2014学年第一学期徐汇区学习能力诊断卷高一数学试卷(A、B卷)

合集下载

2024届上海徐汇区高三一模数学试卷和答案

2024届上海徐汇区高三一模数学试卷和答案

2023-2024学年第一学期上海徐汇区学习能力诊断卷高三数学试卷2023.12考生注意:1.本场考试时间120分钟,试卷共4页,满分150分.2.每位考生应同时收到试卷和答题卷两份材料,答卷前,在答题卷上填写姓名、考号等相关信息.3.所有作答务必填涂在答题卷上与试卷题号对应的区域,不得错位,在试卷上作答一律不得分.4.用2B 铅笔作答选择题,用黑色字迹钢笔、水笔或圆珠笔作答非选择题.一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.已知全集U =R ,集合{}2M x x =>,则M =________________.2.不等式11x>的解集是_____________.3.已知直线:2l y kx =+经过点(1,1),则直线l 倾斜角的大小为_______________.4.若实数,x y 满足2x y +=,则22x y +的最小值为______________.5.某学校组织全校学生参加网络安全知识竞赛,成绩(单位:分)的频率分布直方图如图所示,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若该校的学生总人数为1000,则成绩低于60分的学生人数为_________.6.函数lg(21)lg y x x =++的零点是______________.7.已知1021001210(1)x a a x a x a x -=+++⋯+,则57139a a a a a ++++=___________.8.要排出高一某班一天上午5节课的课表,其中语文、数学、英语、艺术、体育各一节,若要求语文、数学选一门第一节课上,且艺术、体育不相邻上课,则不同的排法种数是___________.9.在ABC ∆中,AC BC =,123,P P P ,为边AB 上的点,且1238428PB P B P B AB ====,设(1,2,3)k k k I P B P C k =⋅=,则123I I I -+=___________.10.某建筑物内一个水平直角型过道如图所示,两过道的宽度均为3米,有一个水平截面为矩形的设备需要水平通过直角型过道.若该设备水平截面矩形的宽BC 为1米,则该设备能水平通过直角型过道的长AB 不超过______________米.11.已知一个棱长为的正方体木块可以在一个封闭的圆锥形容器内任意转动,若圆锥的底面半径为3,母线长为6,则实数的最大值为______________.12.已知函数()y f x =,其中12()122x xxf x a +-=--+,存在实数12,,,n x x x 使得11()()n ini f x f x -==∑成立,若正整数n 的最大值为8,则实数a 的取值范围是________.二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设12z z ∈C 、,则“12z z 、中至少有一个虚数”是“12z z -为虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件14.跳水比赛共有7位评委分别给出某选手的原始评分,评定该选手的成绩时,从7个原始评分中去掉1个最高分和1个最低分,得到5个有效评分.5个有效评分与7个原始评分相比,一定不变的数字特征是()A.中位数B.平均数C.方差D.极差15.已知集合{(,)|()}=M x y y =f x ,若对于任意(,)x y M ∈,总存在与之相应的(,)x y M ∈,,(其中x x ≠,),使得()()2222||xx yy x y x y +=+⋅+,,,,成立,则称集合M 是“Ω集合”.下列选项为“Ω集合”的是()A .1{(,)|0 }M x y y =x x=>,B .{(,)|-2}=x M x y y =e C .{(,)|cos }=M x y y =x D .3{(,)|}M x y y =x =16.已知数列{}n a 为无穷数列.若存在正整数l ,使得对任意的正整数n ,均有n l n a a +≤,则称数列{}n a 为“l 阶弱减数列”.有以下两个命题:①数列{}n b 为无穷数列且cos 2n nb n =-(n为正整数),则数列{}n b 是“l 阶弱减数列”的充要条件是4l ≥;②数列{}n c 为无穷数列且11n n q c an q -=+-(n 为正整数),若存在a ∈R ,使得数列{}n c 是“2阶弱减数列”,则11q -≤<.那么()A .①是真命题,②是假命题B .①是假命题,②是真命题C .①、②都是真命题D .①、②都是假命题三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知等差数列{}n a 的前n 项和为n S ,12a =,520=S .(1)求数列{}n a 的通项公式;(2)若等比数列{}n b 的公比为12q =,且满足449a b +=,求数列{}n n a b -的前n 项和n T .18.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,某多面体的底面ABCD 为正方形,MA ‖PB ,MA BC ⊥,AB PB ⊥,1MA =,2AB PB ==.(1)求四棱锥P ABCD -的体积;(2)求二面角B PM D --的平面角的正弦值.19.(本题满分14分,第1小题满分6分,第2小题满分8分)2023年杭州亚运会首次启用机器狗搬运赛场上的运动装备.如图所示,在某项运动赛事扇形场地OAB 中,2AOB π∠=,500OA =米,点Q 是弧AB 的中点,P 为线段OQ 上一点(不与点O ,Q 重合).为方便机器狗运输装备,现需在场地中铺设三条轨道PO ,PA ,PB .记APQ θ∠=,三条轨道的总长度为y 米.(1)将y 表示成θ的函数,并写出θ的取值范围;(2)当三条轨道的总长度最小时,求轨道PO 的长.20.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)已知双曲线()2222:10,0x y E a b a b-=>>的离心率为e .(1)若e =E 经过点,求双曲线E 的方程;(2)若2a =,双曲线E 的左、右焦点分别为12F F 、,焦点到双曲线E ,点M 在第一象限且在双曲线E 上,若1MF =8,求12cos F MF ∠的值;(3)设圆22:4O x y +=,,k m ∈R .若动直线:l y kx m =+与圆O 相切,且l 与双曲线E 交于A B 、时,总有2AOB π∠=,求双曲线E 离心率e 的取值范围.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)若函数(),y f x x =∈R 的导函数(),y f x x '=∈R 是以(0)T T ≠为周期的函数,则称函数(),y f x x =∈R 具有“T 性质”.(1)试判断函数2y x =和sin y x =是否具有“2π性质”,并说明理由;(2)已知函数()y h x =,其中2()2sin (03)=++<<h x ax bx bx b 具有“π性质”,求函数()y h x =在[0,]π上的极小值点;(3)若函数(),y f x x =∈R 具有“T 性质”,且存在实数0M >使得对任意x ∈R 都有|()|f x M <成立,求证:(),y f x x =∈R 为周期函数.(可用结论:若函数(),y f x x =∈R 的导函数满足()=0,f x x '∈R ,则()()常数=f x C .)参考答案及评分标准2023.12一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果.1.[]2,2-2.()0,1 3.34π 4.25.300 6.27.512-8.249.110.2-11.212.49943773⎛⎤⎡⎫-- ⎥⎢⎝⎦⎣⎭,二、选择题(本大题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.B14.A15.D16.C三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)设等差数列{}n a 的公差为d ,又因为1(1)2n n n S na d -=+,且12a =,所以5101020S d =+=,故1d =.所以1n a n =+.(2)由(1)可知,45a =,又449a b +=,所以44b =.因为12q =,可得41332b b q==,所以,1122()()()n n n T a b a b a b =-+-+⋅⋅⋅+-1212()()n n a a a b b b =++⋅⋅⋅+-++⋅⋅⋅+11()(1)21n n n a a b q q+-=--6(3)2642n n n -+=+-.18.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)因为MA BC ⊥,MA //PB ,所以PB BC ⊥,因为AB PB ⊥,AB BC B = ,所以PB ⊥平面ABCD .118222333P ABCD ABCD V S PB -=⋅=⨯⨯⨯=.(2)因为四边形ABCD 为正方形,所以AB BC ⊥,又PB AB ⊥,PB BC ⊥.所以如图,建立空间直角坐标系B xyz -,则(002)P ,,,(201)M ,,,(220)D ,,,(222)PD =-,,,(201)PM =-,,.设平面PDM 的法向量为()x y z m = ,,,则00PD PM m m ⋅=⋅=⎧⎪⎨⎪⎩,,即222020x y z x z +-=-=⎧⎨⎩,.令2z =,则1x =,1y =.于是(112)m = ,,.所以,平面PDM 的一个法向量为(112)m =,,.平面PBAM 的一个法向量为(010)n =,,,设二面角B PM D --的平面角为θ,所以cos cos 66m n m n m nθ=<>==⋅,.所以,二面角B PM D --的平面角的正弦值为306.19.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)因为点Q 是弧AB 的中点,由对称性,知PA PB =,4AOP BOP π∠=∠=,又APO πθ∠=-,4OAP πθ∠=-,500OA =由正弦定理,得()sin sinsin 44APOAOPπππθθ==-⎛⎫- ⎪⎝⎭,500sin 25024,sin sin AP OP πθθθ⎛⎫- ⎪⎝⎭==所以,.500sin 2sin cos 42sin sin y AP BP OP AP OP πθθθθθ⎛⎫- ⎪+-⎝⎭=++=+==所以,因为APQ AOP ∠>∠,所以4πθ>,13248AQO OAQ πππ⎛⎫∠=∠=-= ⎪⎝⎭,所以5,48ππθ⎛⎫∈⎪⎝⎭.(2)法一:由(1)得:2cos sin y θθ-=,5,48ππθ⎛⎫∈ ⎪⎝⎭.记2cos sin t θθ-=,则sin cos 2t θθ+=,由辅助角公式可得:)2sin()1θϕθϕ+=⇒+=,解得t ≥,当t =时,可有5sin(1,6348ππππθθ⎛⎫+=⇒=∈ ⎪⎝⎭,等号可以取得.故当3πθ=时,三条轨道的总长度最小,此时(2503OP =.法二:由(1)得:2cos sin y θθ-=,5,48ππθ⎛⎫∈ ⎪⎝⎭.记2cos sin t θθ-=,tan tan ,tan 2816x θππ5⎛⎫=∈ ⎪⎝⎭,则由万能置换公式可得:2222123111132221x x x t x x x x x--+⎛⎫+===+≥ ⎪⎝⎭+,当且仅当33x =即3πθ=时等号成立.故当3πθ=,三条轨道的总长度最小,此时(2503OP =.法三:令()2sin cos sin f θθθθ+-=,5,48ππθ⎛⎫∈ ⎪⎝⎭.由()212cos '0sin f θθθ-==,解得3πθ=,则有θ43ππθ<<3πθ=538ππθ<<()'f θ0<0=0>()f θ严格减极小值严格增所以当3πθ=,即(2503OP =米时,()f θ有唯一的极小值,即是最小值,则()min 1f θ=+,三条轨道的最小值为+.故当3πθ=时,三条轨道的总长度最小,此时(2503OP =.20.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)解:(1)由e =,得c =,又222c a b =+得22a b =,又双曲线E 经过点,有22211a b-=,所以21a =,所以,双曲线方程为221x y -=.(2)由已知得22214x y b-=,渐近线方程为20bx y ±=,焦点坐标为(0)焦点到双曲线E的渐近线的距离为=,所以b =由双曲线定义知,24MF =,222128413cos 28416F MF +-∠==⨯⨯所以,.(3)因为直线:l y kx m =+与圆O 相切,且2R =2=,化简得2244m k =+,又2AOB π∠=,11221212(,),(,),0,0A x y B x y OA OB x x y y ⋅=+= 则即,设则221212(1)()0k x x km x x m ++++=,(*)联立2222222222222)201y kx mb a k x a kmx a m a b x y a b =+⎧⎪----=⎨-=⎪⎩得 (,则222212122222222(),a mk a m b x x x x b a k b a k-++==--代入(*)得222222222(1)()2()0k a m b km a mk m b a k ⎡⎤+-++⋅+-=⎣⎦将2244m k =+代入,进一步化简得222222222(1)(44)0,440k a a b b a a b b ++-=+-=则,又222c a b =+,22222222224()4()8024a a c a c a cb a a +---+==>由,得,则ce a=>e的取值范围)+∞.21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分)解:(1)2()=f x x 不具有“2π性质”.理由是:()2,(2)(0)40,(2)(0)πππ'''''=-=≠∴≠f x x f f f f ;法一:。

上海市徐汇区2014届高三上学期期末学习能力诊断数学理试题(WORD版,有答案)

上海市徐汇区2014届高三上学期期末学习能力诊断数学理试题(WORD版,有答案)

2013学年第一学期徐汇区学习能力诊断卷高三年级数学学科(理科)2014.1一. 填空题:(本题满分56分,每小题4分)1. 计算:210lim 323x n n →∞++= . 2. 函数x x y 2cos 2sin =的最小正周期是 .3. 计算:122423432⎛⎫⎛⎫⋅+ ⎪ ⎪⎝⎭⎝⎭= . 4. 已知3sin 5x =,,2x ππ⎛⎫∈ ⎪⎝⎭,则x = .(结果用反三角函数表示) 5. 直线()1:330l a x y ++-=与直线()2:5340l x a y +-+=,若1l 的方向向量是2l 的法向量,则实数a = .6. 如果()1111112312nf n n n =++++++++(*n N ∈)那么()()1f k f k +-共有 项. 7. 若函数()f x 的图像经过(0,1)点,则函数()3f x +的反函数的图像必经过点 .8. 某小组有10人,其中血型为A 型有3人,B 型4人,AB 型3人,现任选2人,则此2人是同一血型的概率为 .(结论用数值表示)9. 双曲线221mx y +=的虚轴长是实轴长的2倍,则m = .10. 在平面直角坐标系中,动点P 和点M (-2,0)、N (2,0)满足0MN MP MN NP ⋅+⋅=,则动点P (x ,y )的轨迹方程为 .11. 某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则x y -的值为 .12. 如图所示,已知点G 是△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且,AM xAB AN yAC ==,则xy x y+的值为 .N M G CB A13. 一个五位数abcde 满足,,,a b b c d d e <>><且,a d b e >>(如37201,45412),则称这个五位数符合“正弦规律”.那么,共有 个五位数符合“正弦规律”.14. 定义区间(),c d 、[),c d 、(],c d 、[],c d 的长度均为()d c d c ->.已知实数(),a b a b >.则满足111x a x b+≥--的x 构成的区间的长度之和为 . 二. 选择题:(本题满分20分,每小题5分)15. 直线()0,0bx ay ab a b +=<<的倾斜角是------( )(A) arctan a b π- (B) arctan b a π- (C) arctan a b ⎛⎫- ⎪⎝⎭ (D) arctan b a ⎛⎫- ⎪⎝⎭16. 为了得到函数2sin ,36x y x R π⎛⎫=+∈⎪⎝⎭的图像,只需把函数2sin ,y x x R =∈的图像上所有的点-----------------( ) (A) 向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (B) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (C) 向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变) (D) 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变) 17. 函数()f x x x a b =++是奇函数的充要条件是-------( )(A) 0ab = (B) 0a b += (C) 220a b += (D) a b =18. 已知集合()(){},M x y y f x ==,若对于任意()11,x y M ∈,存在()22,x y M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合:①()1,M x y y x ⎧⎫==⎨⎬⎩⎭; ②(){},sin 1M x y y x ==+; ③(){}2,log M x y y x ==; ④(){},2xM x y y e ==-. 其中是“垂直对点集”的序号是----------------------------------------------------( )(A) ①② (B) ②③ (C) ①④ (D) ②④三. 解答题:(本大题共5题,满分74分)19. (本题满分12分)在△ABC 中,BC =a ,AC =b ,a 、b 是方程22320x x -+=的两个根,且120A B +=,求△ABC 的面积及AB 的长.20. (本题满分14分,第(1)小题7分,第(2)小题7分)已知函数()()21,65f x x g x x x =-=-+-.(1)若()()g x f x ≥,求实数x 的取值范围;(2)求()()g x f x -的最大值.21. (本题满分14分,第(1)小题5分,第(2)小题9分)某种海洋生物身体的长度()f t (单位:米)与生长年限t (单位:年)满足如下的函数关系:()41012t f t -+=+.(设该生物出生时t =0) (1)需经过多少时间,该生物的身长超过8米;(2)设出生后第0t 年,该生物长得最快,求()00*t t N ∈的值.22. (本题满分16分,第(1)小题4分,第(2)小题5分,第(3)小题7分) 给定椭圆()2222:10x y C a b a b+=>>,称圆心在坐标原点O ,半径为22a b +的圆是椭圆C 的“伴随圆”,已知椭圆C 的两个焦点分别是()()122,0,2,0F F -.(1)若椭圆C 上一动点1M 满足11124M F M F +=,求椭圆C 及其“伴随圆”的方程;(2)在(1)的条件下,过点()()0,0P t t <作直线l 与椭圆C 只有一个交点,且截椭圆C 的“伴随圆”所得弦长为23,求P 点的坐标;(3)已知()()cos 3,,0,sin sin m n mn m n θθπθθ+=-=-≠∈,是否存在a ,b ,使椭圆C 的“伴随圆”上的点到过两点()()22,,,m m n n 的直线的最短距离22min d a b b =+-.若存在,求出a ,b 的值;若不存在,请说明理由.23. (本题满分18分,第(1)小题4分,第(2)小题5分,第(3)小题9分) 称满足以下两个条件的有穷数列12,,,n a a a 为()2,3,4,n n =阶“期待数列”: ①1230n a a a a ++++=;②1231n a a a a ++++=.(1)若等比数列{}n a 为()2*k k N ∈阶“期待数列”,求公比q 及{}n a 的通项公式;(2)若一个等差数列{}n a 既是()2*k k N ∈阶“期待数列”又是递增数列,求该数列的通项公式;(3)记n 阶“期待数列”{}i a 的前k 项和为()1,2,3,,k S k n =: (i )求证:12k S ≤; (ii )若存在{}1,2,3,,m n ∈使12m S =,试问数列{}k S 能否为n 阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.。

