2008年高考海南数学文科卷解析
2008年海南高考真题及答案
2008年普通高等学校招生全国统一考试英语注:海南、宁夏使用本试卷分第一卷(选择题)和第二卷(非选择题)两部分。
考生作答时,将答案答在答题卡上,在本试卷上答题无效。
考试结束后,将本试卷和答题卡一并交回。
第一卷第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一篇。
例:How much is the shirt?A. &19.15B. &9.15C. &9.18答案是B。
1.What is the weather like?A. It's raining.B.It's cloudy.C.It's sunny.2.Who will go to China next month?A.Lucy.B.Alice.C.Richard.3.What are the speakers talking about?A.The man's sister.B.A film.C.An actor.4.Where will the speakers meet?A.In Room 340B.In Room 314.C.In Room 223.5.Where does the conversation most probably take place?A.In a restaurant.B.In an office.C.At home.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
2008年普通高等学校招生全国统一考试数学卷(海南宁夏.文)含详解
1 ( x1 x )2 ( x2 x )2 … ( xn x )2 n
V=Байду номын сангаас
1 Sh 3
其中 x 为样本平均数 柱体体积公式 V=Sh 其中 S 为底面面积,h 为高
其中 S 为底面面积,h 为高 球的表面积、体积公式
S 4R2 , V
4 3 R 3
1) B. (2,
1) C. (2,
)
, 2) D. (1
x2 y 2 1 的焦距为( 10 2
B. 4 2
A. 3 2
C. 3 3
D. 4 3
3.已知复数 z 1 i ,则 A. 2 B. 2
z2 ( z 1
C. 2i
) D. 2 i
4.设 f ( x) x ln x ,若 f ( x0 ) 2 ,则 x0 ( A. e
其中 R 为球的半径
第Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符 合题目要求的. 1.已知集合 M x ( x 2)( x 1) 0 , N x x 1 0 ,则 M N (
)
, A. (11)
2.双曲线
直线 m ∥,m ∥ ,则下列四种位置关系中,不一定 成立的是( ... A. AB ∥ m B. AC m C. AB ∥ D. AC
)
第Ⅱ卷
本卷包括必考题和选考题两部分.第 13 题~第 21 题为必考题,每个试题考生都必须 做答.第 22 题~第 23 题为选考题,考生根据要求做答. 二、填空题:本大题共 4 小题,每小题 5 分. 13.已知 an 为等差数列, a1 a3 22 , a6 7 ,则 a5 .
2008年高考新课标全国卷-文科数学(含答案)
2008年普通高等学校招生全国统一考试(新课标全国卷)一、选择题:本大题共12小题,每小题5分,满分60分。
在每小题给出的四个选项中, 只有一项是符合题目要求的。
1、已知集合M ={ x|(x + 2)(x -1) < 0 },N ={ x| x + 1 < 0 },则M ∩N =( ) A. (-1,1) B. (-2,1)C. (-2,-1)D. (1,2)2、双曲线221102x y -=的焦距为( )3、已知复数1z i =-,则21z z =-( ) A. 2B. -2C. 2iD. -2i4、设()ln f x x x =,若0'()2f x =,则0x =( )A. 2e B. e C. ln 22D. ln 25、已知平面向量a r =(1,-3),b r =(4,-2),a b λ+r r 与a r垂直,则λ是( )A. -1B. 1C. -2D. 26、右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数, 那么在空白的判断框中,应该填入下面四个选项中的( ) A. c > xB. x > cC. c > bD. b > c7、已知1230a a a >>>,则使得2(1)1i a x -<(1,2,3)i =都成立的x 取值范围是( )A.(0,11a ) B. (0,12a ) C. (0,31a ) D. (0,32a )8、设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( ) A. 2 B. 4 C.152D.1729、平面向量a r ,b r共线的充要条件是( )A. a r ,b r 方向相同B. a r ,b r 两向量中至少有一个为零向量C. R λ∃∈, b a λ=r rD. 存在不全为零的实数1λ,2λ,120a b λλ+=r r r10、点P (x ,y )在直线4x + 3y = 0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是( ) A. [0,5]B. [0,10]C. [5,10]D. [5,15]11、函数()cos 22sin f x x x =+的最小值和最大值分别为( )A. -3,1B. -2,2C. -3,32 D. -2,3212、已知平面α⊥平面β,α∩β= l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是( ) A. AB ∥m B. AC ⊥m C. AB ∥βD. AC ⊥β二、填空题:本大题共4小题,每小题5分,满分20分。
2008年全国统一高考数学试卷(文科)(全国卷ⅱ)(含解析版)
2008 年全国统一高考数学试卷(文科)(全国卷Ⅱ)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)若sinα<0 且tanα>0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角2.(5 分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=()A.{0,1} B.{﹣1,0,1}C.{0,1,2} D.{﹣1,0,1,2}3.(5 分)原点到直线x+2y﹣5=0 的距离为()A.1 B.C.2D.4.(5分)函数f(x)=﹣x 的图象关于()A.y 轴对称B.直线y=﹣x 对称C.坐标原点对称D.直线y=x 对称5.(5 分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a6.(5 分)设变量x,y 满足约束条件:,则z=x﹣3y 的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣87.(5 分)设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0 平行,则a= ()A.1 B.C.D.﹣18.(5 分)正四棱锥的侧棱长为,侧棱与底面所成的角为60°,则该棱锥的体积为()A.3 B.6 C.9 D.189.(5分)的展开式中x 的系数是()A.﹣4 B.﹣3 C.3 D.410.(5 分)函数f(x)=sinx﹣cosx 的最大值为()A.1 B.C.D.211.(5 分)设△ABC 是等腰三角形,∠ABC=120°,则以A,B 为焦点且过点C 的双曲线的离心率为()A.B.C.D.12.(5 分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2二、填空题(共4 小题,每小题5 分,满分20 分)13.(5分)设向量,若向量与向量共线,则λ=.14.(5 分)从10 名男同学,6 名女同学中选3 名参加体能测试,则选到的3 名同学中既有男同学又有女同学的不同选法共有种(用数字作答)15.(5 分)已知F 是抛物线C:y2=4x 的焦点,A,B 是C 上的两个点,线段AB 的中点为M(2,2),则△ABF 的面积等于.16.(5 分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①;充要条件②.(写出你认为正确的两个充要条件)三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,cosA=﹣,cosB=.(I)求sinC 的值;(II)设BC=5,求△ABC 的面积.18.(12 分)等差数列{a n}中,a4=10 且a3,a6,a10 成等比数列,求数列{a n}前20 项的和S20.19.(12 分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8 环,9 环,10 环的概率分别为0.6,0.3,0.1,乙击中8 环,9 环,10 环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(I)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(II)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.20.(12 分)如图,正四棱柱ABCD﹣A1B1C1D1 中,AA1=2AB=4,点E 在CC1 上且C1E=3EC.(I)证明:A1C⊥平面BED;(II)求二面角A1﹣DE﹣B 的大小.21.(12 分)设a∈R,函数f(x)=ax3﹣3x2.(I)若x=2 是函数y=f(x)的极值点,求a 的值;(II)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0 处取得最大值,求a 的取值范围.22.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D,与椭圆相交于E、F 两点.(I)若,求k 的值;(II)求四边形AEBF 面积的最大值.2008 年全国统一高考数学试卷(文科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)若sinα<0 且tanα>0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【考点】GC:三角函数值的符号.【分析】由正弦和正切的符号确定角的象限,当正弦值小于零时,角在第三四象限,当正切值大于零,角在第一三象限,要同时满足这两个条件,角的位置是第三象限,实际上我们解的是不等式组.【解答】解:sinα<0,α在三、四象限;tanα>0,α在一、三象限.故选:C.【点评】记住角在各象限的三角函数符号是解题的关键,可用口诀帮助记忆:一全部,二正弦,三切值,四余弦,它们在上面所述的象限为正2.(5 分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=()A.{0,1} B.{﹣1,0,1} C.{0,1,2} D.{﹣1,0,1,2}【考点】1E:交集及其运算.【分析】由题意知集合M={m∈z|﹣3<m<2},N={n∈z|﹣1≤n≤3},然后根据交集的定义和运算法则进行计算.【解答】解:∵M={﹣2,﹣1,0,1},N={﹣1,0,1,2,3},∴M∩N={﹣1,0,1},故选:B.【点评】此题主要考查集合和交集的定义及其运算法则,是一道比较基础的题.3.(5 分)原点到直线x+2y﹣5=0 的距离为()A.1 B.C.2 D.【考点】IT:点到直线的距离公式.【分析】用点到直线的距离公式直接求解.【解答】解析:.故选:D.【点评】点到直线的距离公式是高考考点,是同学学习的重点,本题是基础题.4.(5 分)函数f(x)=﹣x 的图象关于()A.y 轴对称B.直线y=﹣x 对称C.坐标原点对称D.直线y=x 对称【考点】3M:奇偶函数图象的对称性.【分析】根据函数f(x)的奇偶性即可得到答案.【解答】解:∵f(﹣x)=﹣+x=﹣f(x)∴是奇函数,所以f(x)的图象关于原点对称故选:C.【点评】本题主要考查函数奇偶性的性质,是高考必考题型.5.(5 分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a【考点】4M:对数值大小的比较.【分析】根据函数的单调性,求a 的范围,用比较法,比较a、b 和a、c 的大小.【解答】解:因为a=lnx 在(0,+∞)上单调递增,故当x∈(e﹣1,1)时,a∈(﹣1,0),于是b﹣a=2lnx﹣lnx=lnx<0,从而b<a.又a﹣c=lnx﹣ln3x=a(1+a)(1﹣a)<0,从而a<c.综上所述,b<a<c.故选:C.【点评】对数值的大小,一般要用对数的性质,比较法,以及0 或1 的应用,本题是基础题.6.(5 分)设变量x,y 满足约束条件:,则z=x﹣3y 的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣8【考点】7C:简单线性规划.【专题】11:计算题.【分析】我们先画出满足约束条件:的平面区域,求出平面区域的各角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数z=x﹣3y 的最小值.【解答】解:根据题意,画出可行域与目标函数线如图所示,由图可知目标函数在点(﹣2,2)取最小值﹣8故选:D.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.7.(5 分)设曲线y=ax2在点(1,a)处的切线与直线2x﹣y﹣6=0 平行,则a= ()A.1 B.C.D.﹣1【考点】6H:利用导数研究曲线上某点切线方程.【分析】利用曲线在切点处的导数为斜率求曲线的切线斜率;利用直线平行它们的斜率相等列方程求解.【解答】解:y'=2ax,于是切线的斜率k=y'|x=1=2a,∵切线与直线2x﹣y﹣6=0 平行∴有2a=2∴a=1故选:A.【点评】本题考查导数的几何意义:曲线在切点处的导数值是切线的斜率.8.(5 分)正四棱锥的侧棱长为,侧棱与底面所成的角为60°,则该棱锥的体积为()A.3 B.6 C.9 D.18【考点】LF:棱柱、棱锥、棱台的体积.【专题】11:计算题.【分析】先求正四棱锥的高,再求正四棱锥的底面边长,然后求其体积.【解答】解:高,又因底面正方形的对角线等于,∴底面积为,∴体积故选:B.【点评】本题考查直线与平面所成的角,棱锥的体积,注意在底面积的计算时,要注意多思则少算.9.(5 分)的展开式中x 的系数是()A.﹣4 B.﹣3 C.3 D.4【考点】DA:二项式定理.【分析】先利用平方差公式化简代数式,再利用二项展开式的通项公式求出第r+1 项,令x 的指数为1 求得展开式中x 的系数.【解答】解:=(1﹣x)4(1﹣x)4的展开式的通项为T r+1=C4r(﹣x)r=(﹣1)r C4r x r令r=1 得展开式中x 的系数为﹣4故选:A.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定想问题的工具.10.(5 分)函数f(x)=sinx﹣cosx 的最大值为()A.1 B.C.D.2【考点】H4:正弦函数的定义域和值域;HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】根据两角和与差的正弦公式进行化简,即可得到答案.【解答】解:,所以最大值是故选:B.【点评】本题主要考查两角和与差的正弦公式和正弦函数的最值问题.三角函数中化为一个角的三角函数问题是三角函数在高考中的热点问题.11.(5 分)设△ABC 是等腰三角形,∠ABC=120°,则以A,B 为焦点且过点C 的双曲线的离心率为()A.B.C.D.【考点】KC:双曲线的性质.【专题】11:计算题;16:压轴题.【分析】根据题设条件可知2c=|AB|,所以,由双曲线的定义能够求出2a,从而导出双曲线的离心率.【解答】解:由题意2c=|AB|,所以,由双曲线的定义,有,∴故选:B.【点评】本题考查双曲线的有关性质和双曲线定义的应用.12.(5 分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】求解本题,可以从三个圆心上找关系,构建矩形利用对角线相等即可求解出答案.【解答】解:设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2 为矩形,于是对角线O1O2=OE,而OE==,∴O1O2=故选:C.【点评】本题考查球的有关概念,两平面垂直的性质,是基础题.10 610 6 10 6 10 6二、填空题(共 4 小题,每小题 5 分,满分 20 分) 13.(5 分)设向量 ,若向量与向量共线,则 λ= 2 .【考点】96:平行向量(共线).【分析】用向量共线的充要条件:它们的坐标交叉相乘相等列方程解. 【解答】解:∵a=(1,2),b=(2,3), ∴λα+b=(λ,2λ)+(2,3)=(λ+2,2λ+3). ∵向量 λα+b 与向量 c=(﹣4,﹣7)共线, ∴﹣7(λ+2)+4(2λ+3)=0, ∴λ=2. 故答案为 2【点评】考查两向量共线的充要条件.14.