【高考数学】2018最新高考数学第一轮复习精品试题:数列(含全部习题答案)(专题拔高特训)
【高考复习】2018年高考数学 数列 综合题专项练习(含答案)
2018年高考数学 数列 综合题专项练习一、选择题:1.在等差数列{a n }中,S n 为其前n 项和,若34825a a a ++=,则9S =( ) A.60 B.75 C.90 D.1052.已知数列{a n }为等差数列,其前n 项和为S n ,7825a a -=,则11S 为( ) A.110 B.55 C.50 D.不能确定3.若数列{a n },{b n }的通项公式分别为a a n n ∙-=+2016)1(,nb n n 2017)1(2+-+=,且n n b a <,对任意*∈N n 恒成立,则实数a 的取值范围是( )A.)21,1[- B.[-1,1) C.[-2,1) D.)23,2[- 二、填空题:4.已知等差数列{a n }的公差d ≠0,若a 21+a 2=1,a 22+a 3=1,则a 1=________.5.已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是 . 三、解答题:6.已知等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+32. (1)求数列{a n }的通项公式及其前n 项和; (2)设b n =nS n,求证:数列{b n }中任意不同的三项都不可能成等比数列.7.已知数列{a n }的前n 项和1n n S a λ=+,其中λ错误!未找到引用源。
0. (1)证明{a n }是等比数列,并求其通项公式. (2)若53132S =,求λ.8.已知数列{a n }的前n 项和为S n ,a 1=1,且3S n =a n+1﹣1. (1)求数列{a n }的通项公式;(2)设等差数列{b n }的前n 项和为T n ,a 2=b 2,T 4=1+S 3,求的值.9.已知各项都为正数的数列{a n }满足a 1=1,211(21)20n n n n a a a a ++---=.(1)求23,a a ;(2)求{}n a 的通项公式.10.已知数列{a n }中,a 1=4,a n =a n ﹣1+2n ﹣1+3(n ≥2,n ∈N *).(1)证明数列{a n ﹣2n}是等差数列,并求{a n }的通项公式;(2)设b n =,求b n 的前n 和S n .11.已知{a n }是各项均为正数的等比数列,且a 1+ a 2 =6, a 1a 2= a 3 (1)求数列{a n }通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n 。
2018届高考数学一轮复习精选试题数列(解答题) Word版含答案
数列
解答题(本大题共个小题,共分,解答应写出文字说明,证明过程或演算步骤)
.函数()定义在[]上,满足且(),在每个区间,…)上, () 的图象都是平行于轴的直线的一部分.
(Ⅰ)求()及的值,并归纳出)的表达式;
(Ⅱ)设直线轴及()的图象围成的矩形的面积为, 求及
的值.
【答案】 (Ⅰ) 由()(), 得().
由及(), 得.
同理,
归纳得
(Ⅱ) 当时,
所以是首项为,公比为的等比数列.
所以
.已知等差数列满足;又数列满足…
,其中是首项为,公比为的等比数列的前项和。
()求的表达式;
(Ⅱ)若,试问数列中是否存在整数,使得对任意的正整数都有成立?并证明你的结论。
【答案】()设的首项为,公差为,于是由
解得
(Ⅱ)
由①
得②
①—②得即
当时,,当时,。
(浙江版)2018年高考数学一轮复习专题6.5数列的综合应用(讲)-含答案
.
【答案】
.
二.数列求和
1. 等差数列的前 n 和的求和公式: Sn
n(a1 an )
na1
n(n 1) d.
2
2
2.等比数列前 n 项和公式
一般地, 设等比数列 a1, a2 ,a3, , an , 的前 n 项和是 Sn a1 a2 a3
an ,当 q 1时,
Sn
a1 (1
qn ) 或 Sn
a1 an q ;当 q 1 时, Sn
【重点难点突破】
考点 1 等差数列和等比数列的综合问题
【 1-1 】【2017·杭州调研】已知数列
{a n} , {b n} 中, a1= 1,bn=
a
2 n
1- 2
an+ 1
·
a
1 ,
n+1
n
∈
N*,数列
{b n} 的前 n 项和为 Sn. (1) 若 an =2n-1,求 Sn; (2) 是否存在等比数列 {a n} ,使 bn+2= Sn 对任意 n∈N* 恒成立?若存在,求出所有满足条件的数
m n p q ,则 am an a p aq m n p q ,则 am an a p aq
(2) an am (n m) d
(2) an am q n m
(3) Sn , S2n Sn , S3n S2n ,…仍成 (3) 等比数列依次每 n 项和 ( Sn 0 ) ,即
等差数列
Sn , S2 n Sn , S3n S2n ,…仍成等比数列
一、等差数列和等比数列比较 等差数列
【知识清单】 等比数列
定义 通项公式
an 1 an =常数
an a1 (n 1)d
(1) 定义法; (2) 中项公式法:
2018届高考数学(理)热点题型:数列(含答案解析)
数列热点一 等差数列、等比数列的综合问题解决等差、等比数列的综合问题时,重点在于读懂题意,灵活利用等差、等比数列的定义、通项公式及前n 项和公式解决问题,求解这类问题要重视方程思想的应用.【例1】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式;(2)设T n =S n -1S n (n∈N *),求数列{T n }的最大项的值与最小项的值.解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3, 于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)由(1)得S n=1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数,当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大, 所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n∈N *,总有-712≤S n -1S n ≤56. 所以数列{T n }最大项的值为56,最小项的值为-712.【类题通法】解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口.【对点训练】已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式; (2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和,是否存在k∈N *,使得等式1-2T k =1b k成立?若存在,求出k 的值;若不存在,请说明理由. 解 (1)设等差数列{a n }的公差为d(d≠0), ∴⎩⎨⎧⎝ ⎛⎭⎪⎫5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ),解得a 1=3,d =2,∴a n =2n +1. ∵b 1=a 1=3,b 2=a 4=9,∴等比数列{b n }的公比q =3,∴b n =3n . (2)不存在.理由如下:∵1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∴1-2T k =23+12k +3(k∈N *),易知数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12k +3为单调递减数列,∴23<1-2T k ≤1315,又1b k =13k ∈⎝ ⎛⎦⎥⎤0,13,∴不存在k∈N *,使得等式1-2T k =1b k 成立.热点二 数列的通项与求和数列的通项与求和是高考必考的热点题型,求通项属于基本问题,常涉及与等差、等比的定义、性质、基本量运算.求和问题关键在于分析通项的结构特征,选择合适的求和方法.常考求和方法有:错位相减法、裂项相消法、分组求和法等.【例2】设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d>1时,记c n =a nb n ,求数列{c n }的前n 项和T n .(1)解 由题意有⎩⎨⎧10a 1+45d =100,a 1d =2,即⎩⎨⎧2a 1+9d =20,a 1d =2, 解得⎩⎨⎧a 1=1,d =2或⎩⎨⎧a 1=9,d =29.故⎩⎨⎧a n =2n -1,b n=2n -1或⎩⎪⎨⎪⎧a n=19(2n +79),b n=9·⎝ ⎛⎭⎪⎫29n -1.(2)解 由d>1,知a n =2n -1,b n =2n -1, 故c n =2n -12n -1, 于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n, 故T n =6-2n +32n -1.【类题通法】用错位相减法解决数列求和的模板 第一步:(判断结构)若数列{a n ·b n }是由等差数列{a n }与等比数列{b n }(公比q)的对应项之积构成的,则可用此法求和.第二步:(乘公比)设{a n ·b n }的前n 项和为T n ,然后两边同乘以q. 第三步:(错位相减)乘以公比q 后,向后错开一位,使含有q k (k∈N *)的项对应,然后两边同时作差. 第四步:(求和)将作差后的结果求和,从而表示出T n .【对点训练】设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.(1)证明:a n +2=3a n ; (2)求S 2n .(1)证明 由条件,对任意n∈N *,有a n +2=3S n -S n +1+3, 因而对任意n∈N *,n ≥2,有a n +1=3S n -1-S n +3. 两式相减,得a n +2-a n +1=3a n -a n +1, 即a n +2=3a n ,n ≥2.又a 1=1,a 2=2, 所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1, 故对一切n∈N *,a n +2=3a n . (2)解 由(1)知,a n ≠0,所以a n +2a n=3.于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列. 因此a 2n -1=3n -1,a 2n =2×3n -1. 于是S 2n =a 1+a 2+…+a 2n=(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =(1+3+…+3n -1)+2(1+3+…+3n -1) =3(1+3+…+3n -1)=32(3n -1).热点三 数列的综合应用 热点3.1 数列与函数的综合问题数列是特殊的函数,以函数为背景的数列的综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,因而一直是高考命题者的首选.【例3-1】 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f(x)=2x的图象上(n∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和T n .解 (1)由已知,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2. 所以,S n =na 1+n (n -1)2d =-2n +n(n -1)=n 2-3n. (2)函数f(x)=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.所以,d =a 2-a 1=1.从而a n =n ,b n =2n , 所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1因此,2T n -T n =1+12+122+…+12n -1-n 2n=2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n.热点3.2 数列与不等式的综合问题数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法等.如果是解不等式问题,要使用不等式的各种不同解法,如数轴法、因式分解法. 【例3-2】 在等差数列{a n }中,a 2=6,a 3+a 6=27. (1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1,若对于一切正整数n ,总有T n ≤m 成立,求实数m 的取值范围.解 (1)设公差为d ,由题意得: ⎩⎨⎧a 1+d =6,2a 1+7d =27,解得⎩⎨⎧a 1=3,d =3,∴a n =3n. (2)∵S n =3(1+2+3+…+n)=32n(n +1),∴T n =n (n +1)2n ,T n +1=(n +1)(n +2)2n +1,∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n=(n +1)(2-n )2n +1,∴当n≥3时,T n >T n +1,且T 1=1<T 2=T 3=32,∴T n 的最大值是32,故实数m 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.。
高考数学一轮复习《数列的综合运用》练习题(含答案)
高考数学一轮复习《数列的综合运用》练习题(含答案)一、单选题1.某银行设立了教育助学低息贷款,其中规定一年期以上贷款月均等额还本付息(利息按月以复利计算).如果小新同学贷款10000元,一年还清,假设月利率为0.25%,那么小新同学每月应还的钱约为( )(1.002512≈1.03) A .833B .858C .883D .9022.某企业在今年年初贷款a 万元,年利率为γ,从今年年末开始每年偿还一定金额,预计五年内还清,则每年应偿还( ) A .()()5111a γγ++-万元 B .()()55111a γγγ++-万元C .()()54111a γγγ++-万元 D .()51a γγ+万元3.一种预防新冠病毒的疫苗计划投产两月后,使成本降64%,那么平均每月应降低成本( ) A .20%B .32%C .40%D .50%4.今年元旦,市民小王向朋友小李借款100万元用于购房,双方约定年利率为5%,按复利计算(即本年利息计入次年本金生息),借款分三次等额归还,从明年的元旦开始,连续三年都是在元旦还款,则每次的还款额约是( )万元.(四舍五入,精确到整数) (参考数据:()21.05 1.1025=,()31.05 1.1576=,()41.05 1.2155=) A .36B .37C .38D .395.随着新一轮科技革命和产业变革持续推进,以数字化、网络化、智能化以及融合化为主要特征的新型基础设施建设越来越受到关注.5G 基站建设就是“新基建”的众多工程之一,截至2020年底,我国已累计开通5G 基站超70万个,未来将进一步完善基础网络体系,稳步推进5G 网络建设,实现主要城区及部分重点乡镇5G 网络覆盖.2021年1月计划新建设5万个5G 基站,以后每个月比上一个月多建设1万个,预计我国累计开通500万个5G 基站时要到( ) A .2022年12月B .2023年2月C .2023年4月D .2023年6月6.我们知道,偿还银行贷款时,“等额本金还款法”是一种很常见的还款方式,其本质是将本金平均分配到每一期进行偿还,每一期的还款金额由两部分组成,一部分为每期本金,即贷款本金除以还款期数,另一部分是利息,即贷款本金与已还本金总额的差乘以利率.自主创业的大学生张华向银行贷款的本金为48万元,张华跟银行约定,按照等额本金还款法,每个月还一次款,20年还清,贷款月利率为0.4%,设张华第n 个月的还款金额为n a 元,则n a =( )A .2192B .39128n -C .39208n -D .39288n -7.高阶等差数列是数列逐项差数之差或高次差相等的数列,中国古代许多著名的数学家对推导高阶等差数列的求和公式很感兴趣,创造并发展了名为“垛积术”的算法,展现了聪明才智.如南宋数学家杨辉在《详解九章算法.商功》一书中记载的三角垛、方垛、刍甍垛等的求和都与高阶等差数列有关.如图是一个三角垛,最顶层有1个小球,第二层有3个,第三层有6个,第四层有10个,则第30层小球的个数为( )A .464B .465C .466D .4958.某单位用分期付款方式为职工购买40套住房,总房价1150万元.约定:2021年7月1日先付款150万元,以后每月1日都交付50万元,并加付此前欠款利息,月利率1%,当付清全部房款时,各次付款的总和为( ) A .1205万元B .1255万元C .1305万元D .1360万元9.小李在2022年1月1日采用分期付款的方式贷款购买一台价值a 元的家电,在购买1个月后的2月1日第一次还款,且以后每月的1日等额还款一次,一年内还清全部贷款(2022年12月1日最后一次还款),月利率为r .按复利计算,则小李每个月应还( ) A .()()1111111ar r r ++-元 B .()()1212111ar r r ++-元C .()11111a r +元D .()12111a r +元10.在流行病学中,基本传染数0R 是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.0R 一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.对于0R 1>,而且死亡率较高的传染病,一般要隔离感染者,以控制传染源,切断传播途径.假设某种传染病的基本传染数0R 3=,平均感染周期为7天(初始感染者传染0R 个人为第一轮传染,经过一个周期后这0R 个人每人再传染0R 个人为第二轮传染……)那么感染人数由1个初始感染者增加到1000人大约需要的天数为(参考数据:63729=,541024=)( ) A .35B .42C .49D .5611.为了更好地解决就业问题,国家在2020年提出了“地摊经济”为响应国家号召,有不少地区出台了相关政策去鼓励“地摊经济”.老王2020年6月1日向银行借了免息贷款10000元,用于进货.因质优价廉,供不应求,据测算:每月获得的利润是该月初投入资金的20%,每月底扣除生活费1000元,余款作为资金全部用于下月再进货,如此继续,预计到2021年5月底该摊主的年所得收入为( )(取()111.27.5=,()121.29=) A .32500元B .40000元C .42500元D .50000元12.某病毒研究所为了更好地研究“新冠”病毒,计划改建十个实验室,每个实验室的改建费用分为装修费和设备费,每个实验室的装修费都一样,设备费从第一到第十实验室依次构成等比数列,已知第五实验室比第二实验室的改建费用高28万元,第七实验室比第四实验室的改建费用高112万元,并要求每个实验室改建费用不能超过1100万元.则该研究所改建这十个实验室投入的总费用最多需要( ) A .2806万元B .2906万元C .3106万元D .3206万元二、填空题13.小李向银行贷款14760元,并与银行约定:每年还一次款,分4次还清所有的欠款,且每年还款的钱数都相等,贷款的年利率为0.25,则小李每年所要还款的钱数是___________元.14.从2017年到2020年期间,某人每年6月1日都到银行存入1万元的一年定期储蓄.若年利率为20%保持不变,且每年到期的存款本息均自动转为新的一年定期储蓄,到2020年6月1日,该人去银行不再存款,而是将所有存款的本息全部取回,则取回的金额为_______万元.15.银行一年定期储蓄存款年息为r ,三年定期储蓄存款年息为q ,银行为吸收长期资金,鼓励储户存三年定期的存款,那么q 的值应略大于______.16.今年“五一”期间,北京十家重点公园举行免费游园活动,北海公园免费开放一天,早晨6时30分有2人进入公园,接下来的第一个30分钟内有4人进去1人出来,第二个30分钟内有8人进去2人出来,第三个30分钟内有16人进去3人出来,第四个30分钟内有32人进去4人出来…,按照这种规律进行下去,到上午11时30分公园内的人数是____.三、解答题17.一杯100℃的开水放在室温25℃的房间里,1分钟后水温降到85℃,假设每分钟水温变化量和水温与室温之差成正比. (1)求()*n n N ∈分钟后的水温n t ;(2)当水温在40℃到55℃之间时(包括40℃和55℃),为最适合饮用的温度,则在水烧开后哪个时间段饮用最佳.(参考数据:lg 20.3≈)18.某优秀大学生毕业团队响应国家号召,毕业后自主创业,通过银行贷款等方式筹措资金,投资72万元生产并经营共享单车,第一年维护费用为12万元,以后每年都增加4万元,每年收入租金50万元.(1)若扣除投资和维护费用,则从第几年开始获取纯利润?(2)若年平均获利最大时,该团队计划投资其它项目,问应在第几年转投其它项目?19.去年某地产生的生活垃圾为20万吨,其中14万吨垃圾以填埋方式处理,6万吨垃圾以环保方式处理.预计每年生活垃圾的总量递增5%,同时,通过环保方式处理的垃圾量每年增加1.5万吨.记从今年起每年生活垃圾的总量(单位:万吨)构成数列{}n a ,每年以环保方式处理的垃圾量(单位:万吨)构成数列{}n b . (1)求数列{}n a 和数列{}n b 的通项公式;(2)为了确定处理生活垃圾的预算,请求出从今年起n 年内通过填埋方式处理的垃圾总量的计算公式,并计算从今年起5年内通过填埋方式处理的垃圾总量(精确到0.1万吨).(参考数据41.05 1.215≈,51.05 1.276≈,61.05 1.340≈)20.2020年是充满挑战的一年,但同时也是充满机遇、蓄势待发的一年.突如其来的疫情给世界带来了巨大的冲击与改变,也在客观上使得人们更加重视科技的力量和潜能.某公司一下属企业从事某种高科技产品的生产.假设该企业第一年年初有资金5000万元,并将其全部投入生产,到当年年底资金增长了50%,预计以后每年资金年增长率与第一年相同.公司要求企业从第一年开始,每年年底上缴资金(2500)t t ≤万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为n a 万元. (1)写出1n a +与n a 的关系式,并判断{}2n a t -是否为等比数列;(2)若企业每年年底上缴资金1500t =,第*()m m N ∈年年底企业的剩余资金超过21000万元,求m 的最小值.21.流行性感冒是由流感病毒引起的急性呼吸道传染病.某市去年11月份曾发生流感,据统计,11月1日该市的新感染者有30人,以后每天的新感染者比前一天的新感染者增加50人.由于该市医疗部门采取措施,使该种病毒的传播得到控制,从11月()*1929,k k k +≤≤∈N 日起每天的新感染者比前一天的新感染者减少20人. (1)若9k =,求11月1日至11月10日新感染者总人数;(2)若到11月30日止,该市在这30天内的新感染者总人数为11940人,问11月几日,该市新感染者人数最多?并求这一天的新感染者人数.22.教育储蓄是指个人按国家有关规定在指定银行开户、存入规定数额资金、用于教育目的的专项储蓄,是一种专门为学生支付非义务教育所需教育金的专项储蓄,储蓄存款享受免征利息税的政策.若你的父母在你12岁生日当天向你的银行教育储蓄账户存入1000元,并且每年在你生日当天存入1000元,连续存6年,在你十八岁生日当天一次性取出,假设教育储蓄存款的年利率为10%.(1)在你十八岁生日当天时,一次性取出的金额总数为多少?(参考数据:71.1 1.95≈) (2)当你取出存款后,你就有了第一笔启动资金,你可以用你的这笔资金做理财投资.如果现在有三种投资理财的方案: ①方案一:每天回报40元;②方案二:第一天回报10元,以后每天比前一天多回报10元; ③方案三:第一天回报0.4元,以后每天的回报比前一天翻一番. 你会选择哪种方案?请说明你的理由.23.已知数集{}()1212,,1,2n n A a a a a a a n =≤<<≥具有性质P ;对任意的(),1i j i j n ≤≤≤,i j a a 与j ia a 两数中至少有一个属于A .(Ⅰ)分别判断数集{}1,3,4与{}1,2,3,6是否具有性质P ,并说明理由; (Ⅱ)证明:11a =,且1211112nn na a a a a a a ---+++=+++; (Ⅲ)证明:当5n =时,成等比数列。
18高考数学第一轮复习精品试题:数列(含全部习题答案)18
(
)
A.数列 1,2,3 与数列 3,2,1 是同一个数列.
