6空间解析几何及向量代数

合集下载

向量代数与空间解析几何

向量代数与空间解析几何

第六章.向量代数与空间解析几何本章内容在本课程当中是单独的一个部分,应该说是属于几何的内容,之所以需要在微积分的课程里进行单独的讨论,是因为我们在后面学习多元函数的微积分时,必须和这些几何知识发生关系,所谓多元的函数,从几何意义方面来理解,就是定义域在平面乃至更高维度的空间区域上,这样如果要想得到对于多元函数的直观几何理解,就必须对于平面乃至更高维度的空间中的几何现象具有一定的知识。

向量。

向量可以说是几何的最为基本的概念。

因为几何对象的两个基本要素:方向和长度,用一个向量就可以完全表达,从向量的概念出发,可以构造出整个的几何世界。

由于本课程的限制,我们不从一般的观念出发来展开向量的理论,而是基于直观的,运用向量来表示的几何当中的有向直线段,来说明我们需要涉及的有限的向量知识。

我们完全可以把一个向量理解为一根有向直线段,而不会出现任何理论上的错误。

基于向量的这种直观图象,可以定义向量的基本属性。

首先,我们定义两个向量相等的意思,就是两个向量的大小与方向都相同,对于这里的具体的一种向量—有向直线段,就是必须长度相等,而方向相同,所谓方向相同,按照几何的意义,就是两根直线段相互平行,而且指向相同。

注意,这里初学者常常产生误解的地方,就是认为要求两个有向直线段方向一样,就一定是要求它们在同一个直线上,或者是相互重合,这是因为还不习惯在一般的空间当中考虑问题,特别是要养成在三维空间当中考虑几何对象的习惯,记住方向相同,是与这两个向量的空间位置无关的,只要它们所在的直线相互平行,而指向一致即可。

在两个向量之间定义加法与减法,就是我们在力学当中以及很熟悉的力的合成的平行四边形法则,当然这是一种直接的基于几何图象的定义方式,下面我们通过在空间引入坐标,来得到更一般的定义。

空间直角坐标系以及向量代数。

在空间当中引入坐标的目的,和物理学当中引入单位制一样,是提供一个度量几何对象的方法,首先一个坐标系必须能够提供方向的定义,使得任意的方向都能够由于坐标系而得到确定与唯一的描述;然后必须能够提供长度的单位,基于这个单位能够度量空间长度。

第06章 向量代数与空间解析几何习题详解

第06章 向量代数与空间解析几何习题详解

第六章 向量代数与空间解析几何习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程.解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA = ()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z ∈⇔= 亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-;(3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x(2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x 因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l ∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-cz a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x . 6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=; (8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+. 解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形?(1)1+=x y ;(2)422=+y x ;(3)122=-y x ;(4)22x y =. 解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面;(2)422=+yx 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面; (3)122=-yx 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面; (4)y x 22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成(2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成 (3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成(4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成;(3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围. 解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体;(2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成;(4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222a z x a y x 解:(1)是平面1x =与2y =相交所得的一条直线;(2)上半球面z =与平面0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程. 解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x . 4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点.解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程(1)2229x y z y x ⎧++=⎨=⎩; (2)⎩⎨⎧==+++-04)1()1(22z z y x 解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x x y ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==t z t t y t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cos y b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ; (3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+30222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线. 解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周. (2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,004522⎩⎨⎧==-++z x xy y x (2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影22200y z y z x ⎧++-=⎨=⎩. 习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程.解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程.解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程.解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以 B (B ≠0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程. 解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n 所求平面方程为化简得: .0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥- 0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数),、(3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线;(2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线;(4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程.(5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线.解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x . (2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程 .440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为:235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程. 解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kj i 34312111--=-=,所以直线的点向式方程为: ,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=t z t y t x3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y t x 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=-- 43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即 0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ== 4、判别下列直线与平面的相关位置:(1)37423z y x =-+=--与3224=--z y x ;(2)723z y x =-=与8723=+-z y x ; (3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ; (4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直.(3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直. 复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ ) 解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ ) 解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b . 解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面. 解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C) ⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-. 解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a 0 ; 解 =⨯b a b a sin()a,b π22=2,=⋅b a b a cos()a,b π22=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±. 3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ⎩⎨⎧==+.0,1222z y x解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c)2b a -;解: (a) b a ⨯=211121-kj i 1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解: (1)}2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3)21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P P P. 3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-ij kc a b,01⎧==⎨⎩c cc ,故与a、b 都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d 垂直于向量]1,3,2[-=a 和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,求向量d解: d 垂直于a 与b,故d 平行于b a ⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d .5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P ;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x .解2:}1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可.因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C'=,则有0='+z C y ,由题设得22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kj i ={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0,因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 用平面束(略)7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为pz n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面.(d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形. 解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).。