(5 分)从 10 名男同学,6 名女同学中选 3 名参加体能测试,则选到的 3 名同学中既有男同学又有女同学的不同选法共有 420种(用数字作答)【考点】D5:组合及组合数公式. 【专题】11:计算题;32:分类讨论.【分析】由题意分类:①男同学选 1 人,女同学中选 2 人,确定选法;②男同学 选 2 人,女同学中选 1 人,确定选法;然后求和即可.【解答】解:由题意共有两类不同选法,①男同学选 1 人,女同学中选 2 人,不同选法 C 1C 2=150; ②男同学选 2 人,女同学中选 1 人,不同选法 C 2C 1=270;共有:C 1C 2+C 2C 1=150+270=420 故答案为:420【点评】本题考查组合及组合数公式,考查分类讨论思想,是基础题.15.(5 分)已知 F 是抛物线 C :y 2=4x 的焦点,A ,B 是 C 上的两个点,线段 AB, 的中点为 M (2,2),则△ABF 的面积等于 2 .【考点】K8:抛物线的性质.【专题】5D :圆锥曲线的定义、性质与方程. 【分析】设 A (x 1,y 1),B (x 2,y 2),则=4x 2,两式相减可得:(y 1+y 2)(y 1﹣y 2)=4(x 1﹣x 2),利用中点坐标公式、斜率计算公式可得 k AB ,可得直线 AB 的方程为:y ﹣2=x ﹣2,化为 y=x ,与抛物线方程联立可得 A ,B 的坐标,利用弦长公式可得|AB |,再利用点到直线的距离公式可得点 F 到直线 AB 的距离 d ,利用三角形面积公式求得答案.【解答】解:∵F 是抛物线 C :y 2=4x 的焦点,∴F (1,0).设 A (x 1,y 1),B (x 2,y 2),则, =4x 2,两式相减可得:(y 1+y 2)(y 1﹣y 2)=4(x 1﹣x 2), ∵线段 AB 的中点为 M (2,2),∴y 1+y 2=2×2=4,又=k AB ,4k AB =4,解得 k AB =1,∴直线 AB 的方程为:y ﹣2=x ﹣2,化为 y=x ,联立 ,解得,,∴|AB |==4.点 F 到直线 AB 的距离 d=,∴S △ABF ===2,故答案为:2.【点评】本题主要考查了直线与抛物线相交问题弦长问题、“点差法”、点到直线的距离公式、三角形的面积计算公式,考查了推理能力与计算能力,属于难题.16.(5 分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①三组对面分别平行的四棱柱为平行六面体;充要条件②平行六面体的对角线交于一点,并且在交点处互相平分;.(写出你认为正确的两个充要条件)【考点】29:充分条件、必要条件、充要条件;L2:棱柱的结构特征.【专题】16:压轴题;21:阅读型.【分析】本题考查的知识点是充要条件的定义及棱柱的结构特征及类比推理,由平行六面体与平行四边形的定义相似,故我们可以类比平行四边形的性质,类比推断平行六面体的性质.【解答】解:类比平行四边形的性质:两组对边分别平行的四边形为平行四边形,则我们类比得到:三组对面分别平行的四棱柱为平行六面体.类比平行四边形的性质:两条对角线互相平分,则我们类比得到:平行六面体的对角线交于一点,并且在交点处互相平分;故答案为:三组对面分别平行的四棱柱为平行六面体;平行六面体的对角线交于一点,并且在交点处互相平分;【点评】类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,cosA=﹣,cosB=.(I)求sinC 的值;(II)设BC=5,求△ABC 的面积.【考点】GG:同角三角函数间的基本关系;GP:两角和与差的三角函数.【专题】11:计算题.【分析】(Ⅰ)先利用同角三角函数的基本关系求得sinA 和sinB 的值,进而根据sinC=sin(A+B)利用正弦的两角和公式求得答案.(Ⅱ)先利用正弦定理求得AC,进而利用三角形面积公式求得三角形的面积.【解答】解:(Ⅰ)∵在△ABC 中,A+B+C=180°,sinC=sin(180﹣(A+B))=sin(A+B)由,得,由,得.所以.(Ⅱ)由正弦定理得.所以△ABC 的面积S=BC•AC•sinC=×5××=.【点评】本题主要考查了同角三角函数的基本关系的应用和正弦的两角和公式的应用.考查了学生对三角函数基础知识的理解和灵活运用.18.(12 分)等差数列{a n}中,a4=10 且a3,a6,a10 成等比数列,求数列{a n}前20 项的和S20.【考点】85:等差数列的前n 项和.【专题】54:等差数列与等比数列.【分析】先设数列{a n}的公差为d,根据a3,a6,a10 成等比数列可知a3a10=a62,把d 和a4 代入求得d 的值.再根据a4 求得a1,最后把d 和a1 代入S20 即可得到答案.【解答】解:设数列{a n}的公差为d,则a3=a4﹣d=10﹣d,a6=a4+2d=10+2d,a10=a4+6d=10+6d.由a3,a6,a10 成等比数列得a3a10=a62,即(10﹣d)(10+6d)=(10+2d)2,整理得10d2﹣10d=0,解得d=0 或d=1.当d=0 时,S20=20a4=200.当d=1 时,a1=a4﹣3d=10﹣3×1=7,于是=20×7+190=330.【点评】本题主要考查了等差数列和等比数列的性质.属基础题.19.(12 分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8 环,9 环,10 环的概率分别为0.6,0.3,0.1,乙击中8 环,9 环,10 环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(I)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(II)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】11:计算题.【分析】(Ⅰ)甲、乙的射击相互独立,在一轮比赛中甲击中的环数多于乙击中环数包括三种情况,用事件分别表示为A=A1•B1+A2•B1+A2•B2,且这三种情况是互斥的,根据互斥事件和相互独立事件的概率公式得到结果.(Ⅱ)由题意知在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数表示三轮中恰有两轮或三轮甲击中环数多于乙击中的环数,这两种情况是互斥的,根据互斥事件和相互独立事件的概率公式得到结果.【解答】解:记A1,A2 分别表示甲击中9 环,10 环,B1,B2 分别表示乙击中8环,9 环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,C1,C2 分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(I)甲、乙的射击相互独立在一轮比赛中甲击中的环数多于乙击中环数包括三种情况,用事件分别表示为A=A1•B1+A2•B1+A2•B2,且这三种情况是互斥的,根据互斥事件和相互独立事件的概率公式得到∴P(A)=P(A1•B1+A2•B1+A2•B2)=P(A1•B1)+P(A2•B1)+P(A2•B2)=P(A1)•P(B1)+P(A2)•P(B1)+P(A2)•P(B2)=0.3×0.4+0.1×0.4+0.1×0.4=0.2.(II)由题意知在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数表示三轮中恰有两轮或三轮甲击中环数多于乙击中的环数,这两种情况是互斥的,即B=C1+C2,∵P(C1)=C32[P(A)]2[1﹣P(A)]=3×0.22×(1﹣0.2)=0.096,P(C2)=[P(A)]3=0.23=0.008,∴P(B)=P(C1+C2)=P(C1)+P(C2)=0.096+0.008=0.104.【点评】考查运用概率知识解决实际问题的能力,包括应用互斥事件和相互独立事件的概率,相互独立事件是指两事件发生的概率互不影响,这是可以作为一个解答题的题目,是一个典型的概率题.20.(12 分)如图,正四棱柱ABCD﹣A1B1C1D1 中,AA1=2AB=4,点E 在CC1 上且C1E=3EC.(I)证明:A1C⊥平面BED;(II)求二面角A1﹣DE﹣B 的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】14:证明题;15:综合题;35:转化思想.【分析】法一:(Ⅰ)要证A1C⊥平面BED,只需证明A1C 与平面BED 内两条相交直线BD,EF 都垂直;(Ⅱ)作GH⊥DE,垂足为H,连接A1H,说明∠A1HG 是二面角A1﹣DE﹣B 的平面角,然后解三角形,求二面角A1﹣DE﹣B 的大小.法二:建立空间直角坐标系,(Ⅰ)求出,证明A1C⊥平面DBE.(Ⅱ)求出 平面 DA 1E 和平面 DEB 的法向量,求二者的数量积可求二面角 A 1﹣ DE ﹣B 的大小. 【解答】解:解法一:依题设知 AB=2,CE=1.(I ) 连接 AC 交 BD 于点 F ,则BD ⊥AC .由三垂线定理知,BD ⊥A 1C .(3 分)在平面 A 1CA 内,连接 EF 交 A 1C 于点 G , 由于,故 Rt △A 1AC ∽Rt △FCE ,∠AA 1C=∠CFE ,∠CFE 与∠FCA 1 互余.于是 A 1C ⊥EF .A 1C 与平面 BED 内两条相交直线 BD ,EF 都垂直,所以 A 1C ⊥平面 BED .(6 分)(II ) 作 GH ⊥DE ,垂足为 H ,连接 A 1H .由三垂线定理知 A 1H ⊥DE ,故∠A 1HG 是二面角 A 1﹣DE ﹣B 的平面角.(8 分),. ,又, ..所以二面角 A 1﹣DE ﹣B 的大小为.((12 分))解法二:以 D 为坐标原点,射线 DA 为 x 轴的正半轴,建立如图所示直角坐标系 D ﹣xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).,.(3 分)(Ⅰ)因为,,故 A 1C ⊥BD ,A 1C ⊥DE . 又 DB ∩DE=D ,所以 A 1C ⊥平面 DBE .(6 分)(Ⅱ)设向量=(x ,y ,z )是平面 DA 1E 的法向量,则,.,.故2y+z=0,2x+4z=0.令y=1,则z=﹣2,x=4,=(4,1,﹣2).(9 分)等于二面角A1 ﹣DE﹣B 的平面角,所以二面角A1﹣DE﹣B 的大小为.(12分)【点评】本题考查直线与平面垂直的判定,二面角的求法,考查空间想象能力,逻辑思维能力,是中档题.21.(12 分)设a∈R,函数f(x)=ax3﹣3x2.(I)若x=2 是函数y=f(x)的极值点,求a 的值;(II)若函数g(x)=f(x)+f′(x),x∈[0,2],在x=0 处取得最大值,求a 的取值范围.【考点】6C:函数在某点取得极值的条件;6D:利用导数研究函数的极值;6E:利用导数研究函数的最值.【专题】16:压轴题.【分析】(Ⅰ)导函数在x=2 处为零求a,是必要不充分条件故要注意检验(Ⅱ)利用最大值g(0)大于等于g(2)求出a 的范围也是必要不充分条件注意检验【解答】解:(Ⅰ)f'(x)=3ax2﹣6x=3x(ax﹣2).因为x=2 是函数y=f(x)的极值点,所以f'(2)=0,即6(2a﹣2)=0,因此a=1.经验证,当a=1 时,x=2 是函数y=f(x)的极值点.(Ⅱ)由题设,g(x)=ax3﹣3x2+3ax2﹣6x=ax2(x+3)﹣3x(x+2).当g(x)在区间[0,2]上的最大值为g(0)时,g(0)≥g(2),即0≥20a﹣24.故得.反之,当时,对任意x ∈ [0 ,2] ,==≤0,而g(0)=0,故g(x)在区间[0,2]上的最大值为g(0).综上,a 的取值范围为.【点评】当函数连续且可导,极值点处的导数等于零是此点为极值点的必要不充分条件,所以解题时一定注意检验.22.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D,与椭圆相交于E、F 两点.(I)若,求k 的值;(II)求四边形AEBF 面积的最大值.【考点】96:平行向量(共线);KH:直线与圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】(1)依题可得椭圆的方程,设直线AB,EF 的方程分别为x+2y=2,y=kx,D(x0,kx0),E(x1,kx1),F(x2,kx2),且x1,x2 满足方程(1+4k2)x2=4,进而求得x2 的表达式,进而根据求得x0 的表达式,由D 在AB 上知x0+2kx0=2,进而求得x0 的另一个表达式,两个表达式相等求得k.(Ⅱ)由题设可知|BO|和|AO|的值,设y1=kx1,y2=kx2,进而可表示出四边形AEBF 的面积进而根据基本不等式的性质求得最大值.【解答】解:(Ⅰ)依题设得椭圆的方程为,直线AB,EF 的方程分别为x+2y=2,y=kx(k>0).如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2,且x1,x2 满足方程(1+4k2)x2=4,故.①由知x0﹣x1=6(x2﹣x0),得;由D 在AB 上知x0+2kx0=2,得.所以,化简得24k2﹣25k+6=0,解得或.(Ⅱ)由题设,|BO|=1,|AO|=2.由(Ⅰ)知,E(x1,kx1),F(x2,kx2),不妨设y1=kx1,y2=kx2,由①得x2>0,根据E 与F 关于原点对称可知y2=﹣y1>0,故四边形AEBF 的面积为S=S△OBE +S△OBF+S△OAE+S△OAF=•(﹣y1)==x2+2y2= = = ,当x2=2y2时,上式取等号.所以S 的最大值为.【点评】本题主要考查了直线与圆锥曲线的综合问题.直线与圆锥曲线的综合问题是支撑圆锥曲线知识体系的重点内容,问题的解决具有入口宽、方法灵活多样等,而不同的解题途径其运算量繁简差别很大.。
2008年海南省高考数学试卷(文)答案与解析
2008年海南省高考数学试卷(文)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•海南)已知集合M={x|(x+2)(x﹣1)<0},N={x|x+1<0},则M∩N=()A.(﹣1,1)B.(﹣2,1)C.(﹣2,﹣1)D.(1,2)【考点】交集及其运算.【分析】由题意M={x|(x+2)(x﹣1)<0},N={x|x+1<0},解出M和N,然后根据交集的定义和运算法则进行计算.【解答】解:∵集合M={x|(x+2)(x﹣1)<0},∴M={x|﹣2<x<1},∵N={x|x+1<0},∴N={x|x<﹣1},∴M∩N={x|﹣2<x<﹣1}故选C.【点评】此题主要考查一元二次不等式的解法及集合的交集及补集运算,一元二次不等式的解法及集合间的交、并、补运算布高考中的常考内容,要认真掌握,并确保得分.2.(5分)(2008•海南)双曲线的焦距为()A.3 B.4C.3D.4【考点】双曲线的简单性质.【专题】计算题.【分析】本题比较简明,需要注意的是容易将双曲线中三个量a,b,c的关系与椭圆混淆,而错选B【解答】解析:由双曲线方程得a2=10,b2=2,∴c2=12,于是,故选D.【点评】本题高考考点是双曲线的标准方程及几何性质,在新课标中双曲线的要求已经降低,考查也是一些基础知识,不要盲目拔高.3.(5分)(2008•海南)已知复数z=1﹣i,则=()A.2 B.﹣2 C.2i D.﹣2i【考点】复数代数形式的混合运算.【分析】把复数z代入化简,复数的分子化简即可.【解答】解:将z=1﹣i代入得,故选A.【点评】复数的加减、乘除及乘方运算是需要掌握的内容,基础题目.4.(5分)(2008•海南)设f(x)=xlnx,若f′(x0)=2,则x0=()A.e2B.e C.D.ln2【考点】导数的乘法与除法法则.【分析】利用乘积的运算法则求出函数的导数,求出f'(x0)=2解方程即可.【解答】解:∵f(x)=xlnx∴∵f′(x0)=2∴lnx0+1=2∴x0=e,故选B.【点评】本题考查两个函数积的导数及简单应用.导数及应用是高考中的常考内容,要认真掌握,并确保得分.5.(5分)(2008•海南)已知平面向量=(1,﹣3),=(4,﹣2),与垂直,则λ是()A.﹣1 B.1 C.﹣2 D.2【考点】数量积判断两个平面向量的垂直关系.【专题】计算题.【分析】由于,所以,即(λ+4)﹣3(﹣3λ﹣2)=0,整理得λ=﹣1.【解答】解:∵,∴,即(λ+4)﹣33λ﹣2)=0,整理得10λ+10=0,∴λ=﹣1,故选A.【点评】高考考点:简单的向量运算及向量垂直;易错点:运算出错;全品备考提示:高考中每年均有相当一部分基础题,要想得到高分,这些习题均不能大意,要争取多得分,最好得满分.6.(5分)(2008•海南)下面程序框图,如果输入三个实数a、b、c,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的()A.c>x B.x>c C.c>b D.b>c【考点】排序问题与算法的多样性.【分析】根据流程图所示的顺序,逐框分析程序中各变量、各语句的作用,由于该题的目的是选择最大数,因此根据第一个选择框作用是比较x与b的大小,故第二个选择框的作用应该是比较x与c的大小,而且条件成立时,保存最大值的变量X=C.【解答】解:由流程图可知:第一个选择框作用是比较x与b的大小,故第二个选择框的作用应该是比较x与c的大小,∵条件成立时,保存最大值的变量X=C故选A.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.7.