概率统计练习4

合集下载

小学一年级概率与统计练习题

小学一年级概率与统计练习题

小学一年级概率与统计练习题一、选择题1. 小明从一副扑克牌中随机抽取一张牌,那么他抽到红心的概率是()。

A. 1/4B. 1/2C. 3/4D. 12. 在一桶装有20个红球和10个蓝球的桶中,小红随机抽取一个球,那么她抽到红球的概率是()。

A. 1/3B. 2/3C. 1/2D. 2/53. 小明投掷一枚硬币,正面朝上的概率是()。

A. 1/2B. 1/3C. 2/3D. 1/44. 小明家中有3个篮球、2个足球和4个乒乓球,如果小明随机选取一个球,那么他选到篮球的概率是()。

A. 1/9B. 1/2C. 3/9D. 1/35. 在一组骰子中,小红摇出的点数是奇数的概率是()。

A. 1/2B. 2/3C. 1/3D. 1/6二、填空题1. 一副牌中共有52张牌,其中黑桃的数量是__张。

2. 一组骰子有6个面,那么小明摇出的点数是质数的概率是__。

3. 小红有10个苹果,其中5个是红色的,小红随机选一个苹果,选到红色苹果的概率是__。

4. 一个篮子中有6个苹果和4个橘子,那么小明随机选一个水果,选到橘子的概率是__。

5. 卡片上有1、2、3、4、5这5个数,小红随机选一张卡片,选到的数为偶数的概率是__。

三、计算题1. 一组骰子有6个面,小明同时抛掷三个骰子,求出他抛出的点数之和为10的概率。

2. 一副扑克牌中有52张牌,其中红心和黑桃各有13张,方块和草花各有13张。

小红随机从扑克牌中抽取一张,求出她抽到黑桃或梅花的概率。

3. 一桶装有6个苹果和4个橘子,小明随机选两个水果,求出他选到2个苹果的概率。

4. 小明的书包里有3个相同的铅笔和4个相同的橡皮擦,小明随机从书包中取出两个物品,求出他取出两个橡皮擦的概率。

5. 小红有6件衣服,其中有2件红色的,小明随机从小红的衣柜中选一件衣服,结果发现选到红色衣服的概率为1/3,求出小红衣柜中共有多少件衣服。

以上是关于小学一年级概率与统计的练习题,希望对孩子们的数学学习有所帮助。

[考研数学]概率论考试复习题

[考研数学]概率论考试复习题

概率论与数理统计练习1一、选择题:1、设随机事件A 与B 满足A B ⊃,则( )成立。

A.()()P A B P A +=B.()()P AB P A =C.()()P B A P B =D.()()()P B A P B P A -=-2、甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,则目标被击中的概率为( B )。

A.0.5B.0.8C.0.55D.0.63、连续型随机变量X 的密度函数()f x 必满足条件( D )。

A.0()1f x ≤≤B.()f x 为偶函数C.()f x 单调不减D. ()1f x dx +∞-∞=⎰4、设12,,,n X X X 是来自正态总体2(,)N μσ 的样本,则22μσ+的矩估计量是( D )。

A. 211()n i i X X n =-∑ B. 211()1n i i X X n =--∑ C. 221()n i i X n X =-∑ D. 211n i i X n =∑ 5、设总体(,1)X N μ ,123,,X X X 为总体X 的一个样本,若^1231123X X CX μ=++为未知参数μ的无偏估计量,则常数C =( ) A.12 B. 13 C. 15 D. 16二、填空题:1、袋子中装有50个乒乓球,其中20个黄的,30个白的,现有两人依次随机地从袋中各取一球,取后不放回,则第二人取得黄球的概率是 0.42、设A ,B 为两个随机事件,()0.6P A =,()0.2P A B -=,则()P AB = 0.63、已知二维随机向量(,)X Y 的联合分布为则= 0.34、设总体X 服从正态分布2(2,)N σ,1216,,,X X X 是来自总体X 的一个样本,且161116i i X X ==∑,则48X σ-服从 5、若(,)X Y 服从区域22{(,)4}G x y x y =+≤上的均匀分布,则(,)X Y 的联合密度函数为三、计算题:1、设A ,B 为随机事件,且()P A p =,()()P AB P A B =,求()P B 。

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案

九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。

从班级中随机选取一个学生,男生和女生被选到的概率相等。

那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。

从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。

2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。

3. 一枚硬币抛掷,正面向上的概率是_________。

三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。

从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。

从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。

计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。

计算抽取奇数的概率。

答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。

概率论与数理统计第4章练习题

概率论与数理统计第4章练习题

第四章 随机变量的数字特征一、期望29.设二维随机向量(X,Y )的概率密度为⎩⎨⎧<<<<=,,0;x y 0,1x 0,2)y ,x (f 其它且E (X )=1,则常数x =( )21.已知随机变量X 的分布律为则P {X <E (X )}=____________.20.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=,,0;10,2)(其他x x x f 则E (|X |)=______.7.设随机变量X 服从参数为21的指数分布,则E (X )=( ) A.41B.2129.假定暑假市场上对冰淇淋的需求量是随机变量X 盒,它服从区间[200,400]上的均匀分布,设每售出一盒冰淇淋可为小店挣得1元,但假如销售不出而屯积于冰箱,则每盒赔3元。

问小店应组织多少货源,才能使平均收益最大29.设某型号电视机的使用寿命X 服从参数为1的指数分布(单位:万小时). 求:(1)该型号电视机的使用寿命超过t (t >0)的概率; (2)该型号电视机的平均使用寿命.19.设随机变量X ~B (8,,Y=2X-5,则E (Y )=______. 求: (1)常数a ,b ; (2)X 的分布函数F (x ); (3)E (X ).二、方差,则D (X )=( ),且已知E (X )=,试求:12F (x ).7.设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) (X )=,D (X )= (X )=,D (X )= (X )=2,D (X )=4(X )=2,D (X )=28.设随机变量X 与Y 相互独立,且X ~N (1,4),Y ~N (0,1),令Z=X -Y ,则E (Z 2)=( )28.设随机变量X 的概率密度为 ⎩⎨⎧≤≤-=.,x ,cx x f 其他;)(0222试求:(1)常数c ;(2)E (X ),D (X );(3)P {|X -E (X )| < D (X )}.7.设随机变量X~N (1,22),Y~N (1,2),已知X 与Y 相互独立,则3X-2Y 的方差为( ) A .8B .16C .28D .4420.设随机变量X 在区间[0,5]上服从均匀分布,则D (X )=______________. 21.设E (X 2)=0,则E (X )=______________.22.已知E (X )=-1,D (X )=3,则E (3X 2-2)=____________.E (X )及D (X )。

