数学教案-等腰三角形的判定
八年级数学上册《等腰三角形的判定定理》教案、教学设计
(一)导入新课,500字
1.教师出示一张等腰三角形图片,引导学生观察并提问:“同学们,你们在生活中见到过这样的图形吗?它有什么特点?”
2.学生回答后,教师总结:“这种两边长度相等的三角形叫做等腰三角形。今天我们要学习如何判断一个三角形是否为等腰三角形。”
3.教师进一步提问:“我们已经知道等腰三角形有两边相等,那么如何用一个简单的定理来判断一个三角形是否为等腰三角形呢?”
b.在解题过程中,需要注意哪些问题?
c.你能举出生活中应用等腰三角形判定定理的例子吗?
2.学生在小组内积极讨论,互相交流想法,共同解决问题。
3.教师巡回指导,给予学生提示和帮助,解答学生的疑问。
4.各小组汇报讨论成果,教师进行点评和总结。
(四)课堂练习,500字
1.教师设计具有代表性的练习题,涵盖等腰三角形的判定定理及性质。
题目:已知等腰三角形ABC,AB=AC,D为BC边上的点,且BD=DC。求证:AD垂直于BC。
要求:学生通过画图、推理、计算等方法,完成证明过程。
3.实践活动:结合生活实际,让学生发现并解决身边的等腰三角形问题。
a.拍摄一张生活中的等腰三角形照片,并简要说明其应用场景。
b.运用等腰三角形的判定定理,测量并计算该等腰三角形的底角、底边长等。
八年级数学上册《等腰三角形的判定定理》教案、教学设计
一、教学目标
(一)知识与技能
1.知道等腰三角形的定义,能够识别并描述等腰三角形的特征。
2.掌握等腰三角形的判定定理,能够运用定理判断一个三角等腰三角形的底角、底边长等。
4.能够运用等腰三角形的判定定理解决实际生活中的问题,提高解决问题的能力。
c.你认为等腰三角形的判定定理在生活中的应用有哪些?
1.1.3等腰三角形的判定(教案)
1.教学重点
(1)理解等腰三角形的定义:两条边相等的三角形是等腰三角形。
(2)掌握等腰三角形的判定定理:在一个三角形中,若两边相等,则这个三角形是等腰三角形。
(3)运用等腰三角形的性质解决问题,如:等腰三角形的底角相等,等腰三角形的对角线相等。
举例解释:
(1)通过实际图形和示例,让学生明确等腰三角形的定义,理解等腰三角形的两条边是相等的。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“等腰三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《等腰三角形的判定》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否见过两条边相等的三角形?”(如衣服上的图案、建筑物的结构等)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索等腰三角形的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解等腰三角形的基本概念。等腰三角形是两条边相等的三角形,具有重要的几何性质和应用。它是几何图形中非常基础且重要的一部分,广泛应用于日常生活和各类工程领域。
2.案例分析:接下来,我们来看一个具体的案例。通过分析等腰三角形在实际中的应用,了解它如何帮助我们解决问题。
五、教学反思
在今天的课堂中,我们探讨了等腰三角形的判定,我发现学生们对这一概念的理解程度有所不同。有的同学能够迅速抓住定义的核心,而有的同学在理解上还存在一定的困难。这让我意识到,在今后的教学中,我需要更加关注学生的个体差异,采取更加多样化的教学方法。
2022人教版数学《《等腰三角形》参考教案》配套教案(精选)
2.6.2 等腰三角形【学习目标】1、掌握等腰三角形的判定方法,并能灵活运用解决实际问题;2、通过独立思考,交流讨论,发展推理能力和运用数学知识解决实际问题的能力。
学习重点:等腰三角形的判定方法学习难点:等腰三角形的判定和性质的区别,等腰三角形的判定的应用。
【教学过程】预习案一、旧知回顾:1、总结等腰三角形的性质。
2、等腰三角形的性质有什么作用?学习建议:复习上节内容并完成以下问题1、等腰三角形的两边长分别为6,8,则周长为2、等腰三角形的周长为14,其中一边长为6,则另两边分别为3、等腰三角形的一个角为70°,则另外两个角的度数是4、等腰三角形的一个角为120°则另外两个角的度数是5、如图,在△ABC中,AB=AC,(1)若AD平分∠BAC,那么、(2)若BD=CD,那么、(3)若AD⊥BC,那么、二、阅读教材:1、具备什么条件的三角形是等腰三角形?为什么?2、等腰三角形的判定的作用是什么?三、预习自测:1、已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形我的疑惑:请将你预习中未能解决的问题和有疑惑的问题写下来,待课堂与老师和同学探究解决。
探究案一、学始于疑——我思考、我收获1、可用什么方法证明一个三角形是等腰三角形?2、等腰三角形的判定方法与性质有什么区别与联系?学习建议请同学们用3分钟的时间认真思考这些问题,并结合预习中自己的疑惑开始下面的探究学习。
二、质疑探究——质疑解惑、合作探究基础知识探究探究点等腰三角形的判定方法如图,在△ABC中,若∠B=∠C,能否得出△ABC是等腰三角形?你能证明吗?思考:怎么作辅助线?目的是什么?在一般的三角形中,如果有两个角相等,•那么它们所对的边有什么关系?即如果一个三角形有两个角相等,那么这两个角所对的也相等(简写成)知识综合应用例3. 如下图,∠A=36°, ∠C= 72°∠DBC=36°.分别计算∠BDC、∠ABD的度数,并说明图中有哪些等腰三角形。
八年级数学上册《等腰三角形的判定》教案、教学设计
八年级的学生已经具备了一定的几何图形认知基础,对三角形的性质有了初步的了解。在此基础上,学生对等腰三角形的判定这一章节内容的学习将更为顺利。然而,学生在几何证明和逻辑推理方面仍存在一定困难,需要教师在教学过程中给予关注和引导。此外,学生对数学学习的兴趣和积极性存在差异,部分学生对几何学习缺乏自信,教师应关注这一现象,采取差异化教学策略,激发学生的学习兴趣和自信心。通过对本章节的学习,使学生能够更好地理解和运用等腰三角形的判定方法,提高几何图形的解题能力,为后续学习打下坚实基础。
4.教学拓展:
-结合实际生活中的等腰三角形实例,让学生体会数学与生活的联系,提高学生的应用意识。
-引导学生探索等腰三角形与其他几何图形之间的关系,如等腰三角形与圆、正方形等,拓展学生的知识视野。
-组织课后研究性学习活动,鼓励学生自主探究等腰三角形的更多性质和应用,培养学生的探究精神。
四、教学内容与过程
3.生活实践题:让学生观察生活中的等腰三角形,并记录下来,分析它们的特点和应用。例如,观察三角尺、衣架、桥梁等,将观察结果以文字或图片形式进行展示。
4.小组合作研究:以小组为单位,选择以下课题进行研究,并在下一节课上进行汇报。
a.等腰三角形与等边三角形的关系。
b.等腰三角形在生活中的应用。
c.等腰三角形的判定方法在解决实际问题时的重要性。
讨论结束后,各小组汇报讨论成果,教师点评并给予指导。
(四)课堂练习
设计以下练习题,检验学生对等腰三角形判定方法的理解和应用:
1.判断以下三角形是否为等腰三角形,并说明理由。
2.已知等腰三角形的底和腰长,求底角和顶角的度数。
3.已知等腰三角形的底角,求顶角的度数。
学生在练习过程中,教师巡回指导,解答学生疑问,帮助学生掌握解题方法。
人教版初中八年级上册数学《等腰三角形的判定》精品教案