B.数列 l, 2,3 与数列 1,2,3,4 是同一个数列.
C.数列 1,2,3,4,…的一个通项公式是 an=n.
D.以上说法均不正确.
2 巳知数列{ an}的首项 a1=1,且 an+1=2 an+1,(n≥2),则 a5 为
(
)
A.7. B.15
C.7
D.8
9.{an}是实数构成的等比数列,
S n
是其前
n
项和,则数列{
S n
}
中(
)
A.任一项均不为 0
B.必有一项为 0
C.至多有一项为 0
D.或无一项为 0,或无穷多项为 0
10.某数列既成等差数列也成等比数列,那么该数列一定是( )
A.公差为 0 的等差数列
B.公比为 1 的等比数列
C.常数数列1 , 1 , 1 ,…
9.已知数列{ an}的前 n 项和公式 Sn=n2+2n+5,则 a6+a7+a8=
.
10.设 an 是首项为
1
的正项数列,且
n
1
a2 n1
nan2
an1an
0
(
n
=1,2,3,…),则它的通项公式是
an =________.
11. 下面分别是数列{ an}的前 n 项和 an 的公式,求数列{ an}的通项公式: (1)Sn=2n2-3n; (2)Sn=3n-2
()
A、 a(1 r)5
B、 a[(1 r)5 (1 r)]
a [(1 r)6 (1 r)] C、 r
a [(1 r)5 r] D、 r
11、在某报《自测健康状况》的报道中,自测血压结果与相应年龄的统计数据如下表,
【精品】2018届高考数学(理)热点题型:数列(含答案解析)
数列热点一 等差数列、等比数列的综合问题解决等差、等比数列的综合问题时,重点在于读懂题意,灵活利用等差、等比数列的定义、通项公式及前n 项和公式解决问题,求解这类问题要重视方程思想的应用.【例1】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列. (1)求数列{a n }的通项公式;(2)设T n =S n -1S n (n∈N *),求数列{T n }的最大项的值与最小项的值.解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3, 于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)由(1)得S n=1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数,当n 为奇数时,S n 随n 的增大而减小, 所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56.当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n∈N *,总有-712≤S n -1S n ≤56.所以数列{T n }最大项的值为56,最小项的值为-712.【类题通法】解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口.【对点训练】已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项. (1)求数列{a n },{b n }的通项公式; (2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和,是否存在k∈N *,使得等式1-2T k =1b k成立?若存在,求出k 的值;若不存在,请说明理由. 解 (1)设等差数列{a n }的公差为d(d≠0), ∴⎩⎨⎧⎝ ⎛⎭⎪⎫5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ),解得a 1=3,d =2,∴a n =2n +1. ∵b 1=a 1=3,b 2=a 4=9,∴等比数列{b n }的公比q =3,∴b n =3n . (2)不存在.理由如下:∵1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∴1-2T k =23+12k +3(k∈N *),易知数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12k +3为单调递减数列, ∴23<1-2T k ≤1315,又1b k =13k ∈⎝ ⎛⎦⎥⎤0,13,∴不存在k∈N *,使得等式1-2T k =1b k 成立.热点二 数列的通项与求和数列的通项与求和是高考必考的热点题型,求通项属于基本问题,常涉及与等差、等比的定义、性质、基本量运算.求和问题关键在于分析通项的结构特征,选择合适的求和方法.常考求和方法有:错位相减法、裂项相消法、分组求和法等.【例2】设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d>1时,记c n =a nb n ,求数列{c n }的前n 项和T n .(1)解 由题意有⎩⎨⎧10a 1+45d =100,a 1d =2,即⎩⎨⎧2a 1+9d =20,a 1d =2, 解得⎩⎨⎧a 1=1,d =2或⎩⎨⎧a 1=9,d =29.故⎩⎨⎧a n =2n -1,b n=2n -1或⎩⎪⎨⎪⎧a n=19(2n +79),b n=9·⎝ ⎛⎭⎪⎫29n -1.(2)解 由d>1,知a n =2n -1,b n =2n -1, 故c n =2n -12n -1, 于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .②①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n ,故T n =6-2n +32n -1.【类题通法】用错位相减法解决数列求和的模板 第一步:(判断结构)若数列{a n ·b n }是由等差数列{a n }与等比数列{b n }(公比q)的对应项之积构成的,则可用此法求和.第二步:(乘公比)设{a n ·b n }的前n 项和为T n ,然后两边同乘以q. 第三步:(错位相减)乘以公比q 后,向后错开一位,使含有q k (k∈N *)的项对应,然后两边同时作差. 第四步:(求和)将作差后的结果求和,从而表示出T n .【对点训练】设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.(1)证明:a n +2=3a n ; (2)求S 2n .(1)证明 由条件,对任意n∈N *,有a n +2=3S n -S n +1+3, 因而对任意n∈N *,n ≥2,有a n +1=3S n -1-S n +3. 两式相减,得a n +2-a n +1=3a n -a n +1, 即a n +2=3a n ,n ≥2.又a 1=1,a 2=2, 所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1, 故对一切n∈N *,a n +2=3a n .(2)解 由(1)知,a n ≠0,所以a n +2a n =3.于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列. 因此a 2n -1=3n -1,a 2n =2×3n -1.于是S 2n =a 1+a 2+…+a 2n=(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =(1+3+…+3n -1)+2(1+3+…+3n -1) =3(1+3+…+3n -1)=32(3n -1).热点三 数列的综合应用 热点3.1 数列与函数的综合问题数列是特殊的函数,以函数为背景的数列的综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,因而一直是高考命题者的首选.【例3-1】 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f(x)=2x 的图象上(n∈N *). (1)若a 1=-2,点(a 8,4b 7)在函数f(x)的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f(x)的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n b n 的前n 项和T n .解 (1)由已知,b 7=2a 7,b 8=2a 8=4b 7, 有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2.所以,S n =na 1+n (n -1)2d =-2n +n(n -1)=n 2-3n.(2)函数f(x)=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2), 它在x 轴上的截距为a 2-1ln 2. 由题意知,a 2-1ln 2=2-1ln 2, 解得a 2=2.所以,d =a 2-a 1=1.从而a n =n ,b n =2n , 所以T n =12+222+323+…+n -12n -1+n2n ,2T n =11+22+322+…+n2n -1因此,2T n -T n =1+12+122+…+12n -1-n 2n=2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n.热点3.2 数列与不等式的综合问题数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,如果是证明题要灵活选择不等式的证明方法,如比较法、综合法、分析法等.如果是解不等式问题,要使用不等式的各种不同解法,如数轴法、因式分解法. 【例3-2】 在等差数列{a n }中,a 2=6,a 3+a 6=27. (1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n3·2n -1,若对于一切正整数n ,总有T n ≤m 成立,求实数m 的取值范围.解 (1)设公差为d ,由题意得: ⎩⎨⎧a 1+d =6,2a 1+7d =27,解得⎩⎨⎧a 1=3,d =3,∴a n =3n. (2)∵S n =3(1+2+3+…+n)=32n(n +1),∴T n =n (n +1)2n ,T n +1=(n +1)(n +2)2n +1,∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n=(n +1)(2-n )2n +1,∴当n≥3时,T n >T n +1,且T 1=1<T 2=T 3=32,∴T n 的最大值是32,故实数m 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.。
2018届高考数学一轮复习专题三数列课件文
编后语
• 同学们在听课的过程中,还要善于抓住各种课程的特点,运用相应的方法去听,这样才能达到最佳的学习效果。
• 一、听理科课重在理解基本概念和规律
• 数、理、化是逻辑性很强的学科,前面的知识没学懂,后面的学习就很难继续进行。因此,掌握基本概念是学习的关键。上课时要抓好概念的理解, 同时,大家要开动脑筋,思考老师是怎样提出问题、分析问题、解决问题的,要边听边想。为讲明一个定理,推出一个公式,老师讲解顺序是怎样的, 为什么这么安排?两个例题之间又有什么相同点和不同之处?特别要从中学习理科思维的方法,如观察、比较、分析、综合、归纳、演绎等。
【阅卷点评】 ①由题意列出方程组得 2 分; ②解得 a1 与 d 得 2 分,漏解得 1 分; ③正确导出 an,bn 得 2 分,漏解得 1 分; ④写出 cn 得 1 分; ⑤把错位相减的两个式子,按照上下对应好,再相减,就能正 确地得到结果,本题就得满分,否则就容易出错,丢掉一些分数.
(2016·浙江卷)设数列{an}的前 n 项和为 Sn,已知 S2=4,an+1= 2Sn+1,n∈N*.