概率统计练习册答案

概率统计练习册答案

概率统计练习册答案第一章 概率论的基本概念一、选择题1.将一枚硬币连抛两次,则此随机试验的样本空间为( ) A .{(正,正),(反,反),(一正一反)} B.{(反,正),(正,反),(正,正),(反,反)} C .{一次正面,两次正面,没有正面} D.{先得正面,先得反面}2.设A ,B 为任意两个事件,则事件(AUB)(Ω-AB)表示( ) A .必然事件 B .A 与B 恰有一个发生 C .不可能事件 D .A 与B 不同时发生3.设A ,B 为随机事件,则下列各式中正确的是( ). A.P(AB)=P(A)P(B)B.P(A-B)=P(A)-P(B)C.)()(B A P B A P -=D.P(A+B)=P(A)+P(B)4.设A,B 为随机事件,则下列各式中不能恒成立的是( ). A.P(A -B)=P(A)-P(AB) B.P(AB)=P(B)P(A|B),其中P(B)>0C.P(A+B)=P(A)+P(B)D.P(A)+P(A )=15.若φ≠AB ,则下列各式中错误的是( ). A .0)(≥AB P B.1)(≤AB P C.P(A+B)=P(A)+P(B)D.P(A-B)≤P(A)6.若φ≠AB ,则( ).A. A,B 为对立事件B.B A =C.φ=B AD.P(A-B)≤P(A)7.若,B A ⊂则下面答案错误的是( ).A. ()B P A P ≤)(B. ()0A -B P ≥C.B 未发生A 可能发生D.B 发生A 可能不发生 8.下列关于概率的不等式,不正确的是( ). A.)}(),(min{)(B P A P AB P ≤B..1)(,<Ω≠A P A 则若C.1212(){}n n P A A A P A A A ≤+++L LD.∑==≤ni i ni i A P A P 11)(}{Y9.(1,2,,)i A i n =L 为一列随机事件,且12()0n P A A A >L ,则下列叙述中错误的是( ).A.若诸i A 两两互斥,则∑∑===ni i n i i A P A P 11)()(B.若诸i A 相互独立,则11()1(1())nni i i i P A P A ===--∑∏C.若诸i A 相互独立,则11()()nni i i i P A P A ===∏UD.)|()|()|()()(1231211-=Λ=n n ni i A A P A A P A A P A P A P X10.袋中有a 个白球,b 个黑球,从中任取一个,则取得白球的概率是( ).A.21B.ba +1C.ba a+ D.ba b + 11.今有十张电影票,其中只有两张座号在第一排,现采取抽签方式发放给10名同学,则( )A.先抽者有更大可能抽到第一排座票B.后抽者更可能获得第一排座票C.各人抽签结果与抽签顺序无关D.抽签结果受以抽签顺序的严重制约12.将n 个小球随机放到)(N n N ≤个盒子中去,不限定盒子的容量,则每个盒子中至多有1个球的概率是( ).A.!!N n B. n Nn !C. nn N Nn C !⋅ D.Nn 13.设有r 个人,365≤r ,并设每个人的生日在一年365天中的每一天的可能性为均等的,则此r 个人中至少有某两个人生日相同的概率为( ).A.r r P 3651365-B. rr r C 365!365⋅C. 365!1r -D. rr 365!1-14.设100件产品中有5件是不合格品,今从中随机抽取2件,设=1A {第一次抽的是不合格品},=2A {第二次抽的是不合格品},则下列叙述中错误的是( ). A.05.0)(1=A PB.)(2A P 的值不依赖于抽取方式(有放回及不放回)C.)()(21A P A P =D.)(21A A P 不依赖于抽取方式15.设A,B,C 是三个相互独立的事件,且,1)(0<<C P 则下列给定的四对 事件中,不独立的是( ). A.C AUB 与B. B A -与CC. C AC 与D. C AB 与16.10张奖券中含有3张中奖的奖券,现有三人每人购买1张,则恰有一个中奖的概率为( ).A.4021 B.407 C. 3.0 D. 3.07.02310⋅⋅C 17.当事件A 与B 同时发生时,事件C 也随之发生,则( ).A.1)()()(-+≤B P A P C PB.1)()()(-+≥B P A P C PC.P(C)=P(AB)D.()()P C P A B =U18.设,1)()|(,1)(0,1)(0=+<<<<B A P B A P B P A P 且则( ). A. A 与B 不相容B. A 与B 相容C. A 与B 不独立D. A 与B 独立19.设事件A,B 是互不相容的,且()0,()0P A P B >>,则下列结论正确的 是( ). A.P(A|B)=0B.(|)()P A B P A =C.()()()P AB P A P B =D.P(B|A)>020.已知P(A)=P ,P(B)=q 且φ=AB ,则A 与B 恰有一个发生的概率为( ).A.q p +B. q p +-1C. q p -+1D. pq q p 2-+21.设在一次试验中事件A 发生的概率为P ,现重复进行n 次独立试验 则事件A 至多发生一次的概率为( ). A.n p -1 B.n pC. n p )1(1--D. 1(1)(1)n n p np p --+-22.一袋中有两个黑球和若干个白球,现有放回地摸球4次,若至少摸 到一个白球的概率为8180,则袋中白球数是( ). A.2B.4C.6D.823.同时掷3枚均匀硬币,则恰有2枚正面朝上的概率为( ). A.0.5B.0.25C.0.125D.0.37524.四人独立地破译一份密码,已知各人能译出的概率分别为61,31,41,51则密码最终能被译出的概率为( ).A.1B.21C.52 D. 32 25.已知11()()(),()0,()(),416P A P B P C P AB P AC P BC ======则事件A,B,C 全不发生的概率为( ).A. 81B. 83C. 85D.87 26.甲,乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,则目标被击中的概率为( ).A. 0.5B. 0.8C. 0.55D. 0.627.接上题,若现已知目标被击中,则它是甲射中的概率为( ). A.43 B.65C.32D.116 28.三个箱子,第一箱中有4个黑球1个白球,第二箱中有3个黑球3个白球,第三个箱中有3个黑球5个白球,现随机取一个箱子,再从这个箱中取出一个球,则取到白球的概率是( ).A.12053 B.199 C.12067 D.1910 29.有三类箱子,箱中装有黑、白两种颜色的小球,各类箱子中黑球、白球数目之比为,2:3,2:1,1:4已知这三类箱子数目之比为1:3:2,现随机取一个箱子,再从中随机取出一个球,则取到白球的概率为( ). A.135 B.4519 C.157 D.3019 30.接上题,若已知取到的是一只白球,则此球是来自第二类箱子的概率为( ).A.21 B. 31C.75 D.71 31.今有100枚贰分硬币,其中有一枚为“残币”中华人民共和国其两面都印成了国徽.现从这100枚硬币中随机取出一枚后,将它连续抛掷10次,结果全是“国徽”面朝上,则这枚硬币恰为那枚“残币”的概率为( ).A.1001 B. 10099C.1010212+D.10102992+ 32.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残品的概率分别是0.8,0.1,0.1,一顾客欲购一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机察看1只,若无残次品,则买下该箱玻璃杯,否则退回,如果顾客确实买下该箱,则此箱中确实没有残次品的概率为( ).A.0.94B.0.14C.160/197D.420418419C C C + 二、填空题1. E :将一枚均匀的硬币抛三次,观察结果:其样本空间=Ω . 2.某商场出售电器设备,以事件A 表示“出售74 Cm 长虹电视机”,以事件B 表示“出售74 Cm 康佳电视机”,则只出售一种品牌的电视机可以表示为 ;至少出售一种品牌的电视机可以表示为 ;两种品牌的电视机都出售可以表示为 .3.设A ,B ,C 表示三个随机事件,试通过A ,B ,C 表示随机事件A 发生而B ,C 都不发生为 ;随机事件A ,B ,C 不多于一个发生 .4.设P (A )=0.4,P (A+B )=0.7,若事件A 与B 互斥,则P (B )= ;若事件A 与B 独立,则P (B )= .5.已知随机事件A 的概率P (A )=0.5,随机事件B 的概率P (B )=0.6及条件概率P (B|A )=0.8,则P (AUB )=6.设随机事件A 、B 及和事件AUB 的概率分别是0.4,0.3和0.6,则P (AB )= .7.设A 、B 为随机事件,P (A )=0.7,P (A-B )=0.3,则P (AB )= .8.已知81)()(,0)(,41)()()(======BC p AC p AB p C p B p A p ,则C B A ,,全不发生的概率为 .9.已知A 、B 两事件满足条件P (AB )=P (AB ),且P (A )=p,则P (B )= .10.设A 、B是任意两个随机事件,则{()()()()}P A B A B A B A B ++++= .11.设两两相互独立的三事件A 、B和C 满足条件:φ=ABC ,21)()()(<==C p B p A p ,且已知Y Y 169)(=C B A p ,则______)(=A p . 12.一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 .13.袋中有50个乒乓球,其中20个是黄球,30个是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 .14.将C 、C 、E 、E 、I 、N 、S 这7个字母随机地排成一行,恰好排成SCIENCE 的概率为 .15.设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属于A 生产的概率是 .16.设10件产品有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是 .17.甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5.现已知目标被命中,则它是甲射中的概率是 .18.假设一批产品中一、二、三等品各占60%,30%,10%,从中随意取出一件,结果不是三等品,则取到的是一等品的概率是 .19.一种零件的加工由三道工序组成,第一道工序的废品率为1p ,第二道工序的废品率为2p ,第三道工序的废品率为3p ,则该零件的成品率为 .20.做一系列独立试验,每次试验成功的概率为p ,则在第n 次成功之前恰有m 次失败的概率是 .第二章 随机变量及其分布一、选择题1.设A,B 为随机事件,,0)(=AB P 则( ).A..φ=ABB.AB 未必是不可能事件C.A 与B 对立D.P(A)=0或P(B)=02.设随机变量X 服从参数为λ的泊松分布,且},2{}1{===X P X P 则}2{>X P 的值为( ).A.2-eB.251e-C.241e-D.221e-. 3.设X 服从]5,1[上的均匀分布,则( ). A.4}{ab b X a P -=≤≤ B.43}63{=<<X P C.1}40{=<<X PD.21}31{=≤<-X P4.设),4,(~μN X 则( ). A.)1,0(~4N X μ- B.21}0{=≤X P C.)1(1}2{Φ-=>-μX PD.0≥μ5.设随机变量X 的密度函数为⎩⎨⎧<<=其他,010,2)(x x x f ,以Y 表示对X 的三次独立重复观察中事件}21{≤X 出现的次数,则( ).A .由于X 是连续型随机变量,则其函数Y 也必是连续型的B .Y 是随机变量,但既不是连续型的,也不是离散型的C .649}2{==y P D.)21,3(~B Y6.设=≥=≥}1{,95}1{),,3(~),,2(~Y P X P p B Y p B X 则若( ). A.2719 B.91C.31D.278 7.设随机变量X 的概率密度函数为(),23X f x Y X =-+则的密度函数为( ).A.13()22X y f ---B.13()22X y f --C.13()22X y f +--D.13()22X y f +- 8.连续型随机变量X 的密度函数)(x f 必满足条件( ). A.1)(0≤≤x fB.)(x f 为偶函数C.)(x f 单调不减D.()1f x dx +∞-∞=⎰9.若)1,1(~N X ,记其密度函数为)(x f ,分布函数为)(x F ,则( ). A.{0}{0}P X P X ≤=≥ B.)(1)(x F x F --= C.{1}{1}P X P X ≤=≥D.)()(x f x f -=10.设)5,(~),4,(~22μμN Y N X ,记},5{},4{21+≥=-≤=μμY P P X P P 则( ).A.21P P =B.21P P <C.21P P >D.1P ,2P 大小无法确定11.设),,(~2σμN X 则随着σ的增大,}|{|σμ<-X P 将( ). A.单调增大B.单调减少C.保持不变.D.增减不定12.设随机变量X 的概率密度函数为(),()(),()f x f x f x F x =-是X 的分布函数,则对任意实数a 有( ).A.⎰-=-adx x f a F 0)(1)( B.⎰-=-adx x f a F 0)(21)(C.)()(a F a F =-D.1)(2)(-=-a F a F13.设X 的密度函数为3,01()20,x x f x ⎧≤≤⎪=⎨⎪⎩其他,则1{}4P X >为( ). A.78B.1432xdx ⎰ C.14312xdx -∞-⎰D.3214.设~(1,4),(0.5)0.6915,(1.5)0.9332,{||2}X N P X Φ=Φ=>则为( ). A.0.2417B.0.3753C.0.3830D.0.866415.设X 服从参数为91的指数分布,则=<<}93{X P ( ). A.)93()99(F F -B.)11(913ee -C.ee 113-D.⎰-939dx e x16.设X 服从参数λ的指数分布,则下列叙述中错误的是( ).A.⎩⎨⎧≤>-=-0,00,1)(x x e x F x λB.对任意的x e x X P x λ-=>>}{,0有C.对任意的}{}|{,0,0t X P s X t s X P t s >=>+>>>有D.λ为任意实数17.设),,(~2σμN X 则下列叙述中错误的是( ). A.)1,0(~2N X σμ- B.)()(σμ-Φ=x x FC.{(,)}()()a b P X a b μμσσ--∈=Φ-Φ D.)0(,1)(2}|{|>-Φ=≤-k k k X P σμ18.设随机变量X 服从(1,6)上的均匀分布,则方程012=++Xx x 有实根的概率是( ).A.0.7B.0.8C.0.6D.0.519.设=<=<<}0{,3.0}42{),,2(~2X P X P N X 则σ( ). A .0.2B.0.3C.0.6D.0.820.设随机变量X服从正态分布2(,)N μσ,则随σ的增大,概率{||}P X μσ-<( ).A.单调增大 B.单调减少 C.保持不变 D.增减不定二、填空题1.随机变量X 的分布函数)(x F 是事件 的概率. 2.已知随机变量X 只能取-1,0,1,2四个数值,其相应的概率依次是cc c c 161,81,41,21,则=c3.当a 的值为 时,Λ,2,1,)32()(===k a k X p k 才能成为随机变量X的分布列.4.一实习生用一台机器接连独立地制造3个相同的零件,第i 个零件不合格的概率)3,2,1(11=+=i i p i ,以X 表示3个零件中合格品的个数,则________)2(==X p .5.已知X 的概率分布为⎪⎪⎭⎫ ⎝⎛-4.06.011,则X的分布函数=)(x F .6.随机变量X 服从参数为λ的泊松分布,则X 的分布列为 .7.设随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧∈∈=其它,0]6,3[,92]1,0[,31)(x x x f ,若k 使得{}32=≥k X p则k 的取值范围是 . 8.