(5分)(2008•海南)已知a1>a2>a3>0,则使得(1﹣a i x)2<1(i=1,2,3)都成立的x取值范围是()A.B.C.D.【考点】一元二次不等式的应用.【分析】先解出不等式(1﹣a i x)2<1的解集,再由a1>a2>a3>0确定x的范围.【解答】解:,所以解集为,又,故选B.【点评】本题主要考查解一元二次不等式.属基础题.8.(5分)(2008•海南)设等比数列{a n}的公比q=2,前n项和为S n,则=()A.2 B.4 C.D.【考点】等比数列的前n项和.【专题】等差数列与等比数列.【分析】根据等比数列的性质,借助公比q表示出S4和a1之间的关系,易得a2与a1间的关系,然后二者相除进而求得答案.【解答】解:由于q=2,∴∴;故选:C.【点评】本题主要考查等比数列的通项公式及求和公式的综合应用.等差数列及等比数列问题一直是高中数学的重点也是高考的一个热点,要予以高度重视.9.(5分)(2008•海南)平面向量,共线的充要条件是()A.,方向相同B.,两向量中至少有一个为零向量C.∃λ∈R,D.存在不全为零的实数λ1,λ2,【考点】向量的共线定理;必要条件、充分条件与充要条件的判断.【分析】根据向量共线定理,即非零向量与向量共线的充要条件是必存在唯一实数λ使得成立,即可得到答案.【解答】解:若均为零向量,则显然符合题意,且存在不全为零的实数λ1,λ2,使得;若,则由两向量共线知,存在λ≠0,使得,即,符合题意,故选D.【点评】本题主要考查向量共线及充要条件等知识.在解决很多问题时考虑问题必须要全面,除了考虑一般性外,还要注意特殊情况是否成立.10.(5分)(2008•海南)点P(x,y)在直线4x+3y=0上,且x,y满足﹣14≤x﹣y≤7,则点P到坐标原点距离的取值范围是()A.[0,5]B.[0,10]C.[5,10]D.[5,15]【考点】简单线性规划.【专题】计算题;数形结合.【分析】先根据条件画出可行域,再利用几何意义求最值,只需求出可行域内的点到原点距离的最值即可.【解答】解析:因x,y满足﹣14≤x﹣y≤7,则点P(x,y)在所确定的区域内,且原点也在这个区域内.又点P(x,y)在直线4x+3y=0上,,解得A(﹣6,8).,解得B(3,﹣4).P到坐标原点的距离的最小值为0,又|AO|=10,|BO|=5,故最大值为10.∴其取值范围是[0,10].故选B.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.解决时,首先要解决的问题是明白题目中目标函数的意义.11.(5分)(2008•海南)函数f(x)=cos2x+2sinx的最小值和最大值分别为()A.﹣3,1 B.﹣2,2 C.﹣3,D.﹣2,【考点】三角函数中的恒等变换应用.【专题】压轴题.【分析】用二倍角公式把二倍角变为一倍角,得到关于sinx的二次函数,配方整理,求解二次函数的最值,解题时注意正弦的取值范围.【解答】解:∵,∴当时,,当sinx=﹣1时,f min(x)=﹣3.故选C.【点评】三角函数值域及二次函数值域,容易忽视正弦函数的范围而出错.高考对三角函数的考查一直以中档题为主,只要认真运算即可12.(5分)(2008•海南)已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β【考点】空间中直线与平面之间的位置关系.【专题】综合题;压轴题.【分析】利用图形可得AB∥l∥m;A对再由AC⊥l,m∥l⇒AC⊥m;B对又AB∥l⇒AB∥β,C对AC⊥l,但AC不一定在平面α内,故它可以与平面β相交、平行,故不一定垂直,所以D 不一定成立.【解答】解:如图所示AB∥l∥m;A对AC⊥l,m∥l⇒AC⊥m;B对AB∥l⇒AB∥β,C对对于D,虽然AC⊥l,但AC不一定在平面α内,故它可以与平面β相交、平行,故不一定垂直;故错.故选D.【点评】高考考点:线面平行、线面垂直的有关知识及应用易错点:对有关定理理解不到位而出错.全品备考提示:线面平行、线面垂直的判断及应用仍然是立体几何的一个重点,要重点掌握二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2008•海南)已知{a n}为等差数列,a3+a8=22,a6=7,则a5=15.【考点】等差数列的性质.【专题】等差数列与等比数列.【分析】根据等差中项的性质可知a3+a8=a5+a6,把a3+a8=22,a6=7代入即可求得a5.【解答】解:∵{a n}为等差数列,∴a3+a8=a5+a6∴a5=a3+a8﹣a6=22﹣7=15【点评】本题主要考查了等差数列有关性质及应用.等差数列及等比数列“足数和定理”是数列中的重点内容,要予以重点掌握并灵活应用.14.(5分)(2008•海南)一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为,底面周长为3,那么这个球的体积为.【考点】球的体积和表面积;棱柱的结构特征.【专题】计算题;综合题;压轴题.【分析】先求正六棱柱的体对角线,就是外接球的直径,然后求出球的体积.【解答】解:∵正六边形周长为3,得边长为,故其主对角线为1,从而球的直径,∴R=1,∴球的体积故答案为:.【点评】正六棱柱及球的相关知识,易错点:空间想象能力不强,找不出球的直径.空间想象能力是立体几何中的一个重要能力之一,平时要加强培养.15.(5分)(2008•海南)过椭圆的右焦点作一条斜率为2的直线与椭圆交于A、B两点,O为坐标原点,则△OAB的面积为.【考点】直线与圆锥曲线的综合问题.【专题】计算题;压轴题.【分析】将椭圆与直线方程联立:,得交点,进而结合三角形面积公式计算可得答案.【解答】解:由题意知,解方程组得交点,∴.答案:.【点评】本题考查直线与椭圆的位置关系,解题时要注意对于圆锥曲线目前主要以定义及方程为主,对于直线与圆锥曲线的位置关系只要掌握直线与椭圆的相关知识即可.16.(5分)(2008•海南)从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307308 310 314 319 323 325 325 328 331 334 337 352乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318320 322 322 324 327 329 331 333 336 337 343 356由以上数据设计了如下茎叶图:根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:①乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度;②乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度.【考点】茎叶图.【专题】压轴题.【分析】利用茎叶图中的数据可以计算乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度;通过观察茎叶图中数据的分布可知甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大.【解答】解:(1)乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).(2)甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大).(3)甲品种棉花的纤维长度的中位数为307mm,乙品种棉花的纤维长度的中位数为318mm.(4)乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.【点评】主要考查利用茎叶图估计总体特征,属于基础题.三、解答题(共7小题,22题,23题选做一题。
2008高考全国卷Ⅱ数学文科试卷含详细解答(全word版)080625
2008年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)kkn kk n P k C p p k n -=-= ,,,,一、选择题1.若sin 0α<且tan 0α>是,则α是( )A .第一象限角B . 第二象限角C . 第三象限角D . 第四象限角【答案】C【解析】sin 0α<,α在三、四象限;tan 0α>,α在一、三象限,∴选C2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( ) A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 【答案】B【解析】{}1,0,1,2--=M ,{}3,2,1,0,1-=N ,∴{}1,0,1-=N M 【高考考点】集合的运算,整数集的符号识别 3.原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .5【答案】D【解析】52152=+-=d【高考考点】点到直线的距离公式 4.函数1()f x x x=-的图像关于( )A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称 【答案】C 【解析】1()f x x x=-是奇函数,所以图象关于原点对称【高考考点】函数奇偶性的性质5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( )A .a <b <cB .c <a <bC . b <a <cD . b <c <a【答案】C【解析】由0ln 111<<-⇒<<-x x e ,令x t ln =且取21-=t 知b <a <c6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8- 【答案】D【解析】如图作出可行域,知可行域的顶点是A (-2,2)、B(32,32)及C(-2,-2) 于是8)(min -=A z7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A .1B .12C .12-D .1-【答案】A【解析】ax y 2'=,于是切线的斜率a y k x 2'1===,∴有122=⇒=a a8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( ) A .3 B .6 C .9 D .18【答案】B【解析】高360sin 32=︒=h ,又因底面正方形的对角线等于32,∴底面积为 6332212=⨯⨯⨯=S ,∴体积63631=⨯⨯=V【备考提示】在底面积的计算时,要注意多思则少算9.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .4【答案】A【解析】41666141404242404-=-+=-+C C C C C C【易错提醒】容易漏掉1414C C 项或该项的负号10.函数x x x f cos sin )(-=的最大值为( ) A .1 B . 2 C .3D .2【答案】B【解析】)4sin(2cos sin )(π-=-=x x x x f ,所以最大值是2【高考考点】三角函数中化为一个角的三角函数问题【备考提示】三角函数中化为一个角的三角函数问题是三角函数在高考中的热点问题11.设A B C △是等腰三角形,120ABC ∠= ,则以A B ,为焦点且过点C 的双曲线的离心率为( )A .221+ B . 231+ C . 21+ D .31+【答案】B【解析】由题意BC c =2,所以c c AC 3260sin 220=⨯⨯=,由双曲线的定义,有c a c c BC AC a )13(2322-=⇒-=-=,∴231131+=-==ac e【高考考点】双曲线的有关性质,双曲线第一定义的应用12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( ) A .1 B .2 C .3 D .2【答案】C【解析】设两圆的圆心分别为1O 、2O ,球心为O ,公共弦为AB ,其中点为E ,则21EO OO 为矩形,于是对角线OE O O =21,而3122222=-=-=AEOAOE ,∴321=O O【高考考点】球的有关概念,两平面垂直的性质2008年普通高等学校招生全国统一考试文科数学(必修+选修I)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 【答案】 2【解析】λ+a b =)32,2(++λλ则向量λ+a b 与向量(47)=--,c 共线274322=⇒--=++⇔λλλ14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答) 【答案】 420【解析】4202701501621026110=+=+C C C C 15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则A B F △的面积等于 . 【答案】 2【解析】设过M 的直线方程为)2(2-=-x k y ,由0)1(444)2(22222=-+-⇒⎩⎨⎧=-=-k kx x k xy x k y ∴kx x 421=+,2221)1(4kk x x -=,由题意144=⇒=k k,于是直线方程为x y =421=+x x ,021=x x ,∴24=AB ,焦点F (1,0)到直线x y =的距离21=d∴A B F △的面积是216.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)【答案】两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在A B C △中,5cos 13A =-,3cos 5B =.(Ⅰ)求sin C 的值;(Ⅱ)设5B C =,求A B C △的面积.18.(本小题满分12分)等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S . 19.(本小题满分12分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2. 设甲、乙的射击相互独立.(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率. 20.(本小题满分12分)如图,正四棱柱1111ABC D A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1A C ⊥平面BED ; (Ⅱ)求二面角1A D E B --的大小.21.(本小题满分12分)设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值;(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围.22.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.AB CD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 文科数学试题(必修+选修Ⅰ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.C 2.B 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.B 11.B 12.C二、填空题13.2 14.420 15.216.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形. 注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)由5cos 13A =-,得12sin 13A =,由3cos 5B =,得4sin 5B =.······················································································· 2分所以16sin sin()sin cos cos sin 65C A B A B A B =+=+=. ·········································· 5分(Ⅱ)由正弦定理得45sin 13512sin 313BC BAC A ⨯⨯===. ················································· 8分所以A B C △的面积1sin 2S B C A C C =⨯⨯⨯1131652365=⨯⨯⨯83=. ·························10分18.解:设数列{}n a 的公差为d ,则3410a a d d =-=-, 642102a a d d =+=+,1046106a a d d =+=+. ···························································································· 3分由3610a a a ,,成等比数列得23106a a a =,即2(10)(106)(102)d d d -+=+, 整理得210100d d -=,解得0d =或1d =. ···································································································· 7分 当0d =时,20420200S a ==. ················································································· 9分 当1d =时,14310317a a d =-=-⨯=, 于是2012019202S a d ⨯=+207190330=⨯+=.