上海市徐汇区2014-2015学年高三第一学期一模数学理试卷含答案

上海市徐汇区2014-2015学年高三第一学期一模数学理试卷含答案

2014学年第一学期徐汇区学习能力诊断卷高三年级数学学科(理科)2015.1一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得0分.1.已知3sin 5θ=-,则cos 2θ=__ ___.2.若实数,x y 满足4xy =,则224x y +的最小值为 . 3.设i 是虚数单位,复数z 满足(2)5i z +⋅=,则z = . 4.函数2()2(0)f x x x =-<的反函数1()f x -= .5.若抛物线22y px =的焦点与双曲线2213y x -=的右焦点重合,则该抛物线的准线方程为 .6.若正四棱柱1111ABCD A BC D -的底面边长为2,高为4,则异面直线1BD 与AD 所成角的大小是______________.(结果用反三角函数值表示) 7.设数列{}n a 的前n 项和为n S ,若11a =,*110()2n n S a n N +-=∈,则{}n a 的通项公式为 .8.若全集U R =,不等式11111x x+≥-的解集为A ,则U A C = .9.已知圆22:(1)(1)2C x y -+-=,方向向量(1,1)d =的直线l 过点(0,4)P ,则圆C 上的点到直线l 的距离的最大值为 .10.如图:在梯形ABCD 中,//AD BC 且12AD BC =,AC 与 BD 相交于O ,设A B a =,D C b =,用,a b 表示BO ,则BO = .11.已知函数()2sin(2)6f x x π=+,将()y f x =的图像向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图像.若()y g x =的图像上各最高点到点(0,3)的距离的最小值为1,则ϕ的值为 .12.已知函数222111()1()()(1)2222015n n n f x x n =+++++++,其中*n N ∈. 当1 2 3 n =,,,时,()n f x 的零点依次记作123 x x x ,,,,则lim n n x →∞= .13.在平面直角坐标系中,对于函数()y f x =的图像上不重合的两点,A B ,若,A B 关于原点对称,则称点对(),A B 是函数()y f x =的一组“奇点对”(规定(),A B 与(),B A 是相同的“奇点对”).函数()()()1lg 01sin 02x xf x x x ⎧>⎪⎪=⎨⎪<⎪⎩的“奇点对”的组数是 .14.设集合(){}{}12310,,,,|1,0,1,1,2,3,,10i A x x x x x i =∈-=,则集合A 中满足条件“1231019x x x x ≤++++≤”的元素个数为 .二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得0分.15. “14a ≥”是“实系数一元二次方程20x x a ++=有虚数根”的( )(A )充分非必要条件 (B )必要非充分条件(C )充分必要条件 (D )既非充分又非必要条件16.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,则下列给出的条件中一定能推出m β⊥的是 ( )(A )αβ⊥且m α⊂≠(B )αβ⊥且α//m(C )n m //且n β⊥ (D )m n ⊥且//n β17.某电商在“双十一”期间用电子支付系统进行商品买卖,全部商品共有n 类*()n N ∈,分别编号为1,2,,n ,买家共有m 名*(,)m N m n ∈<,分别编号为1,2,,m .若1,1,10,ij i j a i m j n i j ⎧=≤≤≤≤⎨⎩第名买家购买第类商品第名买家不购买第类商品,则同时购买第1类和第2类商品的人数是( ) (A )1112121222m m a a a a a a +++++++(B )1121112222m m a a a a a a +++++++(C )1112212212m m a a a a a a +++ (D )1121122212m m a a a a a a +++18.对于方程为||1x +||1y =1的曲线C 给出以下三个命题: (1)曲线C 关于原点中心对称;(2)曲线C 既关于x 轴对称,也关于y 轴对称,且x 轴和y 轴是曲线C 仅有的两条对称轴; (3)若分别在第一、第二、第三、第四象限的点M,N,P,Q 都在曲线C 上,则四边形MNPQ 每一条边的边长都大于2.其中正确的命题是( ) (A)(1)(2) (B)(1)(3) (C)(2)(3) (D)(1)(2)(3)三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分) 本题共有2个小题,第1小题满分4分,第2小题满分8分. 已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf . (1)求A 的值;(2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f .20.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知函数()22()x x f x k k R -=+⋅∈.(1)若函数()f x 为奇函数,求k 的值;(2)若函数()f x 在(],2-∞上为减函数,求k 的取值范围.21.(本题满分14分) 本题共有2个小题,第1小题满分8分,第2小题满分6分.如图所示,某传动装置由两个陀螺12,T T 组成,陀螺之间没有滑动.每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的13,且12,T T 的轴相互垂直,它们相接触的直线与2T 的轴所成角2arctan3θ=.若陀螺2T 中圆锥的底面半径为()0r r >.(1)求陀螺2T 的体积;(2)当陀螺2T 转动一圈时,陀螺1T 中圆锥底面圆周上一点P 转动到点1P ,求P 与1P 之间的距离.22.(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知椭圆222:1x y aγ+=(常数1a >)的左顶点为R ,点(,1),(,1)A a B a -,O 为坐标原点.(1)若P 是椭圆γ上任意一点,OP mOA nOB =+,求22m n +的值; (2)设Q 是椭圆γ上任意一点,()3,0S a ,求QS QR ⋅的取值范围;(3)设1122(,),(,)M x y N x y 是椭圆γ上的两个动点,满足OM ON OA OB k k k k ⋅=⋅,试探究OMN ∆的面积是否为定值,说明理由.23.(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知有穷数列}{n a 各项均不相等....,将}{n a 的项从大到小重新排序后相应的项数.....构成新数列}{n p ,称}{n p 为}{n a 的“序数列”.例如数列:321,,a a a 满足231a a a >>,则其序数列}{n p 为2,3,1. (1)写出公差为(0)d d ≠的等差数列12,,,n a a a L 的序数列}{n p ;(2)若项数不少于5项的有穷数列}{n b 、}{n c 的通项公式分别是nn n b )53(⋅=(*n N ∈),tn n c n +-=2(*n N ∈),且}{n b 的序数列与}{n c 的序数列相同,求实数t 的取值范围;(3)若有穷数列}{n d 满足11=d ,nn n d d )21(||1=-+*()n N ∈,且}{12-n d 的序数列单调递减,}{2n d 的序数列单调递增,求数列}{n d 的通项公式.理科参考答案一、填空题:(每题4分)1.7252. 163.4. 2)x >-5. 2x =-6. 7. 2*1,123,2,n n n a n n N -=⎧=⎨⋅≥∈⎩8. (]1,0- 9. 10. 4233a b -+r r 11. 6π12. 3- 13. 3 14. 58024二、选择题:(每题5分)15. B 16. C 17. C 18. B三、解答题19、解:(1)553()sin()121242f A πππ=+=,322A ⋅=……………………..2’A ∴=; ……………………..4’(2)3()()))42f f +-=+-+=ππθθθθ,3cos )sin cos )]2+-+=θθθθ,……………………..6’32=θ,cos =θ,……………………..8’又)2,0(πθ∈,sin ∴==θ, ……………………..10’)43(θπ-f )=-==πθθ.……………………..12’20、解:(1)()()(1)(22)0x x f x f x k -+-=++=对一切的x R ∈成立,……………………..4’ 所以1k =-……………………..6’(2)若0k ≤,则函数()f x 在(],2-∞单调递增(舍)……………………..8’当0k >时,令(]20,4xt =∈,……………………..9’则函数()kg t t t=+在(]0,4上单调递减……………………..10’4≥,……………………..13’ 即16k ≥……………………..14’ 21、解:(1)设陀螺2T 圆锥的高为h ,则23r h =,即32h r =……………………..2’得陀螺2T 圆柱的底面半径和高为3r……………………..3’ 231=3327r r V r ππ⎛⎫= ⎪⎝⎭柱……………………..5’23131=322V r r r ππ=椎……………………..7’232954T V V V r π=+=柱椎……………………..8’(2)设陀螺1T 圆锥底面圆心为O ,则12PP r π=,……………………..10’得1124332PP r POP OP r ππ∠===……………………..12’ 在1POP ∆中,12PPr ==……………………..14’ 22、解:(1)(),OP mOA nOB ma na m n =+=-+, 得(),P ma na m n -+……………………..2’()()221m n m n -++=,即2212m n +=……………………..4’ (2)设(),Q x y ,则()()3,,QS QR a x y a x y ⋅=-----()()()()222331x x a x a y x a x a a=-++=-++-……………………..5’22221213a x ax a a-=-+-()22342222144111a a a a x a x a a a a ⎛⎫--+=---≤≤ ⎪--⎝⎭……………………..6’ 由1a >,得321a a a >-……………………..7’ ∴ 当x a =-时,QS QR ⋅最大值为0;……………………..8’当x a =时,QS QR ⋅最小值为24a -;……………………..9’即QS QR ⋅的取值范围为24,0a ⎡⎤-⎣⎦……………………..10’(3)(解法一)由条件得,122121y y x x a=-,……………………..11’ 平方得224222222121212()()x x a y y a x a x ==--,即22212x x a +=……………………..12’122112OMN S x y x y ∆=-……………………..13’=2a==……………………..15’ 故OMN ∆的面积为定值2a……………………..16’(解法二)①当直线MN 的斜率不存在时,易得OMN ∆的面积为2a……………………..11’ ②当直线MN 的斜率存在时,设直线MN 的方程为y kx t =+()()22222222211210x y a k x kta x a t ay kx t ⎧+=⎪⇒+++-=⎨⎪=+⎩……………………..12’ 由1122(,),(,)M x y N x y ,可得()2221212222212,11a t kta x x x x a k a k --+==++, ()()()2222212121212221t a k y y kx t kx t k x x kt x x x t a k -=++=+++=+又122121OM ON y y k k x x a⋅==-,可得22221t a k =+……………………..13’因为12MN x x =-,……………………..14’ 点O 到直线MN的距离d =……………………..15’12122OMNt S MN d x x ∆=⋅⋅=⋅-2t =22t a==综上:OMN ∆的面积为定值2a……………………..16’ 23、解:(1)当0>d 时,序数列}{n p 为,1,,2,1n n -L ;……………………..2’ 当0<d 时,序数列}{n p 为1,2,,1,n n -L ……………………..4’ (2)因为523)53(1nb b nn n -⋅=-+,……………………..5’当1=n 时,易得12b b >,当2≥n 时,n n b b <+1, 又因531=b ,33)53(3⋅=b ,44)53(4⋅=b ,314b b b <<, 即2314n b b b b b >>>>>L ,故数列}{n b 的序数列为2,3,1,4,,n L ,……………………..8’ 所以对于数列}{n c 有2522<<t , 解得:54<<t ……………………..10’(3)由于}{12-n d 的序数列单调递减,因此}{12-n d 是递增数列,故01212>--+n n d d ,于是0)()(122212>-+--+n n n n d d d d ,而122)21()21(-<n n,所以||||122212-+-<-n n n n d d d d ,从而0122>--n n d d , 122121222)1()21(----==-n n n n n d d (1) ……………………..12’ 因为}{2n d 的序数列单调递增,所以}{2n d 是递减数列,同理可得0212<-+n n d d ,故21221221(1)()22n n n nnd d ++--=-= (2) ……………………..14’ 由(1)(2)得:nn n n d d 2)1(11++-=-……………………..15’于是 )()()(123121--++-+-+=n n n d d d d d d d d ……………………..16’122)1(21211--++-+=n n211)21(12111+--⋅+=-n ……………………..17’12)1(3134--⋅+=n n 即数列}{n d 的通项公式为12)1(3134--⋅+=n n n d (*n N ∈)……………………..18’。

