。

对于解答题目,答案错误原则上得分不超过分值的一半,有些题目有多种方法,只要做对,即可得分。

另外请各位阅卷老师仔细核对答案,如有问题,请及时更正。

题号123456789101112D B D C C A B A A D C C 13.1514.215.1116.∠BOD 17.42018.-719(1)解:原式=21-2-4-+………………………………3分=61-…………………………………………5分(2)解:原式=)(16-16-16811-⨯+…………………………7分=-1+2+0…………………………………………9分=1………………………………………………10分20.(1)解:方程两边同乘以12得:4(x+1)-12=24-3(2+3x)………………2分去括号得:4x+4-12=24-6-9x……………………………………3分移项得:13x=26………………………………………………4分系数化为1得:x=2…………………………………………5分(2)解:根据题意得:x 32-.5x 0=,……………………………………2分去分母得:2x-8=3x…………………………………………3分移项得:-x=8……………………………………………………4分系数化为1得:x=-8………………………………………………5分21.解:(1)根据题意得,所捂住的整式为:⎥⎦⎤⎢⎣⎡---+)2231(223y x 2-y x x ………………………………2分=)2231(223y x 2-y x x -+-+=2232223y x 2-y x x -+-+=2y 31x 23-+……………………………5分(2)将x=-2,y=3代入2y 31x 23-+得:原式=3+3=6……………………………………………………8分22.解:(1)AC,C,BC;…………………………3分(2)点D 在线段AC 上,∵E 为线段AC 中点,EC=5,∴AC=2CE=10,∵CD=4,∴AD=AC﹣CD=6,∵BC+CD=AD=6,∴BC=6﹣4=2;…………………………………………………6分点D 在线段BC 上,∵E 为线段AC 中点,EC=5,∴AC=2CE=10,∵CD=4,∴AC+CD=14,∵BD=AC+CD=14,∴BC=14+4=18.……………………………………………………8分23.解:(1)①∠BOD=∠AOB.………………………………………1分∵∠AOB +∠COD = 180,∠BOD +∠COD =180∴∠AOB=∠BOD.……………………………………………2分②设∠COD=x ,则∠AOB=︒36-x 21∴︒︒=-+1803621x x …………………………………………3分∴0144=x ,∠AOB=036=∴∠AOC=︒︒=-=∠14436180-18000AOB ………………………4分(2)∵OE 、OF 分别平分∠BOC 与∠AOD ,∴∠EOC=BOC ∠1,∠AOF=AOD ∠1∴∠EOF=∠EOC+∠AOF-∠AOC ……………………………………6分=BOC ∠21+AOD ∠21-∠AOC =)(21AOD BOC ∠+∠-∠AOC =)2(21AOC COD AOB ∠-∠+∠-∠AOC =)(21COD AOB ∠+∠= 18021⨯=90…………………………8分24.解:设还需x 天完成这项工作,根据题意得:110x 102152=++……………………………………4分解得:x=320…………………………………………7分答:还需320天完成剩余的工作。

2017-2018学年第一学期期末测试七年级数学试题及答案

2017-2018学年第一学期期末测试七年级数学试题及答案

2017—2018学年第一学期期末测试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分为120分。

考试用时100分钟。

考试结束后,只上交答题卡。

2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。

3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案不能答在试题卷上。

24.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列算式:(1) (2)--;(2) 2- ;(3) 3(2)-;(4) 2(2)-. 其中运算结果为正数的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 2.若a 与b 互为相反数,则a-b 等于(A )2a (B )-2a (C ) 0 (D )-2 3.下列变形符合等式基本性质的是(A )如果2a -b =7,那么b =7-2a (B )如果mk =nk ,那么m =n (C )如果-3x =5,那么x =5+3 (D )如果-13a =2,那么a =-64.下列去括号的过程(1)c b a c b a --=--)(; (2)c b a c b a ++=--)(; (3)c b a c b a +-=+-)(; (4)c b a c b a --=+-)(.其中运算结果错误的个数为(A ) 1 (B ) 2 (C ) 3 (D ) 4【 5.下列说法正确的是(A )1-x 是一次单项式 (B)单项式a 的系数和次数都是1 (C )单项式-π2x 2y 2的次数是6 (D)单项式24102x ⨯的系数是26.下列方程:(1)2x -1=x -7 ,(2)12x =13x -1 ,(3)2(x +5)=-4-x , (4)23x =x -2.其中解为x =-6的方程的个数为 (A ) 4 (B ) 3 (C ) 2 (D ) 1 7.把方程5.07.01.023.012.0-=--x x 的分母化为整数的方程是 (A )57203102-=--x x (B )5723102-=--x x (C )572312-=--x x (D )5720312-=--x x 8.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物,28.3亿吨用科学记数法表示为(A ) 28.3×107(B ) 2.83×108(C )0.283×1010(D )2.83×1099.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是 (A )用两个钉子就可以把木条固定在墙上(B )利用圆规可以比较两条线段的大小关系 (C )把弯曲的公路改直,就能缩短路程(D )植树时,只要定出两棵树的位置,就能确定同一行树所在的直线10.一个两位数,个位数字为a ,十位数字为b ,把这个两位数的个位数字与十位数字 交换,得到一个新的两位数,则新两位数与原两位数的和为 (A )b a 99+ (B )ab 2 (C )ab ba + (D )b a 1111+ 11.已知表示有理数a 、b 的点在数轴上的位置如图所示:则下列结论正确的是(A )|a|<1<|b| (B )1<a<b (C )1<|a|<b (D ) -b<-a<-1 12.定义符号“*”表示的运算法则为a*b =ab +3a ,若(3*x)+(x*3)=-27,则x = (A )29-(B )29(C )4 (D )-4 第Ⅱ卷(非选择题)(第11题图)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.若把45.58°化成以度、分、秒的形式,则结果为 . 14.若xm-1y 3与2xyn的和仍是单项式,则(m-n )2018的值等于______ .15. 若031)2(2=++-y x ,则y x -= . 16.某同学在计算10+2x 的值时,误将“+”看成了“﹣”,计算结果为20, 那么10+2x 的值应为 . 17.如图,数轴上相邻刻度之间的距离是51,若BC=52,A 点在数轴上对应的数值是53-,则B 点在数轴上对应的数值是 .218.我们知道,钟表的时针与分针每隔一定的时间就会重合一次,请利用所学知识确定,时针与分针从上一次重合到下一次重合,间隔的时间是______ 小时.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题分5分,本小题满分10分)计算: (1)11(0.5)06(7)( 4.75)42-+--+-- (2)[(﹣5)2×]×(﹣2)3÷7.20.(每小题分5分,本小题满分10分)先化简,再求值: (1)3x 2-[5x-(6x-4)-2x 2],其中x=3(2)(8mn-3m 2)-5mn-2(3mn-2m 2),其中m=-1,n=2. 21.(每小题分5分,本小题满分10分)解方程:53-(1)6322-41--=x x . (2)3125121103--=+x x . 22.(本小题满分8分)一个角的余角比这个角的补角的 13还小10°,求这个角的度数.23.(本大题满分10分)列方程解应用题:A 车和B 车分别从甲,乙两地同时出发,沿同一路线相向匀速而行.出发后1.5小时两车相距75公里,之后再行驶2.5小时A 车到达乙地,而B 车还差40公里才能到达甲地.求甲地和乙地相距多少公里?24.(本小题满分12分)如图,∠AOB 是直角,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线. (1)当∠AOC =40°,求出∠MON 的大小,并写出解答过程理由; (2)当∠AOC =50°,求出∠MON 的大小,并写出解答过程理由; (3)当锐角∠AOC=α时,求出∠MON 的大小,并写出解答过程理由.2017—2018学年第一学期期末测试七年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CADCBCBDCDCD二、填空题(本大题6个小题,每小题4分,共24分)(第24题图)13.45°34'48"; 14.1; 15.37; 16. 0 ; 17.0或54 ; 18.1112 . 三、解答题(本大题6个小题,共60分) 19.(每小题分5分,本小题满分10分)计算: 解:(1)11(0.5)06(7)( 4.75)42-+--+-- =130.567.5444-+-+ ………………………………………………2分 =13(0.57.5)(64)44--++ ………………………………………………4分 =3. ………………………………………………5分(2)[(﹣5)2×]×(﹣2)3÷7=[25×]×(﹣8)÷7……………………………………1分=[﹣15+8]×(﹣8)÷7………………………………………………2分=﹣7×(﹣8)÷7………………………………………………………3分=56÷7…………………………………………………………4分=8.…………………………………………………………5分20.(每小题分5分,本小题满分10分)先化简,再求值: 解:(1)原式, ………………………3分当时,原式; ………………………5分(2)原式,………………………3分当时,原式. ………………………5分21.(每小题分5分,本小题满分10分)解方程: 解:(1)去分母得:, …………3分移项合并得:; …………5分(2)解:原方程可化为312253--=+x x . …………1分 去分母,得)12(2)53(3--=+x x . …………2分去括号,得24159+-=+x x . …………3分 移项,得215-49+=+x x . …………4分 合并同类项,得1313-=x .系数化为1,得1-=x . …………5分22.(本小题满分8分)解:设这个角的度数为x °, …………1分 根据题意,得90-x =13(180-x)-10, …………5分解得x =60. …………7分 答:这个角的度数为60°. …………8分 23.(本大题满分10分)解:设甲地和乙地相距x 公里,根据题意,列出方程752401.5 1.52.5x x --=+ ………………………………………5分 解方程,得4300360x x -=- ………………………………………7分240x = ………………………………………9分答:甲地和乙地相距240公里. ……………………………10分 24.(本小题满分12分) 解:(1)∠AOC =40°时,∠MON =∠MOC -∠CON ………………………………………1分 =12(∠BOC -∠AOC) ………………………………………3分=12∠AOB ………………………………………5分=45°. ………………………………………6分 (2)当∠AOC =50°,∠MON =45°.理由同(1).………………………9分 (3)当∠AOC=α时,∠MON =45°. 理由同(1).………………………12分注意:评分标准仅做参考,只要学生作答正确,均可得分。

七年级上册无锡数学期末试卷测试卷(解析版)

七年级上册无锡数学期末试卷测试卷(解析版)

