数学 人教A版 必修五 第三章 3.1
高中数学人教A版必修五第三章3.1.1不等式及其性质1教学设计
3.1.1 不等式及其性质1通过本节课的学习让学生从一系列的具体问题情境中感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用,这是学习本章的基础,也是不等关系在本章内容的地位与作用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较的过程,即能用不等式及不等式组把这些不等关系表示出来,也就是建立不等式数学模型的过程,这是学习本章第三节的基础.在本节课的学习过程中还安排了一些简单的学生易于处理的问题,用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望,这也是学生学习本章的情感基础.根据本节课教学内容,应用观察、抽象归纳、思考、交流、探究,得出数学模型,进行启发式教学并使用投影仪辅助.教学重点1.通过具体的问题情景,让学生体会不等量关系存在的普遍性及研究的必要性;2.用不等式或不等式组表示实际问题中的不等关系,并用不等式或不等式组研究含有简单的不等关系的问题;3.理解不等式或不等式组对于刻画不等关系的意义和价值. 教学难点1.用不等式或不等式组准确地表示不等关系;2.用不等式或不等式组解决简单的含有不等关系的实际问题.教具准备投影仪、胶片、三角板、刻度尺三维目标一、知识与技能1.通过具体情境建立不等观念,并能用不等式或不等式组表示不等关系;2.了解不等式或不等式组的实际背景;3.能用不等式或不等式组解决简单的实际问题.二、过程与方法1.采用探究法,按照阅读、思考、交流、分析,抽象归纳出数学模型,从具体到抽象再从抽象到具体的方法进行启发式教学;2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;3.设计较典型的现实问题,激发学生的学习兴趣和积极性三、情感态度与价值观1.通过具体情境,让学生去感受、体验现实世界和日常生活中存在着大量的不等量关系,鼓励学生用数学观点进行观察、归纳、抽象,使学生感受数学、走进数学、改变学生的数学学习态度;2.学习过程中,通过对问题的探究思考、广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;3.通过对富有实际意义问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的简洁美,激发学生的学习兴趣.教学过程导入新课师日常生活中,同学们发现了哪些数量关系.你能举出一些例子吗?生实例1:某天的天气预报报道,最高气温32℃,最低气温26℃.生实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则x a<x b.(老师协助画出数轴草图)生实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.(学生迫不及待地说出这么多,说明课前的预习量很充分,学习数学的兴趣浓,此时老师应给以充分的肯定和表扬)推进新课师同学们所举的这些例子联系了现实生活,又考虑到数学上常见的数量关系,非常好.而且大家已经考虑到本节课的标题不等关系与不等式,所举的实例都是反映不等量关系,这将暗示我们这节课的效果将非常好.(此时,老师用投影仪给出课本上的两个实例)实例6:限时40 km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.[过程引导]师能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点、进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人来说必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?生可以用不等式或不等式组来表示.师什么是不等式呢?生用不等号将两个解析式连结起来所成的式子叫不等式.(老师给出一组不等式-7<-5;3+4>1+4;2x≤6;a+2≥0;3≠4.目的是让同学们回忆不等式的一些基本形式,并说明不等号“≤,≥”的含义,是或的关系.回忆了不等式的概念,不等式组学生自然而然就清楚了)师能用不等式及不等式组把这些不等关系表示出来,也就是建立不等式数学模型的过程,通过对不等式数学模型的研究,反过来作用于我们的现实生活,这才是我们学习数学的最终目的.(此时,同学们已经迫不及待地想说出自己的观点.)[合作探究]生我们应该先像实例2那样用不等式或不等式组把上述实例中的不等量关系表示出来.师说得非常好,下面我们就把上述实例中的不等量关系用不等式或不等式组一一表示出来.那应该怎么样来表示呢?(学生轮流回答,老师将答案相应地写在实例后面)生上述实例中的不等量关系用不等式表示应该为32℃≤t≤26℃.生可以表示为x≥0.(此时,学生有疑问,老师及时点拨,可以画出图形.让学生板演)(老师顺便画出三角形草画)生|AC|+|BC|>|AB|(只需结合上述三角形草图).生|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.生|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.生如果用v表示速度,则v≤40 km/h.生f≥2.5%或p≥2.3%.(此时,一片安静,同学们在积极思考)生 这样表达是错误的,因为两个不等量关系要同时满足,所以应该用不等式组来表示此实际问题中的不等量关系,即可以表示为⎩⎨⎧≥≥%.3.2%,5.2p f 生 也可表示为f ≥2.5%且p ≥2.3%. 师 同学们看这两位同学的观点是否正确?生 (齐答)大家齐声说,都可以.师 同学们的思考很严密,很好!应该用不等式组来表示此实际问题中的不等量关系,也可以用“且”的形式来表达.课堂练习 教科书第83页练习1、2.(老师让学生轮流回答,学生回答很好.此时,同学们已真正进入了本节课的学习状态,老师再用投影仪给出课本上的三个问题.问题是数学研究的核心,以问题展示的形式来培养学生的问题意识与探究意识)【问题1】 设点A 与平面α的距离为d,B 为平面α上的任意一点.[活动与探究]师 请同学们用不等式或不等式组来表示出此问题中的不等量关系.(此时,教室一片安静,同学们在积极思考,时间较长,老师应该及时点拨)[方法引导]师 前面我们借助图形来表示不等量关系,这个问题是否可以?(可以让学生板演,结合三角形草图来表达)过点A 作AC ⊥平面α于点C ,则d=|AC |≤|AB |.师 这位同学做得很好,我们在解决问题时应该贯穿数形结合的思想,以形助数,以数解形.师 请同学们继续来处理问题2.[合作探究]【问题2】 某种杂志原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?生 可设杂志的定价为x 元,则销售量就减少2.01.05.2⨯-x 万本. 师 那么销售量变为多少呢?如何表示?生 可以表示为)2.01.05.28(⨯--x 万本,则总收入为x x )2.01.05.28(⨯--万元.〔老师板书,即销售的总收入为不低于20万元的不等式表示为)2.01.05.28(⨯--x x ≥20〕师 是否有同学还有其他的解题思路?生 可设杂志的单价提高了0.1n 元,(n ∈N *),(下面有讨论的声音,有的同学存在疑问,此时老师应密切关注学生的思维状况)师为什么可以这样设?生我只考虑单价的增量.师很好,请继续讲.生那么销售量减少了0.2n万本,单价为(2.5+0.1n)元,则也可得销售的总收入为不低于20万元的不等式,表示为(2.5+0.1n)(8-0.2n)≥20.师这位同学回答得很好,表述得很准确.请同学们对两种解法作比较.(留下让学生思考的时间)师请同学们继续思考第三个问题.[合作探究]【问题3】某钢铁厂要把长度为4 000 mm的钢管截成500 mm 和600 mm两种,按照生产的要求,600 mm钢管的数量不能超过500 mm钢管的3倍.怎样写出满足上述所有不等关系的不等式?师假设截得500 mm的钢管x根,截得600 mm的钢管y根.根据题意,应当有什么样的不等量关系呢?生截得两种钢管的总长度不能超过4 000 mm.生截得600 mm钢管的数量不能超过500 mm钢管的3倍.生截得两种钢管的数量都不能为负.师上述的三个不等关系是“或”还是“且”的关系呢?生它们要同时满足条件,应该是且的关系.生 由实际问题的意义,还应有x,y ∈N. 师 这位同学回答得很好,思维很严密.那么我们该用怎样的不等式组来表示此问题中的不等关系呢?生 要同时满足上述三个不等关系,可以用下面的不等式组来表示:⎪⎪⎪⎩⎪⎪⎪⎨⎧∈≥≥≥≤+.,,0,0,3,40000600500N y x y x y x y x 师 这位同学回答很准确.通过上述三个问题的探究,同学们对如何用不等式或不等组把实际问题中所隐含的不等量关系表示出来,这一点掌握得很好.请同学们再完成下面这个练习.课堂练习 练习:若需在长为 4 000 mm 的圆钢上,截出长为698 mm 和518 mm 两种毛坯,问怎样写出满足上述所有不等关系的不等式组?分析:设截出长为698 mm 的毛坯x 个和截出长为518 mm 的毛坯y 个,把截取条件数学化地表示出来就是:⎪⎪⎩⎪⎪⎨⎧∈≥≥≤+.,,0,0,4000518698N y x y x y x (练习可让学生板演,老师结合学生具体完成情况作评析,特别应注意x ≥0,y ≥0,x,y ∈N )课堂小结师通过今天的学习,你学到了什么知识,有何体会?生我感到学习数学可以帮助我们解决生活中的实际问题.生数学就在我们的身边,与我们的生活联系非常紧密,我更加喜爱数学了.生本节课我们还进一步巩固了初中所学的二元一次不等式及二元一次不等式组,并且用它来解决现实生活中存在的大量不等量关系的实际问题.师我来补充一下,在用二元一次不等式及二元一次不等式组表示实际问题中的不等关系时,思维要严密、规范,并且要注意数形结合等思想方法的综合应用.(慢慢培养学生学会自己来归纳总结,将所学的知识,结合获取知识的过程与方法,进行回顾与反思,从而达到三维目标的整合.进而培养学生的概括能力和语言表达能力)布置作业第84页习题3.1A组4、5.板书设计不等关系与不等式(一)实例方法引导方法归纳如何用不等式或不等式组表示实例剖析(知识方法应用)小结实际问题中不等量关系?示范解题备课资料一、备用习题1.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料需要的主要原料是磷酸盐4吨、硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨、硝酸盐15吨.现有库存磷酸盐10吨、硝酸盐66吨,在此基础上进行生产.请用不等式或不等式组把此实例中的不等量关系表示出来.分析:设x,y 分别为计划生产甲、乙两种混合肥料的车皮数,则⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+.0,0,661518,104y x y x y x 2.某年夏天,我国遭受特大洪灾,灾区学生小李家中经济发生困难.为帮助小李解决开学费用问题,小李所在班级学生(小李除外)决定承担这笔费用.若每人承担12元人民币,则多余84元;若每人承担10元,则不够;若每人承担11元,又多出40元以上.问该班共有多少人?这笔开学费用共多少元?请用不等式或不等式组把此实例中的不等量关系表示出来,不必解答.分析:设该班共有x 人,这笔开学费用共y 元,则⎪⎪⎩⎪⎪⎨⎧∈=-=-.,4011,10,8412*N x y x y x y x <.3.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大亏损分别为30%和10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.请用不等式或不等式组把此实例中的不等量关系表示出来.分析:设投资人分别用x 万元、y 万元投资甲、乙两个项目,由题意,知⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+.0,0,8.11.03.0,10y x y x y x 4.某企业生产A 、B 两种产品,A 产品的单位利润为60元,B 产品的单位利润为80元,两种产品都需要在加工车间和装配车间进行生产,每件A 产品在加工车间和装配车间各需经过0.8 h 和2.4 h ,每件B 产品在两个车间都需经过1.6 h ,在一定时期中,加工车间最大加工时间为240 h ,装配车间最大生产时间为288 h.请用不等式或不等式组把此实例中的不等量关系表示出来. 分析:设该企业分别生产A 产品x 件、B 产品y 件,则⎪⎪⎩⎪⎪⎨⎧∈≥≤+≤+.,0,,2886.14.2,2406.18.0Z y x y x y x y x 二、课外探究开放性问题 已知:不等式组⎪⎪⎪⎩⎪⎪⎪⎨⎧∈≥≥=+≥+,,,1,1,100,50N y x y x y x y x 你能举出符合此不等式组的实际问题吗?。