2014届上海市徐汇区高三上学期期末学习能力诊断理科数学试题(含答案详解)word精校版

2014届上海市徐汇区高三上学期期末学习能力诊断理科数学试题(含答案详解)word精校版

2013学年第一学期徐汇区学习能力诊断卷高三年级数学学科(理科)一. 填空题:(本题满分56分,每小题4分) 1. 计算:210lim323x n n →∞++= .2. 函数x x y 2cos 2sin =的最小正周期是 .3. 计算:122423432⎛⎫⎛⎫⋅+ ⎪ ⎪⎝⎭⎝⎭= .4.已知sin 5x =,,2x ππ⎛⎫∈ ⎪⎝⎭,则x = .(结果用反三角函数表示) 5. 直线()1:330l a x y ++-=与直线()2:5340l x a y +-+=,若1l 的方向向量是2l 的法向量,则实数a = . 6. 如果()1111112312n f n n n =++++++++ (*n N ∈)那么()()1f k f k +-共有 项.7. 若函数()f x 的图像经过(0,1)点,则函数()3f x +的反函数的图像必经过点 . 8. 某小组有10人,其中血型为A 型有3人,B 型4人,AB 型3人,现任选2人,则此2人是同一血型的概率为 .(结论用数值表示)9. 双曲线221mx y +=的虚轴长是实轴长的2倍,则m = .10. 在平面直角坐标系中,动点P 和点M (-2,0)、N (2,0)满足0MN MP MN NP ⋅+⋅=,则动点P (x ,y )的轨迹方程为 .11. 某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则x y -的值为 .12. 如图所示,已知点G 是△ABC 的重心,过G 作直线与AB 、AC 两边分别交于M 、N 两点,且,AM xAB AN y AC == ,则xyx y+的值为 .NMGCBA13. 一个五位数abcde 满足,,,a b b c d d e <>><且,a d b e >>(如37201,45412),则称这个五位数符合“正弦规律”.那么,共有 个五位数符合“正弦规律”.14. 定义区间(),c d 、[),c d 、(],c d 、[],c d 的长度均为()d c d c ->.已知实数(),a b a b >.则满足111x a x b+≥--的x 构成的区间的长度之和为 . 二. 选择题:(本题满分20分,每小题5分) 15. 直线()0,0bx ay ab a b +=<<的倾斜角是------------------------------------------------------------------------( ) (A) arctana b π- (B) arctan b a π- (C) arctan a b ⎛⎫- ⎪⎝⎭ (D) arctan b a ⎛⎫- ⎪⎝⎭16. 为了得到函数2sin ,36x y x R π⎛⎫=+∈ ⎪⎝⎭的图像,只需把函数2sin ,y x x R =∈的图像上所有的点--------------------------------------------------------------------------------------------------------------------------------------( )(A) 向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (B) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(C) 向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变)(D) 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的13倍(纵坐标不变)17. 函数()f x x x a b =++是奇函数的充要条件是------------------------------------------------------------------( )(A) 0ab = (B) 0a b += (C) 220a b += (D) a b = 18. 已知集合()(){},M x y y f x ==,若对于任意()11,x y M ∈,存在()22,x y M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合: ①()1,M x y y x ⎧⎫==⎨⎬⎩⎭; ②(){},sin 1M x y y x ==+;③(){}2,log M x y y x ==; ④(){},2xM x y y e==-.其中是“垂直对点集”的序号是----------------------------------------------------( ) (A) ①② (B) ②③ (C) ①④ (D) ②④三. 解答题:(本大题共5题,满分74分) 19. (本题满分12分)在△ABC 中,BC =a ,AC =b ,a 、b 是方程220x -+=的两个根,且120A B += ,求△ABC 的面积及AB 的长.20. (本题满分14分,第(1)小题7分,第(2)小题7分)已知函数()()21,65f x x g x x x =-=-+-.(1)若()()g x f x ≥,求实数x 的取值范围; (2)求()()g x f x -的最大值.21. (本题满分14分,第(1)小题5分,第(2)小题9分)某种海洋生物身体的长度()f t (单位:米)与生长年限t (单位:年) 满足如下的函数关系:()41012t f t -+=+.(设该生物出生时t =0) (1)需经过多少时间,该生物的身长超过8米;(2)设出生后第0t 年,该生物长得最快,求()00*t t N ∈的值.22. (本题满分16分,第(1)小题4分,第(2)小题5分,第(3)小题7分)给定椭圆()2222:10x y C a b a b+=>>,称圆心在坐标原点O ,的圆是椭圆C的“伴随圆”,已知椭圆C 的两个焦点分别是())12,F F .(1)若椭圆C 上一动点1M 满足11124M F M F +=,求椭圆C 及其“伴随圆”的方程;(2)在(1)的条件下,过点()()0,0P t t <作直线l 与椭圆C 只有一个交点,且截椭圆C的“伴随圆”所得弦长为P 点的坐标; (3)已知()()cos 3,,0,sin sin m n mn m n θθπθθ+=-=-≠∈,是否存在a ,b ,使椭圆C 的“伴随圆”上的点到过两点()()22,,,m mn n 的直线的最短距离mindb =.若存在,求出a ,b 的值;若不存在,请说明理由.23. (本题满分18分,第(1)小题4分,第(2)小题5分,第(3)小题9分)称满足以下两个条件的有穷数列12,,,n a a a 为()2,3,4,n n = 阶“期待数列”: ①1230n a a a a ++++= ;②1231n a a a a ++++= .(1)若等比数列{}n a 为()2*k k N ∈阶“期待数列”,求公比q 及{}n a 的通项公式; (2)若一个等差数列{}n a 既是()2*k k N ∈阶“期待数列”又是递增数列,求该数列的通项公式;(3)记n 阶“期待数列”{}i a 的前k 项和为()1,2,3,,k S k n = :(i )求证:12k S ≤; (ii )若存在{}1,2,3,,m n ∈ 使12m S =,试问数列{}k S 能否为n 阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.。

上海市徐汇区高一上期末数学试卷((含答案))

上海市徐汇区高一上期末数学试卷((含答案))

上海市徐汇区高一(上)期末数学试卷一、填空题:本大题共12小题,每小题3分,共20分).1.(3分)已知A={x|x≤7},B={x|x>2},则A∩B= .2.(3分)不等式的解集是 .3.(3分)函数f(x)=的定义域是 .4.(3分)若x>0,则函数f(x)=+x的最小值为 .5.(3分)若函数,,则f(x)+g(x)= .6.(3分)不等式|2x﹣1|<3的解集为 .7.(3分)设f(x)是R上的奇函数,当x≤0时,f(x)=2x2﹣x,则f(1)= .8.(3分)已知函数,则方程f﹣1(x)=4的解x= .9.(4分)若函数f(x)=x2+为偶函数,则实数a= .10.(4分)函数y=的值域是 .11.(4分)已知函数f(x)=,且函数F(x)=f(x)+x﹣a有且仅有两个零点,则实数a的取值范围是 .12.(4分)关于x的方程4x﹣k•2x+k+3=0,只有一个实数解,则实数k的取值范围是 . 二、选择题:本大题共4小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个是符合题目要求的.13.(4分)“x+y=3”是“x=1且y=2”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也必要条件14.(4分)下列各对函数中,相同的是( )A.f(x)=lgx2,g(x)=2lgxB.f(x)=lg,g(x)=lg(x+1)﹣lg(x﹣1)C.f(u)=,g(v)=D.f(x)=x,g(x)=15.(4分)设a,b是非零实数,若a<b,则下列不等式成立的是( )A.a2<b2B.ab2<a2bC.D.16.(4分)若f(x)是R上的奇函数,且f(x)在[0,+∞)上单调递增,则下列结论:①y=|f(x)|是偶函数;②对任意的x∈R都有f(﹣x)+|f(x)|=0;③y=f(﹣x)在(﹣∞,0]上单调递增;④y=f(x)f(﹣x)在(﹣∞,0]上单调递增.其中正确结论的个数为( )A.1B.2C.3D.4三、解答题:本大题共5小题,共44分.解答写出文字说明、证明过程或演算过程.17.(6分)已知全集为R,集合A={x|≤0},集合B={x||2x+1|>3}.求A∩(∁R B).18.(8分)设函数f(x)=a﹣(a∈R).(1)请你确定a的值,使f(x)为奇函数;(2)用单调性定义证明,无论a为何值,f(x)为增函数.19.(8分)关于x的不等式>1+(其中k∈R,k≠0).(1)若x=3在上述不等式的解集中,试确定k的取值范围;(2)若k>1时,上述不等式的解集是x∈(3,+∞),求k的值.20.(10分)已知f(x)=()2(x>1)(1)求f(x)的反函数及其定义域;(2)若不等式(1﹣)f﹣1(x)>a(a﹣)对区间x∈[,]恒成立,求实数a的取值范围.21.(12分)设a∈R,函数f(x)=x|x﹣a|+2x.(1)若a=3,求函数f(x)在区间[0,4]上的最大值;(2)若存在a∈(2,4],使得关于x的方程f(x)=t•f(a)有三个不相等的实数解,求实数t的取值范围. 上海市徐汇区高一(上)期末数学试卷参考答案与试题解析一、填空题:本大题共12小题,每小题3分,共20分).1.(3分)已知A={x|x≤7},B={x|x>2},则A∩B= {x|2<x≤7} .【解答】解:∵A={x|x≤7},B={x|x>2},∴A∩B={x|2<x≤7},故答案为:{x|2<x≤7}2.(3分)不等式的解集是 (﹣4,2) .【解答】解:由不等式可得<0,即(x﹣2)(x+4)<0,解得﹣4<x<2,故不等式的解集为(﹣4,2),故答案为(﹣4,2).3.(3分)函数f(x)=的定义域是 {x|x≥﹣2且x≠1} .【解答】解:由题意,要使函数有意义,则,解得,x≠1且x≥﹣2;故函数的定义域为:{x|x≥﹣2且x≠1},故答案为:{x|x≥﹣2且x≠1}.4.(3分)若x>0,则函数f(x)=+x的最小值为 2 .【解答】解:x>0,则函数f(x)=+x≥2=2,当且仅当x=时,f(x)取得最小值2.故答案为:2.5.(3分)若函数,,则f(x)+g(x)= 1(0≤x≤1) .【解答】解:;解得,0≤x≤1;∴(0≤x≤1).故答案为:.6.(3分)不等式|2x﹣1|<3的解集为 {x|﹣1<x<2} .【解答】解:∵|2x﹣1|<3⇔﹣3<2x﹣1<3⇔﹣1<x<2,∴不等式|2x﹣1|<3的解集为{x|﹣1<x<2}.故答案为:{x|﹣1<x<2}.7.(3分)设f(x)是R上的奇函数,当x≤0时,f(x)=2x2﹣x,则f(1)= ﹣3 .【解答】解:∵f(x)是R上的奇函数,∴f(﹣1)=﹣f(1),∵当x≤0时,f(x)=2x2﹣x,∴f(﹣1)=2+1=3,∴f(1)=﹣f(﹣1)=﹣3.故答案为:﹣3.8.(3分)已知函数,则方程f﹣1(x)=4的解x= 1 .【解答】解:由题意得,即求f(4)的值∵,,∴f(4)=log3(1+2)=1,∴f(4)=1.即所求的解x=1.故答案为1.9.(4分)若函数f(x)=x2+为偶函数,则实数a= 1 .【解答】解:∵函数f(x)=x2+为偶函数,∴f(﹣x)=f(x),即x2﹣=x2+,则=0,则a=1,故答案为:110.(4分)函数y=的值域是 (﹣1,) .【解答】解:函数y===﹣1.∵2x+3>3,∴0<.∴函数y=的值域是(﹣1,)故答案为(﹣1,)11.(4分)已知函数f(x)=,且函数F(x)=f(x)+x﹣a有且仅有两个零点,则实数a的取值范围是 a≤1 .【解答】解:由F(x)=f(x)+x﹣a=0得f(x)=﹣x+a,作出函数f(x)和y=﹣x+a的图象如图:当直线y=﹣x+a经过点A(0,1)时,两个函数有两个交点,此时1=﹣0+a,即a=1,要使两个函数有两个交点,则a≤1即可,故实数a的取值范围是a≤1,故答案为:a≤112.(4分)关于x的方程4x﹣k•2x+k+3=0,只有一个实数解,则实数k的取值范围是 (﹣∞,﹣3)∪{6} .【解答】解:设t=2x,t>0x的方程4x﹣k•2x+k+3=0转化为t2﹣kt+k+3=0,设f(t)=t2﹣kt+k+3,原方程只有一个根,则换元以后的方程有一个正根,∴f(0)<0,或△=0,∴k<﹣3,或k=6故答案为(﹣∞,﹣3)∪{6}.二、选择题:本大题共4小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个是符合题目要求的.13.(4分)“x+y=3”是“x=1且y=2”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也必要条件【解答】解:当x=0,y=3时,满足x+y=3,但x=1且y=2不成立,即充分性不成立,若x=1且y=2,则x+y=3成立,即必要性成立,即“x+y=3”是“x=1且y=2”的必要不充分条件,故选:B14.(4分)下列各对函数中,相同的是( )A.f(x)=lgx2,g(x)=2lgxB.f(x)=lg,g(x)=lg(x+1)﹣lg(x﹣1)C.f(u)=,g(v)=D.f(x)=x,g(x)=【解答】解:对于A:f(x)=lgx2,g(x)=2lgx两个函数的定义域不同,不是相同的函数;对于B:f(x)=lg,g(x)=lg(x+1)﹣lg(x﹣1)函数底的定义域不同,不是相同的函数;对于C:f(u)=,g(v)=,满足相同函数的要求,是相同的函数;对于D:f(x)=x,g(x)=,定义域相同,都是对应关系以及值域不同,不是相同的函数.故选C.15.(4分)设a,b是非零实数,若a<b,则下列不等式成立的是( )A.a2<b2B.ab2<a2bC.D.【解答】解:A选项不正确,因为a=﹣2,b=1时,不等式就不成立;B选项不正确,因为a=1,b=2时,不等式就不成立;C选项正确,因为⇔a<b,故当a<b时一定有;D选项不正确,因为a=1,b=2时,不等式就不成立;选项正确,因为y=2x是一个增函数,故当a>b时一定有2a>2b,故选C.16.(4分)若f(x)是R上的奇函数,且f(x)在[0,+∞)上单调递增,则下列结论:①y=|f(x)|是偶函数;②对任意的x∈R都有f(﹣x)+|f(x)|=0;③y=f(﹣x)在(﹣∞,0]上单调递增;④y=f(x)f(﹣x)在(﹣∞,0]上单调递增.其中正确结论的个数为( )A.1B.2C.3D.4【解答】解:∵f(x)是R上的奇函数,且f(x)在[0,+∞)上单调递增,∴y=|f(x)|是偶函数,故①正确;对任意的x∈R,不一定有f(﹣x)+|f(x)|=0,故②不正确;y=f(﹣x)在(﹣∞,0]上单调递减,故③不正确;y=f(x)f(﹣x)=﹣[f(x)]2在(﹣∞,0]上单调递增,故④正确.故选B.三、解答题:本大题共5小题,共44分.解答写出文字说明、证明过程或演算过程.17.(6分)已知全集为R,集合A={x|≤0},集合B={x||2x+1|>3}.求A∩(∁R B).【解答】解:全集为R,集合A={x|≤0}={x|﹣1<x≤3},集合B={x||2x+1|>3}={x|2x+1>3或2x+1<﹣3}={x|x>1或x<﹣2},所以∁R B={x|﹣2≤x≤1},A∩(∁R B)={x|﹣1<x≤1}.18.(8分)设函数f(x)=a﹣(a∈R).(1)请你确定a的值,使f(x)为奇函数;(2)用单调性定义证明,无论a为何值,f(x)为增函数.【解答】解:(1)∵函数f(x)是R上的奇函数,∴f(0)=a﹣=0,∴a=1;(2)证明:任取:x1<x2∈R,∴f(x1)﹣f(x2)=a﹣﹣a+=2•∵x1<x2,∴,又>0,,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴f(x)在R上的单调递增.19.(8分)关于x的不等式>1+(其中k∈R,k≠0).(1)若x=3在上述不等式的解集中,试确定k的取值范围;(2)若k>1时,上述不等式的解集是x∈(3,+∞),求k的值.【解答】解:(1)由题意:x=3时,不等式>1+化简为,即,可得(5﹣k)k>0,解得:0<k<5.∴当x=3在上述不等式的解集中,k的取值范围是(0,5)(2)不等式>1+化简可得(其中k∈R,k≠0).∵k>1,可得:⇔kx+2k>k2+x﹣3不等式的解集是x∈(3,+∞),∴x=3是方程kx+2k=k2+x﹣3的解.即3k+2k=k2,∵k≠0,∴k=5.故得若k>1时,不等式的解集是x∈(3,+∞)时k的值为5.20.(10分)已知f(x)=()2(x>1)(1)求f(x)的反函数及其定义域;(2)若不等式(1﹣)f﹣1(x)>a(a﹣)对区间x∈[,]恒成立,求实数a的取值范围.【解答】解;(1)∵x>1,∴0<f(x)<1.令y=()2(x>1),解得x=,∴f﹣1(x)=(0<x<1);(2)∵f﹣1(x)=(0<x<1),∴不等式(1﹣)f﹣1(x)>a(a﹣)在区间x∈[,]恒成立⇔在区间x∈[,]恒成立,对区间x∈[,]恒成立.当a=﹣1时,不成立,当a>﹣1时,a<在区间x∈[,]恒成立,a<()min,﹣1<a<.当a<﹣1时,a>在区间x∈[,]恒成立,a>()max,a无解. 综上:实数a的取值范围:﹣1<a<.21.(12分)设a∈R,函数f(x)=x|x﹣a|+2x.(1)若a=3,求函数f(x)在区间[0,4]上的最大值;(2)若存在a∈(2,4],使得关于x的方程f(x)=t•f(a)有三个不相等的实数解,求实数t的取值范围.【解答】解:(1)当a=3,x∈[0,4]时,f(x)=x|x﹣3|+2x=,可知函数f(x)在区间[0,]递增,在(,3]上是减函数,在[3,4]递增,则f()=,f(4)=12,所以f(x)在区间[0,4]上的最大值为f(4)=12.(2)f(x)=,①当x≥a时,因为a>2,所以<a.所以f(x)在[a,+∞)上单调递增.②当x<a时,因为a>2,所以<a.所以f(x)在(﹣∞,)上单调递增,在[,a]上单调递减.当2<a≤4时,知f(x)在(﹣∞,]和[a,+∞)上分别是增函数,在[,a]上是减函数,当且仅当2a<t•f(a)<时,方程f(x)=t•f(a)有三个不相等的实数解.即1<t<=(a++4).令g(a)=a+,g(a)在a∈(2,4]时是增函数,故g(a)max=5.∴实数t的取值范围是(1,).。