······················································12分 19.解:记12A A ,分别表示甲击中9环,10环,12B B ,分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ)112122A A B A B A B =++ , ············································································· 2分112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++112122()()()()()()P A P B P A P B P A P B =++0.30.40.10.40.10.40.2=⨯+⨯+⨯=. ······································································ 6分(Ⅱ)12B C C =+,···································································································· 8分22213()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=, 332()[()]0.20.008P C P A ===,1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=. ·································12分20.解法一:依题设,2A B =,1C E =.(Ⅰ)连结A C 交B D 于点F ,则B D A C ⊥.由三垂线定理知,1BD A C ⊥. ···················································································· 3分 在平面1A C A 内,连结E F 交1A C 于点G ,由于1A A A C F CC E==故1R t R t A AC FC E △∽△,1AA C C FE ∠=∠,C F E ∠与1FC A ∠互余.于是1A C EF ⊥.1A C 与平面BED 内两条相交直线B D E F ,都垂直,所以1A C ⊥平面BED .······························································································· 6分 (Ⅱ)作G H D E ⊥,垂足为H ,连结1A H .由三垂线定理知1A H D E ⊥,故1A HG ∠是二面角1A D E B --的平面角. ································································ 8分EF ==C E C F C G E F ⨯==,3EG ==.13E G E F=,13E F F D G H D E⨯=⨯=又1A C ==,113A G A C C G =-=.11tan A G A H G H G∠==.所以二面角1A D E B --的大小为arctan ··························································12分 解法二:以D 为坐标原点,射线D A 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)D E D B ==,,,,,,11(224)(204)A C DA =--= ,,,,,. ·································· 3分 (Ⅰ)因为10A C DB = ,10A C DE =,故1A C BD ⊥,1A C D E ⊥.ABC D E A 1B 1C 1D 1 FH G又DB DE D = ,所以1A C ⊥平面D BE . ······························································································· 6分 (Ⅱ)设向量()x y z =,,n 是平面1D A E 的法向量,则DE ⊥n ,1D A ⊥ n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ····························································· 9分 1A C <> ,n 等于二面角1A D E B --的平面角,111cos 42A C A C A C<>==,n n n . 所以二面角1A D E B --的大小为arccos 42. ·························································12分21.解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =. 经验证,当1a =时,2x =是函数()y f x =的极值点. ··············································· 4分 (Ⅱ)由题设,3222()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+. 当()g x 在区间[02],上的最大值为(0)g 时,(0)(2)g g ≥,即02024a -≥. 故得65a ≤. ·············································································································· 9分反之,当65a ≤时,对任意[02]x ∈,,26()(3)3(2)5g x x x x x +-+≤23(210)5x x x =+- 3(25)(2)5x x x =+-0≤,而(0)0g =,故()g x 在区间[02],上的最大值为(0)g .综上,a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,. ···············································································12分22.(Ⅰ)解:依题设得椭圆的方程为2214xy +=,直线A B E F ,的方程分别为22x y +=,(0)y kx k =>. ··········································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=.①由6ED DF = 知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在A B 上知0022x kx +=,得0212x k=+.所以212k=+化简得2242560k k -+=, 解得23k =或38k =. ··································································································· 6分(Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到A B 的距离分别为1h ==2h ==. ······························································· 9分又AB ==AEBF 的面积为121()2S A B h h =+12==2008年普通高等学校招生全国统一考试第 11 页 共 11 页=≤当21k =,即当12k =时,上式取等号.所以S的最大值为 ·····························12分 解法二:由题设,1BO =,2A O =.设11y kx =,22y kx =,由①得20x >,210y y =->,故四边形AEBF 的面积为BEF AEF S S S =+△△222x y =+···················································································································· 9分==≤=当222x y =时,上式取等号.所以S的最大值为. ··············································12分。
2008年数学(文科)试卷(海南宁夏卷)(word版+详细解析)
2008年高考海南数学文科卷解析一、选择题:本大题共12小题,每小题5分,满分60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合M ={ x|(x + 2)(x -1) < 0 },N ={ x| x + 1 < 0 }, 则M ∩N =( ) A. (-1,1) B. (-2,1)C. (-2,-1)D. (1,2)【标准答案】C【试题解析】易求得{}{}|21,|1=-<<=<-M x x N x x ∴{}|21=-<<- M N x x2、双曲线221102x y -=的焦距为( )【标准答案】D【试题解析】由双曲线方程得22210,212==∴=a b c ,于是==c c ,选D3、已知复数1z i =-,则21z z =-( ) A. 2 B. -2 C. 2i D. -2i 【标准答案】A【试题解析】将1=-z i 代入得()22122111--===----i z i z i i,选A 4、设()ln f x x x =,若0'()2f x =,则0x =( )A. 2eB. eC.ln 22D. ln 2【标准答案】B【试题解析】∵()ln =f x x x ∴()'1ln ln 1=+⋅=+f x x x x x∴由()'02=fx 得00ln 1 2 +=∴=x x e ,选B5、已知平面向量a =(1,-3),b=(4,-2),a b λ+ 与a垂直,则λ是( )A. -1B. 1C. -2D. 2【标准答案】A【试题解析】由于()()4,32,1,3,a b a a b a λ+=λ+-λ-=-λ+⊥6、右面的程序框图,如果输入三个实数a 、b 、c ,要 求输出这三个数中最大的数,那么在空白的判断 框中,应该填入下面四个选项中的( )权A. c > xB. x > cC. c > bD. b > c 【标准答案】:A 【试题解析】:有流程图可知第一个选择框作用是比较x 与b 的大小, 故第二个选择框的作用应该是比较x 与c 的大小,故应选A;7、已知1230a a a >>>,则使得2(1)1i a x -<(1,2,3)i =都成立的x 取值范围是( )A.(0,11a ) B. (0,12a ) C. (0,31a ) D. (0,32a ) 【标准答案】:B【试题解析】:由()211i a x -<,得:22121i i a x a x -+<,即()220i i x a x a -<,解之得()200i i x a a <<>,由于1230a a a >>>,故120x a <<;选B 8、设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( ) A. 2 B. 4 C.152D.172【标准答案】:C【试题解析】:由于()4141122,1512a q S a -=∴==- ∴4121151522S a a a ==;选C; 9、平面向量a ,b共线的充要条件是( )A. a ,b 方向相同B. a ,b 两向量中至少有一个为零向量C. R λ∃∈, b a λ=D. 存在不全为零的实数1λ,2λ,120a b λλ+=【标准答案】:D【试题解析】:若,a b均为零向量,则显然符合题意,且存在不全为零的实数12,,λλ使得120a b λ+λ=;若0a ≠ ,则由两向量共线知,存在0λ≠,使得b a =λ ,即0a b λ-=,符合题意,故选D10、点P (x ,y )在直线4x + 3y = 0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是( ) A. [0,5] B. [0,10]C. [5,10]D. [5,15]【标准答案】:B【试题解析】:根据题意可知点P在线段()43063x y x +=-≤≤上,有线段过原点,故点P到原点最短距离为零,最远距离为点()6,8P -到原点距离且距离为10,故选B; 11、函数()cos 22sin f x x x =+的最小值和最大值分别为( )A. -3,1B. -2,2C. -3,32D. -2,32【标准答案】:C【试题解析】:∵()221312sin 2sin 2sin 22f x x x x ⎛⎫=-+=--+ ⎪⎝⎭∴当1sin 2x =时,()max 32f x =,当sin 1x =-时,()min 3f x =-;故选C; 12、已知平面α⊥平面β,α∩β= l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是( ) A. AB ∥m B. AC ⊥m C. AB ∥β D. AC ⊥β 【标准答案】:D 【试题解析】:容易判断A、B、C三个答案都是正确的,对于D,虽然AC l ⊥,但AC不一定在平面α内,故它可以与平面β相交、平行,故不一定垂直; 二、填空题:本大题共4小题,每小题5分,满分20分。
2008年高考真题精品解析2008年普通高等学校招生全国统一考试(海南、宁夏卷)(文科)
2008年高考真题精品解析2008年普通高等学校招生全国统一考试(海南、宁夏卷)(文科) 测试题 2019.91,观察下列等式:……………………………………可以推测,当≥2()时,.2,设等比数列的公比,前n 项和为,则( )A. 2B. 4C.D.3,平面向量,共线的充要条件是( )A. ,方向相同B. ,两向量中至少有一个为零向量C. ,D. 存在不全为零的实数,,4,点P (x ,y )在直线4x + 3y = 0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是( )A. [0,5]B. [0,10]C. [5,10]D. [5,15]2111,22ni i n n ==+∑2321111,326n i i n n n ==++∑34321111,424n i i n n n ==++∑454311111,52330n i i n n n n ==++-∑5654211151,621212n i i n n n n ==++-∑67653111111,722642n i i n n n n n ==++-+∑212112101,n k k k k k k k k k i ia n a n a n a n a n a +--+--==++++⋅⋅⋅++∑x *k N ∈1111,,12k k k a a a k +-===+2k a -={}n a 2q =n S 42S a =152172a b a b a b R λ∃∈b a λ=1λ2λ120a b λλ+=5,函数的最小值和最大值分别为( )A. -3,1B. -2,2C. -3,D. -2,6,已知平面α⊥平面β,α∩β= l ,点A ∈α,A l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( )A. AB ∥mB. AC ⊥mC. AB ∥βD. AC ⊥β7,已知平面向量=(1,-3),=(4,-2),与垂直,则是( )A. -1B. 1C. -2D. 28,下面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( )A. c > xB. x > cC. c > bD. b > c9,已知,则使得都成立的取值范围是( ) ()cos 22sin f x x x =+3232∉a b a b λ+aλ1230a a a >>>2(1)1i a x -<(1,2,3)i =xA.(0,)B. (0,)C. (0,)D. (0,) 10,设,若,则( )A. B. C. D.测试题答案1, 解:由观察可知当,每一个式子的第三项的系数是成等差数列的,所以,第四项均为零,所以。
2008年全国统一高考数学试卷(文科)(全国卷ⅱ)(含解析版)
22.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点, 直线 y=kx(k>0)与 AB 相交于点 D,与椭圆相交于 E、F 两点.
