2013北京中考数学考试说明

合集下载

北京中考考试说明详细解读之数学

北京中考考试说明详细解读之数学

北京中考考试说明详细解读之数学
认物体的阴影,了解视点、视角的涵义,并能在简单的平面图和立体图中表示﹔删除“多边形”这个知识点的b层次要求:能用正三角形、正方形、正六边形进行简单的镶嵌设计﹔删除了“图形的轴对称”这个知识点a层次要求:了解物体的镜面对称。

第一点变化将““整数指数幂”知识点的b层要求:能用幂的性质解决简单问题改為能用幂的性质解决简单计算问题,这里相当於降低了幂的性质在中考中的考察难度,所以同学们在復习的时候,这部分幂的性质有关的简单计算问题就可以了。

第二点变化是在“方程的解”知识点的a层要求:新增一条:能根据具体问题的实际意义,检验方程的解是否合理,那麼对於方程应用题来说,相信狠多同学应该都不会陌生。

今年考纲的变化当中,它既然是做了一个调整,要求检验方程的解是否合理。

对於应用题的话,希望同学们注意检查方程的解是否合理,是够满足实际意义。

(。

2013年北京市中考数学试卷及详细分析评论

2013年北京市中考数学试卷及详细分析评论

2013年北京中考数学真题评析:难度有所下降
2013年中考报道学而思兰清2013-06-25 13:57
特点九、考察学生对于知识点的深入理解能力逐渐加大。

解答题第23题第三小问,重点考察直线与抛物线位置关系的深入理解,难度较大。

最后,笔者衷心祝愿2013年广大学子能取得优异的成绩,考入理想的高中。

同时祝愿决战2014中
考的新初三学员能倍加努力,在2014年中考中也能取得优异的成绩。

(学而思(微博)中考研究中心中考研究办公室兰清)
2013年北京中考数学试卷题型结构分布
摘要:2013年北京中考数学试卷题型结构分布
(一)试卷分数、考试时间
试卷满分为120分,考试时间为120分钟。

(二)试卷知识内容分布
数与代数约60分
空间与图形约46分
统计与概率约14分
(三)试卷试题难易程度分布
较易试题约60分
中等试题约36分
较难试题约24分
(四)试卷题型分布
选择题约32分
填空题约16分
解答题约72分。

北京市中考数学 考试说明及详细解读 新人教版

北京市中考数学 考试说明及详细解读 新人教版

一、考试范围数学学科考试以教育部颁布的《全日制义务教育数学课程标准(实验稿)》的“课程目标”与“内容标准”的规定为考试范围,参考《义务教育数学课程标准(2011年版)》的理念和精神,适当兼顾北京市现行不同版本教材和教学实际情况。

二、考试内容和要求考试内容是指《全日制义务教育数学课程标准(实验稿)》中所规定的学习内容。

关于考试内容的要求划分为A、B、C三个层次。

A:能对所学知识有基本的认识,能举例说明对象的有关特征,并能在具体情境中进行辨认,或能描述对象的特征,并能指出此对象与有关对象的区别和联系。

B:能在理解的基础上,把知识和技能运用到新的情境中,解决有关的数学问题和简单的实际问题。

C:能通过观察、实验、推理和运算等思维活动,发现对象的某些特征及与其他对象的区别和联系;能综合运用知识,灵活、合理地选择与运用有关的方法,实现对特定的数学问题或实际问题的分析与解决。

数学学科中考注重考查初中数学的基础知识、基本技能和基本思想方法;考查数感、符号感、空间观念、统计观念、运算能力、推理能力、发现问题和分析解决问题的能力,以及应用意识等。

考试内容和考试要求细目表考试内容考试要求A B C数与代数数与式有理数理解有理数的意义能比较有理数的大小无理数了解无理数的概念能根据要求用有理数估计一个无理数的大致范围平方根、算术平方根了解开方与乘方互为逆运算,了解平方根及算术平方根的概念,会用根号表示非负数的平方根及算术平方根会用平方运算的方法,求某些非负数的平方根立方根了解立方根的概念,会用根号表示数的立方根会用立方运算的方法,求某些数的立方根实数了解实数的概念会进行简单的实数运算数轴能用数轴上的点表示有理数;知道实数与数轴上的点一一对应相反数会用有理数表示具有相反意义的量,借助数轴理解相反数的意掌握相反数的性质义,会求实数的相反数绝对值借助数轴理解绝对值的意义,会求实数的绝对值会利用绝对值的知识解决简单的化简问题和计算问题有理数运算理解乘方的意义掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题能运用的有理数的运算解决简单问题运算律理解有理数运算律能用运算律简化有理数运算近似数和科学记数法了解近似数的概念;会用科学记数法表示数在解决实际问题中,能按问题的要求对结果取近似值代数式了解代数式,理解用字母表示数的意义能分析简单问题的数量关系,并用代数式表示;能解释一些简单代数式的实际意义或几何意义代数式的值了解代数式的值的概念会求代数式的值;能根据代数式的值或特征,推断这些代数式反映的规律能根据特定的问题所提供的资料,合理选用知识和方法,通过代数式的适当变形求代数式的值整式了解整式的有关概念整式的加减运算理解整式加法和减法运算的法则会进行简单的整式加法和减法运算能运用整式的加法和减法运算对多项式进行变形,进一步解决有关问题整数指数幂了解整数指数幂的意义和基本性质能用幂的性质解决简单问题整式的乘法理解整式乘法的运算法则,会进行简单的整式乘法运算会进行简单的整式乘法与加法的混合运算能选用恰当的方法进行相应的代数式的变形平方差公式、完全平方公式理解平方差公式、完全平方公式,了解其几何背景能利用平方差公式、完全平方公式进行简单计算能根据需要,运用公式进行相应的代数式的变形因式分解了解因式分解的意义及其与整式乘法之间的关系会用提公因式、公式法(直接利用公式不超过两次)进行因式分解(指数是正整数)能运用因式分解的知识进行代数式的变形,解决有关问题分式的概了解分式的概念,能能确定使分式的值为一元二次方程了解一元二次方程的概念,理解配方法,会用直接开平方法、配方法、公式法、因式分解法解简单的数字系数的一元二次方程,理解各种解法的依据能由一元二次方程的概念确定二次项系数中所含字母的取值范围;能选择适当的方法解一元二次方程;会用一元二次方程根的判别式判断根的情况能利用根的判别式说明含有字母系数的一元二次方程根的情况及由方程根的情况确定方程中待定系数的取值范围;会运用一元二次方程解决简单的实际问题不等式(组)了解不等式的意义能根据具体问题中的数量关系列出不等式(组)不等式的性质理解不等式的基本性质会利用不等式的性质比较两个实数的大小解一元一次不等式(组)了解一元一次不等式(组)的解的意义,会在数轴上表示或判定其解集会解一元一次不等式和由两个一元一次不等式组成的不等式组能根据具体问题中的数量关系,列出一元一次不等式解决简单问题函数函数及其图象了解常量和变量的意义;了解函数的概念和三种表示方法;能举出函数的实例;会确定简单的整式、分式和简单实际问题中的函数的自变量取值范围,并会求函数值能用适当的函数表示法刻画简单问题中变量之间的关系能探索具体问题中的数量关系和变化规律,并用函数加以表示;结合函数关系的分析,能对变量的变化趋势进行初步推测;能结合图象对简单实际问题中的函数关系进行分析一次函数理解正比例函数;了解一次函数的意义,会画出一次函数的图像;理解一次函数的性质会根据已知条件确定一次函数的解析式;会根据一次函数的解析式求其图象与坐标轴的交点坐标;能根据一次函数的图象求二元一次方程组的近似解能用一次函数解决实际问题反比例函数了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质能根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题二次函数了解二次函数的意义;会用描点法画出二次函数的图象能通过分析实际问题的情境确定二次函数的解析式;能从图象上认识二次函数的能用二次函数解决简单的实际问题;能解决二次函数与其他知识综合的有关性质;会根据二次函数的解析式求其图象与坐标轴的交点坐标,会确定图象的顶点、开口方向和对称轴;会利用二次函数的图象求一元二次方程的近似解问题空间与图形图形与证明命题了解定义、命题、定理的含义,会区分命题的条件和结论;了解逆命题的概念,会识别两个互逆命题,并知道原命题成立时其逆命题不一定成立;了解反例的作用,知道列举反例可以判断一个命题是假命题推理与证明理解证明的必要性;了解反证法的含义掌握用综合法证明的格式,证明的过程要步步有据会用归纳和类比进行简单的推理图形与坐标平面直角坐标系认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标;了解特殊位置的点的坐标特征能在方格纸上建立适当的直角坐标系,描述物体的位置;会由点的特殊位置,求点的坐标中相关字母的范围;会求点到坐标轴的距离;在同一直角坐标系中,会求图形变换后点的坐标灵活运用不同的方式确定物体在坐标平面内的位置图形的认识立体图形、视图和展开图会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图);能根据三视图描述基本几何体;了解直棱柱、圆锥的侧面展开图;了解基本几何体与其三视图、展开图(球除外)三者之间的关系;观察与现实生活有关的图片,并能对其几何图形的形状、大小和相互位置会判断简单物体的三视图,能根据三视图描述实物原型;能根据直棱柱、圆锥的展开图判断立体图形作简单的描述中心投影与平行投影了解中心投影和平行投影线段、射线和直线会表示点、线段、射线、直线,知道它们之间的联系与区别;结合图形理解两点之间距离的概念;会比较两条线段的大小,并能进行与线段有关的简单计算会用尺规作图:作一条线段等于已知线段,作线段的垂直平分线;会用线段中点的知识解决简单问题;结合图形认识线段间的数量关系会运用两点之间的距离解决有关问题注:对于尺规作图题,要求会写已知、求作和作法。

考试说明北京中考数学说明

考试说明北京中考数学说明

能根据具体问题列出二元一次方程 (组)
二元一次方程组同样做 了合并和删除;
掌握代入消元法和加减消元法;能选 会运用二元一次方程组解决
择适当的方法解二元一次方程组
简单的实际问题
2012 一元
一次
方程
了解一元一次方程的有关 概念; 理解一元一次方程解法中 的各个步骤
熟练掌握一元一次方 程的解法;会解含有 字母系数的一元一次 方程(无需讨论)
原来“理解 ”改为 “了解”,
(新修订的课标降低了要求)
完整版课件ppt
15
变化7
2012
会画基本几何体(直棱柱、圆柱、
立体图 形、视 图和展 开图
圆左图圆何外实图描锥视体)生锥形述、图与三活的的基球、其者有侧形本) 俯 三 之 关面状几的视视间的、展何三图图的图大开体小视)、关片图;和图;展系,;了相(能开;并了解互主根图观能解直位视据(察对基棱置几图三球与本柱作何、视除现几、会体能描能圆判述根判的根锥断实据断三据的立物直简视三展体原棱单图视开模型柱物,图图型;、
简单的描述
增加五个字:“几何图形的” 表述更严谨
完整版课件ppt
16
变化8
2012
会画基本几何体(直棱柱、圆柱、
圆锥、球)的三视图(主视图、 会判断简单物体
立体图 形、视 图和展 开图
左视图、俯视图);能根据三视 的三视图,能根 图描述基本几何体;了解直棱柱、 据三视图描述实 圆锥的侧面展开图;了解基本几 物原型;能根据 何体与其三视图、展开图(球除 直棱柱、圆锥的 外)三者之间的关系;观察与现 展开图判断立体
意综合题中三问的设计搭设阶梯要更合适些.
完整版课件ppt
6
5.命题坚持多思少算, 能力立意, 突出学生对数 学本质的理解, 淡化特殊技巧,避免繁杂