徐汇区2014届高三上学期期末学习能力诊断.doc

徐汇区2014届高三上学期期末学习能力诊断.doc

徐汇区2014届高三上学期期末学习能力诊断化学说明:本卷分试题卷与答题卷两部分,将正确答案写在答题卷上,写在试题卷上一律不给分。

本卷可能用到的相对原子质量:H-1 O-16 Na-23 S-32 K-39 Cu-64 Ag-108 Ba-137第Ⅰ卷(共66分)一、选择题(本题共10分,每小题2分,只有一个正确选项)1.不能通过化学反应实现的是A.生成一种新离子B.生成一种新分子C.生成一种新原子D.生成一种新物质2.符号“3p x”没有给出的信息是A.电子层B.电子亚层C.电子云在空间的伸展方向D.电子的自旋方向3.石油裂化的主要目的是为了A.提高轻质液体燃料的产量B.便于分馏C.获得短链不饱和气态烃D.提高汽油的质量4.为防止有机物挥发,可加一层水保存,即水封。

下列有机物中,既能用水封法保存,又能发生水解和消去反应的是A.乙醇B.溴乙烷C.乙酸乙酯D.四氯化碳5.实验表明,相同温度下,液态纯硫酸的导电性强于纯水。

下列关于相同温度下纯硫酸的离子积常数K和水的离子积常数K w关系的描述正确的是A.K> K w B.K= K w C.K< K w D.无法比较二.选择题(本题共36分,每小题3分,只有一个正确选项)6.下列过程中,共价键被破坏的是A.碘升华B.溴蒸气被木炭吸附C.酒精溶于水D.氯化氢气体溶于水7.在铜的催化作用下氨气与氟气反应,得到一种三角锥形分子M和一种铵盐N。

下列有关说法错误的是A.该反应的化学方程式为4NH3+3F2→NF3+3NH4FB.M是极性分子,其还原性比NH3强C.M既是氧化产物,又是还原产物D.N中既含有离子键,又含有共价键8.将反应4(NH4)2SO4→N2↑+6NH3↑+3SO2↑+SO3↑+7H2O 的产物气体通入BaCl2溶液,下列判断正确的是A.无沉淀生成B.肯定没有BaSO3生成NaCl 溶液银器铝制 容器 C .得到的沉淀是纯净物 D .得到的沉淀是BaSO 4和BaSO 3组成的混合物9.NO 2存在下列平衡:2NO 2(g) N 2O 4(g)+Q (Q>0) 在测定NO 2的相对分子质量时,下列条件下测定结果最接近理论值的是 A .温度130℃、压强3.03×105 Pa B .温度25℃、压强1.01×105 PaC .温度130℃、压强5.05×104 PaD .温度0℃、压强5.05×104 Pa10.将表面发黑(黑色物质为Ag 2S )的银器按下图方法处理,一段时间后银器光亮如新。

上海市徐汇区2014-2015学年高三第一学期学习能力诊断 数学理试卷

上海市徐汇区2014-2015学年高三第一学期学习能力诊断 数学理试卷

上海市徐汇区2014-2015学年高三第一学期学习能力诊断数学理试卷一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得0分.1.已知3sin 5θ=-,则cos 2θ=__ ___.2.若实数,x y 满足4xy =,则224x y +的最小值为 . 3.设i 是虚数单位,复数z 满足(2)5i z +⋅=,则z = . 4.函数2()2(0)f x x x =-<的反函数1()f x -= .5.若抛物线22y px =的焦点与双曲线2213y x -=的右焦点重合,则该抛物线的准线方程为.6.若正四棱柱1111ABCD A BC D -的底面边长为2,高为4,则异面直线1BD 与AD 所成角的大小是______________.(结果用反三角函数值表示) 7.设数列{}n a 的前n 项和为n S ,若11a =,*110()2n n S a n N +-=∈,则{}n a 的通项公式为 .8.若全集U R =,不等式11111x x+≥-的解集为A ,则U A C = .9.已知圆22:(1)(1)2C x y -+-=,方向向量(1,1)d =的直线l 过点(0,4)P ,则圆C 上的点到直线l 的距离的最大值为 . 10.如图:在梯形ABCD 中,//AD BC 且12AD BC =,AC 与 BD 相交于O ,设A B a =,D C b =,用,a b 表示BO ,则BO = .11.已知函数()2sin(2)6f x x π=+,将()y f x =的图像向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图像.若()y g x =的图像上各最高点到点(0,3)的距离的最小值为1,则ϕ的值为 .12.已知函数222111()1()()(1)2222015n n n f x x n =+++++++,其中*n N ∈.当1 2 3 n =,,,时,()n f x 的零点依次记作123 x x x ,,,,则lim n n x →∞= .13.在平面直角坐标系中,对于函数()y f x =的图像上不重合的两点,A B ,若,A B 关于原点对称,则称点对(),A B 是函数()y f x =的一组“奇点对”(规定(),A B 与(),B A 是相同的“奇点对”).函数()()()1lg 01sin 02x xf x x x ⎧>⎪⎪=⎨⎪<⎪⎩的“奇点对”的组数是 .14.设集合(){}{}12310,,,,|1,0,1,1,2,3,,10i A x x x x x i =∈-=,则集合A 中满足条件“1231019x x x x ≤++++≤”的元素个数为 .二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得0分.15. “14a ≥”是“实系数一元二次方程20x x a ++=有虚数根”的( )(A )充分非必要条件 (B )必要非充分条件(C )充分必要条件 (D )既非充分又非必要条件 16.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,则下列给出的条件中一定能推出m β⊥的是 ( )(A )αβ⊥且m α⊂≠(B )αβ⊥且α//m(C )n m //且n β⊥ (D )m n ⊥且//n β17.某电商在“双十一”期间用电子支付系统进行商品买卖,全部商品共有n 类*()n N ∈,分别编号为1,2,,n ,买家共有m 名*(,)m N m n ∈<,分别编号为1,2,,m .若1,1,10,ij i j a i m j n i j ⎧=≤≤≤≤⎨⎩第名买家购买第类商品第名买家不购买第类商品,则同时购买第1类和第2类商品的人数是( ) (A )1112121222m m a a a a a a +++++++(B )1121112222m m a a a a a a +++++++(C )1112212212m m a a a a a a +++ (D )1121122212m m a a a a a a +++18.对于方程为||1x +||1y =1的曲线C 给出以下三个命题: (1)曲线C 关于原点中心对称;(2)曲线C 既关于x 轴对称,也关于y 轴对称,且x 轴和y 轴是曲线C 仅有的两条对称轴; (3)若分别在第一、第二、第三、第四象限的点M,N,P,Q 都在曲线C 上,则四边形MNPQ 每一条边的边长都大于2.其中正确的命题是( ) (A)(1)(2) (B)(1)(3) (C)(2)(3) (D)(1)(2)(3)三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分) 本题共有2个小题,第1小题满分4分,第2小题满分8分. 已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf . (1)求A 的值;(2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f .20.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知函数()22()xxf x k k R -=+⋅∈.(1)若函数()f x 为奇函数,求k 的值;(2)若函数()f x 在(],2-∞上为减函数,求k 的取值范围.21.(本题满分14分) 本题共有2个小题,第1小题满分8分,第2小题满分6分.如图所示,某传动装置由两个陀螺12,T T 组成,陀螺之间没有滑动.每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的13,且12,T T 的轴相互垂直,它们相接触的直线与2T 的轴所成角2arctan3θ=.若陀螺2T 中圆锥的底面半径为()0r r >.(1)求陀螺2T 的体积;(2)当陀螺2T 转动一圈时,陀螺1T 中圆锥底面圆周上一点P 转动到点1P ,求P 与1P 之间的距离. 22.(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知椭圆222:1x y aγ+=(常数1a >)的左顶点为R ,点(,1),(,1)A a B a -,O 为坐标原点.(1)若P 是椭圆γ上任意一点,OP mOA nOB =+,求22m n +的值; (2)设Q 是椭圆γ上任意一点,()3,0S a ,求QS QR ⋅的取值范围;(3)设1122(,),(,)M x y N x y 是椭圆γ上的两个动点,满足OM ON OA OB k k k k ⋅=⋅,试探究OMN ∆的面积是否为定值,说明理由.23.(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知有穷数列}{n a 各项均不相等....,将}{n a 的项从大到小重新排序后相应的项数.....构成新数列}{n p ,称}{n p 为}{n a 的“序数列”.例如数列:321,,a a a 满足231a a a >>,则其序数列}{n p 为2,3,1.(1)写出公差为(0)d d ≠的等差数列12,,,n a a a L 的序数列}{n p ;(2)若项数不少于5项的有穷数列}{n b 、}{n c 的通项公式分别是nn n b )53(⋅=(*n N ∈),tn n c n +-=2(*n N ∈),且}{n b 的序数列与}{n c 的序数列相同,求实数t 的取值范围;(3)若有穷数列}{n d 满足11=d ,nn n d d )21(||1=-+*()n N ∈,且}{12-n d 的序数列单调递减,}{2n d 的序数列单调递增,求数列}{n d 的通项公式.理科参考答案一、填空题:(每题4分)1.7252. 163.4. 2)x >-5. 2x =-6. 7. 2*1,123,2,n n n a n n N-=⎧=⎨⋅≥∈⎩ 8. (]1,0- 9. 10. 4233a b -+r r 11. 6π12. 3- 13. 3 14. 58024二、选择题:(每题5分)15. B 16. C 17. C 18. B三、解答题19、解:(1)553()sin()121242f A πππ=+=,32A =……………………..2’A ∴= ……………………..4’(2)3()()))442f f +-=+-+=ππθθθθ,3cos )sin cos )]2++-+=θθθθ,……………………..6’32=θ,cos =θ,……………………..8’又)2,0(πθ∈,sin∴==θ, ……………………..10’ )43(θπ-f )=-==πθθ.……………………..12’20、解:(1)()()(1)(22)0x x f x f x k -+-=++=对一切的x R ∈成立,……………………..4’ 所以1k =-……………………..6’(2)若0k ≤,则函数()f x 在(],2-∞单调递增(舍)……………………..8’当0k >时,令(]20,4xt =∈,……………………..9’则函数()kg t t t=+在(]0,4上单调递减……………………..10’ 4,……………………..13’ 即16k ≥……………………..14’ 21、解:(1)设陀螺2T 圆锥的高为h ,则23r h =,即32h r =……………………..2’得陀螺2T 圆柱的底面半径和高为3r……………………..3’ 231=3327r r V r ππ⎛⎫= ⎪⎝⎭柱……………………..5’23131=322V r r r ππ=椎……………………..7’232954T V V V r π=+=柱椎……………………..8’(2)设陀螺1T 圆锥底面圆心为O , 则12PP r π=, (10)’得1124332PP r POP OP r ππ∠===……………………..12’ 在1POP ∆中,12PP==……………………..14’ 22、解:(1)(),OP mOA nOB ma na m n =+=-+, 得(),P ma na m n -+……………………..2’()()221m n m n -++=,即2212m n +=……………………..4’ (2)设(),Q x y ,则()()3,,QS QR a x y a x y ⋅=-----()()()()222331x x a x a y x a x a a=-++=-++-……………………..5’22221213a x ax a a-=-+-()22342222144111a a a a x a x a a a a ⎛⎫--+=---≤≤ ⎪--⎝⎭……………………..6’ 由1a >,得321a a a >-……………………..7’ ∴ 当x a =-时,QS QR ⋅最大值为0;……………………..8’当x a =时,QS QR ⋅最小值为24a -;……………………..9’即QS QR ⋅的取值范围为24,0a ⎡⎤-⎣⎦……………………..10’(3)(解法一)由条件得,122121y y x x a=-,……………………..11’ 平方得224222222121212()()x x a y y a x a x ==--,即22212x x a +=……………………..12’122112OMN S x y x y ∆=-……………………..13’=2a==……………………..15’ 故OMN ∆的面积为定值2a……………………..16’(解法二)①当直线MN 的斜率不存在时,易得OMN ∆的面积为2a……………………..11’ ②当直线MN 的斜率存在时,设直线MN 的方程为y kx t =+()()22222222211210x y a k x kta x a t ay kx t ⎧+=⎪⇒+++-=⎨⎪=+⎩……………………..12’ 由1122(,),(,)M x y N x y ,可得()2221212222212,11a t kta x x x x a k a k--+==++, ()()()2222212121212221t a k y y kx t kx t k x x kt x x x t a k -=++=+++=+又122121OM ON y y k k x x a⋅==-,可得22221t a k =+……………………..13’因为12MN x x =-,……………………..14’ 点O 到直线MN的距离d =..15’12122OMNt S MN d x x ∆=⋅⋅=⋅-2t =22t a==综上:OMN ∆的面积为定值2a……………………..16’ 23、解:(1)当0>d 时,序数列}{n p 为,1,,2,1n n -L ;……………………..2’ 当0<d 时,序数列}{n p 为1,2,,1,n n -L ……………………..4’ (2)因为523)53(1nb b nn n -⋅=-+,……………………..5’ 当1=n 时,易得12b b >,当2≥n 时,n n b b <+1, 又因531=b ,33)53(3⋅=b ,44)53(4⋅=b ,314b b b <<, 即2314n b b b b b >>>>>L ,故数列}{n b 的序数列为2,3,1,4,,n L ,……………………..8’ 所以对于数列}{n c 有2522<<t , 解得:54<<t ……………………..10’(3)由于}{12-n d 的序数列单调递减,因此}{12-n d 是递增数列,故01212>--+n n d d ,于是0)()(122212>-+--+n n n n d d d d ,而122)21()21(-<n n,所以||||122212-+-<-n n n n d d d d ,从而0122>--n n d d , 122121222)1()21(----==-n n n n n d d (1) ……………………..12’ 因为}{2n d 的序数列单调递增,所以}{2n d 是递减数列,同理可得0212<-+n n d d ,故21221221(1)()22n n n nnd d ++--=-= (2) ……………………..14’由(1)(2)得:nn n n d d 2)1(11++-=-……………………..15’ 于是 )()()(123121--++-+-+=n n n d d d d d d d d ……………………..16’122)1(21211--++-+=n n211)21(12111+--⋅+=-n ……………………..17’12)1(3134--⋅+=n n 即数列}{n d 的通项公式为12)1(3134--⋅+=n n n d (*n N ∈)……………………..18’。