设离散型随机变量X 的分布函数为:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥+<≤-<≤--<=2,21,3211,1,0)(x b a x a x a x x F且21)2(==X p ,则_______,________a b ==.9.设]5,1[~U X ,当5121<<<x x 时,)(21x X x p <<= . 10.设随机变量),(~2σμN X,则X的分布密度=)(x f .若σμ-=X Y ,则Y 的分布密度=)(y f .11.设)4,3(~N X ,则}{=<<-72X p .12.若随机变量),2(~2σN X ,且30.0)42(=≤<X p ,则_________)0(=≤X p . 13.设)2,3(~2N X,若)()(c X p c X p ≥=<,则=c .14.设某批电子元件的寿命),(~2σμN X ,若160=μ,欲使80.0)200120(=≤<X p ,允许最大的σ= .15.若随机变量X的分布列为⎪⎪⎭⎫ ⎝⎛-5.05.011,则12+=X Y 的分布列为 .16.设随机变量X服从参数为(2,p)的二项分布,随机变量Y服从参数为(3,p)的二项分布,若P{X≥1}=5/9,则P{Y≥1}= .17.设随机变量X服从(0,2)上的均匀分布,则随机变量Y=2X 在(0,4)内的概率密度为()Y f y = .18.设随机变量X服从正态分布2(,)(0)N μσσ>,且二次方程240y y X ++=无实根的概率为1/2,则μ= .第三章 多维随机变量及其分布一、选择题1.X,Y 相互独立,且都服从]1,0[上的均匀分布,则服从均匀分布的是( ).A.(X,Y)B.XYC.X+YD.X -Y2.设X,Y 独立同分布,11{1}{1},{1}{1},22P X P Y P X P Y =-==-=====则( ).A.X =YB.0}{==Y X PC.21}{==Y X P D.1}{==Y X P3.设)(1x F 与)(2x F 分别是随机变量X 与Y 的分布函数,为使)()(21x bF x aF -是某个随机变量的分布函数,则b a ,的值可取为( ).A.52,53-==b aB.32,32==b aC.23,21=-=b aD.23,21-==b a4.设随机变量i X 的分布为12101~(1,2){0}1,111424i X i X X -⎛⎫ ⎪===⎪⎝⎭且P 则12{}P X X ==( ).A.0B.41C.21D.15.下列叙述中错误的是( ). A.联合分布决定边缘分布B.边缘分布不能决定决定联合分布C.两个随机变量各自的联合分布不同,但边缘分布可能相同D.边缘分布之积即为联合分布6.设随机变量(X,Y) 的联合分布为:则b a ,应满足( ).A .1=+b a 33D.23,21-==b a7.接上题,若X ,Y 相互独立,则( ). A.91,92==b aB.92,91==b aC.31,31==b aD.31,32=-=b a8.同时掷两颗质体均匀的骰子,分别以X,Y 表示第1颗和第2颗骰子出现的点数,则( ).A.1{,},,1,2,636P X i Y j i j ====L B.361}{==Y X P C.21}{=≠Y X P D.21}{=≤Y X P9.设(X,Y)的联合概率密度函数为⎩⎨⎧≤≤≤≤=其他,y x y x y x f 010,10,6),(2,则下1 23 1 1/6 1/9 1/18X Y面错误的是( ).A.1}0{=≥X PB.{0}0P X ≤=C.X,Y 不独立D.随机点(X,Y)落在{(,)|01,01}D x y x y =≤≤≤≤内的概率为1 10.接上题,设G 为一平面区域,则下列结论中错误的是( ). A.{(,)}(,)GP X Y G f x y dxdy ∈=⎰⎰B.2{(,)}6GP X Y G x ydxdy ∈=⎰⎰C.1200{}6x P X Y dx x ydy ≥=⎰⎰D.⎰⎰≥=≥yx dxdy y x f Y X P ),()}{(11.设(X,Y)的联合概率密度为(,)0,(,)(,)0,h x y x y Df x y ≠∈⎧=⎨⎩其他,若{(,)|2}G x y y x =≥为一平面区域,则下列叙述错误的是( ).A.{,)(,)GP X Y G f x y dxdy ∈=⎰⎰B.⎰⎰-=≤-Gdxdy y x f X Y P ),(1}02{C.⎰⎰=≥-Gdxdy y x h X Y P ),(}02{D.⎰⎰=≥DG dxdy y x h X Y P I ),(}2{12.设(X,Y)服从平面区域G 上的均匀分布,若D 也是平面上某个区域,并以G S 与D S 分别表示区域G 和D 的面积,则下列叙述中错误的是( ).A.{(,)}DGS P X Y D S ∈=B.0}),{(=∉G Y X PC.GDG S S D Y X P I -=∉1}),{(D.{(,)}1P X Y G ∈=13.设系统π是由两个相互独立的子系统1π与2π连接而成的;连接方式分别为:(1)串联;(2)并联;(3)备用(当系统1π损坏时,系统2π开始工作,令21,X X 分别表示21ππ和的寿命,令321,,X X X 分别表示三种连接方式下总系统的寿命,则错误的是( ). A.211X X Y += B.},m ax {212X X Y = C.213X X Y +=D.},m in{211X X Y =14.设二维随机变量(X,Y)在矩形}10,20|),{(≤≤≤≤=y x y x G 上服从均匀分布.记.2,12,0;,1,0⎩⎨⎧>≤=⎩⎨⎧>≤=YX YX V Y X Y X U 则==}{V U P ( ).A.0B.41C.21D.4315.设(X,Y)服从二维正态分布),,,,(222121ρσσμμN ,则以下错误的是( ).A.),(~211σμN X B ),(~221σμN X C.若0=ρ,则X,Y 独立 D.若随机变量),(~),,(~222211σμσμN T N S 则(,)S T 不一定服从二维正态分布16.若),(~),,(~222211σμσμN Y N X ,且X,Y 相互独立,则( ). A.))(,(~22121σσμμ+++N Y XB.),(~222121σσμμ---N Y XC.)4,2(~2222121σσμμ+--N Y XD.)2,2(~2222121σσμμ+--N Y X 17.设X ,Y 相互独立,且都服从标准正态分布(0,1) N ,令,22Y X Z +=则Z 服从的分布是( ).A .N (0,2)分布 B.单位圆上的均匀分布 C.参数为1的瑞利分布 D.N (0,1)分布18.设随机变量4321,,,X X X X 独立同分布,{0}0.6,i P X =={1}0.4i P X ==(1,2,3,4)i =,记1234X X D X X =,则==}0{D P ( ).A.0.1344B.0.7312C.0.8656D.0.383019.已知~(3,1)X N -,~(2,1)Y N ,且,X Y 相互独立,记27,Z X Y =-+~Z 则( ).A.)5,0(NB.)12,0(NC.)54,0(ND.)2,1(-N20.已知sin(),0,,(,)~(,)40,C x y x y X Y f x y π⎧+≤≤⎪=⎨⎪⎩其他则C 的值为( ). A.21B.22C.12-D.12+ 21.设⎪⎩⎪⎨⎧≤≤≤≤+=其他,020,10,31),(~),(2y x xy x y x f Y X ,则}1{≥+Y X P =( ) A.7265 B.727 C.721 D.727122.为使⎩⎨⎧≥=+-其他,00,,),()32(y x Ae y x f y x 为二维随机向量(X,Y)的联合密度,则A 必为( ).A.0B.6C.10D.1623.若两个随机变量X,Y 相互独立,则它们的连续函数)(X g 和)(Y h 所确定的随机变量( ).A.不一定相互独立B.一定不独立C.也是相互独立D.绝大多数情况下相独立 24.在长为a 的线段上随机地选取两点,则被分成的三条短线能够组成三角形的概率为( ).A.21B.31C.41D.5125.设X 服从0—1分布,6.0=p ,Y 服从2=λ的泊松分布,且X,Y 独立,则Y X +( ).A.服从泊松分布B.仍是离散型随机变量C.为二维随机向量D.取值为0的概率为0 26.设相互独立的随机变量X,Y 均服从]1,0[上的均匀分布,令,Y X Z +=则( ).A.Z 也服从]1,0[上的均匀分布B.0}{==Y X PC.Z 服从]2,0[上的均匀分布D.)1,0(~N Z27.设X,Y 独立,且X 服从]2,0[上的均匀分布,Y 服从2=λ的指数分布,则=≤}{Y X P ( ).A.)1(414--e B.414e - C.43414+-e D.21 28.设⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(~),(2y x xy y x f Y X ,则(X,Y)在以(0,0),(0,2),(2,1)为顶点的三角形内取值的概率为( ).A. 0.4B.0.5C.0.6D.0.8 29.随机变量X,Y 独立,且分别服从参数为1λ和2λ的指数分布,则=≥≥--},{1211λλY X P ( ).A.1-eB.2-eC.11--eD.21--e 30.设22[(5)8(5)(3)25(3)](,)~(,)x x y y X Y f x y Ae-+++-+-=,则A 为( ).A.3π B.π3 C.π2 D.2π 31.设某经理到达办公室的时间均匀分布在8点12点,他的秘书到达办公室的时间均匀分布在7点到9点.设二人到达的时间相互独立,则他们到达办公室的时间相差不超过5分钟的概率为( ).A.481 B.21C.121D.24132.设12,,,n X X X L 相独立且都服从),(2σμN ,则( ).A.12n X X X ===LB.2121()~(,)n X X X N n nσμ+++LC.)34,32(~3221+++σμN XD.),0(~222121σσ--N X X33.设(,)0,(,)(,)~(,)0,g x y x y GX Y f x y ≠∈⎧=⎨⎩其它,D 为一平面区域,记G,D 的面积为,,D G S S ,则{(,)}P x y D ∈=( ).A.G DS S B.GG D S S I C.⎰⎰D dxdy y x f ),( D.⎰⎰Ddxdy y x g ),( 二、填空题1.),(Y X 是二维连续型随机变量,用),(Y X 的联合分布函数),(y x F 表示下列概率:(1);____________________),(=<≤≤c Y b X a p (2);____________________),(=<<b Y a X p (3);____________________)0(=≤<a Y p (4).____________________),(=<≥b Y a X p2.随机变量),(Y X 的分布率如下表,则βα,应满足的条件是 .XY1 2311/6 1/9 1/182 1/2αβ3.设平面区域D 由曲线xy 1=及直线2,1,0e x x y ===所围成,二维随机变量),(Y X 在区域D 上服从均匀分布,则),(Y X 的联合分布密度函数为 .4.设),,,,(~),(222121ρσσμμN Y X ,则YX ,相互独立当且仅当=ρ .5.设相互独立的随机变量X 、Y 具有同一分布律,且X 的分布律为 P (X=0)=1/2,P (X=1)=1/2,则随机变量Z=max{X,Y}的分布律为 .6.设随机变量321,,X X X 相互独立且服从两点分布⎪⎪⎭⎫ ⎝⎛2.08.010,则∑==31i i X X 服从 分布 .7.设X 和Y 是两个随机变量,且P{X ≥0,Y ≥0}=3/7,P{X ≥0}=P{Y ≥0}=4/7,则P{max (X ,Y )≥0}= .8.设某班车起点站上车人数X 服从参数为(0)λλ>的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且中途下车与否相互独立.以Y 表示在中途下车的人数,则在发车时有n 个乘客的条件下,中途有m 人下车的概率为 ;二为随机变量(X ,Y )的概率分布为 .9.假设一设备开机后无故障工作的时间X 服从参数为1/5的指数分布,设备定时开机,出现故障时自动关机,而在无故障时工作2小时便关机,则该设备每次开机无故障工作的时间Y的分布函数 .10.设两个随机变量X与Y独立同分布,且P(X=-1)=P(Y=-1)=1/2,P(X=1)=P(Y=1)=1/2,则P(X=Y)= ;P(X+Y=0)= ;P(XY=1)= .第四章 随机变量的数字特征一、选择题1.X 为随机变量,()1,()3E X D X =-=,则2[3()20]E X +=( ). A. 18 B.9 C.30 D. 32 2. 设二维随机向量(X,Y)的概率密度函数为(),0,0(,)0,x y e x y f x y -+⎧<<+∞<<+∞=⎨⎩其它,则()E XY =( ).A. 0B.1/2C.2D. 13. (X,Y)是二维随机向量,与0Cov不等价的是( ).YX(=,)A. EYD+=(X+)YXYEX=)E⋅( B. DYDXC. DY-)( D. X与Y独立=YDXD+X4. X,Y独立,且方差均存在,则=X2(YD( ).-)3A.DYDX94+ D.4- C. DY2- B. DYDX9DX32+DX3DY5. 若X,Y独立,则( ).A. DYXYDX- B. DY=)(=D⋅D9YDXX)3(-C. 0{=}+=bE D. 1aXPY{[=][]}--EYEXYX6.若0)Cov,则下列结论中正确的是( ).YX,(=A. X,Y独立B. ()=⋅D XY DX DYC. DYDXYD-=(-)DXXX( D. DYD+Y+)=7.X,Y为两个随机变量,且,0YEXE则X,Y( ).-EYX)]-)([(=A. 独立B. 不独立C. 相关D. 不相关8.设,XD+=+则以下结论正确的是( ).YDX)(DYA. X,Y不相关B. X,Y独立C. 1ρ= D.xyρ=-1xy9.下式中恒成立的是( ).A. EYD+X-)(Y=XYDXE⋅EX=)( B. DYC. (,)+DXXD=Cov X aX b aDX+= D. 1)1(+10.下式中错误的是( ).A. ),(2)(Y X Cov DY DX Y X D ++=+B. (,)()Cov X Y E XY EX EY =-⋅C. ])([21),(DY DX Y X D Y X Cov --+=D. ),(694)32(Y X Cov DY DX Y X D -+=- 11.下式中错误的是( ).A. 22)(EX DX EX +=B.DX X D 2)32(=+C. b EY b Y E +=+3)3(D. 0)(=EX D 12.设X 服从二项分布, 2.4, 1.44EX DX ==,则二项分布的参数为( ).A. 4.0,6==p nB. 1.0,6==p nC. 3.0,8==p nD. 1.0,24==p n 13. 设X 是一随机变量,0,,2>==σσμDX EX ,则对任何常数c,必有( ). A.222)(C EX c X E -=- B.22)()(μ-=-X E c X EC. DX c X E <-2)(D. 22)(σ≥-c X E 14.()~(,),()D X X B n pE X =则( ). A. n B. p -1 C. p D. p-1115.随机变量X的概率分布律为1{},1,2,,,P X k k n n===L ()D X 则=( ). A.)1(1212+n B. )1(1212-n C. 2)1(12+n D. 2)1(121-n 16. 随机变量⎪⎩⎪⎨⎧≤>=-0,00,101)(~10x x e x f X x,则)12(+X E =( ).A.1104+ B. 41014⨯+ C. 21 D. 20 17.设X 与Y 相互独立,均服从同一正态分布,数学期望为0,方差为1,则(X ,Y )的概率密度为( ).A.22()21(,)2xy f x y eπ+-= B.22()2(,)2xy f x y π+-=C. 2()2(,)2x y f x y π+-=D. 2241(,)2x y f x y eπ+-=18.X 服从]2,0[上的均匀分布,则DX=( ).A. 21B. 31C.61D. 12119.,),1,0(~3X Y N X =则EY=( ).A. 2B.n 43 C. 0 D. n 3220. 若12,~(0,1),1,2,i Y X X X N i =+=则( ).A. EY=0B. DY=2C.~(0,1)Y ND.~(0,2)Y N21. 