2013北京市中考数学

2013北京市中考数学

2013年北京市高级中等学校招生考试数学试卷满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. (2013北京,1,4分)在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划.将3 960用科学计数法表示应为 A. 39.6×102 B. 3.96×103 C. 3.96×104 D. 3.96×104 【答案】B .2. (2013北京,2,4分)43-的倒数是 A. 34 B. 43 C. 43- D. 34-【答案】D .3. (2013北京,3,4分)在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 A.51 B. 52 C. 53 D. 54 【答案】C.4. (2013北京,4,4分) 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于A. 40°B. 50°C. 70°D. 80° 【答案】C.5. (2013北京,5,4分)如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上.若测得BE =20 m ,EC =10 m ,CD =20 m ,则河的宽度AB 等于 A. 60 m B. 40 m C. 30 m D. 20 m【答案】B.6. (2013北京,6,4分)下列图形中,是中心对称图形但不是轴对称图形的是【答案】A.7. (2013北京,7,4分)某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5 6 7 8 人数1015205则这50名学生这一周在校的平均体育锻炼时间是A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时 【答案】B.8. (2013北京,8,4分)如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB =2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是【答案】A.二、填空题(本题共16分,每小题4分)9. (2013北京,9,4分)分解因式:a ab ab 442+-=_________________ 【答案】a (b -2)210. (2013北京,10,4分)请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式y =__________. 【答案】x 2+1.11. (2013北京,11,4分)如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB =5,AD =12,则四边形ABOM 的周长为__________ 【答案】20.12. (2013北京,12,4分)如图,在平面直角坐标系x O y 中,已知直线l :1--=x t ,双曲线xy 1=.在l 上取点A 1,过点A 1作x 轴的垂线交双曲线于点B 1,过点B 1作y 轴的垂线交l 于点A 2,请继续操作并探究:过点A 2作x 轴的垂线交双曲线于点B 2,过点B 2作y 轴的垂线交l 于点A 3,…,这样依次得到l 上的点A 1,A 2,A 3,…,A n ,….记点A n 的横坐标为n a ,若21=a ,则2a =__________,2013a =__________;若要将上述操作无限次地进行下去,则1a 不.能取..的值是__________ 【答案】-32,-13,0,-1.三、解答题(本题共30分,每小题5分)13. (2013北京,13,5分)如图,已知D 是AC 上一点,AB =DA ,DE ∥AB ,∠B =∠DAE . 求证:BC =AE . 证明:∵D E ∥AB ∴∠CAB =∠ADE 在 △ABC 与△DAE 中 ,,.CAB ADE AB DA B DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △ADE ≌△BAC (ASA ) ∴ B C =AE.14. (2013北京,14,5分)计算:1)41(45cos 22)31(-+︒--+-. 【解】原式=212242+-⨯+=5.15. (2013北京,15,5分)解不等式组:⎪⎩⎪⎨⎧>+->x x x x 23123解:由 3x > x - 2 ,得 x >-1 由123x x +>,得 15x <∴不等式组的解集为115x -<<. 16. (2013北京,16,5分)已知0142=--x x ,求代数式22))(()32(y y x y x x --+--的值. 【解】代数式化简得:22224120x x x y y -+-+-3x 2-12x +9 3(x 2- 4x +3) ∵ x 2 -4x =1代入得 ∴原式 =12.17. 列方程或方程组解应用题:(2013北京,17,5分)某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.解:设每人每小时的绿化面积为x 平方米. 则有18018036(62)x x-=+ 解得x =2.5.经检验:x =2.5时,公分母不为0,所以x =2.5是原分式方程的解. 答:每人每小时的绿化面积为2.5 平方米.18.(2013北京,18,5分)已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值. 解:(1)Δ=b 2–4ac =4-4(2k -4)=20-8k . ∵方程有两个不等的实根 ∴20-8k >0 ∴k <52. (2)∵k 为整数, ∴0<k <52(且k 为整数),即k 为1或2, ∴1,2152x k =-±-. ∵方程的根为整数, ∴5-2k 为完全平方数. 当k =1时,5-2k =3; 当k =2时,5-2k =1. ∴k =2.四、解答题(本题共20分,每小题5分)19.(2013北京,19,5分)如图,在□ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE =21BC ,连结DE ,CF . (1)求证:四边形CEDF 是平行四边形;(2)若AB =4,AD =6,∠B =60°,求DE 的长. 【解】(1)在□ABCD 中, A D ∥BC ,AD =BC . ∵ F 是 A D 中点.∴DF =12AD ,又∵CE =12BC ∴DF =CE 且DF //CE .∴四边形CEDF 为平行四边形. (2)过点D 作DH ⊥BE 于H , 在□ABCD 中,∵∠B =60° ∴∠DCE =60° ∵AB =4, ∴CD =4.∴CH =2,DH =23. 在□CEDF 中,CE =DF =12AD =3. ∴EH =1.在Rt △DHE 中,DE =22(23)113+=.20.(2013北京,20,5分)如图,AB 是⊙O 的直径,PA ,PC 分别与⊙O 相切于点A ,C ,PC交AB 的延长线于点D ,DE ⊥PO 交PO 的延长线于点E . (1)求证:∠EPD =∠EDO ; (2)若PC =6,tan ∠PDA =43,求OE 的长.解:(1)∵ P A 、 P C 与圆O 分别相切于点 A 、 C . ∴ ∠APO =∠EPD 且 P A ⊥AO 即∠PAO =90° ∵∠AOP =∠EOD ,∠PAO =∠E =90°. ∴∠APO =∠EDO. 即 ∠EPD =∠EDO. (2)连结 O C ∴ P A =PC = 6. ∵tan ∠PDA =43∴在 R t △PAD 中 A D =8 , P D =10 ∴ C D =4 ∵tan ∠PDA =43∴在 R t △OCD 中, O C =OA =3 , O D =5.∵∠EPD=∠EDO.∴△OED ∽△DEP∴10251 PD DEOD OE===在R t△OED中,OE2+DE2=52.∴OE=5.21.(2013北京,21,5分)第九届中国国际园林博览会(园博会)已于2013年5月18日在北京开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分:(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,牡丹园面积为__________平方千米;(2)第九届园博会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八两届园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据;(3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日接待游客量和单日最多接待游客量中的某个量近似成正比例关系,根据小娜的发现,请估计将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).第七届至第十届园博会游客量与停车位数量统计表日均接待游客量(万人次)单日最多接待游客量(万人次)停车位数量(个)第七届0.8 6 约3 000 第八届 2.3 8.2 约4 000 第九届8(预计)20(预计)约10 500 第十届 1.9(预计)7.4(预计)约________【解】 (1) 0.03; (2)陆地面积 3.6 水面面积1.5 图略; (3)3700.22.(2013北京,22,5分)阅读下面材料:小明遇到这样一个问题:如图1,在边长为)2(>a a 的正方形ABCD 各边上分别截取AE =BF =CG =DH =1,当∠AFQ =∠BGM =∠CHN =∠DEP =45°时,求正方形MNPQ 的面积.小明发现:分别延长QE ,MF ,NG ,PH ,交FA ,GB ,HC ,ED 的延长线于点R ,S ,T ,W ,可得△RQF ,△SMG ,△TNH ,△WPE 是四个全等的等腰直角三角形(如图2) 请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,不重叠),则这个新的正方形的边长为__________; (2)求正方形MNPQ 的面积. 参考小明思考问题的方法,解决问题:如图3,在等边△ABC 各边上分别截取AD =BE =CF ,再分别过点D ,E ,F 作BC ,AC ,AB 的垂线,得到等边△RPQ ,若33=∆RPQ S ,则AD 的长为__________. 【解】(1) a(2)四个等腰直角三角形面积和为 a 2 正方形 A BCD 的面积为 a 2∴ S 正方形MNPQ =S △ARE + S △DWH +S △GCT +S △SBF =4S △ARE =2141 2.2⨯⨯=(3)23. 提示:模仿小明的操作,向正三角形外面补出三个“尖角三角形”,如下图.这样,外面的三个“尖角三角形”的面积之和恰为阴影三角形的面积!五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.(2013北京,23,7分)在平面直角坐标系x O y 中,抛物线222--=mx mx y (0≠m )与y 轴交于点A ,其对称轴与x 轴交于点B . (1)求点A ,B 的坐标;(2)设直线l 与直线AB 关于该抛物线的对称轴对称,求直线l 的解析式;(3)若该抛物线在12-<<-x 这一段位于直线l的上方,并且在32<<x 这一段位于直线AB 的下方,求该抛物线的解析式.解:(1)当 x = 0 时, y =-2 . ∴ A (0,-2). 抛物线对称轴为 x =212mm--=, ∴ B (1,0). (2)易得 A 点关于对称轴的对称点为 A (2,-2) 则直线 l 经过 A 、 B . 没直线的解析式为 y =kx +b 则22,0.k b k b +=-⎧⎨+=⎩解得2,2.k b =-⎧⎨=⎩ ∴直线的解析式为 y =-2x +2. (3)∵抛物线对称轴为 x =1抛物体在 2 <x <3 这一段与在-1<x <0 这一段关于对称轴对称,结合图象可以观察到抛物线在-2<x <1这一段位于直线 l 的上方,在 -1< x <0 这一段位于直线 l 的下方.∴抛物线与直线 l 的交点横坐标为 -1 ; 当 x =-1 时, y =-2x (-1)+2 =4 则抛物线过点(-1,4) 当 x =-1 时, m +2m -2=4 , m =2 ∴抛物线解析为 y =2x 2 -4x -2 .24.(2013北京,24,7分)在△ABC 中,AB =AC ,∠BAC =α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD .(1)如图1,直接写出∠ABD 的大小(用含α的式子表示);(2)如图2,∠BCE =150°,∠ABE =60°,判断△ABE 的形状并加以证明; (3)在(2)的条件下,连结DE ,若∠DEC =45°,求α的值. 【解】(1)30°-12α;(2)△ABE 为等边三角形 证明连接 A D 、 C D 、 E D ∵线段 B C 绕点 B 逆时针旋转 60° 得到线段 B D则 B C =BD ,∠DBC =60°又∵∠ABE = 60°∴∠ABD = 60°-∠DBE =∠EBC =30°-12α; 且 △BCD 为等边三角形. 在 △ABD 与△ACO 中 ,,.AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ) ∴∠BAD =∠CAD =12∠BAC =12α∵∠BCE = 150° ∴∠BCE =180°-(30°-12α)-150°=12α.在 △ABD 与△EBC 中,,.BEC BAD EBC ABD BC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△EBC (AAS ) ∴AB =BE .(3)∵∠BCD =60°,∴∠BCE =150°. ∴∠DCE =150°-60°=90°. ∵∴∠DCE =45°. ∴△DCE 为等腰直角三角形 ∴DE =CE =BC ∵∠BCE =150°. ∴(180150)15.2EBC ︒-︒∠==︒ 而∠EBC =30°-12α;=15. ∴α=15°.25.(2013北京,25,8分)对于平面直角坐标系x O y 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得∠APB =60°,则称P 为⊙C 的关联点.已知点D (21,21),E (0,-2),F (32,0) (1)当⊙O 的半径为1时,①在点D ,E ,F 中,⊙O 的关联点是__________;②过点F 作直线l 交y 轴正半轴于点G ,使∠GFO =30°,若直线l 上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.解:(1)①D 、E ;②由题意可知,若P 点刚好是圆C 的关联点;需要点P 到圆C 的两条切线PA 和PB 之间所夹的角度为60°;由图1可知∠APB =60°,则∠CPB =30°,连接BC ,则PC =22.sin BC BC r CPB==∠ ∴点P 点为圆C 的关联点;则需点P 到圆心的距离d 满足0≤d ≤2r .由上述证明可知,考虑临界位置的P 点,如图2;点P 到原点的距离OP =2×1=2;过O 作x 轴的垂线OH ,垂足为H ;23tan 32OF OGF OG ∠===; ∴∠OGF =60°;∴OH =OG ·sin60°=3, ∴3tan 2OH OPH OP ∠== ∴∠OPH =60°;易知点P 1与点G 重合,过P 2作P 2M ⊥x 轴于点M ;易得∠P 2OM =30°;∴OM =OP 2·cos30°=3.从而若点P 为圆O 的关联点,则P 点必在线段P 1P 2上;∴0≤m ≤3.(2)若线段EF 上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF 的中点;考虑临界情况,如图3;即恰好E,F点为圆K的关联时,则KF=2KN=12EF=2;∴此时r=1;故若线段EF上的所有点都是某个圆的关联点,这个圆的半径r的取值范围r≥1.···2分。