人教版高中数学必修五 第三章3.1第2课时不等式的性质与应用
第三章 不等式 3.1 不等关系与不等式 第2课时不等式的性质与应用A 级 基础巩固一、选择题1.若a >0,b >0,则不等式-b <1x <a 等价于( )A .-1b <x <0或0<x <1aB .-1a <x <1bC .x <-1a 或x >1bD .x <-1b 或x >1a解析:由题意知a >0,b >0,x ≠0, (1)当x >0时,-b <1x <a ⇔x >1a ;(2)当x <0时,-b <1x <a ⇔x <-1b.综上所述,不等式-b <1x <a ⇔x <-1b 或x >1a .答案:D2.设0<b <a <1,则下列不等式成立的是( ) A .ab <b 2<1 B .log 12b <log 12a <0C .2b <2a <2D .a 2<ab <1答案:C3.已知实数x,y,满足-4≤x-y≤-1,-1≤4x-y≤5,则9x-y 的取值范围是()A.[-7,26] B.[-1,20]C.[4,15] D.[1,15]答案:B4.已知a<b<0,那么下列不等式成立的是()A.a3<b3B.a2<b2C.(-a)3<(-b)3D.(-a)2<(-b)2解析:取a=-2.b=-1.验证知B,C,D均错,故选A.答案:A5.如下图所示,y=f(x)反映了某公司的销售收入y与销量x之间的函数关系,y=g(x)反映了该公司产品的销售成本与销售量之间的函数关系,当销量x满足下列哪个条件时,该公司盈利()A.x>a B.x<aC.x≥a D.0≤x≤a解析:当x<a时,f(x)<g(x);当x=a时,f(x)=g(x);当x>a 时,f(x)>g(x),故选A.答案:A二、填空题6.若x>y,a>b,则在①a-x>b-y,②a+x>b+y,③ax>by,④x-b>y-a这四个式子中,恒成立的序号是________. 答案:②④7.若角α,β满足-π2<α<β<π3,则α-β的取值范围是________.答案:(-56π,0)8.设x >1,-1<y <0,试将x ,y ,-y 按从小到大的顺序排列如下________.答案:y <-y <x 三、解答题9.已知a >b >0,c <d <0,判断b a -c 与ab -d 的大小.解:因为a >b >0,c <d <0,所以-c >-d >0,所以a -c >b -d >0, 所以0<1a -c <1b -d,又因为a >b >0,所以b a -c <ab -d.10.已知0<x <1,0<a <1,试比较|log a (1-x )|和 |log a (1+x )|的大小.解:法一:|log a (1-x )|2-|log a (1+x )|2=[log a (1-x )+log a (1+x )]·[log a (1-x )-log a (1+x )]=log a (1-x )2log a 1-x 1+x.因为0<1-x 2<1,0<1-x1+x<1,所以log a (1-x 2)log a 1-x1+x>0.所以|log a (1-x )|>|log a (1+x )|.法二:⎪⎪⎪⎪⎪⎪log a (1-x )log a (1+x )=|log 1+x (1-x )|= -log 1+x (1-x )=log 1+x 11-x =log 1+x 1+x 1-x 2=1-log 1+x (1-x 2). 因为0<1-x 2<1,1+x >1, 所以log 1+x (1-x 2)<0. 所以1-log 1+x (1-x 2)>1. 所以|log a (1-x )|>|log a (1+x )|. 法三:因为0<x <1,所以0<1-x <1,1<1+x <2, 所以log a (1-x )>0,log a (1+x )<0. 所以|log a (1-x )|-|log a (1+x )|= log a (1-x )+log a (1+x )=log a (1-x 2). 因为0<1-x 2<1,且0<a <1, 所以log a (1-x 2)>0.所以|log a (1-x )|>|log a (1+x )|.B 级 能力提升1.对下列不等式的推论中: ①a >b ⇒c -a >c -b ; ②a >b +c ⇒(a -c )2>b 2; ③a >b ⇒ac >bc ;④a >b >c >0⇒(a -c )b >(b -c )b ;⑤a >b ,1a >1b ⇒a >0,b <0.其中正确的个数是( ) A .2 B .3 C .4 D .5 答案:A2.若-2<c <-1<a <b <1,则(c -a )(a -b )的取值范围为________.答案:(0,6)3.若二次函数f (x )的图象关于y 轴对称,且1≤f (1)≤2;3≤f (2)≤4,求f (3)的取值范围.解:由题意设f (x )=ax 2+c (a ≠0),则⎩⎪⎨⎪⎧f (1)=a +c ,f (2)=4a +c ,所以⎩⎨⎧a =f (2)-f (1)3,c =4f (1)-f (2)3,而f (3)=9a +c =3f (2)-3f (1)+4f (1)-f (2)3=8f (2)-5f (1)3,因为1≤f (1)≤2,3≤f (2)≤4, 所以5≤5f (1)≤10,24≤8f (2)≤32, 所以-10≤-5f (1)≤-5, 所以14≤8f (2)-5f (1)≤27, 所以143≤8f (2)-5f (1)3≤9,即143≤f (3)≤9.。
高中数学第三章不等式3.3.1二元一次不等式组与平面区域课件新人教A版必修5
则有
该不等式组表示的平面区域如图阴影部分所示
≥ 0,
≥ 0.
(含边界).
-19-
二元一次不等式(组)与
平面区域
探究一
探究二
课前篇自主预习
探究三
思维辨析
课堂篇探究学习
课堂篇探究学习
当堂检测
反思感悟用二元一次不等式组表示实际问题的步骤
1.先根据问题的需要选取起关键作用且关联较多的两个量,并用字
(1)定义:我们把含有两个未知数,并且未知数的最高次数是1的不等
式称为二元一次不等式;把由几个二元一次不等式组成的不等式组
称为二元一次不等式组.
(2)解集:满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),
所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的
解集.有序数对可以看成直角坐标平面内点的坐标.于是,二元一次
课堂篇探究学习
当堂检测
用二元一次不等式(组)表示实际问题
例3投资生产A产品时,每生产100 吨需要资金200 万元,需场地200
平方米;投资生产B产品时,每生产100 吨需要资金300 万元,需场地
100 平方米.现某单位可使用资金1 400 万元,场地900 平方米,用数
学关系式和图形表示上述要求.
(1,0)作为测试点.
-6-
二元一次不等式(组)与
平面区域
课前篇自主预习
课堂篇探究学习
3.做一做:
(1)判断正误.
①不等式Ax+By+C>0是二元一次不等式.(
)
②点(1,3)在不等式2x-y-2<0所表示的平面区域内. (
)
高中数学新人教A版必修5课件:第三章不等式3.1不等关系与不等式4
2.已知
a>b>0,求证:
a b>
b a.
证明:因为 a>b>0,所以 a> b >0.①又因为 a>b>0,两边同
乘正数a1b,得1b>1a>0.②
①②两式相乘,得
a b>
b a.
利用不等式性质求代数式的取值范围
已知-1<x<4,2<y<3. (1)求 x-y 的取值范围; (2)求 3x+2y 的取值范围. 【解】 (1)因为-1<x<4,2<y<3,所以-3<-y<-2,所以 -4<x-y<2. (2)由-1<x<4,2<y<3,得-3<3x<12,4<2y<6,所以 1<3x +2y<18.
A.ad>bc
B.ac>bd
C.a-c>b-d
D.a+c>b+d
解析:选 D.令 a=2,b=-2,c=3,d=-6,可排除 A,B,
C.由不等式的性质 5 知,D 一定成立.
若 x<1,M=x2+x,N=4x-2,则 M 与 N 的大小关系为 ________.
解析:M-N=x2+x-4x+2=x2-3x+2=(x-1)(x-2), 又因为 x<1,所以 x-1<0,x-2<0,所以(x-1)(x-2)>0,所 以 M>N. 答案:M>N
1.雷电的温度大约是 28 000 ℃,比太阳表面温度的 4.5 倍 还要高.设太阳表面温度为 t ℃,那么 t 应满足的关系式是 ________. 解析:由题意得,太阳表面温度的 4.5 倍小于雷电的温度, 即 4.5t<28 000. 答案:4.5t<28 000
高中数学第三章不等式3.1不等式关系与不等式课件新人教A版必修5
为函数 y=1x在(-∞,0)上单调递减,a<b<0,所以1a>1b,
故 D 正确.
答案:D
5.若 x>1,y>2,则: (1)2x+y>________; (2)xy>________. 解析:(1)x>1⇒2x>2,2x+y>2+2=4;(2)xy>2. 答案:(1)4 (2)2
类型 1 用不等式(组)表示不等关系 [典例 1] 分别写出满足下列条件的不等式: (1)一个两位数的个位数字 y 比十位数字 x 大,且这 个两位数小于 30; (2)某电脑用户计划用不超过 500 元的资金购买单价 分别为 60 元的单片软件 x 片和 70 元的盒装磁盘 y 盒.根 据需要,软件至少买 3 片,磁盘至少买 2 盒. 解:(1)y>x>0,30>10x+y>9,且 x,y∈N*; (2)x≥3,y≥2,60x+70y≤500,且 x,y∈N*.
同向 5
可加性
ac>>db⇒a+c⑫>b+d
同向同正 6
可乘性
ac>>db>>00⇒ac⑬>bd
7
可乘方性 a>b>0⇒an>bn(n∈N,n≥1)
8
可开方性
nn
a>b>0⇒ a> b(n∈N,n≥2)
[思考尝试·夯基] 1.思考义是指 x 不小于 2.( ) (2)若 a<b 或 a=b 之中有一个正确,则 a≤b 正 确.( ) (3)若 a>b,则 ac>bc 一定成立.( ) (4)若 a+c>b+d,则 a>b,c>d.( )
解析:(1)正确.不等式 x≥2 表示 x>2 或 x=2,即 x 不小于 2,故此说法是正确的.(2)正确.不等式 a≤b 表示 a<b 或 a=b.故若 a<b 或 a=b 中有一个正确,则 a ≤b 一定正确.(3)错误.由不等式的可乘性知,当不等式 两端同乘以一个正数时,不等号方向不变,因此由 a>b, 则 ac>bc,不一定成立,故此说法是错误的.(4)错误.取 a=4,c=5,b=6,d=2,满足 a+c>b+d,但不满足 a >b,故此说法错误.