七年级上册无锡数学期末试卷测试卷(解析版)一、选择题1.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因()A.两点之间,线段最短B.过一点有无数条直线C.两点确定一条直线D.两点之间线段的长度,叫做这两点之间的距离2.一件毛衣先按成本提高50%标价,再以8折出售,获利70元,求这件毛衣的成本是多少元,若设成本是x元,可列方程为( )A.0.8x+70=(1+50%)x B.0.8 x-70=(1+50%)xC.x+70=0.8×(1+50%)x D.x-70=0.8×(1+50%)x3.如图,C 是线段AB上一点, AC=4,BC=6,点M、N 分别是线段AC、BC的中点,则线段MN的长是( )A.5 B.92C.4 D.34.在钟表上,下列时刻的时针和分针所成的角为90°的是()A.2点25分B.3点30分C.6点45分D.9点5.下列几何体三视图相同的是()A.圆柱B.圆锥C.三棱柱D.球体6.某小组计划做一批中国结,如果每人做6个,那么比计划多做9个;如果每人做4个,那么比计划少做7个.设计划做个“中国结”,可列方程为().A.B.C.D.7.某商店以90元相同的售价卖出2件不同的衬衫,其中一件盈利25%,另一件亏损25%.商店卖出这两件衬衫的盈亏情况是()A.赚了B.亏了C.不赚也不亏D.无法确定8.如图,数轴上有A,B,C,D四个点,其中所对应的数的绝对值最大的点是( )A.点A B.点B C.点C D.点D9.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A .6(m ﹣n )B .3(m +n )C .4nD .4m 10.国家体育场“鸟巢”的建筑面积达258000m 2,用科学记数法表示为( ) A .25.8×105B .2.58×105C .2.58×106D .0.258×10711.实数,a b 在数轴上的位置如图所示,给出如下结论:①0a b +>;②0b a ->;③a b ->;④a b >-;⑤0a b >>.其中正确的结论是( )A .①②③B .②③④C .②③⑤D .②④⑤12.如图,OA 方向是北偏西40°方向,OB 平分∠AOC ,则∠BOC 的度数为( )A .50°B .55°C .60°D .65°13.把方程213148x x--=-去分母后,正确的结果是( ) A .2x -1=1-(3-x ) B .2(2x -1)=1-(3-x ) C .2(2x -1)=8-3+xD .2(2x -1)=8-3-x14.如图,数轴的单位长度为1,如果点表示的数为-2,那么点表示的数是( ).A .-1B .0C .3D .415.-5的相反数是( ) A .15B .±5C .5D .-15二、填空题16.单项式235a b-的次数为____________.17.已知:如图,直线AB 、CD 相交于点O ,∠COE =90°,∠BOD ∶∠BOC =1∶5,过点O 作OF ⊥AB ,则∠EOF 的度数为__.18.如图,已知数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,且2AB =,如果原点O 的位置在线段AC 上,那么|1||1|b c -+-=______.19.2019年1至6月份,东台黄海森林公园入园人数约为280000人,数字280000用科学记数法可以表示为_______________. 20.多项式32ab b +的次数是______.21.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.22.若要使图中的展开图按虚线折叠成正方体后,相对面上两个数之和为10,则x+y=_____.23.如图,点B 是线段AC 上的点,点D 是线段BC 的中点,若4AB cm =,10AC cm =,则CD =___________cm .24.比较大小:227-__________3-. 25.已知长方形周长为12,长为x ,则宽用含x 的代数式表示为______;三、解答题26.化简:(1)273a a a -+;(2)22(73)2(2)mn m mn m ---+. 27.先化简,再求值:22223(2)(54)a b ab a b ab ---,其中21a b ==-、28.点A 、O 、B 、C 从左向右依次在数轴上的位置如图所示,点O 在原点,点A 、B 、C 表示的数分别是a 、b 、c .(1)若a=﹣2,b=4,c=8,D 为AB 中点,F 为BC 中点,求DF 的长. (2)若点A 到原点的距离为3,B 为AC 的中点. ①用b 的代数式表示c ;②数轴上B 、C 两点之间有一动点M ,点M 表示的数为x ,无论点M 运动到何处,代数式 |x ﹣c|﹣5|x ﹣a|+bx+cx 的值都不变,求b 的值.29.如图,COD ∠为平角,,2AO OE AOC DOE ⊥∠=∠,求AOC ∠的度数.30.如图,A ,B 两地相距450千米,两地之间有一个加油站O ,且AO =270千米,一辆轿车从A 地出发,以每小时90千米的速度开往B 地,一辆客车从B 地出发,以每小时60千米的速度开往A 地,两车同时出发,设出发时间为t 小时. (1)经过几小时两车相遇?(2)当出发2小时时,轿车和客车分别距离加油站O 多远? (3)经过几小时,两车相距50千米?31.小莉和她爸爸两人沿长江边扬子江步道匀速跑步,他们从渡江胜利纪念馆同时出发,终点是绿博园.已知小莉比她爸爸每步少跑 0.4m ,两人的运动手环记录时间和步数如下:出发 途中 结束时间 7:007:10a小莉的步数130831838808出发途中结束时间7:00 7:10 7:25爸爸的步数 2168 4168 b(1)表格中 a 表示的结束时间为 , b = ;(2)小莉和她爸爸两人每步分别跑多少米? (3)渡江胜利纪念馆到绿博园的路程是多少米? 32.解下列方程 (1)235x +=;(2) 913.7-(12)-4.37x -=.33.如图,直线,,AB CD EF 相交于点O ,OG CD ⊥.(1)已知3812'AOC ∠=︒,求BOG ∠的度数;(2)如果OC 是AOE ∠的平分线,那么OG 是EOB ∠的平分线吗?说明理由.四、压轴题34.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x 的点与原点的距离,那么,如果数轴上两点P 、Q 表示的数为x 1,x 2时,点P 与点Q 之间的距离为PQ=|x 1-x 2|. 根据上述材料,解决下列问题:如图,在数轴上,点A 、B 表示的数分别是-4, 8(A 、B 两点的距离用AB 表示),点M 、N 是数轴上两个动点,分别表示数m 、n.(1)AB=_____个单位长度;若点M 在A 、B 之间,则|m+4|+|m-8|=______; (2)若|m+4|+|m-8|=20,求m 的值;(3)若点M 、点N 既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______. 35.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.()1点A 表示的数为______,点B 表示的数为______.()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______.()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.36.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 37.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.38.如图,两条直线AB,CD 相交于点O ,且90AOC ∠=,射线OM 从OB 开始绕O 点逆时针方向旋转,速度为15/s ,射线ON 同时从OD 开始绕O 点顺时针方向旋转,速度为12/s .两条射线OM 、ON 同时运动,运动时间为t 秒.(本题出现的角均小于平角)(1)当012t <<时,若369AOM AON ∠=∠-.试求出的值;(2)当06t <<时,探究BON COM AOCMON∠-∠+∠∠的值,问:t 满足怎样的条件是定值;满足怎样的条件不是定值?39.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .40.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD . (1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.41.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.42.我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例: 例:将0.7•化为分数形式, 由于0.70.777•=,设0.777x =,①得107.777x =,②②−①得97x =,解得79x =,于是得70.79•=.同理可得310.393•==,4131.410.4199••=+=+=.根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示) (类比应用) (1)4.6•= ;(2)将0.27••化为分数形式,写出推导过程;(迁移提升)(3)0.225••= ,2.018⋅⋅= ;(注0.2250.225225••=,2.018 2.01818⋅⋅=)(拓展发现) (4)若已知50.7142857=,则2.285714= . 43.设A 、B 、C 是数轴上的三个点,且点C 在A 、B 之间,它们对应的数分别为x A 、x B 、x C .(1)若AC =CB ,则点C 叫做线段AB 的中点,已知C 是AB 的中点. ①若x A =1,x B =5,则x c = ; ②若x A =﹣1,x B =﹣5,则x C = ;③一般的,将x C 用x A 和x B 表示出来为x C = ;④若x C =1,将点A 向右平移5个单位,恰好与点B 重合,则x A = ; (2)若AC =λCB (其中λ>0). ①当x A =﹣2,x B =4,λ=13时,x C = . ②一般的,将x C 用x A 、x B 和λ表示出来为x C = .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据两点之间,线段最短解答即可. 【详解】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”, 其原因是两点之间,线段最短, 故选:A . 【点睛】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.2.C解析:C 【解析】【分析】根据等量关系列方程即可.【详解】∵成本为x元,根据题意列方程为x+70=0.8×(1+50%)x,故选C.【点睛】本题考查一元一次方程的应用,解题的关键是根据题意找到等量关系. 3.A解析:A【解析】【分析】根据线段中点的性质,可得MC,NC的长,根据线段的和差,可得答案.【详解】解:(1)由点M、N分别是线段AC、BC的中点,得MC=12AC=12×4=2,NC=12BC=12×6=3.由线段的和差,得:MN=MC+NC=2+3=5;故选:A.【点睛】本题考查了两点间的距离,利用线段中点的性质得出MC,NC的长是解题关键.4.D解析:D【解析】【分析】根据时针1小时转30°,1分钟转0.5°,分针1分钟转6°,计算出时针和分针所转角度的差的绝对值a,如果a大于180°,夹角=360°-a,如果a≤180°,夹角=a.【详解】A.2点25分,时针和分针夹角=|2×30°+25×0.5°-25×6°|=77.5°;B.3点30分,时针和分针夹角=|3×30°+30×0.5°-30×6°|=75°;C.6点45分,时针和分针夹角=|6×30°+45×0.5°-45×6°|=67.5°;D.9点,时针和分针夹角=360°-9×30°=90°.故选:D.【点睛】本题考查了钟表时针与分针的夹角.在钟表问题中,掌握时针和分针夹角的求法是解答本题的关键.5.D解析:D【解析】【分析】根据几何体的主视图、左视图、俯视图的形状即可判断.【详解】解:A选项,圆柱的主视图和左视图为长方形,俯视图为圆,不相同,A错误;B选项,圆锥的主视图和左视图为三角形,俯视图为圆及圆心,不相同,B错误;C选项,三棱柱的三视图分别为三角形,三角形,三角形及中心与顶点的连线, C错误;D选项,球体的三视图均为相同的圆,D正确.故选:D【点睛】本题考查了三视图,熟练掌握基础几何体的三视图是解题的关键.6.B解析:B【解析】【分析】计划做个“中国结”,根据题意可用两种方式表示出参与制作的人数,根据人数不变这一等量关系即可列出方程.【详解】计划做个“中国结”,由题意可得,故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 7.B解析:B【解析】【分析】分别列方程求出两件衣服的进价,然后可得两件衣服分别赚了多少和赔了多少,则两件衣服总的盈亏就可求出.【详解】设第一件衣服的进价为x,依题意得:x(1+25%)=90,解得:x=72,所以赚了解90−72=18元;设第二件衣服的进价为y,依题意得:y(1−25%)=150,解得:y=120,所以赔了120−90=30元,所以两件衣服一共赔了12元.故选:B.【点睛】解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.8.A解析:A【解析】【分析】A 、B 、C 、D 四个点,哪个点离原点最远,则哪个点所对应的数的绝对值最大,据此判断即可.【详解】∵A 、B 、C 、D 四个点,点A 离原点最远,∴点A 所对应的数的绝对值最大;故答案为A.【点睛】本题考查绝对值的意义,绝对值表示数轴上的点到原点的距离,理解绝对值的意义是解题的关键.9.D解析:D【解析】【分析】【详解】解:设小长方形的宽为a ,长为b ,则有b =n -3a ,阴影部分的周长:2(m -b )+2(m -3a )+2n =2m -2b +2m -6a +2n =4m -2(n -3a )-6a +2n =4m -2n +6a -6a +2n =4m .故选D .10.B解析:B【解析】【分析】科学计数法是指a×10n ,且1≤a <10,n 为原数的整数位数减一.【详解】解:由科学计数法可得258000=2.58×105故应选B11.C解析:C【解析】【分析】根据数轴上点的距离判断即可.【详解】由图可得: 0a b +<;0b a ->;a b ->;a b <-;0a b >>;∴②③⑤正确【点睛】本题考查数轴相关知识,关键在于熟悉数轴的定义与性质. 12.D解析:D【解析】【分析】根据方向角的定义和角平分线的定义即可得到结论.【详解】∵OA方向是北偏西40°方向,∴∠AOC=40°+90°=130°.∵OB平分∠AOC,∴∠BOC12∠AOC=65°.故选:D.【点睛】本题考查了方向角、角平分线的定义、角的和差定义等知识,解题的关键是理解方向角的概念,学会用方向角描述位置,属于中考常考题型.13.C解析:C【解析】分析:方程两边乘以8去分母得到结果,即可做出判断.详解:方程去分母得:2(2x﹣1)=8﹣3+x.故选C.点睛:本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将x系数化为1,即可求出解.14.C解析:C【解析】【分析】观察数轴根据点B与点A之间的距离即可求得答案.【详解】观察数轴可知点A与点B之间的距离是5个单位长度,点B在点A的右侧,因为点A表示的数是-2,-2+5=3,所以点B表示的数是3,故选C.【点睛】本题考查了数轴上两点间的距离,有理数的加法,准确识图是解题的关键.15.C【解析】解:﹣5的相反数是5.故选C.二、填空题16.3【解析】【分析】根据单项式次数的定义来求解.【详解】解:单项式的次数为3.【点睛】本题考查了单项式、多项式的有关定义,是基础知识,需牢固掌握.解析:3【解析】【分析】根据单项式次数的定义来求解.【详解】解:单项式235a b的次数为3.【点睛】本题考查了单项式、多项式的有关定义,是基础知识,需牢固掌握.17.30°或150°【解析】【分析】作出图形,分OF、OE在直线AB的同侧或异侧两种情况讨论.根据平角的定义可求∠BOD,根据余角的定义可求∠BOE,根据余角的性质和角的和差关系可求∠EOF或∠E解析:30°或150°【解析】【分析】作出图形,分OF、OE在直线AB的同侧或异侧两种情况讨论.根据平角的定义可求∠BOD,根据余角的定义可求∠BOE,根据余角的性质和角的和差关系可求∠EOF或∠EOF'的度数即可.【详解】∵∠BOD:∠BOC=1:5,∠BOD+∠BOC=180°,∴∠BOD=30°.∵∠COE=90°,∴∠DOE =90°,∴∠BOE =90°-30°=60°.①若OF 、OE 在直线AB 的同侧.∵FO ⊥AB ,∴∠FOB =90°,∴∠EOF =∠BOD =30°.②若OF '、OE 在直线AB 的同侧.∵F 'O ⊥AB ,∴∠F 'OB =90°,∴∠EOF '=∠EOB +∠F 'OB =60°+90°=150°.综上所述:∠EOF 的度数为30°或150°.故答案为:30°或150°.【点睛】本题考查了余角、邻补角.熟练掌握平角等于180度,直角等于90度,余角的定义和性质是解答本题的关键.18.【解析】【分析】易得,结合数轴判断的正负,由绝对值的性质去绝对值即可.【详解】解:点是线段的中点,且原点在线段上故答案为:【点睛】本题考查了绝对值,将数轴与绝对值解析:b c -【解析】【分析】易得1AC BC ==,结合数轴判断1,1b c --的正负,由绝对值的性质去绝对值即可.【详解】 解:点C 是线段AB 的中点,且2AB =1AC BC ∴==原点O 在线段AC 上1,1OC OB ∴≤≥10,10c b ∴-≤-≥|1||1|1(1)b c b c b c ∴-+-=---=- 故答案为:b c -【点睛】本题考查了绝对值,将数轴与绝对值相结合是本题的难点,灵活利用数轴判断代数式值的正负是去绝对值的关键.19.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1解析:52.810⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:280000=52.810⨯,故答案为:52.810⨯【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.20.3【解析】【分析】直接利用多项式次数的定义得出答案.【详解】解:多项式的次数是3;故答案为:3.【点睛】本题考查了多项式,正确把握多项式的次数定义是解题关键.解析:3【解析】【分析】直接利用多项式次数的定义得出答案.【详解】解:多项式32ab b +的次数是3;故答案为:3.【点睛】本题考查了多项式,正确把握多项式的次数定义是解题关键.21.1,,.【解析】【分析】先根据题意算出乙和丙每分钟注水量,随着时间变化可以分三种情况讨论,①当甲比乙高,②乙比加高,③乙溢出到甲后,乙比甲高.【详解】试题分析:∵甲、乙、丙三个圆柱形容器(解析:1,75,17340. 【解析】【分析】先根据题意算出乙和丙每分钟注水量,随着时间变化可以分三种情况讨论,①当甲比乙高,②乙比加高,③乙溢出到甲后,乙比甲高.【详解】试题分析:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1, ∴甲、乙、丙三个圆柱形容器的底面积之比为1:4:1,∵每分钟同时向乙和丙注入相同量的水,注水1分钟,乙的水位上升56cm , ∴注水1分钟,丙的水位上升510463⨯=cm , ①当甲比乙高16cm 时,此时乙中水位高56cm ,用时1分; ②当乙比甲水位高16cm 时,乙应为76cm, 757=665÷分, 当丙的高度到5cm 时,此时用时为5÷103=32分, 因为73<52,所以75分乙比甲高16cm.③当丙高5cm时,此时乙中水高535624⨯=cm,在这之后丙中的水流入乙中,乙每分钟水位上升55263⨯=cm,当乙的水位达到5cm时开始流向甲,此时用时为355+5243⎛⎫-÷⎪⎝⎭=154分,甲水位每分上升1020233⨯=cm,当甲的水位高为546cm时,乙比甲高16cm,此时用时155201734146340⎛⎫+-÷=⎪⎝⎭分;综上,开始注入1,75,17340分钟的水量后,甲与乙的水位高度之差是16cm.【点睛】本题考查圆柱体与水流变化的结合,关键在于找到三个分类节点.22.16【解析】这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“3”与面“y”相对,又因相对面上两个数之和为10,可得x=9,y=7,所以x+y=16.解析:16【解析】这是一个正方体的平面展开图,共有六个面,其中面“1”与面“x”相对,面“3”与面“y”相对,又因相对面上两个数之和为10,可得x=9,y=7,所以x+y=16.23.3【解析】【分析】求出BC长,根据中点定义得出CDBC,代入求出即可.【详解】∵AB=4cm,AC=10cm,∴BC=AC﹣AB=6cm.∵D为BC中点,∴CDBC=3cm.故答案解析:3【解析】【分析】求出BC长,根据中点定义得出CD12=BC,代入求出即可.【详解】∵AB=4cm,AC=10cm,∴BC=AC﹣AB=6cm.∵D为BC中点,∴CD12=BC=3cm.故答案为:3.【点睛】本题考查了有关两点间的距离的应用,关键是求出BC的长和得出CD12=BC.24.【解析】【分析】比较两个负数的大小,则绝对值大的反而小,即可得到答案.【详解】解:∵,∴;故答案为:.【点睛】本题考查了比较两个有理数的大小,解题的关键是掌握有理数比较大小的法则. 解析:<【解析】【分析】比较两个负数的大小,则绝对值大的反而小,即可得到答案.【详解】解:∵223 7>,∴223 7-<-;故答案为:<.【点睛】本题考查了比较两个有理数的大小,解题的关键是掌握有理数比较大小的法则. 25.6-x【解析】【分析】据长方形的周长公式周长=2(长+宽),得出宽等于周长除以2减去长. 【详解】由题意得:宽=周长÷2-长=12÷2-x=6-x故填:6-x.【点睛】本题主要是灵活解析:6-x【解析】【分析】据长方形的周长公式周长=2(长+宽),得出宽等于周长除以2减去长.【详解】由题意得:宽=周长÷2-长=12÷2-x=6-x 故填:6-x.【点睛】本题主要是灵活利用长方形的周长公式解答.三、解答题26.(1)-2a ;(2)297mn m -.【解析】【分析】按照整式的的计算规律进行计算即可.【详解】(1)解:原式=5a -7a=-2a .(2)解:原式=227324mn m mn m -+-=297mn m -.【点睛】本题考查整式的计算,关键在于掌握计算法则.27.-2【解析】【分析】先根据整式的乘法去括号,再合并同类项,进行化简,再代入已知数求值即可.【详解】解:原式22226354a b ab a b ab =--+22a b ab =+()ab a b =+当a=2,b=-1时,原式21=-⨯2=-【点睛】本题考核知识点:整式化简求值. 解题关键点:掌握整式的基本运算法则.28.(1)DF=5;(2)①c=2b+3;②b的值为1.【解析】【分析】(1)先求出AB、BC的长,然后根据中点的定义计算即可;(2)①由B为AC的中点可得,AB=BC,然后根据点B到点A,C的距离相等列式求解即可;②先去绝对值化简,然后根据当 P 点在运动过程中,原式的值保持不变,即可求出x的值.【详解】解:(1)∵a=﹣2,b=4,c=8,∴AB=6,BC=4,∵D为AB中点,F为BC中点,∴DB=3,BF=2,∴DF=5.(2)①∵点A到原点的距离为3且a<0,∴a=﹣3,∵点B到点A,C的距离相等,∴c-b=b-a,∵c﹣b=b﹣a,a=﹣3,∴c=2b+3,答:b、c之间的数量关系为c=2b+3.②依题意,得x﹣c<0,x-a>0,∴|x﹣c|=c﹣x,|x-a|=x-a,∴原式=bx+cx+c﹣x﹣5(x-a)=bx+cx+c﹣x﹣5x+5a=(b+c﹣6)x+c+5a,∵c=2b+3,∴原式=(b+2b+3﹣6)x+c+5×(﹣2)=(3b﹣3)x+c-10,∵当 P 点在运动过程中,原式的值保持不变,即原式的值与x无关,∴3b﹣3=0,∴b=1.答:b的值为1.【点睛】本题考查了中点的定义,数轴上两点之间的距离,绝对值的意义,以及整式的加减无关型问题,熟练掌握数轴上两点间的距离及整式的加减运算法则是解答本题的关键. 29.60°【解析】【分析】根据∠COD为平角,AO⊥OE,可知∠AOC+∠DOE的度数,从而可求答案.【详解】解:∵∠COD为平角,AO⊥OE∴∠AOC+∠DOE=180°-90°=90°又∵∠AOC=2∠DOE∴3∠DOE=90°,即∠DOE=30°∴∠AOC=60°【点睛】本题考查的是平角,直角和角之间的关系,能够明白角与角之间的关系是解题的关键. 30.(1)经过3小时两车相遇;(2)当出发2小时时,轿车距离加油站90千米、客车距离加油站60千米;(3)经过83小时或103小时两车相距50千米.【解析】【分析】(1)根据“轿车行驶的路程+客车行驶的路程=450”列方程求解可得;(2)用轿车和客车与加油站的距离分别减去各自行驶的路程可得;(3)分相遇前和相遇后两种情况分别求解可得.【详解】(1)根据题意,得:90t+60t=450,解得:t=3.答:经过3小时两车相遇.(2)270﹣90×2=90(千米),180﹣60×2=60(千米).答:当出发2小时时,轿车距离加油站90千米、客车距离加油站60千米.(3)两车相遇前:90t+50+60t=450,解得:t=83;两车相遇后:90t﹣50+60t=450,解得:t=103.答:经过83小时或103小时两车相距50千米.【点睛】本题考查了一元一次方程的应用,解题的关键是掌握行程问题中相遇时在路程上的相等关系.31.(1)7:40;7168;(2)小莉和她爸爸两人每步分别跑0.8米,1.2米;(3)渡江胜利纪念馆到绿博园的路程是6000米.【解析】【分析】(1)分别根据小莉和爸爸的出发到途中的时间变化和步数变化,求出每人速度,再根据途中和结束的时间内步数变化求出时间,最后确定两人结束的时间;(2)由总路程等于步数乘以每步的长度,根据两人路程相等列方程求解;(3)根据爸爸的步数乘以每步的长度计算总路程即可.【详解】解:根据题意得小莉的速度为3183130810=187.5步/分,∴途中到结束所用时间为8808318330187.5分 , ∴a=7:40; 爸爸的速度为41682168=20010步/分, ∴途中到结束所走的步数为20015=3000步 ,∴b=4168+3000=7168步;(2)设小莉的每步跑xm ,根据题意得,(8808-1308)x=(7168-2168)(x+0.4)解得,x=0.8,x+0.8=1.2m.答:小莉和她爸爸两人每步分别跑0.8米,1.2米;(3)(7168-2168) ×1.2=6000米答:渡江胜利纪念馆到绿博园的路程是6000米.【点睛】本题考查一元一次方程的实际应用,路程问题,分析出表格信息,得出速度,时间,步数及路程的关系是解答此题的关键.32.(1)x=1;(2)x=132-【解析】【分析】(1)移项、合并同类项、系数化1即可;(2)去分母、去括号、移项、合并同类项、系数化1即可.【详解】解:(1)235x +=移项、合并同类项,得22x =系数化1,得1x =(2) ()913.712 4.37x --=- 去分母,得()95.991230.1x --=-去括号,得95.991830.1x -+=-移项,得1830.1995.9x =-+-合并同类项,得18117x =-系数化1,得132x =-【点睛】此题考查的是解一元一次方程,掌握解一元一次方程的一般步骤是解决此题的关键. 33.(1) 51°48′,(2). OG 是EOB ∠的平分线,理由详见解析.【解析】【分析】(1)根据平角,直角的性质,解出∠BOG 的度数即可.(2)根据角平分线的性质算出答案即可.【详解】(1)由题意得:∠AOC=38°12′,∠COG=90°,∴∠BOG=∠AOB-∠AOC-∠COG=180°-38°12′-90°=51°48′.(2) OG 是∠EOB 的平分线,理由如下:由题意得:∠BOG=90°-∠AOC,∠EOG=90°-∠COE,∵OC 是∠AOE 的平分线,∴∠AOC=∠COE∴∠BOG=90°-∠AOC=90°-∠COE=∠EOG∴OG 是∠EOB 的平分线.【点睛】本题考查角度的计算,关键在于对角度认识及角度基础运算.四、压轴题34.(1) 12, 12; (2) -8或12;(3) 11,-9.【解析】【分析】(1)代入两点间的距离公式即可求得AB 的长;依据点M 在A 、B 之间,结合数轴即可得出所求的结果即为A 、B 之间的距离,进而可得结果;(2)由(1)的结果可确定点M 不在A 、B 之间,再分两种情况讨论,化简绝对值即可求出结果;(3)由|m +4|+n =6可确定n 的取值范围,进而可对第2个等式进行化简,从而可得n 与m 的关系,再代回到第1个等式即得关于m 的绝对值方程,再分两种情况化简绝对值求解方程即可.【详解】解:(1)因为点A 、B 表示的数分别是﹣4、8,所以AB =()84--=12,因为点M 在A 、B 之间,所以|m +4|+|m ﹣8|=AM +BM =AB =12,故答案为:12,12;(2)由(1)知,点M 在A 、B 之间时|m +4|+|m -8|=12,不符合题意;当点M 在点A 左边,即m <﹣4时,﹣m ﹣4﹣m +8=20,解得m =﹣8;当点M 在点B 右边,即m >8时,m +4+m ﹣8=20,解得m =12;综上所述,m 的值为﹣8或12;(3)因为46m n ++=,所以460m n +=-≥,所以6n ≤,所以88n n -=-, 所以828n m -+=,所以20n m =-, 因为46m n ++=,所以4206m m ++-=,即4260m m ++-=,当m +4≥0,即m ≥﹣4时,4260m m ++-=,解得:m =11,此时n =-9;。