2013年中考考试说明解读

2013年中考考试说明解读

2013年中考语文考试说明解读2013年中考考试说明,秉承了稳中有变的原则,在考试性质、考试方式、考试时间、考试范围、考试内容和要求方面与去年是相同的。

与2012年考试说明相比,有以下不同,应引起我们的高度重视。

一、语文科目对考试内容及分配比例划分的更细致。

2012年考试内容及分配比例包括三大部分,其中基础积累约占30分,理解感悟约占40分,表达交流占50分;2013年进行了更细致的划分,其中语文基础约占12分,语文积累约占8分,综合性学习约占10分,文言文阅读约占10分,现代文阅读约占30分,作文占50分。

二、将2012年的“题型示例”调整为“参考样题”。

部分样题有调整,需要重点强调的是选择题中的第9题,该题是针对病句的考查,题干要求依据语段内容,选择对画线病句的修改最恰当的选项。

该题型体现了以下特点:1.实践性:引导学生学会在具体语境中辨析、修改病句。

2.综合性:句式、句意、语序等和句子有关的因素都会涉及。

3.学生即使没有完整的语法体系,也可以凭借好的语感来辨析、判断病句。

需要考生重点注意该类型的病句试题。

三、附录内容进行了部分调整。

附录二“文言文阅读篇目”新增一篇《祖逖》,阅读篇目总数由原来24篇增至25篇。

附录五“词语表”增删调换,词语总量不变,四字成语调换10个,俗语调换5个,选取原则为生活中常用并具有一定的文化内涵。

增加的四字词语不谋而合重蹈覆辙耳濡目染既往不咎坚不可摧略胜一筹目不暇接舍本求木殊途同归一脉相承增加的俗语海阔凭鱼跃天高任鸟飞路遥知马力日久见人心千里之堤溃于蚁穴青出于蓝而胜于蓝种瓜得瓜种豆得豆2013年中考数学考试说明解读首先,考试说明在考试要求的变化。

在数学学科中考注重考查初中数学的基础知识、基本技能和基本思想方法;考查数感、符号感、空间观念、统计观念、运算能力、推理能力、发现问题和分析解决问题的能力,以及应用意识等,新说明又提出了一些关键词,比如几何直观、模型思维、创新意识等。

2013北京中考考试说明解读

2013北京中考考试说明解读

2013年北京中考考试说明解读:语文2013年中考考试说明,秉承了稳中有变的原则,在考试性质、考试方式、考试时间、考试范围、考试内容和要求方面与去年是相同的。

与2012年考试说明相比,有以下不同,应引起我们的高度重视。

一、语文科目对考试内容及分配比例划分的更细致。

2012年考试内容及分配比例包括三大部分,其中基础积累约占30分,理解感悟约占40分,表达交流占50分;2013年进行了更细致的划分,其中语文基础约占12分,语文积累约占8分,综合性学习约占10分,文言文阅读约占10分,现代文阅读约占30分,作文占50分。

二、将2012年的“题型示例”调整为“参考样题”。

部分样题有调整,需要重点强调的是选择题中的第9题,该题是针对病句的考查,题干要求依据语段内容,选择对画线病句的修改最恰当的选项。

该题型体现了以下特点:1.实践性:引导学生学会在具体语境中辨析、修改病句。

2.综合性:句式、句意、语序等和句子有关的因素都会涉及。

3.学生即使没有完整的语法体系,也可以凭借好的语感来辨析、判断病句。

需要考生重点注意该类型的病句试题。

三、附录内容进行了部分调整。

附录二“文言文阅读篇目”新增一篇《祖逖》,阅读篇目总数由原来24篇增至25篇。

附录五“词语表”增删调换,词语总量不变,四字成语调换10个,俗语调换5个,选取原则为生活中常用并具有一定的文化内涵。

增加的四字词语不谋而合重蹈覆辙耳濡目染既往不咎坚不可摧略胜一筹目不暇接舍本求木殊途同归一脉相承增加的俗语海阔凭鱼跃天高任鸟飞路遥知马力日久见人心千里之堤溃于蚁穴青出于蓝而胜于蓝种瓜得瓜种豆得豆2013年北京中考考试说明解读:数学首先,考试说明在考试要求的变化。

在数学学科中考注重考查初中数学的基础知识、基本技能和基本思想方法;考查数感、符号感、空间观念、统计观念、运算能力、推理能力、发现问题和分析解决问题的能力,以及应用意识等,新说明又提出了一些关键词,比如几何直观、模型思维、创新意识等。

2013年北京、上海、大连、河南、福州市中考数学试题及答案

2013年北京、上海、大连、河南、福州市中考数学试题及答案

2013年北京市高级中等学校招生考试数学试卷满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。

1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。

将3 960用科学计数法表示应为( )A. 39.6³102B. 3.96³103C. 3.96³104D. 3.96³104 2. 43-的倒数是( ) A. 34 B. 43 C. 43- D. 34-3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( ) A.51 B. 52 C. 53 D. 544. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于( )A. 40°B. 50°C. 70°D. 80°5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上。

若测得BE=20m ,EC=10m ,CD=20m ,则河的宽度AB 等于( )A. 60mB. 40mC. 30mD. 20m 6. 下列图形中,是中心对称图形但不是轴对称图形的是( )7. 某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5 6 7 8 人数1015205则这50名学生这一周在校的平均体育锻炼时间是( )A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时8. 如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )二、填空题(本题共16分,每小题4分)9. 分解因式:a ab ab 442+-=_________________10. 请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式__________10 11. 如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为__________12. 如图,在平面直角坐标系x O y 中,已知直线l :1--=x t ,双曲线xy 1=。

北京中考数学试题、答案解析版电子版本

北京中考数学试题、答案解析版电子版本

2013北京中考数学试题、答案解析版2013年北京市高级中等学校招生考试数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的。

1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。

将3 960用科学计数法表示应为 ( )A. 39.6×102B. 3.96×103C. 3.96×104D. 3.96×104 考点:科学记数法—表示较大的数 分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答:将3960用科学记数法表示为3.96×103.故选B .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2. 43-的倒数是 ( )A. 34B. 43C. 43-D. 34-考点:倒数分析:据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数 解答:D点评:本题主要考查倒数的定义,要求熟练掌握.需要注意的是: 倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数. 倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为( ) A. 51 B. 52 C. 53 D. 54 考点:概率公式分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小. 解答:C点评:本题考查概率的求法与运用,一般方法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率n mA P =)(,难度适中。