设2(,),(,)X b n p Y N μσ::,则( ). A.2()(1)D X Y np p σ+=-+ B.()E X Y np μ+=+ C.22222()E X Y n p μ+=+ D.2()(1)D XY np p σ=-22.将n 只球放入到M 只盒子中去,设每只球落在各个盒中是等可能的,设X 表示有球的盒子数,则EX 值为( ). A. ])11(1[nMM -- B.M n B. ])1(1[n MM - D. nM n ! 23. 已知X 服从参数为`λ的泊松分布,且[(1)(2)]1E X X --=,则λ为( ).A. 1B.-2C.21D.41 24. 设1X ,2X ,3X 相互独立,其中1X 服从]6,0[上的均匀分布,2X 服从正态分布)2,0(2N ,3X 服从参数为3的泊松分布,记12323Y X X X =-+,则DY=( ).A. 14B.46C.20D. 9 25. 设X 服从参数为1的指数分布,则2()X E X e -+=( ).A. 1B.0C. 13D.4326. 设X 为随机变量,}3|{|,,2σμσμ≥-==X P DX EX 则满足( ). A. 91≤ B. 31≤ C. 91≥ D. 31≥ 27. 设X,Y 独立同分布,记,,Y X V Y X U +=-=则U 与V 满足( ). A. 不独立 B. 独立 C.相关系数不为0 D. 相关系数为028. 设随机变量1210,,X X X L 相互独立,且1,2(1,2,,10)i i EX DX i ===L ,则下列不等式正确的是( ).A. 21011}1{-=-≥<-∑εεi i X P B. 21011}1{-=-≥<-∑εεi i X PC. 2101201}10{-=-≥<-∑εεi i X P D. 2101201}10{-=-≤<-∑εεi i X P29. 利用正态分布有关结论,⎰∞+∞---+-dx e x x x 2)2(22)44(21π=( ).A. 1B.0C.2D. -1 30.设(X,Y )服从区域},0:),{(a y x y x D ≤≤=上的均匀分布,则||Y X E - 的值为( ).A. 0B.a 21C. a 31D. a 41 31. 下列叙述中正确的是( ). A. 1)(=-DX EXX D B.~(0,1)N DXC. 22)(EX EX =D. 22)(EX DX EX +=32.某班有n 名同学,班长将领来的学生证随机地发给每个人,设X 表示恰好领到自己学生证的人数,则EX 为( ). A. 1 B.2n C.2)1(+n n D. nn 1- 33.设X 服从区间]2,1[-上的均匀分布,1,00,()0,1,0X X DY Y X -<⎧⎪===⎨⎪>⎩则.A.32 B. 31 C. 98D. 1 34.某种产品表面上的疵点数服从泊松分布,平均每件上有1个疵点,若规定疵点数不超过1的为一等品,价值10元;疵点数大于1不多于3的为二等品,价值8元;3个以上者为废品,则产品的废品率为( ). A.e 38 B. e 381- C. e 251- D. e25 35. 接上题,任取一件产品,设其价值为X, 则EX 为( ). A.e 376 B. e316C. 9D. 6 36. 设⎩⎨⎧<<=其他,010,2)(~x x x f X ,以Y 表示对X 的三次独立重复观察中“21≤X ”出现的次数,则DY=( ).A . 169 B. 916 C. 43 D. 3437. 设(X,Y)为连续型随机向量,其联合密度为),(y x f ,两个边缘概 率密度分别为()X f x 与()Y f y ,则下式中错误的是( ). A. ()X EX xf x dx +∞-∞=⎰ B. ⎰⎰+∞∞-+∞∞-=dxdy y x xf EX ),( C. ⎰⎰+∞∞-+∞∞-=dxdy y x f y EY ),(22D. ()()()X Y E XY xyf x f y dxdy +∞+∞-∞-∞=⎰⎰二、填空题1.随机变量X 服从参数为λ的泊松分布,且2)(=X D ,则{}==1X p .2.已知离散型随机变量X 可能取到的值为:-1,0,1,且2()0.1,()0.9E X E X ==,则X的概率密度是 .3.设随机变量2~(,)X N μσ,则X 的概率密度()f x =EX = ;DX = .若σμ-=X Y ,则Y 的概率密度()f y =EY = ;DY = .4.随机变量~(,4)X N μ,且5)(2=X E ,则X 的概率密度函数(24)0.3,p X <<=为 .5.若随机变量X服从均值为3,方差为2σ的正态分布,且(24)0.3,P X <<=则(2)P X <= .6.已知随机变量X 的分布律为:X0 1 2 3 4p 1/31/61/61/12 1/4则()E X = ,()D X = ,(21)E X -+= . 7.设4,9,0.5,(23)_____________XY DX DY D X Y ρ===-=则.8.抛掷n 颗骰子,骰子的每一面出现是等可能的,则出现的点数之和的方差为 .9.设随机变量X 和Y 独立,并分别服从正态分布(2,25)N 和(3,49)N ,求随机变量435Z X Y =-+的概率密度函数为 . 10.设X 表示10次独立重复射击命中目标的次数,每次击中目标的概率为0.4,则2X 的数学期望E (2X )= .11.已知离散型随机变量X 服从参数为2的泊松分布,则随机变量Z=3X-2的数学期望E (Z )= .第五章 大数定理及中心极限定理一、选择题1. 已知的iX 密度为()(1,2,,100)if x i =L ,且它们相互独立,则对任何实数x , 概率∑=≤1001}{i ix XP 的值为( ).A. 无法计算B. 100110011001[()]i i i i x xf x dx dx ==≤∑⎰⎰L L CC. 可以用中心极限定理计算出近似值D. 不可以用中心极限定理计算出近似值 2. 设X 为随机变量,}3|{|,,2σμσμ≥-==X P DX EX 则满足( ).A.91≤B.31≤ C. 91≥ D.31≥3. 设随机变量1X ,210,,X X L 相互独立,且1,2(1,2,,10)i i EX DX i ===L ,则( )A.21011}1{-=-≥<-∑εεi i X P B.21011}1{-=-≥<-∑εεi i X PC.2101201}10{-=-≥<-∑εεi i X PD.2101201}10{-=-≤<-∑εεi i X P4. 设对目标独立地发射400发炮弹,已知每发炮弹的命中率为0.2由中心极限定理,则命中 60发~100发的概率可近似为( ). A. (2.5)Φ B.2(1.5)1Φ- C.2(2.5)1Φ- D. 1(2.5)-Φ5. 设1X ,2,,nX X L 独立同分布,2,,1,2,,,ii EXDX i n μσ===L 当30≥n 时,下列结 论中错误的是( ).A. ∑=ni iX 1近似服从2(,)N n n μσ分布B.1nii Xn n μσ=-∑(0,1)N 分布C.21X X +服从)2,2(2σμN 分布D. ∑=ni iX 1不近似服从(0,1)N 分布6. 设12,,X X L 为相互独立具有相同分布的随机变量序列,且()1,2,iX i =L 服从参数为2的指数分布,则下面的哪一正确? ( ) A.()1lim ;n i i n X n P x x n =→∞⎧⎫-⎪⎪⎪≤=Φ⎨⎬⎪⎪⎪⎪⎩⎭∑B.()12lim ;n i i n X n P x x n =→∞⎧⎫-⎪⎪⎪≤=Φ⎨⎬⎪⎪⎪⎪⎩⎭∑C. ()12lim ;2n i i n X P x x n =→∞⎧⎫-⎪⎪⎪≤=Φ⎨⎬⎪⎪⎪⎪⎩⎭∑D. ()12lim ;2n i i n X P x x n =→∞⎧⎫-⎪⎪⎪≤=Φ⎨⎬⎪⎪⎪⎪⎩⎭∑其中()x Φ是标准正态分布的分布函数.二、填空题1、设nμ是n 次独立重复试验中事件A 出现的次数,pq p A P -==1,)(,则对任意区间],[b a 有⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤-<∞→b npqnp a P nn μlim = . 2、设nμ是n 次独立重复试验中事件A 出现的次数,p是事件A 在每次试验中发生的概率,则对于任意的0>ε,均有⎭⎬⎫⎩⎨⎧>-∞→εμ||lim p nP nn = .3、一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X p = .4、已知生男孩的概率为0.515,求在10000个新生婴儿中女孩不少于男孩的概率= .第六章 样本及抽样分布一、选择题1. 设12,,,nX X X L 是来自总体X 的简单随机样本,则12,,,nX X X L 必然满足( )A.独立但分布不同;B.分布相同但不相互独立; C 独立同分布; D.不能确定2.下列关于“统计量”的描述中,不正确的是( ).A .统计量为随机变量 B. 统计量是样本的函数C. 统计量表达式中不含有参数D. 估计量是统计量3. 设总体均值为μ,方差为2σ,n 为样本容量,下式中错误的是( ). A.)(=-μX E B.2()D X nσμ-=C.1)(22=σS E D.~(0,1)/X N nσ4. 下列叙述中,仅在正态总体之下才成立的是( ). A. 22211()()nnii i i XX X n X ==-=-∑∑ B.2S X 与相互独立 C.22])ˆ([)ˆ()ˆ(θθθθθ-+=-E D E D.221[()]n i i E X n μσ=-=∑5. 下列关于统计学“四大分布”的判断中,错误的是( ). A. 若12~(,),F F n n 则211~(,)F n n FB .若2~(),~(1,)T t n TF n 则 C .若)1(~),1,0(~22x XN X 则D .在正态总体下2212()~(1)ni i Xx n μσ=--∑6. 设2,iiX S 表示来自总体2(,)iiN μσ的容量为in 的样本均值和样本方差)2,1(=i ,且两总体相互独立,则下列不正确的是( ).A.2221122212~(1,1)S F n n S σσ-- B.12221212(~(0,1)X X N n n σσ+C.)(~/11111n t n S X μ- D.2222222(1)~(1)n S x n σ--7. 设总体服从参数为θ1的指数分布,若X 为样本均值,n 为样本容量,则下式中错误的是( ).A.θ=X EB. 2DX nθ=C. ()22(1)n E X nθ+=D. ()221θ=X E8. 设12,,,nX X X L 是来自总体的样本,则211()1ni i X X n =--∑是( ).A.样本矩B. 二阶原点矩C. 二阶中心矩D.统计量9.12,,,nX X X L 是来自正态总体)1,0(N 的样本,2,SX 分别为样本均值与样本方差,则( ).A. )1,0(~N X B. ~(0,1)nX N C. 221~()nii Xx n =∑D.~(1)Xt n S-10. 在总体)4,12(~N X 中抽取一容量为5的简单随机样本,,,,,54321X X X X X 则}15),,,,{m ax (54321>X X X X X P 为( ).A. )5.1(1Φ-B. 5)]5.1(1[Φ- C. 5)]5.1([1Φ-D. 5)]5.1([Φ11.上题样本均值与总体均值差的绝对值小于1的概率为( ).A.1)5.0(2-Φ B.1)25(2-Φ C.1)45(2-ΦD. 1)5.2(2-Φ12. 给定一组样本观测值129,,,X X X L 且得∑∑====91291,285,45i ii iX X 则样本方差2S 的观测值为( ).A. 7.5B.60C.320 D.26513. 设X 服从)(n t 分布,aX P =>}|{|λ,则}{λ-<X P 为( ).A.a 21 B.a2 C. a+21D. a 211-14. 设12,,nX X X L ,是来自总体)1,0(N 的简单随机样本,则∑=-ni iX X12)(服从分布为( ).A .)(2n x B.)1(2-n xC.),0(2n N D.)1,0(nN15. 设12,,,nx x x L 是来自正态总体2(0,2)N 的简单随机样本,若298762543221)()()2(X X X X c X X X b X X a Y ++++++++=服从2x 分布,则c b a ,,的值分别为( ). A. 161,121,81 B. 161,121,201 C. 31,31,31 D.41,31,2116. 在天平上重复称量一重为a 的物品,假设各次称量结果相互独立且同服从2(,0.2)N a 分布,以nX 表示n 次称量结果的算术平均,则为了使n a X P n,95.0}1.0{≥<-值最小应取作( ).A. 20B. 17C. 15D. 1617. 设随机变量X 和Y 相互独立,且都服从正态分布2(0,3)N ,设921,,,X X X Λ和921,,,Y Y Y Λ分别是来自两总体的简单随机样本,则统计量91921ii ii XU Y===∑∑服从分布是( ).A. )9(t B. )8(t C.)81,0(ND.)9,0(N二、填空题1.在数理统计中,称为样本.2.我们通常所说的样本称为简单随机样本,它具有的两个特点是 . 3.设随机变量nX XX ,,,21Λ相互独立且服从相同的分布,2,σμ==DX EX ,令∑==ni iX n X 11,则EX =;.DX =4.设nX XX ,,,21Λ是来自总体的一个样本,样本均值_______________=X ,则样本标准差___________=S ;样本方差_________________2=S;样本的k 阶原点矩为 ;样本的k 阶中心矩为 . 5.),,,(1021X XX Λ是来自总体)3.0,0(~2N X 的一个样本,则=⎭⎬⎫⎩⎨⎧≥∑=101244.1i i X P .6.设nX XX ,,,21Λ是来自(0—1)分布)}1{,1}0{(p X P p X P ==-==的简单随机样本,X 是样本均值,则=)(X E.=)(X D. 7.设),,,(21n X X X Λ是来自总体的一个样本,),,,()()2()1(n X X X Λ是顺序统计量,则经验分布函数为=)(x F n ⎪⎩⎪⎨⎧_______________________8.设),,,(21nX X X Λ是来自总体的一个样本,称 为统计量; 9.已知样本1621,,,X X X Λ取自正态分布总体)1,2(N ,X 为样本均值,已知5.0}{=≥λX P ,则=λ .10.设总体),(~2σμN X ,X 是样本均值,2nS 是样本方差,n 为样本容量,则常用的随机变量22)1(σnSn -服从 分布. 11.设nX XX ,,,21Λ为来自正态总体),(~2σμN X 的一个简单随机样本,则样本均值∑==ni iX n X 11服从 ,又若ia 为常数),2,1,0(n i a i Λ=≠,则∑=ni iiX a 1服从 .12.设10=n 时,样本的一组观测值为)7,4,8,5,4,5,3,4,6,4(,则样本均值为 ,样本方差为 .第七章 参数估计一、选择题1. 设总体X 在),(ρμρμ+-上服从均匀分布,则参数μ的矩估计量为( ). (A )X 1 (B )∑=-ni iX n 111 (C )∑=-ni i X n 1211 (D )X2. 设总体),(~2σμN X ,nX X ,,1Λ为抽取样本,则∑=-n i iX X n 12)(1是( ).)(A μ的无偏估计)(B 2σ的无偏估计)(C μ的矩估计)(D 2σ的矩估计3. 设X 在[0,a]上服从均匀分布,0>a 是未知参数,对于容量为n 的样本nX X ,,1Λ,a 的最大似然估计为( ) (A )},,,m ax {21n X X X Λ(B )∑=ni i X n 11(C )},,,m in{},,,m ax {2121n n X X X X XX ΛΛ- (D )∑=+ni iX n 111;4. 设总体X 在[a,b]上服从均匀分布,nX XX ,,,21Λ是来自X 的一个样本,则a 的最大似然估计为( ) (A )},,,m ax {21n X X X Λ (B )X(C )},,,m in{21n X X X Λ(D )1X Xn-5. 设总体分布为),(2σμN ,2,σμ为未知参数,则2σ的最大似然估计量为( ). (A )∑=-ni i X X n 12)(1 (B )∑=--ni i X X n 12)(11 (C )∑=-ni i X n 12)(1μ (D )∑=--ni i X n 12)(11μ6. 设总体分布为),(2σμN ,μ已知,则2σ的最大似然。

