等腰三角形的判定课件
等腰三角形的判定PPT授课课件
感悟新知
又AB=AC, ∴∠B=∠C ∴∠B=∠C=∠A =60°. ∴△ABC是等边三角形.
知2-导
感悟新知
结论
知2-导
有一个角是60°的等腰三角形是等边三角形.
感悟新知
知2-讲
1.三个角都是60°的三角形是等边三角形. 2.有一个角是60°的等腰三角形是等边三角形.
特别解读 在等腰三角形中,只要有一个角是60°,无
1.下列三角形:
知2-练
①有两个角等于60°的三角形;
②有一个角等于60°的等腰三角形;
③三个外角(每个顶点处各取一个外角)都相等的三角形;
④一腰上的中线也是这条腰上的高的等腰三角形.
其中是等边三角形的有( D ) A.①②③ B.①②④C.①③④ D.①②③④
感悟新知
知2-练
2.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,
能力提升练
【点拨】A、C 两点间的距离为 s=10.20 cm,物体由 A 点至 C 点所用的时间为 t=0.02 s×2=0.04 s,物体在 AC 段运动的平均 速度 v=st=100..2004csm=255 cm/s=2.55 m/s。
【答案】10.20;2.55
能力提升练
(3)实验中为了方便计时,应使斜面的坡度较__小___ (填“大” 或“小”)。
等腰三角形课件PPT
在等腰三角形中,若点P位于底边中线上,则AP、BP、CP分别交BC、AC、AB于点D、E 、F时,满足塞瓦定理和梅涅劳斯定理。
挑战性问题:寻找最大面积等腰三角形
问题描述
给定一条长度为L的线段AB,在 AB的同一侧作两个等边三角形 ABC和ABD,连接CD。在AB上 取一点P,连接CP和DP。试找出 使得△CPD面积最大的点P的位置
05
等腰三角形相关定理证明
勾股定理在等腰三角形中证明
01
勾股定理基本内容
在直角三角形中,直角边的平方和等于斜边的平方。
02
等腰三角形与勾股定理关系
当等腰三角形为直角三角形时,其两条腰为直角边,底边为斜边,满足
勾股定理。
03
证明过程
设等腰直角三角形的两条腰为a,底边为c,根据勾股定理有a² + a² =
等角对等边
两个底角相等,且每个 底角都等于顶角的补角
。
对称性
等腰三角形是轴对称图 形,对称轴是底边的垂
直平分线。
等腰三角形与等边三角形关系
等边三角形是特殊的等腰三角形
等边三角形的三边都相等,因此它也满足等腰三角形的定义。
等腰三角形不一定是等边三角形
虽然等腰三角形的两腰相等,但它的底边可以与两腰不等,因此不是所有等腰 三角形都是等边三角形。
c²,化简得2a² = c²,从而证明了在等腰直角三角形中,勾股定理成立
。
射影定理在等腰三角形中证明
射影定理基本内容
在直角三角形中,斜边上的垂线 将斜边分为两段,这两段与直角 边的乘积相等。
等腰三角形与射影定 理关系
当等腰三角形为直角三角形时, 其高线即为斜边上的垂线,满足 射影定理。
13.等腰三角形的判定PPT课件(华师大版)
两角相等 的三角形
互为逆命题
等腰三角形的判定 方法
基本模型
A
B
C
等腰三角形的判定定理是证明 线段相等的一种重要 的方法
等腰三角形性质与判定 的区分
等
腰
变式模型
三 角 形 的 判
A
3
D
21
定
B
C
已知:⊿ABC中,∠B=∠C
求证:A⊿BA=BACC等腰三角形
证明:经过点A作AD⊥BC,垂足为D. A
∴ ∠1= ∠2=90°
练习 在ΔABC中,OB平分∠ABC, OC平分∠ACB,过O点作MN ∥BC.
A (2)线段BM、CN与MN 的长度有什么关系?