2013年北京市中考数学试卷-答案

2013年北京市中考数学试卷-答案

1 / 13北京市2013年高级中等学校招生考试年高级中等学校招生考试数学答案解析一、选择题 1.【答案】B【解析】解:将3960用科学记数法表示为33.9610´【提示】科学记数法的表示形式为10n a ´的形式,其中,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.是负数.【考点】科学记数法—表示较大的数.表示较大的数. 2.【答案】D【解析】解:∵34143æöæö-´-=ç÷ç÷èøèø,∴34-的倒数是43-.【提示】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.,我们就称这两个数互为倒数. 【考点】倒数.【考点】倒数.3.【答案】C【考点】概率公式.【考点】概率公式.【解析】解:根据题意可得:大于2的有3,4,5三个球,共5个球,任意摸出1个,摸到大于2的概率是35. 【提示】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.比值就是其发生的概率的大小.4.【答案】C 【解析】解:∵12Ð=Ð,340Ð=°,∴()1111803180407022()Ð=´°-Ð=´°-°=°,∵a b ∥,∴4170Ð=Ð=°.【提示】根据平角的定义求出1Ð,再根据两直线平行,内错角相等解答.,再根据两直线平行,内错角相等解答. 【考点】平行线的性质.【考点】平行线的性质.5.【答案】B【解析】解:∵AB BC ^,CD BC ^,∴BAE CDE △∽△,∴AB BECD CE=∵20BE =m ,10CE =m ,20CD =m ,∴202010AB =解得:40AB =【提示】由两角对应相等可得BAE CDE △∽△,利用对应边成比例可得两岸间的大致距离AB . 【考点】相似三角形的应用.【考点】相似三角形的应用. 6.【答案】A【解析】解:A .不是轴对称图形,是中心对称图形.故此选项正确;.不是轴对称图形,是中心对称图形.故此选项正确; B .是轴对称图形,也是中心对称图形.故此选项错误;.是轴对称图形,也是中心对称图形.故此选项错误; C .是轴对称图形,不是中心对称图形.故此选项错误;.是轴对称图形,不是中心对称图形.故此选项错误; D .是轴对称图形,不是中心对称图形.故此选项错误..是轴对称图形,不是中心对称图形.故此选项错误. 【提示】根据轴对称图形与中心对称图形的概念求解.【提示】根据轴对称图形与中心对称图形的概念求解. 【考点】中心对称图形,轴对称图形.【考点】中心对称图形,轴对称图形. 7.【答案】B【解析】解:根据题意得:【解析】解:根据题意得:(509014040)50=+++¸32050=¸6.4=(小时). 故这50名学生这一周在校的平均体育锻炼时间是6.4小时.小时.【提示】根据加权平均数的计算公式列出算式5106157208()550´+´+´+´¸,再进行计算即可.,再进行计算即可. 【考点】加权平均数.【考点】加权平均数. 8.【答案】A【解析】解:作OC AP ^,如图,则1122AC AP x ==, 在Rt AOC △中,1OA =,2222111442OC OA AC x x =-=-=-, 所以211402()24y OC AP x x x ==-££g g ,所以y 与x 的函数关系的图像为A 选项.选项.【提示】作OC AP ^,根据垂径定理得1122AC AP x ==,再根据勾股定理可计算出2142OC x =-,然后根据三角形面积公式得到21402()4y x x x =-££g ,再根据解析式对四个图形进行判断.,再根据解析式对四个图形进行判断.【考点】动点问题的函数图像.【考点】动点问题的函数图像. 二、填空题9.【答案】2(2)a b -【解析】解:244ab ab a -+ 2(44)a b b =-+(提取公因式)(提取公因式) 2(2)a b =-(完全平方公式)(完全平方公式)【提示】先提取公因式a ,再根据完全平方公式进行二次分解.完全平方公式:2222()a ab b a b -+=- 【考点】提公因式法与公式法的综合运用.【考点】提公因式法与公式法的综合运用. 10.【答案】21x +【解析】解:抛物线21y x =+开口向上,且与y 轴的交点为(0,1). 【提示】根据二次函数的性质,开口向上,要求a 值大于0即可.即可. 【考点】二次函数的性质.【考点】二次函数的性质.11.【答案】20【考点】矩形的性质,三角形中位线定理.【考点】矩形的性质,三角形中位线定理.【提示】根据题意可知OM 是ADC △的中位线,所以OM 的长可求;根据勾股定理可求出AC 的长,利用直角三角形斜边上的中线等于斜边的一半可求出BO 的长,进而求出四边形ABOM 的周长.的周长. 【解析】解:∵O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,的中点,∴112.522OM CD AB ===,∵5AB =,12AD =,∴2251213AC =+=,∵O 是矩形ABCD 的对角线AC 的中点,的中点, ∴16.52BO AC ==,∴四边形ABOM 的周长为56 6.5 2.520AB AM BO OM +++=+++=12.【答案】32-13- 0,1-【解析】解:当12a =时,1B 的纵坐标为12,1B 的纵坐标和2A 的纵坐标相同,的纵坐标相同, 则2A 的横坐标为232a =-,2A 的横坐标和2B 的横坐标相同,的横坐标相同,则2B 的纵坐标为223b =-,2B 的纵坐标和3A 的纵坐标相同,的纵坐标相同,则3A 的横坐标为313a =-,3A 的横坐标和3B 的横坐标相同,的横坐标相同,则3B 的纵坐标为33b =-,3B 的纵坐标和4A 的纵坐标相同,的纵坐标相同, 则4A 的横坐标为42a =,4A 的横坐标和4B 的横坐标相同,的横坐标相同,则4B 的纵坐标为412b =, 即当12a =时,232a =-,313a =-,42a =,532a =-,112b =,223b =-,33b =-,412b =,523b =-,∵20136713=,∴2013313a a ==-;点1A 不能在y 轴上(此时找不到1B ),即0x ¹,点1A 不能在x 轴上(此时2A ,在y 轴上,找不到2B ), 即10y x =--¹,解得:1x ¹-; 综上可得1a 不可取01-、【提示】求出2a ,3a ,4a ,5a 的值,可发现规律,继而得出2013a 的值,根据题意可得1A 不能在x 轴上,也不能在y 轴上,从而可得出1a 不可能取的值.不可能取的值. 【考点】反比例函数综合题.【考点】反比例函数综合题. 三、解答题 13.【答案】见解析【答案】见解析【解析】证明:∵DE AB ∥,∴CAB ADE Ð=Ð,∵在ABC △和DAE △中,CAB ADEAB DA B DAEÐ=Ðìï=íïÐ=Ðî, ∴()ABC DAE ASA △≌△,∴BC AE =.【提示】根据两直线平行,内错角相等求出CAB ADE Ð=Ð,然后利用“角边角”证明ABC △和DAE △全等,再根据全等三角形对应边相等证明即可.等,再根据全等三角形对应边相等证明即可. 【考点】全等三角形的判定与性质.【考点】全等三角形的判定与性质.14.【答案】5【解析】解:原式2122452=+-´+=【提示】分别进行零指数幂、绝对值、特殊角的三角函数值、负整数指数幂等运算,然后按照实数的运算法则计算即可.法则计算即可.【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值.【考点】实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值.15.【答案】115x -<<【解析】解:32123x x x x >-ìïí+>î①②,解不等式①得,1x >-,解不等式②得,15x <,所以,不等式组的解集是115x -<<. 【提示】先求出两个不等式的解集,再求其公共解.【提示】先求出两个不等式的解集,再求其公共解. 【考点】解一元一次不等式组.【考点】解一元一次不等式组. 16.【答案】12【解析】解:∵2410x x --=,即241x x -=,∴原式222222412931()29343912x x x y y x x x x =-+-+-=-+=-++= .【提示】原式利用完全平方公式及平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.算即可求出值.【考点】整式的混合运算—化简求值.化简求值. 17.【答案】2.5平方米平方米【解析】解:设每人每小时的绿化面积x 平方米,由题意,得平方米,由题意,得 18018036(62)x x-=+,解得: 2.5x =经检验, 2.5x =是原方程的解,且符合题意.是原方程的解,且符合题意. 答:每人每小时的绿化面积2.5平方米.平方米.【提示】设每人每小时的绿化面积x 平方米,根据增加2人后完成的时间比原来的时间少3小时为等量关系建立方程求出其解即可.系建立方程求出其解即可. 【考点】分式方程的应用.【考点】分式方程的应用.18.【答案】(1)52k <(2)2【解析】解:(1)根据题意得:44(24)2080k k =--=->△,解得:52k <;(2)由k 为正整数,得到1k =或2,利用求根公式表示出方程的解为152x k =-±-, ∵方程的解为整数,∴52k -为完全平方数,则k 的值为2.【提示】(1)根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k 的不等式,求出不等式的解集即可得到k 的范围;的范围;(2)找出k 范围中的整数解确定出k 的值,经检验即可得到满足题意k 的值.的值. 【考点】根的判别式,一元二次方程的解,解一元二次方程—公式法.公式法. 四、解答题19.【答案】(1)见解析)见解析 (2)13【解析】证明:(1)在ABCD Y 中,AD BC ∥,且AD BC =.∵F 是AD 的中点,∴12DF AD =.又∵12CE BC =,∴DF CE =,且DF CE ∥, ∴四边形CEDF 是平行四边形;是平行四边形;(2)解:如图,过点D 作DH BE ^于点H .在ABCD Y 中,∵60B Ð=°,∴60DCE Ð=°.∵4AB =,∴4CD AB ==,∴122CH CD ==,23DH =.在CEDF Y 中,132CE DF AD ===,则1EH = ∴在Rt DHE △中,根据勾股定理知2(23)113DE =+=.【提示】(1)由“平行四边形的对边平行且相等”的性质推知AD BC ∥,且AD BC =;然后根据中点的定义、结合已知条件推知四边形CEDF 的对边平行且相等(DF CE =,且DF CE ∥),即四边形CEDF 是平行四边形;行四边形;(2)如图,过点D 作DH BE ^于点H ,构造含30度角的直角DCH △和直角DHE △.通过解直角DCH △和在直角DHE △中运用勾股定理来求线段ED 的长度.的长度.【考点】平行四边形的判定与性质,含30度角的直角三角形,勾股定理.度角的直角三角形,勾股定理. 20.【答案】(1)见解析)见解析 (2)【解析】(1)证明:P A ,PC 与O e 分别相切于点A ,C ,∴APO EPD Ð=Ð且PA AO ^,∴90P AO Ð=°, ∵AOP EOD Ð=Ð,90PAO E Ð=Ð=°∴APO EDO Ð=Ð,∴EPD EDO Ð=Ð; (2)解:连接OC ,∴6P A PC ==,∵3tan 4PDA Ð=,∴在Rt P AD △中,8AD =,10PD =,∴4CD =,∵3tan 4PDA Ð=,∴在Rt OCD △中,3OC OA ==,5OD =, ∵EPD ODE Ð=Ð,∴DEP OED △∽△,∴2DP PE ED DO DE OE===,∴2DE OE =在Rt OED △中,222OE DE OD +=,即2255OE =,∴5OE =.【提示】(1)根据切线长定理和切线的性质即可证明:EPD EDO Ð=Ð;(2)连接OC ,利用3tan 4PDA Ð=,可求出4CD =,再证明OED DEP △∽△,根据相似三角形的性质和勾股定理即可求出OE 的长.的长.【考点】切线的性质,相似三角形的判定与性质.【考点】切线的性质,相似三角形的判定与性质. 21.【答案】(1)0.03 (2)见解析)见解析 (3)33.710´【解析】解:(1)∵月季园面积为0.04平方千米,月季园所占比例为20%,则牡丹园的面积为:0.0415%0.0320%´=(平方千米); (2)植物花园的总面积为:0.0420%0.2¸=(平方千米), 则第九届园博会会园区陆地面积为:0.218 3.6´=(平方千米), 第七、八界园博会的水面面积之和为:10.5 1.5+=(平方千米), 则第九届园博会水面面积为1.5平方千米,如图:平方千米,如图:(3)由图标可得,停车位数量与单日最多接待游客量成正比例关系,比值约为500,则第十届园博会大约需要设置的停车位数量约为:35007.4 3.710´»´.【提示】(1)根据月季园和牡丹园所占的比例求出牡丹园的面积即可;)根据月季园和牡丹园所占的比例求出牡丹园的面积即可;(2)先算出植物花园的总面积,然后可求出第九届园博会会园区陆地面积,根据图像求出第七、八界园博会的水面面积之和,补全条形统计图即可;会的水面面积之和,补全条形统计图即可;(3)根据图表所给的信息,求出停车位数量与单日最多接待游客量成正比例关系,算出比值,求出大约需要设置的停车位数量.要设置的停车位数量.【考点】条形统计图,用样本估计总体,统计表,扇形统计图.【考点】条形统计图,用样本估计总体,统计表,扇形统计图. 22.【答案】(1)a (2)2(3)23【解析】解:(1)四个等腰直角三角形的斜边长为a ,则斜边上的高为12a ,每个等腰直角三角形的面积为:2111224a a a =g ,则拼成的新正方形面积为:22144a a ´=,即与原正方形ABCD 面积相等,∴这个新正方形的边长为a ;(2)∵四个等腰直角三角形的面积和为2a ,正方形ABCD 的面积为2a ,∴2144122ARE DWH GCT SBF AREMNPQ S S S S S S =+++==´´=△△△△△正方形; (3)如答图1所示,分别延长RD ,QF ,PE ,交F A ,EC ,DB 的延长线于点S ,T ,W .由题意易得:RSF △,QET △,PDW △均为底角是30°的等腰三角形,其底边长均等于ABC △的边长. 不妨设等边三角形边长为a ,则SF AC A ==. 如答图2所示,过点R 作RM SF ^于点M ,则1122MF SF a ==,在Rt RMF △中,133tan30236RM MF a a =°=´=g ,∴21332612RSFSa a a ==g △ 过点A 作AN SD ^于点N ,设AD AS x ==,则1sin302AN AD x =°=g ,22cos303SD ND AD x ==°=,∴2111332224ADS S SD AN x x x ===g g g △ ∵三个等腰三角形RSF △,QET △,PDW △的面积和223333124RSF S a a ==´=△,∴3RPQ ADS CFT BEW ADSS S S S S =++=△△△△△,∴233334x =´,得249x =,解得23x =或23x =-(不合题意,舍去)舍去)∴23x =,即AD 的长为23.【考点】四边形综合题.【考点】四边形综合题.【提示】(1)四个等腰直角三角形的斜边长为a ,其拼成的正方形面积为2a ,边长为a ;(2)如题图2所示,正方形MNPQ 的面积等于四个虚线小等腰直角三角形的面积之和,据此求出正方形MNPQ 的面积;的面积;(3)参照小明的解题思路,对问题做同样的等积变换.)参照小明的解题思路,对问题做同样的等积变换.如答图1所示,三个等腰三角形RSF △,QET △,PDW △的面积和等于等边三角形ABC △的面积,的面积,故阴影三角形PQR △的面积等于三个虚线等腰三角形的面积之和.据此列方程求出AD 的长度.的长度. 五、解答题23.【答案】(1)(0,2)A -(1,0)B(2)22y x =-+; (3)2242y x x =--【解析】解:(1)当0x =时,2y =-,∴(0,2)A -,抛物线的对称轴为直线212m x m-=-=,∴(1,0)B ;(2)易得A 点关于对称轴直线1x =的对称点(2,2)A ¢-,则直线l 经过A ¢、B ,设直线l 的解析式为(0,)y kx b k =+¹,则220k b k b +=-ìí+=î,解得22k b =-ìí=î,所以,直线l 的解析式为22y x =-+; (3)∵抛物线的对称轴为直线1x =,∴抛物线在23x <<这一段与在10x -<<这一段关于对称轴对称,结合图像可以观察到抛物线在21x -<<-这一段位于直线l 的上方,在10x -<<这一段位于直线l 的下方,的下方, ∴抛物线与直线l 的交点的横坐标为1-,当1x =-时,2(1)24y =-´-+=,所以,抛物线过点(1,4)-,当1x =-时,224m m +-=,解得2m =,∴抛物线的解析式为2242y x x =--【提示】(1)令0x =求出y 的值,即可得到点A 的坐标,求出对称轴解析式,即可得到点B 的坐标;的坐标; (2)求出点A 关于对称轴的对称点(2,2)-,然后设直线l 的解析式为()0y kx b k =+¹,利用待定系数法求一次函数解析式解答即可;一次函数解析式解答即可;(3)根据二次函数的对称性判断在23x <<这一段与在10x -<<这一段关于对称轴对称,然后判断出抛物线与直线l 的交点的横坐标为1-,代入直线l 求出交点坐标,然后代入抛物线求出m 的值即可得到抛物线解析式.解析式.【考点】二次函数的性质,一次函数图像与几何变换,二次函数图像上点的坐标特征.24.【答案】(1)1302ABD a Ð=°-(2)见解析)见解析(3)30a =°【解析】(1)解:∵AB AC =,A a Ð=,∴ABC ACB Ð=Ð,180ABC ACB A Ð+Ð=°-Ð, ∴1118(92)002ABC ACB A a Ð=Ð=°-Ð=°-, ∵ABD ABC DBC Ð=Ð-Ð,60DBC Ð=°,即1302ABD a Ð=°-;(2)ABE △是等边三角形,证明:连接AD ,CD ,ED ,∵线段BC 绕B 逆时针旋转60°得到线段BD ,则BC BD =,60DBC Ð=°,∵60ABE Ð=°,∴160302ABD DBE EBC a Ð=°-Ð=Ð=°-, 且BCD △为等边三角形,在ABD △与ACD △中AB AC AD AD BD CD=ìï=íï=î∴()ABD ACD SSS △≌△,∴1122BAD CAD BAC a Ð=Ð=Ð=,∵150BCE Ð=°, ∴111803015022BEC BAD a a æöç÷èÐ=°-°--°==Ðø,在ABD △和EBC △中BEC BAD EBC ABD BC BDÐ=ÐìïÐ=Ðíï=î ∴()ABD EBC AAS △≌△,∴AB BE =,∴ABE △是等边三角形;是等边三角形;(3)解:∵60BCD Ð=°,150BCE Ð=°,∴1506090DCE Ð=°-°=°,∵45DEC Ð=°,∴DEC △为等腰直角三角形,∴DC CE BC ==,∵150BCE Ð=°,∴1(180150)152EBC Ð=°-°=°, ∵130152EBC a Ð=°-=°,∴30a =°.【提示】(1)求出ABC Ð的度数,即可求出答案;的度数,即可求出答案;(2)连接AD ,CD ,ED ,根据旋转性质得出BC BD =,60DBC Ð=°,求出1302ABD EBC a Ð=Ð=°-,且BCD △为等边三角形,证ABD ACD △≌△, 推出1122BAD CAD BAC a Ð=Ð=Ð=,求出12BEC BAD a Ð==Ð,证ABD EBC △≌△,推出AB BE =即可;可;(3)求出90DCE Ð=°,DEC △为等腰直角三角形,推出DC CE BC ==,求出15EBC Ð=°, 得出方程130152a °-=°,求出即可.,求出即可. 【考点】全等三角形的判定与性质,等边三角形的性质,等腰直角三角形,旋转的性质.25.【答案】(1)①,D E②03m ££(2)1r ³【解析】解:(1)①如图1所示,过点E 作O 的切线设切点为R ,∵O e 的半径为1,∴1RO =,∵2EO =,∴∠30OER =°,根据切线长定理得出O e 的左侧还有一个切点,使得组成的角等于30°,∴E 点是O e 的关联点,的关联点,∵11,22D æöç÷èø,(0,2)E -,()23,0F ,∴OF EO >,DO EO <,∴D 点一定是O e 的关联点,而在O e 上不可能找到两点与点F 的连线的夹角等于60°,故在点D .E 、F 中,O e 的关联点是,D E ;②如图2,由题意可知,若P 要刚好是C e 的关联点,需要点P 到C e 的两条切线P A 和PB 之间所夹的角为60°,由图2可知60APB Ð=°,则30CPB Ð=°,连接BC ,则22sin BC PC BC r CPB===Ð,∴若P 点为C e 的关联点,则需点P 到圆心的距离d 满足02d r ££;由上述证明可知,考虑临界点位置的P 点,如图3,点1P 到原点的距离1212OP =´=,过点O 作直线l 的垂线OH ,垂足为H ,23tan 32FO OGF OG Ð===,∴60OGF Ð=°,∴sin 603OH OG =°=; 13sin 2OH OPH OP Ð==,∴160OPH Ð=°,可得点1P 与点G 重合,过点2P 作2P M x ^轴于点M ,可得230P OM Ð=°,∴2cos303OM OP =°=,从而若点P 为O e 的关联点,则P 点必在线段12P P 上,∴03m ££;(2)若线段EF 上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF 的中点;的中点;考虑临界情况,如图4,即恰好E 、F 点为K e 的关联时,则1222KF KN EF ===,此时,1r =,故若线段EF 上的所有点都是某个圆的关联点,这个圆的半径r 的取值范围为1r ³.【提示】(1)①根据关联点的定义得出E 点是O e 的关联点,进而得出F 、D ,与O e 的关系;的关系;②若P 要刚好是⊙C 的关联点,需要点P 到C e 的两条切线P A 和PB 之间所夹的角为60°,进而得出PC 的长,进而得出点P 到圆心的距离d 满足02d r ££,再考虑临界点位置的P 点,进而得出m 的取值范围;的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF 的中点;再考虑临界情况,即恰好E 、F 点为K 的关联时,则1222KF KN EF ===,即可得出圆的半径r 的取值范围.的取值范围.【考点】圆的综合题.【考点】圆的综合题.。