2017-2018学年初一上期末质量数学试题附含答案

2017-2018学年初一上期末质量数学试题附含答案

2017—2018学年度第一学期期末教学质量检测七年级数学科试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种解法供参考,如果考生的解法与参考答案不同可比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.2-1-c-n-j-y3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题共10小题,每小题3分,共30分。

1.A 2.A 3.C 4.B 5.D6.B 7.C 8.C 9.A 10.D二、填空题:本大题共6小题,每小题4分,共24分。

11.1.18×105 12.11 13.X= -714.39 15.75 16.18cm三、解答题(一):本大题共3小题,每小题6分,共18分。

17.解:原式=3-2×25 ………………(3分)=3-50 ……………(5分)=-47 …………(6分)18.解:原式=10-1+a-1+a+a2+1+a-a2-a3…………………(2分)=9+3a-a3…………………(4分)3……………(6分)819.解:∵m2-mn=7,mn-n2=-2 ……………………(2分)∴m2-n2= m2-mn+mn-n2 =5 …………………(4分)m2-2mn+n2= m2-mn-(mn –n2)=7+2=9 ……………(6分)四、解答题(二):本大题共3小题,每小题7分,共21分。

20.解: 2x+2-4=8+2-x ……(3分)∴2x+x=8+2+4-2 …………(4分)∴3x=12 …………(6分)∴x =4 ………………(7分)21.解:设这种服装每件成本是x 元,依题意得……………(1分)∴(1+40%)×0.8x - x=12 ……………………(3分) ∴1.12x - x=120.12x =12 ………………(5分)X=100………………(6分)答:设这种服装每件成本是100元 …………………(7分)22.解:设∠AOB 的度数是x 0 ……………(1分)x+36………………(3分)x+36 ……(4分) 32x=144+3632x=180 ……(5分)X=120 ……(6分)答:∠AOB 的度数是1200 ……………… (7分)五、解答题(三):本大题共3小题,每小题9分,共27分。

江苏省2017-2018年七年级上期末数学试卷含答案

江苏省2017-2018年七年级上期末数学试卷含答案

七年级上册期末测试数学试卷一、选择题(每题只有一个正确答案,每小题2分,共20分)1.的绝对值是( )A.B.C.2 D.﹣22.从正面看、从左面看、从上面看都一样的几何体是( ) A.圆柱B.长方体C.球D.五棱柱3.下列计算中,正确的是( )A.(﹣1)2×(﹣1)5=1 B.﹣3÷(﹣)=9C.÷(﹣)3=9 D.﹣(﹣3)2=94.如图,下列说法正确的是( )A.OA的方向是北偏东30°B.OB的方向是北偏西60°C.OC的方向是南偏东50°D.OD的方向是东偏南45°5.如图把左边的图形折叠起来围成一个正方体,应该得到图中的( )A.B.C.D.6.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值为( )A.﹣1 B.0 C.1 D.7.在直线l上取A、B、C三点,使得AB=5cm,BC=3cm.如果O是线段AC的中点,那么线段OB的长度是( )A.2cm B.0.5cm C.1.5cm D.1cm或4cm8.观察下列图形它们是按一定的规律排列的,依照此规律,第20个图形的“★”有( )A.57个B.60个C.63个D.85个9.下列变形中, 不正确的是().A.a+(b+c-d)=a+b+c-d B.a-(b-c+d)=a-b+c-dC.a-b-(c-d)=a-b-c-d D.a+b-(-c-d)=a+b+c+d10.如图,已知O为直线AB上一点,OC平分∠AOD,∠BOD=3∠DOE,∠COE=α,则∠BOE的度数为( )A.360°﹣4αB.180°﹣4αC.αD.2α﹣60°二、填空题(每小题3分,共24分)11.地球与太阳的平均距离大约为150 000 000km,用科学记数法表示__________km.12.一天早晨的气温是﹣5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是__________℃.13.如图,在边长为1的小正三角形组成的图形中,正六边形的个数共有______个.14.x表示一个三位数,若在x的右边放3,成为一个四位数,则这个四位数可表示为.15.用“●”“■”“▲”分别表示三种不同的物体,如图所示,前两架天平保持平衡,若要使第三架天平也平衡,那么“?”处应放“■”__________个.16.已知某商品降价20%后的售价为2800元,则该商品的原价为__________元.17.如图所示,将一副三角板叠放在一起,使直角的顶点重合于点O,则∠AOC+∠DOB的度数为__________.18.挑游戏棒是一种好玩的游戏,游戏规则:当一根棒条没有被其它棒条压着时,就可以把它往上拿走。

2017-2018第一学期期末七数答案

2017-2018第一学期期末七数答案

2017—2018学年度第一学期期末教学质量检测七年级数学答案20. (1)解:3)3(1++-=-x x …………………………………………………… 1分 331+--=-x x …………………………………………………………2分12=x ……………………………………………………………………3分21=x ……………………………………………………………………4分 (2)解:原式=112411261)8(8414-⨯+⨯--÷-⨯ ……………………………6分=13211-+-+…………………………………………………………………7分 =2 ……………………………………………………………………………… 8分21.解:(1)2,32;……………………………………………………………………… 2分 (2)2n +30; ………………………………………………………………………3分(3)设投入n 个小球后没有水溢出, 2n +30=49解得 n =219…………………………………………………………………6分 应为投入的小球为整数,且小于219,故n =9 .所以最多投入小球9个水没有从量筒中溢. ………………………………………8分 22.解:(1)因为ab a B A 7722-=-所以B ab a A 2772+-= ………………………………………………1分 =)764(27722++-+-ab a ab a …………………………………2分=141287722++--ab a ab a ………………………………………4分 =1452++-ab a …………………………………………………… 5分 (2)依题意得:01=+a ,02=-b ,∴1-=a ,2=b , ……………………………………………………… 7分∴ 1452++-=ab a A=142)1(5)1(2+⨯-⨯+--…………………………………………8分 =14101+-- ……………………………………………………… 9分 =3 …………………………………………………………………… 10分23.解:(1) ……………2分(2)符合要求. ……………………………………………………………………3分∵C 为AM 的中点,F 为BM 的中点,∴AC =CM=21AM ,MF =FB=21MB ………………………………………5分 ∴CF = CM + MF=21AM +21MB ………………………………………………………6分 =21(AM + MB ) =21AB …………………………………………………………………7分 ∵AB =40m ,∴CF =20m ………………………………………………………………… 8分 ∵20AC BD +<m ,∴CD >20m. ………………………………………………………………9分∴CF 符合要求. ………………………………………………………… 10分24.解:(1)设经过x 分钟摩托车追上自行车, …………………………………………1分 1200100200+=x x …………………………………………3分 解得12=x …………………………………………4分 答:经过12分钟摩托车追上自行车.(2)设经过y 分钟两人相距150米, …………………………………………5分 第一种情况:摩托车超过自行车150米时,1200100150200++=y y …………………………………………6分 解得5.13=x …………………………………………7分第二种情况:摩托车还差150米追上自行车时,1501001200200-=-y y …………………………………………8分 解得5.10=x …………………………………………9分· · A C D B 图9-2 MF答:经过13.5分钟或10.5分钟两人相距150米. …………………………10分(其它的解法请参照此标准给分)25.解:(1)90°;……………………………………………………………………………2分(2)∵点O 为直线AB 上一点,∠AOC :∠BOC =2:1,∴∠AOC =120°,∠BOC =60°. ……………………………………………4分 ∵∠BON =90°﹣∠BOM ,∠COM =60°﹣∠BOM , ………………………6分 ∴∠BON ﹣∠COM =90°﹣∠BOM ﹣60°+∠BOM =30° …………………8分(3)画图如图11-4. ……………………………………………………………9分∵OM 恰为∠BOC 的平分线, ∴∠COM =30°. ……………………………………………………………10分 ∴三角板旋转的角度为: 90°+∠AOC+∠COM=90°+120°+30°=240° … …………………………11分 ∵三角板绕点O 按每秒钟15°的速度旋转, ∴三角板绕点O 的运动时间为15240=16(秒) …………………………12分图11-4N。