高中数学概率统计专题练习题及答案

高中数学概率统计专题练习题及答案

高中数学概率统计专题练习题及答案一、选择题1. 掷一枚骰子,结果为奇数的概率是多少?A. 1/2B. 1/6C. 2/3D. 1/32. 从1至20这20个数字中随机选出一个数,选出的数是素数的概率是多少?A. 1/5B. 1/4C. 1/2D. 2/53. 一只盒子中有5张红牌和3张蓝牌,从中随机抽取2张牌,同时放回,再随机抽取2张牌,求两次抽取都是红牌的概率是多少?A. 1/16B. 3/8C. 1/4D. 1/8二、计算题1. 一次考试中,甲乙丙三位同学都有70%的概率通过考试。

求三位同学中至少有一位通过考试的概率。

答案:1 - (1 - 0.7)^3 = 0.9732. 从1至100这100个数字中随机选出一个数,选出的数是2的倍数且小于等于50的概率是多少?答案:50/100 = 0.53. 有A、B两个车站,A车站开往B车站的列车间隔是15分钟,B车站开往A车站的列车间隔是10分钟。

现在一个人随机到达A车站,请问他至少要等待几分钟才能搭乘到开往B车站的列车?答案:最小公倍数(15, 10) = 30分钟三、应用题1. 每个学生参加一次足球比赛的概率是0.4,问一个班级20个同学中至少有10个学生参加比赛的概率是多少?答案:利用二项分布公式,计算P(X≥10),其中n=20,p=0.4,k≥10。

