湖北省武汉市洪山区2017届九年级中考模拟数学试题(二)(解析版)
湖北省武汉市2017年中考数学真题试题(含扫描答案)
2017年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算36的结果为( ) A .6 B .-6 C .18 D .-182.若代数式41−a 在实数范围内有意义,则实数a 的取值范围为( ) A .a =4 B .a >4 C .a <4 D .a ≠43.下列计算的结果是x 5的为( )A .x 10÷x 2B .x 6-xC .x 2·x 3D .(x 2)34.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.50 1.60 1.65 1.70 1.75 1.80 人数 2 3 2 3 4 1则这些运动员成绩的中位数、众数分别为( )A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.705.计算(x +1)(x +2)的结果为( )A .x 2+2B .x 2+3x +2C .x 2+3x +3D .x 2+2x +26.点A (-3,2)关于y 轴对称的点的坐标为( )A .(3,-2)B .(3,2)C .(-3,-2)D .(2,-3)7.某物体的主视图如图所示,则该物体可能为( )8.按照一定规律排列的n 个数:-2、4、-8、16、-32、64、……,若最后三个数的和为768,则n 为( )A .9B .10C .11D .129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .23 B .23 C .3 D .32 10.如图,在Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7二、填空题(本大题共6个小题,每小题3分,共18分)11.计算2×3+(-4)的结果为___________12.计算111+−+x x x 的结果为___________ 13.如图,在□ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为___________14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为___________15.如图,在△ABC 中,AB =AC =32,∠BAC =120°,点D 、E 都在边BC 上,∠DAE =60°.若BD =2CE ,则DE 的长为___________16.已知关于x 的二次函数y =ax 2+(a 2-1)x -a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是___________三、解答题(共8题,共72分)17.(本题8分)解方程:4x -3=2(x -1)18.(本题8分)如图,点C 、F 、E 、B 在一条直线上,∠CFD =∠BEA ,CE =BF ,DF =AE ,写出CD 与AB 之间的关系,并证明你的结论19.(本题8分)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数分布扇形图 部门 员工人数 每人所创的年利润/万元A 5 10 Bb 8 C c5 (1) ① 在扇形图中,C 部门所对应的圆心角的度数为___________② 在统计表中,b =___________,c =___________(2) 求这个公司平均每人所创年利润20.(本题8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1) 如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2) 如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(本题8分)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D(1) 求证:AO 平分∠BAC(2) 若BC =6,sin ∠BAC =53,求AC 和CD 的长22.(本题10分)如图,直线y =2x +4与反比例函数x k y =的图象相交于A (-3,a )和B 两点(1) 求k 的值(2) 直线y =m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN =4,求m 的值(3) 直接写出不等式x x >−56的解集23.(本题10分)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E(1) 如图1,若∠ABC =∠ADC =90°,求证:ED ·EA =EC ·EB(2) 如图2,若∠ABC =120°,cos ∠ADC =53,CD =5,AB =12,△CDE 的面积为6,求四边形ABCD 的面积(3) 如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC =cos ∠ADC =53,CD =5,CF =ED =n ,直接写出AD 的长(用含n 的式子表示)24.(本题12分)已知点A (-1,1)、B (4,6)在抛物线y =ax 2+bx 上(1) 求抛物线的解析式(2) 如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE (3) 如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值。
湖北省武汉市洪山区英格实验中学2017届中考数学模拟试卷(解析版)
湖北省武汉市洪山区英格实验中学2017届中考数学模拟试卷(解析版)一.选择题:1.已知下列结论:①在数轴上的点只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有限个,其中正确的结论是()A. ①②B. ②③C. ③④D. ②③④2.下列关于分式的判断,正确的是()A. 当x=2时,的值为零B. 无论x为何值,的值总为正数C. 无论x为何值,不可能得整数值D. 当x≠3时,有意义3.下列运算正确的是()A. x2+x3=x5B. (x+y)2=x2+y2C. x2•x3=x6D. (x2)3=x64.下列事件是必然事件的是()A. 打开电视机正在播放广告B. 投掷一枚质地均匀的硬币100次,正面向上的次数为50次C. 任意一个一元二次方程都有实数根D. 在平面上任意画一个三角形,其内角和是180°5.若关于的x方程x2+3x+a=0有一个根为﹣1,则a的值为()A. ﹣4B. ﹣2C. 2D. ﹣46.在平面直角坐标系中,点A(2,﹣3)在第()象限.A. 一B. 二C. 三D. 四7.如图,是由几个相同的小正方体组成的一个几何体的三视图,这个几何体可能是()A. B. C. D.8.如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6B.8,5C.52,53D.52,529.如图,由7个形状,大小完全相同的正六边形组成的网格,正六边形的顶点称为格点,已知每个正六边形的边长为1,△ABC的顶点都在格点上,则△ABC的面积是()A. B. 2 C. D. 310.如下图所示,D为BC上一点,且AB=AC=BD,则图中∠1与∠2的关系是()A. ∠1=2∠2B. ∠1+∠2=180°C. ∠1+3∠2=180°D. 3∠1﹣∠2=180°二.填空题:11.﹣3的绝对值的倒数的相反数是________.12.近似数2.13×103精确到________位.13.一只不透明的袋子中装有红球和白球共30个,这些球除了颜色外都相同,校课外学习小组做摸球试验,将球搅匀后任意摸出一个球,记下颜色后放回、搅匀,通过多次重复试验,算得摸到红球的频率是20%,则袋中有________个红球.14.如图所示,E是正方形ABCD的BC边的延长线上一点,若CE=CA,AE交CD于F,则∠FAC=________度.15.已知m是整数,且一次函数y=(m+4)x+m+2的图象不过第二象限,则m=________.16.矩形ANCD中,AD=5,CD=3,在直线BC上取一点E,使△ADE是以DE为底的等腰三角形,过点D作直线AE的垂线,垂足为点F,则EF=________.三.解答题:17.解下列方程:5x2﹣3x=x+1.18.已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.19.为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划,某校决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图)(1)将统计图补充完整(2)求出该班学生人数(3)若该校共用学生3500名,请估计有多少人选修足球?(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率20.如图,Rt△ABO的顶点A是双曲线y= 与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S= .△ABO(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.21.如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F两点,且CD= ,以O为圆心,OC为半径作,交OB于E点.(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.22.母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为2:3,单价和为200元.(1)求A、B两种礼盒的单价分别是多少元?(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?(3)根据市场行情,销售一个A种礼盒可获利10元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?四.综合题:23.如图,长方形纸片ABCD,点E、F分别在边AB、CD上,连接EF,将∠BEF对折,点B落在直线EF上的B′处,得到折痕EC,将点A落在直线EF上的点A′处,得到折痕EN.(1)若∠BEB′=110°,则∠BEC=________°,∠AEN=________°,∠BEC+∠AEN________°.(2)若∠BEB′=m°,则(1)中∠BEC+∠AEN的值是否改变?请说明你的理由.(3)将∠ECF对折,点E刚好落在F处,且折痕与B′C重合,求∠DNA′.24.如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P的横坐标为m;①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系式.答案解析部分一.<b >选择题:</b>1.【答案】B【考点】实数【解析】【解答】①数轴上的点既能表示无理数,又能表示有理数,①不符合题意;②任何一个无理数都能用数轴上的点表示,②符合题意;③实数与数轴上的点一一对应,③符合题意;④有理数有无限个,无理数无限个,④不符合题意;故答案为:B.【分析】根据实数与数轴的关系,可判断①②③,根据有理数的定义,无理数的定义,可判断④即可得到答案.2.【答案】B【考点】分式的定义,分式有意义的条件,分式的值为零的条件【解析】【解答】A、当x=2时,分母x﹣2=0,分式无意义,A不符合题意;B、分母中x2+1≥1,因而第二个式子一定成立,B符合题意;C、当x+1=1或﹣1时,的值是整数,C不符合题意;D、当x=0时,分母x=0,分式无意义,D不符合题意;故答案为:B.【分析】根据分式的定义、分式有意义的条件和分式为值为零条件进行判别计算即可得到答案.3.【答案】D【考点】整式的加减,同底数幂的乘法,幂的乘方与积的乘方,完全平方公式【解析】【解答】A、x2+x3≠x5,故本选项不符合题意;B、(x+y)2=x2+y2+2xy,故本选项不符合题意;C、x2•x3=x5,故本选项不符合题意;D、(x2)3=x6,故本选项符合题意.故答案为:D.【分析】单项式在是同类项的条件下才可合并,字母及指数不变;两数和的平方等于这两数平方和加它们积的2倍;同底数幂相乘底数不变,指数相加;积的乘方要各项都乘方.4.【答案】D【考点】随机事件【解析】【解答】打开电视机正在播放广告是随机事件,A不符合题意;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,B不符合题意;任意一个一元二次方程都有实数根是随机事件,C不符合题意;在平面上任意画一个三角形,其内角和是180°是必然事件,D符合题意;故答案为:D.【分析】根据随机事件定义进行判别即可得到所求结论.5.【答案】C【考点】一元二次方程的解【解析】【解答】解:把x=﹣1代入方程x2+3x+a=0得1﹣3+a=0,解得a=2.故答案为:C.【分析】把x的值代入方程得到关于a的一元一次方程,解方程即可得到a的值.6.【答案】D【考点】点的坐标【解析】【解答】点A(2,﹣3)在第四象限.故答案为:D.【分析】根据象限内的坐标特点进行判别,即可得点A所在的象限.7.【答案】A【考点】由三视图判断几何体【解析】【解答】解:根据图形,根据俯视图发现最底层有4个小正方体,根据主视图,发现共有两列,左边一列有1个小立方体,右边一列有三个立方体,根据左视图发现最右上角共有3个小立方体,前面有2个小立方体,综合以上,A选项符合,故答案为:A.【分析】由俯视图得出几何体底面的基本形状,再由主视图和左视图得出几何体即可得到答案.8.【答案】D【考点】中位数、众数【解析】【解答】根据题意得:这些车的车速的众数52千米/时,车速分别为50,50,51,51,51,51,51,52,52,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,55,55,中间的为52,即中位数为52千米/时,则这些车的车速的众数、中位数分别是52,52.故答案为:D.【分析】众数就是出现次数最多的数据,中位数须将数据大小依次排列,取最中间的一个数或两个数的平均数.9.【答案】B【考点】正多边形和圆【解析】【解答】延长AB,然后作出过点C与格点所在的直线,一定交于格点E.正六边形的边长为1,则半径是1,则CE=4,中间间隔一个顶点的两个顶点之间的距离是:,则△BCE的边EC上的高是:,△ACE边EC上的高是:,则S△ABC=S△AEC﹣S△BEC= ×4×(﹣)=2 .故答案为:B.【分析】根据正多边形和圆,先延长AB,然后作出过点C与格点所在的直线,一定交于格点E,根据S△ABC=S -S△BEC即可求得△ABC的面积.△AEC10.【答案】D【考点】三角形内角和定理,三角形的外角性质,等腰三角形的性质【解析】【解答】∵AB=AC=BD,∴∠1=∠BAD,∠C=∠B,∠1是△ADC的外角,∴∠1=∠2+∠C,∵∠B=180°﹣2∠1,∴∠1=∠2+180°﹣2∠1即3∠1﹣∠2=180°.故答案为:D.【分析】先由已知AB=AC=BD,得到∠1=∠BAD,∠C=∠B,再结合图形,根据等腰三角形的性质、内角与外角的关系及三角形内角和定理得到∠1与∠2的关系.二.<b >填空题:</b>11.【答案】﹣【考点】相反数,绝对值,倒数【解析】【解答】解:﹣3的绝对值是3,3的倒数是,的相反数是﹣,故答案为:﹣.【分析】根据绝对值定义、倒数的定义及相反数的定义进行判别计算即可得到答案.12.【答案】十【考点】近似数【解析】【解答】解:其中的3实际在十位上,所以是精确到了十位.【分析】用科学记数法表示的数,要确定精确到哪位,首先要把这个数还原成一般的数,然后看a中的最后一个数字在还原的数中是什么位,那么表示的数就精确到哪位.13.【答案】6【考点】利用频率估计概率【解析】【解答】解:设袋中有x个红球.由题意可得:=20%,解得:x=6,故答案为:6.【分析】先大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,根据比例关系,列出方程求解即可.14.【答案】22.5【考点】正方形的性质【解析】【解答】解:∵AC为正方形ABCD的对角线∴∠ACB=45°∵CE=CA∴∠CEA=∠CAE∵∠ACB是∠CEA和∠CAE的外角∴∠FAC=22.5°故答案为:22.5.【分析】先根据正方形的性质及等边对等角的性质可得到,∠CEA=∠CAE,再根据外角的性质即可求得∠FAC的度数.15.【答案】﹣3或﹣2【考点】一次函数的定义,一次函数的性质【解析】【解答】解:∵一次函数y=(m+4)x+m+2的图象不过第二象限,∴,解得﹣4<m≤﹣2,而m是整数,则m=﹣3或﹣2.故填空答案:﹣3或﹣2.【分析】先根据题意判断出一次函数y=(m+4)x+m+2的图象经过的象限,再根据其经过的象限列出方程组求出m的值即可.16.【答案】9或1【考点】等腰三角形的性质,勾股定理,矩形的性质【解析】【解答】解;如图1中,∵四边形ABCD是正方形,∴AD=BC=5,AB=CD=3,∠ABC=∠C=∠ABE=90°,AD∥EC ∵AE=AD=5,∴∠AED=∠ADE=∠DEC,在RT△ABE中,∵AE=5,AB=3,∴EB= = =4,在△EDF和△EDC中,,△EDF≌△EDC∴EF=EC=EB+BC=9.如图2中,∵AD=AE=5,AB=3,∴BE= =4,∴EC=1,∵AD∥BC,∴∠ADE=∠DEC=∠AED,在△EDF和△EDC中,,∴△DEF≌△DEC,∴EF=EC=1,综上所述EF=9或1.故答案为9或1.【分析】可证ED是角平分线,得出DF=CD,由“在直线BC上取一点E”,须分类讨论:E在线段或延长线上.由勾股定理求出.三.<b >解答题:</b>17.【答案】解:整理,得5x2﹣4x﹣1=0因式分解,得(5x+1)(x﹣1)=0于是得5x+1=0或x﹣1=0,则,x2=1【考点】解一元二次方程-因式分解法【解析】【分析】首先把方程化成一般形式,然后用因式分解法解方程即可求解.18.【答案】证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.【考点】全等三角形的判定与性质,角平分线的性质【解析】【分析】证两条线段相等的基本方法是全等法,须连接AD构造出全等三角形,再由角平分线性质定理可证得.19.【答案】(1)解:∵该班人数为8÷16%=50(人),∴C的人数=24%×50=12(人),E的人数=8%×50=4(人),∴A的人数=50﹣8﹣12﹣4﹣6=20(人),A所占的百分比= ×100%=40%,D所占的百分比= ×100%=12%,如图,(2)解:由(1)得该班学生人数为50人;(3)解:3500×40%=1400(人),估计有1400人选修足球;(4)解:画树状图:共有20种等可能的结果数,其中选出的2人恰好1人选修篮球,1人选修足球占6种,所以选出的2人恰好1人选修篮球,1人选修足球的概率= = .【考点】用样本估计总体,扇形统计图,条形统计图,列表法与树状图法【解析】【分析】(1)要两图对照,由部分百分比=总量;再由总量百分比=部分,求出A、C两部分的数量,补全统计图;(3)样本特性可以估计总体特性;(4)树状图画法由题意可由事件分为几个步骤,就分几层,5选2问题可抽象为摸两次球(第二次不放回).20.【答案】(1)解:设A点坐标为(x,y),且x<0,y>0,则S△ABO= •|BO|•|BA|= •(﹣x)•y= ,∴xy=﹣3,又∵y= ,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)解:由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC= OD•(|x1|+|x2|)= ×2×(3+1)=4.【考点】反比例函数与一次函数的交点问题【解析】【分析】两解析式的k一样,根据面积计算双曲线中的k较易,由公式=2S△ABO,可求出k;(2)求交点就求两解析式联立的方程组的解,可分割△AOC为S△ODA+S△ODC,即可求出.21.【答案】(1)解:连接OD,∵OA⊥OB,∴∠AOB=90°,∵CD∥OB,∴∠OCD=90°,在RT△OCD中,∵C是AO中点,CD= ,∴OD=2CO,设OC=x,∴x2+()2=(2x)2,∴x=1,∴OD=2,∴⊙O的半径为2.