M 3 1
O
6
N
∴MN=BM+CN
5
2
4
B
C
(3) ΔAMN的周长=AB+AC吗?为什么?
∵ ΔAMN的周长= AM+MN+AN
=AM+
+AN
=AB +AC
两边相等 的三角形
∵ AD∥BC
E
)
A1 2
D
∴ ∠1=∠B ( 两直线平行, 同位角相等 )
∠2=∠C ( 两直线平行,内错角相等) B
C
∴∠1=∠2 ( 等量代换 )
即 AD平分∠CAE ( 角平分线的定义 )
如图,OA=OB, AB∥DC, 求证:OC=OD. 分析:
(1)从求证看: 要证 OC=OD
需证 ∠D=∠C
(2)从已知看:
由OA=OB 得到 ∠B=∠A 由AB∥DC得到∠D= ∠B ∠C= ∠A
所以:∠D=∠C
如图,OA=OB, AB∥DC, 求证:OC=OD.
初中数学课件等腰三角形的性质(几何)ppt课件
利用三角函数
通过已知角度和边长,利用三角函 数求出高或底,再代入公式计算面 积。
利用向量
在平面直角坐标系中,可以利用向 量表示三角形的顶点,通过向量的 运算求出三角形的面积。
案例分析:不同类型题目解法
01
02
03
04
已知等腰三角形的底和高,直 接代入公式求解。
已知等腰三角形三边长度,利 用海伦公式求解。
勾股定理在等腰三角形中的推广
对于非直角的等腰三角形,可以通过作高将其分为两个直角三角形,再利用勾股定理求解 相关问题。
相似三角形与等腰三角形关系探讨
相似三角形定义
两个三角形如果它们的对应角相等,则称这两个三角形相 似。
等腰三角形的相似性质
对于两个等腰三角形,如果它们的顶角相等,则这两个三 角形相似。此外,如果两个等腰三角形的底边和腰成比例 ,则这两个三角形也相似。
实际应用:测量、作图等问题
01
测量
在实际生活中,等腰三角形的性质可以应用于测量问题。例如,在无法
直接测量某一边长时,可以通过测量等腰三角形的底角和腰长来间接计
算。
02
作图
在几何作图中,等腰三角形的性质也有广泛应用。例如,可以通过作等
腰三角形的高来平分底边,或者通过作等腰三角形的角平分线来得到对
称的图形。
初中数学课件等腰三角形的性质(几 何)ppt课件
目录
• 等腰三角形基本概念与性质 • 等腰三角形判定方法 • 等腰三角形面积计算 • 等腰三角形在生活中的应用 • 等腰三角形相关定理和推论 • 练习题与课堂互动环节
01
等腰三角形基本概念与性质
等腰三角形定义及特点
定义
有两边相等的三角形叫做等腰三 角形。
等腰三角形ppt课件
解成基本作图,逐步操作.
感悟新知
知3-练
例6 如图13.3-11, 在△ ABC 中,D 为AC 的中点,DE ⊥
AB,DF ⊥ BC,垂足分别为点E,F,且DE=DF.求
证:△ ABC 是等腰三角形.
解题秘方:利用“等角对等边”
判定等腰三角形,只需证明三
角形两个内角相等即可.
角的度数,再利用三角形的内角和等于18 0 °
列出方程,求出未知数的值即可.
知2-练
感悟新知
解:设∠ A=x°.
知2-练
∵ AD=DE,∴∠ AED= ∠ A=x°.
∵ DE=EB,∴∠ EBD= ∠ BDE= x°.
∴∠ BDC= ∠ A+ ∠ EBD= x°.
∵ BC=BD,∴∠ C= ∠ BDC= x°.
∵ AB=AC,∴∠ ABC= ∠ C= x°.
∴ x+ x+ x =18 0,解得x =4 5 .∴∠
A=45°.