(2)设 bn=|3n-1-n-2|,n∈N*,b1=2,b2=1. 当 n≥3 时,由于 3n-1>n+2,故 bn=3n-1-n-2,n≥3. 设数列{bn}的前 n 项和为 Tn,则 T1=2,T2=3. 当 n≥3 时,Tn=3+911--33n-2-n+72n-2 =3n-n2-2 5n+11,
•
作为实验科学的物理、化学和生物,就要特别重视实验和观察,并在获得感性知识的基础上,进一步通过思考来掌握科学的概念和规律,等等。
• 二、听文科课要注重在理解中记忆
2018版高考数学理人教大一轮复习讲义教师版文档第六章
1.等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1+n (n -1)2d .2.等比数列的前n 项和公式 S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.3.一些常见数列的前n 项和公式 (1)1+2+3+4+…+n =n (n +1)2.(2)1+3+5+7+…+2n -1=n 2. (3)2+4+6+8+…+2n =n (n +1). (4)12+22+…+n 2=n (n +1)(2n +1)6.【知识拓展】 数列求和的常用方法 (1)公式法等差、等比数列或可化为等差、等比数列的可直接使用公式求和. (2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. 常见的裂项公式 ①1n (n +1)=1n -1n +1;②1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;③1n +n +1=n +1-n .(4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( √ )(2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ )(3)求S n =a +2a 2+3a 3+…+na n 之和时,只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × )(4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )1.(2017·潍坊调研)设{a n }是公差不为0的等差数列,a 1=2,且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n 等于( ) A.n 2+7n4B.n 2+5n 3C.2n 2+3n 4D .n 2+n答案 A解析 设等差数列的公差为d ,则a 1=2, a 3=2+2d ,a 6=2+5d .又∵a 1,a 3,a 6成等比数列,∴a 23=a 1·a 6. 即(2+2d )2=2(2+5d ),整理得2d 2-d =0. ∵d ≠0,∴d =12.∴S n =na 1+n (n -1)2d =n 24+74n .2.(教材改编)数列{a n }中,a n =1n (n +1),若{a n }的前n 项和S n =2 0172 018,则n 等于( )A .2 016B .2 017C .2 018D .2 019答案 B解析 a n =1n (n +1)=1n -1n +1,S n =a 1+a 2+…+a n=(1-12+12-13+…+1n -1n +1)=1-1n +1=n n +1.令n n +1=2 0172 018,得n =2 017. 3.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A .200 B .-200 C .400 D .-400 答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.4.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n =________. 答案 2n +1-2+n 2解析 S n =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.5.数列{a n }的通项公式为a n =n cos n π2,其前n 项和为S n ,则S 2 017=________. 答案 1 008解析 因为数列a n =n cos n π2呈周期性变化,观察此数列规律如下:a 1=0,a 2=-2,a 3=0,a 4=4.故S 4=a 1+a 2+a 3+a 4=2. a 5=0,a 6=-6,a 7=0,a 8=8, 故a 5+a 6+a 7+a 8=2,∴周期T =4.∴S 2 017=S 2 016+a 2 017 =2 0164×2+2 017·cos 2 0172π =1 008.题型一 分组转化法求和例1 已知数列{a n }的前n 项和S n =n 2+n 2,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =2n a+(-1)n a n ,求数列{b n }的前2n 项和. 解 (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .a 1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故b n =2n +(-1)n n .记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21+22+…+22n ,B =-1+2-3+4-…+2n , 则A =2(1-22n )1-2=22n +1-2,B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +1+n -2.引申探究本例(2)中,求数列{b n }的前n 项和T n . 解 由(1)知b n =2n +(-1)n ·n . 当n 为偶数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ] =2-2n +11-2+n 2=2n +1+n 2-2;当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ] =2n +1-2+n -12-n=2n +1-n 2-52.∴T n=⎩⎨⎧2n +1+n 2-2,n 为偶数,2n +1-n 2-52,n 为奇数.思维升华 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.提醒:某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln 2-ln 3)+(-1)n n ln 3,求其前n 项和S n .解 S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n ]·(ln 2-ln 3)+[-1+2-3+…+(-1)n n ]ln 3,所以当n 为偶数时,S n =2×1-3n 1-3+n 2ln 3=3n +n2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+(n -12-n )ln 3=3n -n -12ln 3-ln 2-1.综上所述,S n=⎩⎨⎧3n +n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.题型二 错位相减法求和例2 (2016·山东)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n,求数列{c n }的前n 项和T n .解 (1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11,满足上式,所以a n =6n +5.设数列{b n }的公差为d .由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,即⎩⎪⎨⎪⎧ 11=2b 1+d ,17=2b 1+3d ,可解得⎩⎪⎨⎪⎧b 1=4,d =3,所以b n =3n +1. (2)由(1)知,c n =(6n +6)n +1(3n +3)n =3(n +1)·2n +1, 又T n =c 1+c 2+…+c n ,得T n =3×[2×22+3×23+…+(n +1)×2n +1],2T n =3×[2×23+3×24+…+(n +1)×2n +2].两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+4(1-2n)1-2-(n +1)×2n +2 =-3n ·2n +2,所以T n =3n ·2n +2.思维升华 错位相减法求和时的注意点(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100. (1) 求数列{a n },{b n }的通项公式;(2) 当d >1时,记c n =a nb n,求数列{c n }的前n 项和T n .解 (1)由题意有⎩⎪⎨⎪⎧ 10a 1+45d =100,a 1d =2即⎩⎪⎨⎪⎧2a 1+9d =20,a 1d =2,解得⎩⎪⎨⎪⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29.故⎩⎪⎨⎪⎧a n =2n -1,b n =2n -1或⎩⎨⎧a n =19(2n +79),b n=9·⎝⎛⎭⎫29n -1.(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1,于是T n =1+32+522+723+924+…+2n -12n -1,①12T n =12+322+523+724+925+…+2n -12n .② ①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n , 故T n =6-2n +32n -1.题型三 裂项相消法求和 命题点1 形如a n =1n (n +k )型例3 (2015·课标全国Ⅰ)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3. (1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和.解 (1)由a 2n +2a n =4S n +3, 可知a 2n +1+2a n +1=4S n +1+3.即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ).由a n >0,可得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1. (2)由a n =2n +1可知b n =1a n a n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3.设数列{b n }的前n 项和为T n ,则 T n =b 1+b 2+…+b n=12⎣⎡⎦⎤⎝⎛⎭⎫13-15+⎝⎛⎭⎫15-17+…+⎝⎛⎭⎫12n +1-12n +3 =n3(2n +3).命题点2 形如a n =1n +n +k型例4 已知函数f (x )=x a 的图象过点(4,2),令a n =1f (n +1)+f (n ),n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 017=________. 答案2 018-1解析 由f (4)=2,可得4a =2,解得a =12,则f (x )=12x .∴a n =1f (n +1)+f (n )=1n +1+n=n +1-n ,S 2 017=a 1+a 2+a 3+…+a 2 017=(2-1)+(3-2)+(4-3)+…+( 2 017- 2 016)+( 2 018- 2 017)= 2 018-1.思维升华 (1)用裂项相消法求和时,要对通项进行变换,如:1n +n +k =1k(n +k -n ),1n (n +k )=1k (1n -1n +k),裂项后可以产生连续相互抵消的项.(2)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .解 (1)∵S 2n =a n ⎝⎛⎭⎫S n -12, a n =S n -S n -1 (n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,① 由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝⎛⎭⎫1-12n +1=n 2n +1.四审结构定方案典例 (12分)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)设数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和为T n ,求证:T n <4.(1)S n =-12n 2+kn ――――――→S n 是关于n的二次函数n =k 时,S n 最大 ――――――――→根据S n 的结构特征确定k 的值k =4;S n=-12n 2+4n ――→根据S n求a n a n =92-n (2)9-2a n 2n=n 2n -1―――――――――→根据数列结构特征确定求和方法 T n =1+22+322+…+n -12n -2+n 2n -1――――――→错位相减法求和 计算可得T n ―→证明:T n <4 规范解答(1)解 当n =k ∈N *时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[3分]当n ≥2时,a n =S n -S n -1=92-n .当n =1时,上式也成立. 综上,a n =92-n .[6分](2)证明 ∵9-2a n 2n =n2n -1,∴T n =1+22+322+…+n -12n -2+n2n -1,①2T n =2+2+32+…+n -12n -3+n2n -2.②[7分]②-①,得2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n2n -1=4-n +22n -1.[11分]∴T n =4-n +22n -1.∴T n <4.[12分]1.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于( )A .n 2+1-12nB .2n 2-n +1-12nC .n 2+1-12n -1D .n 2-n +1-12n答案 A解析 该数列的通项公式为a n =(2n -1)+12n ,则S n =[1+3+5+…+(2n -1)]+(12+122+…+12n )=n 2+1-12n .2.(2016·西安模拟)设等比数列{a n }的前n 项和为S n ,已知a 1=2 016,且a n +2a n +1+a n +2=0(n ∈N *),则S 2 016等于( ) A .0 B .2 016 C .2 015 D .2 014答案 A解析 ∵a n +2a n +1+a n +2=0(n ∈N *),∴a n +2a n q +a n q 2=0,q 为等比数列{a n }的公比, 即q 2+2q +1=0,∴q =-1.∴a n =(-1)n -1·2 016,∴S 2 016=(a 1+a 2)+(a 3+a 4)+…+(a 2 015+a 2 016)=0.3.等差数列{a n }的通项公式为a n =2n +1,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前10项的和为( )A .120B .70C .75D .100答案 C解析 因为S n n =n +2,所以⎩⎨⎧⎭⎬⎫S n n 的前10项和为10×3+10×92=75.4.在数列{a n }中,若a n +1+(-1)n a n =2n -1,则数列{a n }的前12项和等于( ) A .76 B .78 C .80 D .82答案 B解析 由已知a n +1+(-1)n a n =2n -1,得a n +2+(-1)n +1·a n +1=2n +1,得a n +2+a n =(-1)n (2n-1)+(2n +1),取n =1,5,9及n =2,6,10,结果相加可得S 12=a 1+a 2+a 3+a 4+…+a 11+a 12=78.故选B.5.已知函数f (n )=⎩⎪⎨⎪⎧n 2(当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于( ) A .0 B .100 C .-100 D .10 200答案 B解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012 =-(1+2)+(3+2)-(4+3)+…-(99+100)+(101+100) =-(1+2+…+99+100)+(2+3+…+100+101) =-50×101+50×103=100.故选B.6.设数列{a n }的通项公式为a n =2n -7,则|a 1|+|a 2|+…+|a 15|等于( ) A .153 B .210 C .135 D .120答案 A解析 令a n =2n -7≥0,解得n ≥72.∴从第4项开始大于0,∴|a 1|+|a 2|+…+|a 15|=-a 1-a 2-a 3+a 4+a 5+…+a 15=5+3+1+1+3+…+(2×15-7)=9+12×(1+23)2=153.7.(2016·福州模拟)已知数列{a n }的通项公式为a n =1n +n +1,若前n 项和为10,则项数n为________. 答案 120 解析 ∵a n =1n +n +1=n +1-n ,∴S n=a1+a2+…+a n=(2-1)+(3-2)+…+(n+1-n)=n+1-1.令n+1-1=10,得n=120.8.在等差数列{a n}中,a1>0,a10·a11<0,若此数列的前10项和S10=36,前18项和S18=12,则数列{|a n|}的前18项和T18的值是________.答案60解析由a1>0,a10·a11<0可知d<0,a10>0,a11<0,∴T18=a1+…+a10-a11-…-a18=S10-(S18-S10)=60.9.(2016·大连模拟)若已知数列的前四项是112+2,122+4,132+6,142+8,则数列的前n项和为______________.答案34-2n+32(n+1)(n+2)解析由前四项知数列{a n}的通项公式为a n=1n2+2n,由1n2+2n=12(1n-1n+2)知,S n=a1+a2+a3+…+a n-1+a n=12[1-13+12-14+13-15+…+(1n-2-1n)+(1n-1-1n+1)+(1n-1n+2)]=12[1+12-1n+1-1n+2]=34-2n+32(n+1)(n+2).*10.已知正项数列{a n}的前n项和为S n,∀n∈N* ,2S n=a2n+a n.令b n=1a n a n+1+a n+1a n,设{b n}的前n项和为T n,则在T1,T2,T3,…,T100中有理数的个数为________.答案9解析∵2S n=a2n+a n,①∴2S n+1=a2n+1+a n+1,②②-①,得2a n+1=a2n+1+a n+1-a2n-a n,a2n+1-a2n-a n+1-a n=0,(a n+1+a n)(a n+1-a n-1)=0.又∵{a n}为正项数列,∴a n+1-a n-1=0,即a n+1-a n=1.在2S n =a 2n +a n 中,令n =1,可得a 1=1.∴数列{a n }是以1为首项,1为公差的等差数列. ∴a n =n ,∴b n =1n n +1+(n +1)n=(n +1)n -n n +1[n n +1+(n +1)n ][(n +1)n -n n +1]=(n +1)n -n n +1n (n +1)=1n -1n +1,∴T n =1-1n +1, ∴T 1,T 2,T 3,…,T 100中有理数的个数为9.11.已知数列{a n }中,a 1=3,a 2=5,且{a n -1}是等比数列. (1)求数列{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和T n . 解 (1)∵{a n -1}是等比数列且a 1-1=2, a 2-1=4,a 2-1a 1-1=2,∴a n -1=2·2n -1=2n ,∴a n =2n +1.(2)b n =na n =n ·2n +n ,故T n =b 1+b 2+b 3+…+b n =(2+2×22+3×23+…+n ·2n )+(1+2+3+…+n ). 令T =2+2×22+3×23+…+n ·2n , 则2T =22+2×23+3×24+…+n ·2n +1.两式相减,得-T =2+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1,∴T =2(1-2n )+n ·2n +1=2+(n -1)·2n +1.∵1+2+3+…+n =n (n +1)2,∴T n =(n -1)·2n +1+n 2+n +42.12.(2016·天津)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且1a 1-1a 2=2a 3,S 6=63.(1)求数列{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n +1的等差中项,求数列{(-1)n b 2n }的前2n 项和. 解 (1)设数列{a n }的公比为q .由已知,有1a 1-1a 1q =2a 1q 2,解得q =2或q =-1.又由S 6=a 1·1-q 61-q =63,知q ≠-1,所以a 1·1-261-2=63,得a 1=1.所以a n =2n -1.(2)由题意,得b n =12(log 2a n +log 2a n +1)=12(log 22n -1+log 22n )=n -12, 即{b n }是首项为12,公差为1的等差数列.设数列{(-1)n b 2n }的前n 项和为T n ,则T 2n =(-b 21+b 22)+(-b 23+b 24)+…+(-b 22n -1+b 22n )=b 1+b 2+b 3+b 4+…+b 2n -1+b 2n =2n (b 1+b 2n )2=2n 2. *13.若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *).(1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =12log n a .求证:对任意正整数n ≥2,总有13≤1c2+1c 3+1c 4+…+1c n <34. (1)解 ∵S n =16-13a n ,∴当n ≥2时,a n =S n -S n -1=13a n -1-13a n ,∴a n =14a n -1.又∵S 1=a 1=16-13a 1,∴a 1=18,∴a n =18⎝⎛⎭⎫14n -1=⎝⎛⎭⎫122n +1.(2)证明 由c n +1-c n =12log n a =2n +1,得当n ≥2时,c n =c 1+(c 2-c 1)+(c 3-c 2)+…+(c n -c n -1)=0+3+5+…+(2n -1)=n 2-1=(n +1)(n -1),1c n=1(n+1)(n-1)=12(1n-1-1n+1),∴1c2+1c3+1c4+…+1c n=12×⎣⎡⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+⎝⎛⎭⎫13-15+…+⎦⎤⎝⎛⎭⎫1n-1-1n+1=12⎣⎡⎦⎤⎝⎛⎭⎫1+12-⎝⎛⎭⎫1n+1n+1=34-12⎝⎛⎭⎫1n+1n+1<34.又∵1c2+1c3+1c4+…+1c n≥1c2=13,∴原式得证.。