(2)解:∵sin∠CDO= = ,∴∠CDO=30°,∵FD∥OB,∴∠DOB=∠ODC=30°,∴S阴=S△CDO+S扇形OBD﹣S扇形OCE= × + ﹣= + .【考点】垂径定理,扇形面积的计算【解析】【分析】(1)由30°角的性质可列方程,求出半径;(2)阴影部分面积S阴=S△CDO+S扇形OBD﹣S扇形分别计算各部分面积即可.OCE,22.【答案】(1)解:设A种礼盒单价为2x元,B种礼盒单价为3x元,依据题意得:2x+3x=200,解得:x=40,则2x=80,3x=120,答:A种礼盒单价为80元,B种礼盒单价为120元;(2)解:设购进A种礼盒a个,B种礼盒b个,依据题意可得:,解得:30≤a≤36,∵a,b的值均为整数,∴a的值为:30、33、36,∴共有三种方案;(3)解:设店主获利为w元,则w=10a+(18﹣m)b,由80a+120b=9600,得:a=120﹣b,则w=(3﹣m)b+1200,∵要使(2)中方案获利都相同,∴3﹣m=0,∴m=3,此时店主获利1200元.【考点】一元一次方程的应用,一元一次不等式组的应用,一次函数的应用【解析】【分析】(1)由“A、B两种礼盒的单价比为2:3,单价和为200元”可翻译为方程2x+3x=200;(2)由“恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍”可构建方程、不等式:80a+120b=9600,a≤36,b≤2a,取整数解,有几个整数解,就有几种方案;(3)由所有方案获利相同可知w=(3﹣m)b+1200中系数(3-m)=0,代入解析式即可.四.<b >综合题:</b>23.【答案】(1)55;35;90(2)解:不变.由折叠的性质可得:∠BEC=∠B'EC,∠AEN=∠A'EN,∵∠BEB′=m°,∴∠AEA'=180°﹣m°,可得∠BEC=∠B'EC= ∠BEB′= m°,∠AEN=∠A'EN= ∠AEA'= (180°﹣m°),∴∠BEC+∠AEN= m°+ (180°﹣m°)=90°,故∠BEC+∠AEN的值不变;(3)解:由折叠的性质可得:∠B'CF=∠B'CE,∠B'CE=∠BCE,∴∠B'CF=∠B'CE=∠BCE= ×90°=30°,在Rt△BCE中,∵∠BEC与∠BCE互余,∴∠BEC=90°﹣∠BCE=90°﹣30°=60°,∴∠B'EC=∠BEC=60°,∴∠AEA'=180°﹣∠BEC﹣∠B'EC=180°﹣60°﹣60°=60°,∴∠AEN= ∠AEA'=30°,∴∠ANE=90°﹣∠AEN=90°﹣30°=60°,∴∠ANE=∠A'NE=60°,∴∠DNA'=180°﹣∠ANE﹣∠A'NE=180°﹣60°﹣60°=60°.【考点】翻折变换(折叠问题)【解析】【解答】解:(1)由折叠的性质可得,∠BEC=∠B'EC,∠AEN=∠A'EN,∵∠BEB′=110°,∴∠AEA'=180°﹣110°=70°,∴∠BEC=∠B'EC= ∠BEB′=55°,∠AEN=∠A'EN= ∠AEA'=35°.∴∠BEC+∠AEN=55°+35°=90°;故答案为:55,35,90.【分析】(1)由折叠的性质可知对应角相等,即∠BEC=∠B'EC,∠AEN=∠A'EN,再由邻补角互补可得出其平分线夹角为90度;(2)类比(1)的方法,∠BEC+∠AEN的值仍是90度,保持不变;(3)由折叠性质知∠B'CF=∠B'CE,∠B'CE=∠BCE,再由平行线内错角相等可知∠B'CF=∠B'CE=∠BCE= ×90°=30°,再由余角性质可得∠DNA'=180°﹣∠ANE﹣∠A'NE=180°﹣60°﹣60°=60°.24.【答案】(1)解:A(﹣1,0),B(3,0),C(0,3).抛物线的对称轴是:直线x=1.(2)解:①设直线BC的函数关系式为:y=kx+b.把B(3,0),C(0,3)分别代入得:解得:.所以直线BC的函数关系式为:y=﹣x+3.当x=1时,y=﹣1+3=2,∴E(1,2).当x=m时,y=﹣m+3,∴P(m,﹣m+3).在y=﹣x2+2x+3中,当x=1时,y=4.∴D(1,4)当x=m时,y=﹣m2+2m+3,∴F(m,﹣m2+2m+3)∴线段DE=4﹣2=2,线段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m∵PF∥DE,∴当PF=ED时,四边形PEDF为平行四边形.由﹣m2+3m=2,解得:m1=2,m2=1(不合题意,舍去).因此,当m=2时,四边形PEDF为平行四边形.②设直线PF与x轴交于点M,由B(3,0),O(0,0),可得:OB=OM+MB=3.∵S=S△BPF+S△CPF即S= PF•BM+ PF•OM= PF•(BM+OM)= PF•OB.∴S= ×3(﹣m2+3m)=﹣m2+ m(0≤m≤3).∵B(3,0),C(0,3),D(1,4),∴,∴,∵∠DEC=∠COB=90°,∴△DEC∽△COB,∴∠DCE=∠CBO,∴∠DCE+∠OCB=90°,∴DC⊥BC,∴△BCD的外接圆圆心M为BD中点,∴M X= =2,M Y= =2,∴△BCD的外接圆圆心M(2,2)【考点】二次函数与一次函数的交点问题,二次函数图象上点的坐标特征【解析】【分析】(1)与x轴交点令y=0,解方程即可,与y轴交点,令x=0,求出y即可,对称轴可套公式x=;(2)若四边形PEDF为平行四边形,可得PF∥DE,PF=ED,用m的代数式表示PF,等于DE的长,构建方程即可;(3)用分割的方法把三角形面积分成S△BPF+S△CPF,分别用m的代数式表示底边和高即可.。
湖北省武汉市2017年中考数学真题试题(含扫描答案)
2017年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算36的结果为( )A .6B .-6C .18D .-182.若代数式41-a 在实数范围内有意义,则实数a 的取值范围为( ) A .a =4 B .a >4 C .a <4 D .a ≠43.下列计算的结果是x 5的为( )A .x 10÷x 2B .x 6-xC .x 2·x 3D .(x 2)34则这些运动员成绩的中位数、众数分别为( )A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.705.计算(x +1)(x +2)的结果为( ) A .x 2+2 B .x 2+3x +2 C .x 2+3x +3 D .x 2+2x +26.点A (-3,2)关于y 轴对称的点的坐标为( )A .(3,-2)B .(3,2)C .(-3,-2)D .(2,-3)7.某物体的主视图如图所示,则该物体可能为( )8.按照一定规律排列的n 个数:-2、4、-8、16、-32、64、……,若最后三个数的和为768,则n 为( )A .9B .10C .11D .129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .23B .23C .3D .3210.如图,在Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7 二、填空题(本大题共6个小题,每小题3分,共18分)11.计算2×3+(-4)的结果为___________12.计算111+-+x x x 的结果为___________ 13.如图,在□ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为___________14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为___________15.如图,在△ABC 中,AB =AC =32,∠BAC =120°,点D 、E 都在边BC 上,∠DAE =60°.若BD=2CE,则DE的长为___________16.已知关于x的二次函数y=ax2+(a2-1)x-a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是___________三、解答题(共8题,共72分)17.(本题8分)解方程:4x-3=2(x-1)18.(本题8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD 与AB之间的关系,并证明你的结论19.(本题8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数分布扇形图___________②在统计表中,b=___________,c=___________(2) 求这个公司平均每人所创年利润20.(本题8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1) 如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2) 如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(本题8分)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D(1) 求证:AO 平分∠BAC(2) 若BC =6,sin ∠BAC =53,求AC 和CD 的长22.(本题10分)如图,直线y =2x +4与反比例函数xk y =的图象相交于A (-3,a )和B 两点 (1) 求k 的值(2) 直线y =m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN =4,求m 的值(3) 直接写出不等式x x >-56的解集23.(本题10分)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E(1) 如图1,若∠ABC =∠ADC =90°,求证:ED ·EA =EC ·EB (2) 如图2,若∠ABC =120°,cos ∠ADC =53,CD =5,AB =12,△CDE 的面积为6,求四边形ABCD 的面积(3) 如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC =cos ∠ADC =53,CD =5,CF =ED =n ,直接写出AD 的长(用含n 的式子表示)24.(本题12分)已知点A (-1,1)、B (4,6)在抛物线y =ax 2+bx 上(1) 求抛物线的解析式(2) 如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE(3) 如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM =2PM ,直接写出t 的值。
2017年湖北省武汉市中考数学试卷(解析版)
2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算√36的结果为()A.6 B.﹣6 C.18 D.﹣182.若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3 D.(x2)34.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数 2 3 2 3 4 1则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)7.某物体的主视图如图所示,则该物体可能为()A.B.C. D.8.按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.√32B.32C.√3D.2√310.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.计算2×3+(﹣4)的结果为.12.计算xx+1﹣1x+1的结果为.13.如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.如图,在△ABC中,AB=AC=2√3,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为.16.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A 5 10B b 8C c 5(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b=,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC 内接于⊙O ,AB=AC ,CO 的延长线交AB 于点D (1)求证:AO 平分∠BAC ;(2)若BC=6,sin ∠BAC=35,求AC 和CD 的长.22.(10分)如图,直线y=2x+4与反比例函数y=kx 的图象相交于A (﹣3,a )和B 两点(1)求k 的值;(2)直线y=m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN=4,求m 的值; (3)直接写出不等式6x−5>x 的解集.23.(10分)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E . (1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB ;(2)如图2,若∠ABC=120°,cos ∠ADC=35,CD=5,AB=12,△CDE 的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC=cos ∠ADC=35,CD=5,CF=ED=n ,直接写出AD 的长(用含n 的式子表示)24.(12分)已知点A (﹣1,1)、B (4,6)在抛物线y=ax 2+bx 上 (1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE ;(3)如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒√2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM=2PM ,直接写出t 的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算√36的结果为()A.6 B.﹣6 C.18 D.﹣18【解析】√36=6.故选:A.2.(3分)(2017•武汉)若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【解析】依题意得:a﹣4≠0,解得a≠4.故选:D.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3 D.(x2)3【解析】A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x64.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数 2 3 2 3 4 1则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【解析】共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2【解析】原式=x2+2x+x+2=x2+3x+2,故选B6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)【解析】A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A. B. C.D.【解析】A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12【解析】由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.为(﹣2)n是解9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.√32B.32C.√3D.2√3【解析】如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4√3,∵12•BC•AD=12(AB+BC+AC)•r,12×5×4√3=12×20×r,∴r=√3,故选C10.(3分)(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A .4B .5C .6D .7【解析】如图:故选D .二、填空题(本大题共6个小题,每小题3分,共18分) 11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为 2 . 【解析】原式=6﹣4=2, 故答案为:212.(3分)(2017•武汉)计算x x+1﹣1x+1的结果为x−1x+1.【解析】 原式=x−1x+1,故答案为:x−1x+1.13.(3分)(2017•武汉)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 30° .【解析】∵四边形ABCD 是平行四边形, ∴∠ABC=∠D=100°,AB ∥CD , ∴∠BAD=180°﹣∠D=80°, ∵AE 平分∠DAB , ∴∠BAE=80°÷2=40°, ∵AE=AB ,∴∠ABE=(180°﹣40°)÷2=70°, ∴∠EBC=∠ABC ﹣∠ABE=30°; 故答案为:30°. 14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 25 . 【解析】画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果, ∴两次取出的小球颜色相同的概率为820=25,故答案为:2515.(3分)(2017•武汉)如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 3√3﹣3 .【解析】将△ABD 绕点A 逆时针旋转120°得到△ACF ,连接EF ,过点E 作EM ⊥CF 于点M ,过点A 作AN ⊥BC 于点N ,如图所示.∵AB=AC=2√3,∠BAC=120°, ∴BN=CN ,∠B=∠ACB=30°.在Rt △BAN 中,∠B=30°,AB=2√3, ∴AN=12AB=√3,BN=√AB 2−AN 2=3,∴BC=6.∵∠BAC=120°,∠DAE=60°, ∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°. 在△ADE 和△AFE 中,{AD =AF∠DAE =∠FAE =60°AE =AE ,∴△ADE ≌△AFE (SAS ), ∴DE=FE .∵BD=2CE ,BD=CF ,∠ACF=∠B=30°,∴设CE=2x ,则CM=x ,EM=√3x ,FM=4x ﹣x=3x ,EF=ED=6﹣6x . 在Rt △EFM 中,FE=6﹣6x ,FM=3x ,EM=√3x ,∴EF 2=FM 2+EM 2,即(6﹣6x )2=(3x )2+(√3x )2, 解得:x 1=3−√32,x 2=3+√32(不合题意,舍去),∴DE=6﹣6x=3√3﹣3. 故答案为:3√3﹣3.16.(3分)(2017•武汉)已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是 13<a <12或﹣3<a <﹣2 .【解析】∵y=ax 2+(a 2﹣1)x ﹣a=(ax ﹣1)(x+a ), ∴当y=0时,x 1=1a ,x 2=﹣a ,∴抛物线与x 轴的交点为(1a ,0)和(﹣a ,0).∵抛物线与x 轴的一个交点的坐标为(m ,0)且2<m <3, ∴当a >0时,2<1a <3,解得13<a <12; 当a <0时,2<﹣a <3,解得﹣3<a <﹣2. 故答案为:13<a <12或﹣3<a <﹣2.三、解答题(共8题,共72分) 17.(8分)(2017•武汉)解方程:4x ﹣3=2(x ﹣1) 【解析】4x ﹣3=2(x ﹣1) 4x ﹣3=2x ﹣2 4x ﹣2x=﹣2+3 2x=1 x=1218.