第2课时等腰三角形的判定【知识与技能】1.理解掌握等腰三角形的判定.2.运用等腰三角形判定进行证明和计算.【过程与方法】通过推理证明等腰三角形的判定定理,发展学生的推理能力,培养学生分析、归纳问题的能力.【情感态度】引导学生观察,发现等腰三角形的判定方法,获得成功的感受,并在这个过程中体验学习的乐趣.【教学重点】等腰三角形的判定定理.【教学难点】等腰三角形判定定理的证明.一、情境导入,初步认识先请学生回忆等腰三角形的性质,再向学生提出下列问题.问题1 如图,位于海上A,B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B.如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素).引导学生作如下思考:(1)应该能同时赶到出事地点,因为两艘救生船的速度相同,同时出发,在相同的时间内走过的路程应该相同,也就是OA=OB,所以两船能同时赶到出事地点.(2)能同时赶到O点位置的一个很重要的因素是∠A=∠B,也就是说如果∠A不等于∠B,那么同时以同样的速度出发就不能同时赶到出事地点.【教学说明】教师讲课前,先让学生完成“自主预习”.问题2 根据上述探究,考虑:“在一个三角形中,如果两个角相等,那么它们所对的边也相等”,并证明这个结论.1.指导学生表述结论并写出证明过程.2.指出表述要严谨,如不能说成:“如果一个三角形的两个底角相等,那么它是等腰三角形”.二、思考探究,获取新知例1 求证:如果一个三角形的一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.【教学说明】本题是文字叙述的证明题,先应将文字语言转化为相应的数学语言,再根据题意画出相应的几何图形.要证明这个问题,由特征结论联想“等角对等边”,而等角由已知的平行线和角平分线可推得.例2 如图,标杆AB高5m,为了将它固定,需要由它的中点C向地面上与点B距离相等的D,E两点拉两条绳子,使得D,B,E在一条直线上,量得DE=4m,绳子CD和CE要多长?【教学说明】这是一个与实际生活相关的问题,要解决这类问题,需要将实际问题抽象为数学模型.本题的实质是已知等腰三角形的底边和底边上的高,求腰长的问题.解:如图(2),选取比例尺为1∶100.①作线段DE=4cm.②作线段DE的垂直平分线MN,与DE交于点B.③在MN上截取BC=2.5cm.④连接CD,CE,△CDE就是所求的等腰三角形,量出CD的长,就可以计算出要求的绳长.例3 如图,已知△ABC中,AB=AC,BD,CE分别是两腰上的中线.求证:BD=CE.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角).又∵CD=21AC,BE=21AB, ∴CD=BE.在△BEC 和△CDB 中,∵BE=CD,∠ABC=∠ACB,BC=CB, ∴△BEC ≌△CDB(SAS).∴BD=CE.三、运用新知,深化理解1.如图,∠A=36°,∠DBC=36°,∠C=72°,分别计算∠1,∠2的度数,并说明图中有哪些等腰三角形.2.如图,把一张矩形的纸沿对角线折叠,重合部分是一个等腰三角形吗?为什么?3.如图,AC 和BD 相交于点O,AB ∥DC,OA=OB.求证:OC=OD.4.如图,在△ABD 中,C 是BD 上的一点,且AC ⊥BD,AC=BC=CD.(1)求证:△ABD 是等腰三角形.(2)求∠BAD 的度数.【教学说明】上述习题要引导学生边做题边总结,熟悉等腰三角形的性质与判定常与哪些知识在一起应用,等腰三角形性质与判定间有什么区别与联系,并鼓励学生探究一题多解的方法.【答案】1.∠1=72°,∠2=36°;等腰三角形有:△ABC、△ABD、△BCD2.是等腰三角形,可证得∠1=∠23.∵OA=OB,∴∠A=∠B.又∵AB∥DC,∴∠A=∠C,∠B=∠D.∴∠C=∠D,∴OC=OD(等角对等边).4.(1)证明:∵AC⊥BD,∴∠ACB=∠ACD=90°.又∵AC=AC,BC=CD,∴△ACB≌△ACD(SAS).∴AB=AD(全等三角形的对应边相等).∴△ABD是等腰三角形.(2)由(1)可知AB=AD,∴∠B=∠D.又∵AC=BC,∴∠B=∠BAC,∴AC=CD.∴∠D=∠DAC.在△ABD中,∠B+∠D+∠BAC+∠DAC=180°.∴2(∠BAC+∠DAC)=180°,∴∠BAC+∠DAC=90°,即∠BAD=90°.四、师生互动,课堂小结利用问题指导学生总结:问题1 你学会了几种判定等腰三角形的方法?问题2 等腰三角形性质与判定有哪些联系和区别?【总结】本节课主要探究了等腰三角形判定定理,并对判定定理的简单应用有了一定的认识,在利用定理的过程中体会定理的重要性.在直观的探索和抽象的证明中养成一定的逻辑推理能力.1.布置作业:从教材“习题13.3”中选取.2.完成练习册中本课时的练习.利用等腰三角形的性质定理与判定定理的互逆关系来学习等腰三角形的判定是很重要、很常见的研究问题的方法,本节之前线段垂直平分线的知识的学习及以后学习平行四边形等特殊四边形的知识时会反复用到这种方法.---------------------学习小技巧---------------小学生制定学习计划的好处小学生想要成绩特别的突出学习计划还是不能少的。
初中数学初二数学上册《等腰三角形的判定定理》教案、教学设计
2.运用探究式教学法,引导学生通过观察、猜想、验证等过程,自主发现等腰三角形的判定定理。
-教师提供丰富的学习资源,如几何画板、实际模型等,帮助学生直观地理解等腰三角形的性质。
3.开展小组合作学习,让学生在交流、讨论中加深对判定定理和性质的理解,培养合作意识和团队精神。
2.拓展阅读:查阅相关资料,了解等腰三角形在生活中的应用,如建筑、艺术等领域。将所学知识与实际生活相结合,提高数学应用意识。
3.小组讨论:针对本节课的难点和重点,小组内展开讨论,总结学习方法,分享解题心得。培养团队合作精神,提高沟通交流能力。
4.课后反思:请同学们撰写一篇课后反思,内容包括对本节课知识的理解、学习过程中的困惑、解题方法的总结等。通过反思,提高自我认知,促进学习方法的改进。
(一)教学重点
1.等腰三角形的判定定理:学生需要掌握如何判断一个三角形是否为等腰三角形,理解并运用判定定理。
2.等腰三角形的性质:学生应学会运用性质解决相关问题,如求底边长、底角、腰长等。
3.实际问题中的应用:培养学生将等腰三角形知识应用于解决生活中的问题。
(二)教学难点
1.判定定理的理解与运用:学生对判定定理的理解可能存在困难,需要通过实例和练习加深理解。
初中数学初二数学上册《等腰三角形的判定定理》教案、教学设计
一、教学目标
(一)知识与技能
1.理解等腰三角形的定义,掌握等腰三角形的判定定理。
2.能够运用等腰三角形的判定方法判断给定三角形是否为等腰三角形。
3.学会运用等腰三角形的性质解决相关问题,如求等腰三角形的底边长、底角、腰长等。
4.能够运用等腰三角形的判定与性质解决实际生活中的问题,提高数学应用能力。
八年级《等腰三角形》数学教案4篇
八年级《等腰三角形》数学教案4篇教案,也称课时计划,教师经过备课,以课时为单位设计的具体教学方案,教案是上课的重要依据,通常包括:班级、学科、课题、上课时间、课的类型、教学方法、教学目的、教学内容、课的进程和时间分配等。
以下是我为大家整理的,感谢您的欣赏。