上海市徐汇区2014-2015学年高三第一学期学习能力诊断数学文试卷--含答案

上海市徐汇区2014-2015学年高三第一学期学习能力诊断数学文试卷--含答案

2014学年第一学期徐汇区学习能力诊断卷高三年级数学学科(文科)2015.1一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得0分.1.已知3sin 5θ=-,则cos2θ=__ ___.2.若实数,x y 满足4xy =,则224x y +的最小值为 .3.设i 是虚数单位,复数z 满足(2)5i z +⋅=,则z = . 4.函数2()2(0)f x x x =-<的反函数1()fx -= .5.若抛物线22y px =的焦点与双曲线2213y x -=的右焦点重合,则该抛物线的准线方程为 .6.若正四棱柱1111ABCD A B C D -的底面边长为2,高为4,则异面直线1BD 与AD 所成角的大小是______________(结果用反三角函数值表示).7.已知无穷等比数列{}n a 的各项和为1,则首项1a 的取值范围为 .8.若全集U R =,不等式11111x x+>-的解集为A ,则U A C = .9.设数列{}n a 的前n 项和为n S ,若11a =,*111()22n n S a n N ++=∈,则{}n a 的通项公式为 .10.已知圆22:(1)(1)2C x y -+-=,方向向量(1,1)d =的直线l 过点(0,4)P ,则圆C 上的点到直线l 的距离的最大值为 . 11.如图:在梯形ABCD 中,//AD BC 且12AD BC =,AC 与BD 相交于O ,设AB a =,AD b =,用,a b 表示BO ,则BO = .12.已知函数()2sin(2)6f x x π=+,将()y f x =的图像向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图像,若()y g x =的图像上各最高点到点(0,3)的距离的最小值为1,则ϕ的值为 .13.在平面直角坐标系中,对于函数()y f x =的图像上不重合的两点,A B ,若,A B关于原点对称,则称点对(),A B 是函数()y f x =的一组“奇点对”(规定(),A B 与(),B A 是相同的“奇点对”).函数()()()2401202x x f x x x x ⎧-+>⎪=⎨+<⎪⎩的“奇点对”的组数是 .14.设集合(){}{}1234,,,|1,0,1,1,2,3,4iA x x x x x i =∈-=,那么集合A 中满足条件“123413x x x x ≤+++≤”的元素个数为 .二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得0分.15.若1+是关于x 的实系数一元二次方程20x bx c ++=的一个复数根,则( ) (A ) 2,3b c =-= (B ) 2,1b c ==- (C ) 2,1b c =-=- (D ) 2,3b c ==16.已知直线l 和平面α,无论直线l 与平面α具有怎样的位置关系,在平面α内总存在一条直线与直线l ( )(A )相交 (B )平行 (C )垂直 (D17.若函数)(log )(b x x f a +=的图象如右图所示,(其中b a ,为常数) 则函数b a x g x+=)(的大致图象是( )18*)N ,分别编号为1,2,,n ,买家共有m 名*(,)m N m n ∈<,分别编号为1,2,,m .若1,1,10,ij i j a i m j n i j ⎧=≤≤≤≤⎨⎩第名买家购买第类商品第名买家不购买第类商品,则同时购买第1类和第2类商品的人数是( )(A )1112121222m m a a a a a a +++++++(B )1121112222m m a a a a a a +++++++(C )1112212212m m a a a a a a +++ (D )1121122212m m a a a a a a +++三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分) 本题共有2个小题,第1小题满分4分,第2小题满分8分. 已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf . (1)求A 的值;(2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f .20.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知函数()22()xxf x k k R -=+⋅∈. (1)若函数()f x 为奇函数,求k 的值;(2)若函数()f x 在(],2-∞上为减函数,求k 的取值范围.21.(本题满分14分) 本题共有2个小题,第1小题满分8分,第2小题满分6分.如图所示,某传动装置由两个陀螺12,T T 组成,陀螺之间没有滑动.每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的13,且12,T T 的轴相互垂直,它们相接触的直线与2T 的轴所成角2arctan3θ=.若陀螺2T 中圆锥的底面半径为()0r r >.(1)求陀螺2T 的体积;(2)当陀螺2T 转动一圈时,陀螺1T 中圆锥底面圆周上一点P 转动到点1P ,求P 与1P 之间的距离.22.(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知椭圆22:14x y γ+=的右焦点为F ,左顶点为R ,点(2,1),(2,1)A B -,O 为坐标原点.(1)若P 是椭圆γ上任意一点,OP mOA nOB =+,求22m n +的值; (2)设Q 是椭圆γ上任意一点,()(),0,2,5S t t ∈,求QS QR ⋅的取值范围;(3)过F 作斜率为k 的直线l 交椭圆γ于,C D 两点,交y 轴于点E ,若1EC CF λ=,2ED DF λ=,试探究21λλ+是否为定值,说明理由.23.(本题满分18分) 本题共有3个小题,第1小题满分5分,第2小题满分6分,第3小题满分7分.已知有穷数列}{n a 各项均不相等....,将}{n a 的项从大到小重新排序后相应的项数.....构成新数列}{n p ,称}{n p 为}{n a 的“序数列”.例如数列:321,,a a a 满足231a a a >>,则其序数列}{n p 为2,3,1.(1)若,x y R +∈,2=+y x 且y x ≠,写出数列:2,,122y x xy +的序数列并说明理由;(2)求证:有穷数列}{n a 的序数列}{n p 为等差数列的充要条件是有穷数列}{n a 为单调数列; (3) 若项数不少于5项的有穷数列}{n b 、}{n c 的通项公式分别是n n n b )53(⋅=(*n N ∈),tn n c n +-=2(*n N ∈),且}{n b 的序数列与}{n c 的序数列相同,求实数t 的取值范围.文科参考答案一、填空题:(每题4分)1.7252. 163.4. 2)x >-5. 2x =-6. arctan7. ()()0,11,2U8. []1,0-9. 1*3,n n a n N -=∈10. 11. 2233a b -+r r 12. 6π13. 2 14. 64二、选择题:(每题5分)15. A 16. C 17. D 18. C三、解答题19、解:(1)553()sin()121242f A πππ=+=,322A ⋅=……………………..2’A ∴=; ……………………..4’(2)3()()))442f f +-=++-+=ππθθθθ,3cos )sin cos )]2++-+=θθθθ,……………………..6’32=θ,cos =θ,……………………..8’又)2,0(πθ∈,sin∴==θ, ……………………..10’ )43(θπ-f )=-==πθθ.……………………..12’20、解:(1)()()(1)(22)0x xf x f x k -+-=++=对一切的x R ∈成立,……………………..4’ 所以1k =-……………………..6’(2)若0k ≤,则函数()f x 在(],2-∞单调递增(舍)……………………..8’当0k >时,令(]20,4x t =∈,……………………..9’ 则函数()kg t t t=+在(]0,4上单调递减……………………..10’ 4≥,……………………..13’ 即16k ≥……………………..14’ 21、解:(1)设陀螺2T 圆锥的高为h ,则23r h =,即32h r =……………………..2’得陀螺2T 圆柱的底面半径和高为3r……………………..3’ 231=3327r r V r ππ⎛⎫= ⎪⎝⎭柱……………………..5’23131=322V r r r ππ=椎……………………..7’232954T V V V r π=+=柱椎……………………..8’(2)设陀螺1T 圆锥底面圆心为O , 则12PP r π=,……………………..10’ 得1124332PP r POP OP r ππ∠===……………………..12’在1POP ∆中,12PP==……………………..14’ 22、解:(1)()22,OP mOA nOB m n m n =+=-+, 得()22,P m n m n -+……………………..2’()()221m n m n -++=,即2212m n +=……………………..4’ (2)设(),Q x y ,则()(),2,QS QR t x y x y ⋅=-----()()()()222214x x t x y x t x =-++=-++-……………………..5’()232124x t x t =+-+- ()()22132422433t t x x +-⎛⎫=---≤≤ ⎪⎝⎭……………………..6’ 由()2,5t ∈,得24023t -<<……………………..7’ 当2x =-时,QS QR ⋅最大值为0;……………………..8’当243t x -=时,QS QR ⋅最小值为()213t +-;……………………..9’ ∴综上所述:QS QR ⋅的取值范围为()21,03t ⎡⎤+-⎢⎥⎢⎥⎣⎦……………………..10’ (3)由题,得F ,11(,)C x y ,22(,)D x y , 直线l的方程为(y k x =,则(0,)E ,由2244(x y y k x ⎧+=⎪⎨=⎪⎩,得2222(41)4(31)0k x x k +-+-=,……………………..12’故12x x +=,21224(31)41k x x k -=+……………………..13’ 由1EC CF λ=得111)x x λ=,即1λ=2λ=……………………..14’所以12λλ+==22222222248(31)4141244(31)34141k kk kk kk k--++=--+++8=-即128λλ+=-为定值……………………..16’23、解:(1)因为2=+yx且yx≠,所以11)1()2(2<+--=-=xxxxy,……………………..2’11)1(2)2(222222>+-=-+=+xxxyx……………………..4’故数列2,,122yxxy+的序数列2,1,3;……………………..5’(2)充分性:因为数列}{na是单调数列时,12na a a>>>L或12na a a<<<L,所以其序数列为1,2,,1,n n-L或,1,,2,1n n-L均为等差数列;……………………..8’必要性:当数列}{na的序数列为等差数列时,其序数列必为1,2,,1,n n-L或,1,,2,1n n-L,所以有12na a a>>>L或12na a a<<<L,所以数列}{na为单调数列;……………………..11’(3)因为523)53(1nbb nnn-⋅=-+,……………………..13’当1=n时,易得12bb>,当2≥n时,nnbb<+1,又因531=b,33)53(3⋅=b,44)53(4⋅=b,314bbb<<,即2314nb b b b b>>>>>L,故数列}{n b 的序数列为2,3,1,4,,n L ,……………………..16’ 所以对于数列}{n c 有2522<<t ,解得:54<<t ……………………..18’。

上海市徐汇区2014-2015学年高三第一学期学习能力诊断 数学文试卷 (1)

上海市徐汇区2014-2015学年高三第一学期学习能力诊断 数学文试卷 (1)