空间解析几何与向量代数

空间解析几何与向量代数

空间解析几何与向量代数空间解析几何与向量代数是数学中的两个重要分支,它们分别从几何和代数的角度,研究了空间中点、线、面的性质,以及向量的运算与性质。

本文将介绍空间解析几何与向量代数的基本概念、性质以及它们在数学和物理中的应用。

一、空间解析几何空间解析几何是以坐标系为基础,利用代数方法研究空间中点、线、面的性质与相互关系的数学学科。

它的基本概念包括平面直角坐标系、空间直角坐标系,以及点、直线、平面的方程等。

1. 点的坐标在平面直角坐标系中,点的坐标用有序实数对(x, y)表示;在空间直角坐标系中,点的坐标用有序实数三元组(x, y, z)表示。

通过坐标,可以确定点在坐标系中的位置。

2. 直线的方程空间解析几何中,直线的方程有多种表示形式,常见的有点向式、对称式和一般式。

在点向式中,直线上的任意一点可以用一个固定点和一个方向向量表示;在对称式中,直线上的任意一点满足一个关系式;一般式则是通过线的法向量与截距来表示。

这些方程形式各有特点,在不同的问题中有不同的用途。

3. 平面的方程平面的方程也有多种表示形式,常见的有点法式和一般式。

在点法式中,平面上的任意一点满足一个关系式,并且平面的法向量可以通过法线上的两个点相减并取正交向量得到;一般式则是通过平面的法向量与截距来表示。

同样,不同的方程形式适用于不同类型的问题。

二、向量代数向量代数是关于向量的计算与运算的数学学科,它以向量作为基本研究对象,研究向量的性质、向量之间的关系以及向量的运算规则等。

1. 向量的表示向量可以用有向线段表示,也可以用坐标表示。

在空间中,一个向量可以写成一个实数三元组,例如向量v(x, y, z)表示从原点指向点(x, y, z)的有向线段。

向量的长度用模表示,记作|v|。

2. 向量的运算向量的运算包括向量的加法、减法、数量乘法和内积运算。

向量的加法和减法遵循平行四边形法则和三角形法则;数量乘法将向量的模与一个实数相乘,改变了向量的长度和方向;内积运算结果是一个实数,满足交换律和分配律。

空间解析几何和线性代数资料

空间解析几何和线性代数资料

(4)单叶双曲面 (5)圆锥面
x2 y2 z2 a2 b2 c2 1
x2 y2 z2
3、空间曲线
[1] 空间曲线的一般方程
F(x, y,z) 0 G( x, y, z) 0
与b
的夹角
c 的方向既垂直于a
,又垂直于b
,指向符合
右手系.
向量积的坐标表达式
a