2013年中考考试说明

2013年中考考试说明

2013年中考考试说明考试分值:110分考试时间:120分钟分值:一、基础知识与运用:10分二、古诗文默写:6分三、阅读(含古诗文):44分四、语言运用:10分五、写作:40分题型:选择题、填充题、文言断句题、文言文翻译题、问答题、写作图表题、题试题难度:较易题:50%;中难题:30%;较难题:20%一、基础知识与运用:10分1、字音2、字形3、成语或四字词语4、判断语病5、下列说法有误的一项是:()A、《中国人失掉自信力了吗》是一篇驳论文,用驳论证的方法直接批驳,又用正面立论的方法间接批驳,从而彻底驳倒对方的谬论。

B、《陈涉世家》节选自编年体史书《史记》,作者是西汉史学家、文学家司马迁,该书共130篇。

C、词又称长短句,句式长短不一,兴盛于宋代,苏轼和辛弃疾可以说是豪放派的代表,而李清照是婉约派的代表。

D《昆虫记》是优秀的科普著作,它行文生动活泼,语调轻松诙谐,被鲁迅先生奉为“讲昆虫生活”的楷模。

二、古诗文默写:(6分)(不考情境性默写,只是填上下句)三、诗词品读:(8分)(课外)四、文言文阅读(14分)1、词语解释:3分2、加点词的意义和用法相同的一项是:2分3、句子翻译:6分五、现代文阅读(22分)(一)说明文或议论文阅读(8分)(三道小题)(二)记叙文阅读(14分)(四道小题)六、语言运用(10分)(一)用一句话概括下列新闻的主要内容。

(不超过20字)(4分)(二)漫画或图表(两问,共6分)七、作文(40分)(命题、半命题、话题、材料(含漫画))武帝欲杀乳母,乳母告急于东方朔。

朔曰:“帝忍而愎,旁人言之,益死之速耳。

汝临去,但屡顾我,我当设奇以激之。

”乳母如言朔在帝侧曰汝宜速去帝今已长大岂念汝乳哺时恩邪帝怆然遂舍之。

2013年中考数学学科命题说明

2013年中考数学学科命题说明

2013年中考数学学科命题说明2013年初中学业数学学科考试,在考前复习时,以本说明所规定的考试内容及要求为依据.一、命题指导思想1.数学学业考试要体现《课程标准》的评价理念,有利于引导和促进数学教学全面落实《课程标准》所设立的课程目标,有利于改善学生的数学学习方式,有利于高中学段学校综合、有效的评价学生的数学学习状况.2.数学学业考试既要重视对学生学习数学知识与技能的结果和过程的评价,也要重视对学生在数学思考能力和解决问题能力特别是在具体情境中综合运用所学知识分析和解决问题的能力等方面发展状况的评价,还应重视对学生数学认识水平的评价.3.数学学业考试命题面向全体学生,使具有不同的数学认知特点、不同的数学发展程度的学生都能表现自己的数学学习状况,力求公正、客观、全面、准确地评价学生通过初中教育阶段的数学学习所获得的发展状况.二、命题原则1.考查内容依据《课程标准》,体现基础性.2.试题素材、求解方式等体现公平性.3.试题背景具有现实性.4.试卷应具备科学性、有效性.三、考试内容及范围(一)考试范围命题将依据现行《义务教育课程标准实验教科书·数学》七年级~九年级(共六册)教材中“数与代数”、“图形与几何”、“统计与概率”、“课题学习”四个领域的内容,体现《课程标准(2011版)》的理念与精神.数学学科中考注重考查初中数学的基础知识、基本技能和基本思想和基本活动经验;考查数感、符号感、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、发现问题和分析解决问题的能力,以及应用意识和创新意识等等.考试要求的知识技能目标分成四个不同的层次:了解;理解;掌握;灵活运用.具体涵义如下:了解:能从具体实例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象.理解:能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系.掌握:能在理解的基础上,把知识和技能运用到新的情境中,解决有关的数学问题和简单的实际问题。

北京市2013年中考数学卷

北京市2013年中考数学卷

2013年北京市高级中等学校招生考试数学试卷满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。

1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2013-2015)》中,北京市提出了总计约3 960亿元的投资计划。

将3 960用科学计数法表示应为 A. 39.6×102 B. 3.96×103 C. 3.96×104 D. 3.96×104 2. 43-的倒数是 A. 34 B. 43 C. 43- D. 34-3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 A.51 B. 52 C. 53 D. 54 4. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于A. 40°B. 50°C. 70°D. 80°5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A ,在近岸取点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,点E 在BC 上,并且点A ,E ,D 在同一条直线上。

若测得BE=20m ,EC=10m ,CD=20m ,则河的宽度AB 等于A. 60mB. 40mC. 30mD. 20m 6. 下列图形中,是中心对称图形但不是轴对称图形的是7. 某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5 6 7 8 人数1015205则这50名学生这一周在校的平均体育锻炼时间是A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时8. 如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是二、填空题(本题共16分,每小题4分)9. 分解因式:a ab ab 442+-=_________________10. 请写出一个开口向上,并且与y 轴交于点(0,1)的抛物线的解析式__________10 11. 如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,若AB=5,AD=12,则四边形ABOM 的周长为__________ 12. 如图,在平面直角坐标系x O y 中,已知直线l :1--=x t ,双曲线xy 1=。

2013年北京中考数学考试说明:25个变化

2013年北京中考数学考试说明:25个变化

2013年北京中考数学考试说明:25个变化6个删除:①删除了“有效数字”;②删除了“能对含有较大数值的信息做出合理的解释和推断”;③删除了“能根据光线的方向辨认物体的阴影;④删除了“了解视点、视角的涵义,并能在简单的平面图和立体图中表示”;⑤删除“能用正三角形、正方形、正六边形进行简单的镶嵌设计”;⑥删除了“了解物体的镜面对称”。

【对“考试要求”中的部分内容进行了修改】1.了解代数式,理解用字母表示数的意义;2.能分析简单问题的数量关系,并用代数式表示;3.能解释一些简单代数式的实际意义或几何意义;4.理解整式乘法的运算法则,会进行简单的整式乘法运算;5.了解二次根式的加、减、乘、除运算法则;6.能够根据具体问题中的数量关系,列出方程;掌握等式的基本性质;7.了解方程的解的概念;能根据具体问题的实际意义,检验方程的解是否合理;8.了解一元一次方程的有关概念,熟练掌握一元一次方程的解法;9.会解一元一次不等式和由两个一元一次不等式组成的不等式组;10.会用勾股定理及其逆定理解决简单问题;11.会用等腰梯形的性质和判断解决简单问题;12.会用比例的基本性质解决有关问题;13.会利用图形的相似解决一些简单的实际问题;14.能利用位似变换将一个图形放大或缩小;15.能比较有理数的大小;16.掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主);能运用有理数的运算解决简单的问题;17.整式的加法和减法:理解整式加法和减法运算的法则;会进行简单的整式加法和减法运算;能运用整式的加法和减法运算对多项式进行变形,进一步解决有关问题;18.能利用平方差公式、完全平方公式进行简单计算;19.会用提公因式、公式法(直接利用公式不超过两次)进行因式分解(指数是正整数);20.能根据具体问题中的数量关系,列出一元一次不等式解决简单问题;21.能用适当的函数表示法刻画简单问题中变量之间的关系;22.理解正比例函数;了解一次函数的意义,会画出一次函数的图像;理解一次函数的性质;23.能通过分析实际问题的情境确定二次函数的解析式;24.根据具体问题,能选择合适的统计量表示数据的集中程度和离散程度;25.数学科目:为减轻学生负担,今年删除或修改了“考试要求”中的部分内容。