(8分)(2017•武汉)如图,点C 、F 、E 、B 在一条直线上,∠CFD=∠BEA ,CE=BF ,DF=AE ,写出CD 与AB 之间的关系,并证明你的结论.【解析】CD ∥AB ,CD=AB ,理由是:∵CE=BF , ∴CE ﹣EF=BF ﹣EF ,∴CF=BE ,在△AEB 和△CFD 中, {CF =BE∠CFD =∠BEA DF =AE, ∴△AEB ≌△CFD (SAS ), ∴CD=AB ,∠C=∠B , ∴CD ∥AB . 19.(8分)(2017•武汉)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表 部门 员工人数 每人所创的年利润/万元A 5 10B b 8C c 5(1)①在扇形图中,C 部门所对应的圆心角的度数为 108° ②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.【解析】(1)①在扇形图中,C 部门所对应的圆心角的度数为:360°×30%=108°; ②A 部门的员工人数所占的百分比为:1﹣30%﹣45%=25%, 各部门的员工总人数为:5÷25%=20(人), ∴b=20×45%=9,c=20×30%=6, 故答案为:108°,9,6; (2)这个公司平均每人所创年利润为:5×10+9×8+6×520=7.6(万元).20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案? 【解析】(1)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件, 根据题意得40x+30(20﹣x )=650,解得x=5, 则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件, 根据题意得{20−x ≤2x 40x +30(20−x)≤680,解得203≤x≤8,∵x 为整数, ∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件. 21.(8分)(2017•武汉)如图,△ABC 内接于⊙O ,AB=AC ,CO 的延长线交AB 于点D(1)求证:AO 平分∠BAC ;(2)若BC=6,sin ∠BAC=35,求AC 和CD 的长.(1)证明:延长AO 交BC 于H ,连接BO ,如图1所示: ∵AB=AC ,OB=OC ,∴A 、O 在线段BC 的垂直平分线上, ∴AO ⊥BC , 又∵AB=AC ,∴AO 平分∠BAC ; (2)【解析】延长CD 交⊙O 于E ,连接BE ,如图2所示: 则CE 是⊙O 的直径, ∴∠EBC=90°,BC ⊥BE , ∵∠E=∠BAC , ∴sinE=sin ∠BAC , ∴BC CE =35, ∴CE=53BC=10,∴BE=√CE 2−BC 2=8,OA=OE=12CE=5, ∵AH ⊥BC ,∴BE ∥OA ,∴OABE =ODDE ,即58=OD5−OD , 解得:OD=2513,∴CD=5+2513=9013,∵BE ∥OA ,即BE ∥OH ,OC=OE ,∴OH 是△CEB 的中位线, ∴OH=12BE=4,CH=12BC=3, ∴AH=5+4=9,在Rt △ACH 中,AC=√AH 2+CH 2=√92+32=3√10.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=kx 的图象相交于A (﹣3,a )和B 两点(1)求k 的值;(2)直线y=m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN=4,求m 的值; (3)直接写出不等式6x−5>x 的解集.(1)∵点A (﹣3,a )在y=2x+4与y=kx 的图象上,∴2×(﹣3)+4=a , ∴a=﹣2, ∴k=(﹣3)×(﹣2)=6; (2)∵M 在直线AB 上, ∴M (m+42,m ),N 在反比例函数y=6x上,∴N (6m ,m ), ∴MN=x N ﹣x m =6m ﹣m−42=4或x M ﹣x N =m−42﹣6m =4,解得:∵m >0,∴m=2或m=6+4√3;(3)x <﹣1或x5<x <6, 由6x−5>x 得:6x−5﹣x >0, ∴6−x 2+5x x−5>0, ∴x 2−5x−6x−5<0,∴{x 2−5x −6>0x −5<0或{x 2−5x −6<0x −5>0, 结合抛物线y=x 2﹣5x ﹣6的图象可知,由{x 2−5x −6>0x −5<0得{x <−1或x >6x <5,∴{x <−1x <5或{x >6x <5, ∴此时x <﹣1,由{x 2−5x −6<0x −5>0得,{−1<x <6x >5, ∴{−1<x <6x >5, 解得:5<x <6,综上,原不等式的解集是:x <﹣1或5<x <6.23.(10分)(2017•武汉)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E . (1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB ;(2)如图2,若∠ABC=120°,cos ∠ADC=35,CD=5,AB=12,△CDE 的面积为6,求四边形ABCD 的面积; (3)如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC=cos ∠ADC=35,CD=5,CF=ED=n ,直接写出AD 的长(用含n 的式子表示)【解析】(1)如图1中, ∵∠ADC=90°,∠EDC+∠ADC=180°, ∴∠EDC=90°, ∵∠ABC=90°, ∴∠EDC=∠ABC , ∵∠E=∠E ,∴△EDC ∽△EBA , ∴ED EB =ECEA ,∴ED•EA=EC•EB .(2)如图2中,过C 作CF ⊥AD 于F ,AG ⊥EB 于G .在Rt △CDF 中,cos ∠ADC=35,∴DF CD =35,∵CD=5, ∴DF=3,∴CF=√CD 2−DF 2=4, ∵S △CDE =6, ∴12•ED•CF=6,∴ED=12CF =3,EF=ED+DF=6,∵∠ABC=120°,∠G=90°,∠G+∠BAG=∠ABC , ∴∠BAG=30°, ∴在Rt △ABG 中,BG=12AB=6,AG=√AB 2−BG 2=6√3, ∵CF ⊥AD ,AG ⊥EB , ∴∠EFC=∠G=90°,∵∠E=∠E ,∴△EFC ∽△EGA , ∴EF EG =CFAG , ∴6EG =6√3,∴EG=9√3,∴BE=EG ﹣BG=9√3﹣6,∴S 四边形ABCD =S △ABE ﹣S △CDE =12(9√3﹣6)×6√3﹣6=75﹣18√3.(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,∴tan ∠E=4n+3,作AG ⊥DF 于点G ,设AD=5a ,则DG=3a ,AG=4a , ∴FG=DF ﹣DG=5+n ﹣3a ,∵CH ⊥AD ,AG ⊥DF ,∠E=∠F , 易证△AFG ∽△CEH ,∴AG CH =FGEH , ∴4a5+n−3a =4n+3,∴a=n+5n+6,∴AD=5a=5(n+5)n+6.24.(12分)(2017•武汉)已知点A (﹣1,1)、B (4,6)在抛物线y=ax 2+bx 上(1)求抛物线的解析式; (2)如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE ;(3)如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒√2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t秒时,QM=2PM ,直接写出t 的值.第11页(共12页)【解析】(1)将点A (﹣1,1)、B (4,6)代入y=ax 2+bx 中, {a −b =116a +4b =6,解得:{a =12b =−12, ∴抛物线的解析式为y=12x 2﹣12x .(2)证明:设直线AF 的解析式为y=kx+m , 将点A (﹣1,1)代入y=kx+m 中,即﹣k+m=1, ∴k=m ﹣1,∴直线AF 的解析式为y=(m ﹣1)x+m . 联立直线AF 和抛物线解析式成方程组, {y =(m −1)x +m y =12x 2−12x ,解得:{x 1=−1y 1=1,{x 2=2m y 2=2m 2−m , ∴点G 的坐标为(2m ,2m 2﹣m ).∵GH ⊥x 轴,∴点H 的坐标为(2m ,0).∵抛物线的解析式为y=12x 2﹣12x=12x (x ﹣1), ∴点E 的坐标为(1,0).设直线AE 的解析式为y=k 1x+b 1, 将A (﹣1,1)、E (1,0)代入y=k 1x+b 1中, {−k 1+b 1=1k 1+b 1=0,解得:{k 1=−12b 1=12, ∴直线AE 的解析式为y=﹣12x+12.设直线FH 的解析式为y=k 2x+b 2,将F (0,m )、H (2m ,0)代入y=k 2x+b 2中, {b 2=m 2mk 2+b 2=0,解得:{k 2=−12b 2=m, ∴直线FH 的解析式为y=﹣12x+m .∴FH ∥AE .(3)设直线AB 的解析式为y=k 0x+b 0, 将A (﹣1,1)、B (4,6)代入y=k 0x+b 0中, {−k 0+b 0=14k 0+b 0=6,解得:{k 0=1b 0=2, ∴直线AB 的解析式为y=x+2.当运动时间为t 秒时,点P 的坐标为(t ﹣2,t ),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM , ∴QM′QP′=MM′PP′=23,∴QM′=43,MM′=23t ,∴点M 的坐标为(t ﹣43,23t ). 又∵点M 在抛物线y=12x 2﹣12x 上, ∴23t=12×(t ﹣43)2﹣12(t ﹣43), 解得:t=15±√1136; 当点M 在线段QP 的延长线上时, 同理可得出点M 的坐标为(t ﹣4,2t ), ∵点M 在抛物线y=12x 2﹣12x 上, ∴2t=12×(t ﹣4)2﹣12(t ﹣4), 解得:t=13±√892. 综上所述:当运动时间为15−√1136秒、15+√1136秒、13−√892秒或13+√892秒时,QM=2PM .第12页(共12页)。
洪山区2016-2017学年上学期期中考试九年级数学试卷参考答案
2016—2017学年度第一学期期中调考九年级数学参考答案一、选择题(共10小题,每小题3分,共30分)A D D A C C ABC B二、填空题(共6小题,每小题3分,共18分)11、(-2,3); 12、x(x-1)=36×2; 13、3k ≤且k ≠2;14、83; 15、150°; 16、6或425三、解答题(共8小题,共72分)17题(本题8分)解:∵1,2,2a b c ==-=-,………………3分∴2420b ac ∆=-=>………………5分∴212223==1322x ±±=±……………………7分11+3x =,21-3x =……………………………8分 18题(本题8分)解:设人行道的宽度为x 米,根据题意得, (20-3x )(8-2x )=56, 解得:x 1=2,x 2=263(不合题意,舍去).答:人行道的宽为2米.19题(本题8分) (1)⊙O 的半径为4 ……5'(2)90°或60°……8' 只填对一个得1',填两个其中有一个错误不给分 20题(本题8分)⑴证明:∵y=x 2﹣2mx+m 2+m ﹣1=(x ﹣m )2+m ﹣1,∴点P 的坐标为(m ,m ﹣1),∵当x=m 时,y=x ﹣1=m ﹣1,∴点P 在直线l 上;-----3分(2)(-3,- 4);(-5,0)和(-1,0)------6分(3)(-4,-3)------------------8分21、(本题8分)(1)画图………………2′(2)(-5,2)……………5′ (3)294π………………8′ 22(本题10分)(1)略……………5′ (2)解:在Rt △ABC 中∵AC=2BC=45∴AB 2=AC 2+BC 2=100∴AB=10∵AC ×BC=CE ×AB=2S △ABC ∴CE=4 在Rt △CEA 中∵AE 2=AC 2-CE 2=64 ∴AE=8 ∵D 是AE 的中点 ∴DE=4在Rt △CED 中 ∵CD 2=CE 2+ED 2=32∴CD=42∵∠EFG=90°∴FG 为圆的直径∴FG=CD=42径,……………10′23、(本题10分)(1)x x y 64221+-= 96064222+-=x x y ……………4′(2)在x x y 640221+-=中令4401=y 得:4406422=+-x x解得22,1021==x x ,因此当AE 的长为10m 或22m 时,种花的面积为440平方米。
2017年湖北省武汉市中考数学试卷和解析word版
2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)计算的结果为( ) A .6 B .﹣6 C .18 D .﹣182.(3分)若代数式在实数范围内有意义,则实数a 的取值范围为( )A .a=4B .a >4C .a <4D .a ≠4 3.(3分)下列计算的结果是x 5的为( )A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩/m1.50 1.60 1.65 1.70 1.75 1.80人数 2 3 2 3 4 1 则这些运动员成绩的中位数、众数分别为( )A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.705.(3分)计算(x +1)(x+2)的结果为( )A .x 2+2B .x 2+3x +2C .x 2+3x +3D .x 2+2x +26.(3分)点A (﹣3,2)关于y 轴对称的点的坐标为( )A .(3,﹣2)B .(3,2)C .(﹣3,﹣2)D .(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为( )A .B .C .D .8.(3分)按照一定规律排列的n 个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n 为( )A .9B .10C .11D .129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为.12.(3分)计算﹣的结果为.13.(3分)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.(3分)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC 上,∠DAE=60°.若BD=2CE,则DE的长为.16.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x ﹣3=2(x ﹣1)18.(8分)如图,点C 、F 、E 、B 在一条直线上,∠CFD=∠BEA ,CE=BF ,DF=AE ,写出CD 与AB 之间的关系,并证明你的结论.19.(8分)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表 部门员工人数 每人所创的年利润/万元 A5 10Bb 8 Cc 5(1)①在扇形图中,C 部门所对应的圆心角的度数为②在统计表中,b= ,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)计算的结果为()A.6 B.﹣6 C.18 D.﹣18【解答】解:=6.故选:A.2.(3分)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.3.(3分)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)3【解答】解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x6故选C.4.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:1.50 1.60 1.65 1.70 1.75 1.80成绩/m人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.5.(3分)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2【解答】解:原式=x2+2x+x+2=x2+3x+2,故选B6.(3分)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.7.(3分)某物体的主视图如图所示,则该物体可能为()A.B. C.D.【解答】解:A、球的主视图为圆,符合题意;B、圆柱的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.8.(3分)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12【解答】解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.9.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.【解答】解:如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为G、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4,∵•BC•AD=(AB+BC+AC)•r,×5×4=×20×r,∴r=,故选C10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7【解答】解:如图:故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为2.【解答】解:原式=6﹣4=2,故答案为:212.(3分)计算﹣的结果为.【解答】解:原式=,故答案为:.13.(3分)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为30°.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=180°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为=,故答案为:15.(3分)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC 上,∠DAE=60°.若BD=2CE,则DE的长为3﹣3.【解答】解:(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC=120°,∴BN=CN,∠B=∠ACB=30°.在Rt△BAN中,∠B=30°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设CE=2x,则CM=x,EM=x,FM=4x﹣x=3x,EF=ED=6﹣6x.在Rt△EFM中,FE=6﹣6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.故答案为:3﹣3.(方法二):将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=30°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG为等边三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=30°,∴△CEF为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.设EC=x,则BD=CD=2x,DE=FE=6﹣3x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6﹣3x=x,x=3﹣,∴DE=x=3﹣3.故答案为:3﹣3.16.