2018版高考数学理人教大一轮复习讲义教师版文档第六章
1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0). 2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1.3.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 4.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , 当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q .6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n . 【知识拓展】 等比数列{a n }的单调性(1)满足⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1时,{a n }是递增数列.(2)满足⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }是递减数列.(3)当⎩⎪⎨⎪⎧a 1≠0,q =1时,{a n }为常数列.(4)当q <0时,{a n }为摆动数列. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( × ) (2)G 为a ,b 的等比中项⇔G 2=ab .( × )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( × ) (4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( × )1.(教材改编)已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A .-12B .-2C .2 D.12答案 D解析 由题意知q 3=a 5a 2=18,∴q =12.2.(2015·课标全国Ⅱ)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7等于( ) A .21 B .42 C .63 D .84 答案 B解析 设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21,得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42,故选B. 3.设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6等于( ) A .31 B .32 C .63 D .64 答案 C解析 根据题意知,等比数列{a n }的公比不是-1.由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C.4.(教材改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 答案 27,81解析 设该数列的公比为q ,由题意知,243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81.5.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.答案 -11解析 设等比数列{a n }的公比为q , ∵8a 2+a 5=0,∴8a 1q +a 1q 4=0. ∴q 3+8=0,∴q =-2,∴S 5S 2=a 1(1-q 5)1-q ·1-q a 1(1-q 2)=1-q 51-q 2=1-(-2)51-4=-11.题型一 等比数列基本量的运算例1 (1)(2015·课标全国Ⅱ)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于( )A .2B .1 C.12 D.18(2)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =________.答案 (1)C (2)2n -1解析 (1)由{a n }为等比数列,得a 3a 5=a 24,又a 3a 5=4(a 4-1),所以a 24=4(a 4-1), 解得a 4=2.设等比数列{a n }的公比为q , 则由a 4=a 1q 3,得2=14q 3,解得q =2,所以a 2=a 1q =12.故选C.(2)∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52, ①a 1q +a 1q 3=54, ②由①除以②可得1+q 2q +q 3=2,解得q =12,代入①得a 1=2,∴a n =2×(12)n -1=42n ,∴S n =2×[1-(12)n ]1-12=4(1-12n ),∴S na n =4(1-12n )42n=2n -1. 思维升华 等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.(1)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( )A.152B.314C.334D.172(2)(2015·湖南)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 答案 (1)B (2)3n -1解析 (1)显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q =7,解得⎩⎪⎨⎪⎧ a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9q =-13(舍去),∴S 5=a 1(1-q 5)1-q=4(1-125)1-12=314.(2)由3S 1,2S 2,S 3成等差数列知,4S 2=3S 1+S 3, 可得a 3=3a 2,所以公比q =3, 故等比数列通项a n =a 1q n -1=3n -1.题型二 等比数列的判定与证明例2 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式. (1)证明 由a 1=1及S n +1=4a n +2, 得a 1+a 2=S 2=4a 1+2. ∴a 2=5,∴b 1=a 2-2a 1=3.又⎩⎪⎨⎪⎧S n +1=4a n +2, ①S n =4a n -1+2(n ≥2), ② 由①-②,得a n +1=4a n -4a n -1(n ≥2), ∴a n +1-2a n =2(a n -2a n -1)(n ≥2). ∵b n =a n +1-2a n ,∴b n =2b n -1(n ≥2), 故{b n }是首项b 1=3,公比为2的等比数列. (2)解 由(1)知b n =a n +1-2a n =3·2n -1,∴a n +12n +1-a n 2n =34, 故{a n 2n }是首项为12,公差为34的等差数列. ∴a n 2n =12+(n -1)·34=3n -14, 故a n =(3n -1)·2n -2.引申探究若将本例中“S n +1=4a n +2”改为“S n +1=2S n +(n +1)”,其他不变,求数列{a n }的通项公式. 解 由已知得n ≥2时,S n =2S n -1+n . ∴S n +1-S n =2S n -2S n -1+1, ∴a n +1=2a n +1,∴a n +1+1=2(a n +1),n ≥2,(*)又a 1=1,S 2=a 1+a 2=2a 1+2,即a 2+1=2(a 1+1), ∴当n =1时(*)式也成立,故{a n +1}是以2为首项,以2为公比的等比数列, ∴a n +1=2·2n -1=2n ,∴a n =2n -1.思维升华 (1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.(2)利用递推关系时要注意对n =1时的情况进行验证.已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明:{a n +12}是等比数列,并求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <32.证明 (1)由a n +1=3a n +1,得a n +1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.所以a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32(1-13n )<32, 所以1a 1+1a 2+…+1a n <32.题型三 等比数列性质的应用例3 (1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.(2)设等比数列{a n }的前n 项和为S n ,若S 6S 3=12,则S 9S 3=________.答案 (1)50 (2)34解析 (1)因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20 =ln(a 1a 2…a 20)=ln [(a 1a 20)·(a 2a 19)·…·(a 10a 11)] =ln(a 10a 11)10=10ln(a 10a 11) =10ln e 5=50ln e =50.(2)方法一 ∵S 6∶S 3=1∶2,∴{a n }的公比q ≠1. 由a 1(1-q 6)1-q ÷a 1(1-q 3)1-q=12,得q 3=-12,∴S 9S 3=1-q 91-q 3=34. 方法二 ∵{a n }是等比数列,且S 6S 3=12,∴公比q ≠-1,∴S 3,S 6-S 3,S 9-S 6也成等比数列,即(S 6-S 3)2=S 3·(S 9-S 6), 将S 6=12S 3代入得S 9S 3=34.思维升华 等比数列常见性质的应用等比数列性质的应用可以分为三类:(1)通项公式的变形;(2)等比中项的变形;(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(1)已知在等比数列{a n }中,a 1a 4=10,则数列{lg a n }的前4项和等于( )A .4B .3C .2D .1(2)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558答案 (1)C (2)A解析 (1)前4项和S 4=lg a 1+lg a 2+lg a 3+lg a 4=lg(a 1a 2a 3a 4),又∵等比数列{a n }中,a 2a 3=a 1a 4=10, ∴S 4=lg 100=2.(2)因为a 7+a 8+a 9=S 9-S 6,且公比不等于-1,在等比数列中,S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以有8(S 9-S 6)=(-1)2,S 9-S 6=18,即a 7+a 8+a 9=18.13.分类讨论思想在等比数列中的应用典例 (12分)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式; (2)证明:S n +1S n ≤136(n ∈N *).思想方法指导 (1)利用等差数列的性质求出等比数列的公比,写出通项公式; (2)求出前n 项和,根据函数的单调性证明. 规范解答(1)解 设等比数列{a n }的公比为q , 因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4, 可得2a 4=-a 3,于是q =a 4a 3=-12.[2分]又a 1=32,所以等比数列{a n }的通项公式为a n =32×⎝⎛⎭⎫-12n -1=(-1)n -1·32n .[3分] (2)证明 由(1)知,S n =1-⎝⎛⎭⎫-12n , S n +1S n=1-⎝⎛⎭⎫-12n +11-⎝⎛⎭⎫-12n=⎩⎨⎧2+12n (2n+1),n 为奇数,2+12n(2n-1),n 为偶数.[6分]当n 为奇数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=136.[8分]当n 为偶数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=2512.[10分]故对于n ∈N *,有S n +1S n ≤136.[12分]1.在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7等于( ) A .4 B .6 C .8 D .8-4 2答案 C解析 在等比数列中,a 3a 7=a 25,a 2a 6=a 3a 5,所以a 23+2a 2a 6+a 3a 7=a 23+2a 3a 5+a 25=(a 3+a 5)2=(2-1+2+1)2=(22)2=8.2.(2016·珠海模拟)在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( ) A.32 B.23 C .-23D.23或-23答案 C解析 由⎩⎪⎨⎪⎧a 1q =18,a 1q 3=8解得⎩⎪⎨⎪⎧a 1=27,q =23或⎩⎪⎨⎪⎧a 1=-27,q =-23. 又a 1<0,因此q =-23.3.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( ) A .12 B .13 C .14 D .15答案 C解析 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q3n -3=324, 因此q 3n -6=81=34=q 36,所以n =14,故选C.*4.(2015·福建)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( ) A .6 B .7 C .8 D .9 答案 D解析 由题意知:a +b =p ,ab =q ,∵p >0,q >0,∴a >0,b >0.在a ,b ,-2这三个数的6种排序中,成等差数列的情况有a ,b ,-2;b ,a ,-2;-2,a ,b ;-2,b ,a ;成等比数列的情况有a ,-2,b ;b ,-2,a .∴⎩⎪⎨⎪⎧ ab =4,2b =a -2或⎩⎪⎨⎪⎧ ab =4,2a =b -2,解得⎩⎪⎨⎪⎧ a =4,b =1或⎩⎪⎨⎪⎧a =1,b =4.∴p =5,q =4,∴p +q =9,故选D.5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A .192里B .96里C .48里D .24里 答案 B解析 设等比数列{a n }的首项为a 1,公比为q =12,依题意有a 1(1-126)1-12=378,解得a 1=192,则a 2=192×12=96,即第二天走了96里,故选B.6.(2016·铜仁质检)在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( ) A.12 B.32C .1D .-32答案 B解析 因为a 3a 4a 5=3π=a 34,所以a 4=π33. log 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7)=log 3a 74=7log 3π33=7π3, 所以sin(log 3a 1+log 3a 2+…+log 3a 7)=32. 7.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =________. 答案 4解析 因为⎩⎪⎨⎪⎧3S 3=a 4-2, ①3S 2=a 3-2, ②由①-②,得3a 3=a 4-a 3,即4a 3=a 4, 则q =a 4a 3=4.8.设各项都是正数的等比数列{a n },S n 为前n 项和且S 10=10,S 30=70,那么S 40=________. 答案 150解析 依题意,知数列{a n }的公比q ≠-1,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20),即(S 20-10)2=10(70-S 20),故S 20=-20或S 20=30;又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40,故S 40-S 30=80,S 40=150. 9.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________. 答案12n解析 ∵a n +S n =1,①∴a 1=12,a n -1+S n -1=1(n ≥2),②由①-②,得a n -a n -1+a n =0,即a n a n -1=12(n ≥2),∴数列{a n }是首项为12,公比为12的等比数列, 则a n =12×(12)n -1=12n . 10.已知数列{a n }的首项为1,数列{b n }为等比数列且b n =a n +1a n,若b 10·b 11=2,则a 21=________. 答案 1 024解析 ∵b 1=a 2a 1=a 2,b 2=a 3a 2, ∴a 3=b 2a 2=b 1b 2,∵b 3=a 4a 3, ∴a 4=b 1b 2b 3,…,a n =b 1b 2b 3·…·b n -1,∴a 21=b 1b 2b 3·…·b 20=(b 10b 11)10=210=1 024.11.已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和.(1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .解 (1)因为{a n }是首项a 1=1,公差d =2的等差数列,所以a n =a 1+(n -1)d =2n -1. 故S n =1+3+…+(2n -1)=n (a 1+a n )2=n (1+2n -1)2=n 2. (2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0,所以(q -4)2=0,从而q =4.又因为b 1=2,{b n }是公比q =4的等比数列,所以b n =b 1q n -1=2·4n -1=22n -1. 从而{b n }的前n 项和T n =b 1(1-q n )1-q=23(4n -1). 12.(2016·全国丙卷)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0.(1)求a 2,a 3;(2)求{a n }的通项公式.解 (1)由题意,得a 2=12,a 3=14. (2)由a 2n -(2a n +1-1)a n -2a n +1=0,得2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n =12.故{a n }是首项为1,公比为12的等比数列, 因此a n =12n -1. 13.已知数列{a n }中,a 1=1,a n ·a n +1=⎝⎛⎭⎫12n ,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n -1,n ∈N *. (1)判断数列{b n }是否为等比数列,并求出b n ;(2)求T 2n .解 (1)∵a n ·a n +1=⎝⎛⎭⎫12n ,∴a n +1·a n +2=⎝⎛⎭⎫12n +1,∴a n +2a n =12,即a n +2=12a n . ∵b n =a 2n +a 2n -1,∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12, ∵a 1=1,a 1·a 2=12, ∴a 2=12⇒b 1=a 1+a 2=32. ∴{b n }是首项为32,公比为12的等比数列. ∴b n =32×⎝⎛⎭⎫12n -1=32n . (2)由(1)可知,a n +2=12a n , ∴a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列, ∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n .。
(江苏版)2018年高考数学一轮复习第06章数列测试题-含答案
2 Sn
( n 1)an ,若关于正整数
2
n 的不等式 an
tan ≤ 2t 2 的解集中的整数解有两个,则正实
数 t 的取值范围为
【答案】
3 (1, )
2
▲.
10. 【 2017 届高三七校联考期中考试】 设等差数列
an 的前 n 项和为 Sn ,若 a5 a3
5
▲ .【答案】
2
【解析】 a5 5 a3 3
【答案】 9
【解析】∵ a1a9 a52 ∴ log 2 a1 log 2 a2
4 ,∴ a5 2 , log 2 a9 log 2 (a1a2
a9 ) log 2 a59
9log 2 a5 9 ,