高中数学新人教A版必修5第三章 3.1 不等关系与不等式
不等关系与不等式预习课本P72~74,思考并完成以下问题 (1)如何用不等式(组)来表示不等关系?(2)比较两数(或式)的大小有哪些常用的方法?(3)不等式的性质有哪几条?[新知初探]1.不等式的概念我们用数学符号“≠”、“>”、“<”、“≥”、“≤”连接两个数或代数式,以表示它们之间的不等关系.含有这些不等号的式子叫做不等式.2.比较两个实数a ,b 大小的依据3.不等式的性质 (1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇒a >c ; (3)可加性:a >b ⇒a +c >b +c ; 推论(同向可加性):⎭⎬⎫a >bc >d ⇒a +c >b +d ;(4)可乘性:⎭⎬⎫a >b c >0⇒ac >bc ;⎭⎬⎫a >bc <0⇒ac <bc ; 推论(同向同正可乘性):⎭⎬⎫a >b >0c >d >0⇒ac >bd ;(5)正数乘方性:a >b >0⇒a n >b n (n ∈N *,n ≥1); (6)正数开方性:a >b >0⇒n a >nb (n ∈N *,n ≥2).[点睛] (1)在应用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.(2)要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)不等式x ≥2的含义是指x 不小于2( )(2)若a <b 或a =b 之中有一个正确,则a ≤b 正确( ) (3)若a >b ,则ac >bc 一定成立( ) (4)若a +c >b +d ,则a >b ,c >d ( )解析:(1)正确.不等式x ≥2表示x >2或x =2,即x 不小于2,故此说法是正确的. (2)正确.不等式a ≤b 表示a <b 或a =b .故若a <b 或a =b 中有一个正确,则a ≤b 一定正确.(3)错误.由不等式的可乘性知,当不等式两端同乘以一个正数时,不等号方向不变,因此由a >b ,则ac >bc 不一定成立,故此说法是错误的.(4)错误.取a =4,c =5,b =6,d =2,满足a +c >b +d ,但不满足a >b ,故此说法错误.答案:(1)√ (2)√ (3)× (4)×2.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( ) A .a >b >-b >-a B .a >-b >-a >b C .a >-b >b >-aD .a >b >-a >-b解析:选C 法一:∵A 、B 、C 、D 四个选项中,每个选项都是唯一确定的答案,∴可用特殊值法.令a =2,b =-1,则有2>-(-1)>-1>-2, 即a >-b >b >-a .法二:∵a +b >0,b <0,∴a >-b >0,-a <b <0, ∴a >-b >0>b >-a ,即a >-b >b >-a .3.设a ,b 是非零实数,若a <b ,则下列不等式成立的是( )A .a 2<b 2B .ab 2<a 2bC.1ab 2<1a 2bD.b a <a b解析:选C 因为a <b ,故b -a >0, 所以1a 2b -1ab 2=b -a a 2b 2>0,故1a 2b >1ab 2. 4.当m >1时,m 3与m 2-m +1的大小关系为________. 解析:∵m 3-(m 2-m +1)=m 3-m 2+m -1=m 2(m -1)+(m -1) =(m -1)(m 2+1).又∵m >1,故(m -1)(m 2+1)>0. 答案:m 3>m 2-m + 1用不等式(组)表示不等关系[典例] 某家电生产企业计划在每周工时不超过40 h 的情况下,生产空调、彩电、冰箱共120台,且冰箱至少生产20台.已知生产这些家电产品每台所需工时如下表:家电名称 空调 彩电 冰箱 工时(h)121314若每周生产空调x [解] 由题意,知x ≥0,y ≥0,每周生产冰箱(120-x -y )台.因为每周所用工时不超过40 h ,所以12x +13y +14(120-x -y )≤40,即3x +y ≤120;又每周至少生产冰箱20台, 所以120-x -y ≥20,即x +y ≤100. 所以满足题意的不等式组为⎩⎪⎨⎪⎧3x +y ≤120,x +y ≤100,x ≥0,x ∈N *,y ≥0,y ∈N *.1.将不等关系表示成不等式的思路 (1)读懂题意,找准不等式所联系的量.(2)用适当的不等号连接. (3)多个不等关系用不等式组表示.2.用不等式(组)表示不等关系时应注意的问题在用不等式(组)表示不等关系时,应注意必须是具有相同性质,可以进行比较时,才可用,没有可比性的两个(或几个)量之间不能用不等式(组)来表示.[活学活用]1.雷电的温度大约是28 000 ℃,比太阳表面温度的4.5倍还要高.设太阳表面温度为t ℃,那么t 应满足的关系式是________.解析:由题意得,太阳表面温度的4.5倍小于雷电的温度,即4.5t <28 000. 答案:4.5t <28 0002.一辆汽车原来每天行驶x km ,如果该汽车每天行驶的路程比原来多19 km ,那么在8天内它的行程将超过2 200 km ,用不等式表示为________.解析:因为该汽车每天行驶的路程比原来多19 km ,所以汽车每天行驶的路程为(x +19)km ,则在8天内它的行程为8(x +19)km ,因此,不等关系“在8天内它的行程将超过2 200 km ”可以用不等式8(x +19)>2 200来表示.答案:8(x +19)>2 200不等式的性质[典例] (1)已知b <2a,3d <c ,则下列不等式一定成立的是( ) A .2a -c >b -3d B .2ac >3bd C .2a +c >b +3dD .2a +3d >b +c(2)下列说法不正确的是( ) A .若a ∈R ,则(a 2+2a -1)3>(a -2)3 B .若a ∈R ,则(a -1)4>(a -2)4 C .若0<a <b ,则⎝⎛⎭⎫13a >⎝⎛⎭⎫13bD .若0<a <b ,则a 3<b 3[解析] (1)由于b <2a,3d <c ,则由不等式的性质得b +3d <2a +c ,故选C.(2)对于A ,因为(a 2+2a -1)-(a -2)=a 2+a +1=⎝⎛⎭⎫a +122+34>0,所以a 2+2a -1>a -2,则(a 2+2a -1)3>(a -2)3,故A 选项说法正确;对于B ,当a =1时,(a -1)4=0,(a -2)4=1,所以(a -1)4>(a -2)4不成立;对于C 和D ,因为0<a <b ,所以由指数函数与幂函数的性质知C 、D 选项说法正确,故选B.[答案] (1)C (2)B1.利用不等式判断正误的2种方法(1)直接法:对于说法正确的,要利用不等式的相关性质或函数的相关性质证明;对于说法错误的只需举出一个反例即可.(2)特殊值法:注意取值一定要遵循三个原则:一是满足题设条件;二是取值要简单,便于验证计算;三是所取的值要有代表性.2.利用不等式的性质证明不等式注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.[活学活用]1.已知a >b >c ,且a +b +c =0,则下列不等式恒成立的是( ) A .ab >bc B .ac >bc C .ab >acD .a |b |>|b |c解析:选C 因为a >b >c ,且a +b +c =0,所以a >0,c <0,所以ab >ac . 2.若a >b >0,c <d <0,e <0,求证:e (a -c )2>e(b -d )2. 证明:∵c <d <0,∴-c >-d >0.又a >b >0,∴a -c >b -d >0,则(a -c )2>(b -d )2>0,即1(a -c )2<1(b -d )2. 又e <0,∴e (a -c )2>e(b -d )2.数式的大小比较[典例] (1)已知x <1,比较x 3-1与2x 2-2x 的大小; (2)已知a >0,试比较a 与1a 的大小. [解] (1)(x 3-1)-(2x 2-2x ) =(x -1)(x 2+x +1)-2x (x -1) =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34.∵x <1,∴x -1<0.又⎝⎛⎭⎫x -122+34>0, ∴(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0. ∴x 3-1<2x 2-2x .(2)因为a -1a =a 2-1a =(a -1)(a +1)a, 因为a >0,所以当a >1时,(a -1)(a +1)a >0,有a >1a ;当a =1时,(a -1)(a +1)a =0,有a =1a ; 当0<a <1时,(a -1)(a +1)a <0,有a <1a .综上,当a >1时,a >1a ; 当a =1时,a =1a ; 当0<a <1时,a <1a .1.作差法比较两个数大小的步骤及变形方法 (1)作差法比较的步骤:作差→变形→定号→结论.(2)变形的方法:①因式分解;②配方;③通分;④对数与指数的运算性质;⑤分母或分子有理化;⑥分类讨论.2.作商法比较大小的步骤及适用范围 (1)作商法比较大小的三个步骤. ①作商变形; ②与1比较大小; ③得出结论.(2)作商法比较大小的适用范围. ①要比较的两个数同号;②比较“幂、指数、对数、含绝对值”的两个数的大小时,常用作商法. [活学活用]若m >2,比较m m 与2m 的大小.解:因为m m 2m =⎝⎛⎭⎫m 2m ,又因为m >2,所以m 2>1,所以⎝⎛⎭⎫m 2m >⎝⎛⎭⎫m 20=1,所以m m >2m.用不等式性质求解取值范围 [典例] 已知1<a <4,2<b <8,试求2a +3b 与a -b 的取值范围. [解] ∵1<a <4,2<b <8,∴2<2a <8,6<3b <24. ∴8<2a +3b <32.∵2<b <8,∴-8<-b <-2.又∵1<a <4,∴1+(-8)<a +(-b )<4+(-2), 即-7<a -b <2.故2a +3b 的取值范围是(8,32),a -b 的取值范围是(-7,2).同向不等式具有可加性与可乘性,但是不能相减或相除,应用时,要充分利用所给条件进行适当变形来求范围,注意变形的等价性.1.在本例条件下,求ab 的取值范围. 解:∵2<b <8,∴18<1b <12,而1<a <4,∴1×18<a ·1b <4×12,即18<a b <2.故ab 的取值范围是⎝⎛⎭⎫18,2.不等式两边同乘以一个正数,不等号方向不变,同乘以一个负数,不等号方向改变,求解中,应明确所乘数的正负.2.已知-6<a <8,2<b <3,求ab 的取值范围. 解:∵-6<a <8,2<b <3. ∴13<1b <12, ①当0≤a <8时,0≤ab <4;②当-6<a <0时,-3<ab <0. 由①②得:-3<ab <4.故ab的取值范围为(-3,4). 利用不等式性质求范围,应注意减少不等式使用次数. 3.已知-1≤a +b ≤1,1≤a -2b ≤3,求a +3b 的取值范围.解:设a +3b =λ1(a +b )+λ2(a -2b )=(λ1+λ2)a +(λ1-2λ2)b ,解得λ1=53,λ2=-23.又-53≤53(a +b )≤53,-2≤-23(a -2b )≤-23,所以-113≤a +3b ≤1.故a +3b 的取值范围为⎣⎡⎦⎤-113,1.层级一 学业水平达标1.李辉准备用自己节省的零花钱买一台学习机,他现在已存60元.计划从现在起以后每个月节省30元,直到他至少有400元.设x 个月后他至少有400元,则可以用于计算所需要的月数x 的不等式是( )A .30x -60≥400B .30x +60≥400C .30x -60≤400D .30x +40≤400解析:选B x 月后他至少有400元,可表示成30x +60≥400. 2.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0 C .b >0,c <0D .0<c <b 或c <b <0解析:选D 由a >0,d <0,且abcd <0,知bc >0, 又∵b >c ,∴0<c <b 或c <b <0.3.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-b解析:选B 选项A ,若a =4,b =2,c =5,显然不成立,选项C 不满足倒数不等式的条件,如a >b >0,c <0<d 时,不成立;选项D 只有a >b >0时才可以.否则如a =-1,b =0时不成立,故选B.4.设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,则2α-β3的范围是( ) A.⎝⎛⎭⎫0,56π B.⎝⎛⎭⎫-π6,56π C.()0,πD.⎝⎛⎭⎫-π6,π 解析:选D 0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,由同向不等式相加得到-π6<2α-β3<π.5.已知M =2x +1,N =11+x 2,则M ,N 的大小关系为( )A .M >NB .M <NC .M =ND .不确定解析:选A ∵2x >0,∴M =2x +1>1,而x 2+1≥1, ∴11+x 2≤1,∴M >N ,故选A. 6.某校高一年级的213名同学去科技馆参观,租用了某公交公司的x 辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.则题目中所包含的不等关系为________.解析:根据题意得:⎩⎪⎨⎪⎧30(x -1)<213,30x >213.答案:⎩⎪⎨⎪⎧30(x -1)<213,30x >2137.比较大小:a 2+b 2+c 2________2(a +b +c )-4. 解析:a 2+b 2+c 2-[2(a +b +c )-4] =a 2+b 2+c 2-2a -2b -2c +4=(a -1)2+(b -1)2+(c -1)2+1≥1>0, 故a 2+b 2+c 2>2(a +b +c )-4. 答案:>8.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是________(用区间表示).解析:∵z =-12(x +y )+52(x -y ),-2≤-12(x +y )≤12,5≤52(x -y )≤152,∴3≤-12(x +y )+52(x -y )≤8,∴z 的取值范围是[3,8]. 答案:[3,8]9.两种药片的有效成分如下表所示:应满足怎样的不等关系?用不等式的形式表示出来.解:设提供A 药片x 片,B 药片y 片,由题意可得:⎩⎪⎨⎪⎧2x +y ≥12,5x +7y ≥70,x+6y ≥28,x ≥0,x ∈N ,y ≥0,y ∈N.10.(1)若a <b <0,求证:b a <a b ; (2)已知a >b ,1a <1b,求证:ab >0.