八年级《等腰三角形》数学教案1教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.教学重点1.等腰三角形的概念及性质.2.等腰三角形性质的应用.教学难点等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在ABC中,AB=AC,作底边BC的中线AD,因为所以BAD≌CAD(SSS).所以∠B=∠C.[生乙]如右图,在ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以BAD≌CAD.所以BD=CD,∠BDA=∠CDA=∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出ABC的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.(课件演示)[例]因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在ABC中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本P141练习1、2、3.练习1.如下图,在下列等腰三角形中,分别求出它们的底角的度数.答案:(1)72°(2)30°2.如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD.3.如右图,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本P138~P140,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.课后作业(一)课本P147─1、3、4、8题.(二)1.预习课本P141~P143.2.预习提纲:等腰三角形的判定.Ⅵ.活动与探究如右图,在ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质.结果:证明:延长CD交AB的延长线于P,如右图,在ADP 和ADC中ADP≌ADC.∠P=∠ACD.又DE∥AP,∠4=∠P.∠4=∠ACD.DE=EC.同理可证:AE=DE.AE=CE.板书设计§14.3.1.1等腰三角形(一)一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业八年级《等腰三角形》数学教案2一、教材的地位和作用现实生活中,等腰三角形的应用比比皆是.所以,利用“轴对称”的知识,进一步研究等腰三角形的特殊性质,不仅是现实生活的需要,而且从思想方法和知识储备上,为今后研究“四边形”和“圆”的性质打下坚实的基础.性质“等腰三角形的两个底角相等”是几何论证过程中,证明“两个角相等”的重要方法之一.“等腰三角形底边上的三条重要线段重合”的性质是今后证明“两条线段相等”“两条直线互相垂直”“两个角相等”等结论的重要理论依据.教学重点:1. 让学生主动经历思考和探索的过程.2. 掌握等腰三角形性质及其应用.教学难点:等腰三角形性质的理解和探究过程.二、学情分析本年级的学生已经研究过一般三角形的性质,积累了一定的经验,动手能力强,善于与同伴交流,这就为本节课的学习做好了知识、能力、情感方面的准备.不同层次的学生因为基础不同,在学习中必然会出现相异构想,这也将是我在教学过程中着重关注的一点.三、目标分析知识与技能1.了解等腰三角形的有关概念和掌握等腰三角形的性质2. 了解等边三角形的概念并探索其性质3. 运用等腰三角形的性质解决问题过程与方法1.通过观察等腰三角形的对称性,发展学生的形象思维.2.探索等腰三角形的性质时,经历了观察、动手实践、猜想、验证等数学过程,积累数学活动经验,发展了学生的归纳推理,类比迁移的能力. 在与他人交流的过程中,能运用数学语言合乎逻辑的进行讨论和质疑,提高了数学语言表达能力.情感态度价值观:1.通过情境创设,使学生感受到等腰三角形就在自己的身边,从而使学生认识到学习等腰三角形的必要性.2.通过等腰三角形的性质的归纳,使学生认识到科学结论的发现,是一个不断完善的过程,培养学生坚强的意志品质.3.通过小组合作,发展学生互帮互助的精神,体验合作学习中的乐趣和成就感.四、教法分析根据学生已有的认知,采取了激疑引趣——猜想探究——应用体验——建构延伸的教学模式,并利用多媒体辅助教学.教学过程教学过程设计意图同学们,我们在七年级已研究了一般三角形的性质,今天我们一起来探究特殊的三角形:等腰三角形.等腰三角形的定义有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角.腰和底边的夹角叫做底角.提出问题:生活中有哪些现象让你联想到等腰三角形?首先让学生明确:本学段的几何图形都是按一般的到特殊的顺序研究的.通过学生描述等腰三角形在生活中的应用,让学生感受到数学就在我们身边,以及研究等腰三角形的必要性.剪纸游戏你能利用手中的这个矩形纸片剪出一个等腰三角形吗? 注意安全呦!学情分析:大部分学生会有自己的想法,根据轴对称图形的性质,利用对折纸片,再“剪一刀”就是就得到了两条“腰”;可能还有的同学会利用正方形的折法,获得特殊的等腰直角三角形;可能还有同学先画图,再依线条剪得.在这个过程中,注重落实三维目标.让学生在获取新知的过程中更好的认识自我,建立自信.我不失时机的对学生给予鼓励和表扬,使活动更加深入,课堂充满愉悦和温馨.知其然,更重要的是知其所以然.因此,我力求让学生关注剪法的理性思考.我设计了问题:你是如何想到的? 为的是剖析学生的思维过程:“折叠”就是为了得到“对称轴”,“剪一刀”就是就得到了两条“腰”,由“重合”保证了“等腰”.这样就建立了“操作”与“证明”的中间桥梁.从实际操作中得到证明的方法,也为发现“三线合一”做了铺垫.提出问题:等腰三角形还有什么性质?请提出你的猜想,验证你的猜想?并填写在学案上.合作小组活动规则:1、有主记录员记录小组的结论;2、定出小组的主发言人(其它同学可作补充);3、小组探究出的结论是什么?4、说明你们小组所获得结论的理由.等腰三角形的性质:性质一:等腰三角形的两个底角相等(简称“等边对等角”).性质二:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(简称“三线合一”).学情分析:这个环节是本节课的重点,也是教学难点.尽管在教学过程中,因为学生的相异构想,数学猜想的初始叙述不准确,甚至不正确,但我不会立即去纠正他们,而是让同学们不断地质疑﹑辨析、研讨和归纳,逐渐完善结论.让他们真正经历数学知识的形成过程,真正的体现以人为本的教学理念,努力创设和谐的教育教学的生态环境.通过设置恰当的动手实践活动,引导学生经历观察、动手实践、猜想、验证等数学探究活动,这种探究的学习过程,恰恰是研究几何图形性质的一般规律和方法.(1)在此环节中,我的教学要充分把握好“四让”:能让学生观察的,尽量让学生观察;能让学生思考的,尽量让学生思考;能让学生表达的,尽量让学生表达;能让学生作结论的,尽量让学生作结论.这种教学方式,把学习的过程真正还给学生,不怕学生说不好,不怕学生出问题,其实学生说不好的地方、学生出问题的地方都正是我们应该教的地方,是教学的切入点、着眼点、增长点.(2)教师在这个过程中,充分听取和参与学生的小组讨论,对有困难的学生,及时指导.巩固知识1.等腰三角形顶角为70°,它的另外两个内角的度数分别为________;2.等腰三角形一个角为70°,它的另外两个内角的度数分别为_____;3.等腰三角形一个角为100°,它的另外两个内角的度数分别为_____.内化知识1.如图1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度数吗?知识迁移等边三角形有什么特殊的性质?简单地叙述理由.等边三角形的性质定理:等边三角形的各角都相等,并且每一个角都等于60°.拓展延伸如图2,在△ABC中,AB=AC,点D,E在BC上,AD=AE,你能说明BD=EC?由于学生之间存在知识基础、经验和能力的差异,我为学生提供了层次分明的反馈练习.将练习从易到难,从简到繁,以适应不同阶段、不同层次的学生的需要.让学生拾阶而上,逐步掌握知识,使学困生达到简单运用水平,中等生达到综合运用水平,优等生达到创建水平.畅谈收获总结活动情况,重在肯定与鼓励.引导学生从本课学习中所得到的新知识,运用的数学思想方法,新旧知识的联系等方面进行反思,提高学生自主建构知识网络、分析解决问题的能力.帮助学生梳理知识,回顾探究过程中所用到的从特殊到一般的数学方法,启发学生更深层次的思考,为学生的下一步学习做好铺垫.反思过程不仅是学生学习过程的继续,更重要的是一种提高和发展自己的过程.基础性作业:P65 习题1、2、3、4八年级《等腰三角形》数学教案3教学目标:【知识与技能】1、理解并掌握等腰三角形的性质。
北京版数学八年级上册《等腰三角形的判定》教学设计
北京版数学八年级上册《等腰三角形的判定》教学设计一. 教材分析《等腰三角形的判定》是北京版数学八年级上册第三章“三角形”的内容。