2. 【 2016-2017 学年度江苏苏州市高三期中调研考试】已知数列
an 满足:
an 1 an 1 an 1 , a1 1 ,数列 bn 满足: bn an an 1 ,则数列 bn 的前 10 项的和
34
,则满足
S2n
16
的所有
n 的和为
_________.
33 Sn 15
【答案】 4
【解析】 因 an 1 Sn 1 Sn , 故代入已知可得 2Sn 1 Sn 3 , 即 2( Sn 1 3) Sn 3 , 也即
Sn 1
3
1 ( Sn
2
3) , 故数列 { Sn
3} 是公比为 1 的等比数列 , 所以 Sn 2
第 06 章 数列
班级 __________ 姓名 _____________ 学号 ___________ 得分 __________ 一.填空题:
1. 【2016-2017 学年度江苏苏州市高三期中调研考试】 已知等比数列 an 的各项均为正数,
2018版高考数学理人教大一轮复习讲义教师版文档第六章
1.数列的定义按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式. 【知识拓展】1.若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1, n =1,S n -S n -1, n ≥2.2.在数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1.若a n 最小,则⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1.3.数列与函数的关系数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”) (1)所有数列的第n 项都能使用公式表达.( × )(2)根据数列的前几项归纳出数列的通项公式可能不止一个.( √ ) (3)1,1,1,1,…,不能构成一个数列.( × )(4)任何一个数列不是递增数列,就是递减数列.( × )(5)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( √ )1.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为用这些数目的点可以排成一个正三角形(如图所示).则第7个三角形数是( ) A .27 B .28 C .29 D .30答案 B解析 由图可知,第7个三角形数是1+2+3+4+5+6+7=28.2.已知数列11×2,12×3,13×4,…,1n (n +1),…,下列各数中是此数列中的项的是( )A.135B.142C.148D.154 答案 B3.(教材改编)在数列{a n }中,a 1=1,a n =1+(-1)n a n -1(n ≥2),则a 5等于( )A.32B.53C.85D.23 答案 D解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12,a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23.4.数列{a n }中,a n =-n 2+11n ,则此数列最大项的值是________. 答案 30解析 a n =-n 2+11n =-(n -112)2+1214,∵n ∈N *,∴当n =5或n =6时,a n 取最大值30. 5.已知数列{a n }的前n 项和S n =n 2+1,则a n =________.答案 ⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2解析 当n =1时,a 1=S 1=2,当n ≥2时, a n =S n -S n -1=n 2+1-[(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.题型一 由数列的前几项求数列的通项公式例1 (1)(2016·太原模拟)数列1,3,6,10,…的一个通项公式是( ) A .a n =n 2-(n -1) B .a n =n 2-1 C .a n =n (n +1)2D .a n =n (n -1)2(2)数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n =________.答案 (1)C (2)2n +1n 2+1解析 (1)观察数列1,3,6,10,…可以发现1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4,…第n 项为1+2+3+4+…+n =n (n +1)2.∴a n =n (n +1)2.(2)数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.思维升华 由前几项归纳数列通项的常用方法及具体策略(1)常用方法:观察(观察规律)、比较(比较已知数列)、归纳、转化(转化为特殊数列)、联想(联想常见的数列)等方法.(2)具体策略:①分式中分子、分母的特征;②相邻项的变化特征;③拆项后的特征;④各项的符号特征和绝对值特征;⑤化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;⑥对于符号交替出现的情况,可用(-1)k 或(-1)k +1,k ∈N *处理.根据数列的前几项,写出下列各数列的一个通项公式.(1)-1,7,-13,19,…; (2)0.8,0.88,0.888,…;(3)12,14,-58,1316,-2932,6164,…. 解 (1)数列中各项的符号可通过(-1)n 表示,从第2项起,每一项的绝对值总比它的前一项的绝对值大6,故通项公式为a n =(-1)n (6n -5). (2)数列变为89⎝⎛⎭⎫1-110,89⎝⎛⎭⎫1-1102,89⎝⎛⎭⎫1-1103,…, 故a n =89⎝⎛⎭⎫1-110n . (3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的绝对值的分子分别比分母小3. 因此把第1项变为-2-32,原数列化为-21-321,22-322,-23-323,24-324,…,故a n =(-1)n 2n-32n. 题型二 由a n 与S n 的关系求通项公式例2 (1)(2017·南昌月考)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n =________.答案 (-2)n -1解析 由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,整理得a n =-2a n -1,又当n =1时,S 1=a 1=23a 1+13,∴a 1=1,∴{a n }是首项为1,公比为-2的等比数列,故a n =(-2)n -1.(2)已知下列数列{a n }的前n 项和S n ,求{a n }的通项公式.①S n =2n 2-3n ;②S n =3n +b . 解 ①a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. ②a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1=(3n +b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式; 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b ,n =1,2·3n -1,n ≥2.思维升华 已知S n ,求a n 的步骤(1)当n =1时,a 1=S 1;(2)当n ≥2时,a n =S n -S n -1;(3)对n =1时的情况进行检验,若适合n ≥2的通项则可以合并;若不适合则写成分段函数形式.(1)已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________________.(2)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n 等于( ) A .2n -1B .(32)n -1C .(32)nD.12n -1 答案 (1)a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2 (2)B解析 (1)当n =1时,a 1=S 1=3×12-2×1+1=2; 当n ≥2时,a n =S n -S n -1=3n 2-2n +1-[3(n -1)2-2(n -1)+1] =6n -5,显然当n =1时,不满足上式.故数列的通项公式为a n =⎩⎪⎨⎪⎧2,n =1,6n -5,n ≥2.(2)由a n +1=S n +1-S n ,得12S n =S n +1-S n ,即S n +1=32S n (n ≥1),又S 1=a 1=1,所以数列{S n }是首项为1,公比为32的等比数列,所以S n =(32)n -1,故选B.题型三 由数列的递推关系求通项公式例3 根据下列条件,确定数列{a n }的通项公式. (1)a 1=2,a n +1=a n +ln(1+1n );(2)a 1=1,a n +1=2n a n ; (3)a 1=1,a n +1=3a n +2. 解 (1)∵a n +1=a n +ln(1+1n),∴a n -a n -1=ln(1+1n -1)=ln nn -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =lnn n -1+ln n -1n -2+…+ln 32+ln 2+2=2+ln(n n -1.n -1n -2 (3)2·2)=2+ln n (n ≥2).又a 1=2适合上式,故a n =2+ln n (n ∈N *). (2)∵a n +1=2n a n ,∴a n a n -1=2n -1 (n ≥2),∴a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=(1)22n n -.又a 1=1适合上式,故a n =(1)22n n -.(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1), 又a 1=1,∴a 1+1=2,故数列{a n +1}是首项为2,公比为3的等比数列, ∴a n +1=2·3n -1,故a n =2·3n -1-1.思维升华 已知数列的递推关系求通项公式的典型方法(1)当出现a n =a n -1+m 时,构造等差数列;(2)当出现a n =xa n -1+y 时,构造等比数列;(3)当出现a n =a n -1+f (n )时,用累加法求解;(4)当出现a n a n -1=f (n )时,用累乘法求解.(1)已知数列{a n }满足a 1=1,a n =n -1n·a n -1(n ≥2且n ∈N *),则a n =________.(2)已知数列{a n }的前n 项和为S n ,且S n =2a n -1(n ∈N *),则a 5等于( ) A .-16 B .16 C .31 D .32 答案 (1)1n(2)B解析 (1)∵a n =n -1n a n -1 (n ≥2),∴a n -1=n -2n -1a n -2,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时也满足此等式,∴a n =1n .(2)当n =1时,S 1=2a 1-1,∴a 1=1. 当n ≥2时,S n -1=2a n -1-1,∴a n =S n -S n -1=2a n -2a n -1,∴a n =2a n -1. ∴{a n }是等比数列且a 1=1,q =2, 故a 5=a 1×q 4=24=16. 题型四 数列的性质 命题点1 数列的单调性例4 已知a n =n -1n +1,那么数列{a n }是( )A .递减数列B .递增数列C .常数列D .摆动数列答案 B解析 a n =1-2n +1,将a n 看作关于n 的函数,n ∈N *,易知{a n }是递增数列.命题点2 数列的周期性例5 数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=____________________________.答案 12解析 ∵a n +1=11-a n ,∴a n +1=11-a n=11-11-a n -1=1-a n -11-a n -1-1=1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2,n ≥3, ∴周期T =(n +1)-(n -2)=3. ∴a 8=a 3×2+2=a 2=2. 而a 2=11-a 1,∴a 1=12.命题点3 数列的最值例6 数列{a n }的通项a n =nn 2+90,则数列{a n }中的最大项是( )A .310B .19 C.119 D.1060答案 C解析 令f (x )=x +90x (x >0),运用基本不等式得f (x )≥290,当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n ≤1290,由于n ∈N *,不难发现当n =9或n =10时,a n =119最大.思维升华 (1)解决数列的单调性问题可用以下三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列. ②用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断.③结合相应函数的图象直观判断. (2)解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. (3)数列的最值可以利用数列的单调性或求函数最值的思想求解.(1)(2016·哈尔滨模拟)数列{a n }满足a n +1=⎩⎨⎧2a n ,0≤a n ≤12,2a n-1,12<a n<1,a 1=35,则数列的第2 015项为________.(2)设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133 C .4D .0答案 (1)25(2)D解析 (1)由已知可得,a 2=2×35-1=15,a 3=2×15=25,a 4=2×25=45,a 5=2×45-1=35,∴{a n }为周期数列且T =4, ∴a 2 015=a 503×4+3=a 3=25.(2)∵a n =-3⎝⎛⎭⎫n -522+34,由二次函数性质,得当n =2或3时,a n 最大,最大值为0.12.解决数列问题的函数思想典例 (1)数列{a n }的通项公式是a n =(n +1)·(1011)n ,则此数列的最大项是第________项.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是__________. 思想方法指导 (1)可以将数列看成定义域为正整数集上的函数;(2)数列的最值可以根据单调性进行分析. 解析 (1)∵a n +1-a n =(n +2)(1011)n +1-(n +1)(1011)n=(1011)n ×9-n 11, 当n <9时,a n +1-a n >0,即a n +1>a n ; 当n =9时,a n +1-a n =0,即a n +1=a n ; 当n >9时,a n +1-a n <0,即a n +1<a n ,∴该数列中有最大项,且最大项为第9、10项. (2)由a n +1>a n 知该数列是一个递增数列, 又因为通项公式a n =n 2+kn +4, 所以(n +1)2+k (n +1)+4>n 2+kn +4, 即k >-1-2n ,又n ∈N *,所以k >-3. 答案 (1)9或10 (2)(-3,+∞)1.数列23,-45,67,-89,…的第10项是( )A .-1617B .-1819C .-2021D .-2223答案 C解析 所给数列呈现分数形式,且正负相间,求通项公式时,我们可以把每一部分进行分解:符号、分母、分子.很容易归纳出数列{a n }的通项公式a n =(-1)n +1·2n 2n +1,故a 10=-2021.2.已知数列的通项公式为a n =n 2-8n +15,则( ) A .3不是数列{a n }中的项 B .3只是数列{a n }中的第2项 C .3只是数列{a n }中的第6项 D .3是数列{a n }中的第2项和第6项 答案 D解析 令a n =3,即n 2-8n +15=3,整理得n 2-8n +12=0,解得n =2或n =6. 3.已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是( ) A .2n -1 B .(n +1n )n -1C .n 2D .n 答案 D解析 ∵a n =n (a n +1-a n ),∴a n +1a n =n +1n, ∴a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n -1·n -1n -2·n -2n -3·…·32·21·1=n .4.若数列{a n }满足a 1=2,a 2=3,a n =a n -1a n -2(n ≥3且n ∈N *),则a 2 018等于( )A .3B .2 C.12 D.23答案 A解析 由已知a 3=a 2a 1=32,a 4=a 3a 2=12, a 5=a 4a 3=13,a 6=a 5a 4=23, a 7=a 6a 5=2,a 8=a 7a 6=3, ∴数列{a n }具有周期性,T =6,∴a 2 018=a 336×6+2=a 2=3.5.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,若S n 是数列{a n }的前n 项和,则S 21为( ) A .5B.72C.92D.132 答案 B解析 ∵a n +a n +1=12,a 2=2, ∴a n =⎩⎪⎨⎪⎧ -32,n 为奇数,2,n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72.故选B. 6.(2016·开封一模)已知函数y =f (x )的定义域为R .当x <0时,f (x )>1,且对任意的实数x ,y ∈R ,等式f (x )f (y )=f (x +y )恒成立.若数列{a n }满足a 1=f (0),且f (a n +1)=1f (-2-a n )(n ∈N *),则a 2 015的值为( )A .4 029B .3 029C .2 249D .2 209 答案 A解析 根据题意,不妨设f (x )=(12)x ,则a 1=f (0)=1,∵f (a n +1)=1f (-2-a n ),∴a n +1=a n +2,∴数列{a n }是以1为首项,2为公差的等差数列,∴a n =2n -1,∴a 2 015=4 029.7.数列{a n }中,已知a 1=1,a 2=2,a n +1=a n +a n +2(n ∈N *),则a 7=________.答案 1解析 由已知a n +1=a n +a n +2,a 1=1,a 2=2,能够计算出a 3=1,a 4=-1,a 5=-2,a 6=-1,a 7=1.8.已知数列{a n }的前n 项和为S n ,S n =2a n -n ,则a n =________.答案 2n -1解析 当n =1时,S 1=a 1=2a 1-1,得a 1=1,当n ≥2时,a n =S n -S n -1=2a n -n -2a n -1+(n -1),即a n =2a n -1+1,∴a n +1=2(a n -1+1),∴数列{a n +1}是首项为a 1+1=2,公比为2的等比数列,∴a n +1=2·2n -1=2n ,∴a n =2n -1.9.已知数列{a n }的通项公式a n =(n +2)·(67)n ,则数列{a n }的项取最大项时,n=________. 答案 4或5解析 假设第n 项为最大项,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1, 即⎩⎨⎧ (n +2)·(67)n ≥(n +1)·(67)n -1,(n +2)·(67)n ≥(n +3)·(67)n +1,解得⎩⎪⎨⎪⎧n ≤5,n ≥4, 即4≤n ≤5, 又n ∈N *,所以n =4或n =5,故数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574. 10.已知数列{a n }满足a 1=2,a n +1=1+a n 1-a n(n ∈N *),则该数列的前2 019项的乘积a 1·a 2·a 3·…·a 2 019=________.答案 3解析 由题意可得,a 2=1+a 11-a 1=-3,a 3=1+a 21-a 2=-12,a 4=1+a 31-a 3=13,a 5=1+a 41-a 4=2=a 1, ∴数列{a n }是以4为周期的数列,而2 019=4×504+3,a 1a 2a 3a 4=1, ∴前2 019项的乘积为1504·a 1a 2a 3=3.11.已知数列{a n }的前n 项和为S n .(1)若S n =(-1)n +1·n ,求a 5+a 6及a n ; (2)若S n =3n +2n +1,求a n .解 (1)因为a 5+a 6=S 6-S 4=(-6)-(-4)=-2,当n =1时,a 1=S 1=1,当n ≥2时,a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1) =(-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1), 又a 1也适合此式,所以a n =(-1)n +1·(2n -1). (2)因为当n =1时,a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1] =2×3n -1+2, 由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2×3n -1+2,n ≥2. 12.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N *). (1)求a 1,a 2,a 3,a 4的值;(2)求数列{a n }的通项公式.解 (1)由S n =12a 2n +12a n (n ∈N *)可得 a 1=12a 21+12a 1,解得a 1=1, S 2=a 1+a 2=12a 22+12a 2,解得a 2=2, 同理,a 3=3,a 4=4.(2)S n =a n 2+12a 2n ,① 当n ≥2时,S n -1=a n -12+12a 2n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0.由于a n +a n -1≠0,所以a n -a n -1=1,又由(1)知a 1=1,故数列{a n }为首项为1,公差为1的等差数列, 故a n =n .*13.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0). (1)若a =-7,求数列{a n }中的最大项和最小项的值;(2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围.解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0), 又a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *). ∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2(n -1)=1+12n -2-a 2, 已知对任意的n ∈N *,都有a n ≤a 6成立,结合函数f (x )=1+12x -2-a 2的单调性, 可知5<2-a 2<6,即-10<a <-8.。