证明:(1)由于b a -a b =b 2-a 2ab =(b +a )(b -a )ab, ∵a <b <0,∴b +a <0,b -a >0,ab >0, ∴(b +a )(b -a )ab <0,故b a <ab.(2)∵1a <1b ,∴1a -1b<0,即b -aab <0,而a >b ,∴b -a <0,∴ab >0.层级二 应试能力达标1.若x ∈R ,y ∈R ,则( ) A .x 2+y 2>2xy -1 B .x 2+y 2=2xy -1 C .x 2+y 2<2xy -1D .x 2+y 2≤2xy -1解析:选A 因为x 2+y 2-(2xy -1)=x 2-2xy +y 2+1=(x -y )2+1>0,所以x 2+y 2>2xy -1,故选A.2.已知a 1∈(0,1),a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .M ≥N解析:选B ∵a 1∈(0,1),a 2∈(0,1),∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0,∴M >N ,故选B.3.若-1<α<β<1,则下列各式中恒成立的是( ) A .-2<α-β<0 B .-2<α-β<-1 C .-1<α-β<0D .-1<α-β<1解析:选A 由-1<α<1,-1<β<1,得-1<-β<1, ∴-2<α-β<2.又∵α<β,故知-2<α-β<0.4.某厂技术科组织工人参加某项技能测试,某职工参加完测试后对自己的成绩进行了如下估计:理论考试成绩x 超过85分,技能操作成绩y 不低于90分,答辩面试成绩z 高于95分,用不等式组表示为( )A.⎩⎪⎨⎪⎧ x >85y ≥90z ≥95B.⎩⎪⎨⎪⎧ x ≥85y >90z >95C.⎩⎪⎨⎪⎧ x >85y ≥90z >95D.⎩⎪⎨⎪⎧x ≥85y >90z ≥95 解析:选C x 超过85分表示为x >85,y 不低于90分表示为y ≥90,z 高于95分,表示为z >95,故选C.5.已知|a |<1,则11+a与1-a 的大小关系为________. 解析:由|a |<1,得-1<a <1.∴1+a >0,1-a >0.即11+a 1-a =11-a 2∵0<1-a 2≤1,∴11-a 2≥1, ∴11+a≥1-a . 答案:11+a ≥1-a 6.设a ,b 为正实数,有下列命题:①若a 2-b 2=1,则a -b <1;②若1b -1a=1,则a -b <1; ③若|a -b |=1,则|a -b |<1;④若|a 3-b 3|=1,则|a -b |<1.其中正确的命题为________(写出所有正确命题的序号).解析:对于①,由题意a ,b 为正实数,则a 2-b 2=1⇒a -b =1a +b⇒a -b >0⇒a >b >0,故a +b >a -b >0.若a -b ≥1,则1a +b≥1⇒a +b ≤1≤a -b ,这与a +b >a -b >0矛盾,故a -b <1成立.对于②,取特殊值,a =3,b =34,则a -b >1. 对于③,取特殊值,a =9,b =4时,|a -b |>1.对于④,∵|a 3-b 3|=1,a >0,b >0,∴a ≠b ,不妨设a >b >0.∴a 2+ab +b 2>a 2-2ab +b 2>0,∴(a -b )(a 2+ab +b 2)>(a -b )(a -b )2.即a 3-b 3>(a -b )3>0,∴1=|a 3-b 3|>(a -b )3>0,∴0<a -b <1,即|a -b |<1.因此正确.答案:①④7.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解:因为x -y =a 3-b -a 2b +a =a 2(a -b )+a -b =(a -b )(a 2+1), 所以当a >b 时,x -y >0,所以x >y ;当a =b 时,x -y =0,所以x =y ;当a <b 时,x -y <0,所以x <y .8.已知x ,y 为正实数,且1≤lg(xy )≤2,3≤lg x y ≤4,求lg(x 4y 2)的取值范围.解:由题意,设a =lg x ,b =lg y ,∴lg(xy )=a +b ,lg x y =a -b ,lg(x 4y 2)=4a +2b .设4a +2b =m (a +b )+n (a -b ),∴⎩⎪⎨⎪⎧ m +n =4,m -n =2,解得⎩⎪⎨⎪⎧m =3,n =1. 又∵3≤3(a +b )≤6,3≤a -b ≤4,∴6≤4a +2b ≤10,∴lg(x 4y 2)的取值范围为[6,10].。
人教A版高中数学必修五3.1.不等关系与不等式 教学设计
人教版新课标普通高中◎数学⑤必修第三章不等式概述不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容.建立不等观念,处理不等关系与处理等量问题是同样重要的.根据课程标准,在本章中,学生将通过具体情境,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的内在联系.1.内容与课程学习目标本章主要学习描述不等关系的数学方法,一元二次不等式的解法及其应用,线性规划问题,基本不等式及其应用等,通过学习,要使学生达到以下目标:(1)通过具体情境,感受在现实世界和日常生活中存在着大量的数量关系,了解不等式(组)的实际背景.(2)经历从实际情境中抽象出一元二次不等式模型的过程;通过函数图象了解一元二次不等式与相应函数、方程的联系;会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图.(3)从实际情境中抽象出二元一次不等式组;了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)探索基本不等式的证明过程;会用基本不等式解决简单最大(小)值问题.2.教学要求(1)基本要求①了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景;理解不等式(组)对于刻划不等关系的意义和价值;会用不等式(组)表示实际问题中的不等关系,能用不等式(组)研究含有不等关系的实际问题.②理解并掌握不等式的基本性质;了解从实际情境中抽象出一元二次不等式模型的过程.③理解一元二次不等式的概念;通过图象,理解并掌握一元二次不等式、二次函数及一元二次方程之间的关系.④理解并掌握解一元二次不等式的过程;会求一元二次不等式解集;掌握求解一元二次不等式的程序框图及隐含的算法思想,会设计求解的过程.⑤了解从实际情境中抽象出二元一次不等式(组)模型的过程;理解二元一次不等式(组)、二元一次不等式(组)的解集的概念;了解二元一次不等式的几何意义,理解(区域)边界的概念及实线、虚线边界的含义;会用二元一次不等式(组)表示平面区域,能画出给定的不等式(组)表示的平面区域.1教师备课系统──多媒体教案2 ⑥了解线性约束条件、目标函数、线性目标函数、线性规划、可行解、可行域、最优解的概念;掌握简单的二元线性规划问题的解法.⑦了解基本不等式的代数背景、几何背景以及它的证明过程;理解算术平均数,几何平均数的概念;会用基本不等式解决简单的最大(小)值的问题;通过基本不等式的实际应用,感受数学的应用价值.(2)发展要求①体会不等式的基本性质在不等式证明中所起的作用.②会从实际情景中抽象出一些简单的二元线性规划问题并加以解决.(3)说明①不等式的有关内容将在选修4-5中作进一步讨论.②淡化解不等式的技巧性要求,突出不等式的实际背景及其应用.③突出用基本不等式解决问题的基本方法,不必推广到三个变量以上的情形.3. 教学内容及课时安排建议3.1不等式与不等关系(约2课时)3.2一元二次不等式及其解法(约2课时)3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域(约2课时)3.3.2简单的线性规划问题(约2课时)3.4基本不等式:2ba ab +≤(约2课时)人教版新课标普通高中◎数学⑤ 必修33.1 不等关系与不等式教案 A第1课时教学目标一、知识与技能通过具体情景,感受在现实世界和日常生活中存在着大量的不等关系,理解不等式(组)的实际背景,掌握不等式的基本性质.二、过程与方法通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法.三、情感、态度与价值观通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯. 教学重点和难点教学重点:用不等式(组)表示实际问题的不等关系;并用不等式(组)研究含有不等关系的问题;理解不等式(组)对于刻画不等关系的意义和价值.教学难点:用不等式(组)正确表示出不等关系.教学关键:将实际问题的不等关系转化为数学中不等式问题.教学突破方法:通过分析实践、自主探究、合作交流等一系列的寻求问题解决方法的活动,讨论解决方法.教法与学法导航教学方法:观察法、探究法、尝试指导法、讨论法.学习方法:从具体上升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.教学准备教师准备:多媒体、黑板、教材.学生准备:直尺、教材.教学过程一、创设情境,导入新课在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.如两点之间线段最短、三角形两边之和大于第三边,等等.人们还经常用长与短、高与矮、轻与重、胖与瘦、大与小、不超过或不少于等来描述某种客观事物在数量上存在的不等关系.在数学中,我们用不等式来表示不等关系.下面我们首先来看如何利用不等式来表示不等关系.二、主题探究,合作交流1. 用不等式表示不等关系引例1:限速40km /h 的路标,指示司机在前方路段行驶时,应使汽车的速度v 不超过40km/h ,写成不等式就是40v .教师备课系统──多媒体教案4引例2:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f 应不少于2.5%,蛋白质的含量p 应不少于2.3%,写成不等式组就是——用不等式组来表示.3.2,5.20000≥≥p f问题1:设点A 与平面α的距离为d ,B 为平面α上的任意一点,则||d AB ≤. 问题2:某种杂志原以每本2.5元的价格销售,可以售出8万本. 据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解:设杂志社的定价为x 元,则销售的总收入为 2.5(80.2)0.1x x --⨯ 万元,那么不等关系“销售的总收入不低于20万元”可以表示为不等式2.5(80.2)200.1x x --⨯≥. 问题3:某钢铁厂要把长度为4 000mm 的钢管截成500mm 和600mm 两种.按照生产的要求,600mm 的数量不能超过500mm 钢管的3倍. 怎样写出满足所有上述所有不等关系的不等式呢?解:假设截得500 mm 的钢管 x 根,截得600mm 的钢管y 根.根据题意,应有如下的不等关系:(1)截得两种钢管的总长度不超过4 000mm ;(2)截得600mm 钢管的数量不能超过500mm 钢管数量的3倍;(3)截得两种钢管的数量都不能为负.要同时满足上述的三个不等关系,可以用下面的不等式组来表示:5006004000300.x y x y x y +≤⎧⎪≥⎪⎨≥⎪⎪≥⎩,,, 三、拓展创新,应用提高1. 试举几个现实生活中与不等式有关的例子.2. 教材第74页的练习 第1、2题.四、小结用不等式(组)表示实际问题的不等关系,并用不等式(组)研究含有不等关系的问题.五、课堂作业教材第75页习题 3.1A 组 第4、5题.人教版新课标普通高中◎数学⑤ 必修5第2课时教学目标一、知识与技能掌握不等式的基本性质,会用不等式的性质证明简单的不等式.二、过程与方法通过解决具体问题,学会依据具体问题的实际背景分析问题、解决问题的方法.三、情感、态度与价值观通过讲练结合,培养学生转化的数学思想和逻辑推理能力.教学重点和难点教学重点:掌握不等式的性质和利用不等式的性质证明简单的不等式.教学难点:利用不等式的性质证明简单的不等式.教学关键:学生会用不等式的性质证明简单的不等式和比较两个数的大小.教学突破方法:通过问题解决情景的设置、投影错例展示的方式,解决学生对不等式的理解.教法与学法导航教学方法:采用探究法,遵循从具体到抽象的原则.学习方法:通过观察、分析、讨论,引导学生归纳小结出不等式的基本性质,设计较典型的问题,总结解题的规律.教学准备教师准备:多媒体、黑板、教材.学生准备:直尺、教材.教学过程一、创设情境,导入新课关于不等式的几个基本事实0;0;0.a b a b a b a b a b a b >⇔->⎧⎪=⇔-=⎨<⇔-<⎪⎩在初中,我们已经学习过不等式的一些基本性质,请同学们回忆初中不等式的的基本性质.1. 不等式的两边同时加上或减去同一个数,不等号的方向不改变,即若a b a c b c >⇒±>±;2. 不等式的两边同时乘以或除以同一个正数,不等号的方向不改变,即若,0a b c ac bc >>⇒>;3. 不等式的两边同时乘以或除以同一个负数,不等号的方向改变,即若,0a b c ac bc ><⇒<.二、主题探究,合作交流1. 不等式的基本性质教师备课系统──多媒体教案6 师:同学们能证明以上不等式的基本性质吗?证明:(1)()()0a cbc a b+-+=->,∴a c b c+>+;(2)()()0>-=---bacbca,∴cbca->-.实际上,我们还有,a b b c a c>>⇒>.(证明:∵a>b,b>c,∴a-b>0,b-c>0.)根据两个正数的和仍是正数,得(a-b)+(b-c)>0,即a-c>0,∴a>c.于是,我们就得到了不等式的基本性质:(1)abba<⇔>;(2),a b b c a c>>⇒>;(3)a b a c b c>⇒+>+;(4),0a b c ac bc>>⇒>;,0a b c ac bc><⇒<.例1已知0,0,a b c>><求证c ca b>.证明:因为0a b>>,所以ab>0,1ab>.于是11a bab ab⨯>⨯,即11b a>.由c<0 ,得c ca b>.例2比较(a+3)(a-5)与(a+2)(a-4)的大小.分析:此题属于两代数式比较大小,实际上是比较它们的值的大小,可以作差,然后展开,合并同类项之后,判断差值正负(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要).根据实数运算的符号法则来得出两个代数式的大小.比较两个实数大小的问题转化为实数运算符号问题.解:由题意可知:(a+3)(a-5)-(a+2)(a-4)=(a2-2a-15)-(a2-2a-8)=-7<0∴(a+3)(a-5)<(a+2)(a-4)2. 探索研究思考:利用上述不等式的性质,证明不等式的下列性质:(5)dbcadcba+>+⇒>>,;(6)bdacdcba>⇒>>>>0,0;人教版新课标普通高中◎数学⑤ 必修7(7))2,(0≥∈>⇒>>n N n b a b a n n ;(8))2,(0≥∈>⇒>>n N n b a b a n n .