(完整)2017-2018学年度七年级数学上册期末测试题及答案,推荐文档

(完整)2017-2018学年度七年级数学上册期末测试题及答案,推荐文档

O B2017-2018 学年度七年级上学期期末数学试卷(考试时间为 90 分钟,满分 120 分)一、选择题(本题共 12 个小题,每小题 3 分,共 36 分.) 1. - 2 等于( )A .-2B . - 12C .2D . 122. 在墙壁上固定一根横放的木条,则至少需要钉子的枚数是 ()A .1 枚B .2 枚C .3 枚D .任意枚3. 下列方程为一元一次方程的是() A .y +3= 0B .x +2y =3C .x 2=2xD . 1+ y = 2y4. 下列各组数中,互为相反数的是()A . - (-1) 与 1B .(-1)2 与 1C . - 1 与 1D .-12 与 15. 下列各组单项式中,为同类项的是()A .a 3与 a 2B . 1 a 2与 2a 2 2C .2xy 与 2xD .-3 与 a6. 如图,数轴 A 、B 上两点分别对应实数 a 、b ,则下列结论正确的是()1 - 1< 0 A. a +b>0B .ab >0C .a b 1 + 1> 0 D .a b7. 下列各图中,可以是一个正方体的平面展开图的是()AB C D8. 把两块三角板按如图所示那样拼在一起,则∠ABC 等于( )A .70°B .90°C .105°D .120°CA第 8 题图B9. 在灯塔 O 处观测到轮船 A 位于北偏西 54°的方向,同时轮船 B 在南偏东 15°的北方向,那么∠AOB 的大小为 ( ) AA .69°B .111°C .141°D .159°第 9 题图==10.一件夹克衫先按成本提高50%标价,再以8 折(标价的80%)出售,结果获利28 元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A.(1+50%)x×80%=x-28 B.(1+50%)x×80%=x+28C.(1+50%x)×80%=x-28 D.(1+50%x)×80%=x+2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3 小时,若船速为26 千米/时,水速为2 千米/时,求 A 港和B 港相距多少千米.设 A 港和 B 港相距x 千米.根据题意,可列出的方程是()A.x=x- 3 B.x=x+ 3C.2x8+224x - 2+3 D.x28- 2 24x + 2- 326 26 26 2612.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是()0 4 2 6 4 8 102 8 4 22 6 44……mA.110 B.158 C.168 D.178二、填空题(本大题共8 个小题;每小题3 分,共24 分.把答案写在题中横线上)13.-3 的倒数是.14.单项式-1xy2 的系数是.215.若x=2 是方程8-2x=ax 的解,则a= .16.计算:15°37′+42°51′=.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000 平方千米.将2 500 000 用科学记数法表示应为平方千米.18.已知,a-b=2,那么2a-2b+5= .19.已知y1=x+3,y2=2-x,当x= 时,y1比y2大5.20.根据图中提供的信息,可知一个杯子的价格是元.共43共94 元三、解答题(本大题共8 个小题;共60 分)21.(本小题满分6 分)计算:(-1)3-1×[2-(-3) 2] .422.(本小题满分6 分)角的大小.1一个角的余角比这个角的少30°,请你计算出这个223.(本小题满分7 分)1 2 1 1 先化简,再求值:4 (-4x +2x-8)-(2 x-1),其中x= 2 .24.(本小题满分7 分)解方程:5x+1-2x-1=1.3 625.(本小题满分7 分)一点A 从数轴上表示+2 的点开始移动,第一次先向左移动1 个单位,再向右移动2 个单位;第二次先向左移动3 个单位,再向右移动4 个单位;第三次先向左移动5 个单位,再向右移动6 个单位……(1)写出第一次移动后这个点在数轴上表示的数为;(2)写出第二次移动结果这个点在数轴上表示的数为;(3)写出第五次移动后这个点在数轴上表示的数为;(4)写出第n 次移动结果这个点在数轴上表示的数为;(5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值.BD = AB = CD 26.(本小题满分 8 分) A 如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE 求:∠COE 的度数.27.(本小题满分 8 分)如图,已知线段 AB 和 CD 的公共部分 1 1 ,线段AB 、CD 的中 3 点 E 、F 之间距离是 10cm ,求 AB 、CD 的长.4AE DBFC28.(本小题满分 11 分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔 30 支,毛笔 45 支,共用了 1755 元,其中每支毛笔比钢笔贵 4 元.(1) 求钢笔和毛笔的单价各为多少元?(2) ①学校仍需要购买上面的两种笔共 105 支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领 2447 元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签 字笔的单价为小于 10 元的整数,请通过计算,直接写出签字笔的单价可能为元.数学试题参考答案一、选择题(每小题 3 分,共36 分)1.C ;2.B ;3.A;4.D;5.B;6. D;7.C;8.D;9.C;10. B;11.A;12.B.二、填空题(每题 3 分,共24 分)13.-1;14.-1;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8.3 2三、解答题(共60 分)21.解:原式= -1-1×(2-9)…3 分=-1+7…5 分=3…6 分4 4 422.解:设这个角的度数为x ....................... 1分由题意得:1x - (90 -x) = 30 …3 分解得:x=80……5 分2答:这个角的度数是80°........... 6 分23.解:原式= -x 2 +1x - 2 -1x +1……3 分= -x 2 -1…4 分2 2把x=12 代入原式:原式= -x 2-1= -(1)22-1…5 分= -57 分424.解:2(5x +1) - (2x -1) = 6 . …2 分10x + 2 - 2x +1= 6 .……4 分8x=3. ……6 分x =3.……7 分825.解:(1)第一次移动后这个点在数轴上表示的数是3;………1 分(2)第二次移动后这个点在数轴上表示的数是4; ..................... 2分(3)第五次移动后这个点在数轴上表示的数是7; ....................... 3分(4)第n 次移动后这个点在数轴上表示的数是n+2;................... 5 分(5)54 ................................................................. 7分26.解:∵∠AOB=90°,OC 平分∠AOB ∴∠BOC= 1∠AOB=45°,…2 分2∵∠BOD=∠COD-∠BOC=90°-45°=45°,……4 分∠BOD=3∠DOE ∴∠DOE=15,……7 分∴∠COE=∠COD-∠DOE=90°-15°=75°......... 8 分27.解:设BD=x cm,则AB=3x cm,CD=4x cm,AC=6x cm.................. 1 分∵点E、点F 分别为AB、CD 的中点,1 1 AE =2 AB =1.5x cm ,CF = 2CD =2x cm .……3 分∴EF =AC -AE -CF =2.5x cm . ……4 分 ∵EF =10cm ,∴2.5x =10,解得:x =4.……6 分 ∴AB =12c ,CD =16cm . ................... 8 分28. 解:(1)设钢笔的单价为 x 元,则毛笔的单价为(x +4)元 ............... 1 分由题意得:30x +45(x +4)=1755 ……3 分 解得:x =21则 x +4=25 ..................... 4 分答:钢笔的单价为 21 元,毛笔的单价为 25 元 ............................. 5 分 (2)设单价为 21 元的钢笔为 y 支,所以单价为 25 元的毛笔则为 (105-y )支. …6 分根据题意,得 21y +25(105-y )=2447. …7 分 解之得:y =44.5 (不符合题意) .…8 分 所以王老师肯定搞错了. …9 分(3)2 或 6 ............................. 11 分〖答对 1 个给 1 分,答错 1 个倒扣 1 分,扣到 0 分为止〗28.(3)解法提示:设单价为 21 元的钢笔为 z 支,签字笔的单价为 a 元则根据题意,得 21z+25(105-z)=2447-a.即:4z=178+a ,因为 a 、z 都是整数,且 178+a 应被 4 整除,所以 a 为偶数,又因为 a 为小于 10 元的整数,所以 a 可能为 2、4、6、8. 当 a=2 时,4z=180,z=45,符合题意; 当 a=4 时,4z=182,z=45.5,不符合题意; 当 a=6 时,4z=184,z=46,符合题意; 当 a=8 时,4z=186,z=46.5,不符合题意. 所以笔记本的单价可能 2 元或 6 元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗∴“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

苏科版七年级上册2017-2018学年七年级(上)期末数学试卷(解析版)

苏科版七年级上册2017-2018学年七年级(上)期末数学试卷(解析版)

2017-2018学年苏科版七年级(上)期末数学试卷一、选择题本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题卷相应的位置上.1.﹣3的相反数是()A. 3B.C. ﹣3D. ﹣【答案】A【解析】根据只有符号不同的两个数叫做互为相反数解答.【详解】解:-3的相反数是+3.故选:A.【点睛】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.某航空母舰的满载排水量为60900吨.将数60900用科学记数法表示为()A. 0.609×105B. 6.09×104C. 60.9×103D. 609×102【答案】B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将数60900用科学记数法表示为6.09×104.故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是( )A. 3a+2b=5abB. 5a2-2a2=3C. 7a+a=7a2D. 2a2b-4a2b=-2a2b【答案】D【解析】直接利用合并同类项法则分别分析得出答案.【详解】A、3a+2b,无法计算,故此选项错误;B、5a2-2a2=3a2,故此选项错误;C、7a+a=8a,故此选项错误;D、2a2b-4a2b=-2a2b,正确.故选D.【点睛】此题主要考查了合并同类项,正确掌握运算法则是解题关键.4.已知x=﹣1是方程2x﹣5=x+m的解,则m的值是()A. 6B. ﹣6C. ﹣8D. ﹣5【答案】B【解析】根据一元一次方程的解的定义即可求出答案.【详解】解:将x=﹣1代入2x﹣5=x+m,∴﹣2﹣5=﹣1+m∴m=﹣6故选:B.【点睛】本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.5.下列关于多项式2a2b+ab﹣1的说法中,正确的是()A. 次数是5B. 二次项系数是0C. 最高次项是2a2bD. 常数项是1【答案】C【解析】根据多项式的概念逐项分析即可.【详解】A. 多项式2a2b+ab﹣1的次数是3,故不正确;B. 多项式2a2b+ab﹣1的二次项系数是1,故不正确;C. 多项式2a2b+ab﹣1的最高次项是2a2b,故正确;D. 多项式2a2b+ab﹣1的常数项是-1,故不正确;故选C.【点睛】本题考查了多项式的概念,几个单项式的和叫做多项式,多项式中的每个单项式都叫做多项式的项,其中不含字母的项叫做常数项,多项式的每一项都包括前面的符号,多项式中次数最高的项的次数叫做多项式的次数.6.下列图形中,线段AD的长表示点A到直线BC距离的是()A. B.C. D.【答案】D【解析】根据点到直线的距离是指垂线段的长度,即可解答.【详解】解:线段AD的长表示点A到直线BC距离的是图D,故选:D.【点睛】本题考查了点到直线的距离的定义,注意是垂线段的长度,不是垂线段.7.如图,点D在∠AOB的平分线OC上,点E在OB上,DE∥OA,∠1=124°,则∠AOD的度数为()A. 23°B. 28°C. 34°D. 56°【答案】B【解析】【分析】根据平行线性质,先求∠AOB=180°-∠1=180°-124°=56°,再由角平分线定义,得到∠AOD=∠AOB=×56=28°.【详解】因为,DE∥OA,∠1=124°,所以,∠AOB+∠1=180°,所以, ∠AOB=180°-∠1=180°-124°=56°,又因为,点D在∠AOB的平分线OC上,所以,∠AOD=∠AOB=×56°=28°.故选:B.【点睛】本题考核知识点:平行线性质和角平分线.熟练运用平行线性质和角平分线定义求出角的度数.8.小明在文具用品商店买了3件甲种文具和2件乙种文具,一共花了23元,已知甲种文具比乙种文具单价少1元,如果设乙种文具单价为x元/件,那么下面所列方程正确的是()A. 3(x﹣1)+2x=23B. 3x+2(x﹣1)=23C. 3(x+1)+2x=23D. 3x+2(x+1)=23【答案】A【解析】设乙种文具单价为x元/件,则甲种文具的单价为(x﹣1)元/件,根据“3件甲种文具和2件乙种文具,一共花了23元”列出方程即可得.【详解】解:设乙种文具单价为x元/件,则甲种文具的单价为(x﹣1)元/件,根据题意可得:3(x﹣1)+2x=23,故选:A.【点睛】本题考查了一元一次方程的应用,列一元一次方程解决实际问题的一般步骤:(1)审题:找出问题中的已知条件和未知量及它们之间的关系.(2)设元:找出题中的两个关键的未知量,并用字母表示出来.(3)列方程:挖掘题目中的关系,找出等量关系,列出方程.(4)求解.(5)检验作答:检验所求解是否符合实际意义,并作答.9.如图,小亮用6个相同的小正方体搭成的立体图形研究几何体的三视图的变化情况,若由图①变到图②,不改变的是()A. 主视图B. 主视图和左视图C. 主视图和俯视图D. 左视图和俯视图【答案】D【解析】根据三视图的意义,可得答案.【详解】解:从左面看第一层都是三个小正方形,第二层左边一个小正方形,①②的左视图相同;从上面看第一列都是一个小正方形,第二列都是一个小正方形,第三列都是三个小正方形,故①②的俯视图相同,故选:D.【点睛】本题考查了简单组合体的三视图,利用三视图的意义是解题关键.10.如图,已知点A是射线BE上一点,过A作AC⊥BF,垂足为C,CD⊥BE,垂足为D.给出下列结论:①∠1是∠ACD的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF;④与∠ADC互补的角共有3个.其中正确结论有()A. ①B. ①②③C. ①④D. ②③④【答案】C【解析】根据垂直定义可得∠BCA=90°,∠ADC=∠BDC=∠ACF=90°,然后再根据余角定义和补角定义进行分析即可.【详解】解:∵AC⊥BF,∴∠BCA=90°,∴∠ACD+∠1=90°,∴∠1是∠ACD的余角,故①正确;∵CD⊥BE,∴∠ADC=∠CDB=90°,∴∠B+∠BCD=90°,∠ACD+∠DAC=90°,∵∠BCA=90°,∴∠B+∠BAC=90°,∠1+∠ACD=90°,∴图中互余的角共有4对,故②错误;∵∠1+∠DCF=180°,∴∠1的补角是∠DCF,∵∠1+∠DCA=90°,∠DAC+∠DCA=90°,∴∠1=∠DAC,∵∠DAC+∠CAE=180°,∴∠1+∠CAE=180°,∴∠1的补角有∠CAE,故③说法错误;∵∠ACB=90°,∠ACF=90°,∠ADC=∠BDC=90°,∴∠BDC,∠ACB,∠ACF和∠ADC互补,故④说法正确.正确的是①④;故选:C.【点睛】此题主要考查了余角和补角,关键是掌握两角之和为90°时,这两个角互余,两角之和为180°时,这两个角互补.二、填空题本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上.11.比较两个数的大小:_____﹣2.(用“<、=、>”符号填空)【答案】>.【解析】根据正数大于一切负数比较即可.【详解】解:根据正数都大于负数,得出>﹣2,故答案为:>.【点睛】本题考查了有理数的大小比较,用的知识点是正数大于一切负数.12.单项式﹣7a3b2c的次数是_____.【答案】6.【解析】根据一个单项式中所有字母的指数的和叫做单项式的次数可得答案.【详解】解:单项式﹣7a3b2c的次数是6,故答案为:6.【点睛】此题主要考查了单项式,关键是掌握单项式次数的计算方法.13.若单项式﹣x1﹣a y8与是同类项,则a b=_____.【答案】16.【解析】根据同类项定义可得1﹣a=3,2b=8,再解即可.【详解】解:由题意得:1﹣a=3,2b=8,解得:a=﹣2,b=4,a b=16,故答案为:16.【点睛】此题主要考查了同类项,关键是掌握所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.14.当a=_____时,代数式与的值互为相反数.【答案】.【解析】根据相反数的性质列出关于a的方程,解之可得.【详解】解:根据题意得+=0,解得:a=,故答案为:.【点睛】本题主要考查相反数、解一元一次方程,解题的关键是根据相反数的性质列出关于a的一元一次方程.15.若∠α=54°12',则∠α的补角是_____°(结果化为度)【答案】125.8【解析】根据补角的定义,即可直接求解.【详解】解:这个角的补角是:180°﹣54°12′=125°48′=125.8°.故答案:125.8【点睛】本题考查了补角的定义,正确进行角度的计算是关键.16.一件商品标价121元,若九折出售,仍可获利10%,则这件商品的进价为_____元.【答案】99.【解析】此题的等量关系:实际售价=标价的九折=进价×(1+利润率),设未知数,列方程求解即可.【详解】解:设这件商品的进价为x元,根据题意得(1+10%)x=121×0.9,解得x=99.则这件商品的进价为99元.故答案为:99.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.17.如图,数轴上点A表示的数为a,化简:|a﹣3|﹣2|a+1|=_____.(用含a的代数式表示)【答案】﹣3a+1.【解析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】解:根据数轴上点的位置得:0<a<3,∴a﹣3<0,a+1>0,则原式=3﹣a﹣2a﹣2=﹣3a+1,故答案为:﹣3a+1.【点睛】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.18.如图,填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,x的值为_____.【答案】390.【解析】分析:分析前四个正方形可知,规律为右上和左下两个数的积加上左上的数等于右下的数,且左下,右上两个数是相邻的数,右上的数是左上的数的两倍.详解:根据题意可得:b=20,a=10,则m=19×20+10=380+10=390.点睛:本题考查找规律,考查学生看图能力、归纳能力,本题属于创新题,但难度不大.三、解答题本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B铅笔或黑色墨水签字笔.19.计算:(1)12﹣(﹣8)+(﹣7)﹣15;(2).【答案】(1)﹣2;(2)18.【解析】(1)将减法转化为加法,计算可得;(2)根据有理数混合运算顺序和运算法则计算可得.【详解】解:(1)原式=12+8﹣7﹣15=20﹣22=﹣2;(2)原式=﹣1﹣(﹣8)×+3×|1﹣4|=﹣1+10+3×3=9+9=18.【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.20.解下列方程:(1)1﹣3(x﹣2)=x﹣5;(2).【答案】(1) x=3;(2) x= -【解析】(1) 根据一元一次方程的解题步骤,去括号,移项,合并同类项,化未知数系数为1,即可求解。