本节课主要让学生掌握等腰三角形的性质,并学会运用这些性质判定一个三角形是否为等腰三角形。
学生通过学习本节课,为后续学习三角形的全等、相似等知识打下基础。
二. 学情分析学生在七年级已经学习了三角形的性质,对三角形有了一定的认识。
但他们对等腰三角形的性质和判定方法还不够了解。
此外,学生对图形的观察和操作能力有待提高,因此需要在教学过程中加强实践操作和小组合作。
三. 教学目标1.知识与技能:掌握等腰三角形的性质,学会判定一个三角形是否为等腰三角形。
2.过程与方法:通过观察、操作、讨论等方法,培养学生的空间想象能力和动手能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、合作的精神。
四. 教学重难点1.重点:等腰三角形的性质及判定方法。
2.难点:如何运用等腰三角形的性质判定一个三角形是否为等腰三角形。
五. 教学方法1.情境教学法:通过生活实例引入等腰三角形,激发学生的兴趣。
2.启发式教学法:引导学生发现等腰三角形的性质,培养学生独立思考的能力。
3.小组合作学习:让学生在小组内讨论、操作,提高学生的合作能力。
4.归纳总结法:引导学生总结等腰三角形的性质和判定方法。
六. 教学准备1.教学PPT:制作包含图片、动画等多媒体素材的PPT,直观展示等腰三角形的性质和判定方法。
2.实物模型:准备一些等腰三角形模型,用于让学生直观感知。
3.练习题:准备一些有关等腰三角形的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例引入等腰三角形,如:金字塔、剪刀等,让学生感受等腰三角形在生活中的应用。
提问:这些图形有什么共同特点?引发学生思考,引出本节课的主题。
2.呈现(10分钟)通过PPT展示等腰三角形的定义和性质,让学生直观感知。
同时,展示一些非等腰三角形的图形,让学生对比区分。
等腰三角形判定教案5篇
等腰三角形判定教案5篇等腰三角形判定教案5篇本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;下面是小编给大家整理的等腰三角形判定教案5篇,希望大家能有所收获!等腰三角形判定教案1一、教学目标:1.使学生掌握等腰三角形的判定定理及其推论;2.掌握等腰三角形判定定理的运用;3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;4.通过自主学习的发展体验获取数学知识的感受;5.通过知识的纵横迁移感受数学的辩证特征.二、教学重点:等腰三角形的判定定理三、教学难点性质与判定的区别四、教学流程1、新课背景知识复习(1)请同学们说出互逆命题和互逆定理的概念估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.已知:如图,△ABC中,∠B=∠C.求证:AB=AC.教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形.要让学生自己推证这两条推论.小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.3.应用举例例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.证明:(略)由学生板演即可.补充例题:(投影展示)1.已知:如图,AB=AD,∠B=∠D.求证:CB=CD.分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD 为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.证明:连结BD,在中,(已知)(等边对等角)(已知)即(等角对等边)小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.2.已知,在中,的平分线与的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.证明: DE//BC(已知),BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结:(1)等腰三角形判定定理及推论.(2)等腰三角形和等边三角形的证法.七.练习教材 P.75中1、2、3.八.作业教材 P.83 中 1.1)、2)、3);2、3、4、5.五、板书设计等腰三角形判定教案2§12.3.1.2 等腰三角形判定教学目标(一)教学知识点探索等腰三角形的判定定理.(二)能力训练要求通过探索等腰三角形的判定定理及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;(三)情感与价值观要求通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.教学重点等腰三角形的判定定理的探索和应用。
人教版八年级数学上册13.3《等腰三角形的判定》优秀教学案例
在总结归纳环节,我会邀请各小组代表分享他们的讨论成果,并对每个判定方法进行点评和补充。然后,我会对等腰三角形的判定方法进行系统总结,强调以下几点:
1.等腰三角形的定义及其性质。
2.常见的等腰三角形判定方法及其证明。
3.等腰三角形在实际问题中的应用。
(五)作业小结
在作业小结环节,我会布置以下作业:
1.根据课堂学习,完成课后练习题,巩固等腰三角形的判定方法。
2.收集生活中的等腰三角形实例,并尝试用所学知识解释其原理。
3.思考等腰三角形在其他学科领域的应用,如物理、化学等。
五、案例亮点
1.生活化的情景创设
本案例以生活化的情景为切入点,将等腰三角形与学生的日常生活紧密联系在一起。通过展示古代建筑、艺术作品等中的等腰三角形,让学生感受到数学知识在实际生活中的广泛应用,从而提高他们对数学学习的兴趣和积极性。
4.培养学生的空间观念,提高他们在实际生活中发现和运用等腰三角形知识的能力。
(二)过程与方法
1.通过小组合作、讨论交流等形式,引导学生主动探究等腰三角形的判定方法,培养他们的逻辑思维能力和解决问题的方法。
2.设计丰富的教学活动,如几何画板演示、实际操作等,让学生在观察、实践、总结的过程中掌握等腰三角形的性质和应用。
2.问题导向的探究式学习
本案例以问题为导向,引导学生主动思考、探究等腰三角形的性质和判定方法。设计由浅入深的问题,激发学生的求知欲望,培养他们分析问题、解决问题的能力。
ห้องสมุดไป่ตู้3.小组合作促进交流与协作
小组合作是本案例的一大亮点。通过小组讨论、交流,学生可以相互借鉴、取长补短,共同解决问题。这种教学方式有助于培养学生的团队协作意识、沟通能力和表达能力。
湘教版数学八年级上册2.3《等腰(边)三角形的判定》教学设计
湘教版数学八年级上册2.3《等腰(边)三角形的判定》教学设计一. 教材分析湘教版数学八年级上册2.3《等腰(边)三角形的判定》是学生在学习了三角形的基本概念和性质之后的一个拓展内容。
本节内容主要引导学生探究等腰三角形的性质,并通过一系列的实践活动让学生理解和掌握等腰三角形的判定方法。
教材通过丰富的几何图形和实际的例题,激发学生的学习兴趣,培养学生动手操作和解决问题的能力。
二. 学情分析学生在学习本节内容之前,已经掌握了三角形的基本概念和性质,能够识别各种类型的三角形。
但是,对于等腰三角形的判定,学生可能还比较陌生,需要通过实际的操作和例题来理解和掌握。
此外,学生可能对等腰三角形的性质和判定方法在实际应用中的灵活运用还需要进一步的引导和培养。
三. 教学目标1.知识与技能:让学生理解和掌握等腰三角形的判定方法,能够运用等腰三角形的性质解决实际问题。
2.过程与方法:通过观察、操作、探究等腰三角形的性质,培养学生的动手操作和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和克服困难的决心。
四. 教学重难点1.重点:等腰三角形的判定方法。