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或﹣3<a<﹣2.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:<a<或﹣3<a<﹣2.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)【解答】解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B b8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为108°②在统计表中,b=9,c=6(2)求这个公司平均每人所创年利润.【解答】解:(1)①在扇形图中,C部门所对应的圆心角的度数为:360°×30%=108°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:=7.6(万元).20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即=,解得:OD=,∴CD=5+=,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC===3.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.【解答】(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=x N﹣x M=﹣=4或x M﹣x N=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或5<x<6,方法1:x﹣5=m,则x=m+5,<m+5,反比例函数y=与一次函数y=m+5的交点是(﹣6,﹣1),(1,6),函数y=与函数y=x的交点是(﹣1,﹣1),(6,6),综上,原不等式的解集是:x<﹣1或5<x<6.方法:2:由>x得:﹣x>0,∴>0,∴<0,∴或,结合抛物线y=x2﹣5x﹣6的图象可知,由得,∴或,∴此时x<﹣1,由得,,∴,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)【解答】解:(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴=,∴ED•EA=EC•EB.(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.在Rt△CDF中,cos∠ADC=,∴=,∵CD=5,∴DF=3,∴CF==4,∵S=6,△CDE∴•ED•CF=6,∴ED==3,EF=ED+DF=6,∵∠ABC=120°,∠G=90°,∠G+∠BAG=∠ABC,∴∠BAG=30°,∴在Rt△ABG中,BG=AB=6,AG==6,∵CF⊥AD,AG⊥EB,∴∠EFC=∠G=90°,∵∠E=∠E,∴△EFC∽△EGA,∴=,∴=,∴EG=9,∴BE=EG﹣BG=9﹣6,∴S=S△ABE﹣S△CDE=(9﹣6)×6﹣6=75﹣18.四边形ABCD(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,∴tan∠E=,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,∴FG=DF﹣DG=5+n﹣3a,∵CH⊥AD,AG⊥DF,∠E=∠F,易证△AFG∽△CEH,∴=,∴=,∴a=,∴AD=5a=.24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.【解答】解:(1)将点A(﹣1,1)、B(4,6)代入y=ax2+bx中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:设直线AF的解析式为y=kx+m,将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,∴k=m﹣1,∴直线AF的解析式为y=(m﹣1)x+m.联立直线AF和抛物线解析式成方程组,,解得:,,∴点G的坐标为(2m,2m2﹣m).∵GH⊥x轴,∴点H的坐标为(2m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).设直线AE的解析式为y=k1x+b1,将A(﹣1,1)、E(1,0)代入y=k1x+b1中,,解得:,∴直线AE的解析式为y=﹣x+.设直线FH的解析式为y=k2x+b2,将F(0,m)、H(2m,0)代入y=k2x+b2中,,解得:,∴直线FH的解析式为y=﹣x+m.∴FH∥AE.(3)设直线AB的解析式为y=k0x+b0,将A(﹣1,1)、B(4,6)代入y=k0x+b0中,,解得:,∴直线AB的解析式为y=x+2.当运动时间为t秒时,点P的坐标为(t﹣2,t),点Q的坐标为(t,0).当点M在线段PQ上时,过点P作PP′⊥x轴于点P′,过点M作MM′⊥x轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM,∴==,∴QM′=,MM′=t,∴点M的坐标为(t﹣,t).又∵点M在抛物线y=x2﹣x上,∴t=×(t﹣)2﹣(t﹣),解得:t=;当点M在线段QP的延长线上时,同理可得出点M的坐标为(t﹣4,2t),∵点M在抛物线y=x2﹣x上,∴2t=×(t﹣4)2﹣(t﹣4),解得:t=.综上所述:当运动时间为秒、秒、秒或秒时,QM=2PM.。
2017年湖北省武汉市中考数学试卷和解析答案
2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)计算的结果为()A.6 B.﹣6 C.18 D.﹣182.(3分)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.(3分)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3 D.(x2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.(3分)计算(x+1)(x+2)的结果为()A .x2+2 B.x 2+3x+2 C.x 2+3x+3 D.x2+2x+26.(3分)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为()A.B. C.D.8.(3分)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为.12.(3分)计算﹣的结果为.13.(3分)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.(3分)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为.16.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB 之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b= ,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m 的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算的结果为()A.6 B.﹣6 C.18 D.﹣18【分析】根据算术平方根的定义计算即可求解.【解答】解:=6.故选:A.【点评】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.2.(3分)(2017•武汉)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3 D.(x2)3【分析】根据同底数幂的乘法法则,同底数幂除法法则,幂的乘方以及合并同类项,进行运算即可.【解答】解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x6故选C.【点评】此题考查了同底数幂的乘法、除法法则,幂的乘方以及合并同类项,解答此题关键是熟练运算法则.4.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.【点评】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B. C.D.【分析】根据主视图利用排除法确定正确的选项即可.【解答】解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解各个几何体的主食图,难度不大.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12【分析】观察得出第n个数为(﹣2)n,根据最后三个数的和为768,列出方程,求解即可.【解答】解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.【点评】此题考查规律型:数字的变化类,找出数字的变化规律,得出第n个数为(﹣2)n是解决问题的关键.9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.【分析】如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.由AD2=AB2﹣BD2=AC2﹣CD2,可得72﹣x2=82﹣(5﹣x)2,解得x=1,推出AD=4,由•BC•AD=(AB+BC+AC)•r,列出方程即可解决问题.【解答】解:如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4,∵•BC•AD=(AB+BC+AC)•r,×5×4=×20×r,∴r=,故选C【点评】本题考查三角形的内切圆与内心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用面积法求内切圆的半径,属于中考常考题型.10.(3分)(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7【分析】①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解答】解:如图:故选D.【点评】本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为 2 .【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)(2017•武汉)计算﹣的结果为.【分析】根据同分母分式加减运算法则化简即可.【解答】解:原式=,故答案为:.【点评】本题考查了分式的加减运算,熟记运算法则是解题的关键.13.(3分)(2017•武汉)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为30°.【分析】由平行四边形的性质得出∠ABC=∠D=100°,AB∥CD,得出∠BAD=180°﹣∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=180°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.【点评】此题主要考查了平行四边形的性质,等腰三角形的性质,三角形和内角和定理等知识;关键是掌握平行四边形对边平行,对角相等.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为=,故答案为:【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2017•武汉)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为3﹣3 .【分析】(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,由AB=AC=2、∠BAC=120°,可得出BC=6、∠B=∠ACB=30°,通过角的计算可得出∠FAE=60°,结合旋转的性质可证出△ADE≌△AFE(SAS),进而可得出DE=FE,设CE=2x,则CM=x,EM=x、FM=4x﹣x=3x、EF=ED=6﹣6x,在Rt△EFM中利用勾股定理可得出关于x的一元二次方程,解之可得出x的值,再将其代入DE=6﹣6x中即可求出DE的长.(方法二)将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=30°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CD=2x,DE=FE=6﹣3x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6﹣3x=x可求出x以及FE的值,此题得解.【解答】解:(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF 于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC=120°,∴BN=CN,∠B=∠ACB=30°.在Rt△BAN中,∠B=30°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设CE=2x,则CM=x,EM=x,FM=4x﹣x=3x,EF=ED=6﹣6x.在Rt△EFM中,FE=6﹣6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.故答案为:3﹣3.(方法二):将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=30°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG为等边三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=30°,∴△CEF为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.设EC=x,则BD=CD=2x,DE=FE=6﹣3x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6﹣3x=x,x=3﹣,∴DE=x=3﹣3.故答案为:3﹣3.【点评】本题考查了全等三角形的判定与性质、勾股定理、解一元二次方程以及旋转的性质,通过勾股定理找出关于x的一元二次方程是解题的关键.16.(3分)(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或﹣3<a<﹣2 .【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:<a<或﹣3<a<﹣2.【点评】本题考查的是抛物线与x轴的交点,在解答此题时要注意进行分类讨论,不要漏解.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x﹣3=2(x﹣1)【分析】去括号、移项、合并同类项、系数化为1即可得到方程的解.【解答】解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=【点评】本题主要考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.18.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.【分析】求出CF=BE,根据SAS证△AEB≌△CFD,推出CD=AB,∠C=∠B,根据平行线的判定推出CD∥AB.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.【点评】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为108°②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.【分析】(1)①根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;②先求得A 部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B,C部门的人数;(2)根据总利润除以总人数,即可得到这个公司平均每人所创年利润.【解答】解:(1)①在扇形图中,C部门所对应的圆心角的度数为:360°×30%=108°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:=7.6(万元).【点评】本题主要考查了扇形统计图以及平均数的计算,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【分析】(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买甲、乙两种奖品共花费了650元列方程40x+30(20﹣x)=650,然后解方程求出x,再计算20﹣x即可;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元列不等式组,然后解不等式组后确定x的整数值即可得到该公司的购买方案.【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.【点评】本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题,21.(8分)(2017•武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.【分析】(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD═,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即=,解得:OD=,∴CD=5+=,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC===3.【点评】本题考查了等腰三角形的判定与性质、圆周角定理、勾股定理、平行线分线段成比例定理、三角形中位线定理、三角函数等知识;本题综合性强,有一定难度.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B 两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m 的值;(3)直接写出不等式>x的解集.【分析】(1)把点A(﹣3,a)代入y=2x+4与y=即可得到结论;(2)根据已知条件得到M(,m),N(,m),根据MN=4列方程即可得到结论;(3)根据>x得到>0解不等式组即可得到结论.【解答】(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=x N﹣x m=﹣=4或x M﹣x N=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或x5<x<6,由>x得:﹣x>0,∴>0,∴<0,∴或,结合抛物线y=x2﹣5x﹣6的图象可知,由得,∴或,∴此时x<﹣1,由得,,∴,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.【点评】本题考查了反比例函数与一次函数的交点问题,求不等式组的解集,正确的理解题意是解题的关键23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)【分析】(1)只要证明△EDC∽△EBA,可得=,即可证明ED•EA=EC•EB;(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.