2017-2018学年第一学期期末检测七年级数学试题及参考答案

2017-2018学年第一学期期末检测七年级数学试题及参考答案

2017—2018学年度第一学期期末调研考试七年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。

题号一二三20 21 22 23 24 25 26得分一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在下表中.)题号 1 2 3 4 5 6 7 8 答案题号9 10 11 12 13 14 15 16 答案1.-2的绝对值是A.2 B.-2 C.D.-2.木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为A.两点之间,线段最短B.过一点,有无数条直线C.两点确定一条直线D.连接两点之间的线段的长叫做两点间的距离3.下列有理数大小关系判断正确的是A.0>|-10| B.-(-)>-|-|C.|-3|<|+3| D.-1>-0.014.从正面观察如右图的两个立体图形,得到的平面图形是A.B.C.D.5.用四舍五入法对2.06032分别取近似值,其中错误的是A.2.1(精确到0.1)B.2.06(精确到千分位)C.2.06(精确到百分位)D.2.0603(精确到0.0001)6.如果a、b互为相反数,且b≠0,则式子a+b,,|a|-|b|的值分别为A.0,1,2 B.1,0,1 C.1,-1,0 D.0,-1,07.下列结论:①-xy的系数是-1;②-x2y3z是五次单项式;③2x2-3xy-1是二次三项式;④把多项式-(2x2+3x3-1+x)去括号,结果是-3x3-2x2+x-1;⑤雄安新区规划建设以特定区域为起步区先行开发,起步区面积约100平方公里,中期发展区面积约200平方公里,远期控制区面积约2000平方公里.2000用科学计数法表示为2×103.其中结论正确的个数有A.1个B.2个C.3个D.4个8.若-的倒数与m+4互为相反数,那么m的值是A.m=1 B.m=-1 C.m=2 D.m=-29.已知|x+1|+(x-y+3)2=0,那么x-y的值是A.1 B.-3C.3 D.-110.若3x m+5y2与x3y n的和是单项式,则m n=A.2 B.4 C.8 D.911.下列各式运用等式的性质变形,错误..的是A.若-a=-b,则a=b B.若=,则a=bC.若ac=bc,则a=b D.若(m2+1)a=(m2+1)b,则a=b12.一件商品的进价为80元,七折售出仍可获利5%.若标价为x元,则可列方程为A.80×(1+5%)=0.7x B.80×0.7×(1+5%)=xC.(1+5%)x=0.7x D.80×5%=0.7x13.点M,N,P和原点O在数轴上的位置如图所示,点M,N,P对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为A.点M B.点N C.点P D.点O14.小明在解方程时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是“2y-=y-■”,怎么办呢?小明想了一想,便翻了书后的答案,此方程的解为y=-,很快补好了这个常数,你能补出这个常数吗?它应是A.1 B.2 C.3 D.415.如图给定的是纸盒的外表面,下面能由它折叠而成的是A.B.C.D.16.如图,在数轴上有A、B、C、D四个整数点(即各点均表示整数),且2AB=BC=3CD,若A、D两点表示的数分别为-5和6,且AC的中点为E,BD的中点为M,BC之间距点B的距离为BC的点N,则该数轴的原点为A.点E B.点F C.点M D.点N二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.规定图形表示运算a-b+c,图形表示运算x+z-y-w.则+=.18.若一个角比它的补角大36°48′,则这个角的度数为.19.用完全一样的火柴棍,按如下图所示的方法拼成“金鱼”形状的图形,则按照这样的方法拼成第4个图形需要火柴棍根,拼成第n个图形(n为正整数)需要火柴棍根(用含n的代数式表示).三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.计算(本题有2个小题,每题4分,共8分)(1)-36×()+(-3)2(2)-12018+(-2)3+|-3|÷.21.解方程(本题有2个小题,第(1)题4分,第(2)题5分,共9分)(1)x+2(5-3x)=15-(7-5x)(2)-1=x-.22.(本题满分9分)如图,已知∠AOB是平角,∠AOC=20°,∠COD:∠DOB=3:13,且OE平分∠BOD,求∠COE的度数.23.(本题满分9分)小明同学做一道数学题时,误将求“A-B”看成求“A+B”,结果求出的答案是3x2-2x+5.已知A=4x2-3x-6.(1)请你帮助小明同学求出A-B;(2)当x取最大负整数时,求A-B的值.24.(本题满分10分)已知点A、B、C在同一条直线上,且AC=5cm,BC=3cm,点M、N分别是AC、BC 的中点.(1)画出符合题意的图形;(2)依据(1)的图形,求线段MN的长.25.(本题满分11分)一种商品按销售量分三部分制定销售单价,如下表:销售量单价不超过100件的部分 2.5元/件超过100件不超过300件的部分 2.2元/件超过300件的部分2元/件(1)若买100件花元,买300件花元;买350件花元;(2)小明买这种商品花了338元,列方程求购买这种商品多少件?(3)若小明花了n元(n>250),恰好购买0.45n件这种商品,求n的值.26.(本题满分12分)如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将有一30度角的直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB 的下方.(图中∠OMN=30°,∠NOM=90°)(1)将图1中的三角板绕点O逆时针旋转至图2,使OM在∠BOC的内部,且恰好平分∠BOC,问直线ON是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,求t的值;(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.2017—2018 (1)七年级数学参考答案及评分标准说明:1.在阅卷过程中,如果考生还有其它正确解法,可参照评分参考酌情给分;2.填空题缺少必有的单位或答案不完整不得分;3.坚持每题评阅到底的原则,当考生的解答在某一步出现错误,影响了后继部分时,如果该步以后的解答未改变这一题的内容和难度,可视影响的程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;4.解答右端所注分数,表示正确做到这一步应得的累积分数.一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)题号 1 2 3 4 5 6 7 8 答案 A C B A B D C D 题号9 10 11 12 13 14 15 16 答案 B B C A A C B D 二、(本大题有3个小题,共10分.17~18小题个3分;19小题有2个空,每空2分) 17.0;18.108°24′(或108.4°);19.30,(7n+2).三、(本大题有7小题,共68分)20.解:(1)原式153=3636369 1294⎛⎫⎛⎫-⨯-⨯--⨯-+⎪ ⎪⎝⎭⎝⎭=-3+20+27+9………………………………………………………………………………3分=53;…………………………………………………………………………………………4分(2)原式=-1-8+3÷………………………………………………………..…………2分=-1-8+9=0.………………………………………………………………………….………………4分21. 解:(1)去括号得:x+10-6x=15-7+5x,………………………….…………..…1分移项得:x-6x-5x =15-7-10,……………………………………………………..…2分合并得:-10x=-2,……………………………………..……………………………….3分系数化为1,得:x=0.2;…………………………………….……………….……………4分(2)去分母得:6x+3-12=12x-(10x+1)…………………………………………..…1分去括号得:6x+3-12=12x-10x-1,………………………………………………….…2分移项得:6x-12x+10x =-1-3+12,…………………………………………………..…3分合并得:4x=8,………………………………………………………………………….…4分系数化为1,得:x=2.…………………………………….………………………………5分22. 解:因为∠AOB是平角,∠AOC=20°,所以∠BOC=180°-20°=160°,即∠COD+∠DOB=160°,………………………………….………………………….…2分又因为∠COD:∠DOB=3:13,所以∠COD=∠COD=×160°=30°,∠DOB=×160°=130°,…………………5分因为OE平分∠BOD所以∠DOE=∠BOD=65°,…………………………………….………………….……7分所以∠COE=∠COD+∠DOE=30°+65°=95°.………………………………….….……9分23. 解:(1)由题意,知B=3x2-2x+5-(4x2-3x-6)…………………….……..…1分=3x2-2x+5-4x2+3x+6=-x2+x+11.………….………………………………………………………………….…3分所以A-B=4x2-3x-6-(-x2+x+11)…………………………………………………4分=4x2-3x-6+x2-x-11=5x2-4x-17.………….………………………………………………………………..…6分(2)x取最大负整数,即x=-1时,…………………………………..……………..…7分A-B=5×(-1)2-4×(-1)-17=5+4-17=-8. ………….………………………9分24. 解:(1)点B在线段AC上,如下图………….…………………….…….….….3分点B在线段AC的延长线上,如下图…………….……..5分(2)当点B在线段AC上时,由AC=5cm,BC=3cm,点M、N分别是AC、BC的中点,得MC=AC=×5=cm,NC=BC=×3=cm,由线段的和差,得MN=MC-NC=-=1cm;………….…………………………………………….…8分当点B在线段AC的延长线上时,由AC=5cm,BC=3cm,点M、N分别是AC、BC的中点,得MC=AC=×5=cm,NC=BC=×3=cm,由线段的和差,得MN=MC+NC=+=4cm.………….……………………………………………….…10分25. 解:(1)250;690;790.………….…………………………………..…..…….…3分(2)设小明购买这种商品x件,因为250<338<690,所以100<x<300.根据题意得:100×2.5+(x-100)×2.2=338,………….…………………………....…6分解得:x=140.答:小明购买这种商品140件.………….……………………………………….…….7分(3)当250<n≤690时,有250+2.2(0.45n-100)=n,解得:n=3000(不合题意,舍去);………….………………………………………..…9分当n>690时,有690+2(0.45n-300)=n,解得:n=900.答:n的值为900.………….………………………………………………….……..….11分26. 解:(1)直线ON平分∠AOC;理由如下:………….……………………….……1分设ON的反向延长线为OD,如右图,因为OM平分∠BOC,所以∠MOC=∠MOB=60°,又因为∠MON=90°,所以∠BON=∠MON-∠MOB=30°,所以∠CON=∠BOC+∠BON=120°+30°=150°,所以∠COD=180°-∠CON=30°,因为∠BOC=120°,所以∠AOC=180°-∠BOC=60°,所以∠COD=12∠AOC,所以OD平分∠AOC,即直线ON平分∠AOC;………….……………………………………………….…..…4分(2)由(1)可知∠BON=30°,∠DON=180°因此ON旋转60°或240°时直线ON平分∠AOC,由题意得,6t=60°或6t=240°,所以t=10或40;………….…………………………………………………………….…8分(3)∠AOM-∠NOC=30°,理由如下:…………………………………………….…9分因为∠MON=90°,∠AOC=60°,所以∠AOM=90°-∠AON,∠NOC=60°-∠AON,所以∠AOM-∠NOC=(90°-∠AON)-(60°-∠AON)=30°.…….…………12分。

江苏省无锡市梁溪区七年级(上)期末数学试卷

江苏省无锡市梁溪区七年级(上)期末数学试卷

江苏省无锡市梁溪区七年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)﹣2018的相反数是()A.2018B.﹣2018C.D.﹣2.(3分)下列各式计算正确的是()A.5a+a=5a2B.5a+b=5abC.5a2b﹣3ab2=2a2b D.2ab2﹣5b2a=﹣3ab23.(3分)数轴上三个点表示的数分别为p、r、s.若p﹣r=5,s﹣p=2,则s ﹣r等于()A.3B.﹣3C.7D.﹣74.(3分)如图,直线AB、CD相交于点O,OD平分∠BOE,则∠AOD的补角的个数为()A.1 个B.2 个C.3 个D.4 个5.(3分)若|x﹣|+(2y+1)2=0,则x2+y2的值是()A.B.C.﹣D.﹣6.(3分)点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0、a+b>0、ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.无法确定7.(3分)某道路一侧原有路灯106盏,相邻两盏灯的距离为36米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70米,则需更换的新型节能灯有()A.54盏B.55盏C.56盏D.57盏8.(3分)在同一平面内,下列说法中正确的是()A.过一点有无数条直线与已知直线垂直B.一条直线的平行线有且只有一条C.若直线a∥b,a⊥c,则b⊥cD.若两条线段不相交,则它们互相平行9.(3分)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是()A.B.C.D.10.(3分)如图,正方形ABCD的边长为1,电子蚂蚁P从点A以1个单位/秒的速度顺时针绕正方形运动,电子蚂蚁Q从点A以3个单位/秒的速度逆时针绕正方形运动,则第2017次相遇在()A.点A B.点B C.点C D.点D二、填空题(本大题共8小题,每小题2分,共16分.)11.(2分)多项式ab﹣2ab2﹣a的次数为.12.(2分)若﹣2x2m+1y6与3x3m﹣1y10+4n是同类项,则m+n=.13.(2分)雨点从高空落下形成的轨迹说明了点动成线,那么一枚硬币在光滑的桌面上快速旋转形成一个球,这说明了.14.(2分)已知∠β=48°30′,则∠β的余角是.15.(2分)已知整式x2﹣2x+6的值为9,则﹣2x2+4x+6的值为.16.(2分)由n个相同的小正方体堆成的一个几何体,其主视图和俯视图如图所示,则n的最大值是.17.(2分)已知∠AOB=80°,以O为顶点,OB为一边作∠BOC=20°,OD 平分∠AOC,则∠BOD度数为.18.(2分)已知线段AB=4cm,在线段AB的延长线上取一点C,使AC=BC,在线段AB的反向延长线上取一点D,使BD=DC,若E为DC的中点,则BE的长是三、解答题(本大题共8小题,共64分.)19.(8分)计算:(1)(2)﹣14﹣7÷[2﹣(﹣3)2].20.(8分)解下列方程(1)2(x﹣1)+1=0;(2)21.(8分)(1)先化简再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)+6xy],其中x=,y=2.(2)已知y=1是关于y的方程2﹣13(m﹣y)=2y的解,求关于x的方程m(x ﹣3)﹣2=m(2x﹣8)的解.22.(6分)如图,所有小正方形的边长都为1,A、B、C都在格点上(小正方形的顶点叫做格点).请仅用没有刻度的直尺完成画图(不要求写画法)及解答:(1)过点C画直线AB的平行线CD;(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H;(3)线段的长度是点A到直线BC的距离;(4)∠B与∠HAG的大小关系为,理由是.23.(6分)如图所示是长方体纸盒的平面展开图,设AB=xcm,若AD=4xcm,AN=3xcm.(1)求长方形DEFG的周长与长方形ABMN的周长(用字母x进行表示);(2)若长方形DEFG的周长比长方形ABMN的周长少8cm,求x的值;(3)在第(2)问的条件下,求原长方体纸盒的容积.24.(8分)已知直线上有A,B两点,AB=24.动点P从点A出发,以每秒3个单位长度的速度沿直线向左匀速运动;同时动点Q从点B出发,以每秒2个单位长度的速度沿直线向右匀速运动,设点P运动时间为t(t>0,单位s).当A、P、Q三个点中恰有一点到另外两点的距离相等时,求t的值.25.(10分)平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施少于等于450元不优惠按售价打九折超过450元,但不超过600元超过600元其中600元部分八点二折优惠,超过600元的部分打三折优惠按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件?26.(10分)如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOB、∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC 是∠AOB的奇妙线.(1)一个角的角平分线这个角的奇妙线.(填是或不是)(2)如图2,若∠MPN=60°,射线PQ绕点P从PN位置开始,以每秒10°的速度逆时针旋转,当∠QPN首次等于180°时停止旋转,设旋转的时间为t (s).①当t为何值时,射线PM是∠QPN的奇妙线?②若射线PM同时绕点P以每秒6°的速度逆时针旋转,并与PQ同时停止旋转.请求出当射线PQ是∠MPN的奇妙线时t的值.江苏省无锡市梁溪区七年级(上)期末数学试卷参考答案一、选择题(本大题共10小题,每小题3分,共30分.)1.A;2.D;3.C;4.C;5.B;6.A;7.B;8.C;9.B;10.D;二、填空题(本大题共8小题,每小题2分,共16分.)11.3;12.1;13.面动成体;14.41°30′;15.0;16.18;17.30°或50°;18.1cm;三、解答题(本大题共8小题,共64分.)19.;20.;21.;22.AG;相等;同角的余角相等;23.;24.;25.40;60%;26.是;。