2.难点:等腰三角形性质在实际问题中的灵活运用。
五. 教学方法1.情境教学法:通过丰富的几何图形和实际的例题,激发学生的学习兴趣,引导学生主动探究。
2.实践活动法:让学生通过实际的操作和例题,理解和掌握等腰三角形的判定方法。
3.小组合作学习法:引导学生进行团队合作,培养学生的团队合作意识和解决问题的能力。
六. 教学准备1.教具:几何画板、直尺、三角板、多媒体设备等。
2.学具:学生用书、练习册、铅笔、橡皮等。
七. 教学过程1.导入(5分钟)教师通过多媒体展示一些实际的例子,引导学生观察和思考:什么是等腰三角形?等腰三角形有哪些性质?2.呈现(10分钟)教师通过几何画板展示等腰三角形的判定过程,引导学生观察和思考等腰三角形的判定方法。
3.操练(10分钟)教师给出一些实际的例题,让学生运用所学的判定方法进行解答,并及时给予反馈和指导。
湘教版数学八年级上册2.3《等腰(边)三角形的判定》教学设计1
湘教版数学八年级上册2.3《等腰(边)三角形的判定》教学设计1一. 教材分析湘教版数学八年级上册2.3《等腰(边)三角形的判定》是初中数学的重要内容,主要让学生掌握等腰三角形的判定方法,并能够应用判定方法解决实际问题。
本节课的内容是在学生已经掌握了三角形的基本概念和性质的基础上进行授课的,为学生后面学习三角形的全等和相似奠定了基础。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于三角形的基本概念和性质有一定的了解。
但是,学生在学习过程中容易混淆等腰三角形和等边三角形的概念,对于等腰三角形的判定方法的理解和应用还需要加强。
三. 教学目标1.让学生掌握等腰三角形的判定方法,并能够应用判定方法解决实际问题。
2.培养学生的逻辑思维能力和空间想象能力。
3.提高学生分析问题、解决问题的能力。
四. 教学重难点1.等腰三角形的判定方法的掌握。
2.等腰三角形性质的应用。
五. 教学方法采用问题驱动法、案例分析法、合作交流法等教学方法,引导学生主动探究,提高学生的学习兴趣和参与度。
六. 教学准备1.准备相关课件和教学素材。
2.准备等腰三角形的模型或图片。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)利用课件或图片展示等腰三角形的实例,引导学生观察等腰三角形的特征,激发学生的学习兴趣。
提问:你们知道什么是等腰三角形吗?等腰三角形有哪些特点?2.呈现(10分钟)介绍等腰三角形的定义和性质,通过PPT或板书展示等腰三角形的判定方法。
引导学生理解等腰三角形的判定方法,并能够运用判定方法判断一个三角形是否为等腰三角形。
3.操练(10分钟)让学生分组讨论,每组选取一个三角形,判断它是否为等腰三角形。
每组派代表汇报判断结果和判断过程,教师给予点评和指导。
4.巩固(10分钟)出示一些判断题,让学生独立完成,检验学生对等腰三角形判定方法的掌握程度。
教师选取部分学生的作业进行讲评,指出解题中的错误和不足。
浙教版数学八年级上册2.4《等腰三角形的判定》说课稿
浙教版数学八年级上册2.4《等腰三角形的判定》说课稿一. 教材分析《等腰三角形的判定》是浙教版数学八年级上册第2章第4节的内容。
本节课是在学生已经掌握了三角形的基本概念和性质的基础上进行授课的。
等腰三角形是三角形的一种特殊形式,它有两边相等,两个角也相等。
本节课的教学内容主要包括等腰三角形的定义、性质和判定方法。
通过学习本节课,学生能够进一步理解三角形的性质,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的几何知识基础。
但学生对等腰三角形的判定方法可能还比较陌生,需要通过实例和推理来理解和掌握。
此外,学生可能对证明过程的书写和逻辑推理还需要进一步的指导和培养。
三. 说教学目标1.知识与技能目标:学生能够理解等腰三角形的定义和性质,掌握等腰三角形的判定方法,并能运用判定方法解决问题。
2.过程与方法目标:通过观察、操作、推理等过程,培养学生的几何思维能力和逻辑推理能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探究的精神。
四. 说教学重难点1.教学重点:等腰三角形的定义、性质和判定方法。
2.教学难点:等腰三角形判定方法的推理和证明过程。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法和引导发现法进行教学。
2.教学手段:利用多媒体课件、几何模型等教学辅助工具,帮助学生直观地理解等腰三角形的性质和判定方法。
六. 说教学过程1.导入新课:通过复习三角形的基本概念和性质,引出等腰三角形的定义和性质。
2.探究判定方法:学生分组讨论,每组尝试给出等腰三角形的判定方法,教师进行指导和点拨。
3.推理与证明:学生根据判定方法,进行推理和证明,教师进行评价和反馈。
4.巩固练习:学生进行练习,教师进行讲解和解答。
5.总结与拓展:学生总结等腰三角形的性质和判定方法,教师提出拓展问题,激发学生的思考。
七. 说板书设计板书设计如下:等腰三角形的判定1.定义:两边相等,两个角也相等a.两边相等b.两个角相等c.底角相等2.判定方法:a.两边相等,则两个角也相等b.两个角相等,则两边也相等c.底角相等,则两边也相等八. 说教学评价教学评价主要包括两个方面:一是对学生的评价,二是对教师的评价。
华东师大版八年级上册数学教学设计《13.3.2等腰三角形的判定》
华东师大版八年级上册数学教学设计《13.3.2等腰三角形的判定》一. 教材分析《13.3.2等腰三角形的判定》是华东师大版八年级上册数学教材中的一个重要内容。
这部分内容主要让学生掌握等腰三角形的判定方法,并能够应用于实际问题中。
在此之前,学生已经学习了三角形的性质和分类,为本节课的学习打下了基础。
教材通过引入等腰三角形的定义和性质,引导学生探索并证明等腰三角形的判定方法,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析八年级的学生已经具备了一定的几何知识基础,对于三角形的性质和分类有一定的了解。
但是,学生在应用这些知识解决实际问题时,往往会遇到一些困难。
因此,在教学过程中,教师需要关注学生的认知水平,通过引导和激励,激发学生的学习兴趣,帮助学生建立清晰的知识体系,提高学生解决问题的能力。
三. 教学目标1.知识与技能目标:使学生掌握等腰三角形的判定方法,能够正确判断一个三角形是否为等腰三角形。
2.过程与方法目标:通过观察、操作、探索等活动,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和积极进取精神。
四. 教学重难点1.教学重点:等腰三角形的判定方法。
2.教学难点:如何引导学生探索并证明等腰三角形的判定方法。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动参与课堂活动。
2.问题驱动法:教师提出问题,引导学生思考和探索,激发学生的学习动力。
3.合作学习法:学生进行小组讨论和合作,培养学生的团队合作意识和沟通能力。
4.实践操作法:引导学生进行实际操作,培养学生的动手能力和解决问题的能力。
六. 教学准备1.教学课件:制作多媒体课件,包括图片、动画、视频等,用于辅助教学。
2.教学道具:准备一些三角形模型,用于引导学生观察和操作。
3.练习题:准备一些相关的练习题,用于巩固学生的知识。
七. 教学过程1.导入(5分钟)教师通过引入实际问题,激发学生的学习兴趣,并提出问题:“如何判断一个三角形是否为等腰三角形?”引导学生思考和探索。
等腰三角形的教学设计(9篇)
等腰三角形的教学设计(9篇)等腰三角形篇一2.5等腰三角形的轴对称性(2)教学目标1.掌握等腰三角形的判定定理。
2.知道等边三角形的性质以及等边三角形的判定定理。
3.经历折纸、画图、观察、推理等操作活动的合理性进行证明的过程,不断感受合情推理和演绎推理都是人们正确认识事物的重要途径。