b



(a ybz
azby )i

(a
z
bx
axbz ) j
(axby aybx )k

a

b

i ax
j ay
k az
bx by bz
a//
b
6、混合积
ax ay az bx by bz
ax
ax2 ay2 az2
ay
ax2

a
2 y

az2
cos
az
ax2 ay2 az2
( cos2 cos2 cos2 1 )
4、数量积 (点积、内积)
a

b
|
a
||
b
|
cos
其中
为a
与b
的夹角
数量积的坐标表达式
a
b

有序数组
z




o

y

x

共有一个原点,三个坐标轴,三个坐标面,八个卦限.
两点间距离公式: 设M1 ( x1 , y1 , z1 )、M 2 ( x2 , y2 , z2 )为空间两点

向量代数与空间解析几何

向量代数与空间解析几何

向量代数与空间解析几何向量代数是几何学的一个分支,它学习的是由点和向量组成的空间结构,以及它们之间的关系。

若要解释几何学的基本概念,就必须要用到向量代数的技术和工具。

量代数与空间解析几何之间的关系非常密切。

空间解析几何是一种特殊的平面几何,它将空间中的点看作是实数组成的,并且结构由一个数学方程来表示。

这是向量代数在几何学中最重要的用途。

研究空间解析几何时,我们必须掌握向量代数的所有技巧,以表达空间模型的结构及其向量元素之间的关系。

向量代数在空间解析几何中的最基本的概念是向量。

向量是一种特殊的数字,它由一组实数组成,可以表示一条直线的方向和大小。

空间解析几何中的所有结构都可以用向量表示。

我们可以将向量加起来,用它们表示方向和大小的变化,从而求得更复杂的结构,比如多边形。

此外,向量代数也可以用于表示空间解析几何中的相关概念,比如平行和垂直。

如果两个向量平行,则它们会构成一个特殊的结构,而垂直的向量则会构成一个特殊的空间结构。

向量代数可以用来表示这些概念,也可以用于解决空间解析几何中的问题。

向量代数还可以用于表达空间解析几何中的变换,这可以通过矩阵来实现。

比如,如果希望移动一个空间结构中的某些向量,那么可以使用一个称为移动矩阵的向量代数工具,它可以把这些向量移动到新的位置。

同样,也可以使用变换矩阵来旋转这些向量,它可以把空间中的向量旋转到不同的方向。

这些都是依赖于向量代数的空间解析几何中的重要概念。

总而言之,向量代数与空间解析几何的关系是非常密切的。

空间解析几何学习的是空间中的点和向量,以及它们之间的关系,而这些关系是依赖于向量代数的技术和工具来表示的。

正是由于向量代数可以表达空间解析几何中的概念和关系,我们才能够更好地理解几何学的基本概念,并有效地解决空间解析几何中的问题。

空间解析几何与向量代数教案

空间解析几何与向量代数教案

空间解析几何与向量代数教案第一章:空间直角坐标系1.1 空间直角坐标系的定义与性质学习空间直角坐标系的定义与性质,理解坐标轴的相互关系。

通过实例演示空间直角坐标系的建立与表示方法。

1.2 点、向量与坐标学习点在空间直角坐标系中的表示方法,理解坐标与点的关系。

学习向量的定义与表示方法,掌握向量的坐标表示。

第二章:向量代数2.1 向量的基本运算学习向量的加法、减法、数乘运算,掌握运算规则与性质。

学习向量的点积与叉积运算,理解其几何意义与计算方法。

2.2 向量的数量积与角度学习向量的数量积(点积)的定义与性质,掌握计算方法。

学习向量的夹角(角度)的定义与计算方法,理解其几何意义。

第三章:空间解析几何3.1 直线与方程学习直线的解析几何表示方法,理解直线方程的定义与形式。

学习直线的点斜式、截距式、一般式方程,掌握方程的转换方法。

3.2 平面与方程学习平面的解析几何表示方法,理解平面方程的定义与形式。

学习平面的点法式、截距式、一般式方程,掌握方程的转换方法。

第四章:空间几何图形4.1 直线与平面的位置关系学习直线与平面的平行、相交、垂直位置关系的定义与判定方法。

学习直线与平面交线的求法,理解交线的几何性质。

4.2 平面与平面的位置关系学习平面与平面的平行、相交、垂直位置关系的定义与判定方法。

学习平面与平面交线的求法,理解交线的几何性质。

第五章:空间解析几何的应用5.1 空间距离与角度学习空间两点间的距离公式,掌握距离的计算方法。

学习空间两点间的夹角公式,理解夹角的计算方法。

5.2 空间解析几何在几何中的应用学习空间几何问题的解析几何方法,解决线与线、线与面、面与面的交点问题。

学习空间几何图形的面积、体积的计算方法,应用解析几何知识解决实际问题。

第六章:空间向量与线性方程组6.1 向量组的线性组合学习向量组的线性组合的定义与性质,理解线性组合与向量加法的关系。

学习向量组的线性相关的概念,掌握线性相关的判定方法。

向量代数与空间解析几何

向量代数与空间解析几何
垂直:两直线在同一平面内且夹角为90度
空间解析几何的应用
空间解析几何在物理学中的应用
描述物体运动轨迹和方向
解释重力、电磁场等现象
用于研究光速、波的传播等
描述量子力学中的波函数
空间解析几何在计算机图形学中的应用
建模:利用空间解析几何构建三维模型实现复杂形状的描述和设计。
渲染:通过空间解析几何的方法实现光照、阴影、纹理等效果的渲染提高图像的真实感和质感。
动画:利用空间解析几何描述物体的运动轨迹和形态变化实现逼真的动画效果。
交互:利用空间解析几何的方法实现用户与三维场景的交互例如旋转、缩放、移动等操作。
空间解析几何在机器人学中的应用
添加标题
添加标题
添加标题
添加标题
路径规划:基于空间解析几何的方法规划机器人的移动路径
机器人姿态描述:利用空间向量和矩阵表示机器人的姿态和位置
向量的向量积的坐标表示:向量=(1,2,3)向量b=(b1,b2,b3)则向量和向量b的向量积的坐标表示为×b=(2b3-3b2,3b1-1b3,1b2-2b1)。
向量的混合积的坐标表示:对于三个三维向量、b和c向量和向量b的混合积的坐标表示为(×b)·c其中"·"表示点乘。混合积的结果是一个标量其值等于三个向量的行列式值乘以三个向量的模长。
向量的模和向量的数量积的坐标表示
添加标题
向量的模坐标表示:向量=(x1,y1,z1)则向量的模为||=sqrt(x1^2+y1^2+z1^2)
向量的数量积坐标表示:向量=(x1,y1,z1)向量b=(x2,y2,z2)则向量和向量b的数量积为·b=x1*x2+y1*y2+z1*z2
添加标题
向量的向量积和向量的混合积的坐标表示

向量代数和空间解析几何

向量代数和空间解析几何

向量代数和空间解析几何向量代数和空间解析几何是数学中非常重要的概念,既可以处理经典几何问题,又可以用于表达数学模型。

它们在科学技术、计算机图形学、矩阵计算等方面都有着广泛的应用。

向量代数是计算机科学家和数学家在处理空间问题时最常使用的方法。

它利用向量来描述空间中的点、直线和平面。

向量代数可以用来计算空间的大小、形状、方向、坐标变换等概念。

向量代数涉及的内容主要有线性代数系统、矩阵运算、向量空间等。

它在科技计算机图形学、建模和科学仿真中被广泛使用。

空间解析几何是在几何学中一类研究空间几何结构的重要分支学科。

它被广泛应用于工程、机械、制图学等方面,是解决建筑、室内装潢、雕塑、建筑园林设计、制图学等问题的基础学科。

主要内容有平面几何和立体几何,包括平面的直线、圆弧、多边形等,立体的点、直线、面等概念。

空间解析几何主要用来解决解空间几何图形的问题,是几何学中一类重要的问题。

向量代数和空间解析几何之间有着千丝万缕的联系,它们都是分析和处理空间几何图形的重要工具。

向量代数主要用来解决空间的大小、形状、方向等问题,而空间解析几何则主要用于处理空间中的点、直线和平面等结构。

它们的结合可以清楚的表示空间的量化和定义,是建立数学模型的基础和工具。

向量代数和空间解析几何在科技、计算机图形学、建模和科学仿真方面都有着广泛的应用。

它们可以帮助我们更准确地表示和分析空间问题,为解决实际问题提供帮助,在进一步提高科学技术水平中发挥着重要的作用。

综上所述,向量代数和空间解析几何是数学中重要的概念,可以在科学技术、计算机图形学、矩阵计算等方面得到广泛应用,为解决实际问题提供帮助,在进一步提高科学技术水平中发挥着重要的作用。

它们的结合可以更为清楚地表示和分析空间几何图形,为建立数学模型提供基础。

高等数学向量代数与空间解析几何总结

高等数学向量代数与空间解析几何总结

{m,
n,
p}
36
[4] 两直线的夹角
直线 L1 : 直线 L2 :
x x1 y y1 z z1
m1
n1
p1
x x2 y y2 z z2
m2
n2
p2
^ cos(L1, L2 )
| m1m2 n1n2 p1 p2 | m12 n12 p12 m22 n22 p22
x2 y2 z2
27
3、空间曲线
[1] 空间曲线的一般方程
F(x, y,z) 0 G( x, y, z) 0
[2] 空间曲线的参数方程
x x(t)
y
y(t )
z z(t)
28
如图空间曲线 一般方程为
z 1 x2 y2
( x
1)2 2
y2
(1)2 2
x
1 cos t 2
1 2
(1) 曲面S 上任一点的坐标都满足方程; (2) 不在曲面S 上的点的坐标都不满足方程; 那么,方程F ( x, y, z) 0就叫做曲面S 的方程,而 曲面S 就叫做方程的图形.
19
研究空间曲面的两个基本问题: (1)已知曲面作为点的轨迹时,求曲面方程. (2)已知坐标间的关系式,研究曲面形状.
bx by bz
a//
b
ax ay az bx by bz
10
请归纳向量的数量积和向量积
在几何中的用途
(①1求)向数量量的积模(1:) a
a
|
a
|2
.
②求两向量的 夹 角: a b | a ||
b
|
cos
cos
a
b
,
| a || b |