2013年北京中考数学真题卷含答案解析

2013年北京中考数学真题卷含答案解析

2013年北京市高级中等学校招生考试数学试题(含答案全解全析)(满分120分,考试时间120分钟)第Ⅰ卷(选择题,共32分)一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.1.在《关于促进城市南部地区加快发展第二阶段行动计划(2013~2015)》中,北京市提出了总计约3960亿元的投资计划.将3960用科学记数法表示应为()A.39.6×102B.3.96×103C.3.96×104D.0.396×1042.-34的倒数是()A.43B.34C.-34D.-433.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为()A.15B.25C.35D.454.如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°5.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC, CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60mB.40mC.30mD.20m轴对称图形的是()6.下列图形中,是中心对称图形但不是..7.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:时间(小时)5678人数1015205则这50名学生这一周在校的平均体育锻炼时间是()A.6.2小时B.6.4小时C.6.5小时D.7小时8.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()第Ⅱ卷(非选择题,共88分)二、填空题(本题共16分,每小题4分)9.分解因式:ab2-4ab+4a=.10.请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式,y=.11.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.12.如图,在平面直角坐标系xOy中,已知直线l:y=-x-1,双曲线y=1x.在l上取一点A1,过A1作x 轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2.请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,….记点A n的横坐标为a n,若a1=2,则a2=,a2013=;若要将上述操作无限次地进行下去,则a1不能取...的值是.三、解答题(本题共30分,每小题5分)13.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.14.计算:(1-√3)0+|-√2|-2cos45°+(14)-1.15.解不等式组:{3x>x-2, x+13>2x.16.已知x2-4x-1=0,求代数式(2x-3)2-(x+y)(x-y)-y2的值.17.列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务.若每人每小时绿化面积相同,求每人每小时的绿化面积.18.已知关于x的一元二次方程x2+2x+2k-4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.四、解答题(本题共20分,每小题5分)19.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=1BC,连结DE,CF.2(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.20.如图,AB是☉O的直径,PA,PC与☉O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.(1)求证:∠EPD=∠EDO;,求OE的长.(2)若PC=6,tan∠PDA=3421.第九届中国国际园林博览会(园博会)已于2013年5月18日在北京开幕.以下是根据近几届园博会的相关数据绘制的统计图的一部分.第六届至第九届园博会园区陆地面积和水面面积统计图第九届园博会植物花园区各花园面积分布统计图(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,牡丹园面积为平方千米;(2)第九届园博会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八两届园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据;(3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日均接待游客量和单日最多接待游客量中的某个量近似成正比例关系.根据小娜的发现,请估计,将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).第七届至第十届园博会游客量与停车位数量统计表日均接待游客量(万人次) 单日最多接待游客量(万人次)停车位数量(个) 第七届 0.8 6 约3 000 第八届 2.3 8.2 约4 000 第九届 8(预计) 20(预计) 约10 500 第十届 1.9(预计)7.4(预计)约22.阅读下面材料:小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD 各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ 的面积.图1图2小明发现,分别延长QE,MF,NG,PH 交FA,GB,HC,ED 的延长线于点R,S,T,W,可得△RQF, △SMG,△TNH,△WPE 是四个全等的等腰直角三角形(如图2).请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为;(2)求正方形MNPQ的面积.参考小明思考问题的方法,解决问题:如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ,若S△RPQ=√3,则AD的长为.3图3五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.在平面直角坐标系xOy中,抛物线y=mx2-2mx-2(m≠0)与y轴交于点A,其对称轴与x轴交于点B.(1)求点A,B的坐标;(2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式;(3)若该抛物线在-2<x<-1这一段位于直线l的上方,并且在2<x<3这一段位于直线AB的下方,求该抛物线的解析式.24.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连结DE,若∠DEC=45°,求α的值.25.对于平面直角坐标系xOy中的点P和☉C,给出如下定义:若☉C上存在两个点A,B,使得∠APB=60°,则称P为☉C的关联点.已知点D(12,12),E(0,-2),F(2√3,0).(1)当☉O的半径为1时,①在点D,E,F中,☉O的关联点是;②过点F作直线l交y轴正半轴于点G,使∠GFO=30°,若直线l上的点P(m,n)是☉O的关联点,求m的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.答案全解全析:1.B 3 960=3.96×103.故选B.2.D ∵(-34)×(-43)=1,∴-34的倒数是-43.故选D.3.C 5个小球中标号大于2的有三个,故摸出标号大于2的小球的概率是35.故选C.4.C ∵∠1+∠2+∠3=180°,∠3=40°,∴∠1+∠2=140°.∵∠1=∠2,∴∠1=70°. ∵a∥b,∴∠4=∠1=70°.故选C.5.B ∵∠ABE=∠ECD=90°,∠AEB=∠DEC,∴△ABE∽△DCE,∴AB DC =BE EC,∴AB 20=2010,∴AB=40 m.故选B.6.A A 项是中心对称图形,但不是轴对称图形. B 项既是中心对称图形,又是轴对称图形. C 项不是中心对称图形,是轴对称图形.D 项既不是中心对称图形,又不是轴对称图形.故选A. 7.B x =5×10+6×15+7×20+8×550=6.4(小时).故选B.8.A 考虑三个特殊点,当AP 的长为0或2时,不构成△APO;当AP 的长为1时,△APO 为边长是1的等边三角形,其面积为√34,因为14<√34<12,所以只有选项A 符合.故选A.评析 本题考查的是函数图象的变化规律,不仅考查了定性分析,还考查了定量分析,通过构造函数处理较困难,而通过寻找特殊点较容易处理.属中档题. 9.答案 a(b-2)2解析 ab 2-4ab+4a=a(b 2-4b+4)=a(b-2)2. 10.答案 x 2+1解析 抛物线即二次函数,则函数表达式应为y=ax 2+bx+c(a≠0).∵开口向上,∴a>0.∵与y 轴交于点(0,1),∴c=1.所以满足题设条件的一个抛物线的解析式为y=x 2+1,答案不唯一.11.答案 20解析 ∵AB=5,AD=12,∴AC=13,∴BO=6.5. ∵M 、O 分别为AD 、AC 的中点, CD=5,∴MO=2.5,AM=6,∴C 四边形ABOM =AM+MO+BO+AB=6+2.5+6.5+5=20. 12.答案 -32;-13;0,-1解析 根据题意可以得到点A 1(2,-3),点B 1(2,0.5),点A 2(-1.5,0.5),点B 2(-1.5,-23),点A 3(-13,-23),点B 3(-13,-3),点A 4(2,-3),所以A 1,A 2,A 3,…,A n ,…中,三个坐标为一个循环,A 2 013是一个循环中的最后一个,故它的横坐标与A 3的横坐标相同,为-13.当A 1的横坐标为a 1时,可以分别表示出点A 1(a 1,-a 1-1),点B 1(a 1,1a 1),点A 2(-1-1a 1,1a1),点B 2(-1-1a 1,-a 1a 1+1),点A 3(-1a1+1,-a 1a 1+1),点B 3(-1a 1+1,-a 1-1).因为操作要无限次地进行下去,所以每一个点都要有意义,即分母不为0,故a 1不能取的值是-1,0.评析 读懂题目中的操作方法是解决本题的关键,属中档题. 13.证明 ∵DE ∥AB, ∴∠BAC=∠ADE.在△ABC 和△DAE 中,{∠BAC =∠ADE ,AB =DA ,∠B =∠DAE ,∴△ABC≌△DAE. ∴BC=AE.14.解析 (1-√3)0+|-√2|-2cos 45°+(14)-1=1+√2-2×√22+4 =5.15.解析 {3x >x -2, ①x+13>2x .② 解不等式①,得x>-1.解不等式②,得x<15.∴不等式组的解集为-1<x<15. 16.解析 (2x-3)2-(x+y)(x-y)-y 2=4x 2-12x+9-(x 2-y 2)-y 2=3x 2-12x+9.∵x 2-4x-1=0,∴x 2-4x=1.∴原式=3(x 2-4x)+9=12.17.解析 设每人每小时的绿化面积是x 平方米.由题意得1806x -180(6+2)x =3.解得x=2.5.经检验,x=2.5是原方程的解,且符合题意.答:每人每小时的绿化面积是2.5平方米.18.解析 (1)由题意,得Δ=4-4(2k-4)>0.∴k<52. (2)∵k 为正整数,∴k=1,2.当k=1时,方程x 2+2x-2=0的根x=-1±√3不是整数;当k=2时,方程x 2+2x=0的根x 1=-2,x 2=0都是整数.综上所述,k=2.19.解析 (1)证明:∵四边形ABCD 是平行四边形,∴AD∥BC,AD=BC.∵F是AD的中点,AD.∴FD=12BC,∴FD=CE.∵CE=12∵FD∥CE,∴四边形CEDF是平行四边形.(2)如图,过点D作DG⊥CE于点G.∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=4,BC=AD=6.∴∠1=∠B=60°.在Rt△DGC中,∠DGC=90°,∴CG=CD·cos∠1=2,DG=CD·sin∠1=2√3.BC=3,∴GE=1.∵CE=12在Rt△DGE中,∠DGE=90°,∴DE=√DG2+GE2=√13.20.解析(1)证明:∵PA、PC与☉O分别相切于点A、C, ∴PA=PC,∠APO=∠EPD.∵AB是☉O的直径,∴PA⊥AB.∵DE⊥PO,∴∠A=∠E=90°.∵∠POA=∠DOE,∴∠APO=∠EDO.∴∠EPD=∠EDO.(2)连结OC,则OC⊥PD.在Rt△PAD中,∠A=90°,PA=PC=6,tan∠PDA=34, 可得AD=8,PD=10.∴CD=4.在Rt△OCD中,∠OCD=90°,CD=4,tan∠ODC=34, 可得OC=3,OD=5.在Rt△PCO中,由勾股定理得,PO=3√5.可证得Rt△DEO∽Rt△PCO.∴OEOC =ODOP,即OE3=3√5.∴OE=√5.21.解析(1)0.03.(2)补全条形统计图如下图.第六届至第九届园博会园区陆地面积和水面面积统计图(3)3 600,3 700,3 800,3 900其中之一.评析 处理本题的关键是看清扇形图和条形图之间的关系,再按照题目要求逐一解决.属中档题.22.解析 (1)a.(2)由(1)可知,由△RQF,△SMG,△TNH,△WPE 拼成的新正方形的面积与正方形ABCD 的面积相等.∴△RAE,△SBF,△TCG,△WDH 这四个全等的等腰直角三角形的面积之和等于正方形MNPQ 的面积.∵AE=BF=CG=DH=1,∴正方形MNPQ 的面积S=4×12×1×1=2.AD 的长为23.23.解析 (1)当x=0时,y=-2.∴点A 的坐标为(0,-2).将y=mx 2-2mx-2配方,得y=m(x-1)2-m-2.∴抛物线的对称轴为直线x=1.∴点B 的坐标为(1,0).(2)由题意得点A 关于直线x=1的对称点的坐标为(2,-2).设直线l 的解析式为y=kx+b.∵点(1,0)和(2,-2)在直线l 上,∴{0=k +b ,-2=2k +b .解得{k =-2,b =2.∴直线l 的解析式为y=-2x+2.(3)由题意可知,抛物线关于直线x=1对称,直线AB 和直线l 也关于直线x=1对称. ∵抛物线在2<x<3这一段位于直线AB 的下方,∴抛物线在-1<x<0这一段位于直线l的下方.又∵抛物线在-2<x<-1这一段位于直线l的上方,∴抛物线与直线l的一个交点的横坐标为-1.∴由直线l的解析式y=-2x+2可得这个点的坐标为(-1,4).∵抛物线y=mx2-2mx-2经过点(-1,4),∴m=2.∴所求抛物线的解析式为y=2x2-4x-2.评析本题考查了一次函数、二次函数的综合运用,充分考查了二次函数图象的对称性,有一定难度.24.解析(1)∠ABD=30°-1α.2(2)△ABE为等边三角形.证明:连结AD,CD.∵∠DBC=60°,BD=BC,∴△BDC是等边三角形,∴∠BDC=60°,BD=DC.又∵AB=AC,AD=AD,∴△ABD≌△ACD,∴∠ADB=∠ADC.∴∠ADB=150°.∵∠ABE=∠DBC=60°,∴∠ABD=∠EBC.又∵BD=BC,∠ADB=∠ECB=150°,∴△ABD≌△EBC.∴AB=EB.∴△ABE是等边三角形.(3)∵△BDC是等边三角形,∴∠BCD=60°.∴∠DCE=∠BCE-∠BCD=90°.又∵∠DEC=45°,∴CE=CD=BC.∴∠EBC=15°.,∴α=30°.∵∠EBC=∠ABD=30°-α2评析本题考查了全等三角形、等边三角形、等腰三角形的相关知识,正确地构造全等三角形是解决本题的关键.属中等偏难题.25.解析(1)①D,E.②当OP=2时,过点P向☉O作两条切线PA,PB(A,B为切点),则∠APB=60°.∴点P为☉O的关联点.事实上,当0≤OP≤2时,点P是☉O的关联点;当OP>2时,点P不是☉O的关联点.∵F(2√3,0),且∠GFO=30°,∴∠OGF=60°,OF=2√3,OG=2.如图,以O为圆心,OG为半径作圆,设该圆与l的另一个交点为M.当点P在线段GM上时,OP≤2,点P是☉O的关联点;当点P在线段GM的延长线或反向延长线上时,OP>2,点P不是☉O的关联点.连结OM,可知△GOM为等边三角形.过点M作MN⊥x轴于点N,可得∠MON=30°,ON=√3.∴0≤m≤√3.(2)设该圆圆心为C.根据②可得,若点P是☉C的关联点,则0≤PC≤2r.由题意知,点E,F都是☉C的关联点,∴EC≤2r,FC≤2r.∴EC+FC≤4r.又∵EC+FC≥EF(当点C在线段EF上时,等号成立),∴4r≥EF.∵E(0,-2),F(2√3,0),∴EF=4.∴r≥1.事实上,当点C是EF的中点时,对所有r≥1的☉C,线段EF上的所有点都是☉C的关联点. 综上所述,r≥1.评析本题定义了坐标系中圆的关联点,需要对圆的相关知识熟练掌握,并通过画图观察,找到临界状态,再逐一进行验证.本题充分考查了学生的综合能力,难度较大.。