证明:(5)∵ a >b , ∴ a +c >b +c . ①∵ c >d , ∴ b +c >b +d . ②由①②得 a +c >b +d .(6)bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0,.(7)同学们自己证明.(8)反证法)假设n n b a ≤,则:a b a b <⇒<=⇒=这都与b a >矛盾, ∴n n b a >.三、知识巩固,练习提高例3 已知x ≠0, 比较22)1(+x 与124++x x 的大小.解:(取差)22)1(+x -)1(24++x x22424112x x x x x =---++=.∵0≠x , ∴02>x . 从而22)1(+x >124++x x .例4 已知a >b >0,c <d <0,则ba -c 与ab -d 的大小关系为________.解析:b a -c -ab -d =b 2-bd -a 2+ac (a -c )(b -d )=(b +a )(b -a )-(bd -ac)(a -c )(b -d ).因为a >b >0,c <d <0,所以a -c >0,b -d >0,b -a <0,又-c >-d >0,则有-ac >-bd ,即ac <bd ,则bd -ac >0,所以(b +a )(b -a )-(bd -ac )<0,所以b a -c -a b -d =(b +a )(b -a )-(bd -ac )(a -c )(b -d )<0,即b a -c <ab -d ..教师备课系统──多媒体教案8 答案:ba-c<ab-d.课堂练习:教材第74页的练习第3题.四、小结本节课学习了不等式的性质,并用不等式的性质证明了一些简单的不等式,还研究了如何比较两个实数(代数式)的大小——作差法,其具体解题步骤可归纳为:第一步:作差并化简,其目标应是n个因式之积或完全平方式或常数的形式;第二步:判断差值与零的大小关系,必要时须进行讨论;第三步:得出结论.五、课堂作业教材第75页习题3.1 A组第2、3题;B组第1题.教案 B第1课时教学目标1.在学生了解了一些不等式(组)产生的实际背景的前提下,学习不等式的有关内容;利用数轴回忆实数的基本理论并能用实数的基本理论来比较两个代数式的大小,及用实数的基本理论来证明不等式的一些性质.2.通过回忆与复习学生所熟悉的等式性质类比得出不等式的一些基本性质.并在了解不等式一些基本性质的基础之上,掌握作差比较法判断两实数或代数式大小,利用它们来证明一些简单的不等式.3.通过富有实际意义问题的解决,激发学生的探究精神和严肃认真和科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的结构美,激发学生的学习兴趣.教学重点用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题;理解不等式(组)对于刻画不等关系的意义和价值及不等式的三条基本性质.教学难点用不等式或不等式组准确地表示出不等关系,作差比较法判断两实数或代数式大小.教学过程一、导入新课章头图是一幅山峦重叠起伏的壮观画面,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.二、提出问题1.回忆初中学过的不等式,让学生说出“不等关系”与不等式的异同,怎样利用人教版新课标普通高中◎数学⑤ 必修 9不等式研究及表示不等关系?2. 在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系,你能举出一些实际例子吗?三、应用示例例1 某汽车公司由于发展的需要需购进一批汽车,计划使用不超过1 000万元的资金购买单价分别为40万元、90万元的A 型汽车和B 型汽车.根据需要,A 型汽车至少买5辆,B 型汽车至少买6辆,写出满足上述所有不等关系的不等式.解:设购买A 型汽车和B 型汽车分别为x 辆、y 辆,则40901000,5,6,N ,x y x y x y *+≤⎧⎪≥⎨≥⎪∈⎩,,即. 49100,5,6,N .x y x y x y *+≤⎧⎪≥⎨≥⎪∈⎩, 例2.某钢铁厂要把长度为4000mm 的钢管截成500mm 和600mm 两种,按照生产的要求,600mm 钢管的数量不能超过500mm 钢管的3倍.怎样写出满足上述所有不等关系的不等式呢?解:假设截得的500mm 钢管x 根,截得的600mm 钢管y 根.根据题意,应有如下的不等关系:5006004000,3,,.x y x y x N y N +≤⎧⎪≥⎪⎨∈⎪⎪∈⎩说明:关键是找出题目中的限制条件,利用限制条件列出不等关系.四、小结上面的例子表明,我们可以用不等式(组)来刻画不等关系.表示不等关系的式子叫做不等式,常用(<>≤≥≠、、、、)表示不等关系. 老师进一步画龙点睛,指出不等式是研究不等关系的重要数学工具.五、练习教材第74页 练习第 1、2题.六、提出新问题怎样比较两个实数的大小?七、作业教材第75页习题3.1 A 组第4、5题; B 组第1、2题.第2课时教学目标1.在学生了解了一些不等式(组)产生的实际背景的前提下,学习不等式的有关内容;利用数轴回忆实数的基本理论并能用实数的基本理论来比较两个代数式的大小,教师备课系统──多媒体教案10及用实数的基本理论来证明不等式的一些性质.2.通过回忆与复习学生所熟悉的等式性质类比得出不等式的一些基本性质.并在了解不等式一些基本性质的基础之上,掌握作差比较法判断两实数或代数式大小,利用它们来证明一些简单的不等式.3.通过富有实际意义问题的解决,激发学生的探究精神和严肃认真和科学态度,同时去感受数学的应用性,体会数学的奥秘与数学的结构美,激发学生的学习兴趣. 教学重点用不等式(组)表示实际问题中的不等关系,并用不等式(组)研究含有不等关系的问题,理解不等式(组)对于刻画不等关系的意义和价值及不等式的三条基本性质. 教学难点用不等式或不等式组准确地表示出不等关系,作差比较法判断两实数或代数式大小. 教学过程一、提出问题不等式是研究不等关系的重要数学工具,我们都了解哪些不等式的性质呢?1.请学生回答等式有哪些性质?2.不等式有哪些基本性质?这些性质都有何作用?二、探究不等式的性质性质1:如果b a >,那么a b <;如果a b <,那么b a >(对称性).证:∵b a >,∴0>-b a ,由正数的相反数是负数.0)(<--b a ,0<-a b ,a b <.性质2:如果b a >,c b >,那么c a >(传递性).证:∵b a >,c b >,∴0>-b a ,0>-c b .∵两个正数的和仍是正数,∴+-)(b a 0)(>-c b .∵0>-c a ,∴c a >.由对称性,性质2可以表示为如果b c <且a b <那么a c <.性质3:如果b a >,那么c b c a +>+(加法单调性)反之亦然.证:∵0)()(>-=+-+b a c b c a ,∴c b c a +>+.从而可得移项法则:b c a b c b b a c b a ->⇒-+>-++⇒>+)()(.性质4:如果b a >且d c >,那么d b c a +>+(相加法则).证:d b c a d b c b d c c b c a b a +>+⇒⎭⎬⎫+>+⇒>+>+⇒>. 推论:如果b a >且d c <,那么d b c a ->-(相减法则).人教版新课标普通高中◎数学⑤ 必修 11证:∵d c < ∴d c ->-;d b c a d c ba ->-⇒⎩⎨⎧->->.或证:)()()()(d c b a d b c a ---=---.d c ba <> ⇒⎭⎬⎫<-∴>-∴00d c b a 上式>0.性质5:如果b a >且0>c ,那么bc ac >.如果b a >且0<c ,那么bc ac <(乘法单调性).证:c b a bc ac )(-=-.∵b a >,∴0>-b a .根据同号相乘得正,异号相乘得负,得:0>c 时0)(>-c b a ,即:bc ac >;0<c 时0)(<-c b a ,即:bc ac <.性质6:如果0>>b a 且0>>d c ,那么bd ac >(相乘法则).证:bd ac bd bc b d c bc ac c b a >⇒⎭⎬⎫>⇒>>>⇒>>0,0,.推论:如果0>>b a 且d c <<0,那么d bc a>(相除法则).证:∵0>>c d ∴⇒⎪⎭⎪⎬⎫>>>>0011b a dcd bc a >.性质7:如果0>>b a , 那么n n b a > (N 1)n n ∈>且.性质8:如果0>>b a ,那么n n b a > (N 1)n n ∈>且.证:(反证法)假设n n b a ≤,则:a b a b <=这都与b a >矛盾, ∴nn b a >.三、应用实例例1 比较大小教师备课系统──多媒体教案12 ①已知0>>ba,0<c求证:bcac>;解:∵0a b>>,∴ab>0,1ab>.∴11a bab ab⨯>⨯,即11b a>.∵c<0 ,∴c ca b>.②231-和10.解:∵23231+=-,∵02524562)10()23(22<-=-=-+.∴231-<10.例2 比较)5)(3(-+aa与)4)(2(-+aa的大小.解:(取差))5)(3(-+aa-)4)(2(-+aa7)82()152(22<-=-----=aaaa.∴)5)(3(-+aa<)4)(2(-+aa.例3 已知x≠0, 比较22)1(+x与124++xx的大小.解:(取差)22)1(+x-)1(24++xx22424112xxxxx=---++=.∵0≠x,∴02>x.从而22)1(+x>124++xx.小结:比较大小的步骤:“作差-变形-定号-结论”.例4 已知2,x>比较311x x+与266x+的大小.人教版新课标普通高中◎数学⑤ 必修 13解:3232211(66)33116x x x x x x x +-+=--+- 2(3)(32)(3)x x x x =-+-+-=(3)(2)(1)x x x --------------------(*)(1)当3x >时,(*)式0>,所以 311x x +>266x +;(2)当3x =时,(*)式0=,所以 311x x +=266x +;(3)当23x <<时,(*)式0<,所以 311x x +<266x +. 说明:实数比较大小的问题一般可用作差比较法,其中变形常用因式分解、配方、通分等方法才能定号.四、课堂练习1.已知0>>b a ,0<<d c ,0<e ,求证:db ec a e ->-. 证明:⇒⎪⎭⎪⎬⎫<-<-⇒>-<-⇒⎭⎬⎫<<>>011000e d b c a d b c a d c b a d b e c a e ->-. 2.||||,0b a ab >>, 比较a 1与b 1的大小. 解:a 1-b 1aba b -=, 当0,0>>b a 时,∵||||b a >即b a >,0<-a b ,0>ab , ∴0<-ab a b ,∴a 1<b1. 当0,0<<b a 时∵||||b a >即b a <,0>-a b ,0>ab , ∴0>-ab a b ,∴a 1>b1. 3.若0,>b a , 求证:a b ab >⇔>1. 解:01>-=-aa b a b . ∵0>a , ∴0>-a b ,∴b a <.0>-⇒>a b a b .∵0>a ,∴01>-=-a b a a b , ∴1>a b .教师备课系统──多媒体教案14 五、课堂小结1.不等式的性质,并用不等式的性质证明了一些简单的不等式;2.如何比较两个实数(代数式)的大小——作差法.六、布置作业教材第75页习题3.1 A组第2、3题;B组第2、3题.。
2014-2015学年 高中数学 人教A版必修五 第三章 3.3.1二元一次不等式(组)与平面区域
解 先画直线 x-y+6=0(画成实线), 不等式 x-y+6≥0 表 示直线 x-y+6=0 上及右下方的点的集合.画直线 x+y= 0(画成实线),不等式 x+y≥0 表示直线 x+y=0 上及右上方 的点的集合. 画直线 x=3(画成实线), 不等式 x≤3 表示直线 x=3 上及左方的点的集合.
研一研·问题探究、课堂更高效
3.3.1
小结
本 讲 栏 目 开 关
不等式组表示的平面区域是各个不等式所表示的平面
点集的交集,因而是各个不等式所表示的平面区域的公共部 分,但要注意是否包含边界.
研一研·问题探究、课堂更高效
3.3.1
x<3, 2y≥x, 跟踪训练 1 画出不等式组 表示的平面区域. 3x+2y≥6, 3y<x+9
本 讲 栏 目 开 关
3.3.1
3.3.1
【学习目标】
二元一次不等式(组)与平面区域
1.了解二元一次不等式表示的平面区域.
本 讲 栏 目 开 关
2.会画出二元一次不等式(组)表示的平面区域. 【学法指导】 1.要善于从特例入手,探究二元一次不等式与对应平面区 域的关系.归纳总结出一般结论: “同侧同号,同号同 侧,异侧异号,异号异侧”. 2.准确、规范、熟练地画出二元一次不等式(组)所表示的平 面区域是学好本单元的关键所在.熟练掌握 “直线定边 界,特殊点定区域”的要领.
本 讲 栏 目 开 关
所有点组成的平面区域. 2.在画二元一次不等式表示的平面区域时,应用“直线定边 界、特殊点定区域”的方法来画区域.取点时,若直线不 过原点,一般用“原点定区域”;若直线过原点,则取点 (1,0)即可.总之,尽量减少运算量. 3.画平面区域时,注意边界线的虚实问题.
高中数学第三章不等式31不等关系与不等式课件新人教A版必修5
D.5
【解题探究】判断不等关系的真假,要紧扣不等的性
质,应注意条件与结论之间的联系. 【答案】C
【解析】①c 的范围未知,因而判断 ac 与 bc 的大小缺乏 依据,故该结论错误.
②由 ac2>bc2 知 c≠0,则 c2>0,
∴a>b,∴②是正确的.
③a<b, ⇒a2>ab,a<b, ⇒ab>b2,
【答案】M>N
【解析】M-N=a1a2-(a1+a2-1)=a1a2-a1-a2+1= a1(a2 - 1) - (a2 - 1) = (a1 - 1)(a2 - 1) , 又 ∵ a1∈(0,1) , a2∈(0,1) , ∴ a1 - 1<0 , a2 - 1<0.∴(a1 - 1)(a2 - 1)>0 , 即 M - N>0.∴M>N.
用不等式表示不等关系
【例1】 某钢铁厂要把长度为4 000 mm的钢管截成 500 mm 和600 mm两种规格,按照生产的要求,600 mm 钢管 的数量不能超过500 mm钢管的3倍.试写出满足上述所有不等 关系的不等式.
【解题探究】应先设出相应变量,找出其中的不等关 系,即①两种钢管的总长度不能超过4 000 mm;②截得600 mm钢管的数量不能超过500 mm钢管数量的3倍;③两种钢管 的数量都不能为负.于是可列不等式组表示上述不等关系.
比较大小要注重分类讨论
【示例】设 x∈R 且 x≠-1,比较1+1 x与 1-x 的大小. 【错解】∵1+1 x-(1-x)=1-1+1-x x2=1+x2 x,而 x2≥0,∴ 当 x>-1 时,x+1>0,1+x2 x≥0,即1+1 x≥1-x; 当 x<-1 时,x+1<0,1+x2 x≤0,即1+1 x≤1-x.