上海市徐汇区2014-2015学年高三第一学期学习能力诊断数学文试卷一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得0分.1.已知3sin 5θ=-,则cos 2θ=__ ___.2.若实数,x y 满足4xy =,则224x y +的最小值为 . 3.设i 是虚数单位,复数z 满足(2)5i z +⋅=,则z = .4.函数2()2(0)f x x x =-<的反函数1()f x -= .5.若抛物线22y px =的焦点与双曲线2213y x -=的右焦点重合,则该抛物线的准线方程为.6.若正四棱柱1111ABCD A BC D -的底面边长为2,高为4,则异面直线1BD 与AD 所成角的大小是______________(结果用反三角函数值表示).7.已知无穷等比数列{}n a 的各项和为1,则首项1a 的取值范围为 .8.若全集U R =,不等式11111x x+>-的解集为A ,则U A C = .9.设数列{}n a 的前n 项和为n S ,若11a =,*111()22n n S a n N ++=∈,则{}n a 的通项公式为 .10.已知圆22:(1)(1)2C x y -+-=,方向向量(1,1)d =的直线l 过点(0,4)P ,则圆C 上的点到直线l 的距离的最大值为 . 11.如图:在梯形ABCD 中,//AD BC 且12AD BC =,AC 与BD 相交于O ,设AB a =,AD b =,用,a b 表示BO ,则BO = .12.已知函数()2sin(2)6f x x π=+,将()y f x =的图像向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图像,若()y g x =的图像上各最高点到点(0,3)的距离的最小值为1,则ϕ的值为 .13.在平面直角坐标系中,对于函数()y f x =的图像上不重合的两点,A B ,若,A B 关于原点对称,则称点对(),A B 是函数()y f x =的一组“奇点对”(规定(),A B 与(),B A是相同的“奇点对”).函数()()()2401202x x f x x x x ⎧-+>⎪=⎨+<⎪⎩的“奇点对”的组数是 .14.设集合(){}{}1234,,,|1,0,1,1,2,3,4iA x x x x x i =∈-=,那么集合A 中满足条件“123413x x x x ≤+++≤”的元素个数为 .二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得0分.15.若1是关于x 的实系数一元二次方程20x bx c ++=的一个复数根,则( ) (A ) 2,3b c =-= (B ) 2,1b c ==- (C ) 2,1b c =-=- (D ) 2,3b c ==16.已知直线l 和平面α,无论直线l 与平面α具有怎样的位置关系,在平面α内总存在一条直线与直线l ( )(A )相交 (B )平行 (C )垂直 (17.若函数)(log )(b x x f a +=的图象如右图所示,(其中b a ,则函数b a x g x +=)(的大致图象是( )18*)N ,分别编号为1,2,,n ,买家共有m 名*(,)m N m n ∈<,分别编号为1,2,,m .若1,1,10,ij i j a i m j n i j ⎧=≤≤≤≤⎨⎩第名买家购买第类商品第名买家不购买第类商品,则同时购买第1类和第2类商品的人数是( )(A )1112121222m m a a a a a a +++++++(B )1121112222m m a a a a a a +++++++(C )1112212212m m a a a a a a +++ (D )1121122212m m a a a a a a +++三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分) 本题共有2个小题,第1小题满分4分,第2小题满分8分.已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf . (1)求A 的值;(2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f .20.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知函数()22()x x f x k k R -=+⋅∈. (1)若函数()f x 为奇函数,求k 的值;(2)若函数()f x 在(],2-∞上为减函数,求k 的取值范围.21.(本题满分14分) 本题共有2个小题,第1小题满分8分,第2小题满分6分.如图所示,某传动装置由两个陀螺12,T T 组成,陀螺之间没有滑动.每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的13,且12,T T 的轴相互垂直,它们相接触的直线与2T 的轴所成角2arctan3θ=.若陀螺2T 中圆锥的底面半径为()0r r >.(1)求陀螺2T 的体积;(2)当陀螺2T 转动一圈时,陀螺1T 中圆锥底面圆周上一点P 转动到点1P ,求P 与1P 之间的距离.22.(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知椭圆22:14x y γ+=的右焦点为F ,左顶点为R ,点(2,1),(2,1)A B -,O 为坐标原点. (1)若P 是椭圆γ上任意一点,OP mOA nOB =+,求22m n +的值; (2)设Q 是椭圆γ上任意一点,()(),0,2,5S t t ∈,求QS QR ⋅的取值范围;(3)过F 作斜率为k 的直线l 交椭圆γ于,C D 两点,交y 轴于点E ,若1EC CF λ=,2ED DF λ=,试探究21λλ+是否为定值,说明理由.23.(本题满分18分) 本题共有3个小题,第1小题满分5分,第2小题满分6分,第3小题满分7分.已知有穷数列}{n a 各项均不相等....,将}{n a 的项从大到小重新排序后相应的项数.....构成新数列}{n p ,称}{n p 为}{n a 的“序数列”.例如数列:321,,a a a 满足231a a a >>,则其序数列}{n p 为2,3,1.(1)若,x y R +∈,2=+y x 且y x ≠,写出数列:2,,122y x xy +的序数列并说明理由;(2)求证:有穷数列}{n a 的序数列}{n p 为等差数列的充要条件是有穷数列}{n a 为单调数列;(3) 若项数不少于5项的有穷数列}{n b 、}{n c 的通项公式分别是nn n b )53(⋅=(*n N ∈),tn n c n +-=2(*n N ∈),且}{n b 的序数列与}{n c 的序数列相同,求实数t 的取值范围.文科参考答案一、填空题:(每题4分)1.7252. 163.4. 2)x >-5. 2x =-6. 7. ()()0,11,2U 8. []1,0- 9. 1*3,n n a n N -=∈10. 11. 2233a b -+r r 12. 6π13. 2 14. 64二、选择题:(每题5分)15. A 16. C 17. D 18. C三、解答题19、解:(1)553()sin()121242f A πππ=+=,32A =……………………..2’A ∴= ……………………..4’(2)3()()))442f f +-=+-+=ππθθθθ,3cos )sin cos )]2++-+=θθθθ,……………………..6’32=θ,cos =θ,……………………..8’又)2,0(πθ∈,sin∴==θ, ……………………..10’ )43(θπ-f )=-==πθθ.……………………..12’20、解:(1)()()(1)(22)0x x f x f x k -+-=++=对一切的x R ∈成立,……………………..4’ 所以1k =-……………………..6’(2)若0k ≤,则函数()f x 在(],2-∞单调递增(舍)……………………..8’当0k >时,令(]20,4xt =∈,……………………..9’则函数()kg t t t=+在(]0,4上单调递减……………………..10’ 4,……………………..13’ 即16k ≥……………………..14’ 21、解:(1)设陀螺2T 圆锥的高为h ,则23r h =,即32h r =……………………..2’得陀螺2T 圆柱的底面半径和高为3r……………………..3’ 231=3327r r V r ππ⎛⎫= ⎪⎝⎭柱……………………..5’23131=322V r r r ππ=椎……………………..7’232954T V V V r π=+=柱椎……………………..8’(2)设陀螺1T 圆锥底面圆心为O , 则12PP r π=, (10)’得1124332PP r POP OP r ππ∠===……………………..12’ 在1POP ∆中,12PP==……………………..14’ 22、解:(1)()22,OP mOA nOB m n m n =+=-+,得()22,P m nm n -+……………………..2’()()221m n m n -++=,即2212m n +=……………………..4’(2)设(),Q x y ,则()(),2,QS QR t x y x y ⋅=-----()()()()222214x x t x y x t x =-++=-++-……………………..5’()232124x t x t =+-+- ()()22132422433t t x x +-⎛⎫=---≤≤ ⎪⎝⎭……………………..6’ 由()2,5t ∈,得24023t -<<……………………..7’ 当2x =-时,QS QR ⋅最大值为0;……………………..8’当243t x -=时,QS QR ⋅最小值为()213t +-;……………………..9’ ∴综上所述:QS QR ⋅的取值范围为()21,03t ⎡⎤+-⎢⎥⎢⎥⎣⎦……………………..10’ (3)由题,得F ,11(,)C x y ,22(,)D x y , 直线l的方程为(y k x =,则(0,)E ,由2244(x y y k x ⎧+=⎪⎨=⎪⎩,得2222(41)4(31)0k x x k +-+-=,……………………..12’故12x x +=21224(31)41k x x k -=+……………………..13’ 由1EC CF λ=得111)x x λ=,即1λ=2λ=……………………..14’所以12λλ+==22222222248(31)4141244(31)34141k k k k k k k k --++=--+++ 8=-即128λλ+=-为定值……………………..16’ 23、解:(1)因为2=+y x 且y x ≠,所以11)1()2(2<+--=-=x x x xy ,……………………..2’11)1(2)2(222222>+-=-+=+x x x y x ……………………..4’ 故数列2,,122y x xy +的序数列2,1,3;……………………..5’(2)充分性:因为数列}{n a 是单调数列时,12n a a a >>>L 或12n a a a <<<L , 所以其序数列为1,2,,1,n n -L 或,1,,2,1n n -L 均为等差数列;……………………..8’ 必要性:当数列}{n a 的序数列为等差数列时,其序数列必为1,2,,1,n n -L 或,1,,2,1n n -L ,所以有12n a a a >>>L 或12n a a a <<<L ,所以数列}{n a 为单调数列;……………………..11’ (3)因为523)53(1nb b nn n -⋅=-+,……………………..13’ 当1=n 时,易得12b b >,当2≥n 时,n n b b <+1, 又因531=b ,33)53(3⋅=b ,44)53(4⋅=b ,314b b b <<, 即2314n b b b b b >>>>>L ,故数列}{n b 的序数列为2,3,1,4,,n L ,……………………..16’ 所以对于数列}{n c 有2522<<t ,解得:54<<t ……………………..18’。

上海市徐汇区2014年高三第一学期学习能力诊断数学【理】试卷及答案-推荐下载

上海市徐汇区2014年高三第一学期学习能力诊断数学【理】试卷及答案-推荐下载

12 2
如图所示,某传动装置由两个陀螺 T1,T2 组成,陀螺之间没有滑动.每个陀螺都由具有公共轴
1 的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的 3 ,且 T1,T2 的轴
相互垂直,它们相接触的直线与 T2 的轴所成角


arctan
r r 0.
2 3
.若陀螺 T2
2014 学年第一学期徐汇区学习能力诊断卷
高三年级数学学科(理科)
一.填空题(本大题满分 56 分)本大题共有 14 题,考生应在答题纸相应编号的空格内
直接填写结果,每个空格填对得 4 分,否则一律得 0 分.
1.已知 sin 3 ,则 cos 2 __ 5
2.若实数 x, y 满足 xy 4 ,则 x2 4 y2 的最小值为
1 2
an1


0(n

N*)



,则 an 的通项公式为

2015.1
12.已知函数
当 n 1,,,2
3
fn (x)
1
1 2

(1)2 2
时, fn (x) 的零点依次记作 x1,,,x2

(1)n 2

n2
13.在平面直角坐标系中,对于函数 y f x的图像上不重合的两点 A, B ,若 A, B 关于原点对称,
1 i m,1
(A) a11 a12 a1m a21 a22 a2m (B) a11 a21 am1 a12 a22 am2
(C) a11a12 a21a22 am1am2
(B) 且 m // (D) m n 且 n //

上海市徐汇区2014年高三第一学期学习能力诊断数学【理】试卷及答案

上海市徐汇区2014年高三第一学期学习能力诊断数学【理】试卷及答案

2014学年第一学期徐汇区学习能力诊断卷高三年级数学学科(理科)2015.1一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得0分.1.已知3sin 5θ=-,则cos 2θ=__ ___.2.若实数,x y 满足4xy =,则224x y +的最小值为 . 3.设i 是虚数单位,复数z 满足(2)5i z +⋅=,则z = . 4.函数2()2(0)f x x x =-<的反函数1()f x -= .5.若抛物线22y px =的焦点与双曲线2213y x -=的右焦点重合,则该抛物线的准线方程为 .6.若正四棱柱1111ABCD A BC D -的底面边长为2,高为4,则异面直线1BD 与AD 所成角的大小是______________.(结果用反三角函数值表示) 7.设数列{}n a 的前n 项和为n S ,若11a =,*110()2n n S a n N +-=∈,则{}n a 的通项公式为 .8.若全集U R =,不等式11111x x+≥-的解集为A ,则U A C = .9.已知圆22:(1)(1)2C x y -+-=,方向向量(1,1)d =的直线l 过点(0,4)P ,则圆C 上的点到直线l 的距离的最大值为 .10.如图:在梯形ABCD 中,//AD BC 且12AD BC =,AC 与 BD 相交于O ,设A B a =,D C b =,用,a b 表示BO ,则BO = .11.已知函数()2sin(2)6f x x π=+,将()y f x =的图像向左平移ϕ(0ϕπ<<)个单位后得到函数()y g x =的图像.若()y g x =的图像上各最高点到点(0,3)的距离的最小值为1,则ϕ的值为 .12.已知函数222111()1()()(1)2222015n n n f x x n =+++++++,其中*n N ∈. 当1 2 3 n =,,,时,()n f x 的零点依次记作123 x x x ,,,,则lim n n x →∞= .13.在平面直角坐标系中,对于函数()y f x =的图像上不重合的两点,A B ,若,A B 关于原点对称,则称点对(),A B 是函数()y f x =的一组“奇点对”(规定(),A B 与(),B A 是相同的“奇点对”).函数()()()1lg 01sin 02x xf x x x ⎧>⎪⎪=⎨⎪<⎪⎩的“奇点对”的组数是 .14.设集合(){}{}12310,,,,|1,0,1,1,2,3,,10i A x x x x x i =∈-=,则集合A 中满足条件“1231019x x x x ≤++++≤”的元素个数为 .二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得0分.15. “14a ≥”是“实系数一元二次方程20x x a ++=有虚数根”的( )(A )充分非必要条件 (B )必要非充分条件(C )充分必要条件 (D )既非充分又非必要条件16.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,则下列给出的条件中一定能推出m β⊥的是 ( )(A )αβ⊥且m α⊂≠(B )αβ⊥且α//m(C )n m //且n β⊥ (D )m n ⊥且//n β17.某电商在“双十一”期间用电子支付系统进行商品买卖,全部商品共有n 类*()n N ∈,分别编号为1,2,,n ,买家共有m 名*(,)m N m n ∈<,分别编号为1,2,,m .若1,1,10,ij i j a i m j n i j ⎧=≤≤≤≤⎨⎩第名买家购买第类商品第名买家不购买第类商品,则同时购买第1类和第2类商品的人数是( ) (A )1112121222m m a a a a a a +++++++(B )1121112222m m a a a a a a +++++++(C )1112212212m m a a a a a a +++ (D )1121122212m m a a a a a a +++18.对于方程为||1x +||1y =1的曲线C 给出以下三个命题: (1)曲线C 关于原点中心对称;(2)曲线C 既关于x 轴对称,也关于y 轴对称,且x 轴和y 轴是曲线C 仅有的两条对称轴; (3)若分别在第一、第二、第三、第四象限的点M,N,P,Q 都在曲线C 上,则四边形MNPQ 每一条边的边长都大于2.其中正确的命题是( ) (A)(1)(2) (B)(1)(3) (C)(2)(3) (D)(1)(2)(3)三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分) 本题共有2个小题,第1小题满分4分,第2小题满分8分. 已知函数R x x A x f ∈+=),4sin()(π,且23)125(=πf . (1)求A 的值;(2)若23)()(=-+θθf f ,)2,0(πθ∈,求)43(θπ-f .20.(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分. 已知函数()22()x x f x k k R -=+⋅∈.(1)若函数()f x 为奇函数,求k 的值;(2)若函数()f x 在(],2-∞上为减函数,求k 的取值范围.21.(本题满分14分) 本题共有2个小题,第1小题满分8分,第2小题满分6分.如图所示,某传动装置由两个陀螺12,T T 组成,陀螺之间没有滑动.每个陀螺都由具有公共轴的圆锥和圆柱两个部分构成,每个圆柱的底面半径和高都是相应圆锥底面半径的13,且12,T T 的轴相互垂直,它们相接触的直线与2T 的轴所成角2arctan3θ=.若陀螺2T 中圆锥的底面半径为()0r r >.(1)求陀螺2T 的体积;(2)当陀螺2T 转动一圈时,陀螺1T 中圆锥底面圆周上一点P 转动到点1P ,求P 与1P 之间的距离.22.(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知椭圆222:1x y aγ+=(常数1a >)的左顶点为R ,点(,1),(,1)A a B a -,O 为坐标原点.(1)若P 是椭圆γ上任意一点,OP mOA nOB =+,求22m n +的值; (2)设Q 是椭圆γ上任意一点,()3,0S a ,求QS QR ⋅的取值范围;(3)设1122(,),(,)M x y N x y 是椭圆γ上的两个动点,满足OM ON OA OB k k k k ⋅=⋅,试探究OMN ∆的面积是否为定值,说明理由.23.(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知有穷数列}{n a 各项均不相等....,将}{n a 的项从大到小重新排序后相应的项数.....构成新数列}{n p ,称}{n p 为}{n a 的“序数列”.例如数列:321,,a a a 满足231a a a >>,则其序数列}{n p 为2,3,1. (1)写出公差为(0)d d ≠的等差数列12,,,n a a a L 的序数列}{n p ;(2)若项数不少于5项的有穷数列}{n b 、}{n c 的通项公式分别是nn n b )53(⋅=(*n N ∈),tn n c n +-=2(*n N ∈),且}{n b 的序数列与}{n c 的序数列相同,求实数t 的取值范围;(3)若有穷数列}{n d 满足11=d ,nn n d d )21(||1=-+*()n N ∈,且}{12-n d 的序数列单调递减,}{2n d 的序数列单调递增,求数列}{n d 的通项公式.理科参考答案一、填空题:(每题4分)1.7252. 163.4. 2)x >-5. 2x =-6. 7. 2*1,123,2,n n n a n n N -=⎧=⎨⋅≥∈⎩8. (]1,0- 9. 10. 4233a b -+r r 11. 6π12. 3- 13. 3 14. 58024二、选择题:(每题5分)15. B 16. C 17. C 18. B三、解答题19、解:(1)553()sin()121242f A πππ=+=,322A ⋅=……………………..2’A ∴=; ……………………..4’(2)3()()))442f f +-=+-+=ππθθθθ,3cos )sin cos )]2++-+=θθθθ,……………………..6’32=θ,cos =θ,……………………..8’又)2,0(πθ∈,sin ∴==θ, ……………………..10’)43(θπ-f )=-==πθθ.……………………..12’20、解:(1)()()(1)(22)0x xf x f x k -+-=++=对一切的x R ∈成立,……………………..4’ 所以1k =-……………………..6’(2)若0k ≤,则函数()f x 在(],2-∞单调递增(舍)……………………..8’当0k >时,令(]20,4xt =∈,……………………..9’则函数()kg t t t=+在(]0,4上单调递减……………………..10’4≥,……………………..13’ 即16k ≥……………………..14’ 21、解:(1)设陀螺2T 圆锥的高为h ,则23r h =,即32h r =……………………..2’得陀螺2T 圆柱的底面半径和高为3r……………………..3’ 231=3327r r V r ππ⎛⎫= ⎪⎝⎭柱……………………..5’23131=322V r r r ππ=椎……………………..7’232954T V V V r π=+=柱椎……………………..8’(2)设陀螺1T 圆锥底面圆心为O ,则12PP r π=,……………………..10’得1124332PP r POP OP r ππ∠===……………………..12’ 在1POP ∆中,12PPr ==……………………..14’ 22、解:(1)(),OP mOA nOB ma na m n =+=-+, 得(),P ma na m n -+……………………..2’()()221m n m n -++=,即2212m n +=……………………..4’ (2)设(),Q x y ,则()()3,,QS QR a x y a x y ⋅=-----()()()()222331x x a x a y x a x a a=-++=-++-……………………..5’22221213a x ax a a-=-+-()22342222144111a a a a x a x a a a a ⎛⎫--+=---≤≤ ⎪--⎝⎭……………………..6’ 由1a >,得321a a a >-……………………..7’ ∴ 当x a =-时,QS QR ⋅最大值为0;……………………..8’当x a =时,QS QR ⋅最小值为24a -;……………………..9’即QS QR ⋅的取值范围为24,0a ⎡⎤-⎣⎦……………………..10’(3)(解法一)由条件得,122121y y x x a=-,……………………..11’ 平方得224222222121212()()x x a y y a x a x ==--,即22212x x a +=……………………..12’122112OMN S x y x y ∆=-……………………..13’=2a==……………………..15’ 故OMN ∆的面积为定值2a……………………..16’(解法二)①当直线MN 的斜率不存在时,易得OMN ∆的面积为2a……………………..11’ ②当直线MN 的斜率存在时,设直线MN 的方程为y kx t =+()()22222222211210x y a k x kta x a t ay kx t ⎧+=⎪⇒+++-=⎨⎪=+⎩……………………..12’ 由1122(,),(,)M x y N x y ,可得()2221212222212,11a t kta x x x x a k a k --+==++, ()()()2222212121212221t a k y y kx t kx t k x x kt x x x t a k -=++=+++=+又122121OM ON y y k k x x a⋅==-,可得22221t a k =+……………………..13’因为12MN x x =-,……………………..14’ 点O 到直线MN的距离d =……………………..15’12122OMNt S MN d x x ∆=⋅⋅=⋅-2t =22t a==综上:OMN ∆的面积为定值2a……………………..16’ 23、解:(1)当0>d 时,序数列}{n p 为,1,,2,1n n -L ;……………………..2’ 当0<d 时,序数列}{n p 为1,2,,1,n n -L ……………………..4’ (2)因为523)53(1nb b nn n -⋅=-+,……………………..5’当1=n 时,易得12b b >,当2≥n 时,n n b b <+1, 又因531=b ,33)53(3⋅=b ,44)53(4⋅=b ,314b b b <<, 即2314n b b b b b >>>>>L ,故数列}{n b 的序数列为2,3,1,4,,n L ,……………………..8’ 所以对于数列}{n c 有2522<<t , 解得:54<<t ……………………..10’(3)由于}{12-n d 的序数列单调递减,因此}{12-n d 是递增数列,故01212>--+n n d d ,于是0)()(122212>-+--+n n n n d d d d ,而122)21()21(-<n n,所以||||122212-+-<-n n n n d d d d ,从而0122>--n n d d , 122121222)1()21(----==-n n n n n d d (1) ……………………..12’ 因为}{2n d 的序数列单调递增,所以}{2n d 是递减数列,同理可得0212<-+n n d d ,故21221221(1)()22n n n nnd d ++--=-= (2) ……………………..14’ 由(1)(2)得:nn n n d d 2)1(11++-=-……………………..15’于是 )()()(123121--++-+-+=n n n d d d d d d d d ……………………..16’122)1(21211--++-+=n n211)21(12111+--⋅+=-n ……………………..17’12)1(3134--⋅+=n n 即数列}{n d 的通项公式为12)1(3134--⋅+=n n n d (*n N ∈)……………………..18’。