感悟新知
知2-练
5 -1. [新考向知识情境化中考·衢州]“三等分角”大约是在
公元前五世纪由古希腊人提出来的,借助如图所示的
“三等分角仪”能三等分任一角.
感悟新知
知2-练
A. 2
B. 3
C. 4
D. 5
感悟新知
知1-练
1-2.[期末·广州南沙区]若等腰三角形的周长是28 cm,一条
边长为6 cm,则它的腰长为______
11 cm.
感悟新知
知识点 2 等腰三角形的性质
知2-讲
必定是锐角
1. 性质1:等腰三角形的两个底角相等(简写成
2.4等腰三角形的判定定理课件
角:等腰三角形的两个底角相等
有两个角相等的三角形是等腰三角形。
将上面两个命题的条件和结论互换,得到 的新命题是真命题吗?
有两个角相等的三角形是等腰三角形。
已知:在△ABC中,∠B= ∠C
求证:△ABC是等腰三角形
A
B
C
解:作ΔABC的角平分线AD,
在ΔABD和ΔACD中
这个三角形是等腰三角形。
A 用符号语言表示为:
在△ABC中,
∵∠B=∠C ( 已知)
∴ AC=AB.
(在一个三角形中,等角对等边) B
C
这又是一个判定两条线段相等根据之一.
1、完成课内练习1,2
A
2、如图,已知∠A=36°, ∠DBC=36°,
∠C=72°,则∠1= 36°__,∠2= 72°__,
图中的等腰三角形有
△ABC △DBA △BCD
D
1
2
B
C
测量河宽问题
小聪的方法是:从点A出发,沿着与直线AB成60° 角的AC方向前进至C,在C处测得∠C=30°。量出 AC的长,它就是河的宽度(即点A,B之间的距离), 这个方法正确吗?请说明理由。
D
边:等边三角形的三条边都相等
有三边相等的三角形是等边三角形。
A C
归纳总结 有一个角等于60°的等腰三角形是等 边三角形。
A 用符号语言表示为:
在△ABC中,ຫໍສະໝຸດ ∵ ∠A=60°,AB=AC( 已知) B
C
∴ AC=AB=BC. ( 有一个角等于60°的等腰三角形是等边三角形。)
小结
名 图 形 概念 称
性质与边角关系
判定
等
1.两腰相等. 1.两边相等。
等腰三角形ppt课件
02
等腰三角形的判定
定义与判定方法
定义:有两边长度相等的三角形称为等 腰三角形。
3. 角平分线法:若一个三角形一个角的 平分线等于其对应边的高线,则该三角 形为等腰三角形。
2. 中线法:若一个三角形中线等于其一 半长度,则该三角形为等腰三角形。
判定方法
1. 定义法:根据等腰三角形的定义,只 需判断一个三角形有两边长度相等即可 。
等腰三角形性质定理的推广与拓展主要涉及以下几个方面:一是推广到更复杂的几何图形中,如平行四边形、菱 形等;二是拓展到三角函数中,用于研究三角函数的对称性和周期性等问题;三是拓展到物理学中,用于研究力 矩平衡等问题。
04
等腰三角形的实际应用
建筑中的等腰三角形
总结词
建筑美学与等腰三角形的完美结合
详细描述
性质定理的应用举例
总结词
等腰三角形性质定理的应用场景及实例
详细描述
等腰三角形性质定理的应用场景广泛,例如在几何、三角函数、建筑等领域都有 应用。以几何为例,通过等腰三角形的性质定理可以证明一些重要的几何定理, 如勾股定理、余弦定理等。
性质定理的推广与拓展
总结词
等腰三角形性质定理的推广及拓展方向
详细描述
等腰三角形在实际VS
详细描述
等腰三角形在实际问题中有着广泛的应用 ,它是解决问题的重要工具。例如,在物 理学中,等腰三角形可以用来解决力臂平 衡的问题;在生物学中,可以用来解释 DNA分子的结构;在经济学中,可以用 来分析股票市场的波动等。
05
等腰三角形的相关练习题及 解析
边角关系在判定中的应用
等边对等角
在等腰三角形中,相等的两边所对的角也相等。
三角形内角和定理
等腰三角形的判定定理ppt课件
B
D
C
概念归纳
如果一个三角形有两个角相等,那么这个三角
形是等腰三角形,也可以简单地说成“在同一
个三角形中,等角对等边”.