人教A版高中数学必修5课件 3.1比较大小课件
比较大小
比较大小
【求差法】
求差法——设a,b为任意两个实数,先求出a与b 的差,再根据“当a-b<0时,a<b;当a-b=0时, a=b;当a-b>0时,a>b.”来比较a与b的大小.
例1.比较大小:(1)
3 1与 1 ;(2)1-
5
5
2 与1-
3
解:(1)∵ 3 1 1 3 2 0, ∴ 3 1 1 .
【近似值法】
解:(1)∵π≈3.142,∵ 10 ≈3.162,∴π< 10 .
(2)∵π≈3.1416,∵ 22 ≈3.1629,∴π< 22 .
7
7
(3)∵ 2 ≈-0.4714, 11 -4≈-0.6834,
3
∵-0.4714>-0.6834,
∴ 2 > 11 -4.
3
两个实数的大小比较,形式有多种多样,只要我们
55 5
55
(2) ∵ (1 2) (1 3) 3 2 0,
∴ 1 2 1 3.
比较大小
【求商法】
求商法——设a,b为任意正两个实数,先求出a与b
的当商a,>再1时根,据a“>b当.”来ab比<1较时a,与ab<的b;大当小.ab =1时,a=b; b
例2.比较大小:(1) 3 1与 1 ;
解:∵(3 5)2 45,(5 3)2 75,
又∵45<75,
∴ 3 5< 5 3.
比较大小
【移动因式法】 移动因式法——当a>0, b>0时,若要比较形如 a b 与 c d 的两数的大小,可先把根号外的正因数a与 c平方后移入根号内,再根据被开方数的大小进行 比较. 例6.比较 3 5 与5 3 的大小. 解:∵3 5 32 5 45,5 3 52 3 75, 又∵45<75, ∴3 5 < 5 3 .
最新人教A版高中数学教材目录(全)
人教A版高中数学目录必修1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2.1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3.1 函数与方程3.2 函数模型及其应用必修2第一章空间几何体1.1 空间几何体的结构1.2 空间几何体的三视图和直观图 1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式必修3第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2.1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体阅读与思考生产过程中的质量控制图2.3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率阅读与思考天气变化的认识过程3.2 古典概型3.3 几何概型必修4第一章三角函数1.1 任意角和弧度制1.2 任意角的三角函数1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.2 平面向量的线性运算2.3 平面向量的基本定理及坐标表示2.4 平面向量的数量积2.5 平面向量应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应用3.4生活中的优化问题举例选修1-2第一章统计案例1.1回归分析的基本思想及其初步应用1.2独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2立体几何中的向量方法选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7第一讲优选法第二讲试验设计初步选修4-8选修4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1.2 集合之间的关系与运算第二章函数2.1 函数2.2 一次函数和二次函数2.3 函数的应用(Ⅰ)2.4 函数与方程第三章基本初等函数(Ⅰ)3.1 指数与指数函数3.2 对数与对数函数3.3 幂函数3.4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1.2 点、线、面之间的位置关系第二章平面解析几何初步2.1 平面真角坐标系中的基本公式 2.2 直线方程2.3 圆的方程2.4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1.2 基本算法语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.2 用样本估计总体2.3 变量的相关性第三章概率3.1 随机现象3.2 古典概型3.3 随机数的含义与应用3.4 概率的应用必修四第一章基本初等函(Ⅱ)1.1 任意角的概念与弧度制1.2 任意角的三角函数 1.3 三角函数的图象与性质第二章平面向量2.1 向量的线性运算2.2 向量的分解与向量的坐标运算2.3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3.1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
人教A版高中数学教材目录(全)
人教A版高中数学目录必修1第一章集合与函数概念1 .1 集合2 .3 变量间的相关关系阅读与思考相关关系的强与弱2.5等比数列的前n项和1 .2 函数及其表示1 .3 函数的基本性质第三章概率3 .1 随机事件的概率第三章不等式第二章基本初等函数(Ⅰ)2.1 指数函数2 .2 对数函数2 .3 幂函数阅读与思考天气变化的认识过程3 .2 古典概型3 .3 几何概型3.1不等关系与不等式3.2一元二次不等式及其解法第三章函数的应用3.1 函数与方程3 .2 函数模型及其应用必修 4第一章三角函数1 .1 任意角和弧度制1 2 .任意角的三角函数3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域1 .3 三角函数的诱导公式必修21 .4 三角函数的图象与性质1 .5 函数 y=Asin (ωx+ψ) 3.3.2 简单的线性规划问题第一章空间几何体1 .6 三角函数模型的简单应1 .1 空间几何体的结构用1 .2 空间几何体的三视图和 3.4 基本不等式直观图1 .3 空间几何体的表面积与第二章平面向量体积 2 .1 平面向量的实际背景及第二章点、直线、平面之间的位置关系2 .1 空间点、直线、平面之间的位置关系2 .2 直线、平面平行的判定基本概念2 .2 平面向量的线性运算2 .3 平面向量的基本定理及坐标表示2 4 .平面向量的数量积2 5 .平面向量应用举例选修1-1第一章常用逻辑用语1.1命题及其关系及其性质2 .3 直线、平面垂直的判定及其性质第三章三角恒等变换3 .1 两角和与差的正弦、余弦和正切公式1.2充分条件与必要条件3 .2 简单的三角恒等变换第三章直线与方程1.3简单的逻辑联结词3.1 直线的倾斜角与斜率3 .2 直线的方程必修 51.4全称量词与存在量词 3 .3 直线的交点坐标与距离公式第一章解三角形必修31.1正弦定理和余弦定理第二章圆锥曲线与第一章算法初步1 .1 算法与程序框图 1.2应用举例方程1 .2 基本算法语句1 .3 算法案例阅读与思考割圆术1.3实习作业2.1椭圆2.2双曲线第二章统计2 .1 随机抽样阅读与思考一个著名的案第二章数列2.3抛物线例阅读与思考广告中数据的可靠性2.1数列的概念与简单表示法用第三章导数及其应阅读与思考如何得到敏感性问题的诚实反应2.2等差数列2 .2 用样本估计总体阅读与思考生产过程中的2.3等差数列的前n 项和质量控制图2.4等比数列3.1变化率与导数3.2导数的计算1人教A版高中数学目录选修 2-12.6导数在研究函数中 1.3 导数在研究函数的应用中的应用第一章常用逻辑用2.7生活中的优化问题 1.4 生活中的优化问语举例题举例3.4命题及其关系3.3.2定积分的概念1.5充分条件与必要选修1-21.4微积分基本定理条件第一章统计案例 1.7 定积分的简单应1.3 简单的逻辑联结用词1.1 回归分析的基本思想及其初步应用2.4全称量词与存在量词第二章推理与证明 1.2 独立性检验的基本思想及其初步应用2.5合情推理与演绎推理第二章圆锥曲线与方程第二章推理与证明 2.2 直接证明与间接证明 2.1 曲线与方程2.1 合情推理与演绎证明 2.3 数学归纳法2.2 椭圆2.2 直接证明与间接2.3 双曲线证明3.3抛物线第三章数系的扩充与复数的引入第三章数系的扩充 3.1 数系的扩充和复与复数的引入数的概念第三章空间向量与立体几何3.1 数系的扩充和复数 3.2 复数代数形式的的概念四则运算3.1空间向量及其运算3.2 复数代数形式的四则运算3.2立体几何中的向选修2-3 量方法第一章计数原理第四章框图选修 2-21.1分类加法计数原4.1 流程图理与分步乘法计数原理第一章导数及其应4.2 结构图1.2 排列与组合用1.3二项式定理 1.1 变化率与导数1.2导数的计算2人教A版高中数学目录第二章随机变量及第二讲直线与圆的其分布位置关系选修 3-22.8离散型随机变量第三讲圆锥曲线性及其分布列质的探讨选修 3-3 2.2 二项分布及其应用选修4-2 第一讲从欧氏几何3.5离散型随机变量看球面的均值与方差第一讲线性变换与二阶矩阵第二讲球面上的距3.6正态分布离和角第二讲变换的复合第三章统计案例与二阶矩阵的乘法第三讲球面上的基本图形3.3.3回归分析的基本第三讲逆变换与逆思想及其初步应用矩阵第四讲球面三角形3.3.4独立性检验的基第五讲球面三角形第四讲变换的不变本思想及其初步应用量与矩阵的特征向量的全等第六讲球面多边形与欧拉公式选修3-1 选修4-3第七讲球面三角形的第一讲早期的算术边角关系选修4-4 与几何第八讲欧氏几何与第一讲坐标系第二讲古希腊数学非欧几何第二讲参数方程第三讲中国古代数学瑰宝选修 3-4第四讲平面解析几选修4-5 何的产生第一讲平面图形的对称群第一讲不等式和绝第五讲微积分的诞对值不等式生第二讲代数学中的对称与抽象群的概念第二讲证明不等式第六讲近代数学两的基本方法巨星第三讲对称与群的故事第三讲柯西不等式第七讲千古谜题与排序不等式第八讲对无穷的深第四讲数学归纳法入思考选修 4-1证明不等式第九讲中国现代数第一讲相似三角形学的开拓与发展的判定及有关性质3人教 A 版高中数学目录2 .4 向量的应用 选修 4-6第二章 函数 2 .1 函数第一讲 整数的整除2 .2 一次函数和二次函数 2 .3 函数的应用(Ⅰ) 第三章 三角恒等变换3.1 和角公式2 .4 函数与方程3 .2 倍角公式和半角公式 第二讲 同余与同余 3 .3 三角函数的积化和差与方程和差化积 第三章 基本初等函数 (Ⅰ) 3 .1 指数与指数函数 程第三讲 一次不定方3 .2 对数与对数函数 3 .3 幂函数 3 .4 函数的应用(Ⅱ) 必修五 第一章 解直角三角形 1.1 正弦定理和余弦定理第四讲 数伦在密码中的应用必修二第一章 立体几何初步1 .2 应用举例 第二章 数列1.1 空间几何体 2 .1 数列 1 .2 点、线、面之间的位置 2 .2 等差数列 关系 2 .3 等比数列 选修 4-7第三章 不等式 第二章 平面解析几何初步第一讲 优选法 2 .1 平面真角坐标系中的基 本公式3 .1 不等关系与不等式 3 .2 均值不等式第二讲试验设计初2 .2 直线方程 2 .3 圆的方程3 .3 一元二次不等式及其解 法 步3 .4 不等式的实际应用 2 .4 空间直角坐标系3 .5 二元一次不等式(组) 与简单线性规划问题必修三选修 4-8选修 4-9第一章 算法初步1.1 算法与程序框图1 .2 基本算法语句1 .3 中国古代数学中的算法 案例选修 1-1 第一章 常用逻辑用语 1.1 命题与量词 1 .2 基本逻辑联结词1 .3 充分条件、必要条件与命题的四种形式第一讲 风险与决策的基本概念第二章 统计 2.1 随机抽样2 .2 用样本估计总体2 .3 变量的相关性第二章 圆锥曲线与方程2.1 椭圆2 .2 双曲线2 .3 抛物线第二讲 决策树方法第三章 概率 3 1 . 随机现象第三讲 风险型决策3 2第三章 导数及其应用3 .1 导数3 .2 导数的运算 3 .3 导数的应用WORD格式.古典概型的敏感性分析33.随机数的含义与应用34.概率的应用第四讲马尔可夫型决策简介必修四选修 1-2第一章统计案例第二章推理与证明第一章基本初等函( Ⅱ)高中人教版(B)教材目录介绍必修一第一章集合1.1 集合与集合的表示方法1 .2 集合之间的关系与运算1 .1 任意角的概念与弧度制1 .2 任意角的三角函数1 .3 三角函数的图象与性质第二章平面向量2 .1 向量的线性运算2 .2 向量的分解与向量的坐标运算2 .3 平面向量的数量积第三章数系的扩充与复数的引入第四章框图选修 4-5第一章不等式的基本性质和证明的基本方法1 .1 不等式的基本性质和一元二次不等式的解法1 2 .基本不等式4WORD格式人教A版高中数学目录1 .3 绝对值不等式的解法1 .4 绝对值的三角不等式1 .5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2 .2 排序不等式2 .3 平均值不等式( 选学)2 .4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3 .2 用数学归纳法证明不等式,贝努利不等式5。
人教A版高二数学必修五第三章3.1 第1课时 不等关系与比较大小
【教学重点】 用不等式(组)表示实际问题的不等关系, 并用不等式(组)研究含有不等关系的问题。 理解不等式(组)对于刻画不等关系的意义 和价值。 【教学难点】 用不等式(组)正确表示出不等关系。
例1:限速40km/h的路标,指示司 机在前方路段行驶时,应使汽车的 速度v不超过40km/h, 写成不等式就是: v 40
bm b bm b 0, 所以 . 所以 am a am a
【提升总结】
作差比较法的步骤是: 1. 作差; 2. 变形:配方、因式分解、通分、分母(分 子)有理化等; 3. 判断符号; 4. 作出结论.