2014学年第一学期徐汇区学习能力诊断卷

2014学年第一学期徐汇区学习能力诊断卷

2014学年第一学期徐汇区学习能力诊断卷高三英语学科2014.1第I 卷I. Listening ComprehensionSection ADirections: In Section A, you will hear ten short conversations between two speakers. At the end of each conversation, a question will be asked about what was said. The conversations and the questions will be spoken only once. After you hear a conversation and the question about it, read the four possible answers on your paper, and decide which one is the best answer to the question you have heard.1. A. In a drugstore. B. In a café. C. In a garage. D. In a grocery.2. A. 5 hours. B. 7 hours. C. 9 hours. D. 10 hours.3. A. To cancel his trip. B. To go to bed early.C. To catch the later flight.D. To ask for a morning call.4. A. Tom was killed in the accident. B. Someone saved Tom’s life.C. It did little damage to Tom’s car.D. Tom survived the accident.5. A. By air. B. By bus. C. By train. D. By car.6. A. Librarian and student. B. Boss and secretary.C. Customer and shop assistant.D. Publisher and salesman.7. A. It’s worth the price. B. It’s high in quality.C. Its price is too high.D. It’s well made.8. A. She is going to work in her brother’s firm.B. She plans to major in tax law.C. She studies in the same school as her brother.D. She isn’t going to work in her brother’s firm.9. A. Frank. B. Rude. C. Determined. D. Sensitive.10. A. The man has finished his project.B. The man is willing to help the woman.C. The man will let Bob chat with the woman.D. The man is losing patience with the woman.1 / 10Section BDirections: In Section B, you will hear two short passages, and you will be asked three questions on each of the passages. The passages will be read twice, but the questions will be spoken only once. When you hear a question, read the four possible answers on your paper and decide which one would be the best answer to the question you have heard.Questions 11 through 13 are based on the following passage.11. A. He learned it in a special school. B. He had a lot of practice in his spare time.C. He got it through constant watching.D. He was once caught by a signalman.12. A. In Kansas City. B. At Fillan. C. At Omar. D. At Missouri.13. A. Angry. B. Excited. C. Frightened. D. Surprised.Questions 14 through 16 are based on the following passage.14. A. The young Americans think reading less important than computer and science.B. The majority of young American find reading boring and old-fashioned.C. Most young Americans believe that reading is very important.D. The majority of Americans find reading more stimulating than computers and science.15. A. Novels and stories. B. Mysteries and detectives.C. Science fiction.D. Cultural and traditional books.16. A. Reading up-to-date books and magazines. B. Listening to music.C. Watching TV.D. Going to librariesSection CDirections: In section C, you will hear two longer conversations. The conversations will beread twice. After you hear each conversation, you are required to fill in the numbered blankswith the information you hear.Blanks 17 through 20 are based on the following conversation.Complete the form. Write ONE WORD OR NUMBER for each answer.2 / 10Blanks 21 through 24 are based on the following conversation.Complete the form. Write NO MORE THAN THREE WORDS for each answer.II. Grammar and VocabularySection ADirections:After reading the passages below, fill in the blanks to make the passages coherent and grammatically correct. For the blanks with a given word, fill in each blank with the proper form of the given word; for the other blanks, use one word that best fits each blank.(A)Gordon was hungry. He opened the refrigerator, 25_____ there used to be much food before his wife left him. There must be 26_____ in here to eat, he thought. Now, however, there was a single hot dog.After 27_____ (take) it out of its package, he put a small frying pan onto the stove’s gas burner. He turned on the heat. Then he poured a little bit of vegetable oil into the pan. He sliced the hot dog in half lengthwise. 28_____ the oil got hot, he put the two halves in the pan. About 29_____ minute later, he flipped each half over. After another minute, he took the hot dog out of the pan.Gordon put two slices of bread into the toaster. This was tasty and healthy bread. The first ingredient 30_____ (list) was organic sprouted wheat. The first ingredient in ordinary bread is usually unbleached flour.When the toast popped up, he put mustard, mayonnaise, and ketchup on one slice. Then he added two slices of onion. 31_____ top of the onions, he placed the hot dog. On top of the hot dog, he put a couple of slices of apple. Then he added some bits of hot green chile, and then put the top piece of toast onto the chile bits.Ahh, 32_____ a sandwich, he thought, as he sat down 33_____ (eat).(B)Sara needed to see the doctor. She had an upset stomach. She felt bloated, and needed to pass gas every minute or so. This was terrible. She 34_____ hardly go anywhere in public.Her friends told her it was 35_____ she had moved to America. The air, water, and food in America weren't agreeing with her. They said she would have to return to her home country."No way," Sara said. She didn't want to go home. She liked America. This was a minor problem, she was sure. Any good doctor would solve it in no time. Two days later, she saw her doctor. He asked her if3 / 10she drank milk. She said yes, three glasses a day."Don't drink any 36_____ (much) regular milk. Start drinking lactose-free milk, because lactose can upset your stomach."Then he asked her 37_____ there were any big problems in her life. She said that her boyfriend was a big problem. He wanted to get married, 38_____ she didn't. The doctor said that she should break up with her boyfriend and find 39_____."Why?" Sara asked."Because your boyfriend 40_____ (give) you too much stress. He is probably the main cause of your upset stomach.""I don't think my boyfriend is going to like that.""Just tell him if he really loves you, he should leave you."Section BDirections: Complete the following passage by using the words in the box. Each word can only be used once. Note that there is one word more than you need.Although many companies offer tuition repayment, most companies only repay employees for classes that are 41_____ to their position. This is a very limiting policy. A company that repays employees for all college credit courses—whether job related or not—offers a service not only to the employees, but to the entire company.One good reason for giving employees 42 _____ tuition repayment is that it shows the company’s commitment to its employees. In today’s economy, wh ere job security is a thing of the past and employees feel more and more expendable, it is important for a company to 43 _____ to its employees that it cares. The best way to do this is with concrete 44 _____ in them. In turn, this commitment to the betterment of company employees will create greater employee 45_____. A company that puts out funds to pay for the education of its employees will get its money 46_____ by having employees stay with the company longer. It will reduce employee turnover, because e ven employees who don’t take advantage of the tuition repayment program will be more loyal to their company just knowing that their company cares 47_____ to pay for their education. Most importantly, the company that has an unrestricted tuition repayment program will have higher quality employees. Although these companies do indeed run the risk of losing money on employees who go on to another job in a different company as soon as they get their 48_____, more often than not, the employee will stay with the company.And even if employees do leave after graduation, it generally takes several years to complete any degree program. Thus, even if the employee leaves upon graduating, throughout those years, the employer will have a more sophisticated, more intelligent, and therefore more valuable and productive employee. And, if the employee stays, that education will 49_____ benefit the company: Not only is the employee more educated, but now that employee can be 50_____ so the company doesn’t have to fill a high-level vacancy from the outside. Open positions can be filled by people who already know the company well. Though unconditional tuition repayment requires a significant investment on the employer’s part, it is perhaps one of the wisest investments a company can make.4 / 10III. Reading ComprehensionSection ADirections: For each blank in the following passages there are four words or phrases marked A, B, C and D. Fill in each blank with the word or phrase that best fits the context.Anyone planning to go camping or hiking should first learn to recognize poison ivy, 51_____ this plant can cause a rash resulting in reddened skin, an annoying itch, and painful blisters. A severe 52_____ can even force a person to remain in bed or become hospitalized. The best way to 53_____ these discomforts is to avoid the plant.Fortunately this plant is easy to 54_____. Whether it grows as a bush or a vine, the shape of it is always 55_____. Each leaf stalk has three glossy leaves, usually with jagged edges. In early spring the leaves are red, turning. And then the autumn comes, the leaves 56_____ to become bright red or orange. The poison ivy plant is found 57_____ everywhere in North America. Because many birds eat its berries, its seeds are 58_____ distributed. The plant loves the sun and flourishes along beaches, in fields, and by roadsides. It also grows 59_____ in light shade and is often found in parks and pine forests. However, in thick woods the story is different. It is not 60_____ there. That is because the leaves of the trees block out the sun, which the plant needs to grow.The poison in poison ivy is in the form of an oil that is in all parts of the plant. It is extremely 61_____. Merely touching the plant is enough contact for a person to be infected by the 62_____. Touching clothing or shoes that have brushed against the plant can also cause a rash and blisters. Even the smoke from a fire where poison ivy is burning can cause the skin poisoning.A person who makes 63_____ with the plant should wash all infected areas with a strong laundry soap as soon as possible. Clothes that have come in contact with the 64_____ should be dry cleaned or washed in soap and water. There is one good way to prevent the 65_____. Stay away from the plant!( )51. A. since B. so C. therefore D. then( )52. A. cold B. cough C. case D. accident( )53. A. keep B. prevent C. protest D. cut( )54. A. forget B. grow C. fertilize D. recognize( )55. A. the same B. various C. beautiful D. ugly( )56. A. become B. change C. get D. avoid( )57. A. barely B. always C. usually D. almost( )58. A. widely B. narrowly C. practically D. strongly( )59. A. very poor B. very good C. quite well D. quite worse( )60. A. supported B. discovered C. watered D. disturbed( )61. A. deep B. high C. catching D. beautiful( )62. A. oil B. part C. form D. contact( )63. A. combination B. contact C. access D. soap( )64. A. smoke B. fire C. plant D. clothing( )65. A. poisoning B. weeding C. growing D. seeding5 / 10Section BDirections:Read the following passages. Each passage is followed by several questions or unfinished statements. For each of them there are four choices marked A, B, C and D. Choose the one that fits best according to the information given in the passage you have just read.(A)Dear Lee,As I told you, I’ll be gone until Wednesday morning. Thank you so much for taking on my “children” while I’m away. Like real children, they can be kind of irritating sometimes, but I’m going to enjoy myself so much more knowing they’re getting some kind human attention. Remember that Regina (the “queen” in Latin, and she acts like one) is teething. If you don’t watch her, she’ll chew anything, including her sister, the cat. There are plenty of chew toys around the house. Whenever she starts gnawing on anything illegal, just divert her with one of those. She generally settles right down to a good hour-long chew. Then you’ll see her wandering around whimpering with the remains of the toy in her mouth. She gets really frustrated because what she wants is to bury the thing. She’ll try to dig a hole between the cushions of the couch. Finding that unsatisfactory, she’ll wander some more, dis content, until you solve her problem for her. I usually show her the laundry basket, moving a few clothes so she can bury her toy beneath them. I do sound like a parent, don’t I? You have to understand, my own son is practically grown up.Regina’s food is the Puppy Chow in the utility room, where the other pet food is stored. Give her a bowl once in the morning and once in the evening. No more than that, no matter how much she begs. Beagles(猎犬) are notorious overeaters, according to her breeder, and I don’t want her to lose her girlish figure. She can share Rex (the King’s) water, but be sure it’s changed daily. She needs to go out several times a day, especially last thing at night and first thing in the morning. Let her stay out for about ten minutes each time, so she can do all her business. She also needs a walk in the afternoon, after which it’s important to romp with her for awhile in the yard. The game she loves most is fetch, but be sure to make her drop the ball. She’d rather play tug of war with it.Tell her, “Sit!” Then, when she does, say, “Drop it!” Be sure to tell her “good girl,” and then throw the ball for her. I hope you’ll enjoy these sessions as much as I do.Now, for the other two, Rex and Paws… (letter continues)66.The tone of this letter is best described as _____.A. chatty and humorousB. logical and preciseC. confident and trustingD. humble and preachy67.The information in the note is sufficient