想办法求出EB,AG即可求出△ABE的面积,即可解决问题;(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,只要证明△AFG∽△CEH,可得=,即=,求出a即可解决问题;【解答】解:(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴=,∴ED•EA=EC•EB.(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.在Rt△CDF中,cos∠ADC=,∴=,∵CD=5,∴DF=3,∴CF==4,∵S△CDE=6,∴•ED•CF=6,∴ED==3,EF=ED+DF=6,∵∠ABC=120°,∠G=90°,∠G+∠BAG=∠ABC,∴∠BAG=30°,∴在Rt△ABG中,BG=AB=6,AG==6,∵CF⊥AD,AG⊥EB,∴∠EFC=∠G=90°,∵∠E=∠E,∴△EFC∽△EGA,∴=,∴=,∴EG=9,∴BE=EG﹣BG=9﹣6,∴S四边形ABCD=S△ABE﹣S△CDE=(9﹣6)×6﹣6=75﹣18.(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,∴tan∠E=,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,∴FG=DF﹣DG=5+n﹣3a,∵CH⊥AD,AG⊥DF,∠E=∠F,易证△AFG∽△CEH,∴=,∴=,∴a=,∴AD=5a=.【点评】本题考查相似形综合题、相似三角形的判定和性质、直角三角形的30度角性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.24.(12分)(2017•武汉)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.【分析】(1)根据点A、B的坐标利用待定系数法,即可求出抛物线的解析式;(2)根据点A、F的坐标利用待定系数法,可求出直线AF的解析式,联立直线AF和抛物线的解析式成方程组,通过解方程组可求出点G的坐标,进而可得出点H的坐标,利用分解因式法将抛物线解析式变形为交点式,由此可得出点E的坐标,再根据点A、E(F、H)的坐标利用待定系数法,可求出直线AE(FH)的解析式,由此可证出FH∥AE;(3)根据点A、B的坐标利用待定系数法,可求出直线AB的解析式,进而可找出点P、Q的坐标,分点M在线段PQ上以及点M在线段QP的延长线上两种情况考虑,借助相似三角形的性质可得出点M的坐标,再利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之即可得出结论.【解答】解:(1)将点A(﹣1,1)、B(4,6)代入y=ax2+bx中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:设直线AF的解析式为y=kx+m,将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,∴k=m﹣1,∴直线AF的解析式为y=(m﹣1)x+m.联立直线AF和抛物线解析式成方程组,,解得:,,∴点G的坐标为(2m,2m2﹣m).∵GH⊥x轴,∴点H的坐标为(2m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).设直线AE的解析式为y=k1x+b1,将A(﹣1,1)、E(1,0)代入y=k1x+b1中,,解得:,∴直线AE的解析式为y=﹣x+.设直线FH的解析式为y=k2x+b2,将F(0,m)、H(2m,0)代入y=k2x+b2中,,解得:,∴直线FH的解析式为y=﹣x+m.∴FH∥AE.(3)设直线AB的解析式为y=k0x+b0,将A(﹣1,1)、B(4,6)代入y=k0x+b0中,,解得:,∴直线AB的解析式为y=x+2.当运动时间为t秒时,点P的坐标为(t﹣2,t),点Q的坐标为(t,0).当点M在线段PQ上时,过点P作PP′⊥x轴于点P′,过点M作MM′⊥x轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM,∴==,∴QM′=,MM′=t,∴点M的坐标为(t﹣,t).又∵点M在抛物线y=x2﹣x上,∴t=×(t﹣)2﹣(t﹣),解得:t=;当点M在线段QP的延长线上时,同理可得出点M的坐标为(t﹣4,2t),∵点M在抛物线y=x2﹣x上,∴2t=×(t﹣4)2﹣(t﹣4),解得:t=.综上所述:当运动时间为秒、秒、秒或秒时,QM=2PM.【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数图象上点的坐标特征、二次函数的三种形式、相似三角形的性质以及两条直线相交或平行,解题的关键是:(1)根据点A、B的坐标利用待定系数法,求出抛物线的解析式;(2)根据点A、E(F、H)的坐标利用待定系数法,求出直线AE(FH)的解析式:(3)分点M在线段PQ上以及点M在线段QP的延长线上两种情况,借助相似三角形的性质找出点M的坐标.31。
洪山区2017届中考数学模拟题(二)(word版有答案)
2017年武汉市中考数学模拟试题(二)第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分) 1.38的结果为( ) A .4B . 2C .±2D .±42.若代数式21x 在实数范围内有意义,则实数x 的取值范围是( ) A .x <-2B .x >-2C .x ≠-2D .x =-23.下列计算结果是a 8的值是( )A .a 2·a 4B .a 2+a 6C .a 9-aD .(a 2)44.下列事件是必然事件的是( ) A .通常加热100℃时,水沸腾B .篮球队员在罚球线上投篮一次,未投中C .任意画一个三角形,其内角和为360°D .经过信号灯时,遇到红灯5.下列计算结果等于x 2-9的是( )A .(3-x )(3+x )B .(x -3)2C .(x +3)(x -3)D .(x +3)26.点A (-2,3)关于y 轴对称的点的坐标为( ) A . (2,-3)B .(-2,-3)C .(2,3)D .(3,-2)7.如图是由几个小立方块所拼成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,则该几何体的左视图是( )A B C D8.某班15名同学为灾区捐款,他们捐款数额统计如下:捐款数额(元) 5 10 20 50 100 人数(名)24531下列说法正确的是( ).A .众数是100B .平均数是20C .中位数是20D .极差是209.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (2,0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2017次相遇地点的坐标是( )A .(-2,1)B .(-1,-1)C .(-1,1)D .(2,0)10.当-2≤x ≤1时,关于x 的二次函数y =-(x -m )2+m 2+1有最大值4,则实数m 的值为( ) A .2B .2或3-C .2或3-或47-D .2或3±或47- 第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算: 3+(-6)的结果为__________12.计算xx x -+-1112的结果为__________13.在一个不透明的箱子中装有4件同型号的产品,其中合格品3件、不合格品1件.现在从这4件产品中随机抽取2件检测,则抽到的都是合格品的概率是____________14.如图,矩形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 上一点,且AB =BE ,∠1=15°,则∠2=________度15、如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形边CD 沿 DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,则△BEF 的面积为_________ 16.已知△ABC 是等腰直三角形AC=BC=2,D 是边AB 上一中点,将△CAD 绕C 逆时针向旋α得到△CEF ,其点E 是点A 的对应点,点F 是点D 的对应点.DF 与AE 交于点M ; 当α从90°变化到180°时,点M 动的路径长为___________三、解答题(共8题,共72分) 17.(本题8分)解方程:3(x -5)=7x -1M FEDCBA18.(本题8分)如图,点B 、F 、C 、E 在同一条直线上,点A 、D 在直线BE 的两侧,AD ∥DE ,AC ∥DF ,BF =CE ,求证:AC =DF 19.(本题8分)为积极响应市委政府“加快建设美丽江城”的号召,我市某街道决定从备选的五种树中选购一种进行栽种.为了更好地了解社情民意,工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图两个不完整的统计图: 请根据所给信息解答以下问题:(1) 这次参与调查的居民人数为___________(2) 请将条形统计图补充完整,扇形统计图中“枫树”所在扇形的圆心角度数为 (3) 已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?20.(本题8分)某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元. (1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种. 21.(本题8分)△ABC 内接于O ,AB =AC ,D 在劣弧AC 上,∠ABD =45° (1) 如图1,BD 交AC 于E ,连CD .若AB =BD ,求证:CD =2DE (2) 如图2,连AD 、CD ,已知sin ∠BDC =1312,求tan ∠CBD 的值22.(本题10分)如图,已知A (-4,n )、B (3,4)是一次函数y 1=kx +b 的图象与反比例函数x m y =2的图象的两个交点,过点D (t ,0)(0<t <3)作x 轴的垂线,分别交双曲线xmy =2和直线y 1=kx +b 于P 、Q 两点(1) 直接写出反比例函数和一次函数的解析式(2) 当t 为何值时,S △BPQ =21S △APQ (3) 以PQ 为边在直线PQ 的右侧作正方形PQMN ,试说明:边QM 与双曲线xmy =2(x>0)始终有交点 23.(本题10分)如图1,△ABC 中,AB =14,BC =15,AC =13 (1) sinB =_________,△ABC 的面积为_________(2) 如图2,点P 由B 点出发,以1个单位/s 的速度向C 点运动,过P 作PE ∥AB 、PD ∥AC 分别交AC 、AB 边于E 、D 点,设运动时间为t 秒① 是否存在唯一的t 值,使四边形PEAD 的面积为S ?若存在,求S 值;若不存在,说明理由② 如图3,将△PDE 沿DE 折叠至△QDE 位置,连BQ 、CQ ,当t 为何值时,2BQ =CQ24.(本题12分)已知抛物线C 1:y =ax 2经过(-1,1)(1) C 1的解析式为___________,顶点坐标为___________,对称轴为___________ (2) 如图1,直线l :y =kx +2k -2经过定点P ,过P 的另一直线交抛物线C 1于A 、B 两点.当P A =AB 时,求A 点坐标(3) 如图2,将C 1向下平移h (h >0)个单位至C 2,M (-2,b )在C 2图象上,过M 作设MD 、ME 分别交抛物线于D 、E .若△MDE 的内心在直线y =b 上,求证:直线DE 一定与过原点的某条定直线平行2017年武汉市中考数学模拟试题(二)参考答案一、选择题(共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BCDACCDCCB二、填空题(共6小题,每小题3分,共18分) 11.-312.x+113.2114.3015.54816.12π三、解答题(共8题,共72分)17.解:27-=x18.解:略19.解:(1) 100;(2) 如图所示;(3) 36°;(4) 2万20. 解:(1)设购进甲,乙两种钢笔每支各需a 元和b 元,根据题意得:,解得:,答:购进甲,乙两种钢笔每支各需5元和10元; (2)设购进乙钢笔x 支,甲钢笔5101000x-支,根据题意可得:⎩⎨⎧-≥-≤x x x x 2200822006解得:20≤x ≤25, ∵x 为整数,∴x=20,21,22,23,24,25共六种方案, ∴该文具店共有6种进货方案;21.证明:(1) ∵AC =BD∴弧AC =弧BD ∴弧BC =弧AD∴∠BAC =∠ABD =∠BDC 又∠ACD =∠ABD =45° ∴△CDE 为等腰直角三角形 ∴CD =2DE(2) 延长AO 交BC 于F ,连结OC 、OD 、OB ∵∠BAC =∠BDC ,∠BAC =21∠BOC 又∠COF =21∠BOC ∴COF =BDC∵sin ∠BDC =sin ∠COF =132 设FC =12,OC =13,则OF =5 ∵∠ABD =45° ∴∠AOD =90° 设AF 与BD 交于点G ∴△BFG ∽△DOG ∴1312==OD BF OG GF ,5122512==OF FG ∴tan ∠CBD =51=BF GF 22.解:(1) (2) (3)设直线QM 与双曲线交于C 点.依题意可知:P ()、Q ()、C ()所以QM =PQ =、QC =;则QM -QC ==;因为,所以,所以,即QM -QC>0,所以QM>QC ;即边QM 与双曲线 (始终有交点23.证明:(1) sinB =54,S △ABC =84 (2) 过点C 作CM ⊥AB 于M ,PN ⊥AB 于N∴CM =12,PN =t 54,)15(1514t PE -= ∴S 四边形PEAD =PE ·PN =42)215(7556556755622+--=+-t t t ∴当t =215时,S 有最大值为42 (3) 由翻折可知:PE =QE =AD ,QD =PD =AE ∴△ADE ≌△QED (SSS ) ∴∠QDA =∠AEQ ∴∠QDB =∠QEC ∵△BDP ∽△PEC ∴QE CEPE CE BD PD ==又∠QDB =∠QEC ∴2===BDQEQD EC BQ CQ ∴EC =2QD =2DP =2AE ∴32==CA CE CB CP ∴CP =10,BP =5,t =524.解:(1) y =x 2,(0,0),y 轴(2) 当x =-2时,y =-2 ∴P (-2,-2) 设A (x 1,y 1)、B (x 2,y 2) ∵P A =PB ∴-2+x 2=2x 1 ①联立⎪⎩⎪⎨⎧=-+=222xy k kx y ,整理得x 2-kx -2k +2=0 ∴x 1+x 2=k ②,x 1x 2=-2k +2 ③ 由①得,321-=k x ,代入②③得,334±-=k ∴A (23-,347-)、(23--,347+)(3) 过点M 作直线l ∥x 轴,过点D 作DF ⊥l 于F ,过点E 作EG ⊥l 于G 设D (x 1,x 12-h )、E (x 2,x 22-h ) ∵△MDF ∽△MEG∴2)]4()[(2)4()(222121+----=+---x h h x x h h x ,得x 1+x 2=4设直线DE 的解析式为y =kx +b∴⎪⎩⎪⎨⎧-=+-=+hx b kx hx b kx 222211,得k =x 1+x 2=4∴直线DE一定与过原点的直线y=4x平行。
湖北省武汉市2017年中考数学真题试题(含解析)
湖北省武汉市2017年中考数学真题试题第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)1 )A .6B .-6C .18D .-18 【答案】A. 【解析】故选A.考点:算术平方根. 2.若代数式14a -在实数范围内有意义,则实数a 的取值范围为( ) A .4a = B .4a > C .4a < D .4a ≠ 【答案】D.考点:分式有意义的条件.3.下列计算的结果是5x 的为( )A .102x x ÷B .6x x - C .23x x D .23()x【答案】C. 【解析】试题解析:A .102x x ÷=x 8,该选项错误;B .6x 与x 不能合并,该选项错误; C .23x x =5x ,该选项正确; D .23()x =x 6,该选项错误.考点:1.同底数幂的除法;2.同底数幂的乘法;3.积的乘方与幂的乘方.4.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示.则这些运动员成绩的中位数,众数分别为( )A .1.65,1.70B .1.65,1.75C . 1.70,1.75D .1.70,1.70 【答案】C. 【解析】考点:1.中位数;2.众数.5.计算(1)(2)x x ++的结果为( )A .22x +B .232x x ++C . 233x x ++D .222x x ++ 【答案】B. 【解析】试题解析:(1)(2)x x ++=x 2+2x+x+2= x 2+3x +2.故选B.考点:多项式乘以多项式6.点(3,2)A -关于y 轴对称的坐标为( )A .(3,2)-B .(3,2)C . (3,2)--D .(2,3,)- 【答案】B. 【解析】试题解析:根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得: 点A (-3,2)关于y 轴对称的坐标为(3,2).考点:关于x 轴、y 轴对称的点的坐标特征7.某物体的主视图如图所示,则该物体可能为( )A .B .C .D .【答案】D 【解析】试题解析:只有选项A 的图形的主视图是拨给图形,其余均不是. 故选A. 考点:三视图.8.按照一定规律排列的n 个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则n 为( )A .9B .10C .11D .12 【答案】A.考点:数字变化规律.9.已知一个三角形的三边长分别为5,7,8.则其内切圆的半径为( )A B .32C .D .【答案】C考点:三角形的内切圆.10.如图,在Rt ABC ∆中,90C ∠=,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C . 6D .7 【答案】C考点:画等腰三角形.第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分)11.计算23(4)⨯+-的结果为.【答案】2.【解析】试题解析:23(4)⨯+-=6-4=2.考点:有理数的混合运算.12.计算2111xx x-++的结果为.【答案】x-1. 【解析】试题解析:2111xx x-++=211)(1)=111(-+-=-++x x xxx x考点:分式的加减法.13.如图,在ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE,若AE=AB,则∠EBC的度数为.【答案】30°.【解析】考点:1.解平分线的性质;2.平行四边形的性质.14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.【答案】25.【解析】试题解析:根据题意可得:列表如下黄3共有20种所有等可能的结果,其中两个颜色相同的有8种情况,故摸出两个颜色相同的小球的概率为82= 205.考点:列表法和树状图法.15.如图△ABC中,AB=AC,∠BAC=120°,∠DAE=60°,BD=5,CE=8,则DE的长为.【答案】7.【解析】考点:1.含30度角的直角三角形;2.等腰三角形的性质.16.已知关于x 的二次函数y=ax 2+(a 2-1)x-a 的图象与x 轴的一个交点的坐标为(m,0),若2<m<3,则a 的取值范围是 . 【答案】-3<a<-2,13<a<12. 【解析】试题解析:把(m ,0)代入y=ax 2+(a 2-1)x-a 得,am 2+(a 2-1)m-a=0解得:m=222(--1)(--1)(+1)22a a a a a±±=∵2<m<3 解得:-3<a<-2,13<a<12.考点:二次函数的图象.