几何语言
它也是一个判定两条线段相等根据之一.
在△ABC中,
∵∠B=∠C(已知),
∴AC=AB(在同一个三角形中,等角对等边),
即△ABC为等腰三角形.
练一练
1.判断下列证明过程是正确的吗?
120°
75°或30°或
时,△ ABC 是等腰三角形.
易错点:分类讨论时忽略一种情况而漏解
分层练习-巩固
9.[2024·温州期中]如图,上午8时,渔船从 A 处出发,以20海里/时的速度向正
西方向航行,9时30分到达 B 处.从 A 处测得灯塔 C 在南偏西30°方向,
距 A 处30海里处,则 B 处到灯塔 C 的距离是(
A
除此之外,还有其他判定方法吗?
问题① 如图,在△ABC中,AB=AC,图中有哪些角相等?
∠B=∠C
在三角形中等边对等角
B
C
合作学习
在纸上任意画线段BC,分别以点B和点C为顶点,以BC为一边,
在BC的同侧画两个相等的角,两角的另一边相交于点 A.
①量一量,线段AB与 AC 相等吗?
A
②其他同学的结果与你的相同吗?
O
140°
140°
25 °
75
50 °°
20°
°
20
B
A
80
°
80°
2525
°°
50 °
P
B
随堂练
1.在△ABC 中,∠A 和∠B 的度数如下,能判定△ABC 是等腰三角形的是
等腰三角形的判定课件(共21张PPT)
等腰三角形的性质定理
1、从边看:等腰三角形的两腰相等。 (定义)
2、从角看:等腰三角形的两底角相等。 (性质定理1)
3、从重要线段看:等腰三角形的顶角平分线、 底边上的中线和底边上的高三线合一。 (性质定理2)
如何判定一个三角形是等腰三角形?
定义:有两边相等的三角形是等腰三角形。
还有其他方法吗?
A
B
D C
例2:已知:AD交BC于点O,AB∥CD,OA=OB
求证:OC=OD
问题:
1、若已知AB∥ CD,OC=OD,能
A
否证明OA=OB?
2、若已知OA=OB,OC=OD,能否
证明AB ∥ CD?
C
B O
D
规律:
AB ∥ CD,OA=OB,OC=OD中已知任两 个可推出第三个。
例3、如图,在Rt△ABC和Rt△A’B’C’中,
已知:△ABC中,∠B=∠CBAC的平分线AD
A
在△ BAD和△ CAD中, 1 2
∠B=∠C,
∠1=∠2,
B
AD=AD
C
D
∴ △ BAD≌ △ CAD(AAS)
∴AB=AC(全等三角形的对应边相等)
思考:作底边上的高可以吗?作底边中线呢?