(Ⅰ)若
,求 k
2008 年全国统一高考数学试卷(文科)(全国卷Ⅱ)
参考答案与试题解析
双曲线的离心率为( )
A.
B.
C.
D.
12.(5 分)已知球的半径为 2,相互垂直的两个平面分别截球面得两个圆,若两
圆的公共弦长为 2,则两圆的圆心距等于( )
A.1
B.
C.
D.2
二、填空题(共 4 小题,每小题 5 分,满分 20 分)
13.(5 分)设向量
,若向量
与向量
共线,
则 λ=
.
14.(5 分)从 10 名男同学,6 名女同学中选 3 名参加体能测试,则选到的 3 名
充要条件①
;
充要条件②
.
(写出你认为正确的两个充要条件)
三、解答题(共 6 小题,满分 70 分) 17.(10 分)在△ABC 中,cosA=﹣ ,cosB= .
(Ⅰ)求 sinC 的值; (Ⅱ)设 BC=5,求△ABC 的面积.
18.(12 分)等差数列{an}中,a4=10 且 a3,a6,a10 成等比数列,求数列{an}前 20 项的和 S20.
【解答】解:sinα<0,α 在三、四象限;tanα>0,α 在一、三象限. 故选:C. 【点评】记住角在各象限的三角函数符号是解题的关键,可用口诀帮助记忆:一
全部,二正弦,三切值,四余弦,它们在上面所述的象限为正
2.(5 分)设集合 M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则 M∩N=( )
2008年普通高等学校招生全国统一考试(海南卷)数学试题及解答
湖南省2008年普通高等学校单独招生统一考试数学试题时长150分钟,满分150分参考公式:假如事件A ,B 互斥,那么)()()(B P A P B A P +=+假如事件A ,B 相互独立,那么)()()(B P A P B A P ⋅=⋅假如事件A 在1次实验中发生地概率是P,那么n 次独立重复实验中恰好发生k 次地概率kn k k n n P P C k P --=)1()(球地表面积公式24S R π=球,体积公式334R V π=球,其中R 表示球地半径得分评卷人复评人一.选择题(本大题共10小题,每小题5分,共50分,在每小题给出地四个选项中,只有一项是符合要求地)1.函数2(x2x 1)2y log -+=(x>1)地反函数为y=1()f x -,则1(2)f -等于 ……………………( )A .3B .2C .0D .-22.设集合{}x A (x,y)y 2==,{}B (x,y)y a,a R ==∈,则集合A B 地子集个数最多有( )A .1个B .2个C .3个D .4个3.从双曲线虚轴地一个端点看两个顶点地视角为直角,则双曲线地离心率为……… ( )A .12B .2CD 4.过P (1,1)作圆224x y +=地弦AB,若12AP BA =- ,则AB 地方程是………( )A y=x+1 B.y=x +2 C.y= -x+2 D.y= -x-25.在310(1x )(1x)-+展开式中,5x 地系数是 ………………………………………… ( )A . 297-B . 252-C .297D .2076.函数y 2si n(2x)3π=-地单调递增区间是 ………………………………………… ( )A .5k ,k 1212ππ⎡⎤π-π+⎢⎥⎣⎦(k z)∈ B .511k ,k 1212ππ⎡⎤π+π+⎢⎥⎣⎦(k z)∈C .k ,k 36ππ⎡⎤π-π+⎢⎥⎣⎦(k z)∈ D . 2k ,k 63ππ⎡⎤π+π+⎢⎥⎣⎦(k z)∈7.若n n b lim 1()11b →∞⎡⎤-=⎢⎥-⎣⎦,则b 地取值范围是 ………………………………………… ( )A .1b 2<<1B . 11b 22-<<C .1b 2<D .10b 2<<8.设0x <<1,则y=49x 1x+-地最小值为 ………………………………………… ( )A .24B .25C .26D .19.如图是由四个全等地直角三角形与一个小正方形拼成地一个大正方形,现在用四种颜色给这四个直角三角形区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则有多少种不同地涂色方式 …………………………( )A .24种B .72种C .84种D .120种10.平面α地一款斜线l 与平面α交于点P,Q 是l 上一定点,过点Q 地动直线m与l 垂直,那么m 与平面α交点地轨迹是……… ( )A .直线 B. 圆 C. 椭圆 D. 抛物线 (第9题图)得分评卷人复评人二,填空题(本大题共5小题,每小题5分 ,共25分,把结果填在答题卡中对应题号后地横线上)11.3(1i)(2i)i --+= .12.不等式11(sin x 2)0x 1x 1⎛⎫+-< ⎪++⎝⎭地解集为 .13.设M 是椭圆22143x y +=上地动点,1A 和2A 分别是椭圆地左,右顶点,则12MA MA ∙ 地最小值等于 .14.设f (x)是定义在R 上地奇函数,且f (x 3)f (x)1+=- ,f (1)2-=,则f (2008)= .15.将一个钢球置于由6m 地钢管焊接成地正四面体地钢架内,那么,这个钢球地最大体积为 3(m ).三.解答题(本大题共6小题,共75分。
数学文科(全国II卷)答案解析2008
2008年普通高等学校夏季招生考试数学文史类(全国Ⅱ)一、选择题 ( 本大题共 12 题, 共计 60 分)1、(5分) C由sinα<0得α在三,四象限.tanα>0得α在一,三象限.故α在第三象限.2、(5分) B依题M={-2,-1,0,1},N={-1,0,1,2,3},从而M∩N={-1,0,1},故选B.3、(5分) D由点到直线的距离公式知原点到已知直线的距离是.4、(5分) C∵f(x)=f(-x),∴f(x)=-x是奇函数.∴f(x)的图象关于坐标原点对称.5、(5分) C a=lnx,b=2lnx=lnx2,c=ln3x.∵x∈(e-1,1),∴x>x2.故a>b,排除A、B.∵e-1<x<1,∴-1<lnx<ln1=0.∴lnx<ln3x.∴a<c.故b<a<c,选C.6、(5分) D作出可行域.令z=0,则l0:x-3y=0,平移l0在点M(-2,2)处z取到最小,最小值为-8.7、(5分) A y=ax2,y′=2ax,∴y′|x=1=2,∵切线与直线2x-y-6=0平行,∴2a=2,∴a=1.8、(5分) B作图,依题可知SO=2sin60°=2·=3,CO=2·cos60°=2·=.∴底面边长为.从而V S—ABCD=S ABCD·SO=×()2×3=6.9、(5分) A(1-)4(1+)4=[(1-)(1+)]4=x4-4x3+6x2-4x+1, ∴x的系数为-4.10、(5分) B f(x)=sinx-cosx=sin(x-),故f(x)max=.11、(5分) B∵A、B为两焦点且双曲线过C点,∴|CA|-|CB|=2a,2c=a′.不妨设AB=BC=a′,则AC=a′.∴e==.12、(5分) C依题意有示意图截面示意图为其中AH为公共弦长的一半,OA为球半径,∴OH=.故选C.二、填空题 ( 本大题共 4 题, 共计 20 分)1、(5分) 2 λa+b=λ(1,2)+(2,3)=(λ+2,2λ+3),∵λa+b与c共线,∴(λ+2)·(-7)-(2λ+3)·(-4)=0.解出λ=2.2、(5分) 420 N==420.3、(5分) 2 设A(x1,y1),B(x2,y2),∴y12=4x1,y22=4x2.两式相减得(y1+y2)(y1-y2)=4(x1-x2).又y1+y2=2×2=4,∴,即k AB=1.∴l AB:y-2=x-2,即y=x.∴x2-4x=0.∴x1+x2=4,x1x2=0.∴|AB|===.点F到AB的距离d=.∴S△ABF=××=2.4、(5分) 两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.三、解答题 ( 本大题共 6 题, 共计 70 分)1、(10分) 解:(Ⅰ)由,得,由,得.所以.(Ⅱ)由正弦定理得.所以的面积.2、(12分) 解:设数列的公差为,则,,.由成等比数列得,即,整理得,解得或.当时,.当时,,于是.3、(12分) 解:记分别表示甲击中9环,10环,分别表示乙击中8环,9环,表示在一轮比赛中甲击中的环数多于乙击中的环数,表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ),.(Ⅱ),,,.4、(12分) 解法一:依题设,,.(Ⅰ)连结交于点,则.由三垂线定理知,.在平面内,连结交于点,由于,故,,与互余.于是.与平面内两条相交直线都垂直,所以平面.(Ⅱ)作,垂足为,连结.由三垂线定理知,故是二面角的平面角.,,.,.又,..所以二面角的大小为.解法二:以为坐标原点,射线为轴的正半轴,建立如图所示直角坐标系.依题设,.,.(Ⅰ)因为故,.又,所以平面.(Ⅱ)设向量是平面的法向量,则,.故,.令,则,,.等于二面角的平面角,.所以二面角的大小为.5、(12分) 解:(Ⅰ).因为是函数的极值点,所以,即,因此.经验证,当时,是函数的极值点.(Ⅱ)由题设,.当在区间上的最大值为时,,即.故得.反之,当时,对任意,,而,故在区间上的最大值为.综上,的取值范围为.6、(12分) (Ⅰ)解:依题设得椭圆的方程为,直线的方程分别为,.如图,设,其中,且满足方程,故.①由知,得;由在上知,得.所以,化简得,解得或.(Ⅱ)解法一:根据点到直线的距离公式和①式知,点到的距离分别为,.又,所以四边形的面积为=,当,即当时,上式取等号.所以的最大值为.解法二:由题设,,.设,,由①得,,故四边形的面积为,当时,上式取等号.所以的最大值为.。
2008年高考全国卷2文科数学(含解析)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷 1 至 2 页.第Ⅱ卷 3 至 10 页.考试 结束后,将本试卷和答题卡一并交回.