随堂练习2 1、比较大小:
(1)(x+5)(x+7)与(x+6)2 (2) x 2 5 x 6 与 2 x 2 5x 9
课时小结
本节课学习了不等式的性质,并用不等式的 性质证明了一些简单的不等式,还研究了如 何比较两个实数(代数式)的大小——作差 法,其具体解题步骤可归纳为: 第一步:作差并化简,其目标应是n个因式之 积或完全平方式或常数的形式; 第二步:判断差值与零的大小关系,必要时 须进行讨论; 第三步:得出结论
b m b (b m)a (a m)b 证明: 因为 am a (a m)a
ab ma ab bm m(a b) . (a m)a ( a m) a
因为 a ,b ,m 都是正数,且 a b , 所以 m 0, a m 0, a 0, a b 0 .
第三章 不等式 3.1 不等关系与不等式 第1课时 不等关系与比较大小
【教学目标】
1.知识与技能:通过具体情景,感受在现实 世界和日常生活中存在着大量的不等关系, 理解不等式(组)的实际背景,掌握不等式 的基本性质; 2.过程与方法:通过解决具体问题,学会依 据具体问题的实际背景分析问题、解决问题 的方法; 3.情态与价值:通过解决具体问题,体会数 学在生活中的重要作用,培养严谨的思维习 惯。
人教A版(2019)高中数学教材目录
人教A版(2019)高中数学教材目录第一册:第一章集合与常用逻辑用语1.1集合的概念1.2集合间的基本关系1.3集合的基本运算1.4充分条件与必要条件1.5全称量词与存在量词第二章一元二次函数、方程和不等式2.1等式性质与不等式性质2.2基本不等式2.3二次函数与一元二次方程第三章函数的概念及其表示3.1函数的概念及其表示3.2函数的基本性质3.3幂函数3.4函数的应用(一)第四章指数函数与对数函数4.1指数4.2指数函数4.3对数4.4对数函数4.5函数的应用(二)第五章三角函数5.1任意角和弧度制5.2三角函数的概念5.3诱导公式5.4三角函数的图像与性质5.5三角恒等变换5.6函数y=Asin(wx+a)5.7三角函数的应用第二册:第六章平面向量及其应用6.1平面向量的概念6.2平面向量的运算6.3平面向量的基本定理及坐标运算6.4平面向量的应用第七章复数7.1复数的概念7.2复数的四则运算第八章立体几何初步8.1基本立体图形8.2立体图形的直观图8.3简单几何体的表面积与体积8.4空间点、直线、平面的位置关系8.5空间直线、平面的平行8.6空间直线、平面的垂直第九章统计9.1随机抽样9.2用样本估计总体第十章概率10.1随机事件与概率10.2事件的相互独立型10.3频率与概率选择性必修第一册第一章空间向量与立体几何1.1空间向量及其运算1.2空间向量基本定理1.3空间向量及其运算的坐标表示1.4空间向量的应用第二章直线与圆的方程2.1直线的倾斜角与斜率2.2直线方程2.3直线的交点坐标与距离公式2.4圆的方程2.5直线与圆、圆与圆的位置关系第三章圆锥曲线的方程3.1椭圆3.2双曲线3.3抛物线选择性必修第二册第四章数列4.1数列的概念4.2等差数列4.3等比数列第五章一元函数的导数及其应用5.1导数的概念及其意义5.2导数的运算5.3导数在研究函数中的应用选择性必修第三册第六章计数原理6.1分类加法计数原理与分步乘法计算原理6.2排列与组合6.3二项式定理第七章随机变量及其分布7.1条件概率与全概率公式7.2离散型随机变量及其分布7.3离散型随机变量的数字特征7.4二项分布与超几何分布7.5正态分布第八章成对数据的统计分析8.1成对数据的统计相关性8.2一元线性回归模型及其应用8.3列联表与独立检验。
2016-2017学年高中数学人教A版必修五 第三章 不等式 第1节
身高超过 1.5 m h>1.5 全价票
上一页
返回首页
下一页
第十四页,编辑于星期五:十六点 十五分。
1.此类问题的难点是如何正确地找出题中的显性不等关系和隐性不等关 系.
2.当问题中同时满足几个不等关系,则应用不等式组来表示它们之间的不 等关系,另外若问题有几个变量,选用几个字母分别表示这些变量即可.
【提示】 利用几个不等式的范围来确定某不等式的范围要注意:同向不 等式两边可以相加(相乘),这种转化不是等价变形.本题中将 2<a-b<4 与-2<a +b<2 两边相加得 0<a<3,又将-4<b-a<-2 与-2<a+b<4 两边相加得出- 3<b<2,又将该式与 0<a<3 两边相加得出-3<a+b<3,多次使用了这种转化,导 致了 a+b 范围的扩大.
(2)×.因为“非负数”即为“不是负数”,所以 a-b≥0,故此说法错误. (3)√.因为不等式 x≥2 表示 x>2 或 x=2,即 x 不小于 2,故此说法是正确的. (4)√.因为不等式 a≤b 表示 a<b 或 a=b.故若 a<b 或 a=b 中有一个正确, 则 a≤b 一定正确.
【答案】 (1)√ (2)× (3)√ (4)√
阶
阶
段
段
一
三
3.1 不等关系与不等式
学
阶 段 二
业 分 层 测
评
上一页
返回首页
下一页
第一页,编辑于星期五:十六点 十五分。
1.了解不等式的性质.(重点) 2.能用不等式(组)表示实际问题中的不等关系.(难点)
上一页
返回首页
人教A版高中数学教材目录(全)
必修 1第一章集合与函数概念1.1 集合1.2 函数及其表示1.3 函数的基本性质第二章基本初等函数(Ⅰ)2. 1 指数函数2.2 对数函数2.3 幂函数第三章函数的应用3. 1 函数与方程3.2 函数模型及其应用必修 2第一章空间几何体1 .1 空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2 .1 空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.3 直线、平面垂直的判定及其性质第三章直线与方程3. 1 直线的倾斜角与斜率3.2 直线的方程3 . 3 直线的交点坐标与距离公式必修 3第一章算法初步1 .1 算法与程序框图1.2 基本算法语句1.3 算法案例阅读与思考割圆术第二章统计2 .1 随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2 .2 用样本估计总体阅读与思考生产过程中的质量控制图人教 A 版高中数学目录2. 3 变量间的相关关系阅读与思考相关关系的强与弱第三章概率3 .1 随机事件的概率阅读与思考天气变化的认识过程3. 2 古典概型3. 3 几何概型必修 4第一章三角函数1 .1 任意角和弧度制1. 2 任意角的三角函数1. 3 三角函数的诱导公式1. 4 三角函数的图象与性质1. 5 函数 y=Asin (ωx+ψ)1. 6 三角函数模型的简单应用第二章平面向量2 .1 平面向量的实际背景及基本概念2. 2 平面向量的线性运算2. 3 平面向量的基本定理及坐标表示2. 4 平面向量的数量积2. 5 平面向量应用举例第三章三角恒等变换3 .1 两角和与差的正弦、余弦和正切公式3. 2 简单的三角恒等变换必修 5第一章解三角形1.1 正弦定理和余弦定理1.2 应用举例1.3 实习作业第二章数列2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n 项和2.4 等比数列2.5 等比数列的前n 项和第三章不等式3.1 不等关系与不等式3.2 一元二次不等式及其解法3.3 二元一次不等式(组)与简单的线性规划问题3.3.1 二元一次不等式(组)与平面区域3.3.2 简单的线性规划问题3.4 基本不等式选修 1-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 变化率与导数3.2 导数的计算3.3 导数在研究函数中的应用3.4 生活中的优化问题举例选修 1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1合情推理与演绎证明2.2直接证明与间接证明第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第四章框图4. 1 流程图4. 2 结构图人教 A 版高中数学目录选修 2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线第三章空间向量与立体几何3.1空间向量及其运算3.2 立体几何中的向量方法选修 2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3 导数在研究函数中的应用1.4 生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算选修 2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2二项分布及其应用2.3 离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修 3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝人教 A 版高中数学目录选修 3-2选修 3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形的边角关系第八讲欧氏几何与非欧几何第二讲直线与圆的位置关系第三讲圆锥曲线性质的探讨选修 4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修 4-3选修 4-4第一讲坐标系第二讲参数方程第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修 3-4第一讲平面图形的选修 4-5对称群第一讲不等式和绝对值不等式第二讲代数学中的对称与抽象群的概念第二讲证明不等式的基本方法第三讲对称与群的故事第三讲柯西不等式与排序不等式选修 4-1第四讲数学归纳法证明不等式第一讲相似三角形的判定及有关性质选修 4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修 4-7第一讲优选法第二讲试验设计初步选修 4-8选修 4-9第一讲风险与决策的基本概念第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介高中人教版( B)教材目录介绍必修一第一章集合1. 1 集合与集合的表示方法1.2 集合之间的关系与运算人教 A 版高中数学目录第二章函数2.1 函数2. 2 一次函数和二次函数2. 3 函数的应用(Ⅰ)2. 4 函数与方程第三章基本初等函数(Ⅰ)3 .1 指数与指数函数3. 2 对数与对数函数3.3 幂函数3. 4 函数的应用(Ⅱ)必修二第一章立体几何初步1.1 空间几何体1. 2 点、线、面之间的位置关系第二章平面解析几何初步2 .1 平面真角坐标系中的基本公式2. 2 直线方程2. 3 圆的方程2. 4 空间直角坐标系必修三第一章算法初步1.1 算法与程序框图1. 2 基本算法语句1. 3 中国古代数学中的算法案例第二章统计2.1 随机抽样2. 2 用样本估计总体2. 3 变量的相关性第三章概率3.1 随机现象3. 2 古典概型3. 3 随机数的含义与应用3. 4 概率的应用必修四第一章基本初等函(Ⅱ )1 .1 任意角的概念与弧度制1. 2 任意角的三角函数1. 3 三角函数的图象与性质第二章平面向量2 .1 向量的线性运算2 .2 向量的分解与向量的坐标运算2. 3 平面向量的数量积2.4 向量的应用第三章三角恒等变换3.1 和角公式3.2 倍角公式和半角公式3.3 三角函数的积化和差与和差化积必修五第一章解直角三角形1.1 正弦定理和余弦定理1.2 应用举例第二章数列2.1 数列2.2 等差数列2.3 等比数列第三章不等式3 .1 不等关系与不等式3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单线性规划问题选修 1-1第一章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3 充分条件、必要条件与命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.2 双曲线2.3 抛物线第三章导数及其应用3.1 导数3.2 导数的运算3.3 导数的应用选修 1-2第一章统计案例第二章推理与证明第三章数系的扩充与复数的引入第四章框图选修 4-5第一章不等式的基本性质和证明的基本方法1 .1 不等式的基本性质和一元二次不等式的解法1.2 基本不等式人教 A 版高中数学目录1.3 绝对值不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法第二章柯西不等式与排序不等式及其应用2. 1 柯西不等式2.2 排序不等式2.3 平均值不等式 ( 选学 )2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3. 1 数学归纳法原理3.2 用数学归纳法证明不等式,贝努利不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.1不等关系与不等式学习目标1.能用不等式(组)表示实际问题的不等关系.2.初步学会作差法、作商法比较两实数的大小.3.掌握不等式的基本性质,并能运用这些性质解决有关问题.知识点一不等关系现实世界中存在大量的不等关系.试用不等式表示下列关系:(1)a大于b a>b(2)a小于b a<b(3)a不大于b a≤b(4)a不小于b a≥b知识点二作差法作差法的理论依据:a>b⇔a-b>0;a=b⇔a-b=0;a<b⇔a-b<0.思考x2+1与2x两式都随x的变化而变化,其大小关系并不显而易见.你能想个办法,比较x2+1与2x的大小,而且具有说服力吗?答案 作差:x 2+1-2x =(x -1)2≥0,所以x 2+1≥2x . 知识点三 不等式的基本性质 不等式性质: (1)a >b ⇔b <a (对称性); (2)a >b ,b >c ⇒a >c (传递性); (3)a >b ⇒a +c >b +c (可加性);(4)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ; (5)a >b ,c >d ⇒a +c >b +d ; (6)a >b >0,c >d >0⇒ac >bd ; (7)a >b >0,n ∈N ,n ≥1⇒a n >b n ;(8)a >b >0,n ∈N ,n ≥21.2≥1.( √ ) 2.ab >1⇒a >b .( × ) 3.a >b ⇔a +c >b +c .( √ )4.⎩⎨⎧a >b ,c >d⇔a +c >b +d .