等腰三角形的判定定理:
如果一个三角形有两个角相等,那么这两个 角所对的边也相等(简写成“等角对等边”)
∠ABC= ∠A’B’C’=90°,
AB=A’B’,AC=A’C’,
区别:条件和结论互换。
3、已知:ED ∥ OB,EO=ED
求证:Rt△ABC≌Rt△A’B’C’ 求证:OD平分 AOB。
例1 :已知:如图,∠CAE是△ABC的外角∠1=∠2,
《等腰三角形的性质》优秀课件pptx
定义及特点定义有两边相等的三角形叫做等腰三角形,相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
特点等腰三角形是轴对称图形,有一条对称轴,即底边的垂直平分线;两腰相等,两底角相等。
与等边三角形关系区别等边三角形的三边都相等,三个角都是60度;而等腰三角形只有两边相等,两底角相等,顶角可以是任意角度(小于180度)。
联系等边三角形可以看作是特殊的等腰三角形,即当等腰三角形的顶角为60度时,它就变成了等边三角形。
03在建筑设计中,等腰三角形常被用于构建具有对称美的结构,如尖顶房屋、桥梁的支撑结构等。
建筑学在机械设计和制造中,等腰三角形的稳定性被广泛应用,如三脚架、起重机的支撑结构等。
工程学在解决一些实际问题时,等腰三角形可以作为数学模型,帮助我们理解和解决问题,如测量高度、计算角度等。
数学建模实际应用举例01等腰三角形定义有两边相等的三角形称为等腰三角形。
02两边相等定理内容等腰三角形的两个底角相等。
03定理证明方法通过构造中线或高,利用全等三角形或相似三角形的性质进行证明。
等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,简称“三线合一”。
两角相等定理内容定理证明方法推论通过构造角平分线或中线,利用全等三角形或相似三角形的性质进行证明。
在等腰三角形中,若有一个角是60°,则这个三角形是等边三角形。
030201等腰三角形是轴对称图形,对称轴是底边的垂直平分线。
对称性在等腰三角形中,若两条边相等,则对应的两个角也相等。
对称性推论1在等腰三角形中,若一个角是另一个角的两倍,则这个三角形是直角三角形,且直角在顶角处。
对称性推论2在等腰三角形中,若底边两端点到对称轴的距离相等,则这两个点是底边的两个三等分点。
对称性推论3对称性及其推论两条边相等根据等腰三角形的定义,若一个三角形有两条边长度相等,则该三角形为等腰三角形。
两个角相等等腰三角形的两个底角相等,因此若一个三角形有两个角相等,则可根据此性质判定该三角形为等腰三角形。
《等腰三角形的判定》轴对称PPT课件 (共13张PPT)
2如图,把一张矩形的纸沿对角线折叠,重合 部分是一个等腰三角形吗?为什么?
3.如图,AC和BD相交于点O,且 AB∥DC,OA=OB,求证:OC=OD. 证明: ∵AB∥DC D C ∴∠A=∠C ∠B=∠D 又∵OA=OB O ∴∠A=∠B(等边对等角) ∴∠C=∠D A B ∴ OC=OD(等角对等边)
E
M
C F D
N
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
B
等腰三角形的判定:
如果一个三角形中有两个角 相等,那么这两个角所对的边也相 等.(等角对等边)
等腰三角形的性质与判定有区别吗? 性质是:等边 等角
判定是:等角
等边
例2 求证:如果三角形一个外角的平分线平行 于三角形的一边,那么这个三角形是等腰三角 形. 已知:∠CAE是ΔABC的外 E 角,∠1=∠2,AD∥BC. 求证:AB=AC. A 1 D 证明:∵AD∥BC 2 ∴ ∠1=∠B(两直线平行,同位角相等) ∠2=∠C(两直线平行,内错角相等) ∵ ∠1=∠2 ∴ ∠B=∠C ∴ AB=AC( 等边对等角 ) B C
1、再长的路一步一步得走也能走到终点,再近的距离不迈开第一步永远也不会到达。 2、从善如登,从恶如崩。 3、现在决定未来,知识改变命运。 4、当你能梦的时候就不要放弃梦。 5、龙吟八洲行壮志,凤舞九天挥鸿图。 6、天下大事,必作于细;天下难事,必作于易。 7、当你把高尔夫球打不进时,球洞只是陷阱;打进时,它就是成功。 8、真正的爱,应该超越生命的长度、心灵的宽度、灵魂的深度。 9、永远不要逃避问题,因为时间不会给弱者任何回报。 10、评价一个人对你的好坏,有钱的看他愿不愿对你花时间,没钱的愿不愿意为你花钱。 11、明天是世上增值最快的一块土地,因它充满了希望。 12、得意时应善待他人,因为你失意时会需要他们。 13、人生最大的错误是不断担心会犯错。 14、忍别人所不能忍的痛,吃别人所不能吃的苦,是为了收获别人得不到的收获。 15、不管怎样,仍要坚持,没有梦想,永远到不了远方。 