2018年高考理数: 数列 含答案
核心考点解读——数列考纲解读里的I,II的含义如下:I:对所列知识要知道其内容及含义,并能在有关问题中识别和直接使用,即了解和认识.II:对所列知识要理解其确切含义及与其他知识的联系,能够进行叙述和解释,并能在实际问题的分析、综合、推理和判断等过程中运用,即理解和应用.(以下同)1.(2017高考新课标I,理4)记错误!未找到引用源。
为等差数列错误!未找到引用源。
的前错误!未找到引用源。
项和.若错误!未找到引用源。
,错误!未找到引用源。
,则错误!未找到引用源。
的公差为A.1 B.2C.4 D.82.(2017高考新课标Ⅲ,理9)等差数列错误!未找到引用源。
的首项为1,公差不为0.若a2,a3,a6成等比数列,则错误!未找到引用源。
前6项的和为A.错误!未找到引用源。
B.错误!未找到引用源。
C.3 D.83.(2017高考新课标II,理15)等差数列错误!未找到引用源。
的前错误!未找到引用源。
项和为错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
,则错误!未找到引用源。
____________.4.(2016高考新课标I,理3)已知等差数列错误!未找到引用源。
前9项的和为27,错误!未找到引用源。
,则错误!未找到引用源。
A.100 B.99 C.98 D.975.(2016高考新课标II,理17)错误!未找到引用源。
为等差数列错误!未找到引用源。
的前n项和,且错误!未找到引用源。
记错误!未找到引用源。
,其中错误!未找到引用源。
表示不超过x的最大整数,如错误!未找到引用源。
.(Ⅰ)求错误!未找到引用源。
;(Ⅱ)求数列错误!未找到引用源。
的前1000项和.6.(2016高考新课标III,理17)已知数列错误!未找到引用源。
的前n项和错误!未找到引用源。
,其中错误!未找到引用源。
.(I)证明错误!未找到引用源。
是等比数列,并求其通项公式;(II)若错误!未找到引用源。
,求错误!未找到引用源。
精编2018版高考复习一轮人教版数学历高考真题与模拟题汇编 D单元 数列(文科2012)和答案
D 数列D1 数列的概念与简单表示法14.D1 已知f (x )=11+x,各项均为正数的数列{a n }满足a 1=1,a n +2=f (a n ).若a 2010=a 2012,则a 20+a 11的值是________.14.135+326 考查数列的递推关系和函数的综合问题,考查考生的推理能力和转化与方程思想.当n 为奇数时,由递推关系可得,a 3=1=1,a 5=1a 3=2,依次可推得a 7=35,a 9=58,a 11=813,又a 2010=a 2012=11+a 2010,由此可得出当n 为偶数的时候,所有的偶数项是相等的,即a 2=…=a 2010=a 2012,其值为方程x =11+x ,即x 2+x -1=0的根,解得x =-1±5,又数列为正数数列,所以a 20=-1+5,所以a 20+a 11=135+326.D2 等差数列及等差数列前n 项和19.D2、D4 已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n . 19.解:(1)由S n =2n 2+n 得 当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=4n -1, 当n =1时,也符合所以a n=4n-1,n∈N*,由4n-1=a n=4log2b n+3得bn=2n-1,n∈N*.(2)由(1)知a n bn=(4n-1)·2n-1,n∈N*,所以T n=3+7×2+11×22+…+(4n-1)·2n-1,2T n=3×2+7×22+…+(4n-5)·2n-1+(4n-1)·2n,所以2T n-T n=(4n-1)2n-=(4n-5)2n+5,故T n=(4n-5)2n+5,n∈N*.12.B2、D2设函数f(x)=(x-3)3+x-1,{a n}是公差不为0的等差数列,f(a1)+f(a2)+…+f(a7)=14,则a1+a2+…+a7=( )A.0 B.7 C.14 D.2112.D 记公差为d,则f(a1)+f(a2)+…+f(a7)=(a1-3)3+(a2-3)3+…+(a7-3)3+(a1+a2+…+a7)-7=(a4-3d-3)3+(a4-2d-3)3+…+(a4+2d-3)3+(a4+3d-3)3+7a4-7=7(a4-3)3+7×3(a4-3)+7a4-7.由已知,7(a4-3)3+7×3(a4-3)+7a4-7=14,即7(a4-3)3+7×3(a4-3)+7(a4-3)=0,∴(a4-3)3+4(a4-3)=0.因为f(x)=x3+4x在R上为增函数,且f(0)=0,故a4-3=0,即a4=3,∴a1+a2+…+a7=7a4=7×3=21.21.B12、D2设函数f(x)=x2+sin x的所有正的极小值点从小到大排成的数列为{x n}.(1)求数列{x n}的通项公式;(2)设{x n }的前n 项和为S n ,求sin S n .21.解:(1)因为f ′(x )=12+cos x =0,cos x =-12.解得x =2k π±23π(k ∈Z ).由x n 是f (x )的第n 个正极小值点知, x n =2n π-23π(n ∈N *).(2)由(1)可知,S n =2π(1+2+…+n )-23n π=n (n +1)π-2n π3.所以sin S n =sin ⎝⎛⎭⎪⎫n n +-2n π3. 因为n (n +1)表示两个连续正整数的乘积,n (n +1)一定为偶数. 所以sin S n =-sin ⎝ ⎛⎭⎪⎫2n π3.当n =3m -2(m ∈N *)时, sin S n =-sin ⎝ ⎛⎭⎪⎫2m π-43π=-32;当n =3m -1(m ∈N *)时, sin S n =-sin ⎝⎛⎭⎪⎫2m π-23π=3;当n =3m (m ∈N *)时,sin S n =-sin2m π=0.综上所述,sin S n=⎩⎪⎨⎪⎧-3,n =3m -m ∈N *,32,n =3m -m ∈N *,0,n =3m ()m ∈N *.10.D2 已知{a n }为等差数列,S n 为其前n 项和,若a 1=12,S 2=a 3,则a 2=________,S n =________.10.1 14n ()n +1 本题考查等差数列的基础量运算.设{a n }的公差为d ,由S 2=a 3可得d =a 1=12,故a 2=a 1+d =1,S n =na 1+n n -2d =14n (n +1). 17.D2、D3、K2 在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8,{a n }的前10项和S 10=55.(1)求a n 和b n ;(2)现分别从{a n }和{b n }的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.17.解:(1)设{a n }的公差为d ,{b n }的公比为q .依题意得 S 10=10+10×92d =55,b 4=q 3=8,解得d =1,q =2, 所以a n =n ,b n =2n -1.(2)分别从{a n },{b n }的前3项中各随机抽取一项,得到的基本事件有9个:(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).符合题意的基本事件有2个:(1,1),(2,2). 故所求的概率P =29.20.D2、D3、D5 已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.20.解:(1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d , 由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+da 1+2d =8,解得⎩⎪⎨⎪⎧a 1=2d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n =-4+3(n -1)=3n -7, 故a n =-3n +5,或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件. 故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3,记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7) =5+n -+n -2=32n 2-112n +10. 当n =2时,满足此式.综上,S n =⎩⎨⎧4,n =1,32n 2-112n +10,n >1.4.D2 在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=( ) A .12 B .16 C .20 D .244.B 本小题主要考查等差数列性质的应用.解题的突破口为正确识记性质,应用性质.由等差数列的性质m +n =i +j ,m ,n ,i ,j ∈N *,则a m +a n =a i +a j ,故而a 4+a 8=a 2+a 10=16,答案应该选B.20.D2 已知等差数列{a n }的前5项和为105,且a 10=2a 5. (1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中不大于72m 的项的个数记为b m ,求数列{b m }的前m 项和S m .20.解:(1)设数列{a n }的公差为d ,前n 项和为T n , 由T 5=105,a 10=2a 5,得到⎩⎨⎧5a 1+-2d =105,a 1+9d =a 1+4d ,解得a 1=7,d =7.因此a n =a 1+(n -1)d =7+7(n -1)=7n (n ∈N *). (2)对m ∈N *.若a n =7n ≤72m ,则n ≤72m -1. 因此b m =72m -1.所以数列{b m }是首项为7,公比为49的等比数列,故S m =b 1-q m 1-q=-49m 1-49=72m -48=72m +1-748.16.D2、D5 已知等比数列{a n }的公比q =-12.(1)若a 3=14,求数列{a n }的前n 项和;(2)证明:对任意k ∈N +,a k ,a k +2,a k +1成等差数列. 16.解:(1)由a 3=a 1q 2=14及q =-12,得a 1=1,所以数列{a n }的前n 项和S n =1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=2+⎝ ⎛⎭⎪⎫-12n -13.(2)证明:对任意k ∈N +,2a k +2-(a k +a k +1)=2a 1q k +1-(a 1q k -1+a 1q k )=a 1q k -1(2q 2-q -1), 由q =-12得2q 2-q -1=0,故2a k +2-(a k +a k +1)=0.所以,对任意k ∈N +,a k ,a k +2,a k +1成等差数列.16.D2、D3 已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1){a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值.16.解:(1)设数列{a n }的公差为d ,由题意知 ⎩⎪⎨⎪⎧2a 1+2d =8,2a 1+4d =12.解得a 1=2,d =2. 所以a n =a 1+(n -1)d =2+2(n -1)=2n . (2)由(1)可得S n =n a 1+a n2=n+2n2=n (n +1).因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1S k +2.从而(2k)2=2(k+2)(k+3),即k2-5k-6=0,解得k=6或k=-1(舍去).因此k=6.D3 等比数列及等比数列前n项和11.D3首项为1,公比为2的等比数列的前4项和S4=________.11.15 由等比数列的前n项和公式得S 4=-241-2=15.14.D3已知等比数列{a n}为递增数列.若a1>0,且2(a n+a n+2)=5a n+1,则数列{a n}的公比q=________.14.2 本小题主要考查等比数列的概念与性质.解题的突破口为灵活应用等比数列通项变形式,是解决问题的关键.由已知条件{a n}为等比数列,则2(a n+a n+2)=5a n+1⇒2(a n+a n·q2)=5a n q⇒2q2-5q+2=0⇒q=12或2,又因为{a n}是递增数列,所以q=2.14.D3等比数列{a n}的前n项和为S n,若S3+3S2=0,则公比q=________.14.-2设数列{a n}的公比为q.由S3+3S2=0,得4a1+4a2+a3=0,则4a1+4a1q+a1q2=0.显然a1≠0,所以4+4q+q2=0,解得q=-2.7.D3定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{a n},{f(a n)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=|x|;④f(x)=ln|x|.则其中是“保等比数列函数”的f(x)的序号为( )A.①②B.③④C.①③D.②④7.C不妨设x n =a n ,且{a n }是公比为q 的等比数列.对于①,由f (x )=x 2,得f x n f x n -1 = x 2n x 2n -1 = a 2n a 2n -1=⎝ ⎛⎭⎪⎫a n a n -12= q 2,所以①符合条件;对于②,由f (x )=2x ,得f x n f x n -1=2x n 2x n -1=2a n 2a n -1=2a n -a n -1,显然不符合条件;对于③,由f (x )=|x |,得f x n f x n -1=|x n ||x n -1|=|a n ||a n -1|=⎪⎪⎪⎪⎪⎪a n a n -1=|q |,符合条件;对于④,由f (x )=ln|x |,得f x n f x n -1=ln|x n |ln|x n -1|=ln|a n |ln|a n -1|,显然也不符合条件.故选C.12.D3 若等比数列{a n }满足a 2a 4=12,则a 1a 23a 5=________.12.14 根据等比数列的性质得:a 2a 4=a 1a 5=a 23,所以a 1a 23a 5=12×12=14. 16.D2、D3 已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1){a n }的通项公式;(2)记{a n }的前n 项和为S n ,若a 1,a k ,S k +2成等比数列,求正整数k 的值.16.解:(1)设数列{a n }的公差为d ,由题意知 ⎩⎪⎨⎪⎧2a 1+2d =8,2a 1+4d =12.解得a 1=2,d =2. 所以a n =a 1+(n -1)d =2+2(n -1)=2n . (2)由(1)可得S n =n a 1+a n2=n+2n2=n (n +1).因为a 1,a k ,S k +2成等比数列,所以a 2k =a 1S k +2. 从而(2k )2=2(k +2)(k +3),即k 2-5k -6=0, 解得k =6或k =-1(舍去).因此k =6.7.D3、B11 有一列正方体,棱长组成以1为首项、12为公比的等比数列,体积分别记为V 1,V 2,…,V n ,…,则lim n →∞(V 1+V 2+…+V n )=________.7.87考查等比数列和无穷递缩等比数列的极限,此题只要掌握极限公式即可解决,是简单题型.由已知可知V 1,V 2,V 3,…构成新的等比数列,首项V 1=1,公比q =18,由极限公式得lim n →∞ (V 1+V 2+…+V n )=V 11-q =11-18=87.17.C8、D3 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin B (tan A +tan C )=tan A tan C .(1)求证:a ,b ,c 成等比数列; (2)若a =1,c =2,求△ABC 的面积S .17.解:(1)证明:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C , 所以sin B ⎝ ⎛⎭⎪⎫sin A cos A +sin C cos C =sin A cos A ·sin Ccos C , 因此sin B (sin A cos C +cos A sin C )=sin A sin C , 所以sin B sin(A +C )=sin A sin C , 又A +B +C =π, 所以sin(A +C )=sin B , 因此sin 2B =sin A sin C ,由正弦定理得b 2=ac ,即a ,b ,c 成等比数列.(2)因为a =1,c =2,所以b =2,由余弦定理得cos B =a 2+c 2-b 22ac =12+22-22×1×2=34,因为0<B <π,所以sin B =1-cos 2B =74,故△ABC 的面积S =12ac sin B =12×1×2×74=74.20.D2、D3、D5 已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.20.解:(1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d , 由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+d a 1+2d =8,解得⎩⎪⎨⎪⎧a 1=2d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n =-4+3(n -1)=3n -7, 故a n =-3n +5,或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件. 故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3,记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7) =5+n -+n -2=32n 2-112n +10. 当n =2时,满足此式.综上,S n =⎩⎨⎧4,n =1,32n 2-112n +10,n >1.5.D3 公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=( ) A .1 B .2 C .4 D .85.A 设等比数列的公比为q ,则由等比中项的性质,得a 3 · a 11 = a 27 = 16,又因为数列{}a n 各项为正数,所以a 7=4.所以a 5q 2=4,即4a 5=4,解得a 5=1.13.D3 等比数列{a n }的前n 项和为S n ,公比不为1,若a 1=1,且对任意的n ∈N ,都有a n +2+a n +1-2a n =0,则S 5=________.13.11 设等比数列的公比为q ,则a 1q n +1+a 1q n -2a 1q n -1=0,∵a 1=1,q ≠0,∴q 2+q -2=0,解得q =-2或q =1(舍去),因此S 5=1--51--=11.6.D3、E1 已知{a n }为等比数列,下面结论中正确的是( ) A .a 1+a 3≥2a 2B .a 21+a 23≥2a 22C .若a 1=a 3,则a 1=a 2D .若a 3>a 1,则a 4>a 26.B 本题考查等比数列通项、简单不等式性质与均值不等式. 对于A 选项,当数列{a n }首项为负值,公比为负值时明显不成立,比如a n=(-1)n ,a 1+a 3=-2<2a 2=2,故A 错误;对于B 选项,a 21 + a 23 ≥2|a 1 a 3 | = 2a 22 ,明显成立,故B 正确;对于C 选项,由a 1=a 3=a 1q 2只能得出等比数列公比q 2=1,q =±1,当q =-1时,a 1≠a 2,故C 错误;对于选项D ,由a 3>a 1可得a 1(q 2-1)>0,而a 4-a 2=a 2(q 2-1)=a 1q (q 2-1)的符号还受到q 符号的影响,不一定为正,也就得不出a 4>a 2,故D 错误.17.D2、D3、K2 在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8,{a n }的前10项和S 10=55.(1)求a n 和b n ;(2)现分别从{a n }和{b n }的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.17.解:(1)设{a n }的公差为d ,{b n }的公比为q .依题意得S 10=10+10×92d =55,b 4=q 3=8, 解得d =1,q =2, 所以a n =n ,b n =2n -1.