( × )题型一 用不等式(组)表示不等关系例1 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝ ⎛⎭⎪⎫8-x -2.50.1×0.2x ≥20(x ≥2.5).反思感悟 数学中考查的能力之一就是抽象概括能力,即能用数学语言表示出实际问题中的数量关系.用不等式(组)表示实际问题中的不等关系时 (1)要先读懂题,设出未知量; (2)抓关键词,找到不等关系;(3)用不等式表示不等关系.思维要严密、规范.跟踪训练1 某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系: .(不用化简) 答案 5x -2(19-x )≥80,x ∈N *解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2(19-x )≥80,x ∈N *.题型二 比较大小命题角度1 作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小. 解 ∵a 3+b 3-(a 2b +ab 2)=(a 3-a 2b )+(b 3-ab 2) =a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )2(a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,(a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2. 引申探究1.若a >0,b >0,a 5+b 5与a 3b 2+a 2b 3的大小关系又如何? 解 (a 5+b 5)-(a 3b 2+a 2b 3)=a 5-a 3b 2+b 5-a 2b 3 =a 3(a 2-b 2)+b 3(b 2-a 2) =(a 2-b 2)(a 3-b 3)=(a -b )2(a +b )(a 2+ab +b 2). ∵a >0,b >0,∴(a -b )2≥0,a +b >0,a 2+ab +b 2>0. ∴a 5+b 5≥a 3b 2+a 2b 3.2.对于a n +b n ,你能有一个更具一般性的猜想吗?解 若a >0,b >0,n >r ,n ,r ∈N *,则a n +b n ≥a r b n -r +a n -r b r .反思感悟 比较两个实数的大小,可以求出它们的差的符号.作差法比较实数的大小的一般步骤是:差→恒等变形→判断差的符号→下结论.作差后变形是比较大小的关键一步,变形的方向是化成几个完全平方数和的形式或一些易判断符号的因式积的形式. 跟踪训练2 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵(x 3-1)-(2x 2-2x )=x 3-2x 2+2x -1 =(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34,又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x . 命题角度2 作商法比较大小例3 若0<x <1,a >0且a ≠1,试比较|log a (1-x )|与|log a (1+x )|的大小关系. 解 |log a (1-x )||log a (1+x )|=⎪⎪⎪⎪⎪⎪log a (1-x )log a (1+x )=||log (1+x )(1-x ),∵0<x <1,∴||log (1+x )(1-x )=-log (1+x )(1-x )=log (1+x )11-x, ∵1-x 2=(1+x )(1-x )<1,且1-x >0,∴1+x <11-x, ∴log (1+x )11-x>1, 即|log a (1-x )||log a (1+x )|>1, ∴|log a (1+x )|<|log a (1-x )|.反思感悟 作商法的依据:若b >0,则ab >1⇔a >b .跟踪训练3 若a >b >0,比较a a b b 与a b b a 的大小. 解 a a b ba b b a =a a -b b b -a =⎝⎛⎭⎫a b a -b , ∵a >b >0, ∴ab >1,a -b >0, ∴⎝⎛⎭⎫a b a -b >1,即a a b ba b b a >1, 又∵a >b >0,∴a a b b >a b b a . 题型三 不等式的基本性质 例4 已知a >b >0,c <0,求证:c a >c b .证明 因为a >b >0,所以ab >0,1ab>0.于是a ×1ab >b ×1ab ,即1b >1a .由c <0,得c a >cb.反思感悟 有关不等式的证明,最基本的依据是不等式的8条基本性质,在解不等式时,对不等式进行有关变形的依据也是8条基本性质. 跟踪训练4 如果a >b >0,c >d >0,证明:ac >bd . 证明⎭⎪⎬⎪⎫ ⎭⎬⎫a >b >0c >0⇒ac >bc >0⎭⎬⎫c >d >0b >0⇒bc >bd >0⇒ac >bd .用好不等式性质,确保推理严谨性典例 已知12<a <60,15<b <36,求ab 的取值范围.[错解] ∵12<a <60,15<b <36,∴1215<a b <6036,∴45<a b <53. [点拨] 在确保条件的前提下,同向不等式可以相乘,但同向不等式没有相除的性质,不能臆造.确需相除,可转化为相乘.[正解] ∵15<b <36,∴136<1b <115,又12<a <60,∴1236<a b <6015,∴13<ab <4, 即ab的取值范围是⎝⎛⎭⎫13,4. [素养评析] 逻辑推理讲究言必有据.在不等式这一章,我们要对不等式进行大量的运算、变形,而运算、变形的依据就是不等式的性质.通过考问每一步是否有依据,整个推理过程是否有条理,可以使我们的理性精神和交流能力得到提升.1.某校对高一美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式表示就是( ) A.⎩⎪⎨⎪⎧ x ≥95,y ≥380,z >45 B.⎩⎪⎨⎪⎧ x ≥95,y >380,z ≥45C.⎩⎪⎨⎪⎧x >95,y >380,z >45 D.⎩⎪⎨⎪⎧x ≥95,y >380,z >45答案 D解析 “不低于”即“≥”,“高于”即“>”,“超过”即“>”,∴x ≥95,y >380,z >45. 2.已知a +b >0,b <0,那么a ,b ,-a ,-b 的大小关系是( ) A .a >b >-b >-a B .a >-b >-a >b C .a >-b >b >-a D .a >b >-a >-b答案 C解析 由a +b >0,知a >-b ,∴-a <b <0. 又b <0,∴-b >0,∴a >-b >b >-a .3.已知a ,b ,c ∈R ,则下列命题正确的是( ) A .a >b ⇒ac 2>bc 2 B.a c >bc ⇒a >b C.⎭⎬⎫a >b ab <0⇒1a >1bD.⎭⎬⎫ab >0a >b ⇒1a >1b答案 C解析 当c =0时,A 不成立;当c <0时,B 不成立;当ab <0时,a >b ⇒a ab <b ab ,即1a >1b ,C 成立.同理可证D 不成立.4.若a >b >0,c <d <0,则一定有( ) A.a d >bc B.ad <b c C.a c >b d D.a c <b d答案 B解析 因为c <d <0,所以-c >-d >0, 即1-d >1-c>0. 又a >b >0,所以a -d >b-c ,从而有a d <b c.5.比较(a +3)(a -5)与(a +2)(a -4)的大小. 解 ∵(a +3)(a -5)-(a +2)(a -4) =(a 2-2a -15)-(a 2-2a -8)=-7<0, ∴(a +3)(a -5)<(a +2)(a -4).1.比较两个实数的大小,只要求出它们的差就可以了. a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b .2.作差法比较大小的一般步骤第一步:作差;第二步:变形,常采用配方、因式分解等恒等变形手段,将“差”化成“和”或“积”; 第三步:定号,就是确定是大于0,等于0,还是小于0(不确定的要分情况讨论); 最后得结论.概括为“三步一结论”,这里的“定号”是目的,“变形”是关键.3.不等式的性质是不等式变形的依据,每一步变形都要严格依照性质进行,并注意不等式推导所需条件是否具备.一、选择题1.设x <a <0,则下列不等式一定成立的是( )A .x 2<ax <a 2B .x 2>ax >a 2C .x 2<a 2<axD .x 2>a 2>ax答案 B解析 ∵x 2-ax =x (x -a )>0,∴x 2>ax .又ax -a 2=a (x -a )>0,∴ax >a 2,∴x 2>ax >a 2.2.已知a <0,b <-1,则下列不等式成立的是( )A .a >a b >a b 2 B.a b 2>a b >a C.a b >a >a b 2 D.a b >a b 2>a 答案 D解析 取a =-2,b =-2,则a b =1,a b 2=-12∴a b >a b 2>a . 3.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB .a 2>b 2 C.a c 2+1>b c 2+1D .a |c |>b |c |答案 C解析 对于A ,若a >0>b ,则1a >0,1b<0, 此时1a >1b,∴A 不成立; 对于B ,若a =1,b =-2,则a 2<b 2,∴B 不成立;对于C ,∵c 2+1≥1,且a >b ,∴a c 2+1>b c 2+1恒成立,∴C 成立; 对于D ,当c =0时,a |c |=b |c |,∴D 不成立.4.若a >b >c 且a +b +c =0,则下列不等式中正确的是( )A .ab >acB .ac >bcC .a |b |>c |b |D .a 2>b 2>c 2答案 A解析 由a >b >c 及a +b +c =0, 知a >0,c <0,⎩⎪⎨⎪⎧a >0,b >c ,则ab >ac . 5.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( )A .a 2<b 2B .a 2b <ab 2 C.1ab 2<1a 2bD.b a <a b 答案 C解析 对于A ,在a <b 中,当a <0,b <0时,a 2<b 2不成立;对于B ,当a <0,b >0时,a 2b >0,ab 2<0,a 2b <ab 2不成立;对于C ,∵a <b ,1a 2b 2>0,∴1ab 2<1a 2b; 对于D ,当a =-1,b =1时,b a =a b =-1.6.若a >0且a ≠1,M =log a (a 3+1),N =log a (a 2+1),则M ,N 的大小关系为( )A .M <NB .M ≤NC .M >ND .M ≥N答案 C解析 当a >1时,a 3+1>a 2+1,y =log a x 为(0,+∞)上的增函数,∴log a (a 3+1)>log a (a 2+1);当0<a <1时,a 3+1<a 2+1,y =log a x 为(0,+∞)上的减函数,∴log a (a 3+1)>log a (a 2+1),∴当a >0且a ≠1时,总有M >N .二、填空题7.b 克糖水中有a 克糖(b >a >0),若再添上m 克糖(m >0),则糖水就变甜了,试根据此事实提炼一个不等式:当b >a >0且m >0时, .答案 a +m b +m >a b 解析 变甜了,意味着含糖量大了,即浓度高了.8.已知函数f (x )=ax +b,0<f (1)<2,-1<f (-1)<1,则2a -b 的取值范围是 .答案 ⎝⎛⎭⎫-32,52 解析 由函数的解析式可知0<a +b <2,-1<-a +b <1,且2a -b =12(a +b )-32(-a +b ), 结合不等式的性质可得,2a -b ∈⎝⎛⎭⎫-32,52. 9.若x ∈R ,则x 1+x 2与12的大小关系为 . 答案 x 1+x 2≤12解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12. 10.(x +5)(x +7)与(x +6)2的大小关系为 .答案 (x +5)(x +7)<(x +6)2解析 因为(x +5)(x +7)-(x +6)2=x 2+12x +35-(x 2+12x +36)=-1<0.所以(x +5)(x +7)<(x +6)2.三、解答题11.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,试用不等式(组)将题中的不等关系表示出来.解 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N ). 12.设x ,y ,z ∈R ,比较5x 2+y 2+z 2与2xy +4x +2z -2的大小.解 ∵5x 2+y 2+z 2-(2xy +4x +2z -2)=4x 2-4x +1+x 2-2xy +y 2+z 2-2z +1=(2x -1)2+(x -y )2+(z -1)2≥0,∴5x 2+y 2+z 2≥2xy +4x +2z -2,当且仅当x =y =12且z =1时取等号. 13.已知a >b >0,c <d <0,e <0,求证:e a -c >e b -d. 证明 ∵c <d <0,∴-c >-d >0,又∵a >b >0,∴a +(-c )>b +(-d )>0,即a -c >b -d >0,∴0<1a -c <1b -d, 又∵e <0,∴e a -c >e b -d .14.若x >0,y >0,M =x +y 1+x +y ,N =x 1+x +y 1+y,则M ,N 的大小关系是( ) A .M =NB .M <NC .M ≤ND .M >N 答案 B解析 ∵x >0,y >0,∴x +y +1>1+x >0,1+x +y >1+y >0,∴x 1+x +y <x 1+x ,y 1+x +y <y 1+y, 故M =x +y 1+x +y =x 1+x +y +y 1+x +y <x 1+x +y 1+y=N ,即M <N . 15.已知实数x ,y 满足-4≤x -y ≤-1,-1≤4x -y ≤5,则9x -3y 的取值范围是 . 答案 [-6,9]解析 设9x -3y =a (x -y )+b (4x -y )=(a +4b )x -(a +b )y ,∴⎩⎪⎨⎪⎧ a +4b =9,a +b =3⇒⎩⎪⎨⎪⎧ a =1,b =2,∴9x -3y =(x -y )+2(4x -y ),∵-1≤4x -y ≤5,∴-2≤2(4x -y )≤10,又-4≤x -y ≤-1,∴-6≤9x -3y ≤9.。