16、心态决定命运,自信走向成功。 17、第一个青春是上帝给的;第二个的青春是靠自己努力的。 18、励志照亮人生,创业改变命运。 19、就算生活让你再蛋疼,也要笑着学会忍。 20、当你能飞的时候就不要放弃飞。 21、所有欺骗中,自欺是最为严重的。 22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。 23、天行健君子以自强不息;地势坤君子以厚德载物。 24、态度决定高度,思路决定出路,细节关乎命运。 25、世上最累人的事,莫过於虚伪的过日子。 26、事不三思终有悔,人能百忍自无忧。 27、智者,一切求自己;愚者,一切求他人。 28、有时候,生活不免走向低谷,才能迎接你的下一个高点。 29、乐观本身就是一种成功。乌云后面依然是灿烂的晴天。 30、经验是由痛苦中粹取出来的。 31、绳锯木断,水滴石穿。 32、肯承认错误则错已改了一半。 33、快乐不是因为拥有的多而是计较的少。 34、好方法事半功倍,好习惯受益终身。 35、生命可以不轰轰烈烈,但应掷地有声。 36、每临大事,心必静心,静则神明,豁然冰释。 37、别人认识你是你的面容和躯体,人们定义你是你的头脑和心灵。 38、当一个人真正觉悟的一刻,他放弃追寻外在世界的财富,而开始追寻他内心世界的真正财富。 39、人的价值,在遭受诱惑的一瞬间被决定。 40、事虽微,不为不成;道虽迩,不行不至。 41、好好扮演自己的角色,做自己该做的事。 42、自信人生二百年,会当水击三千里。 43、要纠正别人之前,先反省自己有没有犯错。 44、仁慈是一种聋子能听到、哑巴能了解的语言。 45、不可能!只存在于蠢人的字典里。 46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。 47、小事成就大事,细节成就完美。 48、凡真心尝试助人者,没有不帮到自己的。 49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。 50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。 51、对于最有能力的领航人风浪总是格外的汹涌。 52、思想如钻子,必须集中在一点钻下去才有力量。 53、年少时,梦想在心中激扬迸进,势不可挡,只是我们还没学会去战斗。经过一番努力,我们终于学会了战斗,却已没有了拼搏的勇气。因此,我们转向自身,攻击自己,成为自己最大的敌人。 54、最伟大的思想和行动往往需要最微不足道的开始。 55、不积小流无以成江海,不积跬步无以至千里。 56、远大抱负始于高中,辉煌人生起于今日。 57、理想的路总是为有信心的人预备着。 58、抱最大的希望,为最大的努力,做最坏的打算。 59、世上除了生死,都是小事。从今天开始,每天微笑吧。 60、一勤天下无难事,一懒天下皆难事。 61、在清醒中孤独,总好过于在喧嚣人群中寂寞。 62、心里的感觉总会是这样,你越期待的会越行越远,你越在乎的对你的伤害越大。 63、彩虹风雨后,成功细节中。 64、有些事你是绕不过去的,你现在逃避,你以后就会话十倍的精力去面对。 65、只要有信心,就能在信念中行走。 66、每天告诉自己一次,我真的很不错。 67、心中有理想 再累也快乐 68、发光并非太阳的专利,你也可以发光。 69、任何山都可以移动,只要把沙土一卡车一卡车运走即可。 70、当你的希望一个个落空,你也要坚定,要沉着! 71、生命太过短暂,今天放弃了明天不一定能得到。 72、只要路是对的,就不怕路远。 73、如果一个人爱你、特别在乎你,有一个表现是他还是有点怕你。 74、先知三日,富贵十年。付诸行动,你就会得到力量。 75、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 76、好习惯成就一生,坏习惯毁人前程。 77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。 78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。 79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。 80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。
等腰三角形的判定PPT课件
13. (易错题)用粗细均匀的电热丝烧水,通电10 min可烧
开一壶水,若将电热丝对折起来接在原来的电路中,
知1-讲
1.判定定理:有两个角相等的三角形是等腰三角形(简称 “等角对 等边”). 几何语言:如图,在△ABC中, ∵∠B=∠C, ∴AB=AC.