答案约为0.599。

2. 一批产品有10%的次品率,现从中随机抽取20个产品,求其中恰好有3个次品的概率。

答案:利用二项分布公式,计算P(X=3),其中n=20,p=0.1,k=3。

答案约为0.201。

3. 一支篮球队最近10场比赛中获胜的概率是0.8,在下一场比赛中,求该队至少获胜8次的概率。

答案:利用二项分布公式,计算P(X≥8),其中n=10,p=0.8,k≥8。

答案约为0.967。

以上为高中数学概率统计专题练习题及答案。

希望对您的学习有所帮助!。

概率统计练习题答案

概率统计练习题答案

概率统计练习题答案一、选择题1.答案:B2.答案:C3.答案:A4.答案:D5.答案:C6.答案:A7.答案:B8.答案:D9.答案:C10.答案:B11.答案:A12.答案:C13.答案:B14.答案:D15.答案:A二、填空题1.答案:0.252.答案:0.93.答案:0.154.答案:25.答案:0.046.答案:137.答案:0.3338.答案:0.849.答案:0.62510.答案:0.8三、解答题1.答案:设事件A为随机抽取的球为红球,事件B为随机抽取的球为蓝球。

根据条件概率公式,P(A|B) = P(AB)/P(B)。

已知P(A) = 0.6,P(B) = 0.4,P(AB) = 0.24,代入公式可得P(A|B) = 0.24/0.4 = 0.6。

所以,答案为0.6。

2.答案:设事件A为选手射中靶心,事件B为选手准确报告靶心位置。

根据全概率公式,P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) +P(A|B3)P(B3)。

已知P(A|B1) = 0.8,P(A|B2) = 0.6,P(A|B3) = 0.4,P(B1) = 0.3,P(B2) = 0.4,P(B3) = 0.3,代入公式可得P(A) = 0.8*0.3 + 0.6*0.4 + 0.4*0.3 = 0.62。

所以,答案为0.62。

3.答案:设事件A为选手拿到奖品,事件B为选手答对问题。

根据条件概率公式,P(A|B) = P(AB)/P(B)。

已知P(A) = 0.4,P(B) = 0.6,P(AB) = 0.24,代入公式可得P(A|B) = 0.24/0.6 = 0.4。

所以,答案为0.4。

4.答案:设事件A为抽取的学生是男生,事件B为抽取的学生是高中生。

根据全概率公式,P(A) = P(A|B1)P(B1) + P(A|B2)P(B2)。

已知P(A|B1) = 0.6,P(A|B2) = 0.4,P(B1) = 0.7,P(B2) = 0.3,代入公式可得P(A) = 0.6*0.7 + 0.4*0.3 = 0.54。

初三数学概率与统计练习题及答案

初三数学概率与统计练习题及答案

初三数学概率与统计练习题及答案1. 问题描述:已知一筒有12只红球、8只蓝球,从中任意取出一球,求取出红球的概率。

解析:首先计算出总共的球数,即12只红球加上8只蓝球等于20只球。

然后计算红球的数量,即12只红球。

最后,将红球的数量除以总球数,即12/20=0.6。

答案:取出红球的概率为0.6。

2. 问题描述:一只袋子中有5个红球、3个黄球和2个绿球,从中连续取出2个球,不放回,求取出红球后再取出黄球的概率。

解析:根据题意,第一次取出红球的概率为5/10,然后从剩下的球中取出黄球的概率为3/9。

因为两次抽取是连续进行的,所以需要将两次的概率相乘,即(5/10) * (3/9) = 1/6。

答案:取出红球后再取出黄球的概率为1/6。

3. 问题描述:一张桌子上有6本数学书和4本英语书,从中任意取出3本书,求其中至少有2本是数学书的概率。

解析:首先计算出总共的书的数量,即6本数学书加上4本英语书等于10本书。

然后计算出选出2本数学书和1本非数学书的情况数,即C(6, 2) * C(4, 1)。

接着计算出选出3本数学书的情况数,即C(6, 3)。

最后,将两种情况的情况数相加,并除以总的情况数,即[C(6, 2) * C(4, 1) + C(6, 3)] / C(10, 3)。

答案:取出至少有2本是数学书的概率为([C(6, 2) * C(4, 1) + C(6, 3)] / C(10, 3)。

4. 问题描述:一桶中有10个红球和10个蓝球,从中连续取出3个球,不放回,求取出的3个球颜色相同的概率。

解析:计算取出红球的情况数,即C(10, 3)。

然后计算取出蓝球的情况数,即C(10, 3)。

最后,将两种情况的情况数相加,并除以总的情况数,即[C(10, 3) + C(10, 3)] / C(20, 3)。

答案:取出3个球颜色相同的概率为([C(10, 3) + C(10, 3)] / C(20, 3)。

5. 问题描述:甲、乙、丙三人赛跑,根据过去的表现,甲获得第一的概率为0.4,乙获得第一的概率为0.3,丙获得第一的概率为0.3。

概率统计练习题4答案

概率统计练习题4答案

概率统计练习题4答案《概率论与数理统计》练习题4答案考试时间:120分钟题⽬部分,(卷⾯共有22题,100分,各⼤题标有题量和总分)⼀、选择题(10⼩题,共30分)1、设袋中有6个球,其中有2个红球,4个⽩球,随机地等可能地作⽆放回抽样,连续抽两次,则使P A ()=13成⽴的事件A 是( )。

A 、两次都取得红球 B 、第⼆次取得红球C 、两次抽样中⾄少有⼀次抽到红球D 、第⼀次抽得⽩球,第⼆次抽得红球,答案:B2、某电器元件的寿命超过1000⼩时的概率为0.3,进⾏重复独⽴试验,则三个元件在使⽤了1000⼩时最多只有⼀个损坏的概率为( )。

A 、0.09B 、0.189C 、0.784D 、0.216 答案:D3、离散型随机变量ξ的分布律为()k P k b ξλ==,(1,2,)k = ,的充分必要条件是( )。

A 、0b >且01λ<<B 、1b λ=-且01λ<<C 、11b λ=-且1λ<D 、11bλ=+且0b >答案:D4、设ξ,η相互独⽴,且都服从相同的01-分布,即(1)q p =-则下列结论正确的是( )。

A 、ξη= B 、2ξηξ+=C 、2ξηξ= D 、~(2,)B p ξη+答案:D5、随机变量ξ服从区间[3, 3]-上的均匀分布则E ξ=( )。

A 、0 B 、3 C 、- 3 D 、6 答案:A6、4, 1, 0.6D D ξηξηρ===,则(32)D ξη-=( )。

A 、40B 、34C 、25.6D 、17.6 答案:C7、设随机变量的数学期望和⽅差均是1m +(m 为⾃然数),那么(){}041P m ξ<<+≥( )。

A 、11m + B 、1m m + C 、0 D 、1m答案:B8、设~(),T t n 则2~T ( )。

A 、(2)t n B 、2()n χ C 、(,1)F n D 、(1, )F n答案:D9、设12,,,n X X X 是来⾃正态总体2(,)N µσ的简单随机样本,2σ未知,X 是样本均值。

概率统计综合练习及答案

概率统计综合练习及答案

北京科技大学远程教育学院《概率统计》综合练习(一)参考答案随机事件及其概率一、填空1、A 、B 、C 是三个事件,用A 、B 、C 的运算表示A 、B 、C 中至少发生两个的事件 AC BC AB ,用文字叙述C AB C B A BC A 表示的事件 三个事件中恰好发生两个事件 。

2、A 是试验E 的一个事件,每次试验A 出现的概率为p=0.25,独立重复做试验E 四次, A 是否必定出现一次? 否3、A ⊆B ,P (A )=0.2,P (B )=0.6则 P (B -A ) = 0.4 ,P (A -B ) = 0 。

4、P (A )>0,P (B )>0,A 、B 相互独立与A 、B 互不相容能否同时成立? 否 。

5、事件A 、B 独立,则A 、B 独立 。

6、P (A ∪B ∪C )的计算公式为)()()()()()()(ABC P AC P BC P AB P C P B P A P +---++ 。

7、每次试验A 出现的概率为p ,独立重复做n 次试验,在n 次试验中,A 出现次数k 的可能取值为 0,1,3,…,n ,A 出现k 次的概率为 kn k k n q p C - 。

二、 以A ,B ,C 分别表示某城市居民订阅日报、晚报和体育报。

试用A ,B ,C 表示 以下事件:(1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。

解:(1)C B A ,(2)C AB ,(3)C B A C B A C B A ,(4)C B A BC A C AB , (5)C B A ,(6)C B A ,(7)C B A C B A C B A C B A ,(8)ABC , (9)C B A三、 从0,1,2,…,9中任意选出4个不同的数字,试求它们能组成一个4位偶 数的概率。

概率计算练习题

概率计算练习题

概率计算练习题一、基础练习题1. 某班级共有50名学生,其中35人会弹钢琴,25人会拉小提琴,15人既会弹钢琴也会拉小提琴。

现从该班级中随机选择一名学生,求该学生既不会弹钢琴也不会拉小提琴的概率。

2. 有一批产品,其中20%是次品。

从中随机抽取3个产品,求恰好有一个是次品的概率。

3. 一批产品中有30%的次品。

从中随机抽取5个产品,求至少有一个是次品的概率。

4. 一批产品中40%的产品是甲品质,30%是乙品质,30%是丙品质。

甲品质产品被使用后有4%的概率出现故障,乙品质产品故障的概率为7%,丙品质产品故障的概率为15%。

现从该批产品中随机选择一件,求其出现故障的概率。

5. 一批产品中有20%的次品。

从中抽取10个产品,求抽出的产品中次品数大于等于2的概率。

二、进阶练习题1. 某班级共有80名学生,其中40人学习钢琴,30人学习小提琴,20人学习吉他。

已知学习钢琴和学习小提琴的学生共有15人,学习小提琴和学习吉他的学生共有10人,学习钢琴和学习吉他的学生共有5人,共有3人同时学习钢琴、小提琴和吉他。

现从该班级中随机选择一名学生,求该学生学习吉他的概率。

2. 一批产品中有30%的次品,已知次品中有20%是甲类次品,60%是乙类次品,20%是丙类次品。

从该批产品中随机抽取一件,若抽到的是次品,请依次求此产品为甲类次品、乙类次品、丙类次品的概率。

3. 一家快餐店的产品销售情况统计如下:25%的顾客购买汉堡,30%的顾客购买薯条,40%的顾客购买汽水。

已知购买汉堡和薯条的顾客占总顾客数的20%,购买薯条和汽水的顾客占总顾客数的15%,购买汉堡和汽水的顾客占总顾客数的10%,同时购买汉堡、薯条和汽水的顾客占总顾客数的5%。

现在从该快餐店中随机选择一位顾客,求该顾客购买汽水的概率。

4. 一篮子中有红、蓝、绿三种颜色的球,比例为5:4:1。

从篮子中随机抽取5个球,求抽取的球中至少有两个是红球的概率。

5. 某城市每天发生车辆事故的概率为0.03。

概率论与数理统计-第四与五章练习答案

概率论与数理统计-第四与五章练习答案

《概率论与数理统计》第四、五章练习学院 班级、学号 姓名 成绩一、单项选择题(每小题2分,共16分)说明:请将答案直接填入下表中!(A)1- (B)0 (C)21 (D)1 2.设随机变量X 和Y 的方差存在且不等于0,则DY DX Y X D +=+)(是X 和Y (A)不相关的充分条件,但不是必要条件 (B)独立的充分条件,但不是必要条件(C)不相关的充分必要条件 (D)独立的充分必要条件3.设X 是一个随机变量,μ=EX ,2σ=DX (0,>σμ为常数),则对任意常数c ,必有(A)222)(c EX c X E -=- (B)22)()(μ-=-X E c X E(C)22)()(μ-<-X E c X E (D)22)()(μ-≥-X E c X E 4.设随机变量X 和Y 独立同分布,方差存在且不为零,记Y X U -=,Y X V +=,则随机变量U 与V 必然(A)不独立 (B)独立 (C)相关系数不为零 (D)相关系数为零5.假设随机变量)1,0(~N X ,)4,1(~N Y ,且相关系数1=XY ρ,则(A)1}12{=--=X Y P (B)1}12{=-=X Y P(C)1}12{=+-=X Y P (D)1}12{=+=X Y P6.设随机变量X 和Y 都服从正态分布,且它们不相关,则(A)X 与Y 一定独立 (B)),(Y X 服从二维正态分布(C)X 与Y 未必独立 (D)Y X +服从一维正态分布7.设随机变量n X X X ,,,21 )1(>n 独立同分布,且其方差为02>σ,令随机变量∑==ni i X n Y 11,则 (A)212)(σn n Y X D +=+ (B)211)(σnn Y X D +=- (C)nY X Cov 21),(σ= (D)21),(σ=Y X Cov 8.设 ,,,,21n X X X 为独立同分布的随机变量序列,且均服从参数为λ)1(>λ的指数分布,记)(x Φ为标准正态分布的分布函数,则 D (A))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ (B))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ (C))(lim 1x x n n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λ (D))(lim 1x x n X P n i i n Φ=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-∑=∞→λλ 二、填空题(每小题2分,共14分)1.设随机变量X 的服从参数为λ的指数分布,则=>}{DX X P 1-e2.设随机变量X 服从二项在区间]2,1[-上服从均匀分布,随机变量⎪⎩⎪⎨⎧>=<-=010001X X X Y ,则方差=DY98 3.设随机变量X 服从参数为1的泊松分布,则==}{2EX X P 121-e 4.设一次试验的成功率为p ,进行100次独立重复试验,当=p 时,成功次数的标准差的值最大,其最大值为 21,5 5.设随机变量321,,X X X 相互独立,其中1X 在]6,0[上服从均匀分布,2X 服从正态分布)2,0(2N ,3X 服从参数为3=λ的泊松分布,记32132X X X Y +-=,则=DY 466.设随机变量X 和Y 的相关系数为,0==EY EX ,222==EY EX ,则=+2)(Y X E67.设随机变量X 和Y 的数学期望分别为2-和2,方差分别为1和4,而相关系数为5.0-,则根据切比雪夫不等式≤≥+}6|{|Y X P 121 三、解答题(每题7分,共49分)1.设随机变量X 服从区间],[b a 上的均匀分布,2=EX ,3=DX ,求条件概率}2|0{≤>X X P【答】5,1=-=b a ;32 2.设连续型随机变量X 的概率密度为⎩⎨⎧<<=其他0103)(2x x x f X ,试求: (1)随机变量X 的分布函数)(x F X ;(2)数学期望EX 与方差DX ;【解】(1)⎪⎩⎪⎨⎧≥<<≤=111000)(3x x xx x F X (2)43=EX ;532=EX ,803)(22=-=EX EX DX3.假设一设备开机后无故障工作的时间X 服从指数分布,平均无故障工作的时间(EX )为5小时,设备定时开机,出现故障时自动关机,而在无故障的情况下工作2小时便关机。