2017~2018学年苏科版七年级数学上学期期末试题有答案

2017~2018学年苏科版七年级数学上学期期末试题有答案

2017-2018学年度七年级上学期期末数学试卷一、选择题(本大题共有8小题,毎小题3分,共24分.)1.﹣4的绝对值是()A.4 B.C.﹣4 D.±42.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.7a+a=7a2 D.3x2y﹣2yx2=x2y3.下列关于单项式的说法中,正确的是()A.系数是3,次数是2 B.系数是,次数是2C.系数是,次数是3 D.系数是,次数是34.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是()A.B.C.D.5.有理数a、b在数轴上的位置如图所示,则下列各式错误的是()A.b<0<a B.|b|>|a| C.ab<0 D.a+b>06.下列方程中,解为x=2的方程是()A.3x﹣2=3 B.4﹣2(x﹣1)=1 C.﹣x+6=2x D.7.今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C.D.8.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4个B.3个C.2个D.1个二、填空题(本大题共有10小题,毎小题3分,共30分.)9.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.10.比较大小:(填“<”、“=”、“>”)11.计算33°52′+21°54′=.12.如果单项式﹣x3y m+2与x3y的差仍然是一个单项式,则m=.13.若x﹣3y=﹣2,那么3+2x﹣6y的值是.14.平面上有A、B、C三点,已知AB=5cm,BC=3cm.则A、C两点之间的最短距离是cm.15.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=35°则∠DBC为度.16.如果关于x的方程2x+1=3和方程的解相同,那么k的值为.17.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,点M是线段AB的中点,点N是线段BC的中点,则MN=cm.18.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意四个相邻格子中所填的整数三、解答题(本大题共有10小题,共96分.请在该题号指定区域内作答,解答时应写出必要的文字说明、证明过程或演箅步骤)19.计算:(1)(+)+(﹣2)﹣(﹣2)﹣(+3);(2)﹣24+5×(﹣3)﹣6÷(﹣).20.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中(a﹣2)2+|b+1|=0.21.解下列方程(1)2y+1=5y+7 (2)2﹣=﹣.22.利用网格画图:(1)过点C画AB的平行线CD;(2)过点C画AB的垂线,垂足为E;(3)线段CE的长度是点C到直线的距离;(4)连接CA、CB,在线段CA、CB、CE中,线段最短,理由:.23.某电脑公司销售A、B两种品牌电脑,前年共卖出2200台.去年A种电脑卖出的数量比前年减少5%,B种电脑卖出的数量比前年增加6%,两种电脑的总销售量增加了110台.前年A、B两种电脑各卖了多少台?24.在平整的地面上,有若干个完全相同的棱长的小正方体堆成一个几何体(如图所示).(1)这个几何体由个小正方体组成,请画出这个几何体的三视图;(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有个正方体只有两个面是黄色,有个正方体只有三个面是黄色(注:该几何体与地面重合的部分不喷漆).25.定义一种新运算:观察下列式子:1⊗3=1×4﹣3=1 3⊗(﹣1)=3×4+1=135⊗4=5×4﹣4=16 4⊗(﹣3)=4×4+3=19(1)请你想一想:a⊗b=;(2)若a≠b,那么a⊗b b⊗a (填入“=”或“≠”)(3)若a⊗(﹣6)=3⊗a,请求出a的值.26.如图,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m.(1)按图示规律,第一图案的长度L1=;第二个图案的长度L2=;(2)请用代数式表示带有花纹的地面砖块数n与走廊的长度L n(m)之间的关系;(2)当走廊的长度L为30.3m时,请计算出所需带有花纹图案的瓷砖的块数.27.已知∠AOB=90°,∠COD=30°.(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是;(2)将∠COD从图1的位置开始,绕点O逆时针方向旋转n°(即∠AOC=n°),且0<n<180.①如果∠COD的一边与∠AOB的一边垂直,则n=.②当60<n<90时(如图2),作射线OM平分∠AOC,射线ON平分∠BOD,试求∠MON的度数.28.甲、乙两地相距450千米,一辆快车和一辆慢车上午7点分别从甲、乙两地以不变的速度同时出发开往乙地和甲地,快车到达乙地后休息一个小时按原速返回,快车返回甲地时已是下午5点,慢车在快车前一个小时到达甲地.试根据以上信息解答以下问题:(1)分别求出快车、慢车的速度(单位:千米/小时);(2)从两车出发直至慢车达到甲地的过程中,经过几小时两车相距150千米.2017-2018学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题(本大题共有8小题,毎小题3分,共24分.)1.﹣4的绝对值是()A.4 B.C.﹣4 D.±4【考点】绝对值.【分析】根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.【解答】解:﹣4的绝对值是4,故选:A.【点评】此题主要考查了绝对值,关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列计算正确的是()A.3a+2b=5ab B.5y﹣3y=2C.7a+a=7a2 D.3x2y﹣2yx2=x2y【考点】合并同类项.【分析】根据合并同类项的法则,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、系数相加字母部分不变,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.【点评】本题考查了合并同类项,系数相加字母部分不变,注意不是同类项的不能合并.3.下列关于单项式的说法中,正确的是()A.系数是3,次数是2 B.系数是,次数是2C.系数是,次数是3 D.系数是,次数是3【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义可知,单项式的系数是,次数是3.故选D.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.4.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是()A.B.C.D.【考点】几何体的展开图.【专题】压轴题.【分析】由平面图形的折叠及几何体的展开图解题,注意带图案的一个面不是底面.【解答】解:选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.故选:B.【点评】本题主要考查了几何体的展开图.解题时勿忘记正四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.5.有理数a、b在数轴上的位置如图所示,则下列各式错误的是()A.b<0<a B.|b|>|a| C.ab<0 D.a+b>0【考点】数轴;绝对值;有理数大小比较.【分析】根据数轴的特点判断出a、b的正负情况以及绝对值的大小,再根据有理数的大小比较方法与有理数的乘法加法运算法则对各选项分析判断后利用排除法.【解答】解:根据题意得,0<a<1,b<﹣1,∴A、b<0<a,正确;B、|b|>|a|,正确;C、ab<0,正确;D、a+b<0,故本选项错误.故选D.【点评】本题主要考查了数轴与绝对值,以及有理数的大小比较,根据数轴判断出a、b的正负情况以及绝对值的大小是解题的关键.6.下列方程中,解为x=2的方程是()A.3x﹣2=3 B.4﹣2(x﹣1)=1 C.﹣x+6=2x D.【考点】一元一次方程的解.【分析】根据一元一次方程的解的定义,将x=2代入下列方程,进行一一验证即可.【解答】解:A、当x=2时,左边=3×2﹣2=4,右边=3,所以左边≠右边;故本选项错误;B、当x=2时,左边=4﹣2×(2﹣1)=2,右边=1,所以左边≠右边;故本选项错误;C、当x=2时,左边=﹣2+6=4,右边=4,所以左边=右边;故本选项正确;D、当x=2时,左边=×2+1=2,右边=0,所以左边≠右边;故本选项错误;故选C.【点评】本题考查了一元一次方程解的定义.一元一次方程y=ax+b的解一定满足该一元一次方程的解析式.7.今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a元,则去年的价格是每千克()元.A.(1+20%)a B.(1﹣20%)a C.D.【考点】列代数式.【分析】根据:去年的价格×(1﹣20%)=今年的价格,代入数据可求得去年的价格.【解答】解:由题意得,去年的价格×(1﹣20%)=a,则去年的价格=.故选C.【点评】本题考查列代数式,关键是知道今年的价格和去年价格的关系,从而列出代数式.8.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4个B.3个C.2个D.1个【考点】余角和补角.【专题】压轴题.【分析】根据角的性质,互补两角之和为180°,互余两角之和为90°,可将,①②③④中的式子化为含有∠α+∠β的式子,再将∠α+∠β=180°代入即可解出此题.【解答】解:∵∠α和∠β互补,∴∠α+∠β=180°.因为90°﹣∠β+∠β=90°,所以①正确;又∠α﹣90°+∠β=∠α+∠β﹣90°=180°﹣90°=90°,②也正确;(∠α+∠β)+∠β=×180°+∠β=90°+∠β≠90°,所以③错误;(∠α﹣∠β)+∠β=(∠α+∠β)=×180°=90°,所以④正确.综上可知,①②④均正确.故选B.【点评】本题考查了角之间互补与互余的关系,互补两角之和为180°,互余两角之和为90°.二、填空题(本大题共有10小题,毎小题3分,共30分.)9.据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为5.4×106万元.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.【解答】解:5 400 000=5.4×106万元.故答案为5.4×106.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).10.比较大小:>(填“<”、“=”、“>”)【考点】有理数大小比较.【分析】先将绝对值去掉,再比较大小即可.【解答】解:∵=﹣=﹣,=﹣,∴>.【点评】同号有理数比较大小的方法:都是负有理数,绝对值大的反而小.11.计算33°52′+21°54′=55°46′.【考点】度分秒的换算.【专题】计算题.【分析】相同单位相加,分满60,向前进1即可.【解答】解:33°52′+21°54′=54°106′=55°46′.【点评】计算方法为:度与度,分与分对应相加,分的结果若满60,则转化为1度.12.如果单项式﹣x3y m+2与x3y的差仍然是一个单项式,则m=﹣1.【考点】合并同类项.【专题】计算题.【分析】根据两单项式差为单项式,得到两单项式为同类项,即可求出m的值.【解答】解:∵单项式﹣x3y m+2与x3y的差仍然是一个单项式,∴m+2=1,解得:m=﹣1.故答案为:﹣1【点评】此题考查了合并同类项,熟练掌握同类项的定义是解本题的关键.13.若x﹣3y=﹣2,那么3+2x﹣6y的值是﹣1.【考点】代数式求值.【分析】等式x﹣3y=﹣2两边同时乘以2得到2x﹣6y=﹣4,然后代入计算即可.【解答】解:∵x﹣3y=﹣2,∴2x﹣6y=﹣4.∴原式=3+(﹣4)=﹣1.故答案为:﹣1.【点评】本题主要考查的是求代数式的值,利用等式的性质求得2x﹣6y=﹣4是解题的关键.14.平面上有A、B、C三点,已知AB=5cm,BC=3cm.则A、C两点之间的最短距离是2cm.【考点】两点间的距离.【专题】数形结合.【分析】要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB 外,点C在线段AB延长线上.【解答】解:此题画图时会出现三种情况,即点C在线段AB内,点C在线段AB外,点C在线段AB延长线上,所以要分三种情况计算.第一种情况:在AB外,2<AC<8;第二种情况:在AB内,AC=5﹣3=2.第三种情况:点C在线段AB延长线上,AC=5+3=8,故答案为:2.【点评】本题考查了两点之间的距离,在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.15.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=35°则∠DBC为55°度.【考点】翻折变换(折叠问题);角平分线的定义;角的计算;对顶角、邻补角.【专题】计算题.【分析】根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∠ABE=35°,继而即可求出答案.【解答】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=35°,∴∠DBC=55°.故答案为:55.【点评】此题考查翻折变换的性质,三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键,难度一般.16.如果关于x的方程2x+1=3和方程的解相同,那么k的值为7.【考点】同解方程.【专题】计算题.【分析】本题可先根据一元一次方程解出x的值,再根据解相同,将x的值代入二元一次方程中,即可解出k的值.【解答】解:∵2x+1=3∴x=1又∵2﹣=0即2﹣=0∴k=7.故答案为:7【点评】本题考查了二元一次方程与一元一次方程的综合运用.运用代入法,将解出的x的值代入二元一次方程,可解出k的值.17.已知线段AB=20cm,直线AB上有一点C,且BC=6cm,点M是线段AB的中点,点N是线段BC的中点,则MN=7或13cm.【考点】两点间的距离.【分析】根据中点的定义,可分别求出AM、BN的长度,点C存在两种情况,一种在线段AB上,一种在线段AB外,分类讨论,即可得出结论.【解答】解:依题意可知,C点存在两种情况,一种在线段AB上,一种在线段AB外.①C点在线段AB上,如图1:∵点M是线段AB的中点,点N是线段BC的中点,∴AM==10cm,BN==3cm,MN=AB﹣AM﹣BN=20﹣10﹣3=7cm.②C点在线段AB外,如图2:∵点M是线段AB的中点,点N是线段BC的中点,∴AM==10cm,BN==3cm,MN=AB﹣AM+BN=20﹣10+3=13cm.综上得MN得长为7cm或者13cm.故答案为:7或13.【点评】本题考查的是两点间的距离,解题的关键是注意到C点存在两种情况一种在线段AB上,一种在线段AB外.18.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意四个相邻格子中所填的整数【专题】计算题;实数.【分析】由任意四个相邻格子中所填的整数之和都相等,归纳总结得到一般性规律,即可确定出第2016个格子的结果.【解答】解:设3与﹣4之间的数为d,根据题意得:﹣1+3+a+b=3+a+b+c=b+c+3+d=c+3+d﹣4,解得:c=﹣1,b=﹣4,a=d,可得表格中的数字以﹣1,3,a,﹣4循环,∵2016÷4=504,∴第2016个格子中的数与第4个格子中的数一样均为﹣4.故答案为:﹣4.【点评】本题是对数字变化规律的考查,仔细观察排列规律求出a、b、c的值,从而得到其规律是解题的关键.三、解答题(本大题共有10小题,共96分.请在该题号指定区域内作答,解答时应写出必要的文字说明、证明过程或演箅步骤)19.计算:(1)(+)+(﹣2)﹣(﹣2)﹣(+3);(2)﹣24+5×(﹣3)﹣6÷(﹣).【考点】有理数的混合运算.【分析】(1)先算同分母分数,再相加即可求解;(2)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【解答】解:(1)(+)+(﹣2)﹣(﹣2)﹣(+3)=(+2)+(﹣2﹣3)=3﹣6=﹣3;(2)﹣24+5×(﹣3)﹣6÷(﹣)=﹣16﹣15+36=5.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.20.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中(a﹣2)2+|b+1|=0.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解答】解:∵(a﹣2)2+|b+1|=0,∴a=2,b=﹣1,则原式=﹣a2b+3ab2﹣a2b﹣4ab2+2a2b=﹣ab2=﹣2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.解下列方程(1)2y+1=5y+7 (2)2﹣=﹣.【考点】解一元一次方程.【专题】计算题.【分析】(1)先将方程移项,然后合并同类项,再将系数化为1即可求解.(2)先将方程去分母,去括号,然后移项,合并同类项,再将系数化为1即可求解.【解答】解:(1)2y+l=5y+7移项,得2y﹣5y=7﹣1合并同类项,得﹣3y=6系数化为1,得y=﹣2(2)2﹣=﹣去分母,得12﹣2(2x﹣4)=﹣(x﹣7)去括号,得12﹣4x+8=﹣x+7移项,合并同类项,得﹣3x=﹣13系数化为1,得【点评】此题主要考查学生对解一元一次方程的理解和掌握,此题比较容易,属于基础题.要让学生加强练习,提高解题速度.22.利用网格画图:(1)过点C画AB的平行线CD;(2)过点C画AB的垂线,垂足为E;(3)线段CE的长度是点C到直线AB的距离;(4)连接CA、CB,在线段CA、CB、CE中,线段CE最短,理由:垂线段最短.【考点】作图—基本作图;垂线段最短;点到直线的距离.【分析】(1)(2)根据网格结构的特点,利用直线与网格的夹角的关系找出与AB平行的格点以及垂直的格点作出即可;(3)根据点到直线的距离回答;(4)根据垂线段最短直接回答即可.【解答】解:(1)(2)如图,CD∥AB,DE⊥AB;(3)线段CE的长度是点C到直线AB的距离;(4)连接CA、CB,在线段CA、CB、CE中,线段CE最短,理由:垂线段最短.【点评】本题考查了平行线的作法,垂线的作法,以及线段的平移,掌握网格结构的特点并熟练应用是解题的关键.23.某电脑公司销售A、B两种品牌电脑,前年共卖出2200台.去年A种电脑卖出的数量比前年减少5%,B种电脑卖出的数量比前年增加6%,两种电脑的总销售量增加了110台.前年A、B两种电脑各卖了多少台?【考点】一元一次方程的应用.【专题】应用题.【分析】设前年A种电脑卖了x台,则B种电脑卖了(2200﹣x)台,根据题意列出方程,求出方程的解即可得到结果.【解答】解:设前年A种电脑卖了x台,则B种电脑卖了(2200﹣x)台,根据题意得:﹣5%x+(2200﹣x)×6%=110,解得:x=2000,则前年A种电脑卖了2000台,B种电脑卖了200台.【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.24.在平整的地面上,有若干个完全相同的棱长的小正方体堆成一个几何体(如图所示).(1)这个几何体由10个小正方体组成,请画出这个几何体的三视图;(2)如果在这个几何体的表面喷上黄色的漆,则在所有的小正方体中,有2个正方体只有两个面是黄色,有3个正方体只有三个面是黄色(注:该几何体与地面重合的部分不喷漆).【考点】作图-三视图.【分析】(1)从左往右三列小正方体的个数依次为:6,2,2,相加即可;由已知条件可知,主视图有3列,每列小正方数形数目分别为3,1,2;左视图有3列,每列小正方形数目分别为3,2,1;俯视图有3列,每列小正方数形数目分别为3,2,1.据此可画出图形;(2)有2个面是黄色的应是第一列最底层最后面那个和第二列最后面那个;只有三个面是黄色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个.【解答】解:(1)6+2+2=10;如图所示:(2)有2个面是黄色的应是第一列最底层最后面那个和第二列最后面那个,共2个;只有三个面是黄色的应是第一列第二层最后面的那个,第二列最前面那个,第三列最底层那个,共3个.故答案为:10;2,3.【点评】考查了作图﹣三视图,主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;注意看到的用实线表示,看不到的用虚线表示.25.定义一种新运算:观察下列式子:1⊗3=1×4﹣3=1 3⊗(﹣1)=3×4+1=135⊗4=5×4﹣4=16 4⊗(﹣3)=4×4+3=19(1)请你想一想:a⊗b=4a+b;(2)若a≠b,那么a⊗b≠b⊗a (填入“=”或“≠”)(3)若a⊗(﹣6)=3⊗a,请求出a的值.【考点】有理数的混合运算;解一元一次方程.【专题】新定义.【分析】(1)观察所对的等式可得到a⊗b=4×a+b=4a+b;(2)根据(1)中得到的新定义得到b⊗a=4b+a,由于a≠b,所以a⊗b≠b⊗a;(3)根据新定义得到4a﹣6=3×4+a,然后解关于a的一元一次方程.【解答】解:(1)a⊗b=4×a+b=4a+b;(2)∵a⊗b=4a+b,b⊗a=4b+a,而a≠b,∴a⊗b≠b⊗a;(3)由题意得4a﹣6=3×4+a,移项、合并得3a=18,解得a=6.【点评】此题考查有理数的混合运算与一元一次方程,注意理解定义新运算的运算方法.26.如图,学校准备新建一个长度为L的读书长廊,并准备用若干块带有花纹和没有花纹的两种规格大小相同的正方形地面砖搭配在一起,按图中所示的规律拼成图案铺满长廊,已知每个小正方形地面砖的边长均为0.3m.(1)按图示规律,第一图案的长度L1=0.9;第二个图案的长度L2= 1.5;(2)请用代数式表示带有花纹的地面砖块数n与走廊的长度L n(m)之间的关系;(2)当走廊的长度L为30.3m时,请计算出所需带有花纹图案的瓷砖的块数.【考点】规律型:图形的变化类.【专题】计算题.【分析】(1)观察题目中的已知图形,可得前两个图案中有花纹的地面砖分别有:1,2个,第二个图案比第一个图案多1个有花纹的地面砖,所以可得第n个图案有花纹的地面砖有n块;第一个图案边长3×0.3=L,第二个图案边长5×0.3=L,(2)由(1)得出则第n个图案边长为L=(2n+1)×0.3;(3)根据(2)中的代数式,把L为30.3m代入求出n的值即可.【解答】解:(1)第一图案的长度L1=0.3×3=0.9,第二个图案的长度L2=0.3×5=1.5;故答案为:0.9,1.5;(2)观察可得:第1个图案中有花纹的地面砖有1块,第2个图案中有花纹的地面砖有2块,…故第n个图案中有花纹的地面砖有n块;第一个图案边长L=3×0.3,第二个图案边长L=5×0.3,则第n个图案边长为L=(2n+1)×0.3;(3)把L=30.3代入L=(2n+1)×0.3中得:30.3=(2n+1)×0.3,解得:n=50,答:需要50个有花纹的图案.【点评】此题考查了平面图形的有规律变化,以及一元一次方程的应用,要求学生通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.27.已知∠AOB=90°,∠COD=30°.(1)如图1,当点O、A、C在同一条直线上时,∠BOD的度数是60°;(2)将∠COD从图1的位置开始,绕点O逆时针方向旋转n°(即∠AOC=n°),且0<n<180.①如果∠COD的一边与∠AOB的一边垂直,则n=60、90、150.②当60<n<90时(如图2),作射线OM平分∠AOC,射线ON平分∠BOD,试求∠MON的度数.【考点】角的计算.【分析】(1)根据∠AOB=∠AOD+∠BOD=90°,而∠AOD=∠COD=30°,代入即可求出结论;(2)①在旋转的过程中,能够发现∠COD的一边与∠AOB的一边垂直共有三种情况,分别求出每种情况下旋转的度数即可;②根据角与角之间的关系,将直接求∠MON得度数转换成求∠AOM,∠DON的度数,再依照角的关系即可求得结论.【解答】解:(1)∠BOD=∠AOB﹣∠AOD=∠AOB﹣∠COD=90°﹣30°=60°.故答案为:60°.(2)①∵0<n<180,∴分三种情况.a:点D在射线0B上,∠AOC=∠AOB﹣∠COD=90°﹣30°=60°;b:点C在射线OB上,∠AOC=∠AOB=90°;c:点D在AO的延长线上,∠AOC=180°﹣∠COD=180°﹣30°=150°.综上得n为60、90、150.故答案为:60、90、150.②∵∠AOC=n°,OM平分∠AOC,∴∠AOM=n°,∠AOD=∠AOC+∠COD=n°+30°,∠BOD=∠AOD﹣∠AOB=n°+30°﹣90°=n°﹣60°,∵ON平分∠BOD,∴∠DON=∠BOD=×(n°﹣60°)=n°﹣30°,∠MON=∠AOD﹣∠AOM﹣∠DON=n°+30°﹣n°﹣(n°﹣30°)=60°【点评】本题考查了角的计算,解题的关键是依照题意找到角与角的关系,列对关系式.28.甲、乙两地相距450千米,一辆快车和一辆慢车上午7点分别从甲、乙两地以不变的速度同时出发开往乙地和甲地,快车到达乙地后休息一个小时按原速返回,快车返回甲地时已是下午5点,慢车在快车前一个小时到达甲地.试根据以上信息解答以下问题:(1)分别求出快车、慢车的速度(单位:千米/小时);(2)从两车出发直至慢车达到甲地的过程中,经过几小时两车相距150千米.【考点】一元一次方程的应用.【分析】(1)根据速度=直接列算式计算即可;(2)设经过x个小时,分三种情形讨论①相遇前两车相距150千米②相遇后且快车未到达甲地时两车相距150千米(或恰好到达但尚未休息)③休息后快车从乙地出发在慢车后追至相距150千米,根据速度×时间=路程,列出方程,求出x的值即可.【解答】解:(1)根据题意得:=450÷4.5=100千米/小时,v快=450÷9=50千米/小时;v慢答:求出快车、慢车的速度分别是100千米/小时,50千米/小时;(2)设经过x个小时两车相距150千米,分三种情形讨论:①相遇前两车相距150千米:(100+50)x+150=450,解得x=2;②相遇后且快车未到达甲地时两车相距150千米(或恰好到达但尚未休息):(100+50)x﹣150=450,解得x=4;③休息后快车从乙地出发在慢车后追至相距150千米:100(x﹣5.5)+150=50x,解得x=8;答:从两车出发直至慢车达到甲地的过程中,经过2小时或4小时、8小时两车相距150千米.【点评】此题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。