2. 等腰三角形的性质与判定的异同: 相同点:使用的前提都是“在同一个三角形中”. 不同点:由三角形的两边相等,得到它们所对的角相等,是等腰 三角形的性质; 由三角形的两角相等,得到它是等腰三角形,是等腰三角形的判定. 即:等腰三角形的性质:两边相等→这两边所对的角相等. 等腰三角形的判定:两角相等→这两角所对的边相等.
知2-练
1
(中考·泰安)如图,AD是△ABC的角平分线,
DE⊥AC,垂足为E,BF∥AC交ED的延长线
于点F,若BC恰好平分∠ABF,AE=2BF.给
出下列结论:①DE=DF;②DB=DC;
③AD⊥BC;④AC=3BF,
其中正确的结论共有( )
A.4个 B.3个 C.2个 D.1个
知2-练
2
如图,在△ABC中,∠ABC和∠ACB
三角形是等腰三角形”来证明. (3)当线段垂直平分线上的点与线段两端点构成三角形
时,应用“线段垂直平分线上的点到线段两端的距离 相等”来证明.
1.必做: 完成教材P138 T2 2.补充: 请完成《点拨》剩余部分习题
第十五章 电能与电功率
15.4 探究焦耳定律
第1课时 认识焦耳定律
(1)图乙是等质量的水和煤油温度随加热时间变化的图象, 为了使图甲中温度计示数变化更明显,则烧瓶内的液体
电流大小
9.在如图所示的电路中,电阻丝R1=R3=10 Ω,R2=R4 =5 Ω,电源电压相等且不变。闭合开关S1、S2后, 电路都正常工作,则在相同时间内产生热量最少的 电阻丝是_____。若电阻丝R1、R2都由同种材料制成 且长度相同R,2 则电阻 丝_____比较细。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拓展练习: 1、已知:如图(9),AD∥BC, BD平分∠ABC, 求证:AB=AD。
证明:∵BD平分∠ABC ∴∠1=∠2 ∵AD∥BC ∴∠2=∠3 ∴∠1=∠3 ∴AB=AD(等角对等边)
B A
1 2
3
D
C (9)
2、已知:如图(10), ∠1=∠2, ∠3=∠4, DE∥BC; 求证:DE=DB+EC。
2
A
D
1
C
解答
B
解: ∠1=720 ∠2=360
A
等腰三角形有:△ABC, △ ABD, △ BCD
2 B
D
1
C
练习3
2.如图,把一张矩形的纸沿对 角线折叠.重合部分是一个等 腰三角形吗?为什么?
2
解答
1
解 答
答案:是等腰三角形.因 为,如图可证∠1=∠2.
2
1
练习4
如图,AC和BD相交于点O,且 AB∥DC,OA=OB,求证: OC=OD.
D 0 C
解答
A
B
证明:
∵OA=OB, ∴∠A=∠B.(等边对等角) 又∵AB∥DC,
A
D 0
C
B
∴∠A=∠C,∠B=∠D.(两直线平 行,内错角相等) ∴∠C=∠D (等量代换)
∴OC=OD(等角对等边)
1、等腰三角形的判定定理 的内容是什么? 2、等腰三角形的判定方法有下列几 种: 。 ①定义,②判定定理 3、等腰三角形的判定定理与性质定理 的区别是 条件和结论刚好相反。 。 4、运用等腰三角形的判定定理时, 应注意 在同一个三角形中。
等腰三角形的两个底角相等。 (可以简称:等边对等角) 问:这个定理的逆命题是什么?