向量代数与空间解析几何相关概念和例题

向量代数与空间解析几何相关概念和例题

空间解析几何与向量代数向量及其运算目的:理解向量的概念及其表示;掌握向量的运算,了解两个向量垂直、平行的条件;掌握空间直角坐标系的概念,能利用坐标作向量的线性运算;重点与难点重点:向量的概念及向量的运算。

难点:运算法则的掌握过程:一、向量既有大小又有方向的量称作向量通常用一条有向线段来表示向量,有向线段的长度表示向量的大小.有向线段的方向表示向量的方向•向量的表示方法有两种:a、AB向量的模:向量的大小叫做向量的模,向量a、AB的模分别记为|a'|、|AB| .单位向量:模等于1的向量叫做单位向量.零向量:模等于0的向量叫做零向量.记作0规定:0方向可以看作是任意的,相等向量:方向相同大小相等的向量称为相等向量平行向量(亦称共线向量):两个非零向量如果它们的方向相同或相反.就称这两个向量平行记作a // b规定:零向量与任何向量都平行,二、向量运算向量的加法向量的加法:设有两个向量a与b.平移向量使b的起点与a的终点重合.此时从a 的起点到b的终点的向量c称为向量a与b的和.记作a+b .即c=a+b .当向量a与b不平行时.平移向量使a与b的起点重合.以a、b为邻边作一平行四边形从公共起点到对角的向量等于向量a与b的和a b向量的减法:设有两个向量a与b .平移向量使b的起点与a的起点重合.此时连接两向量终点且指向被减数的向量就是差向量。

T T T T TAB =AO OB =0B -CA .2、向量与数的乘法向量与数的乘法的定义:向量a与实数,的乘积记作 a .规定■ a是一个向量.它的模它的方向当■ >0时与a相同.当■ <0时与a相反,(1) 结合律,(七)=±a)=C;L)a ;(2) 分配律(kj a = 'a;'(a b) =■ a …b例1在平行四边形ABCD中.设AB =a . AD二b试用a和b表示向量MA’、MB’、MC‘、MD .其中M是平行四边形对角线的交点----- ■> ----- i ---- i A解:a 〜b = AC = 2 AM 于是MA = (a 亠b),因为MC —MA” .所以MC =1(a b).又因 T b = BD =2 MD .所以MD =2(b_a).由于MB =—MD“ .所以MB‘=2(a—b).定理1设向量a式0.那么.向量b平行于a的充分必要条件是:存在唯一的实数,.使b二,a,三、空间直角坐标系过空间一个点O,作三条互相垂直的数轴,它们都以O为原点。

向量代数与空间解析几何知识题详解

向量代数与空间解析几何知识题详解

第六章 向量代数与空间解析几何习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z ∈⇔= 亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-; (3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x(2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-cz a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x . 6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=; (8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+.解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面. 7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形? (1)1+=x y;(2)422=+yx ;(3)122=-y x ;(4)22x y =.解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面;(2)422=+y x 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面; (3)122=-y x 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面;(4)y x22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成(2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成(3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成(4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成;(3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围.解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体; (2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成;(4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222a z x ay x解:(1)是平面1x =与2y =相交所得的一条直线; (2)上半球面z 0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x .4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点.解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程 (1)2229x y z y x ⎧++=⎨=⎩;(2)⎩⎨⎧==+++-04)1()1(22z z y x解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x xy ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==tz t t y t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cosy b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ;(3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+30222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线.解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周. (2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,21≤⎪⎩⎪⎨⎧==x y z(3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,04522⎩⎨⎧==-++z x xy y x(2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影2220y z y z x ⎧++-=⎨=⎩.习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程. 解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程. 解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程.解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴,即A =0; 另一方面表明它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3,-1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以B (B ≠0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程. 解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n所求平面方程为化简得: .0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥- 0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数), 、(3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程.(5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线. 解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x . (2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程.440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kj i 34312111--=-=,所以直线的点向式方程为:,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=tz t y tx3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y tx 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=--43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即 0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ==4、判别下列直线与平面的相关位置: (1)37423z y x =-+=--与3224=--z y x ;(2)723zy x =-=与8723=+-z y x ; (3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ;(4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直.(3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直.复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ ) 解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ ) 解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ )解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面. 解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C)⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z 解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-.解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a 0 ; 解 =⨯b a b a sin()a,b π22=2,=⋅b a b a cos()a,b π22=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为⎩⎨⎧==+.0,1222z y x 解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c)2b a -;解: (a) b a ⨯=211121-kj i 1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解:(1)}2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3)21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P. 3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-ij kc a b,01⎧==⎨⎩c cc ,故与a、b 都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d垂直于向量]1,3,2[-=a和]3,2,1[-=b,且与]1,1,2[-=c的数量积为6-,求向量d解: d 垂直于a 与b,故d 平行于b a ⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d .5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P ;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x .解2: }1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可.因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos32=≠=,所以0≠B),令CBC'=,则有0='+zCy,由题设得22222212)5(112153cos++'++⨯'+⨯+⨯=πCC,解得3='C或13C'=-,于是所求平面方程为03=+zy或03=-zy.6、一平面过直线⎩⎨⎧=+-=++4,05zxzyx且与平面01284=+--zyx垂直,求该平面方程;解法1:直线⎩⎨⎧=+-=++4,05zxzyx在平面上,令x=0,得54-=y,z=4,则(0,-54,4)为平面上的点.设所求平面的法向量为n=},,{CBA,相交得到直线的两平面方程的法向量分别为1n={1,5,1},2n={1,0,-1},则直线的方向向量s=1n⨯2n=11151-kji={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅ns={-5,2,-5}•},,{CBA=CBA525-+-=0,因为所求平面与平面01284=+--zyx垂直,则}8,4,1{},,{--⋅CBA=CBA84--=0,解方程组{5250,480,A B CA B C-+=--=⇒2,5,2A CB C=-⎧⎪⎨=-⎪⎩所求平面方程为0)4()54(25)0(2=-++---zCyCxC,即012254=+-+zyx.解法2:用平面束(略)7、求既与两平面1:43x zπ-=和2:251x y zπ--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为pz n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面.(d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形. 解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).。