2013年北京市数学中考考试说明及其与往年变化附带提前签约细则

2013年北京市数学中考考试说明及其与往年变化附带提前签约细则

2013年中考数学考试说明——北京一、考试范围数学学科考试以教育部颁布的《全日制义务教育数学课程标准(实验稿)》的“课程目标”与“内容标准”的规定为考试范围,参考《义务教育数学课程标准(2011年版)》的理念和精神,适当兼顾北京市现行不同版本教材和教学实际情况。

二、考试内容和要求考试内容是指《全日制义务教育数学课程标准(实验稿)》中所规定的学习内容。

关于考试内容的要求划分为A、B、C三个层次。

A:能对所学知识有基本的认识,能举例说明对象的有关特征,并能在具体情境中进行辨认,或能描述对象的特征,并能指出此对象与有关对象的区别和联系。

B:能在理解的基础上,把知识和技能运用到新的情境中,解决有关的数学问题和简单的实际问题。

C:能通过观察、实验、推理和运算等思维活动,发现对象的某些特征及与其他对象的区别和联系;能综合运用知识,灵活、合理地选择与运用有关的方法,实现对特定的数学问题或实际问题的分析与解决。

数学学科中考注重考查初中数学的基础知识、基本技能和基本思想方法;考查数感、符号感、空间观念、统计观念、运算能力、推理能力、发现问题和分析解决问题的能力,以及应用意识等。

考试内容和考试要求细目表三、试卷结构(一)试卷分数、考试时间试卷满分为120分,考试时间为120分钟。

(二)试卷知识内容分布数与代数约60分空间与图形约46分统计与概率约14分(三)试卷试题难易程度分布较易试题约60分中等试题约36分较难试题约24分(四)试卷题型分布选择题约32分填空题约16分解答题约72分2013年中考数学考试说明:25个变化2013年北京中考数学考试说明共有25个变化,智康1对1老师现经过整理,将信息发布如下。

6个删除:①删除了“有效数字”;②删除了“能对含有较大数值的信息做出合理的解释和推断”;③删除了“能根据光线的方向辨认物体的阴影;④删除了“了解视点、视角的涵义,并能在简单的平面图和立体图中表示”;⑤删除“能用正三角形、正方形、正六边形进行简单的镶嵌设计”;⑥删除了“了解物体的镜面对称”。

2013年北京市中考真题 北京市数学真题解析版

2013年北京市中考真题 北京市数学真题解析版


已掌握
考察内容:
考点
函数综合题 2013年北京市中考真题 【难易度】4

已掌握
考察内容:
第 13 页 /共 19 页
2013年北京市中考真题《解析版》
考点
分式方程 2013年北京市中考真题 【难易度】3

已掌握
考察内容:
第 14 页 /共 19 页
2013年北京市中考真题《解析版》
考点
二次函数 2013年北京市中考真题 【难易度】2
2013年北京市中考真题《解析版》
第 17 页 /共 19 页
2013年北京市中考真题《解析版》
考点
相似三角形 2013年北京市中考真题 【难易度】3□来自已掌握考察内容:
考点
科学记数法 2013年北京市中考真题 【难易度】1