如果一个三角形有两个角相等, 那么这个三角形是等腰三角形。 这个命题正确吗?你能证明吗?
已知:△ABC中,∠B=∠C 求证:AB=AC 证明:作∠BAC的平分线AD 在△ BAD和△ CAD中, ∠1=∠2, ∠B=∠C, AD=AD
等腰三角形的判定
我们在上一节学习了 等腰三角形的性质。 现在你能回答我一些 问题吗?
等腰三角形的性质
•等腰三角形是轴对称图形. •底边的垂直平分线是等腰三角形的 对称轴. •等腰三角形的两个底角相等 (简称 “等边对等角”) ◆等腰三角形的顶角平分线、底边上的 中线、底边上的高相互重合(“三线合 一”).
B A
E 1 2 D
C
证明: ∵AD∥BC,
∴∠1=∠B(两直线平 行, 同位角相等), ∠2=∠C(两直线平行, 内错角相等)。 ∵∠1=∠2, ∴∠B=∠C, ∴AB=AC(等边对 等角)。
B C E
A 1 2 D
练习1
已知:如图, AD ∥BC,BD平 分∠ABC。 求证:AB=AD
B
A
D
C
解答
证明: ∵ AD ∥BC
∴∠ADB=∠DBC
∵∠ABD=∠DBC
B
A
D
∴∠ABD=∠ADB
∴AB=AD
C
4、已知:如图,在△ABC中,BF、CF分别平分 ∠DBC、∠ECB并交于点F,过F作 DE∥BC 求证:DE=BD+CE
A B C
D
F
E
练习2 已知:如图, ∠A= ∠DBC =360, ∠C=720。 计算∠1和∠2,并说明图 中有哪些等腰三角形?
等腰三角形的性质与判定有区别吗? 性质是:等边 判定是:等角 等角 等边
注意:使用“等边对等角”前提是---在同一个三角形中
例1 求证:如果三角形一个外角的平分线平行于 三角形的一边,那么这个三角形是等腰三角形。 已知: 如图,∠CAE是△ ABC的外角,∠1=∠2,
AD∥BC。
求证:AB=AC 分析: 从求证看:要证AB=AC,需 证∠B=∠C, 从已知看:因为∠1=∠2, AD∥BC 可以找出∠B,∠C与的关系。
C
(11)
4、已知:如图,在△ABC中,BF、CF分别平分 ∠DBC、∠ECB并交于点F,过F作 DE∥BC 求证:DE=BD+CE
A 0:
第5,6,9,13题
再见
B
A 12 C
D
∴ △ BAD≌ △ CAD(AAS) ∴AB=AC(全等三角形的对应边 相等)
等腰三角形的判定定理: 如果一个三角形有两个角 相等,那么这两个角所对 的边也相等(简写成“等 角对等边”).
注意:使用“等边对等角”前提 是---在同一个三角形中
等腰三角形的判定:
如果一个三角形有两个角相等,那么这 两个角所对的边也相等.(简称为:等角对等边)
A
F D 证明: E 1 4 ∵DE∥BC 2 3 B ∴∠2=∠DFB,∠3=∠EFC C (10) 又∵∠1=∠2,∠3=∠4 ∴∠1=∠DFB,∠4=∠EFC ∴DF=BD, EF = EC 又∵DE=DF+EF ∴DE=DB+EC
3、已知:如图(11),AB=AD, ∠ADC=∠ABC, D 求证:CB=CD。 证明:连接BD A ∵AB=AD ∴∠ABD∠ADB(等边对等角) B 又∵∠ABC=∠ADC ∴∠ABC-∠ABD=∠ADC-∠ADB 即,∠CBD=∠CDB ∴CB=CD(等角对等边)