无锡市七年级上学期数学期末考试试卷

无锡市七年级上学期数学期末考试试卷

无锡市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018七上·江南期中) 如图是一个计算程序,若输入a的值为﹣1,则输出的结果应为()A . 7B . ﹣5C . 1D . 52. (2分)下列运算正确的是()A . a2•a3=a6B . ()﹣1=﹣2C . |﹣6|=6D . =±43. (2分) (2016七上·罗田期中) 数轴上的点M对应的数是﹣2,点N与点M距离4个单位长度,此时点N 表示的数是()A . ﹣6B . 2C . ﹣6或2D . 都不正确4. (2分)(2017·贵港模拟) 国家体育馆“鸟巢”的建筑面积达25.8万平方米,请将“25.8万”用科学记数法表示,结果是()A . 25.8×104B . 25.8×105C . 2.58×104D . 2.58×1055. (2分)下列关于多项式5ab2﹣2a2bc﹣1的说法中,正确的是()A . 它是三次三项式B . 它是四次两项式C . 它的最高次项是﹣2a2bcD . 它的常数项是16. (2分) (2017七上·东湖期中) 下列各组单项式中,是同类项的是()A . xyz与 xyB . 与2xC . ﹣0.5x2y3与3x3y2D . 6m2n与﹣2nm27. (2分) (2019七下·北京期中) 已知:如图AB∥CD,CE平分∠ACD,∠A=110°,则∠ECD等于()A . 110°B . 70°C . 55°D . 35°8. (2分) (2019七上·东源期中) 如图,这个几何体是由哪个图形绕虚线旋转一周形成的()A .B .C .D .9. (2分)(2018·定兴模拟) 中国古代人民很早就在生产生活种发现了许多有趣的数学问题,其中《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程()A .B .C .D .10. (2分) (2020八上·长兴期末) 如图,在等边△ABC中,AB=15,BD=6,BE=3,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是()A . 8B . 10C .D . 12二、填空题 (共5题;共5分)11. (1分) (2019七上·鄞州期中) 已知数轴上点A表示的数是,若点B到A的距离为3,则点B表示的数为________.12. (1分) (2018七上·兴隆台期末) 某通信公司的移动电话计费标准每分钟降低a元后,再下调了20%,现在收费标准是每分钟b元,则原来收费标准每分钟是________元.13. (1分) (2015七上·郯城期末) 如果一个角的度数为31°42′,那么它的补角的度数为________°.14. (1分)据统计,2015年末,我省民用轿车拥有量277.5万辆,比上年增长22.7%,其中私人轿车254.6万辆,比上年增长24.1%.设2014年末我省私人轿车拥有量为x万辆,根据题意可列出的方程是________.15. (1分)时钟的分针1小时转________度,时针1小时转________ 度;时钟的分针1•分钟转________度,时针1分钟转________ 度.三、解答题 (共8题;共62分)16. (10分) (2017七上·娄星期末) 计算①﹣32+1﹣(﹣2)3②(﹣5)2÷[2 ﹣(﹣1+2 )]×0.4.17. (5分) (2020七上·德江期末) 先化简,再求值:,其中,18. (5分)解方程:(1) 3x+7=32-2x(2)19. (15分) (2019七上·伊通期末)(1)观察发现,,,……,.=1﹣=.=1﹣=.=________.(2)构建模型=________.(n为正整数)(3)拓展应用:① =________.② =________.③一个数的八分之一,二十四分之一,四十八分之一,八十分之一的和比这个数的四分之一小1,这个数是________.20. (5分) (2017七下·简阳期中) 从甲地到乙地的长途汽车原行驶7小时,开通高速公路后,路程减少了30千米,而车速平均每小时增加了30千米,只需4小时即可到达.求甲、乙两地之间高速公路的路程?21. (5分) (2019七上·双城期末) 如图,D是线段AC的中点,E是线段AB的中点.已知AB=10,BC=3,求线段AD和DE的长度.22. (11分)小张去书店购买图书,看好书店有A,B,C三种不同价格的图书,分别是A种图书每本1元,B 种图书每本2元,C种图书每本5元.(1)若小张同时购买A,C两种不同图书的6本,用去18元,求购买两种图书的本数;(2)若小张同时购买两种不同的图书10本,用去18元,请你设计他的购书方案;(3)若小张同时购进A,B,C三种不同图书10本,用去18元,请你设计他的购买方案.23. (6分) (2019七上·金平期末) 如图,∠AOB=∠DOC=90°,OE平分∠AOD,反向延长射线OE至F.(1)∠AOD和∠BOC是否互补?说明理由;(2)射线OF是∠BOC的平分线吗?说明理由;(3)反向延长射线OA至点G,射线OG将∠COF分成了4:3的两个角,求∠AOD.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共62分)16-1、17-1、18-1、18-2、19-1、19-2、19-3、20-1、21-1、22-1、22-2、22-3、23-1、23-2、23-3、。