4.会用“因为……所以……理由是……”或“根据……因为……所以……”等方式来进行说理,进一步发展有条理地思考和表达,提高演绎推理的能力。
教学重点熟练地掌握等腰三角形的判定定理。
教学难点正确熟练地运用定理解决问题及简洁地逻辑推理。
教学过程(教师活动)学生活动设计思路前面我们学习了等腰三角形的轴对称性,说说你对等腰三角形的认识。
本节课我们将继续学习等腰三角形的轴对称性。
一、创设情境如图所示△abc是等腰三角形,ab=ac,它的一部分被墨水涂没了,只留下一条底边bc 和一个底角△c.请同学们想一想,有没有办法把原来的等腰三角形abc重新画出来?大家试试看。
1.学生观察思考,提出猜想。
2.小组交流讨论。
一方面回忆等边对等角及其研究方法,为学生研究等角对等边提供研究的方法,另一方面通过创设情境,自然地引入课题。
二、探索发现一请同学们分别拿出一张半透明纸,做一个实验,按以下方法进行操作:(1)在半透明纸上画一条长为6cm的线段bc.(2)以bc为始边,分别以点b和点c为顶点,在bc的同侧用量角器画两个相等的锐角,两角终边的交点为a.(3)用刻度尺找出bc的中点d,连接ad,然后沿ad对折。
问题1:ab与ac有什么数量关系?问题2:请用语言叙述你的发现。
1.根据实验要求进行操作。
2.画出图形、观察猜想。
3.小组合作交流、展示学习成果。
演示折叠过程为进一步的说理和推理提供思路。
通过动手操作、演示、观察、猜想、体验、感悟等学习活动,获得知识为今后学生进行探索活动积累数学活动经验。
三、分析证明思考:我们利用了折叠、度量得到了上述结论,那么如何证明这些结论呢?问题3:已知如图,在△abc中,△b=△c.求证:ab=ac.引导学分析问题,综合证明。
最新版初中数学教案《等腰三角形的判定》精品教案(2022年创作)
第2课时等腰三角形的判定一、新课导入1.导入课题:我们知道如果一个三角形有两条边相等,那么它们所对的角相等,反过来如果一个三角形有两个角相等,那么它们所对的边是否也相等呢?这节课我们带着这个问题研究等腰三角形的判定方法.2.学习目标:(1)会阐述、推证等腰三角形的判定定理.(2)会运用判定定理解决证明线段相等的问题.3.学习重、难点:重点:等腰三角形判定定理的灵活运用.难点:探求等腰三角形的判定定理的证明.二、分层学习1.自学指导:(1)自学内容:探究等腰三角形的判定方法.(2)自学时间:5分钟.(3)自学方法:经历“操作——猜想——归纳——结论〞过程,分清等腰三角形的判定定理的题设与结论.(4)探究提纲:①按等腰三角形的定义,有两边相等的三角形是等腰三角形.②如图,在△ABC中,∠B=∠C,那么AB与AC相等吗?假设相等,又该如何证明呢?a.猜想:AB=AC.b.要证明两条线段相等,按以往的经验是采用什么方法?证三角形全等.c.要采用这些方法,图中具备采用这种方法的条件吗?假设不具备,应怎么办?不具备,作辅助线构造全等三角形.d.根据思路,并写出你的证明.证明:作AD⊥BC于点D,那么∠ADB=∠ADC=90°.在△ABD和△ACD中,∠B=∠C,∠ADB=∠ADC,AD=AD,∴△ABD≌△ACD(AAS).∴AB=AC.e.将你上述探究的结论用文字表述出来:等角对等边.2.自学:学生结合探究提纲进行自主探究.3.助学:(1)师助生:①明了学情:了解学生对自己的猜想是否正确,证明线段相等的思路是否合理,结论表述是否清晰、准确.②差异指导:引导学生回忆证明等量的常用方法是证明三角形全等,如何构造全等三角形进行点拨引导.(2)生助生:学生间相互交流帮助,寻求解决问题的思路.4.强化:(1)交流学习成果:由学生代表答复自己是如何找出解决问题的探究方法的.(2)总结:等腰三角形的判定方法:“等角对等边〞.1.自学指导:(1)自学内容:教材第78页例2、例3.(2)自学时间:10分钟.(3)自学方法:边看边思考例2中命题证明的步骤及例3中每一步作图的依据,并动手尝试.(4)自学参考提纲:①例2中的题设和结论是用文字表述的,它是一个命题,从证明的全过程来看,证明命题的步骤有a.;b.求证;c.证明.②填上例2证明中每步后面的理由.两直线平行,同位角相等;两直线平行,内错角相等;等角对等边.③阅读例3,思考作法(2)为什么要作AB的垂直平分线?它依据了线段垂直平分线的什么性质?可以在上面截取DC=h,依据线段垂直平分线上的点到这条线段两个端点的距离相等.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:例2、例3是等腰三角形判定的直接应用,例2的求证步骤学生难于把握,但学生对例3这种类型的题目,一般的学生不知道怎样找腰,并不能很好地写出完整的作法.②差异指导:引导学生学会命题证明题的步骤,引导学生思考例3中如何找到这个等腰三角形的腰(确定相等的两条边).(2)生助生:学生间相互交流帮助.4.强化:练习:教材第79页3、4题练习3::△ABC,D为AC的中点,BD=12AC.求证:∠ABC=90°.证明:∵D为AC的中点,BD=12AC.∴AD=BD=DC,∴∠A=∠ABD,∠C=∠∵∠A+∠ABC+∠C=∠A+∠ABD+∠C+∠DBC=2(∠ABD+∠DBC)=2∠ABC=180.∴∠ABC=90°,∴△ABC是直角三角形.练习4:∵OA=OB,∴∠A=∠B,又∵AB∥DC,∴∠C=∠A=∠D=∠B,∴OC=OD.三、评价1.学生的自我评价〔围绕三维目标〕:学生交谈自己的学习收获和学习中的困惑之处.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、学习方法、成果和缺乏进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:利用等腰三角形的性质定理与判定定理的互逆关系来学习等腰三角形的判定是很重要、很常见的研究问题的方法,本节之前线段垂直平分线的知识的学习及以后学习平行四边形等特殊四边形的知识时会反复用到这种方法.一、根底稳固〔每题10分,共50分〕1.如图,∠A=36°,∠C=72°,∠DBC=36°,那么图中等腰三角形有〔A〕个2.如下列图,OC平分∠AOB,CD∥OB.假设OD=3,那么CD 等于〔A〕∶3∶2,那么这个三角形是等腰三角形.4.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O,过O的平行线交AB于M,交AC于N.假设AB=5,AC=7,BC=8,那么△AMN的周长为12.第4题图第5题图5.如下列图,在△ABC中,AB=AC,要使AD=AE,需要添加的一个条件是BE=CD.〔答案不唯一〕二、综合应用〔20分〕6.:CE、CF分别平分∠ACB和它的外角∠ACM,EF∥BC,EF 交AC于点D,E是CE与AB的交点.求证:DE=DF.证明:∵CF平分∠ACM,∴∠ACF=∠MCF.∵CE平分∠ACB,∴∠ACE=∠BCE.∵EF∥BC,∴∠F=∠MCF=∠ACF,∠FEC=∠BCE=∠ACE,∴DF=DC,DE=DC,∴DE=DF.三、拓展延伸〔30分〕7.〔1〕如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?〔2〕上题中,假设去掉条件AB=AC,其他条件不变,图中还有等腰三角形吗?解:(1)△ABC,△ADE,△BDF,△CEF,△BCF都是等腰三角形.(2)有△BDF和△CEF是等腰三角形.∵BF平分∠ABC,CF平分∠ACB,∴∠ABF=∠CBF,∠ACF=∠BCF.又DE∥BC,∴∠DFB=∠CBF=∠ABF,∠EFC=∠BCF=∠ACF,∴DF=DB,EF=EC.∴△BDF和△CEF是等腰三角形.【知识与技能】了解正多边形和圆的关系,了解正多边形半径和边长,边心距,中心,中心角等概念.会应用正多边形的有关知识解决圆中的计算问题.会用圆规、量角器和直尺来作圆内接正多边形.