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.
第Ⅰ卷
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再
Pk (k) Cnk pk (1 p)nk (k 0,1 2,,,n)
一、选择题
1.设集合 M {m Z | 3 m 2}, N {n Z | 1≤≤n 3},则M N ( )
A.0,1
B.1,0 1,
C.0,1 2,
【答案】B
【解析】 M 2,1,0,1, N 1,0,1,2,3,∴ M N 1,0,1
【高考考点】集合的运算,整数集的符号识别。 【评注】历年来高考数学第一个小题一般都是集合问题,都超简单。其实集合问题是可以出难题的, 但高考中的集合问题比较简单。需要注意的是:很多复习书都把集合作为高考数学复习的起点,我认 为这是不妥当的,高中的集合问题涉及到的集合知识并不多(就是一种表达方式),其难度主要体现在 知识的综合性上,学生应当先学习其他知识,再在集合中综合。建议把“数学的基本运算”作为高考 数学复习的起点,学生花 1 个月的时间温习、强化初等数学的基本运算是必要的,重要的,也是值得 的。数学的基本运算具体包括的内容可以参考本人编写的《高考数学复习专用教材》
选涂其他答案标号.不能答在试题卷上.
3.本卷共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求
的.
参考公式:
2008年全国统一高考数学试卷(文科)(全国卷一)(答案解析版)
2008年全国统一高考数学试卷(文科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数y=+的定义域为( )A.{x|x≤1}B.{x|x≥0}C.{x|x≥1或x≤0}D.{x|0≤x≤1}【考点】33:函数的定义域及其求法.【专题】51:函数的性质及应用.【分析】保证两个根式都有意义的自变量x的集合为函数的定义域.【解答】解:要使原函数有意义,则需,解得0≤x≤1,所以,原函数定义域为[0,1].故选:D.【点评】本题考查了函数定义域的求法,求解函数的定义域,是求使的构成函数解析式的各个部分都有意义的自变量x的取值集合.2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是( )A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】16:压轴题;31:数形结合.【分析】由已知中汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,汽车的行驶路程s看作时间t的函数,我们可以根据实际分析函数值S(路程)与自变量t(时间)之间变化趋势,分析四个答案即可得到结论.【解答】解:由汽车经过启动后的加速行驶阶段,路程随时间上升的速度越来越快,故图象的前边部分为凹升的形状;在汽车的匀速行驶阶段,路程随时间上升的速度保持不变故图象的中间部分为平升的形状;在汽车减速行驶之后停车阶段,路程随时间上升的速度越来越慢,故图象的前边部分为凸升的形状;分析四个答案中的图象,只有A答案满足要求,故选:A.【点评】从左向右看图象,如果图象是凸起上升的,表明相应的量增长速度越来越慢;如果图象是凹陷上升的,表明相应的量增长速度越来越快;如果图象是直线上升的,表明相应的量增长速度保持不变;如果图象是水平直线,表明相应的量保持不变,即不增长也不降低;如果图象是凸起下降的,表明相应的量降低速度越来越快;如果图象是凹陷下降的,表明相应的量降低速度越来越慢;如果图象是直线下降的,表明相应的量降低速度保持不变.3.(5分)(1+)5的展开式中x2的系数( )A.10B.5C.D.1【考点】DA:二项式定理.【专题】11:计算题.【分析】利用二项展开式的通项公式求出展开式中x2的系数【解答】解:,故选:C.【点评】本题主要考查了利用待定系数法或生成法求二项式中指定项.4.(5分)曲线y=x3﹣2x+4在点(1,3)处的切线的倾斜角为( )A.30°B.45°C.60°D.120°【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】欲求在点(1,3)处的切线倾斜角,先根据导数的几何意义可知k=y′|x=1,再结合正切函数的值求出角α的值即可.【解答】解:y′=3x2﹣2,切线的斜率k=3×12﹣2=1.故倾斜角为45°.故选:B.【点评】本题考查了导数的几何意义,以及利用正切函数的图象求倾斜角,本题属于容易题.5.(5分)在△ABC中,=,=.若点D满足=2,则=( )A.B.C.D.【考点】9B:向量加减混合运算.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选:A.【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的6.(5分)y=(sinx﹣cosx)2﹣1是( )A.最小正周期为2π的偶函数B.最小正周期为2π的奇函数C.最小正周期为π的偶函数D.最小正周期为π的奇函数【考点】GG:同角三角函数间的基本关系.【分析】把三角函数式整理,平方展开,合并同类项,逆用正弦的二倍角公式,得到y=Asin(ωx+φ)的形式,这样就可以进行三角函数性质的运算.【解答】解:∵y=(sinx﹣cosx)2﹣1=1﹣2sinxcosx﹣1=﹣sin2x,∴T=π且为奇函数,故选:D.【点评】同角三角函数的基本关系式揭示了同一个角的六种三角函数间的相互关系,其主要应用于同角三角函数的求值和同角三角函数之间的化简和证明.单在应用这些关系式子的时候就要注意公式成立的前提是角对应的三角函数要有意义.7.(5分)已知等比数列{a n}满足a1+a2=3,a2+a3=6,则a7=( )A.64B.81C.128D.243【考点】87:等比数列的性质.【分析】由a1+a2=3,a2+a3=6的关系求得q,进而求得a1,再由等比数列通项公式求解.【解答】解:由a2+a3=q(a1+a2)=3q=6,∴q=2,∴a1(1+q)=3,∴a1=1,∴a7=26=64.故选:A.【点评】本题主要考查了等比数列的通项及整体运算.8.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=( )A.e2x﹣2B.e2x C.e2x+1D.e2x+2【考点】4R:反函数.【专题】11:计算题.【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(e y﹣1)2=e2y﹣2,改写为:y=e2x﹣2∴答案为A.【点评】本题主要考查了互为反函数图象间的关系及反函数的求法.9.(5分)为得到函数的图象,只需将函数y=sin2x的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选:A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.10.(5分)若直线=1与圆x2+y2=1有公共点,则( )A.a2+b2≤1B.a2+b2≥1C.D.【考点】J9:直线与圆的位置关系.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r,∴,故选:D.【点评】本题考查点到直线的距离公式,直线和圆的位置关系,是基础题.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于( )A.B.C.D.【考点】LP:空间中直线与平面之间的位置关系.【专题】11:计算题;31:数形结合;4R:转化法;5G:空间角.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,过B1作AB的垂线段,垂足为F,F=A1S=,AF=3,BF=1,B在直角三角形B1AF中用勾股定理得:AB1=2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选:B.【点评】本题考查了几何体的结构特征及线面角的定义,还有点面距与线面距的转化,考查了转化思想和空间想象能力.12.(5分)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( )A.6种B.12种C.24种D.48种【考点】D4:排列及排列数公式.【专题】16:压轴题.【分析】填好第一行和第一列,其他的行和列就确定,因此只要选好第一行的顺序再确定第一列的顺序,就可以得到符合要求的排列.【解答】解:填好第一行和第一列,其他的行和列就确定,∴A33A22=12,故选:B.【点评】排列问题要做到不重不漏,有些题目带有一定的约束条件,解题时要先考虑有限制条件的元素.二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 9 .【考点】7C:简单线性规划.【专题】11:计算题;13:作图题.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9.【点评】本题考查线性规划问题,考查数形结合思想.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 2 .【考点】K8:抛物线的性质.【专题】11:计算题.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为2【点评】本题主要考查抛物线的应用.考查了学生综合运用所学知识,解决实际问题的能力.15.(5分)在△ABC中,∠A=90°,tanB=.若以A、B为焦点的椭圆经过点C ,则该椭圆的离心率e= .【考点】K2:椭圆的定义.【专题】11:计算题;16:压轴题.【分析】令AB=4,椭圆的c可得,AC=3,BC=5依据椭圆定义求得a,则离心率可得.【解答】解:令AB=4,则AC=3,BC=5则2c=4,∴c=2,2a=3+5=8∴a=4,∴e=故答案为.【点评】本题主要考查了椭圆的定义.要熟练掌握椭圆的第一和第二定义.16.(5分)已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A﹣BD﹣C为120°,则点A到△BCD所在平面的距离等于 .【考点】MJ:二面角的平面角及求法;MK:点、线、面间的距离计算.【专题】11:计算题;16:压轴题.【分析】本题考查了立体几何中的折叠问题,及定义法求二面角和点到平面的距离,我们由已知菱形ABCD中,AB=2,∠A=120°,沿对角线BD将△ABD折起,使二面角A﹣BD﹣C为120°,及菱形的性质:对角线互相垂直,我们易得∴∠AOC即为二面角A﹣BD﹣C的平面角,解△AOC后,OC边的高即为A点到平面BCD的距离.【解答】解:已知如下图所示:设AC∩BD=O,则AO⊥BD,CO⊥BD,∴∠AOC即为二面角A﹣BD﹣C的平面角∴∠AOC=120°,且AO=1,∴d=1×sin60°=故答案为:【点评】根据二面角的大小解三角形,一般先作出二面角的平面角.此题是利用二面角的平面角的定义作出∠AOC为二面角A﹣BD﹣C的平面角,通过解∠AOC所在的三角形求得∠AOC.其解题过程为:作∠AOC→证∠AOC是二面角的平面角→利用∠AOC解三角形AOC,简记为“作、证、算”.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A、B、C所对的边长分别为a、b、c,且acosB=3,bsinA=4.(Ⅰ)求边长a;(Ⅱ)若△ABC的面积S=10,求△ABC的周长l.【考点】HR:余弦定理.【专题】11:计算题.【分析】(I)由图及已知作CD垂直于AB,在直角三角形BDC中求BC的长.(II)由面积公式解出边长c,再由余弦定理解出边长b,求三边的和即周长.【解答】解:(I)过C作CD⊥AB于D,则由CD=bsinA=4,BD=acosB=3∴在Rt△BCD中,a=BC==5(II)由面积公式得S=×AB×CD=×AB×4=10得AB=5又acosB=3,得cosB=由余弦定理得:b===2△ABC的周长l=5+5+2=10+2答:(I)a=5;(II)l=10+2【点评】本题主要考查了射影定理及余弦定理.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE 即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC ,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E的大小.【点评】本题主要考查通过证明线面垂直来证明线线垂直的方法,以及求二面角的大小的方法,属于中档题.19.(12分)在数列{a n}中,a1=1,a n+1=2a n+2n.(Ⅰ)设b n=.证明:数列{b n}是等差数列;(Ⅱ)求数列{a n}的前n项和S n.【考点】8E:数列的求和;8H:数列递推式.【专题】11:计算题;14:证明题.【分析】(1)由a n+1=2a n+2n构造可得即数列{b n}为等差数列(2)由(1)可求=n,从而可得a n=n•2n﹣1利用错位相减求数列{a n}的和【解答】解:由a n+1=2a n+2n.两边同除以2n得∴,即b n+1﹣b n=1∴{b n}以1为首项,1为公差的等差数列(2)由(1)得∴a n=n•2n﹣1S n=20+2×21+3×22+…+n•2n﹣12S n=21+2×22+…+(n﹣1)•2n﹣1+n•2n∴﹣S n=20+21+22+…+2n﹣1﹣n•2n=∴S n=(n﹣1)•2n+1【点评】本题考查利用构造法构造特殊的等差等比数列及错位相减求数列的和,构造法求数列的通项及错位相减求数列的和是数列部分的重点及热点,要注意该方法的掌握.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.【考点】C5:互斥事件的概率加法公式.【专题】11:计算题;35:转化思想.【分析】(解法一)主要依乙所验的次数分类,并求出每种情况下被验中的概率,再求甲种方案的次数不少于乙种次数的概率;(解法二)先求所求事件的对立事件即甲的次数小于乙的次数,再求出它包含的两个事件“甲进行的一次即验出了和甲进行了两次,乙进行了3次”的概率,再代入对立事件的概率公式求解.【解答】解:(解法一):主要依乙所验的次数分类:若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:(也可以用)②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次验中没有,均可以在第二次结束)()∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为:∴在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(解法二):设A为甲的次数不小于乙的次数,则表示甲的次数小于乙的次数,则只有两种情况,甲进行的一次即验出了和甲进行了两次,乙进行了3次.则设A1,A2分别表示甲在第一次、二次验出,并设乙在三次验出为B∴∴【点评】本题考查了用计数原理来求事件的概率,并且所求的事件遇过于复杂的,要主动去分析和应用对立事件来处理.21.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【考点】3D:函数的单调性及单调区间;3E:函数单调性的性质与判断.【专题】16:压轴题.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.【点评】本题考查函数单调性的判断和已知函数单调性求参数的范围,此类问题一般用导数解决,综合性较强.22.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.【考点】KB:双曲线的标准方程;KC:双曲线的性质.【专题】11:计算题;16:压轴题.【分析】(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,即可求出双曲线方程.【解答】解:(1)设双曲线方程为,由,同向,∴渐近线的倾斜角范围为(0,),∴渐近线斜率为:,∴.∵||、||、||成等差数列,∴|OB|+|OA|=2|AB|,∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)•2|AB|,∴,∴,可得:,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=,而由对称性可知:OA的斜率为k=tan,∴,∴2k2+3k﹣2=0,∴;∴,∴,∴.(2)由第(1)知,a=2b,可设双曲线方程为﹣=1,∴c=b.由于AB的倾斜角为+∠AOB,故AB的斜率为tan(+∠AOB )=﹣cot(∠AOB)=﹣2,∴AB的直线方程为y=﹣2(x﹣b),代入双曲线方程得:15x2﹣32bx+84b2=0,∴x1+x2=,x1•x2=,∴4=•=•,即16=﹣112b2,∴b2=9,所求双曲线方程为:﹣=1.【点评】做到边做边看,从而发现题中的巧妙,如据,联想到对应的是2渐近线的夹角的正切值,属于中档题.。
2008年全国高考宁夏_海南_数学命题特点
2008年全国高考宁夏(海南)数学命题特点一、试卷结构2008年全国高考海南(宁夏)数学试题在题量上没有发生变化,三种题型的个数也没有发生变化,文理科选择题都是12道,每道5分,共60分;文理科填空题均为4道,每道5分,共20分;解答题分必答题和选答题,必答题文理科都是5道,每道12分,共60分,选答题理科3选1,文科2选1,分值为10分。
选择题、填空题、解答题三种题型的分值比例为60:20:70即为6:2:7。
二、试题特点2008年全国高考海南(宁夏)数学试卷,贯彻执行“在考查基础知识的同时,注重对数学思想方法的考查,注重对数学能力的考查”的命题指导思想。
以数学知识为依托,关注数学思想与方法,侧重考查学生的理解和应用,坚持能力立意,较为全面地考查各种能力。
1.层次分明。
试卷在三种题型中体现出明显的层次性,选择题、填空题、解答题,层层递进,例如理科试卷的选择题(1)~(11)题,着重考查了基础知识、基本技能,(12)题以三视图为背景,考查学生的理性思维能力和分析问题、解决问题的能力。
解答题基本上是一题多问,入口容易,第(21)题是把关题,对思维能力,尤其是理性思维有较高要求。
2.解答题采用分步设问。
试卷中后面的几个解答题有一定的难度,采用分步设问的办法使其逐步深入,在化解试题难度的同时,又合理区分了不同层次的考生,给每一个层面的学生提供了施展才华的平台。
3.控制新题型的比例。
无论是设问方式新颖的试题、情境设置新颖的试题,还是应用型试题,对考生来说都要比常规试题难,这类题的多少与难易会直接影响整份试卷的难度。