已掌握
考察内容:
考点
三角形中位线、中点四边形
第 18 页 /共 19 页
考点
相似三角形 2013年北京市中考真题 【难易度】2

已掌握
考察内容:
第 4 页 /共 19 页
2013年北京市中考真题《解析版》
考点
因式分解 2013年北京市中考真题 【难易度】1

已掌握
考察内容:
考点
一元二次方程 2013年北京市中考真题 【难易度】2

已掌握
考察内容:
考点
全等三角形
第 5 页 /共 19 页

已掌握
考察内容:
考点
平行四边形 2013年北京市中考真题 【难易度】3

已掌握
考察内容:
第 2 页 /共 19 页
2013年北京市中考真题《解析版》

2013年北京中考数学试题详细解析

2013年北京中考数学试题详细解析

2013年北京市中考数学试卷参考答案与试题解析一、选择题(本题共32分,每小题4分。

下列各题均有四个选项,其中只有一个是符合题意的。

1.(4分)(2013•北京)在《关于促进城市南部地区加快发展第二阶段行动计划(2013﹣2015)》中,北京市提出了2.(4分)(2013•北京)﹣的倒数是().B.C.﹣D.﹣根据倒数的定义得∵(﹣)×(﹣)=1,∴﹣的倒数是﹣.故选D.D.3.(4分)(2013•北京)在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从.B.C.D.根据题意可得:大于2的有3,4,5三个球,共5个球,任意摸出1个,摸到大于2的概率是.故选C.C.出现m种结果,那么事件A的概率P(A)=,难度适中.本题的关键是:找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.4.(4分)(2013•北京)如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()分析题意,根据平行线的性质得:∵∠1=∠2,∠3=40°,∴∠1=(180°﹣∠3)=(180°﹣40°)=70°,∵a∥b,∴∠4=∠1=70°.故选C.C.5.(4分)(2013•北京)如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()本题为实际应用题,分析题意得∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴∵BE=20m,CE=10m,CD=20m,∴解得:AB=40,故选B.B.根据△BAE∽△CDE,利用对应边成比例求得两岸间的大致距离AB为解题的关键..B.C.D.8.(4分)(2013•北京)如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP的长为x,△APO 的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是().B.C.D.中等题作OC⊥AP,根据垂径定理得AC=AP=x,再根据勾股定理可计算出OC=,然后根据三角形面积公式得到y=x•(0≤x≤2),再根据解析式对四个图形进行判断.作OC⊥AP,如图,则AC=AP=x,在Rt△AOC中,OA=1,OC===,所以y=OC•AP=x•(0≤x≤2),所以y与x的函数关系的图象为A.故选A.A.二、填空题(本题共16分,每小题4分)9.(4分)(2013•北京)分解因式:ab2﹣4ab+4a=.10.(4分)(2013•北京)请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式,y=.11.(4分)(2013•北京)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.容易题根据矩形的性质和分析题意得O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM=CD=AB=2.5,∵AB=5,AD=12,∴AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,20.12.(4分)(2013•北京)如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y=,在l上取一点A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,…记点A n 的横坐标为a n,若a1=2,则a2=,a2013=;若要将上述操作无限次地进行下去,则a1不可能取的值是.较难题根据题意可知,当a1=2时,B1的纵坐标为,B1的纵坐标和A2的纵坐标相同,则A2的横坐标为a2=﹣,A2的横坐标和B2的横坐标相同,则B2的纵坐标为b2=﹣,B2的纵坐标和A3的纵坐标相同,则A3的横坐标为a3=﹣,A3的横坐标和B3的横坐标相同,则B3的纵坐标为b3=﹣3,B3的纵坐标和A4的纵坐标相同,则A4的横坐标为a4=2,A4的横坐标和B4的横坐标相同,则B4的纵坐标为b4=,即当a1=2时,a2=﹣,a3=﹣,a4=2,a5=﹣,b1=,b2=﹣,b3=﹣3,b4=,b5=﹣,∵=671,∴a2013=a3=﹣;点A1不能在y轴上(此时找不到B1),即x≠0,点A1不能在x轴上(此时A2,在y轴上,找不到B2),即y=﹣x﹣1≠0,解得:x≠﹣1;综上可得a1不可取0、﹣1.﹣;﹣;0、﹣1.本题考查了结合图像对函数关系进行分析,一次函数的图象、性质,反比例函数的图象、性质,坐标与三、解答题(本题共30分,每小题5分)13.(5分)(2013•北京)已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.据全等三角形对应边相等证明即可.证明:∵DE∥AB,∴∠CAB=∠ADE, (1)∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA), (4)∴BC=AE. (5)本题考查了全等三角形的判定与性质,平行线的性质,利用三角形全等证明边相等是常用的方法之一,14.(5分)(2013•北京)计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.算即可.解:原式=1+﹣2×+4 (2)=5. (5)本题考查了绝对值、整数指数幂、特殊角三角函数的值、算术平方根及实数的运算等知识,属于基础题,15.(5分)(2013•北京)解不等式组:.解:,解不等式①得,x>﹣1, (1)解不等式②得,x<, (3)所以,不等式组的解集是﹣1<x<. (5)本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:16.(5分)(2013•北京)已知x2﹣4x﹣1=0,求代数式(2x﹣3)2﹣(x+y)(x﹣y)﹣y2的值.17.(5分)(2013•北京)列方程或方程组解应用题:某园林队计划由6名工人对180平方米的区域进行绿化,由于施工时增加了2名工人,结果比计划提前3小时完成任务,若每人每小时绿化面积相同,求每人每小时的绿化面积.方程求出其解即可.解:设每人每小时的绿化面积x平方米,由题意,得, (2)解得:x=2.5. (3)经检验,x=2.5是原方程的解,且符合题意. (4)答:每人每小时的绿化面积2.5平方米. (5)此题主要考查了分式方程的应用,关键是弄清题意,找到题目中的关键语句,列出方程.列分式方程解18.(5分)(2013•北京)已知关于x的一元二次方程x2+2x+2k﹣4=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为正整数,且该方程的根都是整数,求k的值.(2)找出k范围中的整数解确定出k的值,经检验即可得到满足题意k的值.解:(1)根据题意得:△=4﹣4(2k﹣4)=20﹣8k>0,解得:k<; (2)(2)由k为正整数,得到k=1或2,利用求根公式表示出方程的解为x=﹣1±, (3)∵方程的解为整数,∴5﹣2k为完全平方数,则k的值为2. (5)此题考查了一元二次方程根的判别式,一元二次方程的解,以及公式法解一元二次方程,弄清题意是解四、解答题(本题共20分,每小题5分)19.(5分)(2013•北京)如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.和在直角△DHE中运用勾股定理来求线段ED的长度.此小问简单.证明:(1)在▱ABCD中,AD∥BC,且AD=BC.∵F是AD的中点,∴DF=. (1)又∵CE=BC,∴DF=CE,且DF∥CE,∴四边形CEDF是平行四边形; (2)(2)解:如图,过点D作DH⊥BE于点H. (3)在▱ABCD中,∵∠B=60°,∴∠DCE=60°. (4)∵AB=4,∴CD=AB=4,∴CH=2,DH=2.在▱CEDF中,CE=DF=AD=3,则EH=1.∴在Rt△DHE中,根据勾股定理知DE==. (5)本题考查了平行四边形的判定与性质、特殊角三角函数的值、平行线的性质、直角三角形性和勾股定理.平20.(5分)(2013•北京)如图AB是⊙O的直径,PA,PC与⊙O分别相切于点A,C,PC交AB的延长线于点D,DE⊥PO交PO的延长线于点E.(1)求证:∠EPD=∠EDO;(2)若PC=6,tan∠PDA=,求OE的长.中等题(1)根据切线长定理和切线的性质即可证明:∠EPD=∠EDO;此小问简单.(2)连接OC,利用tan∠PDA=,可求出CD=4,再证明△OED∽△DEP,根据相似三角形的性质和勾股定理即可求出OE的长.此小问简单.(1)证明:PA,PC与⊙O分别相切于点A,C,(2)解:连接OC,∴PA=PC=6,∵tan∠PDA=,∴在Rt△PAD中,AD=8,PD=10,∴CD=4, (3)∵tan∠PDA=,∴在Rt△OCD中,OC=OA=3,OD=5,∵∠EPD=∠ODE,∴△OED∽△DEP, (4)∴===2,.在Rt△OED中,OE2+DE2=52,∴OE=. (5)本题综合考查了切线长定理,相似三角形的性质和判定,勾股定理的应用和解直角三角形的知识;能综21.(5分)(2013•北京)第九届中国国际园林博览会(园博会)已于2013年5月18日在北京开幕,以下是根据近几届园博会的相关数据绘制的统计图的一部分.(1)第九届园博会的植物花园区由五个花园组成,其中月季园面积为0.04平方千米,牡丹园面积为0.03平方千米;(2)第九届园博会会园区陆地面积是植物花园区总面积的18倍,水面面积是第七、八界园博会的水面面积之和,请根据上述信息补全条形统计图,并标明相应数据;(3)小娜收集了几届园博会的相关信息(如下表),发现园博会园区周边设置的停车位数量与日均接待游客量和单日最多接待游客量中的某个量近似成正比例关系.根据小娜的发现,请估计,将于2015年举办的第十届园博会大约需要设置的停车位数量(直接写出结果,精确到百位).约需要设置的停车位数量.此小问简单.解:(1)∵月季园面积为0.04平方千米,月季园所占比例为20%,则牡丹园的面积为:15%×=0.03(平方千米); (1)(2)植物花园的总面积为:0.04÷20%=0.2(平方千米),则第九届园博会会园区陆地面积为:0.2×18=3.6(平方千米),第七、八界园博会的水面面积之和=1+0.5=1.5(平方千米),则水面面积为1.5平方千米,如图:; (3)(3)由图标可得,停车位数量与单日最多接待游客量成正比例关系,比值约为500,则第十届园博会大约需要设置的停车位数量约为:500×7.4≈3.7×103..故答案为:0.03;3.7×103. (5)本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是22.(5分)(2013•北京)阅读下面材料:小明遇到这样一个问题:如图1,在边长为a(a>2)的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.小明发现,分别延长QE,MF,NG,PH交FA,GB,HC,ED的延长线于点R,S,T,W,可得△RQF,△SMG,△TNH,△WPE是四个全等的等腰直角三角形(如图2)请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙不重叠),则这个新正方形的边长为;(2)求正方形MNPQ的面积.(3)参考小明思考问题的方法,解决问题:如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D,E,F作BC,AC,AB的垂线,得到等边△RPQ.若S△RPQ=,则AD的长为.面积之和.据此列方程求出AD的长度.此小问中等.解:(1)四个等腰直角三角形的斜边长为a,则斜边上的高为a,每个等腰直角三角形的面积为:a•a=a2,则拼成的新正方形面积为:4×a2=a2,即与原正方形ABCD面积相等,∴这个新正方形的边长为a; (1)(2)∵四个等腰直角三角形的面积和为a2,正方形ABCD的面积为a2,∴S正方形MNPQ=S△ARE+S△DWH+S△GCT+S△SBF=4S△ARE=4××12=2; (3)(3)如答图1所示,分别延长RD,QF,PE,交FA,EC,DB的延长线于点S,T,W.由题意易得:△RSF,△QET,△PDW均为底角是30°的等腰三角形,其底边长均等于△ABC的边长.不妨设等边三角形边长为a,则SF=AC=a.如答图2所示,过点R作RM⊥SF于点M,则MF=SF=a,在Rt△RMF中,RM=MF•tan30°=a×=a,∴S△RSF=a•a=a2. (4)过点A作AN⊥SD于点N,设AD=AS=x,则AN=AD•sin30°=x,SD=2ND=2ADcos30°=x,∴S△ADS=SD•AN=•x•x=x2.∵三个等腰三角形△RSF,△QET,△PDW的面积和=3S△RSF=3×a2=a2,∴S△RPQ=S△ADS+S△CFT+S△BEW=3S△ADS,∴=3×x2,得x2=,解得x=或x=(不合题意,舍去)∴x=,即AD的长为.故答案为:a;. (5)本题考查了几何图形的等积变换,涉及正方形、等腰直角三角形、等腰三角形、正三角形、解直角三角五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(7分)(2013•北京)在平面直角坐标系xOy中,抛物线y=mx2﹣2mx﹣2(m≠0)与y轴交于点A,其对称轴与x轴交于点B.(1)求点A,B的坐标;(2)设直线l与直线AB关于该抛物线的对称轴对称,求直线l的解析式;(3)若该抛物线在﹣2<x<﹣1这一段位于直线l的上方,并且在2<x<3这一段位于直线AB的下方,求该抛物线的解析式.得到抛物线解析式.此小问中等.解:(1)当x=0时,y=﹣2,∴A(0,﹣2),抛物线的对称轴为直线x=﹣=1,∴B(1,0); (2)(2)易得A点关于对称轴直线x=1的对称点A′(2,﹣2),则直线l经过A′、B,设直线l的解析式为y=kx+b(k≠0),则,解得, (3)所以,直线l的解析式为y=﹣2x+2; (4)(3)∵抛物线的对称轴为直线x=1,∴抛物线在2<x<3这一段与在﹣1<x<0这一段关于对称轴对称,结合图象可以观察到抛物线在﹣2<x<﹣1这一段位于直线l的上方,在﹣1<x<0这一段位于直线l的下方,∴抛物线与直线l的交点的横坐标为﹣1, (5)当x=﹣1时,y=﹣2×(﹣1)+2=4,所以,抛物线过点(﹣1,4),当x=﹣1时,m+2m﹣2=4,解得m=2,∴抛物线的解析式为y=2x2﹣4x﹣2. (7)本题考查了平面直角坐标系、不同位置的点的坐标的特征、用待定系数法求函数关系式、一次函数的24.(7分)(2013•北京)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.较难题(1)求出∠ABC的度数,即可求出答案;此小问简单.(2)连接AD,CD,ED,根据旋转性质得出BC=BD,∠DBC=60°,求出∠ABD=∠EBC=30°﹣α,且△BCD为等边三角形,证△ABD≌△ACD,推出∠BAD=∠CAD=∠BAC=α,求出∠BEC=α=∠BAD,证△ABD≌△EBC,推出AB=BE即可;此小问中等.(3)求出∠DCE=90°,△DEC为等腰直角三角形,推出DC=CE=BC,求出∠EBC=15°,得出方程30°﹣α=15°,求出即可.此小问较难.解:(1)∵AB=AC,∠A=α,∴∠ABC=∠ACB=(180°﹣∠A)=90°﹣α,∵∠ABD=∠ABC﹣∠DBC,∠DBC=60°,即∠ABD=30°﹣α; (2)(2)△ABE是等边三角形,证明:连接AD,CD,ED,∵线段BC绕B逆时针旋转60°得到线段BD,则BC=BD,∠DBC=60°,∵∠ABE=60°,∴∠ABD=60°﹣∠DBE=∠EBC=30°﹣α,且△BCD为等边三角形,在△ABD与△ACD中∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD=∠BAC=α,∵∠BCE=150°,∴∠BEC=180°﹣(30°﹣α)﹣150°=α=∠BAD, (3)在△ABD和△EBC中∴△ABD≌△EBC(AAS),∴AB=BE,∴△ABE是等边三角形; (4)(3)∵∠BCD=60°,∠BCE=150°,∴∠DCE=150°﹣60°=90°,∵∠DEC=45°,∴△DEC为等腰直角三角形, (5)∴DC=CE=BC,∵∠BCE=150°,∴∠EBC=(180°﹣150°)=15°,∵∠EBC=30°﹣α=15°,∴α=30°. (7)本题考查了图形的对称、平移、旋转,全等三角形的性质和判定,等边三角形的性质和判定,等腰直25.(8分)(2013•北京)对于平面直角坐标系xOy中的点P和⊙C,给出如下的定义:若⊙C上存在两个点A、B,使得∠APB=60°,则称P为⊙C的关联点.已知点D(,),E(0,﹣2),F(2,0).(1)当⊙O的半径为1时,①在点D、E、F中,⊙O的关联点是.②过点F作直线l交y轴正半轴于点G,使∠GFO=30°,若直线l上的点P(m,n)是⊙O的关联点,求m的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.较难题(1)①根据关联点的定义得出E点是⊙O的关联点,进而得出F、D,与⊙O的关系;此小问中等.②若P要刚好是⊙C的关联点,需要点P到⊙C的两条切线PA和PB之间所夹的角为60°,进而得出PC的长,进而得出点P到圆心的距离d满足0≤d≤2r,再考虑临界点位置的P点,进而得出m的取值范围;此小问较难.(2)若线段EF上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF的中点;再考虑临界情况,即恰好E、F点为⊙K的关联时,则KF=2KN=EF=2,即可得出圆的半径r的取值范围.此小问较难.解:(1)①如图1所示,过点E作⊙O的切线设切点为R,∵⊙O的半径为1,∴RO=1,∵EO=2,∴∠OER=30°,根据切线长定理得出⊙O的左侧还有一个切点,使得组成的角等于30°, (1)∴E点是⊙O的关联点,∵D(,),E(0,﹣2),F(2,0),∴OF>EO,DO<EO,∴D点一定是⊙O的关联点,而在⊙O上不可能找到两点与点F的连线的夹角等于60°,故在点D、E、F中,⊙O的关联点是D,E;故答案为:D,E; (2)②如图2,由题意可知,若P要刚好是⊙C的关联点,需要点P到⊙C的两条切线PA和PB之间所夹的角为60°,由图2可知∠APB=60°,则∠CPB=30°,连接BC,则PC==2BC=2r,∴若P点为⊙C的关联点,则需点P到圆心的距离d满足0≤d≤2r;由上述证明可知,考虑临界点位置的P点,如图3,点P1到原点的距离OP1=2×1=2,过点O作直线l的垂线OH,垂足为H,tan∠OGF===, (4)∴∠OGF=60°,∴OH=OGsin60°=;sin∠OP1H==,∴∠OP1H=60°,可得点P1与点G重合,过点P2作P2M⊥x轴于点M,可得∠P2OM=30°,∴OM=OP2cos30°=,从而若点P为⊙O的关联点,则P点必在线段P1P2上,∴0≤m≤; (5)(2)若线段EF上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF的中点; (6)考虑临界情况,如图4,即恰好E、F点为⊙K的关联时,则KF=2KN=EF=2, (7)此时,r=1,故若线段EF上的所有点都是某个圆的关联点,这个圆的半径r的取值范围为r≥1. (8)此题较难,综合性较强,对于基础不好的学生,不建议在此题浪费时间,将能做的部分做完即可,此。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年中考数学考试说明——北京
一、考试范围
数学学科考试以教育部制订的《全日制义务教育数学课程标准(实验稿)》的“课程目标”与“内容标准”的规定为考试范围,适当兼顾北京市现行不同版本教材和教学实际情况。

二、考试内容和要求
考试内容是指《全日制义务教育数学课程标准(实验稿)》中所规定的学习内容。

关于考试内容的要求划分为A、B、C三个层次。

A:能对所学知识有基本的认识,能举例说明对象的有关特征,并能在具体情境中进行辨认,或能描述对象的特征,并能指出此对象与有关对象的区别和联系。

B:能在理解的基础上,把知识和技能运用到新的情境中,解决有关的数学问题和简单的实际问题。

C:能通过观察、实验、推理和运算等思维活动,发现对象的某些特征及与其他对象的区别和联系;能综合运用知识,灵活、合理地选择与运用有关的方法,实现对特定的数学问题或实际问题的分析与解决。

数学学科中考注重考查初中数学的基础知识、基本技能和基本思想方法;考查数感、符号感、空间观念、统计观念、运算能力、推理能力、发现问题和分析解决问题的能力,以及应用意识等。

考试内容和考试要求细目表
注:对于尺规作图题,要求会写已知、求作和作法。

三、试卷结构
(一)试卷分数、考试时间
试卷满分为120分,考试时间为120分钟。

(二)试卷知识内容分布
数与代数约60分
空间与图形约46分
统计与概率约14分
(三)试卷试题难易程度分布
较易试题约60分
中等试题约36分
较难试题约24分
(四)试卷题型分布
选择题约32分
填空题约16分
解答题约72分。

相关文档
最新文档