梁溪区七年级期末考试数学答案及评分标准2018.1

梁溪区七年级期末考试数学答案及评分标准2018.1

2017年秋学期期末学业质量抽测七年级数学参考答案及评分标准 2018.1一、 选择题(本大题共10小题,每小题3分,共30分.)1.A 2.D 3.C 4.C 5.B 6.A 7.B 8.C 9.B 10.D二、 填空题(本大题共8小题,每小题2分,共16分.)11.3 12.1 13.面动成体 14.41°30′15.0 16.18 17.30°或50° 18.1三、解答题(本大题共8小题,共64分.)19.解:(1)原式=-12-20+14 …………………………………………………………………3分 =-18……………………………………………………………………………………4分(2)原式=-1-7÷[2-9] ………………………………………………………………………2分 =-1+1 …………………………………………………………………………………3分 =0…………………………………………………………………………………………4分20.解:(1)2x -2+1=0………………1分 (2)2(2x -1)=4-(3-x )…………………1分 2x =1………………2分 4x -2=4-3+x …………………2分x =12………………4分 x =1 …………………………4分 21.解:(1)原式=3x 2y -[2x 2y -6xy +3x 2y +6xy ]…………………………………………………1分=3x 2y -2x 2y +6xy -3x 2y -6xy ……………………………………………………2分 =-2x 2y ,……………………………………………………………………………3分 当x =-12,y =2时,上式=-2×(-12)2×2=-1.…………………………………………4分 (2)把y =1代入方程得:2-13(m -1)=2,…………………………………………………1分解得:m =1,………………………………………………………………2分把m =1代入所求方程得:x -3-2=2x -8, ………………………………………………3分得:x =3 ……………………………………………………………………4分22.(1)如图所示,直线CD 即为所求作的直线AB 的平行线;…………………………………1分(2)如图所示(端点处均可以出头); ……………3分(3)AG ; ……………………………………………4分(4)相等;同角的余角相等…………………………6分23.解:(1)∵AB =x cm ,AD =4x cm ,AN =3x cm ,∴长方形DEFG 的周长为2(x +2x )=6x cm ,………………………………………………1分 长方形ABMN 的周长为2(x +3x )=8x cm .………………………………………………2分(2)依题意,8x -6x =8,解得:x =4.………………………………………………………4分(3)原长方体的容积为x •2x •3x =6x 3,将x =4代入,可得容积6x 3=384 cm 2.…………………………………………………6分24.解:当P 是QA 的中点时,24-2t =2(3t ),解得t =3;………………………………………2分当P 、Q 重合时,24-2t =3t ,解得t =245;……………………………………………………3分 当Q 是P A 的中点时,3t =2(24-2t ),解得t =487;…………………………………………5分 当Q 、A 重合时,2t =24,解得t =12; ………………………………………………………6分 当t >12时,AQ =2t -24,AP =3t ,显然AQ ≠AP .(2)①当t 的值为9 或12 或18 时,PM 是∠QPN 的“奇妙线”. ………………………4分②当射线PQ 是∠MPN 的“奇妙线”时,t 的值为307 或52 或203 . …………………10分。

2017.6梁溪区7年级数学期末考试试卷

2017.6梁溪区7年级数学期末考试试卷

(第8题)2017年春学期期末学业质量测试七年级数学试卷 2017.6一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请把相应的选项标号填在题后的括号内.)1.2的相反数是……………………………………………………………………………………( ) A .±2B .2C .-2D .122.下列运算中,正确的是…………………………………………………………………………( ) A .a 6÷a 2=a 3 B .a ·(-a 2)=a 3 C .a 3+a 3=a 6 D .(a 3)2=a 63.若a <b ,则下列结论正确的是………………………………………………………………( ) A .ac 2<bc 2 B .-5a >-5b C .-a 3<-b3D .a +3>b +34.不等式2x -1≤4的最大整数解是……………………………………………………………( ) A .0 B .1C .2D .35.下列多项式可以直接用完全平方公式进行因式分解的是……………………………………( ) A .a 2-2a -1 B .a 2-4a +1 C .a 2+2a -1 D .a 2-a +146.某班去超市购买一些文具作为六一活动奖品,若购买15个笔袋和20本笔记本共需220元;若购买10个笔袋和25本笔记本只需205元.设笔袋和笔记本的单价分别为x 元和y 元,则下列方程组正确的是……………………………………………………………………………( )A .⎩⎪⎨⎪⎧15x +20y =22010x +25y =205B .⎩⎪⎨⎪⎧15x +20y =20510x +25y =220C .⎩⎪⎨⎪⎧20x +15y =22025x +10y =205D .⎩⎪⎨⎪⎧20x +15y =20525x +10y =220 7. 如果一个三角形的两边长分别为4和9,则第三边的长可以是( ) A .4 B .5 C .9 D .138.如图,有以下4个条件:①∠1=∠2,②∠3=∠4,③∠B =∠5, ④∠D =∠5.其中,能判定AD ∥BC 的条件是………………( ) A .①或④ B .②或③ C .①或③ D .②或④ 9.对于命题“若||a >||b ,则a >b .”下面四组关于a 、b 的值中,能 说明这个命题是假命题的是……………………………………( ) A .a =2,b =1B .a =2,b =-1C .a =-2,b =1D .a =-1,b =210.如图,△ABC 的两条中线AD 、BE 相交于点O ,已知△BOD 的面积为3,则四边形ODCE 的面积为………………………( ) A .4B .4.5C .5D .6二、填空题(本大题共8小题,每空2分,共16分.不需写出解答过程,只需把答案直接填写在题中相应的横线上.)11.五一假期无锡火车站共发送旅客278000人,数据278000用科学记数法表示为 .54321E DCBA (第10题)ABEO(第14题)12.若x +y =3,x -y =2,则x 2-y 2= . 13.若a m =3,a n =2,则a m+2n= .14.如图,数轴上所表示关于x 的不等式组的解集是 .15.若⎩⎪⎨⎪⎧x =2,y =-1是方程ax -3y =1的一个解,则a 的值为 .16.已知一个多边形的内角和是外角和的5倍,则这个多边形的边数是 . 17.如图,把△ABC 沿EF 对折压平,若∠A =70°,∠1=95°,则∠2= °.18.如图,四边形ABCD 中,∠A =∠B =∠C ,点E 在AB 上,且∠ADE ∶∠CDE =1∶3,若∠BED =110°,则∠ADC = °.三、解答题(本大题共8小题,共64分.解答时应写出文字说明、证明过程或演算步骤) 19.(本题共有2小题,共8分)计算:(1)3-2+(12)0-||―1; (2)3a 7÷a 3+(2a 2)2-a 3·(-2a ).20.(本题满分8分)因式分解:(1)6x 3-3x 2+12xy ; (2)m 2(m -1)+4(1-m ).21.(本题满分8分)(1)解方程组:⎩⎪⎨⎪⎧2x -3y =17,5x +y =17; (2)解不等式组⎩⎪⎨⎪⎧3x -2<7,2x -13≤x -1.12A 'ABC EF (第17题)ABCDE(第18题)先化简,再求值:(x +3y )2+(x +2y )(x -2y )-2x 2,其中x =2,y =-1.23.(本题满分9分)如图,在正方形网格中有一个格点三角形ABC (即△ABC 的各顶点都在格点上),每个小正方形的边长都是1.(1)△ABC 的面积是 .(2)画出将△ABC 先向右平移6格、再向下平移1格后的△A 1B 1C 1; (3)线段AA 1和BB 1的关系是 .24.(本题满分8分)已知,如图,请在 “AB ∥CD ”、“∠B +∠D =180°”、“BC ∥DE ”中选择两个作为条件,另一个作为结论,先完成下面的填空,再完成证明.已知: , ,求证: . 证明:EABCD如图,正方形ABCD的四个顶角都是直角,四条边长都为5cm,作射线BC.点P从点C出发,沿边CD向点D运动,速度为1cm/s,同时点Q从点A出发,沿边AB运动到点B后再沿射线BC向右运动,速度均为5cm/s.当点P到达D点时两点同时停止运动.连P A、QC、QD,设运动时间为t(s).当t为何值时,△P AD的面积恰好等于△QCD的面积的910?26.(本题满分9分)某校七年级全体师生共390人参加社会实践活动,学校计划租用38座汽车(租金800元/辆)和50座汽车(租金900元/辆)共9辆,恰好全部坐满.(1)求该校计划租用这两种汽车各多少辆?(2)由于该年级有4个班的师生共170人因故不参加本次活动,学校相应的减少了租车数量,请你帮学校算算最多可以比原计划节省多少租车费?。

2017.6梁溪区7年级数学期末考试参考答案

2017.6梁溪区7年级数学期末考试参考答案
2017 年春学期期末学业质量测试 七年级数学参考答案及评分标准
一、选择题 (本大题共 10 小题,每小题 3 分,共 30 分.) 1.C 2.D 3.B 4.C 12.6 16.12 5.D 6.A 13.12 17.45 7.C 8.A 9.C 10.D 二、 填空题 (本大题共 8 小题,每小题 2 分,共 16 分.) 11.2.78×105 15.-1 14.x≥2 18.120 2017.6
三、 解答题 (本大题共 8 小题,共 64 分.) 1 19.解:(1)原式= +1-1……………(3 分) 9 1 = .…………………(4 分) 9 20.解:(1)原式=3x(2x2-x+4y) .…(4 分)
x=4 21.解:(1) .…………………(4 分) ; y=-3 22.解:原式=6xy+5y2;………………(3 分)
23.(1)5.5; (2) 画图正确; (3)平行且相等.……………………………………………(各 3 分) 24.解:填空……………………………(3 分) ,证明…………………………………………(5 分) 1 9 1 1 25.解:当 0≤t<1 时, ×5×5× = ×5×(5-t),解得 t= ;……………………………(3 分) 2 10 2 2 1 9 1 8 当 1<t<2 时, ×5×(10-5t)× = ×5×(5-t),解得 t= ;……………………(6 分) 2 10 2 7 1 9 1 28 当 2<t≤5 时, ×5×(5t-10)× = ×5×(5-t),解得 t= ; 2 10 2 11 1 8 28 综上,t 的值为 或 或 .………………………………………………………………(9 分) 2 7 11 26.解:(1) 设租用 38 座汽车 x 辆,租用 50 座汽车 y 辆.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无锡市梁溪区2017-2018学年七年级上期末数学试题含答案
2017 年秋学期期末学业质量抽测
七年级数学试卷2018.1
(本卷考试时间为100 分钟,满分110 分.)
一、选择题(本大题共10 小题,每小题3 分,共30 分.)
1.-2018 的相反数是()
A.2018 B.-2018 C.±2018D.
1
-
2018
2.下列各式计算正确的是()
A.5a+a=5a2 B.5a+b=5ab C.5a2b-3ab2=2a2b D.2ab2-5b2a=-3ab2 3.数轴上三个点表示的数分别为p、r、s.若p-r=5,s-p=2,则s-r 等于()A.3 B.-3 C.7 D.-7
4.如图,直线AB、CD 相交于点O,OD 平分∠BOE,则∠AOD 的补角的个数为()A.1 个B.2 个C.3 个D.4 个
5.若
2
1
(21)0
2
x y
-++=,则22
x y
+的值是()
A.
3
8B.
1
2C.
1
-
8D.
3
-
8(第4 题)
6.点M、N、P 和原点O 在数轴上的位置如图所示,有理数
a、b、c 各自对应着M、N、P 三个点中的某一点,且ab<0、a+
b>0、ac>bc,那么表示数b 的点为()
A.点M B.点N C.点P D.无法确定(第6 题)
7.某道路一侧原有路灯106 盏,相邻两盏灯的距离为36 米,现计划全部更换为新型的节能灯,且相邻两盏灯的距离变为70 米,则需更换的新型节能灯有()
A.54 盏B.55 盏C.56 盏D.57 盏
8.在同一平面内,下列说法中正确的是()
A.过一点有无数条直线与已知直线垂直B.一条直线的平行线有且只有一条
C.若直线a∥b,a⊥c,则b⊥c D.若两条线段不相交,则它们互相平行
9.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是()
A.B.C.D.
10.如图,正方形ABCD 的边长为1,电子蚂蚁P 从点A 以1 个单位/秒的速
度顺时针绕正方形运动,电子蚂蚁Q 从点A 以3 个单位/秒的速度逆时针
绕正方形运动,则第2017 次相遇在()
A.点A B.点B C.点C D.点D
(第
10 题)

二、填空题(本大题共 8 小题,每小题 2 分,共 16 分.)
11.多项式 ab -2ab 2-a 的次数为 .
12.若-2x 2m +1y 6 与 3x 3m -1y 10+4n
是同类项,则 m +n = . 13.雨点从高空落下形成的轨迹说明了点动成线,那么一枚硬币竖直 在光滑的桌面上快速旋转形成一个球,这说明了 14.已知∠β=48°30′,则∠β 的余角是 .
15.已知整式 x 2
-2x +6 的值为 9,则-2x 2
+4x +6 的值为 .
(第 16 题) 16.由 n 个相同的小正方体堆成的一个几何体,其主视图和俯视图如图所示,则 n 的最大值 是
. 17.已知∠AOB =80°,以 O 为顶点,OB 为一边作∠BOC =20°,OD 平分∠AOC ,则∠BOD 度数 为

18.已知线段 AB =4cm ,在线段 AB 的延长线上取一点 C ,使 AC =53
BC ,在线段 AB 的反向延长线
上取一点 D ,使 BD =4
7
DC ,若 E 为 DC 的中点,则 BE 的长是
三、解答题(本大题共 8 小题,共 64 分.)
19.(本题 8 分)计算:(1)
157
(+)(24)2612-⨯-
(2)-14-7÷[2-(-3)2].
20.(本题 8 分)解下列方程(1)2(x -1)+1=0;
(2)
213124
x x
--=-
21.(本题 8 分)
(1)先化简再求值:3x 2
y -[2x 2
y -3(2xy -x 2
y )+6xy ],其中 x =1
-2,y =2.
(2)已知y=1 是关于y 的方程2-13(m-y)=2y 的解,求关于x 的方程m(x-3)-2=m(2x-8)的解.
22.(本题6 分)如图,所有小正方形的边长都为1,A、B、C 都在格点上(小正方形的顶点叫做格点).请仅用没有刻度的直尺完成画图(不要求写画法)及解答:
(1)过点C 画直线AB 的平行线CD;
(2)过点A 画直线BC 的垂线,并注明垂足为G;过
点A 画直线AB 的垂线,交BC 于点H;
(3)线段的长度是点A 到直线BC 的距离;
(4)∠B 与∠HAG 的大小关系为,理由
是.
23.(本题6 分)如图所示是长方体纸盒的平面展开图,设AB=x cm,若AD=4x cm,AN=3x cm.(1)求长方形DEFG 的周长与长方形ABMN 的周长(用字母x 进行表示);
(2)若长方形DEFG 的周长比长方形ABMN 的周长少8cm,求x 的值;
(3)在第(2)问的条件下,求原长方体纸盒的容积.
24.(本题8 分)已知直线上有A,B 两点,AB=24.动点P 从点A 出发,以每秒3 个单位长度的速度沿直线向左匀速运动;同时动点Q 从点B 出发,以每秒2 个单位长度的速度沿直线向右匀速运动,设点P 运动时间为t(t>0,单位s).当A、P、Q 三个点中恰有一点到另外两点的距离相等时,求t 的值.
B A
25.(本题10 分)某商场经销的甲、乙两种商品,甲种商品每件售价60 元,利润率为50%;乙种
商品每件进价50 元,售价80 元.(利润率=
-
100%
售价进价
进价

(1)甲种商品每件进价为元,每件乙种商品利润率为.
(2)若该商场同时购进甲、乙两种商品共500 件,总进价为21000 元,求购进甲种商品多少件? (3)在元旦期间,该商场对乙种商品进行如下的优惠促销活动:
少件?
26.(本题10 分)如图1,射线OC 在∠AOB 的内部,图中共有3 个角:∠AOB、∠AOC 和
∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC 是∠AOB 的奇妙线.
(1)一个角的角平分线这个角的奇妙线.(填是或不是)
(2)如图2 ,若∠MPN=60°,射线PQ 绕点P 从PN 位置开始,以每秒10°的速度逆时针旋转,当∠QPN 首次等于180°时停止旋转,设旋转的时间为t(s).
①当t 为何值时,射线PM 是∠QPN 的奇妙线?
②若射线PM 同时绕点P 以每秒6°的速度逆时针旋转,并与PQ 同时停止旋转.请求出当射线
PQ 是∠MPN 的奇妙线时t 的值.A
C
O B
(图1)
M
P N
(图2)。

相关文档
最新文档