三、解答题 (共8小题,共72分)在答题卡指定位置写出必要的演算过程或证明过程. 17.解方程:432(1)x x -=-.【答案】x=12.考点:解一元一次方程.18.如图,点,,,C F E B 在一条直线上,CFD BEA ∠=∠,,CE BF DF AE ==.写出CD 与AB 之间的关系,并证明你的结论.【答案】证明见解析: 【解析】试题分析:通过证明ΔCDF ≌ΔABE ,即可得出结论 试题解析:CD 与AB 之间的关系是:CD=AB ,且CD ∥A B 证明:∵CE=BF ,∴CF=BE 在ΔCDF 和ΔBAE 中CF=BE CFD=BEA DF=AE ⎧⎪∠∠⎨⎪⎩∴ΔCDF ≌ΔBAE ∴CD=BA ,∠C=∠B∴CD∥BA考点:全等三角形的判定与性质.A B C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下19.某公司共有,,的统计表和扇形图.各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为___________;②在统计表中,b=___________,c=___________;(2)求这个公司平均每人所创年利润.【答案】(1)①108°;②9,6;(2)7.6万元.5÷25%=20∴20×45%=9(人)20×30%=6(人)(2)10×25%+8×45%+5×30%=7.6答:这个公司平均每人所创年利润是7.6万元.考点:1.扇形统计图;2.加权平均数.20.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪.几种..不同的购买方案. 【答案】(1)甲、乙两种奖品分别购买5件、15件.(2)该公司有两种不同的购买方案:方案一:购买甲种奖品7件,购买乙种奖品13件;方案二、购买甲种奖品8件,购买乙种奖品12件.(2)设甲种奖品购买m 件,则乙种奖品购买(20-m )件依题意得:20-240+30(20-m )650m mm ⎧≤⎨≤⎩ 解得:2083m ≤≤ ∵m 为整数,∴m=7或8当m=7时,20-m=13;当m=8时,20-m=12答:该公司有两种不同的购买方案:方案一:购买甲种奖品7件,购买乙种奖品13件;方案二、购买甲种奖品8件,购买乙种奖品12件.考点:1.二元一次方程组的应用;2.一元一次不等式组的应用.21.如图,ABC ∆内接于O ,,AB AC CO =的延长线交AB 于点D .(1)求证AO平分BAC∠;(2)若36,sin5BC BAC=∠=,求AC和CD的长.【答案】(1)证明见解析;(2)90 13.(2)过点C作CE⊥AB于E∵sin∠BAC=35,设AC=5m,则CE=3m∴AE=4m,BE=m在RtΔCBE中,m2+(3m)2=36∴m=5,∴AC=延长AO 交BC 于点H ,则AH ⊥BC ,且BH=CH=3,考点:1.全等三角形的判定与性质;2.解直角三角形;3.平行线分线段成比例.22.如图,直线24y x =+与反比例函数k y x=的图象相交于(3,)A a -和B 两点.(1)求k 的值;(2)直线(0)y m m =>与直线AB 相交于点M ,与反比例函数k y x=的图象相交于点N .若4MN =,求m 的值;(3)直接写出不等式65xx>-的解集.【答案】(1)-6;(2) m=2或6+或5<x<6(2)∵M是直线y=m与直线AB的交点∴M(42m-,m)同理,N(6m,m)∴MN=|42m--6m|=4∴42m--6m=±4解得m=2或-6或6±∵m>0∴m=2或6+(3)x<-1或5<x<6考点:1.求反比例函数解析式;2.反比例函数与一次函数交点问题. 23.已知四边形ABCD的一组对边,AD BC的延长线相交于点E.(1)如图1,若90ABC ADC ∠=∠=,求证ED EA EC EB =;(2)如图2,若120ABC ∠=,3cos 5ADC ∠=,5CD =,12AB =,CDE ∆的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边,AB DC 的延长线相交于点F ,若3c o sc o s 5A B C A D C ∠=∠=,5CD =,CF ED n ==,直接写出AD 的长(用含n 的式子表示).【答案】(1)证明见解析;(2)(3)5256n n ++(3)由(1)(2)提供的思路即可求解.试题解析:(1)∵∠ADC=90°∴∠EDC=90°∴∠ABE=∠CDE又∵∠AEB=∠CED∴ΔEAB ∽ΔECD ∴EB EA ED EC= ∴ED EA EC EB =由(1)有:ΔECG ∽ΔEAH ∴EG CG EH AH=∴∴S 四边形ABCD =S ΔAEH -S ΔECG -S ΔABH=116622⨯⨯--⨯⨯(3)5256n n ++ 考点:相似三角形的判定与性质.24.已知点(1,1),(4,6)A B -在抛物线2y ax bx =+上.(1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,)(2)m m >,直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H ,设抛物线与x 轴的正半轴交于点E ,连接,FH AE ,求证//FH AE ;(3)如图2,直线AB 分别交x 轴,y 轴于,C D 两点,点P 从点C 出发,沿射线CD 方向匀速运个单位长度,同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度,点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,2QM PM =,直接写出t 的值.【答案】(1)抛物线的解析式为:y=12x 2-12x ;(2)证明见解析;(3)156±;132±.(3)进行分类讨论 即可得解.试题解析:(1)∵点A (-1,1),B (4,6)在抛物线y=ax 2+bx 上∴a-b=1,16a+4b =6解得:a=12,b=-12∴抛物线的解析式为:y=12x 2-12x设直线AF的解析式为y=kx+m∵A (-1,1)在直线AF上,∴-k+m=1即:k=m-1∴直线AF的解析式可化为:y=(m-1)x+m与y=12x2-12x联立,得(m-1)x+m=12x2-12x∴(x+1)(x-2m)=0 ∴x=-1或2m∴点G的横坐标为2m考点:二次函数综合题.。
湖北省武汉市2017年中考数学模拟试卷附答案
湖北省武汉市2017年中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分) 1.8的立方根为( ) A .2B .±2C .-2D .42.要使分式15-x 有意义,则x 的取值范围是( ) A .x ≠1 B .x >1 C .x <1 D .x ≠-1 3.计算(a -2)2的结果是( )A .a 2-4B .a 2-2a +4C .a 2-4a +4D .a 2+44.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( ) A .摸出的3个白球B .摸出的是3个黑球C .摸出的是2个白球、1个黑球D .摸出的是2个黑球、1个白球 5.下列各式计算正确的是( ) A .a 2+2a 3=3a 5B .(a 2)3=a 5C .a 6÷a 2=a 3D .a ·a 2=a 3 6.如图,A 、B 的坐标为(2,0)、(0,1).若将线段AB 平移至A 1B 1,则a +b 的值为( )A .2B .3C .4D .57.如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S 1、S 2、S 3,则S 1、S 2、S 3的大小关系是( ) A .S 1>S 2>S 3B .S 3>S 2>S 1C .S 2>S 3>S 1D .S 1>S 3>S 28.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )A .中位数是4,平均数是3.75B .众数是4,平均数是3.75C .中位数是4,平均数是3.8D .众数是4,平均数是3.89.在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.对于一条直线,当它与一个圆的公共点都是整点时,我们把这条直线称为这个圆的“整点直线”.已知⊙O 是以原点为圆心,半径为22的圆,则⊙O 的“整点直线”共有( )条 A .7B .8C .9D .1010.Rt △ABC 中,∠ACB =90°,AC =20,BC =10,D 、E 分别为边AB 、CA 上两动点,则CD +DE 的最小值为( ) A .854+B .16C .58D .20二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算:5-(-6)=___________ 12.计算:111+++a aa =___________13.如图,有五张背面完全相同的纸质卡片,其正面分别标有数:6、7、11、-2、5.将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数比3小的概率是___________14.如图,将三角板的直角顶点放在直尺的一边上.若∠1=65°,则∠2的度数为___________15.如图,△ABC 中,AB =AC ,∠A =30°,点D 在AB 上,∠ACD =15°,则ADBC的值是_______ 16.如图,△ABC 内接于⊙O ,BC =12,∠A =60°,点D 为弧BC 上一动点,BE ⊥直线OD 于点E .当点D 从点B 沿弧BC 运动到点C 时,点E 经过的路径长为___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:54212-=-x x18.(本题8分)如图,△ABC 的高AD 、BE 相交于点F ,且有BF =AC ,求证:△BDF ≌△ADC19.(本题8分)某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如图两幅尚不完整的统计图.请根据以上信息解答下列问题: (1) 课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为____________ (2) 请补全条形统计图(3) 该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数20.(本题8分)某中学开学初到商场购买A 、B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元,已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元(1) 求购买一个A 种品牌、一个B 种品牌的足球各需多少元(2) 学校为了响应习总书记“足球进校园”的号召,决定再次购进A 、B 两种品牌足球共50个,正好赶上商场对商品价格进行调整,A 品牌足球售价比第一次购买时提高4元,B 品牌足球按第一次购买时售价的9折出售,如果学校此次购买A 、B 两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B 种品牌足球不少于23个,则这次学校有哪几种购买方案?(3) 请你求出学校在第二次购买活动中最多需要多少资金?21.(本题8分)如图,在正方形ABCD 中,以BC 为直径的正方形内,作半圆O ,AE 切半圆于点F 交CD 于E (1) 求证:AO ⊥EO(2) 连接DF ,求tan ∠FDE 的值22.(本题10分)如图,已知直线y =mx +n 与反比例函数xky =交于A 、B 两点,点A 在点B 的左边,与x 轴、y 轴分别交于点C 、点D ,AE ⊥x 轴于E ,BF ⊥y 轴于F (1) 若m =k ,n =0,求A 、B 两点的坐标(用m 表示)(2) 如图1,若A (x 1,y 1)、B (x 2,y 2),写出y 1+y 2与n 的大小关系,并证明 (3) 如图2,M 、N 分别为反比例函数x b y =图象上的点,AM ∥BN ∥x 轴.若3511=+BN AM ,且AM 、BN 之间的距离为5,则k -b =_____________23.(本题10分)已知点I 为△ABC 的内心(1) 如图1,AI 交BC 于点D ,若AB =AC =6,BC =4,求AI 的长 (2) 如图2,过点I 作直线交AB 于点M ,交AC 于点N ① 若MN ⊥AI ,求证:MI 2=BM ·CN② 如图3,AI 交BC 于点D .若∠BAC =60°,AI =4,请直接写出ANAM 11+的值24.(本题12分)如图1,在平面直角坐标系中,抛物线y=x2-4x-5与x轴分别交于A、B(A在B的左边),与y轴交于点C,直线AP与y轴正半轴交于点M,交抛物线于点P,直线AQ与y轴负半轴交于点N,交抛物线于点Q,且OM=ON,过P、Q作直线l(1) 探究与猜想:①取点M(0,1),直接写出直线l的解析式取点M(0,2),直接写出直线l的解析式②猜想:我们猜想直线l的解析式y=kx+b中,k总为定值,定值k为__________,请取M的纵坐标为n,验证你的猜想(2) 如图2,连接BP、BQ.若△ABP的面积等于△ABQ的面积的3倍,试求出直线l的解析式参考答案10.提示:当CG⊥AF时,CD+DE有最小值由角平分线定理,得AF ∶BF =AC ∶CB =2∶1 设BF =x ,则AF =2x在Rt △AFC 中,(10+x )2+202=(2x )2,解得x 1=350,x 2=-10(舍去) ∴sin ∠CAF =34210=+=x x AF CF ∵sin ∠CAF =ACCG∴CG =16二、填空题(共6小题,每小题3分,共18分) 11.11 12.113.5314.25°15.216.π338 15.提示:过点A 作AE ⊥BC 于F ,在AE 上截取EF =EC ,连接FC∴△CEF 为等腰直角三角形 ∵△ADC ≌△CFA (ASA ) ∴AD =CF =2CE =22BC ∴2=ADBC三、解答题(共8题,共72分) 17.解:23=x 18.解:略19.解:(1) 144°;(2) 如图;(3) 16020.解:(1) 设A 种品牌足球的单价为x 元,B 种品牌足球的单价为y 元⎩⎨⎧+==+3045002550x y y x ,解得⎩⎨⎧==8050y x(2) 设第二次购买A 种足球m 个,则购买B 种足球(50-m )个 ⎩⎨⎧≥-⨯≤-⨯++2350%704500)50(9.080)450(m m m ,解得25≤m ≤27∵m 为整数 ∴m =25、26、27(3) ∵第二次购买足球时,A 种足球单价为50+4=54(元),B 种足球单价为80×0.9=72 ∴当购买B 种足球越多时,费用越高 此时25×54+25×72=3150(元)21.证明:(1) ∵∠ABC =∠DCB =90°∴AD 、CD 均为半圆的切线 连接OF ∵AE 切半圆于E∴∠BAO =∠FAO ,∠CEO =∠FEO ∵∠BAE +∠CEA =180° ∴∠DAF +∠OEF =90° ∴∠AOE =90° ∴AO ⊥EO(2) 设OB =OC =2,则AB =4 ∵Rt △AOB ∽Rt △OEC ∴CE =EF =1,DE =3,AE =5 过点F 作FG ⊥DE 于G ∴FG ∥AD ∴EDEGAD FG EA EF == 即3451EGFG == ∴FG =54,EG =53,DG =512∴tan ∠FDE =31=DG FG 22.解:(1) A (-1,m )、B (1,m )(2) 联立⎪⎩⎪⎨⎧=+=x ky n mx y ,整理得mx 2+nx -k =0 ∴x 1+x 2=m n -,x 1x 2=mk - ∴y 1+y 2=m (x 1+x 2)+2n =-n +2n =n (3) 设N (m b ,m )、B (m k ,m ),则BN =mb k - 设A (n k ,n )、M (n b ,n ),则AM =nk b - ∵3511=+BN AM ∴35=-+--b k m b k n ∵AM 、BN 之间的距离为5 ∴m -n =5∴k -b =53(m -n )=323.解:(1) 23(2) ∵I 为△ABC 的内心 ∴MAINAI ∵AI ⊥MN∴△AMI ≌△ANI (ASA )∴∠AMN =∠ANM 连接BI 、CI ∴∠BMI =∠CNI设∠BAI =∠CAI =α,∠ACI =∠BCI =β ∴∠NIC =90°-α-β∵∠ABC =180°-2α-2β ∴∠MBI =90°-α-β ∴BMI ∽INC ∴NCNINI BM =∴NI 2=BM ·CN ∵NI =MI ∴MI 2=BM ·CN(3) 过点N 作NG ∥AD 交MA 的延长线于G ∴∠ANG =∠AGN =30° ∴AN =AG ,NG =AN 3 ∵AI ∥NG ∴NGAIMG AM =∴ANAN AM AM 34=+,得4311=+AN AM 24.解:(1) ① P (6,7)、Q (4,-5),PQ :y =6x -29P (7,16)、Q (3,-8),PQ :y =6x -26 ② 设M (0,n )AP 的解析式为y =nx +n AQ 的解析式为y =-nx -n联立⎪⎩⎪⎨⎧--=+=542x x y n nx y ,整理得x 2-(4+n )x -(5+n )=0 ∴x A +x P =-1+x P =4+n ,x P =5+n 同理:x Q =5-n设直线PQ 的解析式为y =kx +b联立⎪⎩⎪⎨⎧--=+=542x x y b kx y ,整理得x 2-(4+k )x -(5+b )=0 ∴x P +x Q =4+k∴5+n +5-n =4+k ,k =6 (3) ∵S △ABP =3S △ABQ ∴y P =-3y Q∴kx P +b =-3(kx Q +b ) ∵k =6∴6x P +18x Q =-b∴6(5+n )+18(5-n )=4b ,解得b =3n -30∵x P ·x Q =-(5+b )=-5-3n +30=(5+n )(5-n ),解得n =3 ∴P (8,27)∴直线PQ的解析式为y=6x-21。
2017年武汉市中考数学试卷(含答案解析版)