(2)分别从{a n },{b n }的前3项中各随机抽取一项,得到的基本事件有9个:(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).符合题意的基本事件有2个:(1,1),(2,2). 故所求的概率P =29.20.D3、D5 某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d 的值(用m 表示).20.解:(1)由题意得a 1=2000(1+50%)-d =3000-d ,a 2=a 1(1+50%)-d =32a 1-d =4500-52d . a n +1=a n (1+50%)-d =32a n -d .(2)由(1)得a n =32a n -1-d=32⎝ ⎛⎭⎪⎫32a n -2-d -d =⎝ ⎛⎭⎪⎫322a n -2-32d -d=…=⎝ ⎛⎭⎪⎫32n -1a 1-d ⎣⎢⎡⎦⎥⎤1+3+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -2.整理得a n =⎝ ⎛⎭⎪⎫32n -1(3000-d )-2d ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1-1=⎝ ⎛⎭⎪⎫32n -1(3000-3d )+2d . 由题意,a m =4000,即⎝ ⎛⎭⎪⎫32m -1(3000-3d )+2d =4000.解得d =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32m -2×1000⎝ ⎛⎭⎪⎫32m-1=m-2m +13m -2m.故该企业每年上缴资金d 的值为m-2m +13m -2m时,经过m (m ≥3)年企业的剩余资金为4000万元.D4 数列求和18.D4 若S n =sin π7+sin 2π7+…+sin n π7(n ∈N *),则在S 1,S 2,…,S 100中,正数的个数是( )A .16B .72C .86D .10018.C 考查三角函数的周期和数列求和,以及转化和整体思想,此题的关键是把一个周期看成一个整体来求和.函数f (n )=sin n π7的周期为14,所以S 14=S 28=…=S 98=0,又S 14=S 13,…,S 98=S 97,所以前100项求和中,为正数的有100-14=86个.11.D4 数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2 012等于( )A .1 006B .2 012C .503D .011.A 本题考查数列求和以及三角函数求值、数列的周期性等,突破点是找到该数列的周期性的规律,再求和.a 1=1cos π2=0,a 2=2cos π=-2, a 3=3cos 3π2=0,a 4=4cos2π=4; a 5=5cos 5π2=0,a 6=6cos3π=-6, a 7=7cos 7π2=0,a 8=8cos 8π2=8.该数列每四项的和为2,2 012 ÷4=503,所以S 2 012=2×503=1 006.6.D4 已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ) A .2n -1B.⎝ ⎛⎭⎪⎫32n -1C.⎝ ⎛⎭⎪⎫23n -1D.12n -16.B 本小题主要考查数列前n 项和S n 与通项a n 的关系,解题的突破口是用a n 表示S n .由S n =2a n +1=2(S n +1-S n )得S n +1=32S n ,所以{S n }是以S 1=a 1=1为首项,32为公比的等比数列,所以S n =⎝ ⎛⎭⎪⎫32n -1,故选B.12.D4、D5 数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ) A .3 690 B .3 660 C .1 845 D .1 83012.D 令b n =a 4n -3+a 4n -2+a 4n -1+a 4n , 则b n +1=a 4n +1+a 4n +2+a 4n +3+a 4n +4. 因为a n +1+(-1)n a n =2n -1, 所以a n +1=-(-1)n a n +2n -1. 所以a 4n -3=-a 4n -4+2(4n -4)-1,a 4n -2=a 4n -3+2(4n -3)-1, a 4n -1=-a 4n -2+2(4n -2)-1, a 4n =a 4n -1+2(4n -1)-1, a 4n +1=-a 4n +2×4n -1, a 4n +2=a 4n +1+2(4n +1)-1, a 4n +3=-a 4n +2+2(4n +2)-1,a 4n +4=a 4n +3+2(4n +3)-1,所以a 4n +4=a 4n +3+2(4n +3)-1=-a 4n +2+2(4n +2)-1+2(4n +3)-1 =-a 4n +1-2(4n +1)+1+2(4n +2)-1+2(4n +3)-1 =a 4n -2×4n +1-2(4n +1)+1+2(4n +2)-1+2(4n +3)-1 =a 4n +8, 即a 4n +4=a 4n +8.同理,a 4n +3=a 4n -1,a 4n +2=a 4n -2+8,a 4n +1=a 4n -3.所以a 4n +1+a 4n +2+a 4n +3+a 4n +4=a 4n +a 4n -1+a 4n -2+a 4n -3+16. 即b n +1=b n +16.故数列{b n }是等差数列. 又a 2-a 1=2×1-1,①a 3+a 2=2×2-1,② a 4-a 3=2×3-1,③②-①得a 3+a 1=2;②+③得a 2+a 4=8, 所以a 1+a 2+a 3+a 4=10,即b 1=10.所以数列{a n }的前60项和即为数列{b n }的前15项和,即S 15=10×15+15×142×16=1830.故选D.20.B3、D4、M4 设A 是如下形式的2行3列的数表,满足性质P :a ,b ,c ,d ,c +d +e +f =0.记r i (A )为A 的第i 行各数之和(i =1,2),c j (A )为A 的第j 列各数之和(j =1,2,3); 记k (A )为|r 1(A )|,|r 2(A )|,|c 1(A )|,|c 2(A )|,|c 3(A )|中的最小值. (1)对如下数表A ,求k (A )的值;(2)设数表A形如其中-1≤d≤0,求k(A)(3)对所有满足性质P的2行3列的数表A,求k(A)的最大值.20.解:(1)因为r1(A)=1.2,r2(A)=-1.2,c1(A)=1.1,c2(A)=0.7,c3(A)=-1.8,所以k(A)=0.7.(2)r1(A)=1-2d,r2(A)=-1+2d,c(A)=c2(A)=1+d,c3(A)=-2-2d.1因为-1≤d≤0,所以|r1(A)|=|r2(A)|≥1+d≥0,|c3(A)|≥1+d≥0.所以k(A)=1+d≤1.当d=0时,k(A)取得最大值1.(3)任给满足性质P的数表A(如下所示).任意改变A数表A*仍满足性质P,并且k(A)=k(A*).因此,不妨设r1(A)≥0,c1(A)≥0,c2(A)≥0.由k(A)的定义知,k(A)≤r(A),k(A)≤c1(A),k(A)≤c2(A).1从而3k(A)≤r1(A)+c1(A)+c2(A)=(a+b+c)+(a+d)+(b+e)=(a+b+c+d+e+f)+(a+b-f)=a+b-f≤3.所以k(A)≤1.由(2)知,存在满足性质P的数表A使k(A)=1.故k(A)的最大值为1.19.D2、D4已知数列{a n}的前n项和为S n,且S n=2n2+n,n∈N*,数列{b n}满足a n=4log2b n+3,n∈N*.(1)求a n,b n;(2)求数列{a n·b n}的前n项和T n.19.解:(1)由S n=2n2+n得当n=1时,a1=S1=3;当n≥2时,a n=S n-S n-1=4n-1,当n=1时,也符合所以a n=4n-1,n∈N*,由4n-1=a n=4log2b n+3得bn=2n-1,n∈N*.(2)由(1)知a n bn=(4n-1)·2n-1,n∈N*,所以T n=3+7×2+11×22+…+(4n-1)·2n-1,2T n=3×2+7×22+…+(4n-5)·2n-1+(4n-1)·2n,所以2T n-T n=(4n-1)2n-=(4n-5)2n+5,故T n=(4n-5)2n+5,n∈N*.D5 单元综合20.D5 已知数列{a n }的前n 项和为S n ,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100.当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大?20.解:(1)取n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0. 若a 1=0,则S n =0.当n ≥2时,a n =S n -S n -1=0-0=0,所以a n =0(n ≥1). 若a 1≠0,则a 1=2λ.当n ≥2时,2a n =2λ+S n,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n ,所以a n =2a n -1(n ≥2),从而数列{a n }是等比数列, 所以a n =a 1·2n -1=2λ·2n -1=2nλ.综上,当a 1=0时,a n =0;当a 1≠0时,a n =2nλ.(2)当a 1>0且λ=100时,令b n =lg 1a n ,由(1)有,b n =lg 1002n =2-n lg2.所以数列{b n }是单调递减的等差数列(公差为-lg2). b 1>b 2>…>b 6=lg 10026=lg 10064>lg1=0,当n ≥7时,b n ≤b 7=lg 10027=lg 100128<lg1=0,故数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项的和最大.20.D5 已知各项均为正数的两个数列{a n }和{b n }满足:a n +1=a n +b na 2n +b 2n,n ∈N *.(1)设b n +1=1+b n a n ,n ∈N *,求证:数列⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫b n a n 2是等差数列;(2)设b n +1=2·b na n,n ∈N *,且{a n }是等比数列,求a 1和b 1的值.20.解:(1)由题设知a n +1=a n +b n a 2n +b 2n=1+b n a n 1+⎝ ⎛⎭⎪⎫b n a n 2=b n +11+⎝ ⎛⎭⎪⎫b n a n 2,所以b n +1a n +1=1+⎝ ⎛⎭⎪⎫b n a n 2,从而⎝ ⎛⎭⎪⎫b n +1a n +12-⎝ ⎛⎭⎪⎫b n a n 2=1(n ∈N *), 所以数列⎩⎨⎧⎭⎬⎫⎝ ⎛⎭⎪⎫b n a n 2是以1为公差的等差数列.(2)因为a n >0,b n >0,所以a n +b n22≤a 2n +b 2n <(a n +b n )2,从而1<a n +1=a n +b na 2n +b 2n≤ 2. (*)设等比数列{a n }的公比为q ,由a n >0知q >0.下证q =1.若q >1,则a 1=a 2q <a 2≤2,故当n >log q 2a 1时,a n +1=a 1q n >2,与(*)矛盾;若0<q <1,则a 1=a 2q >a 2>1,故当n >log q 1a 1时,a n +1=a 1q n <1,与(*)矛盾.综上,q =1,故a n =a 1(n ∈N *),所以1<a 1≤ 2.又b n +1=2·b n a n =2a 1·b n (n ∈N *),所以{b n }是公比为2a 1的等比数列.若a 1≠2,则2a 1>1,于是b 1<b 2<b 3.又由a 1=a 1+b na 21+b 2n 得b n =a 1±a 212-a 21a 21-1, 所以b 1,b 2,b 3中至少有两项相同,矛盾.所以a 1=2,从而b n =a 1±a 212-a 21a 21-1= 2.所以a 1=b 1= 2. 17.D5 已知数列{a n }的前n 项和S n =kc n -k (其中c ,k 为常数),且a 2=4,a 6=8a 3.(1)求a n ;(2)求数列{na n }的前n 项和T n .17.解:(1)由S n =kc n -k ,得a n =S n -S n -1=kc n -kc n -1(n ≥2), 由a 2=4,a 6=8a 3,得kc (c -1)=4,kc 5(c -1)=8kc 2(c -1),解得⎩⎪⎨⎪⎧c =2,k =2,所以a 1=S 1=2,a n =kc n -kc n -1=2n (n ≥2),于是a n =2n .(2)T n =∑ni =1ia i =∑ni =1i ·2i ,即T n =2+2·22+3·23+4·24+…+n ·2nT n =2T n -T n =-2-22-23-24-…-2n +n ·2n +1=-2n +1+2+n ·2n +1 =(n -1)2n +1+2.19.D5 设数列{a n }的前n 项和为S n ,数列{S n }的前n 项和为T n ,满足T n =2S n -n 2,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式.19.解:(1)由题意有S 1=T 1=2S 1-1. 故a 1=2a 1-1. 于是a 1=1. (2)由T n =2S n -n 2得T n -1=2S n -1-(n -1)2,n ≥2.从而S n =T n -T n -1=2a n -(2n -1),n ≥2. 由于a 1=S 1=1,故对一切正整数n 都有S n =2a n -(2n -1),①因此S n -1=2a n -1-(2n -3),n ≥2.② ①-②得a n =2(a n -a n -1)-2,n ≥2. 于是a n =2a n -1+2, 故a n +2=2(a n -1+2),n ≥2. ∵a 1+2=3,∴{a n +2}是以3为首项,2为公比的等比数列. ∴a n =3·2n -1-2.18.D5 已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3;(2)求{a n }的通项公式.18.解:(1)由S 2=43a 2得3(a 1+a 2)=4a 2,解得a 2=3a 1=3;由S 3=53a 3得3(a 1+a 2+a 3)=5a 3,解得a 3=32(a 1+a 2)=6.(2)由题设知a 1=1. 当n >1时有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1.于是a 1=1, a 2=31a 1,a 3=42a 2,……a n -1=n n -2a n -2,a n =n +1n -1a n -1.将以上n 个等式两端分别相乘,整理得a n =n n +2.综上,{a n }的通项公式a n =n n +2.22.B14、E9、J3、D5 已知a 为正实数,n 为自然数,抛物线y =-x 2+a n2与x 轴正半轴相交于点A .设f (n )为该抛物线在点A 处的切线在y 轴上的截距.(1)用a 和n 表示f (n );(2)求对所有n 都有f n -1f n +1≥nn +1成立的a 的最小值;(3)当0<a <1时,比较1f-f+1f-f+…+1f n -f n与6·f -f n +f-f的大小,并说明理由.22.解:(1)由已知得,交点A 的坐标为⎝⎛⎭⎪⎫a n2,0,对y =-x 2+12a n求导得y ′=-2x ,则拋物线在点A 处的切线方程为y =-2a n⎝⎛⎭⎪⎫x -a n 2,即y =-2a n x +a n .则f (n )=a n .(2)由(1)知f (n )=a n,则f n -1f n +1≥nn +1成立的充要条件是a n ≥2n +1.即知,a n ≥2n +1对所有n 成立.特别地,取n =1得到a ≥3.当a =3,n ≥1时,a n =3n =(1+2)n =1+C 1n ·2+…≥2n +1. 当n =0时,a n =2n +1.故a =3时,f n -1f n +1≥nn +1对所有自然数n 均成立.所以满足条件的a 的最小值为3. (3)由(1)知f (k )=a k . 下面证明:1f-f+1f-f+…+1f n-fn>6·f -f n +f-f.首先证明:当0<x <1时,1x -x 2>6x .设函数g (x )=6x (x 2-x )+1,0<x <1. 则g ′(x )=18x ⎝ ⎛⎭⎪⎫x -23.当0<x <23时,g ′(x )<0;当23<x <1时,g ′(x )>0.故g (x )在区间(0,1)上的最小值g (x )min =g ⎝ ⎛⎭⎪⎫23=19>0.所以,当0<x <1时,g (x )>0,即得1x -x 2>6x .由0<a <1知0<a k<1(k ∈N *),因此1a k -a2k >6a k ,从而1f -f+1f-f+…+1f n-fn=1a -a 2+1a 2-a 4+…+1a n -a2n >6(a +a 2+…+a n) =6·a -a n +11-a=6·f -f n +f -f.23.D5、M2 对于项数为m 的有穷数列{a n },记b k =max{a 1,a 2,…,a k }(k =1,2,…,m ),即b k 为a 1,a 2,…,a k 中的最大值,并称数列{b n }是{a n }的控制数列.如1,3,2,5,5的控制数列是1,3,3,5,5.(1)若各项均为正整数的数列{a n }的控制数列为2,3,4,5,5,写出所有的{a n }; (2)设{b n }是{a n }的控制数列,满足a k +b m -k +1=C (C 为常数,k =1,2,…,m ),求证:b k =a k (k =1,2,…,m );(3)设m =100,常数a ∈⎝ ⎛⎭⎪⎫12,1.若a n =an 2-(-1)n n +2n ,{b n }是{a n }的控制数列,求(b 1-a 1)+(b 2-a 2)+…+(b 100-a 100).23.解:(1)数列{a n }为:2,3,4,5,1或2,3,4,5,2或2,3,4,5,3或2,3,4,5,4或2,3,4,5,5. (2)因为b k =max{a 1,a 2,…,a k },b k +1=max{a 1,a 2,…,a k ,a k +1}, 所以b k +1≥b k .因为a k +b m -k +1=C ,a k +1+b m -k =C , 所以a k +1-a k =b m -k +1-b m -k ≥0,即a k +1≥a k . 因此,b k =a k .(3)对k =1,2, (25)a 4k -3=a (4k -3)2+(4k -3); a 4k -2=a (4k -2)2+(4k -2); a 4k -1=a (4k -1)2-(4k -1); a 4k =a (4k )2-(4k ).比较大小,可得a 4k -2>a 4k -3.因为12<a <1,所以a 4k -1-a 4k -2=(a -1)(8k -3)<0,即a 4k -2>a 4k -1.a 4k -a 4k -2=2(2a -1)(4k -1)>0,即a 4k >a 4k -2. 又a 4k >a 4k -1.从而b 4k -3=a 4k -3,b 4k -2=a 4k -2,b 4k -1=a 4k -2,b 4k =a 4k . 因此(b 1-a 1)+(b 2-a 2)+…+(b 100-a 100)=(a 2-a 3)+(a 6-a 7)+…+(a 98-a 99)=∑k =125(a 4k -2-a 4k -1)=(1-a )∑k =125(8k -3)=2525(1-a ).18.D5 已知{a n }是等差数列,其前n 项和为S n ,{b n }是等比数列,且a 1=b 1=2,a 4+b 4=27,S 4-b 4=10.(1)求数列{a n }与{b n }的通项公式;(2)记T n =a 1b 1+a 2b 2+…+a n b n ,n ∈N *,证明T n -8=a n -1b n +1(n ∈N *,n >2).18.解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .由a 1=b 1=2,得a 4=2+3d ,b 4=2q 3,S 4=8+6d ,由条件,得方程组⎩⎪⎨⎪⎧2+3d +2q 3=27,8+6d -2q 3=10,解得⎩⎪⎨⎪⎧d =3,q =2,所以a n =3n -1,b n =2n ,n ∈N *. (2)证明:由(1)得T n =2×2+5×22+8×23+…+(3n -1)×2n ,① 2T n =2×22+5×23+…+(3n -4)×2n +(3n -1)×2n +1.② 由①-②,得-T n =2×2+3×22+3×23+…+3×2n -(3n -1)×2n +1 =-2n1-2-(3n -1)×2n +1-2=-(3n -4)×2n +1-8, 即T n -8=(3n -4)×2n +1,而当n >2时,a n -1b n +1=(3n -4)×2n +1,所以,T n -8=a n -1b n +1,n ∈N *,n >2. 16.D2、D5 已知等比数列{a n }的公比q =-12.(1)若a 3=14,求数列{a n }的前n 项和;(2)证明:对任意k ∈N +,a k ,a k +2,a k +1成等差数列. 16.解:(1)由a 3=a 1q 2=14及q =-12,得a 1=1,所以数列{a n }的前n 项和S n =1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=2+⎝ ⎛⎭⎪⎫-12n -13.(2)证明:对任意k ∈N +,2a k +2-(a k +a k +1)=2a 1q k +1-(a 1q k -1+a 1q k )=a 1q k -1(2q 2-q -1), 由q =-12得2q 2-q -1=0,故2a k +2-(a k +a k +1)=0.所以,对任意k ∈N +,a k ,a k +2,a k +1成等差数列.12.D4、D5 数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为( ) A .3 690 B .3 660 C .1 845 D .1 83012.D 令b n =a 4n -3+a 4n -2+a 4n -1+a 4n , 则b n +1=a 4n +1+a 4n +2+a 4n +3+a 4n +4. 