【过程与方法】结合生活中的正多边形形状的图案,发现正多边形和圆的关系,然后学会用圆的有关知识,解决正多边形的问题.【情感态度】学生经历观察、发现、探究等数学活动,感受到数学来源于生活、又效劳于生活,表达事物之间是相互联系,相互作用的.【教学重点】正多边形与圆的相关概念及其之间的运算.【教学难点】探索正多边形和圆的关系,正多边形半径,中心角、弦心距,边长之间的关系.一、情境导入,初步认识观察这些美丽的图案,都是在日常生活中,我们经常能看到的利用正多边形得到的物体.〔1〕你能从图案中找出多边形吗?〔2〕你知道正多边形和圆有什么关系吗?怎样就能作出一个正多边形来?【教学说明】学生通过观察美丽的图案,欣赏生活中正多边形形状的物体.让学生感受到数学来源于生活,并从中感受到数学美.问题〔2〕的提出是为了创设一个问题情境,激起学生主动将所学圆的知识与正多边形联系起来,激发学生积极探索、研究的热情,并有意将注意力集中在正多边形和圆的关系上.二、思考探究,获取新知问题1将一个圆分成5等份,依次连接各分点得到一个五边形,这五边形一定是正五边形吗?如果是,请你证明这个结论.教师引导学生根据题意画图,并写出和求证.:如图,在⊙O中,A、B、C、D、E是⊙O的五等分点.依次连接ABCDE 形成五边形.问:五边形ABCDE是正五边形吗?如果是,请证明你的结论.答案:五边形ABCDE是正五边形.====,∴AB=BC=CD=DE=EA,证明:在⊙O中,∵AB BC CD DE EA3==,∴∠A=∠B;同理∠B=∠C=∠D=∠E,∴五边形ABCDE BCE CDA AB是正五边形.【教学说明】教师引导学生从正多边形的定义入手证明,即证明多边形各边都相等,各角都相等;引导学生观察、分析,教师带着学生完成证明过程.问题2如果将圆n等分,依次连接各分点得到一个n边形,这个n边形一定是正n边形吗?答案:这个n边形一定是正n边形.【教学说明】在这个问题中,教师重点关注学生是否会仿照证明圆内接正五边形的方法证明圆内接正n边形.从问题1到问题2是将结论由特殊推广到一般,这符合学生的认知规律,并教导学生一种研究问题的方法,由特殊到一般.问题3各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形是正多边形吗?如果是,说明理由;如果不是,举出反例.答案:各边相等的圆内接多边形是正多边形.因为:各边相等的圆内接多边形的各角也相等.各角相等的圆内接多边形不是正多边形.如:矩形.【教学说明】问题3的提出是为了稳固所学知识,使学生明确判定圆内接多边形是正多边形,必须满足各边都相等,各内角也都相等,这两个条件缺一不可.同时教会学生学会举反例.培养学生思维的批判性.综合图形,给出正多边形的中心,半径,中心角,边心距等概念.正n边形:中心角为:360°n;内角的度数为:180°〔n-2〕n例1〔课本106页例题〕有一个亭子,它的地基是半径为4m的正六边形,求地基的周长和面积〔结果保存小数点后一位〕.分析:根据题意作图,将实际问题转化为数学问题.解:如图.∵六边形ABCDEF是正六边形,∴∠BOC=360°/6=60°.∴△BOC是等边三角形.∴R=BC=4m,∴这个亭子地基的周长为:4×6=24〔m〕.过O点作OP⊥△OCP中,OC=R=4,CP=1/2BC=2..例2填空.【教学说明】例1是让学生了解有关正多边形的概念后,掌握正多边形的计算.同时,通过例1引导学生将实际问题转化为数学问题,将多边形化归为三角形来解决.例2通过网格来呈现问题,在解决例2时,教师指导学生用数形结合的方法来解决问题,加深对有关概念的理解.画正多边形,通常是通过等分圆周的方法来画的.等分圆周有两种方式:〔1〕用量角器等分圆周.方法一:由于在同圆或等圆中相等的圆心角所对弧相等,因此作相等的圆心角可以等分圆.方法二:先用量角器画一个等于360°/n的圆心角,这个圆心角所对的弧就是圆的1/n,然后在圆上依次截取这条弧的等弧,就得到圆的几等分点.【教学说明】这两种方法可以任意等分圆,但不可防止地存在误差.〔2〕用尺规等分圆正方形的作法:如图〔1)在⊙O中,尺规作两条垂直的直径,把⊙O四等分,从而作出正方形ABCD.再逐次平分各边所对弧,那么可作正八边形、正十六边形等边数逐次倍增的正多边形.正六边形的作法:方法一:如图〔2〕任意作一条直径AB,再分别以A、B 为圆心,以⊙O的半径为半径作弧,与⊙O交于C、D和E、F,那么A、C、E、B、F、D为⊙O的六等分点,顺次连接各等分点,得到正六边形ACEBFD.方法二:如图〔3〕由于正六边形的半径等于边长.所以在圆上依次截取等于半径的弦,就将圆六等分,顺次连接各等分点即可得到正六边形.【教学说明】尺规作图法是一种比较准确的等分圆的方法,但有较大的局限性,它不能将圆任意等分.三、运用新知,深化理解1.如图,圆内接正五边形ABCDE,对角线AC与BD相交于点P,那么∠APB的度数为_______./π的正方形的内切圆与外接圆所组成的圆环的面积为_____.3.如果一个正六边形的面积与一个正三角形的面积相等,求正六边形与正三角形的内切圆的半径之比.4.如图,点M、N分别是⊙O的内接正三角形ABC,正方形ABCD,正五边形ABCDE,……正n边形的边AB、BC上的点,且BM=CN,连接OM、ON.〔1〕求图1中的∠MON的度数;〔2〕在图2中,∠MON的度数为_____,在图3中,∠MON的度数为_____;〔3〕试探索∠MON的度数与正n边形边数n之间的关系.〔直接写出答案〕【教学说明】题1、2可由学生自主探索完成,题3、4可先让学生思考,然后教师加以提示,最后共同解答.完成教材第106页、108页的练习.°4.解:〔1〕连接OB、OC.∵正三角形ABC内接于⊙O,∴∠OBM=∠OCN=30°,∠BOC=120°.又∵BM=CN,OB=OC,∴△BOM≌△CON,∠BOM=∠CON,∴∠MON=∠BOC=120°.(2)90°72°(解法与〔1〕相同)(3)∠MON=360°/n.四、师生互动,课堂小结通过这节课的学习,你知道正多边形和圆有怎样的关系吗?你知道正多边形的半径、边心距、内角、中心角等概念吗?你能画出正多边形吗?【教学说明】教师先提出问题,然后让学生自主思考并回忆,教师再予以补充和点评.1.布置作业:从教材“〞中选取.练习册中本课时练习的“课后作业〞局部.1.本节课首先从复习正多边形的定义入手,通过创设问题情境,将正多边形与圆紧密联系,让学生发现它们之间的密切关系,并将结论由特殊推广到一般,符合学生的认识规律,通过学习正多边形中的一些根本概念,引导学生将实际问题转化为数学问题,表达了化归的思想.其次,在这一根底上,又教给学生用等分圆周的方法作正多边形,这可以开展学生的作图能力.2.等分圆周法是一种作正多边形的常见方法,通过作简单的正三角形、正方形、正六边形,一直推广到作正八边形的情况,可以向学生灌输极限的思想,极限是微积分中最主要、最根本的概念,它从数量上描述变量在变化过程中的变化趋势,在高中数学中,极限思想渗透到函数、数列等章节,又衔接高等数学,起着承上启下的作用.。
初中数学等腰三角形的性质教案优秀9篇
初中数学等腰三角形的性质教案优秀9篇初中数学等腰三角形的性质教案篇一教学重点:认识等腰三角形和等边三角形以及它们的特征教学目标:1、让学生在实际操作中认识等腰三角形和等边三角形,知道等腰三角形边和角的名称,知道等腰三角形两个底角相等,等边三角形3个内角相等。
2、让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。
3、让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。
教学准备:长方形、正方形纸,剪刀、尺等教学过程:一、复习:关于三角形,你有那些知识?1、按角分成三种角2、三个内角和是180度算第三个角的度数,如果是一般三角形,那就用180去减;如果是直角三角形,那就是90去减二、认识等腰三角形1、比较老师手边的两块三角板,他们有什么相同?(都是直角三角形)有什么不同?(其中有一块三角板的两条边相等,两个角相等;而另一块三角板的角和边都不相同。