2017年武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算的结果为()A.6 B.﹣6C.18 D.﹣182.若代数式在实数范围内有意义,则实数 a 的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠45 的为()3.下列计算的结果是x10÷x2 B.x6﹣x C.x2?x3 D.(x2)3A.x4.在一次中学生田径运动会上,参加男子跳高的15 名运动员的成绩如下表所示:成绩 1.50 1.60 1.65 1.70 1.75 1.80/m人数 2 3 2 3 4 1为()则这些运动员成绩的中位数、众数分别A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.计算(x+1)(x+2)的结果为()2+2 B.x2+3 x+2 C.x2+3 x+3 D.x2+2 x+2A.x6.点A(﹣3,2)关于y 轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)7.某物体的主视图如图所示,则该物体可能为()A.B.C.D.8.按照一定规律排列的n 个数:﹣2、4、﹣8、16、﹣32、64、⋯,若最后三个数的和为768,则n 为()第1页(共22页)A.9 B.10 C.11 D.129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.计算2×3+(﹣4)的结果为.12.计算﹣的结果为.13.如图,在?ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.一个不透明的袋中共有 5 个小球,分别为 2 个红球和 3 个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.如图,在△ABC中,AB=AC=2 ,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为.2+(a2﹣1)x﹣a 的图象与x 轴的一个交点的坐16.已知关于x 的二次函数y=ax标为(m,0).若2<m<3,则a 的取值范围是.三、解答题(共8题,共72分)第2页(共22页)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部员工人每人所创的年利润/门数万元A510B b8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b=,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?第3页(共22页)21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=9°0,求证:ED?EA=EC?E;B(2)如图2,若∠ABC=12°0,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)第4页(共22页)2+bx上24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.第5页(共22页)2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3 分)(2017?武汉)计算的结果为()A.6 B.﹣6 C.18 D.﹣18解:=6.故选:A.2.(3 分)(2017?武汉)若代数式在实数范围内有意义,则实数 a 的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4解:依题意得:a﹣4≠0,解得a≠4.故选:D.5 的为()3.(3 分)(2017?武汉)下列计算的结果是x10÷x2 B.x6﹣x C.x2?x3 D.(x2)3A.x解:A、x10÷x2=x8.6﹣x=x6﹣x.B、xC、x2?x3=x5.2)3=x6D、(x4.(3 分)(2017?武汉)在一次中学生田径运动会上,参加男子跳高的15 名运动员的成绩如下表所示:成绩1.50 1.60 1.65 1.70 1.75 1.80/m人数 2 3 2 3 4 1则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70解:共15 名学生,中位数落在第8 名学生处,第8 名学生的跳高成绩为 1.70m,故中位数为 1.70;跳高成绩为 1.75m 的人数最多,故跳高成绩的众数为 1.75;故选C.第6页(共22页)5.(3 分)(2017?武汉)计算(x+1)(x+2)的结果为()2+2 B.x2+3 x+2 C.x2+3 x+3 D.x2+2 x+2A.x解:原式=x2+2 x+x+2 =x2+3x+2,故选B6.(3 分)(2017?武汉)点A(﹣3,2)关于y 轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)标为(3,2),解:A(﹣3,2)关于y 轴对称的点的坐故选:B.7.(3 分)(2017?武汉)某物体的主视图如图所示,则该物体可能为()A.B.C.D.解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.8.(3 分)(2017?武汉)按照一定规律排列的n 个数:﹣2、4、﹣8、16、﹣32、64、⋯,若最后三个数的和为768,则n 为()A.9 B.10 C.11 D.12解:由题意,得第n 个数为(﹣2)n,2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,那么(﹣当n 为偶数:整理得出:3×2n﹣2=768,解得:n=10;n﹣2=768,则求不出整数,3×2当n 为奇数:整理得出:﹣故选B.为(﹣2)n 是解9.(3 分)(2017?武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆22页)第7页(共的半径为()A.B.C.D.解:如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4 ,∵?BC?AD= (AB+BC+AC)?r,×5× 4 = ×20×r,∴r= ,故选C10.(3 分)(2017?武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7解:如图:故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017?武汉)计算2×3+(﹣4)的结果为2.解:原式=6﹣4=2,故答案为:212.(3分)(2017?武汉)计算﹣的结果为.解:原式=,故答案为:.13.(3分)(2017?武汉)如图,在?ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为30°.解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=18°0﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.14.(3分)(2017?武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为=,故答案为:15.(3分)(2017?武汉)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为3﹣3.解:将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC=12°0,∴BN=CN,∠B=∠ACB=3°0.在Rt△BAN中,∠B=30°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC=12°0,∠DAE=6°0,∴∠BAD+∠CAE=6°0,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=6°0.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设C E=2x,则C M=x,EM=x,FM=4x﹣x=3x,EF=ED=﹣66x.6x,FM=3x,EM=x,在Rt△EFM中,FE=6﹣∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.3.故答案为:3﹣2+(a2﹣1)x﹣a的图象与 16.(3分)(2017?武汉)已知关于x的二次函数y=axx轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或2.﹣3<a<﹣解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;2.3<a<﹣当a<0时,2<﹣a<3,解得﹣2.故答案为:<a<或﹣3<a<﹣72分)三、解答题(共8题,共解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=18.(8分)(2017?武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣E F=BF﹣E F,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.(8分)(2017?武汉)某公司共有A、B、C三个部门,根据每个部门的员工和扇形图计表人数和相应每人所创的年利润绘制成如下的统表各部门人数及每人所创年利润统计部员工人每人所创的年利润/门数万元A510B b8C c5108°数为的度(1)①在扇形图中,C部门所对应的圆心角②在统计表中,b=9,c=6.(2)求这个公司平均每人所创年利润数为:360°×30%=108°;解:(1)①在扇形图中,C部门所对应的圆心角的度②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:=7.6(万元).20.(8分)(2017?武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计20件.其中甲种奖品每件40元,乙种奖品每件30元划购买甲、乙两种奖品共多650元,求甲、乙两种奖品各购买了(1)如果购买甲、乙两种奖品共花费了少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?x件,乙种奖品购买了(20﹣x)件,解:(1)设甲种奖品购买了x)=650,根据题意得40x+30(20﹣解得x=5,20﹣x=15,则5件,乙种奖品购买了15件;答:甲种奖品购买了x)件,(20﹣(2)设甲种奖品购买了x件,乙种奖品购买了根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.21.(8分)(2017?武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB 于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=9°0,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即=,解得:OD=,∴CD=5+=,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC===3.22.(10分)(2017?武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A (﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=x N﹣x m=﹣=4或x M﹣x N=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或x5<x<6,由>x得:﹣x>0,∴>0,∴<0,><∴或,<>得结合抛物线y=x2﹣5x﹣6的图象可知,由><<或>,<<>∴或,<<∴此时x<﹣1,<<<由得,,>><<∴,>解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.23.(10分)(2017?武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=9°0,求证:ED?EA=EC?E;B(2)如图2,若∠ABC=12°0,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)解:(1)如图1中,∵∠ADC=9°0,∠EDC+∠ADC=18°0,∴∠EDC=9°0,∵∠ABC=9°0,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴=,∴ED?EA=EC?E.B2中,过C作CF⊥AD于F,AG⊥EB于G.(2)如图在Rt△CDF中,cos∠ADC=,∴=,∵CD=5,∴DF=3,∴CF==4,∵S△CDE=6,∴?ED?CF=6,∴ED==3,EF=ED+DF=6,∵∠ABC=12°0,∠G=90°,∠G+∠BAG=∠ABC,∴∠BAG=3°0,∴在Rt△ABG中,BG=AB=6,AG==6,∵CF⊥AD,AG⊥EB,∴∠EFC=∠G=90°,∵∠E=∠E,∴△EFC∽△EGA,∴=,∴=,∴EG=9,∴BE=EG﹣B G=9﹣6,∴S四边形A BCD=S△ABE﹣S△CDE=(9﹣6)×6﹣6=75﹣18.C H=4,DH=3,3中,作CH⊥AD于H,则(3)如图∴tan∠E=,D G=3a,AG=4a,作AG⊥DF于点G,设A D=5a,则∴FG=DF﹣D G=5+n﹣3a,∵CH⊥AD,AG⊥DF,∠E=∠F,易证△AFG∽△CEH,∴=,∴=,∴a=,∴AD=5a=.2+bx上24.(12分)(2017?武汉)已知点A(﹣1,1)、B(4,6)在抛物线y=ax(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.解:(1)将点A(﹣1,1)、B(4,6)代入y=ax2+bx中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:设直线AF的解析式为y=kx+m,将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,∴k=m﹣1,∴直线AF的解析式为y=(m﹣1)x+m.联立直线AF和抛物线解析式成方程组,,解得:,,∴点G的坐标为(2m,2m2﹣m).∵GH⊥x轴,∴点H的坐标为(2m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).y=k1x+b1,设直线AE的解析式为将A(﹣1,1)、E(1,0)代入y=k1x+b1中,,解得:,∴直线AE的解析式为y=﹣x+.设直线FH的解析式为y=k2x+b2,将F(0,m)、H(2m,0)代入y=k2x+b2中,,解得:,∴直线FH的解析式为y=﹣x+m.∴FH∥AE.y=k0x+b0,(3)设直线AB的解析式为1,1)、B(4,6)代入y=k0x+b0中,将A(﹣,解得:,∴直线AB的解析式为y=x+2.2,t),点Q的坐标为(t﹣(t,0).时间为t秒时,点P的坐标为当运动P Q上时,过点P作PP′⊥x轴于点P′,过点M作MM′⊥x轴于点当点M在线段M′,则△PQP′∽△MQM′,如图2所示.第21页(共22页)∵QM=2PM,∴==,∴QM′=,MM′=t,∴点M的坐标为(t﹣,t).又∵点M在抛物线y=x2﹣x上,∴t=×(t﹣)2﹣(t﹣),解得:t=;当点M在线段QP的延长线上时,同理可得出点M的坐标为(t﹣4,2t),∵点M在抛物线y=x2﹣x上,∴2t=×(t﹣4)2﹣(t﹣4),解得:t=.综上所述:当运动时间为秒、秒、秒或秒时,QM=2PM.第22页(共22页)。
湖北省武汉市2017年中考数学真题试题(含扫描答案)
2017年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算36的结果为( ) A .6 B .-6 C .18 D .-182.若代数式41−a 在实数范围内有意义,则实数a 的取值范围为( ) A .a =4 B .a >4 C .a <4 D .a ≠43.下列计算的结果是x 5的为( )A .x 10÷x 2B .x 6-xC .x 2·x 3D .(x 2)34.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.50 1.60 1.65 1.70 1.75 1.80 人数 2 3 2 3 4 1则这些运动员成绩的中位数、众数分别为( )A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.705.计算(x +1)(x +2)的结果为( )A .x 2+2B .x 2+3x +2C .x 2+3x +3D .x 2+2x +26.点A (-3,2)关于y 轴对称的点的坐标为( )A .(3,-2)B .(3,2)C .(-3,-2)D .(2,-3)7.某物体的主视图如图所示,则该物体可能为( )8.按照一定规律排列的n 个数:-2、4、-8、16、-32、64、……,若最后三个数的和为768,则n 为( )A .9B .10C .11D .129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .23 B .23 C .3 D .32 10.如图,在Rt △ABC 中,∠C =90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7二、填空题(本大题共6个小题,每小题3分,共18分)11.计算2×3+(-4)的结果为___________12.计算111+−+x x x 的结果为___________ 13.如图,在□ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为___________14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为___________15.如图,在△ABC 中,AB =AC =32,∠BAC =120°,点D 、E 都在边BC 上,∠DAE =60°.若BD =2CE ,则DE 的长为___________16.已知关于x 的二次函数y =ax 2+(a 2-1)x -a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是___________三、解答题(共8题,共72分)17.(本题8分)解方程:4x -3=2(x -1)18.(本题8分)如图,点C 、F 、E 、B 在一条直线上,∠CFD =∠BEA ,CE =BF ,DF =AE ,写出CD 与AB 之间的关系,并证明你的结论19.(本题8分)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表 各部门人数分布扇形图 部门 员工人数 每人所创的年利润/万元A 5 10 Bb 8 C c5 (1) ① 在扇形图中,C 部门所对应的圆心角的度数为___________② 在统计表中,b =___________,c =___________(2) 求这个公司平均每人所创年利润20.(本题8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1) 如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2) 如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(本题8分)如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D(1) 求证:AO 平分∠BAC(2) 若BC =6,sin ∠BAC =53,求AC 和CD 的长22.(本题10分)如图,直线y =2x +4与反比例函数x k y =的图象相交于A (-3,a )和B 两点(1) 求k 的值(2) 直线y =m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN =4,求m 的值(3) 直接写出不等式x x >−56的解集23.(本题10分)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E(1) 如图1,若∠ABC =∠ADC =90°,求证:ED ·EA =EC ·EB(2) 如图2,若∠ABC =120°,cos ∠ADC =53,CD =5,AB =12,△CDE 的面积为6,求四边形ABCD 的面积(3) 如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC =cos ∠ADC =53,CD =5,CF =ED =n ,直接写出AD 的长(用含n 的式子表示)24.(本题12分)已知点A (-1,1)、B (4,6)在抛物线y =ax 2+bx 上(1) 求抛物线的解析式(2) 如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE (3) 如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值。
湖北省武汉市2017年中考数学试卷(含答案解析版)