空间解析几何与向量代数》知识点、公式总结

空间解析几何与向量代数》知识点、公式总结

空间解析几何与向量代数》知识点、公式总结空间解析几何与向量代数是数学中非常重要的分支,它们在物理、工程、计算机科学等领域得到了广泛的应用。

以下是一些知识点和公式的总结:一、向量的数量积与向量积1. 向量的数量积:两个向量 a 和 b 的数量积 (也叫数量积或点积) 定义为一个新的向量,记作 a·b,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 c,(a·b)·c=a·(b·c)。

2. 向量积:两个向量 a 和 b 的向量积 (也叫向量积或叉积)定义为一个新的向量,记作 a×b,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 c,(a×b)·c=a·(b×c)。

二、向量的混合积1. 向量的混合积:三个向量的混合积 (也叫叉积) 定义为一个新的向量,记作 (ab)c,其大小为|a|·|b|,方向遵循右手法则,即对于任意的向量 d,(ab)c·d=a·(b·c)d。

2. 向量共面的条件:三个向量 a、b、c 共面的条件是它们对应的三条法向量共面。

三、空间平面及其方程1. 空间平面的方程:空间中两个不共线的平面的方程分别为Px+My+Nz=C 和 Px+My+Nz=D,其中 P、M、N 为平面上的任意三个点,C 和D 为已知常数。

2. 平面的点法式方程:设 M(x0,y0,z0) 为平面上的已知点,n(A,B,C) 为法向量,M(x,y,z) 为平面上的任一点,则平面的点法式方程为 A(x-x0)B(y-y0)C(z-z0)=0。

四、空间直线及其方程1. 空间直线的方程:空间中一条直线的方程为 x+My+Nz=C,其中 P、M、N 为直线上的任意三个点,C 为已知常数。

2. 空间直线的参数方程:空间中一条直线的参数方程为x=f(t),y=g(t),z=h(t),其中 t 为参数,f、g、h 分别为直线上的点的 x、y、z 坐标。

《高等数学》向量代数和空间解析几何

《高等数学》向量代数和空间解析几何

a∥ b
运算律
(1) ab ba (2) 分配律 (ab)cacbc
(3) 结合律 (a)ba(b)(ab)
向量积的坐标表达式
ab ( a y b z a z b y ) i ( a z b x a x b z ) j ( a x b y a y b x ) k
i j k a b ax ay az
例5. 求通过 x 轴和点( 4, – 3, – 1) 的平面方程.
解: 因平面通过 x 轴 , 故 AD0 设所求平面方程为 ByCz0
代入已知点 (4,3,1)得 C3B
化简,得所求平面方程 y3z0
空间直线
一般式 A A 21xx B B 2 1y y C C 1 2zz D D 12 00
从柱面方程看柱面的特征:
只含 x, y而缺z的方程F(x, y) 0,在 空间直角坐标系中表示母线平行于 z 轴的柱 面,其准线为 xoy面上曲线C .
(3) 二次曲面
椭球面
a x2 2b y2 2cz2 21 (a,b,c为正 ) 数 z
x
y
抛物面
z
椭圆抛物面
x2 y2 z ( p , q 同号) 2p 2q
n (0 ,B ,C ) i,平面平行于 x 轴; • A x+C z+D = 0 表示 平行于 y 轴的平面; • A x+B y+D = 0 表示 平行于 z 轴的平面; • C z + D = 0 表示平行于 xoy 面 的平面; • A x + D =0 表示平行于 yoz 面 的平面; • B y + D =0 表示平行于 zox 面 的平面.
o
y
3、空间曲线 (1) 空间曲线的一般方程

高等数学向量代数与空间解析几何总结

高等数学向量代数与空间解析几何总结

高等数学向量代数与空间解析几何总结高等数学是大学数学学科的一门重要基础课程,其中向量代数与空间解析几何是其重要的内容之一、本文将对向量代数与空间解析几何的主要内容进行总结,让我们一起来了解一下吧!向量代数是研究向量的代数性质和运算法则的数学分支,旨在通过研究向量的各种运算进行分析与求解问题。