to determine that there are three animals. They are _____.A. two cats and a dogB. three dogsC. a dog, a cat, and an unspecified animalD. a cat, a dog, and a parrot68.From the context of the note, it is most likely that the name “Rex” is _____.A. SpanishB. EnglishC. FrenchD. Latin69.If the sitter is to follow th e owner’s directions in playing fetch with Regina, at what point will he or shetell Regina “good girl”?A. Every time Regina goes after the ball.B. After Regina finds the ball.C. When Regina brings the ball back.D. After Regina drops the ball.6 / 10(B)I was born under the Blue Ridge, and under that side which is blue in the evening light, in a wild land of game and forest and rushing waters. There, on the borders of a creek that runs into the Yadkin River, in a cabin that was chinked with red mud, I came into the world a subject of King George the Third, in that part of his realm known as the province of North Carolina.The cabin smelt very strongly of corn-pone and bacon, and the odor of pelts. It had two shakedowns(临时床铺), on one of which I slept under a bearskin. A rough stone chimney was raised outside, and the fireplace was as long as my father was tall. There was a crane in it, and a bake kettle; and over it great buckhorns held my father’s rifle when it was not in use. On other horns hung jerked bear’s meat and venison hams, and gourds for drinking cups, and bags of seed, and my father’s best hunting shirt; also, in a neglected corner, several articles of woman’s clothing. These once belonged to my mother. Among them was a gown of silk, of a fine, faded pattern, which I always wondered. The women at the Cross-Roads, twelve miles away, were dressed in coarse butternut wool and huge sunbonnets. But when I questioned my father on these matters he would give me no answers.My father was—how shall I say what he was? To this day I can only surmise many things of him. He was a Scotchman born, and I know now that he had a slight Scotch accent. At the time of which I write, my early childhood, he was a frontiersman and hunter. I can see him now, with his hunting shirt and leggins (绑腿) and moccasins(莫卡辛鞋); his powder horn, engraved with wondrous scenes; his bullet pouch and tomahawk and hunting knife. He was a tall, lean man with a strange, sad face. And he talked little except when he drank too many “horns,” as they were called in that country. These little bad behaviors of my father’s were a permanent source of wonder to me—and, I must say, of delight. They occurred only when a passing traveler who hit his fancy chanced that way, or, what was almost as rare, a neighbor. Many a winter night I have lain awake under the skins, listening to a flow of language that held me spellbound, though I understood scarce a word of it.“Virtuous(有德行的) and vicious(罪恶的) every man must be,Few in the extreme, but all in a degree.”The chance neighbor or traveler was no less struck with wonder. And many the time have I heard the query, at the Cross-Roads and elsewhere, “Whar Alec Trimble got his larnin’?”70.The mention of the dress in the second paragraph is most likely meant to _____.A. show the similarity between its owner and other members of the communityB. show how warm the climate wasC. show the dissimilarity between its owner and other members of the communityD. give us insight into the way most of the women of the region dressed71.Judging by the sentences surrounding it, the underlined word “surmise” in the third paragraph mostnearly means _____.A. to form a negative opinionB. to praiseC. to desireD. to guess72.Why did the narrator enjoy it when his father drank too many “horns,” or drafts of liquor?A. The father spoke brilliantly at those times.B. The boy was then allowed to do as he pleased.7 / 10C. These were the only times when the father was not abusive.D. The boy was allowed to sample the drink himself.73.What is the meaning of the lines of verse (诗句) quoted in the passage?A. Men who pretend to be virtuous are actually vicious.B. Moderate amounts of virtuousness and viciousness are present in all men.C. Virtuous men cannot also be vicious.D. Whether men are virtuous or vicious depends on the difficulty of their circumstances.(C)Cultural Center Adds Classes for Young AdultsThe Allendale Cultural Center has expanded its arts program to include classes for young adults. Director Leah Martin announced Monday that beginning in September, three new classes will be offered to the Allendale community. The course titles will be Yoga for Teenagers; Hip Hop Dance: Learning the Latest Moves; and Creative Journaling for Teens: Discovering the Writer Within. The latter course will not be held at the Allendale Cultural Center but instead will meet at the Allendale Public Library.Staff member Tricia Cousins will teach the yoga and hip hop classes. Ms. Cousins is an accomplished choreographer (舞蹈教师) as well as an experienced dance educator. She has an MA in dance education from Teachers College, Columbia University, where she wrote a thesis on the pedagogical(教学法的) effectiveness of dance education. The journaling class will be taught by Betsy Milford. Ms. Milford is the head librarian at the Allendale Public Library as well as a columnist for the professional journal Library Focus.The courses are part of the Allendale Cultural Center’s Project Teen, which was initiated by Leah Martin, Director of the Cultural Center. According to Martin, this project is a direct result of her efforts to make the center a more essential part of the Allendale community. Over the last several years, the number of people who have visited the cultural center for classes or events has steadily declined. Project Teen is primarily funded by a generous grant from The McGee Arts Foundation, an organization devoted to bringing arts programs to young adults. Martin oversees the Project Teen board, which consists of five board members. Two board members are students at Allendale’s Brookd ale High School; the other three are adults with backgrounds in education and the arts.The creative journaling class will be cosponsored by Brookdale High School, and students who complete the class will be given the opportunity to publish one of their jo urnal entries in Pulse, Brookdale’s student literary magazine. Students who complete the hip hop class will be eligible to participate in the Allendale Review, an annual concert sponsored by the cultural center that features local actors, musicians, and dancers. All classes are scheduled to begin immediately following school dismissal, and transportation will be available from Brookdale High School to the Allendale Cultural Center and the Allendale Public Library. For more information about Project Teen, co ntact the cultural center’s programming office at 988-0099 or drop by the office after June 1 to pick up a fall course catalog. The office is located on the third floor of the Allendale Town Hall.74.Which of the following statements is correct?A. Tricia Cousins will teach two of the new classes.8 / 10B. The new classes will begin on June 1.C. People who want a complete fall catalogue should stop by the Allendale Public Library.D. The cultural center’s annual concert is called Pulse.75.According to Leah Martin, what was the direct cause of Project Teen?A. Tricia Cousins was available to teach courses in the fall.B. Community organizations were ignoring local teenagers.C. The McGee Arts Foundation wanted to be more involved in Allendale’s arts programming.D. She wanted to make the cultural center a more important part of the Allendale community.76.Which of the following factors is implied as another reason for Project Teen?A. The number of people visiting the cultural center has declined over the last several years.B. The cultural center wanted a grant from The McGee Arts Foundation.C. The young people of Allendale have complained about the cultural center’s offerings.D. Leah Martin thinks classes for teenagers are more important than classes for adults.77.This article is organized in which of the following ways?A. In time order, from the past to the future.B. Most important information first, followed by background and details.C. Background first, followed by the most important information and details.D. As sensational news, with the most controversial topic first.Section CDirections: Read the passage carefully. Then answer the questions or complete the statements in the fewest possible words.Automation refers to the introduction of electronic control and automatic operation of productive machinery. It reduces the human factors, mental and physical, in production, and is designed to make possible the manufacture of more goods with fewer workers. The development of automation in American industry has be en called the “Second Industrial Revolution”.Labour’s concern over automation arises from uncertainty about the effects on employment, and fears of major changes in jobs. In the main, labour has taken the view that resistance to technical change is unfruitful. Eventually, the result of automation may well be an increase in employment, since it is expected that vast industries will grow up around manufacturing, maintaining, and repairing automation equipment. The interest of labour lies in bringing about the transition with a minimum of inconvenience and distress to the workers involved. Also, union spokesmen emphasize that the benefit of the increased production and lower costs made possible by automation should be shared by workers in the form of higher wages, more leisure, and improved living standards.To protect the interests of their members in the era of automation, unions have adopted a number of new policies. One of these is the promotion of supplementary unemployment benefit plans. It is emphasized that since the employer involved in such a plan has a direct financial interest in preventing unemployment, he will have a strong drive for planning new installations so as to cause the least possible problems in jobs and job assignments. Some unions are working for dismissal pay agreements, requiring that permanently dismissed workers be paid a sum of money based on length of service. Another approach is the idea of the “improvement factor”, which calls for wage increases based on increases in productivity.9 / 10It is possible, however, that labour will rely mainly on reduction in working hours in order to gain a full share in the fruits of automation. (in no more than 8 words)78.Automation makes it possible to ________________________________________.79.At first, two things people worried about automation were ____________________________.80.According to union spokesmen, the workers benefit from automation in terms of________________________________________________________.81.What is the last passage mainly talking about?________________________________.(Note: Answer the questions or complete the statements in No More Than Ten Words.)第II 卷I. TranslationDirections: Translate the following sentences into English, using the words given in the brackets.1.格林先生本周日要去拜访一位朋友,此人精通理财之道。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014学年第一学期徐汇区学习能力诊断卷
高一数学试卷(A 、B 卷)
(考试时间:100分钟,满分100分)
2015.1 一、选择题:
【合卷部分】(本部分满分24分,每小题3分)
1.函数221y x x =+-的单调递增区间是 .
2.函数()()()200y x x x =+
∈-∞+∞,,∪的值域为 .
3.若2f x =+,则()f x = .
4.若()222y ax x x =-+∈R 有最小值4-,则a = .
5.函数y 的零点为 .
6.设()()2log 1f x x =-,()1f x -是()f x 的反函数,则()12f -= .
7.()1131x x f x x x +⎧=⎨-+>⎩,≤,,则52f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦
. 8.计算:()2666log 3log 12log 2⋅+= .
【分叉部分】(本部分满分16分,每小题4分)
【A 卷部分】
9.方程24log 2log 2log 2x x x ⋅=的解为 .
10.设奇函数()f x 的定义域为R ,且()()4f x f x +=,当()46x ∈,
时,()21x f x =+,则()f x 在区 间()20-,
上的表达式为 . 11.对于函数()f x x x px q =++,已给出四个命题:
①0q =时,()f x 为奇函数;②()y f x =的图像关于点()0q ,对称;③0p =,0q >时,方程()0
f x =只有一个实数根;④方程()0f x =至多有两个实数根.
其中正确的序号是 .(把你认为正确的序号都填上)
12.已知当m ∈R 时,函数()()
21f m m x x a =-+-的图像和x 轴恒有公共点,则实数a 的取值范围
是 .
【B 卷部分】
9.方程()()
2lg 31lg 3x x +=-的解为 .
10.已知2211f x x x x ⎛⎫-=+ ⎪⎝⎭,则()f x = . 11.以下4个函数中:①()21f x x =+;②()11x f x x -=+;③()2
2
11x f x x +=-;④()1lg 1x f x x -=+.既不是 奇函数,又不是偶函数的是 .(把你认为正确的序号都填上)
12.已知22
2124x x -+⎛⎫
⎪⎝⎭≤,则函数22x x y -=-的值域为 .
二、选择题:(本题满分16分,每小题4分)【合卷部分】
13.函数21
x y x x -=+的定义域是
A .()0x ∈-∞,
B .(]0x ∈-∞,
C .[)0x ∈+∞,
D .()0x ∈+∞,
14.已知函数4225y x x =+-,x ∈R ,则该函数有
A .最大值5-
B .最小值5-
C .最大值6-
D .最小值6-
15.下列幂函数中,是奇函数且在()0+∞,上是增函数的是
A .5
3y x -= B .5
3y x =
C .3
4y x = D .4
3y x -=
16.若函数()2
21x f x x =+,且11
f x x ⎛⎫
= ⎪⎝⎭,则x 的值为
A .1
B .1-
C .2
D .2-
三、解答题:(本大题共5题,满分44分)
【合卷部分】
17.(本题满分6分;第(1)小题3分,第(2)小题3分)
设函数()()2log 1f x x =+,(1x >-)
(1)求其反函数()1f x -;
(2)解方程()147x f x -=-.
18.(本题满分8分;第(1)小题3分,第(2)小题5分)
已知函数()1
2f x x x =-,()()00x ∈-∞+∞,,∪.
(1)求证函数()f x 为奇函数;
(2)判断函数()y f x =在(]01,
上的单调性并证明. 19.(本题满分8分;第(1)小题4分,第(2)小题4分)
某超市经销大米,年销售量为60000千克,每千克进价2.5元,每千克售价3元,全年进货若干次,每次都购买()100060000x x ≤≤千克,运费为100元/次,并且全年大米的总存储费用为1.5x 元.
(1)用每次进货量x 千克来表示该超市经销大米一年的利润y 元;
(2)请你设计最佳方案,当每次进货多少千克时,能使全年的利润最大?
【分叉部分】【A 卷部分】
20.(本题满分10分;第(1)小题5分,第(2)小题5分)
设()122x x a f x b
+-+=+(0a >,0b >),且()f x 是奇函数. (1)求a 与b 的值;
(2)若对任何实数x 都有()f x c <成立,求实数c 的取值范围.
21.(本题满分12分;第(1)小题3分,第(2)小题4分,第(3)小题5分)
对于定义域D 的函数()y f x =,如果存在区间[]m n ⊆D ,,同时满足:
①()f x 在[]m n ,内是单调函数;
②当定义域是[]m n ,时,()f x 的值域也是[]m n ,.
则[]m n ,是该函数的“和谐区间”.
(1)求函数()222y x x x =-+∈R 的“和谐区间”;
(2)求证:函数()53y g x x
==-不存在“和谐区间”; (3)已知:函数()221a a x y a x
+-=(a ∈R ,0a ≠)有“和谐区间”[]m n ,,当a 变化时,求出n m -的最大值.
【分叉部分】【B 卷部分】
20.(本题满分10分;第(1)小题4分,第(2)小题6分)
已知对于x 的所有实数值,二次函数()24212f x x ax a =-++()a ∈R 的值都是非负的.
(1)求实数a 的取值范围;
(2)求函数()26g a a a =-++的值域.
21.(本题满分12分;第(1)小题4分,第(2)小题4分,第(3)小题4分)
已知定义在区间b d a c ⎡⎤⎢⎥⎣⎦
,上的函数()f x 0a >,0c >)具有如下性质: ()f x 在区间0b x a ⎡⎤⎢⎥⎣⎦,上单调递增,()f x 在区间0d x c ⎡⎤⎢⎥⎣⎦
上单调递减,且()()0max f x f x =(其中
0b d b d x a c a c
+=+-+).现给定函数()f x
(1)求出()f x 的定义域;
(2)求函数()f x 的最大值;
(3)若()m f x <恒成立,求实数m 的取值范围.。

相关文档
最新文档