在文、理两份试卷中,新题型和应用题所占比例适中。
如概率、统计等有实际背景的问题也采用了最常见的背景,较好的体现公平、公正的原则,这种处理方式对试卷总体难度的稳定起到了保障作用。
4.控制较难题的比例。
为了充分体现试卷的选拔功能,文理试卷都设置适量的较难试题。
较难试题基本集中在每种题型的最后一题,而选择题、填空题中较少出现过难的试题。
2008高考全国卷Ⅱ数学文科试卷含答案(全word版)2008高考全国卷Ⅱ数学文科试卷含答案(全wo
2008年普通高等学校招生全国统一考试文科数学(必修+选修I)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.参考公式:如果事件A B ,互斥,那么 球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B = 球的体积公式如果事件A 在一次试验中发生的概率是p ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k kn k k n P k C p p k n -=-=,,,,一、选择题 1.若sin 0α<且tan 0α>是,则α是( )A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角2.设集合{|32}M m m =∈-<<Z ,{|13}N n n M N =∈-=Z 则,≤≤( )A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,,3.原点到直线052=-+y x 的距离为( )A .1B .3C .2D .54.函数1()f x x x=-的图像关于( )A .y 轴对称 B . 直线x y -=对称 C . 坐标原点对称 D . 直线x y =对称5.若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( ) A .a <b <cB .c <a <bC . b <a <cD . b <c <a6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( )A .2-B .4-C .6-D .8-7.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A .1 B .12C .12-D .1-8.正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( )A .3 B .6 C .9 D .189.44)1()1(x x +-的展开式中x 的系数是( )A .4-B .3-C .3D .410.函数x x x f cos sin )(-=的最大值为( ) A .1B .2 C .3D .211.设ABC △是等腰三角形,120ABC ∠=,则以A B ,为焦点且过点C 的双曲线的离心率为( )A .221+ B .231+ C . 21+ D .31+12.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( )A .1B .2C .3D .22008年普通高等学校招生全国统一考试文科数学(必修+选修I)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ .14.从10名男同学,6名女同学中选3名参加体能测试,则选到的3名同学中既有男同学又有女同学的不同选法共有 种(用数字作答)15.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF △的面积等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ;B. 根据德国营养医学会的研究显示化学教案“啤酒肚”与男遗传基因有关化学教案就开始充要条件② .(写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)在ABC △中,5cos 13A =-,3cos 5B =. (Ⅰ)求sinC 的值;(Ⅱ)设5BC =,求ABC △的面积. 18.(本小题满分12分)等差数列{}n a 中,410a =且3610a a a ,,成等比数列,求数列{}n a 前20项的和20S . 19.(本小题满分12分)甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.设甲、乙的射击相互独立.(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率. 20.(本小题满分12分)如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1A C ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小.AB CD EA 1B 1C 1D 121.(本小题满分12分)设a ∈R ,函数233)(x ax x f -=.(Ⅰ)若2=x 是函数)(x f y =的极值点,求a 的值;(Ⅱ)若函数()()()[02]g x f x f x x '=+∈,,,在0=x 处取得最大值,求a 的取值范围. 22.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =,求k 的值; (Ⅱ)求四边形AEBF 面积的最大值.2008年普通高等学校招生全国统一考试 文科数学试题(必修+选修Ⅰ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.C 2.B 3.D 4.C 5.C 6.D 7.A 8.B 9.A 10.B 11.B 12.C 二、填空题13.2 14.420 15.216.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.三、解答题 17.解:(Ⅰ)由5cos 13A =-,得12sin 13A =, 由3cos 5B =,得4sin 5B =. ··········································································· 2分所以16sin sin()sin cos cos sin 65C A B A B A B =+=+=. ····································· 5分(Ⅱ)由正弦定理得45sin 13512sin 313BC B AC A ⨯⨯===. ··········································· 8分 所以ABC △的面积1sin 2S BC AC C =⨯⨯⨯1131652365=⨯⨯⨯83=. ····················· 10分 18.解:设数列{}n a 的公差为d ,则3410a a d d =-=-, 642102a a d d =+=+,1046106a a d d =+=+. ················································································ 3分由3610a a a ,,成等比数列得23106a a a =,即2(10)(106)(102)d d d -+=+, 整理得210100d d -=,解得0d =或1d =.······················································································· 7分 当0d =时,20420200S a ==. ······································································ 9分 当1d =时,14310317a a d =-=-⨯=, 于是2012019202S a d ⨯=+207190330=⨯+=. ············································· 12分 19.解:记12A A ,分别表示甲击中9环,10环,12B B ,分别表示乙击中8环,9环,A 表示在一轮比赛中甲击中的环数多于乙击中的环数,B 表示在三轮比赛中至少有两轮甲击中的环数多于乙击中的环数,12C C ,分别表示三轮中恰有两轮,三轮甲击中环数多于乙击中的环数.(Ⅰ)112122A A B A B A B =++, ··································································· 2分112122()()P A P A B A B A B =++ 112122()()()P A B P A B P A B =++112122()()()()()()P A P B P A P B P A P B =++0.30.40.10.40.10.40.2=⨯+⨯+⨯=. ····························································· 6分 (Ⅱ)12B C C =+, ······················································································ 8分22213()[()][1()]30.2(10.2)0.096P C C P A P A =-=⨯⨯-=, 332()[()]0.20.008P C P A ===,1212()()()()0.0960.0080.104P B P C C P C P C =+=+=+=. ··························· 12分20.解法一:依题设,2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.由三垂线定理知,1BD A C ⊥. ········································································· 3分 在平面1A CA 内,连结EF 交1A C 于点G ,由于1AA AC FC CE==,故1Rt Rt A AC FCE △∽△,1AA C CFE ∠=∠,CFE ∠与1FCA ∠互余.于是1A C EF ⊥.1A C 与平面BED 内两条相交直线BD EF ,都垂直,所以1A C ⊥平面BED . ·················································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角.························································ 8分AB CDE A 1B 1C 1D 1 FH GEF =CE CF CG EF ⨯==3EG ==. 13EG EF =,13EF FD GH DE ⨯=⨯=又1AC ==113A G A C CG =-=.11tan AG A HG HG∠== 所以二面角1A DE B --的大小为arctan ················································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB ==,,,,,,11(224)(204)AC DA =--=,,,,,. ······························ 3分 (Ⅰ)因为10AC DB =,10AC DE =, 故1A C BD ⊥,1A C DE ⊥. 又DBDE D =,所以1A C ⊥平面DBE . ·················································································· 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥n ,1DA ⊥n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ····················································· 9分1AC <>,n 等于二面角1A DE B --的平面角,11114cos 42A C A C A C<>==,n n n 所以二面角1A DE B --的大小为arccos 42. ················································· 12分 21.解:(Ⅰ)2()363(2)f x ax x x ax '=-=-.因为2x =是函数()y f x =的极值点,所以(2)0f '=,即6(22)0a -=,因此1a =.经验证,当1a =时,2x =是函数()y f x =的极值点. ········································· 4分 (Ⅱ)由题设,3222()336(3)3(2)g x ax x ax x ax x x x =-+-=+-+. 当()g x 在区间[02],上的最大值为(0)g 时,(0)(2)g g ≥,即02024a -≥.故得65a ≤. ································································································ 9分 反之,当65a ≤时,对任意[02]x ∈,, 26()(3)3(2)5g x x x x x +-+≤23(210)5xx x =+- 3(25)(2)5xx x =+- 0≤,而(0)0g =,故()g x 在区间[02],上的最大值为(0)g .综上,a 的取值范围为65⎛⎤-∞ ⎥⎝⎦,. ··································································· 12分22.(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ····································· 2分如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=由6ED DF =知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+.所以212k =+,化简得2242560k k -+=,解得23k =或38k =. ······················································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB的距离分别为1h ==2h ==······················································· 9分又AB ==,所以四边形AEBF 的面积为121()2S AB h h =+ 14(12525(14k k +=+== ≤当21k =,即当12k =时,上式取等号.所以S 的最大值为. ························ 12分解法二:由题设,1BO =,2AO =.设11y kx =,22y kx =,由①得20x >,210y y =->, 故四边形AEBF 的面积为 BEF AEF S S S =+△△ 222x y =+ ···································································································· 9分===当222x y =时,上式取等号.所以S 的最大值为 ······································· 12分。
高考海南数学文科卷解析
2008年高考海南数学文科卷解析一、选择题:本大题共12小题,每小题5分,满分60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}(2)(1)0M x x x =+-<,{}10N x x =+<,则MN =( )A .(11)-,B .(21)-,C .(21)--,D .(12),【标准答案】C【试题解析】易求得{}{}|21,|1=-<<=<-M x x N x x ∴{}|21=-<<-M N x x【高考考点】一元二次不等式的解法及集合的交集及补集运算 【易错提醒】混淆集合运算的含义或运算不仔细出错【学科网备考提示】一元二次不等式的解法及集合间的交、并、补运算布高考中的常考内容,要认真掌握,并确保得分。
2.双曲线221102x y -=的焦距为( )【标准答案】D【试题解析】由双曲线方程得22210,212==∴=a b c ,于是==c c D 【高考考点】双曲线的标准方程及几何性质。
【易错提醒】将双曲线中三个量,,a b c 的关系与椭圆混淆,而错选B【学科网备考提示】在新课标中双曲线的要求已经降低,考查也是一些基础知识,不要盲目拔高。
3.已知复数1z i =-,则21z z =-( ) A. 2 B. -2 C. 2i D. -2i 【标准答案】A【试题解析】将1=-z i 代入得()22122111--===----i zi z i i,选A 【高考考点】复数的加减、乘除及乘方运算 【易错提醒】运算出错【学科网备考提示】简单的复数运算仍然是需要掌握的内容,但要求不高,属于必须得分的内容4.设()ln f x x x =,若0'()2f x =,则0x =( )A. 2e B. e C. ln 22D. ln 2 【标准答案】B【试题解析】∵()ln =f x x x ∴()'1ln ln 1=+⋅=+fx x x x x∴由()'02=f x 得00ln 1 2 +=∴=x x e ,选B. 【高考考点】两个函数积的导数及简单应用 【易错提醒】不能熟练掌握导数的运算法则而出错【学科网备考提示】导数及应用是高考中的常考内容,要认真掌握,并确保得分。
2008年海南省高考试题分析与评价报告
2008年海南省高考试题分析与评价报告
罗才忠;黄耀国
【期刊名称】《数学教学》
【年(卷),期】2009(000)001
【摘要】2008年是海南省2004年进入高中数学新课程实验以来的第二次高考,今年的数学高考继续贯彻“平稳过渡,适度体现新课程理念”的思想,保持了2007年首次高考的题型、题量以及分值,保持了各主干知识和新增内容的大致比例.