空间解析几何则是研究点、线、面等几何对象在三维空间中的位置关系和几何性质的学科。

首先,我们先来了解一下向量代数的基本概念和运算法则。

在向量代数中,向量是具有大小和方向的量,通常用一个有向线段表示。

向量的加法是指两个向量相加,得到一个新的向量,其结果是由两个向量的平行四边形法则确定的。

向量的乘法有数量乘法和点乘法两种形式。

数量乘法是指数与向量相乘,得到一个新的向量,其长度与原向量的长度相乘,方向与原向量相同或相反。

点乘法是指两个向量进行点乘,得到一个实数结果,其大小等于两个向量的长度相乘再乘以它们的夹角的余弦值,方向与夹角为锐角的原向量相同,为钝角时与原向量相反。

向量代数的运算法则包括交换律、结合律和分配律。

接下来,我们来了解一下空间解析几何的基本内容。

空间解析几何主要研究三维空间中的点、直线和平面的位置关系和几何性质。

其中,点是空间中没有大小、没有方向的对象,用坐标表示。

直线是由无数个点组成的无限延伸的几何对象,可以通过两点确定一条直线,也可以通过点和方向向量确定一条直线。

平面是由无数个点组成的无限延伸的几何对象,可以通过三个点确定一个平面,也可以通过点和法向量确定一个平面。

空间解析几何要求我们掌握点与点之间的距离、点与直线之间的关系、直线与直线之间的关系、点与平面之间的关系、直线与平面之间的关系等内容。

对于这些关系,我们可以通过向量的性质和运算进行解决。

在向量代数与空间解析几何中,还有一些重要的概念与定理需要了解。

例如,向量的模长是指向量的长度,可以通过向量的坐标和勾股定理求得。

向量的单位向量是指长度为1的向量,可以通过将向量的坐标除以其模长得到。

6、向量代数与空间解析几何

6、向量代数与空间解析几何
cx cy cz
2.平面方程 (1) 一般式 Ax + By + Cz + D = 0. (2) 点法式 A(x - x0) +B (y - y0) +C (z - z0) = 0. (3) 截距式 x y z 1.
a bc (4) 三点式 过M1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3), 的平面方程为
1 2
例6-25 若椭圆抛物面的顶点在原点, z轴是它的轴, 且点A(-1, -2, 2)和B(1, 1, 1)在该曲面上, 求此曲面方程.
例6-26
求通过直线
L:
2xy0, 4x2y3z 6,
且切于球面
x2+y2+z2=4的平面方程.
x2 y2
例6-27
求以A(0,0,1)为顶点,
例6-23 一条直线通过坐标原点, 且和连接原点与点
(1, 1, 1)的直线成45角. 求此直线上点的坐标满足的关
系式.
例6-24 求曲线
9 x 2 6 x y 2 x z 2 4 x 9 y 3 z 6 3 0 , 2 x 3 y z 9
平行于z轴的投影柱面.
设有直线 L1:
x 4