湖北省武汉市2017年中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)计算 的结果为( )A .6B .﹣6C .18D .﹣182.(3分)若代数式在实数范围内有意义,则实数a 的取值范围为( ) A .a=4 B .a >4 C .a <4 D .a ≠43.(3分)下列计算的结果是x 5的为( )A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为( )A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.705.(3分)计算(x +1)(x +2)的结果为( )A .x 2+2B .x 2+3x +2C .x 2+3x +3D .x 2+2x +26.(3分)点A (﹣3,2)关于y 轴对称的点的坐标为( )A .(3,﹣2)B .(3,2)C .(﹣3,﹣2)D .(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为( )A .B .C .D .8.(3分)按照一定规律排列的n 个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n 为( )A .9B .10C .11D .129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .B .C .D . 10.(3分)如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为 .12.(3分)计算 ﹣的结果为 . 13.(3分)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 .14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 .15.(3分)如图,在△ABC 中,AB=AC=2 ,∠BAC=120°,点D 、E 都在边BC上,∠DAE=60°.若BD=2CE ,则DE 的长为 .16.(3分)已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是 .三、解答题(共8题,共72分)17.(8分)解方程:4x ﹣3=2(x ﹣1)18.(8分)如图,点C 、F 、E 、B 在一条直线上,∠CFD=∠BEA ,CE=BF ,DF=AE ,写出CD 与AB 之间的关系,并证明你的结论.19.(8分)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C 部门所对应的圆心角的度数为②在统计表中,b= ,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m 的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.。
湖北省武汉市洪山区2017~2018年九年级数学期中试题(无答案)
湖北省武汉市洪⼭区2017~2018年九年级数学期中试题(⽆答案)洪⼭区2017~2018学年度上学期期中调研考试九年级数学试卷(考试时间:120分钟满分:120分)姓名分数⼀、选择题(共10⼩题,每⼩题3分,共30分)1.⼀元⼆次⽅程x2+3x-a=0的⼀个根为-1,则另⼀个根为()A.-2 B.2 C.4 D.-32.已知x1、x2是⼀元⼆次⽅程x2-3x+2=0的两个实数根,则x1+x2等于()A.-3 B.-2 C.2 D.33.如图,⼀座⽯拱桥是圆弧形,其跨度AB=24⽶,半径为13⽶,则拱⾼CD为()A.53⽶B.5⽶C.7⽶D.8⽶4.将抛物线y=2(x+1)2-2的图象先向左平移1个单位长度,再向上平移3个单位长度,则顶点坐标为()A.(-2,1) B.(2,1) C.(0,1) D.(-2,-5)5.如图,在平⾯直⾓坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将以某点为旋转中⼼,顺时针旋转90°得到△DEF,则旋转中⼼的坐标是()A.(0,0) B.(1,0) C.(1,-1) D.(2.5,0.5)6.⽤配⽅法解⽅程x2+6x+4=0,下列变形正确的是()A.(x+3)2=-4 B.(x-3)2=4 C.(x+3)2=5 D.(x+3)2=±57.今年某区积极推进“互联⽹+享受教育”课堂⽣态重构,加强对学校教育信息化的建设的投⼊,计划从今年起三年共投⼊1440万元,已知2015年投⼊1000万元.设投⼊经费的年平均增长率为x,根据题意,下⾯所列⽅程正确的是()A.1000(1+x)2=1440 B.1000(x2+1)=1440C.1000+1000x+1000x2=1440 D.1000+1000(1+x)+1000(1+x)2=14408.已知点A(-3,y1)、B(-1,y2)、C(2,y3)在函数y=-x2-2x+b的图象上,则y1、y2、y3的⼤⼩关系为()A.y1<y3<y2 B.y3<y1<y2 C.y3<y2<y1 D.y2<y1<y39.如图,AB为⊙O的直径,点C、D在⊙O上.若∠AOD=30°,则∠BCD的度数是()A.150°B.120°C.105°D.75°10.如图,在等腰Rt△ABC中,斜边AB=8,点P在以AC为直径的半圆上,M为PB的中点.当点P沿半圆从点A运动⾄点C 时,点M运动的路径长是()A.222πB.2πC.2πD.2题号 1 2 3 4 5 6 7 8 9 10答案⼆、填空题(本⼤题共6个⼩题,每⼩题3分,共18分)11.已知点P的坐标是(2,-3),那么点P关于原点的对称点P1的坐标是__________12.⼀次会议上,每两个参加会议的⼈都互相握⼀次⼿,有⼈统计⼀共握了36次收.设到会的⼈数为x⼈,14.在△ABC 中,∠A =120°.若BC =12,则其外接圆O 的直径为__________15.如图,点P 是等边三⾓形ABC 内⼀点,且P A =3,PB =4,PC =5.若将△APB 绕着点B 逆时针旋转后得到△CQB ,则∠APB 的度数___________16.直线y =m 是平⾏于x 轴的直线,将抛物线x x y 4212--=在直线y =m 上侧的部分沿直线y =m 翻折,翻折后的部分与没有翻折的部分组成新的函数图象.若新的函数图象刚好与直线y =-x 有3个交点,则满⾜条件的m 的值为___________三、解答题(共8题,共72分)17.(本题8分)解⽅程:x 2-2x -2=018.(本题8分)某⼩区在绿化⼯程中有⼀块长为20 m 、宽为8 m 的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的⾯积之和为56 m 2.两块绿地之间及周边留有宽度相等的⼈⾏通道(如图所⽰),求⼈⾏通道的宽度19.(本题8分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于E ,∠CDB =15°,OE =32(1) 求⊙O 的半径(2) 将△OBD 绕O 点旋转,使弦BD 的⼀个端点与弦AC 的⼀个端点重合,则弦BD 与弦AC 的夹⾓为___________20.(本题8分)已知抛物线y =x 2-2mx +m 2+m -1(m 是常数)的顶点为P ,直线l :y =x -1 (1) 求证:点P 在直线l 上(2) 若抛物线的对称轴为x =-3,直接写出该抛物线的顶点坐标_________,与x 轴交点坐标为_________ (3) 在(2)的条件下,抛物线上点(-2,b )在图象上的对称点的坐标是_________21.(本题8分)如图,⼆次函数245x y(0≤x ≤2)的图象记为曲线C 1,将C 1绕坐标原点O 逆时针旋转90°,得曲线C 2(1) 请画出C 2 (2) 写出旋转后A (2,5)的对应点A 1的坐标 (3) 直接写出C 1旋转⾄C 2过程中扫过的⾯积22.(本题10分)如图D 为Rt △ABC 斜边AB 上⼀点,以CD 为直径的圆分别交△ABC 三边于E 、F 、G 三点,连接FE 、FG(1) 求证:∠EFG =∠B(2) 若AC =2BC =54,D 为AE 的中点,求FG 的长23.(本题10分)为了美化环境,学校准备在如图所⽰的矩形ABCD空地上进⾏绿化,规划在中间的⼀块四边形MNQP上种花,其余的四块三⾓形上铺设草坪,要求AM=AN=CP=CQ.已知BC=24⽶,AB=40⽶.设AN=x⽶,种花的⾯积为y1平⽅⽶,草坪⾯积y2平⽅⽶(1) 分别求y1和y2与x之间的函数关系式(不要求写出⾃变量的取值范围)(2) 当AN的长为多少⽶时,种花的⾯积为440平⽅⽶?(3) 若种花每平⽅⽶需200元,铺设草坪每平⽅⽶需100元.现设计要求种花的⾯积不⼤于440平⽅⽶,设学校所需要费⽤w(元),求w与x之间的函数关系,并求出学校所需费⽤的最⼤值24.(本题12分)如图,抛物线y=ax2+2ax+c的图象与x轴交于A、B两点(点A在点B的左边),AB=4,与y轴交于点C,OC=OA,点D为抛物线的顶点(1) 求抛物线的解析式(2) 点M(m,0)为线段AB上⼀点(点M不与点A、B重合),过点M作x轴的垂线与直线AC交于点E,与抛物线交于点P,过点P 作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,当矩形PQNM的周长最⼤时,求m的值,并求出此时的△AEM的⾯积(3) 已知H(0,-1),点G在抛物线上,连HG,直线HG⊥CF,垂⾜为F.若BF=BC,求点G的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省武汉市洪山区2017届九年级中考模拟数学试题(二)一、选择题(共10小题,每小题3分,共30分)1. 的结果为()A. 4B. 2C. ±2D. ±4【答案】B【解析】∵(2)3=8,∴=2.故选B.2. 若代数式在实数范围内有意义,则实数x的取值范围是()A. x<-2B. x>-2C. x≠-2D. x=-2【答案】C【解析】∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠−2.故选:D.3. 下列计算结果是a8的值是()A. a2·a4B. a2+a6C. a9-aD. (a2)4【答案】D【解析】A选项:a2·a4=a6,故与题意不符;B选项:a2和a6,它们不是同类项,故不能相加,故与题意不符;C选项:a9和a,它们不是同类项,故不能相加,故与题意不符;D选项:(a2)4=,所以与题意相符.故选D.4. 下列事件是必然事件的是()A. 通常加热100℃时,水沸腾B. 篮球队员在罚球线上投篮一次,未投中C. 任意画一个三角形,其内角和为360°D. 经过信号灯时,遇到红灯【答案】A【解析】A选项:通常加热到100℃时,水沸腾是必然事件,故本选项正确;B选项:篮球队员在罚球线上投篮一次,未投中是随机事件,故本选项错误;C选项:度量三角形内角和,结果是360°是不可能事件,故本选项错误;D选项:经过信号灯时,遇到红灯是随机事件,故本选项错误.故选A.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.用到的知识点为:必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5. 下列计算结果等于x2-9的是()A. (3-x)(3+x)B. (x-3)2C. (x+3)(x-3)D. (x+3)2【答案】C【解析】直接利用平方差公式分解因式得:x2-9=x2-32=(x+3)(x-3).故选C.6. 点A(-2,3)关于y轴对称的点的坐标为()A. (2,-3)B. (-2,-3)C. (2,3)D. (3,-2)【答案】C【解析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数可得:点A(-2,3)关于y轴对称的点的坐标为(-(-2),-3)即为(2,3).故选C.7. 如图是由几个小立方块所拼成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,则该几何体的左视图是()A B C D【答案】D【解析】根据各层小正方体的个数可得:左视图有一层三个,另一层1个,如图所示:故选C.下列说法正确的是( ).A. 众数是100B. 平均数是20C. 中位数是20D. 极差是20【答案】C【解析】∵捐款20元的人数是5人,最多,∴众数是20,平均数=(5×2+10×4+20×5+50×3+100×1)=元,按照从少到多的顺序,第8人捐款是20,所以,中位数是20,极差为100-5=95.故选C.9. 如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2017次相遇地点的坐标是()A. (-2,1)B. (-1,-1)C. (-1,1)D. (2,0)【答案】C【解析】矩形的边长为4和2,因为物体乙是物体甲的速度的2倍,时间相同,物体甲与物体乙的路程比为1:2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×=4,物体乙行的路程为12×=8,在BC边相遇;②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×=8,物体乙行的路程为12×2×=16,在DE边相遇;③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×=12,物体乙行的路程为12×3×=24,在A点相遇;…此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵2017÷3=672…1,故两个物体运动后的第2014次相遇地点的是:第一次相遇地点,即物体甲行的路程为12×1×=4,物体乙行的路程为12×1×=8;此时相遇点的坐标为:(-1,1),故选C.10. 当-2≤x≤1时,关于x的二次函数y=-(x-m)2+m2+1有最大值4,则实数m的值为()A. 2B. 2或C. 2或或D. 2或或【答案】B【解析】二次函数对称轴为直线x=m,①m<-2时,x=-2取得最大值,-(-2-m)2+m2+1=4,解得m=-,不合题意,舍去;②-2≤m≤1时,x=m取得最大值,m2+1=4,解得m=±,∵m=不满足-2≤m≤1的范围,∴m=-;③m>1时,x=1取得最大值,-(1-m)2+m2+1=4,解得m=2.综上所述,m=2或-时,二次函数有最大值4.故选B.【点睛】本题考查了二次函数的最值,熟悉二次函数的性质及图象是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11. 计算:3+(-6)的结果为__________.【答案】-3【解析】3+(-6)=-(6-3)=-3.故答案是:-3.12. 计算的结果为__________.【答案】x+1【解析】=.故答案是:x+1......... ...................【答案】【解析】试题分析:画树状图得:∵共有12种等可能的结果,抽到的都是合格品的有6种情况,∴抽到的都是合格品的概率是:=.故答案为:.考点:列表法与树状图法.14. 如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且AB=BE,∠1=15°,则∠2=________.【答案】30【解析】∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,OB=OD,OA=OC,AC=BD,∴OB=OC,OB=OA,∴∠OCB=∠OBC,∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠AEB=180°−90°−45°=45°,∵∠1=15°,∴∠OCB=∠AEB−∠EAC=45°−15°=30°,∴∠OBC=∠OCB=30°,∴∠AOB=30°+30°=60°,∵OA=OB,∴△AOB是等边三角形,∴AB=OB,∵∠BAE=∠AEB=45°,∴AB=BE,∴OB=BE,∴∠OEB=∠EOB,∵∠OBE=30°,∠OBE+∠OEB+∠BEO=180°,∴∠OEB=75°,∵∠AEB=45°,∴∠2=∠OEB−∠AEB=30°,故答案为:30.点睛:本题考查了矩形的性质,等边三角形的性质,等腰三角形的性质的综合应用,能求出∠OEB和∠AEB的度数是解此题的关键.15. 如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,则△BEF的面积为_________.【答案】【解析】由折叠可知,DF=DC=DA,∠DFE=∠C=90°,∴∠DFG=∠A=90°,∴△ADG≌△FDG(HL)∵正方形边长是12,∴BE=EC=EF=6,设AG=FG=x,则EG=x+6,BG=12-x,由勾股定理得:EG2=BE2+BG2,即:(x+6)2=62+(12-x)2,解得:x=4∴AG=GF=4,BG=8,=×6×8=24,∴S△GBE=•S△GBE=∴S△BEF故答案是:.16. 已知△ABC是等腰直三角形AC=BC=2,D是边AB上一中点,将△C AD绕C逆时针向旋α得到△CEF,其点E是点A的对应点,点F是点D的对应点.DF与AE交于点M;当α从90°变化到180°时,点M动的路径长为___________.【答案】π【解析】O是AC中点,连接OD、CM.故答案是:.【点睛】本题考查几何变换综合题、弧长公式、四点共圆等知识,解题的关键是发现A、D、M、C四点共圆,最后一个问题的关键,正确探究出点M的运动路径,记住弧长公式.三、解答题(共8题,共72分)17. 解方程:3(x-5)=7x-1【答案】【解析】试题分析:方程去括号,移项合并,把x系数化为1,即可求出解.试题解析:3(x-5)=7x-13x-15=7x-13x-7x=-1+15-4x=14x=18. 如图,点B、F、C、E在同一条直线上,点A、D在直线BE的两侧,AD∥DE,AC∥DF,BF=CE,求证:AC=DF【答案】见解析【解析】试题分析:因为AB∥DE,AC∥DF,BF=CE,易证△ABC≌△DEF,则AC=DF.试题解析:证明:∵AB∥DE,AC∥DF,∴∠ABC=∠DEF,∠ACB=∠DFE.∵BF+FC=EC+CF,BF=CE,∴BC=EF.在△ABC和△DEF中∠ABC=∠DEF,BC=EF,∠ACB=∠DFE,∴△ABC≌△DEF(ASA).∴AC=DF.【点睛】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.19. 为积极响应市委政府“加快建设美丽江城”的号召,我市某街道决定从备选的五种树中选购一种进行栽种.为了更好地了解社情民意,工作人员在街道辖区范围内随机抽取了部分居民,进行“我最喜欢的一种树”的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成如图两个不完整的统计图:请根据所给信息解答以下问题:(1) 这次参与调查的居民人数为___________(2) 请将条形统计图补充完整,扇形统计图中“枫树”所在扇形的圆心角度数为___________(3) 已知该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?【答案】(1). 100(2). 36°【解析】试题分析:(1)根据喜欢“银杏树”的人数除以其占的百分比即可得总人数;(2)用总人数减去选择其它4种树的人数可得喜欢“樟树”的人数,补全条形图即可;(3)用样本中喜欢“枫树”占总人数的比例乘以360°即可得答案;(4)用样本中最喜欢“玉兰树”的比例乘以总人数可得答案.试题解析:(1)这次参与调查的居民人数为375÷37.5%=1000(人);(2)选择“樟树”的有1000﹣250﹣375﹣125﹣100=150(人),补全条形图如图:(3)360°×=36°,答:扇形统计图中“枫树”所在扇形的圆心角度数为36°;(4)8×=2(万人),答:估计这8万人中最喜欢玉兰树的约有2万人.考点:条形统计图;扇形统计图;用样本估计总体.20. 某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种.【答案】(1)5元和10元;(2)该文具店共有6种进货方案【解析】试题分析:(1)先设购进甲,乙两种钢笔每支各需a元和b元,根据购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元列出方程组,求出a,b的值即可;(2)先设购进甲钢笔x支,乙钢笔y支,根据题意列出5x+10y=1000和不等式组6y≤x≤8y,把方程代入不等式组即可得出20≤y≤25,求出y的值即可;试题解析:(1)设购进甲,乙两种钢笔每支各需a元和b元,根据题意得:,解得:,答:购进甲,乙两种钢笔每支各需5元和10元;(2)设购进乙钢笔x支,甲钢笔支,根据题意可得:解得:20≤x≤25,∵x为整数,∴x=20,21,22,23,24,25共六种方案,∴该文具店共有6种进货方案。