因为a n +1+(-1)n a n =2n -1, 所以a n +1=-(-1)n a n +2n -1. 所以a 4n -3=-a 4n -4+2(4n -4)-1,a 4n -2=a 4n -3+2(4n -3)-1, a 4n -1=-a 4n -2+2(4n -2)-1, a 4n =a 4n -1+2(4n -1)-1, a 4n +1=-a 4n +2×4n -1,a 4n +2=a 4n +1+2(4n +1)-1, a 4n +3=-a 4n +2+2(4n +2)-1, a 4n +4=a 4n +3+2(4n +3)-1,所以a 4n +4=a 4n +3+2(4n +3)-1=-a 4n +2+2(4n +2)-1+2(4n +3)-1 =-a 4n +1-2(4n +1)+1+2(4n +2)-1+2(4n +3)-1 =a 4n -2×4n +1-2(4n +1)+1+2(4n +2)-1+2(4n +3)-1 =a 4n +8, 即a 4n +4=a 4n +8.同理,a 4n +3=a 4n -1,a 4n +2=a 4n -2+8,a 4n +1=a 4n -3.所以a 4n +1+a 4n +2+a 4n +3+a 4n +4=a 4n +a 4n -1+a 4n -2+a 4n -3+16. 即b n +1=b n +16.故数列{b n }是等差数列. 又a 2-a 1=2×1-1,①a 3+a 2=2×2-1,② a 4-a 3=2×3-1,③②-①得a 3+a 1=2;②+③得a 2+a 4=8, 所以a 1+a 2+a 3+a 4=10,即b 1=10.所以数列{a n }的前60项和即为数列{b n }的前15项和,即S 15=10×15+15×142×16=1830.故选D.20.D2、D3、D5 已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.20.解:(1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d , 由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+d a 1+2d =8,解得⎩⎪⎨⎪⎧a 1=2d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n =-4+3(n -1)=3n -7, 故a n =-3n +5,或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件. 故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3,记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7) =5+n -+n -2=32n 2-112n +10. 当n =2时,满足此式.综上,S n =⎩⎨⎧4,n =1,32n 2-112n +10,n >1.20.D3、D5 某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了50%.预计以后每年资金增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金d 万元,并将剩余资金全部投入下一年生产.设第n 年年底企业上缴资金后的剩余资金为a n 万元.(1)用d 表示a 1,a 2,并写出a n +1与a n 的关系式;(2)若公司希望经过m (m ≥3)年使企业的剩余资金为4000万元,试确定企业每年上缴资金d 的值(用m 表示).20.解:(1)由题意得a 1=2000(1+50%)-d =3000-d , a 2=a 1(1+50%)-d =32a 1-d =4500-52d .a n +1=a n (1+50%)-d =32a n -d . (2)由(1)得a n =32a n -1-d =32⎝ ⎛⎭⎪⎫32a n -2-d -d =⎝ ⎛⎭⎪⎫322a n -2-32d -d =…=⎝ ⎛⎭⎪⎫32n -1a 1-d ⎣⎢⎡⎦⎥⎤1+3+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -2. 整理得a n =⎝ ⎛⎭⎪⎫32n -1(3000-d )-2d ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32n -1-1 =⎝ ⎛⎭⎪⎫32n -1(3000-3d )+2d . 由题意,a m =4000,即⎝ ⎛⎭⎪⎫32m -1(3000-3d )+2d =4000. 解得d =⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫32m -2×1000⎝ ⎛⎭⎪⎫32m -1=m -2m +13m -2m . 故该企业每年上缴资金d 的值为m -2m +13m -2m 时,经过m (m ≥3)年企业的剩余资金为4000万元.。
2018届高考数学一轮复习精选试题:数列(选择与填空) 含答案
数列01一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设等差数列{}n a 的公差d ≠0,14a d =.若k a 是1a 与2k a 的等比中项,则k =( )A . 3或-1B . 3或1C . 3D . 1【答案】C2.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列, 则n S 等于( )A . 122n +-B .3nC .2nD .31n -。
【答案】C3.数列{a n }中,a n+1=n n a a 31+,a 1=2,则a 4为( ) A . 78B .58C .516D .192 【答案】D4.已知数列{}n a 满足:11a =,212a =,且2121n n n n a a a a +++=+ (n ∈N *),则下图中第9行所有数的和为( )A . 90B . 9!C . 1022D . 1024【答案】C5.在各项均不为零的等差数列{}n a 中,若2110n nn a a a +--+=(2)n ≥,则214n S n --=( )A .0B .2-C .1D .2【答案】B6.在等比数列{}n a 中,21=a ,前n 项和为n S .若数列{}1+n a 也成等比数列,则n S 等于( )A .221-+nB .n 3C . n 2D .13-n 【答案】C7.等差数列{}n a 中,652,30,a S ==则8S =( )A .31B .32C .33D .34 【答案】B8.在数列{ }中,已知 =1, =5,= - (n ∈N ※),则 等于( ) A . -4B . -5C . 4D . 5【答案】D9.等差数列{n a }中, 若34567450a a a a a ++++=,则28a a +等于( )A . 45B . 75C . 180D . 320【答案】C10.已知}{n a 为等差数列,105531=++a a a ,99642=++a a a ,以n S 表示}{n a 的前n 项和,则使得n S 达到最大值的n 是( )A .21B .20C .19D .18【答案】B11.已知{}n a 为等差数列,105531=++a a a ,99642=++a a a ,则20a 等于( )A .-1B .1C .3D . 7 【答案】B12.已知等差数列满足,,则它的前10项的和( )A .138B .135C .95D .23【答案】C二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.数列{a n }的通项公式为a n =1n +n +1,其前n 项之和为10,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为____________.【答案】120-14.等比数列{a n }的前n 项和为S n ,公比不为1。
2018版高考数学人教A版理一轮复习真题集训第六章数列61和答案
课外拓展阅读由递推公式求通项的常用方法和技巧递推数列是高考考查的热点,由递推公式求通项时,一般需要先对递推公式进行变形,然后利用转化与化归的思想解决递推数列问题.下面给出几种常见的递推数列,并讨论其通项公式的求法.类型1 a n+1=a n+f(n)把原递推公式转化为a n+1-a n=f(n),再利用累加法(逐差相加法)求解.已知数列{a n}中,a1=2,a n+1=a n+n+1,求数列{a n}的通项公式.因为a1=2,a n+1-a n=n+1,所以a n-a n-1=(n-1)+1,an-1-a n-2=(n-2)+1,a n-2-a n-3=(n-3)+1,…a2-a1=1+1,由已知,a1=2=1+1,将以上各式相加,得an=+n+1=n-n-+1]2+n+1=n n-2+n+1=n n+2+1.类型2 a n+1=f(n)a n把原递推公式转化为an+1an=f(n),再利用累乘法(逐商相乘法)求解.已知数列{a n}满足a1=23,a n+1=nn+1·a n,求数列{a n}的通项公式.由a n+1=nn+1·a n,得an+1an=nn+1.当n≥2,n∈N*时,a n=anan-1·an-1an-2·…·a2a1·a1=n-1n·n-2n-1·…·12·23=23n,即a n=23n .又当n=1时,23×1=23=a1,故a n=23n.类型3 a n+1=pa n+q先用待定系数法把原递推公式转化为a n+1-t=p(a n-t),其中t=q1-p,再利用换元法转化为等比数列求解.已知数列{a n}中,a1=1,a n+1=2a n+3,求数列{a n}的通项公式.设递推公式a n +1=2a n +3可以转化为a n +1-t =2(a n -t ), 即a n +1=2a n -t ,解得t =-3. 故a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2. 所以{b n }是以4为首项,以2为公比的等比数列. 所以b n =4×2n -1=2n +1, 即a n =2n +1-3. 类型4 a n +1=pa n +q n(1)一般地,要先在递推公式两边同除以q n +1,得a n +1q n +1=p q ·a n q n +1q,引入辅助数列{b n }⎝⎛⎭⎪⎫其中b n =a n q n ,得b n +1=p q ·b n +1q ,再用待定系数法解决;(2)也可在原递推公式两边同除以pn +1,得a n +1p n +1=a n p n +1p ⎝ ⎛⎭⎪⎫q p n,引入辅助数列{b n }⎝⎛⎭⎪⎫其中b n =a n p n ,得b n +1-b n =1p ⎝ ⎛⎭⎪⎫q p n ,再利用累加法(逐差相加法)求解.已知数列{a n }中,a 1=56,a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1,求数列{a n }的通项公式.解法一:将a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1两边分别乘以2n +1,得2n +1a n +1=23(2n a n )+1.令b n =2na n ,则b n +1=⎝ ⎛⎭⎪⎫23b n +1,根据待定系数法,得b n +1-3=23(b n -3).所以数列{b n -3}是首项为b 1-3=2×56-3=-43,公比为23的等比数列.所以b n -3=-43·⎝ ⎛⎭⎪⎫23n -1,即b n =3-2·⎝ ⎛⎭⎪⎫23n.于是,a n =b n 2n =32n -23n .解法二:将a n +1=13a n +⎝ ⎛⎭⎪⎫12n +1两边分别乘以3n +1,得3n +1a n +1=3na n +⎝ ⎛⎭⎪⎫32n +1.令b n =3n a n ,则b n +1=b n +32n +1, 所以b n -b n -1=⎝ ⎛⎭⎪⎫32n ,b n -1-b n -2=⎝ ⎛⎭⎪⎫32n -1,…,b 2-b 1=⎝ ⎛⎭⎪⎫322.将以上各式叠加,得b n -b 1=⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -1+⎝ ⎛⎭⎪⎫32n , 又b 1=3a 1=3×56=52=1+32,所以b n =1+32+⎝ ⎛⎭⎪⎫322+…+⎝ ⎛⎭⎪⎫32n -1+⎝ ⎛⎭⎪⎫32n =1·⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫32n +11-32=2·⎝ ⎛⎭⎪⎫32n +1-2,即b n =2·⎝ ⎛⎭⎪⎫32n +1-2.故a n =b n 3n =32n -23n .类型5 a n +1=pa n +an +b (p ≠1,p ≠0,a ≠0)这种类型的题目一般是利用待定系数法构造等比数列,即令a n +1+x (n +1)+y =p (a n +xn +y ),然后与已知递推式比较,解出x ,y ,从而得到{a n +xn +y }是公比为p 的等比数列.设数列{a n }满足a 1=4,a n =3a n -1+2n -1(n ≥2),求数列{a n }的通项公式.a n =3a n -1+2n -1→利用待定系数法得到一个等比数列→ 利用等比数列的知识可解 设递推公式可以转化为a n +An +B =3,化简后与原递推式比较,得 ⎩⎨⎧2A =2,2B -3A =-1,解得⎩⎨⎧A =1,B =1.则a n +n +1=3. 令b n =a n +n +1,(*) 则b n =3b n -1,又b 1=6,故b n =6·3n -1=2·3n , 代入(*),得a n =2·3n -n -1. 类型6 a n +1=pa r n (p >0,a n >0)这种类型的题目一般是将等式两边取对数后转化为a n +1=pa n +q 型,再利用待定系数法求解.已知数列{a n }中,a 1=1,a n +1=1m·a 2n (m >0),求数列{a n }的通项公式.对a n +1=1m·a 2n 两边取对数,得lg a n +1=2lg a n +lg 1m.令b n =lg a n ,则b n +1=2b n +lg 1m.因此得b n +1+lg 1m =2⎝⎛⎭⎪⎫b n +lg 1m ,记c n =b n +lg 1m,则c n +1=2c n .所以数列{c n }是首项c 1=b 1+lg 1m =lg 1m,公比为2的等比数列.所以c n =2n -1·lg 1m.所以b n =c n -lg 1m =2n -1·lg 1m -lg 1m =lg ⎣⎢⎡⎦⎥⎤m ·⎝ ⎛⎭⎪⎫1m 2n -1,即lg a n =lg ⎣⎢⎡⎦⎥⎤m ·⎝ ⎛⎭⎪⎫1m 2n -1,所以a n =m ·⎝ ⎛⎭⎪⎫1m 2n -1.类型7 a n +1=pa nqa n +r(p ,q ,r ≠0且a n ≠0,qa n +r ≠0) 这种类型的题目一般是将等式两边取倒数后,再进一步处理.若p =r ,则有1a n +1=r +qa n pa n =1a n +qp ,此时⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 为等差数列.若p ≠r ,则有1a n +1=r p ·1a n +qp,此时可转化为类型3来处理.已知数列{a n }中,a 1=1,a n +1=2a na n +2,求数列{a n }的通项公式.因为a n +1=2a na n +2,a 1=1, 所以a n ≠0, 所以1a n +1=1a n +12, 即1a n +1-1a n =12. 又a 1=1,则1a 1=1,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是以1为首项,以12为公差的等差数列.所以1a n =1a 1+(n -1)×12=n +12,所以a n =2n +1(n ∈N *). 类型8 a n +1+a n =f (n )将原递推关系改写成a n +2+a n +1=f (n +1),两式相减即得a n +2-a n =f (n +1)-f (n ),然后将n 按奇数、偶数分类讨论即可.已知数列{a n }中,a 1=1,a n +1+a n =2n ,求数列{a n }的通项公式.因为a n +1+a n =2n ,所以a n +2+a n +1=2n +2,故a n +2-a n =2,即数列{a n }是奇数项与偶数项都是公差为2的等差数列. 当n 为偶数时,a 2=1, 故a n =a 2+2⎝ ⎛⎭⎪⎫n 2-1=n -1.当n 为奇数时,因为a n +1+a n =2n ,a n +1=n (n +1为偶数),故a n =n . 综上知,a n =⎩⎨⎧n ,n 为奇数,n -1,n 为偶数,n ≥1,n ∈N *.类型9 a n +1·a n =f (n )将原递推关系改写成a n +2·a n +1=f (n +1),两式作商可得a n +2a n =f n +f n,然后将n 按奇数、偶数分类讨论即可.已知数列{a n }中,a 1=3,a n +1·a n =2n ,求数列{a n }的通项公式.因为a n +1·a n =2n , 所以a n +2·a n +1=2n +1,故a n +2a n=2, 即数列{a n }是奇数项与偶数项都是公比为2的等比数列.当n 为偶数时,a 2=23,故a n =a 2·2n2-1=23·2n2-1 ,即a n =13·2n2;当n 为奇数时,n +1为偶数,故a n +1=13·2n2+1 ,代入a n +1·a n =2n,得a n =3·2n2-1 .综上知,a n=⎩⎪⎨⎪⎧3·2n2-1 ,n 为奇数,13·2 n2 ,n 为偶数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学第一轮复习精品试题:数列(附参考答案)
第2章 数列
§2.1数列的概念与简单表示
重难点:理解数列的概念,认识数列是反映自然规律的基本数学模型,探索并掌握数列的几种间单的表示法(列表、图象、通项公式);了解数列是一种特殊的函数;发现数列规律找出可能的通项公式. 考纲要求:①了解数列的概念和几种简单的表示方法(列表、图像、通项公式).
②了解数列是自变量巍峨正整数的一类函数.
经典例题:假设你正在某公司打工,根据表现,老板给你两个加薪的方案:(Ⅰ)每年年末加1000元;(Ⅱ)每半年结束时加300元。
请你选择:(1)如果在该公司干10年,问两种方案各加薪多少元? (2)对于你而言,你会选择其中的哪一种?
当堂练习:
1. 下列说法中,正确的是 ( )
A .数列1,2,3与数列3,2,1是同一个数列.
B .数列l, 2,3与数列1,2,3,4是同一个数列.
C .数列1,2,3,4,…的一个通项公式是an=n.
D .以上说法均不正确. 2巳知数列{ an}的首项a1=1,且an +1=2 an +1,(n ≥2),则a5为 ( )
A .7.
B .15
C .30
D .31.
3.数列{ an}的前n 项和为Sn=2n2+1,则a1,a5的值依次为 ( )
A .2,14
B .2,18
C .3,4.
D .3,18.
4.已知数列{ an}的前n 项和为Sn=4n2 -n +2,则该数列的通项公式为 ( )
A . an=8n +5(n ∈N*)
B . an=8n -5(n ∈N*)
C . an=8n +5(n ≥2)
D . ⎪⎩⎪⎨⎧∈≥-==),2(58)1(5+n N n n n n a
5.已知数列{ an}的前n 项和公式Sn=n2+2n +5,则a6+a7+a8= ( )
A .40.
B .45
C .50
D .55.
6.若数列}{n a 前8项的值各异,且
n 8n a a =+对任意的*N n ∈都成立,则下列数列中可取遍}{n a 前8项值的数列为
( )
A.}{12+k a
B.}{13+k a
C.}{14+k a
D.}{16+k a 7.在数列{ an}中,已知an=2,an= an +2n ,则a4 +a6 +a8的值为 .
8.已知数列{ an}满足a1=1 , an +1=c an +b, 且a2 =3,a4=15,则常数c,b 的值为 .
9.已知数列{ an}的前n 项和公式Sn=n2+2n +5,则a6+a7+a8= .
10.设{}n a 是首项为1的正项数列,且()01122
1=+-+++n n n n a a na a n (n =1,2,3,…),则它的通项公式是n a =________.
11. 下面分别是数列{ an}的前n 项和an 的公式,求数列{ an}的通项公式:
(1)Sn=2n2-3n ; (2)Sn=3n-2
12. 已知数列{ an}中a1=1,
n n a n n a 11+=+ (1)写出数列的前5项;(2)猜想数列的通项公式.
13. 已知数列{ an}满足a1=0,an +1+Sn=n2+2n(n ∈N*),其中Sn 为{ an}的前n 项和,求此数列的通项公式.
14. 已知数列{ an}的通项公式an 与前n 项和公式Sn 之间满足关系Sn=2-3an
(1)求a1;
(2)求an 与an (n ≥2,n ∈N*)的递推关系;
(3)求Sn 与Sn (n ≥2,n ∈N*)的递推关系,
第2章 数列
§2.2等差数列、等比数列
重难点:理解等差数列、等比数列的概念,掌握等差数列、等比数列的通项公式与前n 项和公式,能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.
考纲要求:①理解等差数列、等比数列的概念.
②掌握等差数列、等比数列的通项公式与前n 项和公式.
③能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.
④了解等差数列与一次函数、等比数列与指数函数的关系.
经典例题:已知一个数列{an}的各项是1或3.首项为1,且在第k 个1和第k+1个1之间有2k-1个3,即1,3,1,3,3,3,1,3,3,3,3,3,1,…,记该数列的前n 项的和为Sn .
(1)试问第2006个1为该数列的第几项?
(2)求a2006;
(3)求该数列的前2006项的和S2006;
当堂练习:
1,…则是该数列的( )
A .第6项
B .第7项
C .第10项
D .第11项
2.方程2640x x -+=的两根的等比中项是( )。