经济数学基础——概率统计课后习题答案

经济数学基础——概率统计课后习题答案

目录习题一(1)习题二(16)习题三(44)习题四(73)习题五(97)习题六(113)习题七(133)1 / 81习 题 一1.写出下列事件的样本空间: (1) 把一枚硬币抛掷一次; (2) 把一枚硬币连续抛掷两次;(3) 掷一枚硬币,直到首次出现正面为止;(4) 一个库房在某一个时刻的库存量(假定最大容量为M ).解(1)Ω={正面,反面} △ {正,反}(2)Ω={(正、正),(正、反),(反、正),(反、反)} (3)Ω={(正),(反,正),(反,反,正),…} (4) Ω={x ;0≤x ≤m }2.掷一颗骰子的实验,观察其出现的点数,事件A =“偶数点”,B =“奇数点”,C =“点数小于5”,D =“小于5的偶数点”,讨论上述各事件间的关系. 解{}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A ΩA 与B 为对立事件,即B =A ;B 与D 互不相容;A ⊃D ,C ⊃D.3. 事件A i 表示某个生产单位第i 车间完成生产任务,i =1,2,3,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及B -C 的含义,并且用A i (i =1,2,3)表示出来. 解B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务. 313221A A A A A A B ++=B -C 表示三个车间都完成生产任务 321321321321+++A A A A A A A A A A A A B =321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++=321A A A C B =- 4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB 用一些互不相容事件的和表示出来. 解B A A B A +=+C B A B A A C B A ++=++C B A B B AC +=+BC A C B A C B A AB C ++=-5.两个事件互不相容与两个事件对立的区别何在,举例说明.解 两个对立的事件一定互不相容,它们不可能同时发生,也不可能同时不发生;两个互不相容的事件不一定是对立事件,它们只是不可能同时发生,但不一定同时不发生. 在本书第6页例2中A 与D 是对立事件,C 与D 是互不相容事件.6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否一定互不相容?画图说明. 解 不一定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容.7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B.说明事件A 、C 、D 、F的关系.解由于AB ⊂A ⊂A+B ,A -B ⊂A ⊂A+B ,AB 与A -B 互不相容,且A =AB +(A -B).因此有A =C +F ,C 与F 互不相容, D ⊃A ⊃F ,A ⊃C.8. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率.解记事件A 表示“取到的两个球颜色不同”.则有利于事件A 的样本点数目#A =1315C C .而组成实验的样本点总数为#Ω=235+C ,由古典概率公式有图1-1图1-2P (A )==Ω##A 2815281315=C C C (其中#A ,#Ω分别表示有利于A 的样本点数目与样本空间的样本点总数,余下同)9. 计算上题中取到的两个球中有黑球的概率.解设事件B 表示“取到的两个球中有黑球”则有利于事件B 的样本点数为#25C B =.1491)(1)(2825=-==C C B P B P -10. 抛掷一枚硬币,连续3次,求既有正面又有反面出现的概率.解设事件A 表示“三次中既有正面又有反面出现”, 则A 表示三次均为正面或三次均为反面出现. 而抛掷三次硬币共有8种不同的等可能结果,即#Ω=8,因此43821#1)(1)(=-=Ω-=-=A A P A P # 11. 10把钥匙中有3把能打开一个门锁,今任取两把,求能打开门锁的概率.解设事件A 表示“门锁能被打开”. 则事件A 发生就是取的两把钥匙都不能打开门锁.15811)(1)(21027==Ω-=-=C C A A P A P -##从9题-11题解中可以看到,有些时候计算所求事件的对立事件概率比较方便.12. 一副扑克牌有52张,不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:(1)四张花色各异;(2)四张中只有两种花色.解设事件A 表示“四张花色各异”;B 表示“四张中只有两种花色”.,113113113113452##C C C C A , C Ω==) +#2132131133131224C C C C C C B (= 105013##)(4524.C ΩA A P ===30006048+74366##)(452 )(.C ΩB B P ===13. 口袋内装有2个伍分、3个贰分,5个壹分的硬币共10枚,从中任取5枚,求总值超过壹角的概率.解设事件A 表示“取出的5枚硬币总值超过壹角”.)+(+C =##25231533123822510C C C C C C A C Ω , = 50252126)(.ΩA A P ==##=14. 袋中有红、黄、黑色球各一个,每次任取一球,有放回地抽取三次,求下列事件的概率:A =“三次都是红球” △ “全红”,B =“全白”, C =“全黑”,D =“无红”,E =“无白”, F =“无黑”,G =“三次颜色全相同”,H =“颜色全不相同”,I =“颜色不全相同”.解 #Ω=33=27,#A =#B =#C =1, #D =#E =#F =23=8, #G =#A +#B +#C =3,#H =3!=6,#I =#Ω-#G =24271)()()(===C P B P A P 278)()()(===F P E P D P 982724)(,92276)(,91273)(======I P H P G P 15. 一间宿舍内住有6位同学,求他们中有4个人的生日在同一个月份的概率.解设事件A 表示“有4个人的生日在同一个月份”.#Ω=126,#A =21124611C C 0073.01221780##)(6==ΩA A P = 16. 事件A 与B 互不相容,计算P )(B A +.解 由于A 与B 互不相容,有AB =Φ,P (AB )=0.1)(1)()(=-==+AB P AB P B A P 17. 设事件B ⊃A ,求证P (B )≥P (A ). 证∵B ⊃A∴P (B -A )=P (B ) -P (A ) ∵P (B -A )≥0 ∴P (B )≥P (A )18. 已知P (A )=a ,P (B )=b ,ab ≠0 (b >0.3a ),P (A -B )=0.7a ,求P (B +A ),P (B -A ),P (B +A ). 解由于A -B 与AB 互不相容,且A =(A -B )+AB ,因此有P (AB )=P (A )-P (A -B )=0.3aP (A +B )=P (A )+P (B )-P (AB )=0.7a +b P (B -A )=P (B )-P (AB )=b -0.3a P(B +A )=1-P (AB )=1-0.3a19. 50个产品中有46个合格品与4个废品,从中一次抽取三个,计算取到废品的概率.解设事件A 表示“取到废品”,则A 表示没有取到废品,有利于事件A 的样本点数目为#A =346C ,因此P (A )=1-P (A )=1-3503461C C ΩA-=## =0.225520. 已知事件B ⊃A ,P (A )=ln b≠0,P (B )=ln a ,求a 的取值范围.解因B ⊃A ,故P (B )≥P (A ),即ln a ≥ln b ,⇒a ≥b ,又因P (A )>0,P (B )≤1,可得b >1,a ≤e ,综上分析a 的取值范围是:1<b ≤a ≤e21. 设事件A 与B 的概率都大于0,比较概率P (A ),P (AB ),P (A +B ),P (A )+P (B )的大小(用不等号把它们连接起来). 解由于对任何事件A ,B ,均有AB ⊂A ⊂A +B且P (A +B )=P (A )+P (B )-P (AB ),P (AB )≥0,因此有 P (AB )≤P (A )≤P (A +B )≤P (A )+P (B )22. 一个教室中有100名学生,求其中至少有一人的生日是在元旦的概率(设一年以365天计算).解 设事件A 表示“100名学生的生日都不在元旦”,则有利于A 的样本点数目为#A =364100,而样本空间中样本点总数为 #Ω=365100,所求概率为1001003653641##1)(1)(-=Ω-=-=A A P A P= 0.239923. 从5副不同手套中任取4只手套,求其中至少有两只手套配成一副的概率.解设事件A 表示“取出的四只手套至少有两只配成一副”,则A 表示“四只手套中任何两只均不能配成一副”.21080##)(4101212121245===C C C C C C ΩA A P 62.0)(1)(=-=A P A P24. 某单位有92%的职工订阅报纸,93%的人订阅杂志,在不订阅报纸的人中仍有85%的职工订阅杂志,从单位中任找一名职工求下列事件的概率: (1)该职工至少订阅一种报纸或期刊; (2)该职工不订阅杂志,但是订阅报纸.解设事件A 表示“任找的一名职工订阅报纸”,B 表示“订阅杂志”,依题意P (A )=0.92,P (B )=0.93,P (B |A )=0.85P (A +B )=P (A )+P (A B )=P (A )+P (A )P (B |A )=0.92+0.08×0.85=0.988P (A B )=P (A +B )-P (B )=0.988-0.93=0.05825. 分析学生们的数学与外语两科考试成绩,抽查一名学生,记事件A 表示数学成绩优秀,B 表示外语成绩优秀,若P (A )=P (B )=0.4,P (AB )=0.28,求P(A |B ),P (B |A ),P (A +B ).解P (A |B )=7.04.028.0)()(==B P AB PP (B |A)=7.0)()(=A P AB PP (A +B )=P (A )+P (B )-P (AB )=0.5226. 设A 、B 是两个随机事件. 0<P (A )<1,0<P (B )<1,P (A |B )+P (A |B )=1. 求证P (AB )=P (A )P (B ). 证∵P (A |B )+P (A |B )=1且P (A |B )+P (A |B )=1∴P (A |B )=P (A |B ))(1)()()()()()(B P AB P A P B P B A P B P AB P --== P (AB )[1-P (B )]=P ( B )[P ( A )-P ( AB )]整理可得P (AB )=P ( A ) P ( B )27. 设A 与B 独立,P ( A )=0.4,P ( A +B )=0.7,求概率P (B ). 解P ( A +B )=P (A )+P (A B )=P ( A )+P (A ) P ( B )⇒0.7=0.4+0.6P (B ) ⇒P (B )=0.528. 设事件A 与B 的概率都大于0,如果A 与B 独立,问它们是否互不相容,为什么?解因P (A ),P (B )均大于0,又因A 与B 独立,因此P (AB )=P (A )P (B )>0,故A 与B 不可能互不相容.29. 某种电子元件的寿命在1000小时以上的概率为0.8,求3个这种元件使用1000小时后,最多只坏了一个的概率.解设事件A i 表示“使用1000小时后第i 个元件没有坏”, i =1,2,3,显然A 1,A 2,A 3相互独立,事件A 表示“三个元件中最多只坏了一个”,则A =A 1A 2A 3+1A A 2A 3+A 12A A 3+A 1A 23A ,上面等式右边是四个两两互不相容事件的和,且P (A 1)=P (A 2)=P (A 3)=0.8P ( A )=[][])()(3)(12131A P A P A P + =0.83+3×0.82×0.2 =0.89630. 加工某种零件,需经过三道工序,假定第一、二、三道工序的废品率分别为0.3,0.2,0.2,并且任何一道工序是否出现废品与其他各道工序无关,求零件的合格率.解设事件A 表示“任取一个零件为合格品”,依题意A 表示三道工序都合格.P (A )=(1-0.3)(1-0.2)(1-0.2)=0.44831. 某单位电话总机的占线率为0.4,其中某车间分机的占线率为0.3,假定二者独立,现在从外部打电话给该车间,求一次能打通的概率;第二次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数).解设事件A i 表示“第i 次能打通”,i =1,2,…,m ,则P (A 1)=(1-0.4)(1-0.3)=0.42 P (A 2)=0.58×0.42=0.2436P (A m )=0.58m -1×0.4232. 一间宿舍中有4位同学的眼镜都放在书架上,去上课时,每人任取一副眼镜,求每个人都没有拿到自己眼镜的概率.解设A i 表示“第i 人拿到自己眼镜”,i =1,2,3,4.P (A i )=41,设事件B 表示“每个人都没有拿到自己的眼镜”.显然B 则表示“至少有一人拿到自己的眼镜”. 且B =A 1+A 2+A 3+A 4.P (B )=P (A 1+A 2+A 3+A 4) =∑∑∑-+-=≤≤≤≤4141414321)()()()(i j i k j i k j i i i i A A A A P A A A P A A P A p <<<P (A i A j )=P (A i )P (A j |A i )=)41(1213141≤≤=⨯j i < P (A i A j A k )=P (A i )P (A j |A i )P (A k |A i A j )=41×31×21=241(1≤i <j <k ≤4) P (A 1A 2A 3A 4)=P (A 1)P (A 2|A 1)P (A 3|A 1A 2)×P (A 4|A 1A 2A 3) =2411213141=⨯⨯⨯ 85241241121414)(3424=-⨯+⨯-⨯=C C B P83)(1)(=-=B P B P33. 在1,2,…,3000这3000个数中任取一个数,设A m =“该数可以被m 整除”,m =2,3,求概率P (A 2A 3),P (A 2+A 3),P (A 2-A 3).解依题意P (A 2)=21,P (A 3)=31P (A 2A 3)=P (A 6)=61P (A 2+A 3)=P (A 2)+P (A 3)-P (A 2A 3)=32613121=-+ P (A 2-A 3)=P (A 2)-P (A 2A 3)=316121=-34. 甲、乙、丙三人进行投篮练习,每人一次,如果他们的命中率分别为0.8,0.7,0.6,计算下列事件的概率:(1)只有一人投中; (2)最多有一人投中; (3)最少有一人投中.解设事件A 、B 、C 分别表示“甲投中”、“乙投中”、“丙投中”,显然A 、B 、C 相互独立.设A i 表示“三人中有i 人投中”,i =0,1,2,3,依题意,)()()() ()(0C P B P A P C B A P A P == =0.2×0.3×0.4×=0.024 P (A 3)=P (ABC )=P (A )P (B )P (C ) =0.8×0.7×0.6=0.336P (A 2)=P (AB C )+P (A B C )+P (A BC )=0.8×0.7×0.4+0.8×0.3×0.6+0.2×0.7×0.6=0.452 (1)P (A 1)=1-P (A 0)-P (A 2)-P (A 3)=1-0.024-0.452-0.336=0.188(2)P (A 0+A 1)=P (A 0)+P (A 1)=0.024+0.188=0.212 (3)P (A +B +C )=P (0A )=1-P (A 0)=0.97635. 甲、乙二人轮流投篮,甲先开始,假定他们的命中率分别为0.4及0.5,问谁先投中的概率较大,为什么?解设事件A 2n -1B 2n 分别表示“甲在第2n -1次投中”与“乙在第2n 次投中”,显然A 1,B 2,A 3,B 4,…相互独立.设事件A 表示“甲先投中”.⋯+++=)()()()(543213211A B A B A P A B A P A P A P⋯⨯⨯⨯⨯=+++0.40.5)(0.60.40.50.60.42743.014.0=-= 计算得知P (A )>0.5,P (A )<0.5,因此甲先投中的概率较大.36. 某高校新生中,北京考生占30%,京外其他各地考生占70%,已知在北京学生中,以英语为第一外语的占80%,而京外学生以英语为第一外语的占95%,今从全校新生中任选一名学生,求该生以英语为第一外语的概率.解设事件A 表示“任选一名学生为北京考生”,B 表示“任选一名学生,以英语为第一外语”. 依题意P (A )=0.3,P (A )=0.7,P (B |A)=0.8,P (B |A )=0.95. 由全概率公式有P (B )=P (A )P (B |A )+P (A )P (B |A )=0.3×0.8+0.7×0.95=0.90537. A 地为甲种疾病多发区,该地共有南、北、中三个行政小区,其人口比为9 : 7 : 4,据统计资料,甲种疾病在该地三个小区内的发病率依次为4‰,2‰,5‰,求A 地的甲种疾病的发病率.解设事件A 1,A 2,A 3分别表示从A 地任选一名居民其为南、北、中行政小区,易见A 1,A 2,A 3两两互不相容,其和为Ω.设事件B 表示“任选一名居民其患有甲种疾病”,依题意:P (A 1)=0.45,P (A 2)=0.35,P (A 3)=0.2,P (B |A 1)=0.004,P (B |A 2)=0.002,P (B |A 3)=0.005=∑=31)|()(i i i A B P A P=0.45×0.004+ 0.35×0.002+ 0.2×0.005 =0.003538. 一个机床有三分之一的时间加工零件A ,其余时间加工零件B ,加工零件A 时,停机的概率为0.3,加工零件B 时停机的概率为0.4,求这个机床停机的概率.解设事件A 表示“机床加工零件A ”,则A 表示“机床加工零件B ”,设事件B 表示“机床停工”.)|()()|()()(A B P A P A B P A P B P +=37.0324.0313.0=⨯+⨯=39. 有编号为Ⅰ、Ⅱ、Ⅲ的3个口袋,其中Ⅰ号袋内装有两个1号球,1个2号球与1个3号球,Ⅱ号袋内装有两个1号球和1个3号球,Ⅲ号袋内装有3个1号球与两个2号球,现在先从Ⅰ号袋内随机地抽取一个球,放入与球上号数相同的口袋中,第二次从该口袋中任取一个球,计算第二次取到几号球的概率最大,为什么?解设事件A i 表示“第一次取到i 号球”,B i 表示第二次取到i 号球,i =1,2,3.依题意,A 1,A 2,A 3构成一个完全事件组.41)()(,21)(321===A P A P A P41)|()|(,21)|(131211===A B P A B P A B P41)|()|(,21)|(232221===A B P A B P A B P61)|(,31)|(,21)|(333231===A B P A B P A B P应用全概率公式∑==31)|()()(i i j i j A B P A P B P 可以依次计算出4811)(,4813)(,21)(321===B P B P B P . 因此第二次取到1号球的概率最大.40. 接37题,用一种检验方法,其效果是:对甲种疾病的漏查率为5%(即一个甲种疾病患者,经此检验法未查出的概率为5%);对无甲种疾病的人用此检验法误诊为甲种疾病患者的概率为1%,在一次健康普查中,某人经此检验法查为患有甲种疾病,计算该人确实患有此病的概率.解设事件A 表示“受检人患有甲种疾病”,B 表示“受检人被查有甲种疾病”,由37题计算可知P (A )=0.0035,应用贝叶斯公式)|()()|()()|()()|(A B P A P A B P A P A B P A P B A P +=01.09965.095.00035.095.00035.0⨯⨯⨯=+ 25.0=41. 甲、乙、丙三个机床加工一批同一种零件,其各机床加工的零件数量之比为5 : 3 : 2,各机床所加工的零件合格率,依次为94%,90%,95%,现在从加工好的整批零件中检查出一个废品,判断它不是甲机床加工的概率.解设事件A 1,A 2,A 3分别表示“受检零件为甲机床加工”,“乙机床加工”,“丙机床加工”,B 表示“废品”,应用贝叶斯公式有∑==31111)|()()|()()|(i i i A B P A P A B P A P B A P7305020+1030+06.05.006.05.0=⨯⨯⨯⨯=....74)|(1)|(11=-=B A P B A P42. 某人外出可以乘坐飞机、火车、轮船、汽车4种交通工具,其概率分别为5%,15%,30%,50%,乘坐这几种交通工具能如期到达的概率依次为100%,70%,60%与90%,已知该旅行者误期到达,求他是乘坐火车的概率.解设事件A 1,A 2,A 3,A 4分别表示外出人“乘坐飞机”,“乘坐火车”,“乘坐轮船”,“乘坐汽车”,B 表示“外出人如期到达”.∑==41222)|()()|()()|(i i i A B P A P A B P A P B A P1.05.04.03.03.015.0005.03.015.0⨯+⨯+⨯+⨯⨯==0.20943. 