y 1
1z,L2:z源自 5x 6, z 4 y 3, L3:
y 2x 4,

z

3y

5,
求平行于L1而分别与L2, L3都相交的直线方程.
例6-15 在平面x+y+z+1=0内, 作直线通过已知直线

y x

z 2z

解析几何和向量代数的关系

解析几何和向量代数的关系

解析几何和向量代数的关系几何学是研究空间中点、线、面等几何图形的性质和变换规律的学科,而向量代数则是研究向量的运算和性质的数学分支。

尽管它们看起来是两个独立的学科,但实际上几何学和向量代数之间存在着密切的关系。

本文将对几何学和向量代数的关系进行解析。

一、向量的引入向量是解析几何和向量代数的桥梁,它可以用来表示几何图形中的位移、速度、力等物理量。

在几何学中,我们经常会遇到点的坐标表示,而在向量代数中,向量的表示和运算则更为常见。

通过引入向量的概念,我们可以将几何问题转化为向量的运算问题,从而简化了问题的分析和求解过程。

二、向量的运算向量代数中的向量运算包括加法、减法、数乘、点乘和叉乘等。

这些运算在解析几何中也具有重要的应用。

1. 向量加法和减法在几何学中,我们常常需要计算两个向量的和或差。

通过向量的加法和减法运算,我们可以方便地求解两点之间的位移向量、线段的中点等几何问题。

2. 数乘数乘是指将一个向量与一个实数相乘的运算。

在几何学中,数乘可以用来表示向量的缩放和方向的改变。

例如,当一个向量乘以一个正数时,它的长度会增加,而乘以一个负数时,它的方向会发生反转。

3. 点乘点乘是指两个向量之间的乘法运算,其结果是一个实数。

点乘可以用来计算两个向量之间的夹角、判断两个向量是否垂直等几何问题。

此外,点乘还可以用来计算向量在某一方向上的投影。

4. 叉乘叉乘是指两个向量之间的乘法运算,其结果是一个新的向量。

叉乘在几何学中常用来求解平面上的面积、判断三个向量是否共面等问题。

三、向量的应用向量代数在几何学中有着广泛的应用,下面将介绍一些常见的应用场景。

1. 直线和平面的方程通过向量的运算,我们可以得到直线和平面的方程。

例如,在解析几何中,直线可以用一个点和一个方向向量来表示,而平面可以用一个点和两个不平行的方向向量来表示。

2. 三角形的面积和重心利用向量的叉乘运算,我们可以方便地求解三角形的面积。

通过将三个顶点的坐标表示为向量形式,然后计算两个向量的叉乘的模长,再除以2,即可得到三角形的面积。

空间解析几何与向量代数知识点总结

空间解析几何与向量代数知识点总结

空间解析几何与向量代数知识点总结
以下是空间解析几何与向量代数的一些重要知识点总结:
1.三维坐标系:空间解析几何中,我们使用三维坐标系来描述点的位置。

常见的三维坐标系有直角坐标系和球坐标系。

2.点、向量和直线:点是空间中的一个位置,向量是由起点和终点确定的有方向的线段。

直线是空间中一组满足某种几何性质的点的集合。

3.向量的表示和运算:向量可以用坐标表示,常见的表示方法有行向量和列向量。

向量的运算包括加法、减法、数量乘法、点乘和叉乘等。

4.向量的长度和方向:向量的长度可以用模长表示,方向可以用单位向量表示。

单位向量是长度为1的向量,可以通过将向量除以其模长得到。

5.平面和曲面:平面是空间中一组满足某种几何性质的点的集合,可以用法向量和一个过点的向量表示。

曲面是空间中一组满足某种几何性质的点的集合。

6.点到直线和点到平面的距离:点到直线的距离可以通过求取点到直线的垂直距离得到,点到平面的距离可以通过求取点到平面的垂直距离得到。

7.向量的线性相关性和线性独立性:向量的线性相关性表示向量之间存在线性关系,线性独立性表示向量之间不存在线性关系。

8.平面的交线和平面的夹角:两个平面的交线是同时在两个平面上的点的集合,平面的夹角是两个平面的法向量之间的夹角。

9.点积和叉积的应用:点积可以用来计算向量的夹角和投影,叉积可以用来计算向量的长度、面积和法向量。

10.直线和平面的方程:直线可以用参数方程和对称方程表示,平面可以用点法式方程和一般式方程表示。

向量代数与空间解析几何

向量代数与空间解析几何

向量代数与空间解析几何在数学中,向量代数与空间解析几何是两个重要的概念,它们在许多领域都有着广泛的应用。

虽然向量代数和空间解析几何是两个独立的概念,但它们之间存在着密切的联系和相互支持的关系。

向量代数向量代数是研究向量的数学分支,它主要研究向量的运算和性质。

在向量代数中,向量被定义为具有大小和方向的量,通常用箭头来表示。

向量在空间中可以进行加法、减法、数乘等运算,而这些运算都满足一定的代数规律。

向量代数对于分析和描述空间中的各种物理现象和运动非常重要。

许多力学和动力学问题都可以通过向量代数来解决,从而为实际应用提供了有效的数学工具。

空间解析几何空间解析几何是研究空间中点和曲线的几何性质的数学分支,它主要通过代数方法来描述和研究空间中的几何对象。

在空间解析几何中,点可以用坐标来表示,而曲线可以用方程来描述。

通过空间解析几何,我们可以准确描述空间中的各种几何对象,如直线、平面、曲线等,从而使几何问题更加直观和形象化。

空间解析几何在工程学、物理学和计算机图形学等领域都有着广泛的应用。

向量代数与空间解析几何的关系虽然向量代数和空间解析几何是两个独立的数学分支,但它们之间是密不可分的。

首先,向量可以用坐标表示,而坐标又是空间解析几何的基本概念之一。

通过向量代数的运算规律,我们可以更方便地描述和计算空间中的几何对象。

其次,向量代数中的向量空间和空间解析几何中的空间有着相同的数学结构。

通过向量空间的性质,我们可以进一步研究和理解空间中点和向量的几何关系,从而推广和应用解析几何的方法。

总的来说,向量代数和空间解析几何是两个相互支持、相互促进的数学分支,它们共同构建了我们对空间中几何对象的深刻认识和理解。

总结向量代数与空间解析几何是数学中两个重要的概念,它们在各种领域都有着广泛的应用。

通过向量代数和空间解析几何的研究,我们可以更好地理解和描述空间中的各种几何对象,从而为实际问题的求解提供了有效的数学工具。

虽然向量代数和空间解析几何是独立的数学分支,但它们之间存在着密切的联系和相互支持的关系,共同构建了我们对空间几何的理解和认识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sinθ =
p Am + Bn + Cp
A2 + B 2 + C 2 ⋅ m 2 + n 2 + p 2
(三)结论补充 1.非零向量 b互相垂直的充要条件是 ⋅ b=0, 互相 非零向量a, 互相垂直的充要条件是 互相垂直的充要条件是a 非零向量 平行的充要条件是a × b=0. 平行的充要条件是 2.非零向量 b, c共面的充要条件是 × b) ⋅ c=0. 非零向量a, 共面的充要条件是(a 非零向量 共面的充要条件是 3.过两平面 1x+B1y+C1z+D1=0与A2x+B2y+C2z+D2=0 过两平面A 过两平面 与 交线的平面束方程为: 交线的平面束方程为 λ (A1x+B1y+C1z+D1)+µ (A2x+B2y+C2z+D2) = 0. 4.设M0是直线 外一点 M是直线 上任一点 且直线 外一点, 是直线L上任一点 设 是直线L外一点 是直线 上任一点, 到直线L的距离 的方向向量为s, 的方向向量为 则M0到直线 的距离
2
相交, 又平行于平面3x-2y+z+5=0, 求此直线 求此直线. 相交 又平行于平面 例6-21 求过直线 例6-22 已知直线 x+4y-3z+7=0的平面 的平面. 的平面
x − 2 y +1 z − 2 = = , 5 2 4
−1
1
且垂直于平面
x − 2 y + z − 1 = 0, x + 2 y − z + 3 = 0,