【总页数】6页(P32-37)
【作者】罗才忠;黄耀国
【作者单位】海南省教育研究培训院;海口一中
【正文语种】中文
【中图分类】G633
【相关文献】
1.2008年高考英语书面表达试题分析与2009年备考策略 [J], 刘鑫;张丽彩
2.2008年高考英语听力试题分析与研究 [J], 辜向东;雷雪梅
3.2008年高考物理试题分析及2009年高考备考策略 [J], 王后雄;漆应该
4.2008年上海市高考物理评价报告 [J], 汪卫平
5.2008年~2012年海南高考试题分析及思考——以“地球运动”为例 [J], 郑紫丹
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年高考海南数学文科卷解析一、选择题:本大题共12小题,每小题5分,满分60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}(2)(1)0M x x x =+-<,{}10N x x =+<,则M N = ( )A .(11)-,B .(21)-,C .(21)--,D .(12), 【标准答案】C【试题解析】易求得{}{}|21,|1=-<<=<-M x x N x x ∴{}|21=-<<- M N x x 【高考考点】一元二次不等式的解法及集合的交集及补集运算 【易错提醒】混淆集合运算的含义或运算不仔细出错【学科网备考提示】一元二次不等式的解法及集合间的交、并、补运算布高考中的常考内容,要认真掌握,并确保得分。
2.双曲线221102xy-=的焦距为( )A. 3 【标准答案】D【试题解析】由双曲线方程得22210,212==∴=a b c ,于是2==c c ,选D 【高考考点】双曲线的标准方程及几何性质。
【易错提醒】将双曲线中三个量,,a b c 的关系与椭圆混淆,而错选B【学科网备考提示】在新课标中双曲线的要求已经降低,考查也是一些基础知识,不要盲目拔高。
3.已知复数1z i =-,则21zz =-( )A. 2B. -2C. 2iD. -2i 【标准答案】A【试题解析】将1=-z i 代入得()22122111--===----i zi z i i,选A【高考考点】复数的加减、乘除及乘方运算 【易错提醒】运算出错【学科网备考提示】简单的复数运算仍然是需要掌握的内容,但要求不高,属于必须得分的内容4.设()ln f x x x =,若0'()2f x =,则0x =( )A. 2eB. eC. ln 22D. ln 2【标准答案】B【试题解析】∵()ln =f x x x ∴()'1ln ln 1=+⋅=+f x x x x x∴由()'02=fx 得00ln 12 +=∴=x x e ,选B.【高考考点】两个函数积的导数及简单应用 【易错提醒】不能熟练掌握导数的运算法则而出错【学科网备考提示】导数及应用是高考中的常考内容,要认真掌握,并确保得分。
5.已知平面向量(1,3)a =- ,(4,2)b =-,a b λ+ 与a 垂直,则λ是( ) A. -1 B. 1 C. -2 D. 2 【标准答案】A【试题解析】由于()()4,32,1,3,a b a a b a λ+=λ+-λ-=-λ+⊥. ∴()()43320λ+--λ-=,即101001λ+=∴λ=-,选A(方法二):由a b λ+ 与a 垂直可得220010100a ab a ab λλλ+=⇒+=⇒+=1λ⇒=-.【高考考点】简单的向量运算及向量垂直【易错点】:运算出错 【学科网备考提示】:高考中每年均有相当一部分基础题,要想得到高分, 这些习题均不能大意,要争取多得分,最好得满分。
6.右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( ) A. c > x B. x > c C. c > bD. b > c【标准答案】:A【试题解析】:同理科5 有流程图可知第一个选择框作用是比较x 与b 的大小,故第二个选择框的作用应该是比较x 与c 的大小,故应选A;【高考考点】算法中的判断语句等知识。
【易错点】:不能准确理解流程图的含义而导致错误。
【学科网备考提示】:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视。
7.已知1230a a a >>>,则使得2(1)1i a x -<(1,2,3)i =都成立的x 取值范围是( )A.110,a ⎛⎫ ⎪⎝⎭B. 120,a ⎛⎫ ⎪⎝⎭C. 310,a ⎛⎫ ⎪⎝⎭D. 320,a ⎛⎫⎪⎝⎭【标准答案】:B【试题解析】:同理科6 由()211i a x -<,得:22121i i a x a x -+<,即()220i i x a x a -<,解之得()200i ix a a <<>,由于1230a a a >>>,故120x a <<;选B【高考考点】二次不等式的解法及恒成立知识 【易错点】:不能准确理解恒成立的含义而导致错误。
【学科网备考提示】:不等式恒成立问题是历年高考的一个重点,要予以高度重视 8.设等比数列{}n a 的公比2q =,前n 项和为n S ,则42S a =( )A. 2B. 4C.152D.172【标准答案】:C【试题解析】:同理科4 由于()4141122,1512a q S a -=∴==- ∴4121151522S a a a ==;选C;【高考考点】等比数列的通项公式及求和公式的综合应用 【易错点】:不能准确掌握公式而导致错误。
【学科网备考提示】:等差数列及等比数列问题一直是高中数学的重点也是高考的一个热点,要予以高度重视9.平面向量a ,b共线的充要条件是( )A. a ,b 方向相同B. a ,b 两向量中至少有一个为零向量C. R λ∃∈, b a λ=D. 存在不全为零的实数1λ,2λ,120a b λλ+=【标准答案】:D 【试题解析】:同理科8若,a b均为零向量,则显然符合题意,且存在不全为零的实数12,,λλ使得120a b λ+λ= ; 若0a ≠ ,则由两向量共线知,存在0λ≠,使得b a =λ ,即0a b λ-=,符合题意,故选D【高考考点】向量共线及充要条件等知识。
【易错点】:考虑一般情况而忽视了特殊情况【学科网备考提示】:在解决很多问题时考虑问题必须要全面,除了考虑一般性外,还要注意特殊情况是否成立。
10.点(,)P x y 在直线430x y +=上,且满足147x y -≤-≤,则点P 到坐标原点距离的取值范围是( ) A. [0,5] B. [0,10]C. [5,10]D. [5,15]【标准答案】:B【试题解析】:根据题意可知点P在线段()43063x y x +=-≤≤上,有线段过原点,故点P到原点最短距离为零,最远距离为点()6,8P -到原点距离且距离为10,故选B; 【高考考点】直线方程及其几何意义【易错点】:忽视了点的范围或搞错了点的范围而至错。
【学科网备考提示】:随着三大圆锥曲线的降低要求,直线与圆的地位凸现,要予以重视。
11.函数()cos 22sin f x x x =+的最小值和最大值分别为( )A. -3,1B. -2,2C. -3,32D. -2,32【标准答案】:C【试题解析】 ∵()2213(12sin )2sin 2sin 22f x x x x ⎛⎫=-+=--+ ⎪⎝⎭.∴当1sin 2x =时,()m ax 32f x =,当sin 1x =-时,()min 3f x =-;故选C;【高考考点】三角函数值域及二次函数值域【易错点】:忽视正弦函数的范围而出错。
【学科网备考提示】:高考对三角函数的考查一直以中档题为主,只要认真运算即可。
12.已知平面α⊥平面β,l αβ= ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定...成立的是( ) A. AB ∥m B. AC ⊥m C. AB ∥β D. AC ⊥β 【标准答案】:D【试题解析】:容易判断A、B、C三个答案都是正确的,对于D,虽然A C l ⊥,但AC不一定在平面α内,故它可以与平面β相交、平行,故不一定垂直; 【高考考点】线面平行、线面垂直的有关知识及应用 【易错点】:对有关定理理解不到位而出错。
【学科网备考提示】:线面平行、线面垂直的判断及应用仍然是立体几何的一个重点,要重点掌握。
第Ⅱ卷本卷包括必考题和选考题两部分。
第13题~第21题为必考题,每个试题考生都必须做答。
第22题~第24题为选考题,考生根据要求做答。
二、填空题:本大题共4小题,每小题5分,满分20分。
13.已知{a n }为等差数列,38622,7a a a +==,则5a =____________. 【标准答案】:15【试题解析】:由于{}n a 为等差数列,故3856a a a a +=+∴538622715a a a a =+-=-= 【高考考点】等差数列有关性质及应用【易错点】:对有关性质掌握不到位而出错。
【学科网备考提示】:等差数列及等比数列“足数和定理”是数列中的重点内容,要予以重点掌握并灵活应用。
14.一个六棱柱的底面是正六边形,其侧棱垂直底面。
已知该六棱柱的顶点都在同一个球面3,那么这个球的体积为_________. 【标准答案】:43V =π.【试题解析】∵正六边形周长为3,得边长为12,故其主对角线为1,从而球的直径22R == ∴1R = ∴球的体积43V =π【高考考点】正六棱柱及球的相关知识.【易错点】空间想象能力不强,不能画出直观图而出错.【学科网备考提示】空间想象能力是立体几何中的一个重要能力之一,平时要加强培养.15.过椭圆22154xy+=的右焦点作一条斜率为2的直线与椭圆交于A 、B 两点,O 为坐标原点,则△OAB 的面积为______________. 【标准答案】53【试题解析】将椭圆与直线方程联立()224520021x y y x ⎧+-=⎪⎨=-⎪⎩,得交点()540,2,,33A B ⎛⎫- ⎪⎝⎭;故121145122233O AB S O F y y =⋅⋅-=⨯⨯+=.【高考考点】直线与椭圆的位置关系【易错点】:不会灵活地将三角形面积分解而导致运算较繁。
【学科网备考提示】:对于圆锥曲线目前主要以定义及方程为主,对于直线与圆锥曲线的位置关系只要掌握直线与椭圆的相关知识即可。
16.从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm ),结果如下: 甲品种:271 273 280 285 285 287 292 294 295 301 303 303 307 308 310 314 319 323 325 325 328 331 334 337 352乙品种:284 292 295 304 306 307 312 313 315 315 316 318 318 320 322 322 324 327 329 331 333 336 337 343 356 由以上数据设计了如下茎叶图根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论: ① ;② 。