)指出:像这种两条边相等的三角形,我们叫它等腰三角形2、折一折、剪一剪取一张长方形纸,对折;画出它的对角线,沿对角线剪开;展开观察:这样剪出来的三角形就是我们今天要认识的等腰三角形。
想一想:为什么要对折后再剪呢?(这样剪出来的两条边肯定是相等的。
)除了两条边是相等的,还有什么也是相等的?你是怎么知道的?初中数学等腰三角形的性质教案篇二教学目标1、掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。
能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。
教学重点等边三角形的。
判定定理和直角三角形的性质定理。
教学难点能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。
教学方法教学后记教学内容及过程一、定理:一个角等于60°的等腰三角形是等边三角形1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。
2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。
湘教版八年级数学上册《等腰三角形的判定》精品教案
证明 ∵△ABC 是等边三角形, ∴∠BAC=∠B=∠C= 60°. ∵∠EAD=∠BAC= 60°, 又 AD =AE, ∴△ADE 是等边三角形(有一个角是 60°的等腰三角形是等 边三角形) 练习 3:已知:如图,AB=BC, ∠CDE= 120°, DF∥BA,且 DF 平分∠CDE,AE 交 BC 的延长线于点 E,且∠ACE= 60°. 求证:△ABC 是等边三角形.
(3)从重要线段看:等腰三角形底边上的高、底边上的中线
与顶角的平分线互相重合(三线合一);
老师的问 题,复习 等腰三角 形的定义 及性质, 为等腰 (边)三
(4)从特殊图形看:等边三角形每个角都相等并且每个角都 等于 60°。 (5)从对称性看:等腰三角形是轴对称图形,对称轴是顶角 平分线所在的直线;等边三角形有三条对称轴.
又∠B=∠C,
由三角形内角和的性质得∠ADB=∠ADC.
沿 AD 所在直线折叠,
由于∠ADB=∠ADC,∠1=∠2,
所以射线 DB 与射线 DC 重合,
射线 AB 与射线 AC 重合.
从而点 B 与点 C 重合,
于是 AB=AC.
在证明的基
归纳:等腰三角形的判定:
础 上 归 纳 出 理解并掌
有两个角相等的三角形是等腰三角形(简称“等角对等边”). 等 腰 三 角 形 握等腰三
《等腰三角形的判定》精品教案
课题 2.3.2 等腰三角形的判定
单元 第二单元 学科
数学 年级 八年级
学习 1、探索并掌握等腰三角形的判定定理及其推论; 目标 2、能运用等腰三角形的判定定理及其推论判定一个三角是等腰(边)三角形.
重点 等腰三角形的判定定理、推论及其应用
难点 利用等腰三角形的判定定理及其推论进行证明.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学教案-等腰三角形的判定
重点与难点分析:本节内容的重点是等腰三角形的判定定理。
本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点。
推论1、2提供证明等边三角形的方法,推论3是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论。
本节内容的难点是性质与判定的区别。
等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反。
学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点。
另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法。
由于知识点的增加,题目的复杂程度也提高,一定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用。
教法建议: 本节课教学方法主要是“以学生为主体的讨论探索法”。
在数学教学中要避免过多告诉学生现成结论。
提倡教师鼓励学生讨论解决问题的方法,引导他们探索数学的内在规律。
具体说明如下:(1)参与探索发现,领略知识形成过程学生学习过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是
否为真命?等同学们证明完了,找一名学生代表发言。
最后找一名学生用文字口述定理的内容。
这样很自然就得到了等腰三角形的判定定理。
这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。
(2)采用“类比”的学习方法,获取知识。
由性质定理的学习,我们得到了几个推论,自然想到:根据等腰三角形的判定定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。
如果学生提到的不完整,教师可以做适当的点拨引导。
(3)总结,形成知识结构为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形?一.教学目标:1.使学生掌握等腰三角形的判定定理及其推论;2.掌握等腰三角形判定定理的运用;3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;4.通过自主学习的发展体验获取数学知识的感受;5.通过知识的纵横迁移感受数学的辩证特征。
二.教学重点:等腰三角形的判定定理三.教学难点:性质与判定的区别四.教学用具:直尺,微机五.教
学方法:以学生为主体的讨论探索法六.教学过程:1、新课背景知识复习(1)请同学们说出互逆命题和互逆定理的概念估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(简称“等角对等边”).由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法。
已知:如图,△ABC中,∠B=∠C.求证:AB=AC.教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系。
2.推论1:
三个角都相等的三角形是等边三角形.推论2:有一个角等于60°的等腰三角形是等边三角形.要让学生自己推证这两条推论.小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.证明三角形是等边三角形的方法:①等边三角形定义;②推论1;
③推论2.3.应用举例例1。
求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.证明:(略)由学生板演即可.补充例题:(投影展示) 1。
已知:如图,AB=AD,∠B=∠D.求证:CB=CD.分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.证明:连结BD,在中,(已知)(等边对等角)(已知)即(等教对等边)小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系。
2.已知,在中,的平分线与的外角平分线交于D,过D 作DE//BC交AC与F,交AB于E,求证:EF=BE-CF。
分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论。
证明: DE//BC(已知),BE=DE,同理DF=CF。
EF=DE-DF EF=BE-CF 小结:(1)等腰三角形判定定理及推论.(2)等腰三角形和等边三角形的证法.七.练习教材 P.75中1、2、3.八.作业教材 P.83 中 1.1)、2)、3);2、3、4、5.。