z = 5 x − 6, y = 2 x − 4, L3 : z = 4 y + 3, z = 3 y + 5,
y + z+ = 0 , x + 2z = 0
求平行于L 而分别与L 都相交的直线方程. 求平行于 1而分别与 2, L3都相交的直线方程 在平面x+y+z+1=0内, 作直线通过已知直线 例6-15 在平面 内 与平面的交点且垂直于已知直线. 与平面的交点且垂直于已知直线
求其在平面
2x+z+4=0上的投影直线方程 上的投影直线方程. 上的投影直线方程
(三)二次曲面与其他问题 一条直线通过坐标原点, 例6-23 一条直线通过坐标原点 且和连接原点与点 (1, 1, 1)的直线成 °角. 求此直线上点的坐标满足的关 的直线成45° 的直线成 系式. 系式 例6-24 求曲线
(6) 柱面
F ( x, y )=0
x2 y2 z2 + 2 − 2 = 1. 2 a b c x2 y2 z2 + 2 − 2 = −1. 2 a b c
(7) 单叶双曲面 (8) 双叶双曲面
6.夹角 夹角 (1) 两平面的夹角θ 两平面的夹角θ 设 Π1: A1x+B1y+C1z+D1=0, Π2 : A2x +B2y +C2z+D2=0,
d= MM 0 × s s .
5.Prj(λa+µb)=λPrja+µPrjb,
a ⋅b Pr ja b = . a
6. 向量积的运算 (1) a ×(b ×c) = (a ⋅ c) b - (a ⋅b) c (2) (a ×b) ×c = (a ⋅ c) b - (c ⋅b) a (3) a ×(b × c) + b ×(c × a) +c × (a ×b) = 0 7. 不共线的空间三点 B, C所决定的平面面积为 不共线的空间三点A, 所决定的平面面积为: 所决定的平面面积为
坐标面在平面3x-y+4z-12=0上截得一个∆ABC, 上截得一个∆ 例6-16 坐标面在平面 上截得一个 轴上的一个顶点C作对边 的垂线, 从z轴上的一个顶点 作对边 的垂线 求它的方程 轴上的一个顶点 作对边AB的垂线 求它的方程. x −1 y −1 z − 2 已知入射光线路径为, 例6-17 已知入射光线路径为 L: 4 = 3 = 1 . 求该光线经平面x+2y+5z+17=0反射后的反射线方程 反射后的反射线方程. 求该光线经平面 反射后的反射线方程
例6-7 用向量代数的方法证明三角形的三条高交于 一点. 一点
(二)空间平面与直线 1.空间平面 空间平面 例6-8 求通过直线
z x = y = 的平面方程 的平面方程. 2
x −1 y + 2 z + 3 = = , 2 3 4
且平行于直线
例6-9 经过两平面 经过两平面4x-y+3z-1=0和x+5y-z+2=0的交线 和 的交线 作一平面, 使之与平面2x-y+5z=0垂直 垂直. 作一平面 使之与平面 垂直 在由平面2x+y-3z+2=0和平面 和平面5x+5y-4z+3=0 例6-10 在由平面 和平面 所决定的平面束内, 求两个相互垂直的平面, 所决定的平面束内 求两个相互垂直的平面 其中的一 个经过点(4, -3, 1). 个经过点
求一平面Π 使原点到Π的距离最长. 求一平面Π, 使原点到Π的距离最长
2. 空间直线 推导两异面直线间的距离公式, 例6-13 推导两异面直线间的距离公式 并用此公式求 两直线之间的距离. 两直线之间的距离 x y z L 例6-14 设有直线 L1: = = ,2 :
4 1 1
x y z −8 x − 5 y −1 z − 2 与 L2 : = = L1: = = 2 2 −3 −4 1 1
(二)主要结论 1.设 a = (ax,ay,az), b = (bx,by,bz), c = (cx,cy,cz), 则 设 a ⋅ b= axbx+ayby+azbz
i a × b = ax bx j ay by k az bz
ay by cy az bz cz
ax [abc ] = a × b ⋅ c = bx cx
x − x1 x2 − x1 x3 − x1 y − y1 y2 − y1 y3 − y1 z − z1 z2 − z1 = 0. z3 − z1
(5) 法式方程 cosα ⋅ x+ cosβ⋅ y+ cosγ ⋅z + p = 0 式中cos 式中 α , cosβ, cosγ为平面上点 (x, y, z) 处法向量的方 向余弦, 为原点到平面的距离. 向余弦 p 为原点到平面的距离
cosθ = A1 A2 + B1 B2 + C1C 2
2 1 2 1 2 2
A + B +C ⋅ A + B +C
2 1 2 2
2 2
.
(2) 两直线的夹角θ 两直线的夹角θ
x x − x1 y − y1 z − z1 L : − x2 = y − y2 = z − z2 L1: = = , 2 m2 n2 p2 m1 n1 p1
已知p =2, q =3, (p∧q)=π/3, 求以 例6-5 已知 π 求以A=3p-4q 和B=p+2q为两邻边的平行四边形的周长 为两邻边的平行四边形的周长. 为两邻边的平行四边形的周长
例6-6 证明恒等式 证明恒等式[(a+b) ×(b+c)] ⋅(c+a)=2 (a ×b) · c.
x2 y2 z2 + 2 + 2 = 1. (2) 椭球面 2 a b c x2 y2 z2 + 2 − 2 = 0. (3) 锥面 2 a b c 2 x y2 z= 2 + 2 . (4) 椭圆抛物面 a b x2 y2 z= + (5) 双曲抛物面 2 p 2q
( p, q异号 异号). 异号
(5) 两点式
z x − x1 y − y1 z − z1 = = . x2 − x1 y2 − y1 z2 − z1
d=
2
z0
p
4.点到平面的距离 点到平面的距离
Ax0 + By0 + Cz0 + D A + B +C
2 2
.
5.重要的二次曲面 重要的二次曲面 (1) 球面 (x – x0)2+ (y – y0)2+ (z – z0)2 =R2
2.平面方程 平面方程 (1) 一般式 Ax + By + Cz + D = 0. (2) 点法式 A(x - x0) +B (y - y0) +C (z - z0) = 0. x y z + + = 1. (3) 截距式 a b c (4) 三点式 过M1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3), 的平面方程为
一平面通过两直线L 例6-11 一平面通过两直线 1:
x y + 3 z +1 的公垂线L, 的公垂线 且平行于向量 = 和L1: = 1 3 2
x −1 y + 2 z − 5 = = 1 2 1
s=(1, 0, 1),求此平面方程 求此平面方程. 求此平面方程
x + y + z − 38 = 0 , 的所有平面中 例6-12 在过直线L: 在直线 的所有平面中, 2x + y + z = 0
二、归类解析
(一)向量代数 垂直, 垂直, 例6-1 设2a+5b与a-b垂直 2a+3b与a-5b垂直 求(a ∧ b). 与 垂直 与 垂直 其中a =1, b =2, 且a ⊥b, 例6-2 设A=2a+b, B=ka+b, 其中 试问: 为何值时, 试问 (1) k为何值时 A ⊥ B; 为何值时 (2) k为何值时 以A, B为邻边的平行四边形 为何值时, 为何值时 为邻边的平行四边形 的面积为6. 的面积为 从点A(2, -1, 7)沿向量α=8i+9j-12k的方向取线段 例6-3 从点 沿向量 的方向取线段 长AB =34, 求点B的坐标 求点 的坐标. 的坐标 两两垂直, 例6-4 已知 p, q 和 r 两两垂直 且p =1, q =2, r =3, 的长度. 求 s=p+q+r的长度 的长度
相关文档
最新文档