接39题,若第二次取到的是1号球,计算它恰好取自Ⅰ号袋的概率.解39题计算知P (B 1)=21,应用贝叶斯公式 21212121)()|()()|(111111=⨯==B P A B P A P B A P44. 一箱产品100件,其次品个数从0到2是等可能的,开箱检验时,从中随机地抽取10件,如果发现有次品,则认为该箱产品不合要求而拒收,若已知该箱产品已通过验收,求其中确实没有次品的概率. 解设事件A i 表示一箱中有i 件次品,i =0, 1, 2.B 表示“抽取的10件中无次品”,先计算P (B )∑++⨯===20101001098101001099)1(31)|()()(i i i C C C C A B P A P B P37.0)(31)|(0==B P B A P45. 设一条昆虫生产n 个卵的概率为λλ-=e !n p n n n =0, 1, 2, …其中λ>0,又设一个虫卵能孵化为昆虫的概率等于p (0<p <1).如果卵的孵化是相互独立的,问此虫的下一代有k 条虫的概率是多少?解设事件A n =“一个虫产下几个卵”,n =0,1,2….B R =“该虫下一代有k 条虫”,k =0,1,….依题意λλ-==e !)(n p A P n n n⎩⎨⎧≤≤=-n k q p C n k A B P k n k k nn k 00)|(>其中q =1-p .应用全概率公式有∑∑∞=∞===kn n k n n n k n k A B P A P A B P A P B P )|()()|()()(0∑∞=-λ--λ=ln k n k nq p k n k n n !)(!!e ! ∑∞=-λ--λλk n k n k k n q k p !)()(e !)( 由于q k n k n k n k n k n q k n q λ∞=--∞=-∑∑=-λ=-λe !)()(!)()(0,所以有 ,2,1,0e)(e e !)()(===--k kp k p B P pp q k k λλλλλ习 题 二1. 已知随机变量X 服从0-1分布,并且P {X ≤0}=0.2,求X 的概率分布.解X 只取0与1两个值,P {X =0}=P {X ≤0}-P {X <0}=0.2,P {X =1}=1-P {X =0}=0.8.2. 一箱产品20件,其中有5件优质品,不放回地抽取,每次一件,共抽取两次,求取到的优质品件数X 的概率分布.解X 可以取0, 1, 2三个值. 由古典概型公式可知{})2,1,0(2202155===-m C C C m X P mm 依次计算得X 的概率分布如下表所示:3. 上题中若采用重复抽取,其他条件不变,设抽取的两件产品中,优质品为X 件,求随机变量X 的概率分布.解X 的取值仍是0, 1, 2.每次抽取一件取到优质品的概率是1/4,取到非优质品的概率是3/4,且各次抽取结果互不影响,应用伯努利公式有{}1694302=⎪⎭⎫⎝⎛==X P{}1664341112=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C X P {}1614122=⎪⎭⎫⎝⎛==X P4. 第2题中若改为重复抽取,每次一件,直到取得优质品为止,求抽取次数X 的概率分布.解X 可以取1, 2,…可列个值. 且事件{X =n }表示抽取n 次,前n -1次均未取到优质品且第n 次取到优质品,其概率为41431⋅⎪⎭⎫ ⎝⎛-n . 因此X 的概率分布为 {}⋯=⎪⎭⎫⎝⎛==-,2,143411n n X P n5. 盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次一个直到取得新球为止,求下列随机变量的概率分布. (1)抽取次数X ;(2)取到的旧球个数Y . 解(1)X 可以取1, 2, 3, 4各值.{}{}4491191232431=⨯====X P X P {}22091091121233=⨯⨯==X P {}2201991011121234=⨯⨯⨯==X P (2)Y 可以取0, 1, 2, 3各值.{}{}4310====X P Y P{}{}44921====X P Y P {}{}220932====X P Y P {}{}220143====X P Y P 6. 上题盒中球的组成不变,若一次取出3个,求取到的新球数目X 的概率分布. 解X 可以取0, 1, 2, 3各值.{}2201031233===C C X P{}2202713122319===C C C X P{}22010823121329===C C C X P{}22084331239===C C X P 7. 已知P {X =n }=p n ,n =1, 2, 3, …, 求p 的值.解根据{}∑=∞=11n n X P =, 有∑-==∞=111n n pp P 解上面关于p 的方程,得p =0.5.8. 已知P {X =n }=p n ,n =2, 4, 6, …,求p 的值.解1122642=-=⋯+++p p p p p解方程,得p =2±/29. 已知P {X =n }=cn ,n =1,2,…, 100, 求c 的值. 解∑=+⋯++==10015050)10021(1n cc cn =解得c =1/5050 .10. 如果p n =cn _2,n =1,2,…, 问它是否能成为一个离散型概率分布,为什么?解,1121∑=∑∞=∞=n n n n c p 由于级数∑∞=121n n 收敛, 若记∑∞=121n n =a ,只要取ac 1=,则有∑∞=1n n p =1,且p n >0.所以它可以是一个离散型概率分布.11. 随机变量X 只取1, 2, 3共三个值,其取各个值的概率均大于零且不相等并又组成等差数列,求X 的概率分布.解设P {X =2}=a ,P {X =1}=a -d ,P {X =3}=a +d . 由概率函数的和为1,可知a =31,但是a -d 与a +d 均需大于零,因此|d |<31, X 的概率分布为其中d 应满足条件:0<|d |<312. 已知{}λ-==e !m c λm X P m ,m =1, 2, …, 且λ>0, 求常数c . 解{}∑∑∞=-∞====11e !1m m m m c m X p λλ由于∑∑∞=∞==+=10e !1!m mm mm m λλλ, 所以有∑∞=---=-=-=11)e 1(e )1e (e !m m c c m c λλλλλ 解得λ--=e 11c13. 甲、乙二人轮流投篮,甲先开始,直到有一人投中为止,假定甲、乙二人投篮的命中率分别为0.4及0.5,求:(1)二人投篮总次数Z 的概率分布; (2)甲投篮次数X 的概率分布; (3)乙投篮次数Y 的概率分布.解设事件A i 表示在第i 次投篮中甲投中,j 表示在第j 次投篮中乙投中,i =1,3,5,…,j =2,4,6,…,且A 1, B 2, A 3,B 4,…相互独立.(1){}{}1222321112---=-=k k k A B A B A p k Z P=(0.6×0.5)1-k ·0.4=0.4(0.3)1-k k=1, 2, … {})(2212223211k k k k B A B A B A p k Z P ---== =0.5×0.6×(0.6×0.5)1-k =0.3k k=1, 2, …(2){}{}12223211---==n n n A B A B A p n X P{}n n n n B A B A B A p 212223211---+ )5.06.04.0()5.06.0(1⨯+⨯=-n ,2,13.07.01=⨯=-n n (3) {}4.0)(01===A P Y P{}{}{}122121121211+--+==n n n n n A B A B A P B A B A P n Y P )4.05.05.0(6.0)5.06.0(1⨯+⨯⨯⨯=-n ,2,13.042.01=⨯=-n n14. 一条公共汽车路线的两个站之间,有四个路口处设有信号灯,假定汽车经过每个路口时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停止前进,其概率为0.4,求汽车开出站后,在第一次停车之前已通过的路口信号灯数目X 的概率分布(不计其他因素停车). 解X 可以取0, 1, 2, 3, 4 .P { X =0 } =0.4P { X =1 }=0.6×0.4=0.24 P { X =2 } =0.62×0.4=0.144 P { X =3 } =0.63×0.4=0.0864 P { X =4 } =0.64=0.129615. ⎩⎨⎧∈=.,0],[,sin )(其他,b a x x x f问f (x )是否为一个概率密度函数,为什么?如果(1).π23,)3( ;π,0)2( ;2π,0======b a b a b a π解在[0, 2π]与[0, π]上,sin x ≥0,但是,1d sin π≠⎰x x ,1d sin 2π=⎰x x 而在⎥⎦⎤⎢⎣⎡π23,π上,sin x ≤0.因此只有(1)中的a , b 可以使f (x )是一个概率密度函数.16. ⎪⎩⎪⎨⎧≤=-.0,00e )(,22x x c x x f c x ,>其中c >0,问f (x )是否为密度函数,为什么? 解易见对任何x ∈(-∞ , +∞) , f ( x ) ≥ 0,又1d e 202=⎰-∞+x cx cx f (x )是一个密度函数 .17. ⎩⎨⎧+=.0.2<<,2)(其他,a x a x x f问f ( x )是否为密度函数,若是,确定a 的值;若不是,说明理由. 解如果f ( x )是密度函数,则f ( x )≥0,因此a ≥0,但是,当a ≥0时,444|d 2222≥+==⎰⨯++a x x a a a a由于x x f d )(⎰+∞∞-不是1,因此f ( x )不是密度函数.18. 设随机变量X ~f ( x )⎪⎩⎪⎨⎧∞++=.,0,,)1(π2)(2其他<<x a x x f 确定常数a 的值,如果P { a < x < b } =0.5,求b 的值.解)arctan 2π(2arctan π2d )1(π22a x x x a a -π==+⎰⎰+∞+∞ 解方程 π2⎪⎭⎫⎝⎛a arctan - 2π=1得a =0{}b x x x f b x P b barctan π2|arctan π2d )(000==⎰=<< 解关于b 的方程:π2arctan b =0.5 得b =1.19. 某种电子元件的寿命X 是随机变量,概率密度为⎪⎩⎪⎨⎧≥=.100,0,100100)(2<x x x x f 3个这种元件串联在一个线路中,计算这3个元件使用了150小时后仍能使线路正常工作的概率.解串联线路正常工作的充分必要条件是3个元件都能正常工作. 而三个元件的寿命是三个相互独立同分布的随机变量,因此若用事件A 表示“线路正常工作”,则3])150([)(>X P A P ={}32d 1001502150=⎰∞+x x X P =>278)(=A P 20. 设随机变量X ~f ( x ),f ( x )=A e -|x|,确定系数A ;计算P { |X | ≤1 }.解A x A x A x x 2d e 2d e 10||=⎰=⎰=∞+-∞+∞-- 解得A =21 {}⎰⎰---==≤10||11d e d e 211||x x X P x x632.0e 11≈-=-21. 设随机变量Y 服从[0, 5]上的均匀分布,求关于x 的二次方程4x 2+4xY +Y +2=0有实数根的概率. 解4x 2+4xY +Y +2=0. 有实根的充分必要条件是△=b 2-4ac =16Y 2-16(Y +2)=16Y 2-16Y -32≥0 设事件P (A )为所求概率.则{}{}{}120321616)(2-≤+≥=≥--=Y P Y P Y Y P A P =0.622. 设随机变量X ~ f ( x ),⎪⎩⎪⎨⎧-=.,01||,1)(2其他,<x x cx f 确定常数c ,计算.21||⎭⎬⎫⎩⎨⎧≤X P解π|arcsin d 1111211c x c x xc ==-⎰=--c =π131arcsin 2d 1121||0212121 2=π=-π=⎭⎬⎫⎩⎨⎧≤⎰-xx x X P 23. 设随机变量X 的分布函数F ( x )为⎪⎩⎪⎨⎧≥=.1,1,10,0,0)(x x x A x x F <<,<确定系数A ,计算{}25.00≤≤X P ,求概率密度f ( x ).解连续型随机变量X 的分布函数是连续函数,F (1)= F (1-0),有A =1.⎪⎩⎪⎨⎧=.,0,10,21)(其他<<x xx f {}5.0)0()25.0(25.00=-=≤≤F F X P24. 求第20题中X 的分布函数F ( x ) .解{}t x X P x F t xd e 21)(||-∞-⎰=≤=当t ≤ 0时, x t x t x F e 21d e 21)(=⎰=∞-当t >0时,t t t x F t x t t x d e 21d e 21d e 21)(-00||⎰+⎰=⎰=-∞--∞-x x ---=-+=e 211)e 1(2121 25. 函数(1+x 2)-1可否为连续型随机变量的分布函数,为什么? 解不能是分布函数,因F (-∞)= 1 ≠ 0.26. 随机变量X ~f ( x ),并且)1(π)(2x ax f +=,确定a 的值;求分布函数F ( x );计算{}1||<X P .解a x a x x a ==⎰+=∞+∞-∞+∞-arctan πd )1(π12因此a =1x xt t t x F ∞-∞-=⎰+=arctan π1d )1(π1)(2x arctan π121+= {}⎰+=⎰+=-102112d )1(π12d )1(π11||x x x x X P < 21arctan π210==x 27. 随机变量X 的分布函数F ( x ) 为:⎪⎩⎪⎨⎧≤-=.2,02,1)(2x x xA x F ,> 确定常数A 的值,计算{}40≤≤X P .解由F ( 2+0 )=F ( 2 ),可得4,041==-A A{}{})0()4(4X 040F F P X P -=≤=≤≤<=0.7528. 随机变量X ~f ( x ),f ( x )=,e e x x A-+确定A 的值;求分布函数F ( x ) .解⎰+=⎰+=∞∞-∞∞--x A x A xxx x d e1e d e e 12 A A x 2πe arctan ==∞∞- 因此A =π2,xtxt t t x F ∞-∞--=+=⎰e arctan π2d )e e (π2)(x e arctan π2= 29. 随机变量X ~f ( x ),⎪⎩⎪⎨⎧=.,00,π2)(2其他<<a x x x f确定a 的值并求分布函数F ( x ) .解2202202ππd π21a x x x a a==⎰=因此,a = π 当0<x <π时,⎰=x x t tx F 0222πd π2)(⎪⎪⎩⎪⎪⎨⎧≥≤=π1,π0,π0,0)(22x x xx x F << 30. 随机变量X 的分布函数为)0(0,e 22210,0)(22>>a x ax x a x x F ax⎪⎩⎪⎨⎧++-≤=-求X 的概率密度并计算⎭⎬⎫⎩⎨⎧a X P 10<<.解当x ≤ 0时,X 的概率密度f ( x ) =0;当x > 0时,f ( x ) =F′ ( x )⎪⎩⎪⎨⎧≤=-.0,e 2,0,0)(23> x x a x x f ax其他)0()1(1010F a F a x P a x P -=⎭⎬⎫⎩⎨⎧≤=⎭⎬⎫⎩⎨⎧<<<08.0e 2511≈-=-31. 随机变量X 服从参数为0.7的0-1分布,求X 2,X 2-2X 的概率分布.解X 2仍服从0-1分布,且P { X 2=0 } =P { X =0 } =0.3,P {X 2=1}=P {X =1}=0.7X 2-2X 的取值为-1与0 , P {X 2-2X =0} =P { X =0 } =0.3P { X 2-2X =-1 } =1-P { X =0 } =0.732. 已知P { X =10n } =P { X =10-n }=,,2,1,31=n nY =l gX ,求Y 的概率分布. 解Y 的取值为±1, ±2 , …P { Y =n } =P { l gX =n } =P { X =10n } =31P { Y =-n } =P { l gX =-n } =P { x =10-n } =31n =1 , 2 , …33. X 服从[a ,b ]上的均匀分布,Y =ax +b (a ≠0),求证Y 也服从均匀分布.证设Y 的概率密度为f Y ( y ) ,X 的概率密度为f X ( x ),只要a ≠ 0,y = ax + b 都是x 的单调函数. 当a > 0时,Y 的取值为[a 2+b ,ab +b ],ax y h b y a y h x y 1)(,)(1)(='='-== ],,[,)(1])([)()(2b ab b a y a b a y h f y h y f X Y ++∈-='=当],[2b ab b a y ++∈时,f Y ( y ) =0.类似地,若a <0,则Y 的取值为[ ab +b , a 2+b ]⎪⎩⎪⎨⎧+≤≤+--=.,0,,)(1)(2其他b a y b ab a b a y f Y因此,无论a >0还是a <0,ax +b 均服从均匀分布.34. 随机变量X 服从[0 , 2π]上的均匀分布Y =cos X , 求Y 的概率密度f Y ( y ).解y =cos x 在[0,2π]上单调,在(0 , 1)上,h ( y ) = x =arccos yh′ ( y ) = 211y -- , f x ( x ) = π2 , 0 ≤ x ≤ 2π. 因此⎪⎩⎪⎨⎧-=.0,10,1π2)(2其他,<<y yy f Y35. 随机变量X 服从(0 , 1)上的均匀分布,Y =e x , Z =|ln X |,分别求随机变量Y 与Z 的概率密度f Y ( y ) 及f Z ( z ) .解y = e x 在(0 , 1)内单调 , x =ln y 可导,且x′y = y1, f X ( x ) =10 < x < 1 , 因此有⎪⎩⎪⎨⎧.,0,e 1,1)(其他 <<y yy f Y在(0 , 1)内ln x < 0|ln x |=-ln x 单调,且x = e z -,x′z =-e z -,因此有⎩⎨⎧∞+=-.,0,0e )(其他<<,z z f z z36. 随机变量X ~f ( x ) , ⎩⎨⎧≤=-0,00,e )(x x x f x >Y = X , Z = X 2 , 分别计算随机变量Y 与Z 的概率密度f y ( y ) 与f Z ( z ) . 解当x > 0时,y =x 单调,其反函数为x = y 2 , x′y = 2y ⎪⎩⎪⎨⎧≤=-.0,0,0,e 2)(2y y y y f y Y >当x > 0时z =x 2也是单调函数,其反函数为x =z , x′ z =z21⎪⎩⎪⎨⎧≤=-.0,00e 21)(z ,z zz f zz > 37.随机变量X ~f ( x ),当x ≥ 0时,)1(2)(2x x f +=π, Y =arctan X ,Z =X1,分别计算随机变量Y 与Z 的概率密度f Y ( y ) 与fz ( z ) . 解由于y = arctan x 是单调函数,其反函数x =tan y , x′ y =sec 2y 在⎪⎭⎫⎝⎛-2π,0内恒不为零,因此,当0 < y <π2时, π2)tan 1(π2sec )(22=+=y y y f Y 即Y 服从区间(0 , 2π)上的均匀分布.z = x 1在x >0时也是x 的单调函数,其反函数x =z 1, x′ z =21z-.因此当z >0时,)1(π2])1(1[π21)(222z zz z fz +=+-=⎪⎩⎪⎨⎧≤+=0,00,)1(π2)(2z z z z f z >即Z =X1与X 同分布. 38. 一个质点在半径为R ,圆心在原点的圆的上半圆周上随机游动. 求该质点横坐标X 的密度函数f X ( x ) .解如图,设质点在圆周位置为M ,弧MA 的长记为L ,显然L 是一个连续型随机变量,L 服从[0,πR ]上的均匀分布.⎪⎩⎪⎨⎧≤≤=.,0π0,π1)(其他,R l Rl f L M 点的横坐标X 也是一个随机变量,它是弧长L 的函数,且X = R cos θ = R cos RL函数x = R cos l / R 是l 的单调函数 ( 0< l < πR ) ,其反函数为l = R arccos Rx22xR R l x--=' 当-R < x < R 时,L′x ≠ 0,此时有2222π1π1)(xR R x R Rx f X -=⋅--=当x ≤ -R 或x ≥ R 时,f X ( x ) =0 .39. 计算第2 , 3 , 5 , 6 , 11各题中的随机变量的期望. 解根据第2题中所求出的X 概率分布,有2138223815138210=⨯+⨯+⨯=EX亦可从X 服从超几何分布,直接计算2120521=⨯==N N n EX在第3题中21161216611690=⨯+⨯+⨯=EX亦可从X 服从二项分布(2,41),直接用期望公式计算:21412=⨯==np EX在第5题中(1)3.122014220934492431=⨯+⨯+⨯+⨯=EX(2)3.022013220924491430=⨯+⨯+⨯+⨯=EY在第6题中,25.2220843220108222027122010=⨯+⨯+⨯+⨯=EX在第11题中,⎪⎭⎫⎝⎛+⨯+⨯+⎪⎭⎫ ⎝⎛-⨯=d 313312d 311EX31|<d <|0 d 22+=40. P { X = n } =nc, n =1, 2, 3, 4, 5, 确定C 的值并计算EX .解160137543251==++++=∑=c c c c c c n c n 13760=C 137300551==∑⋅==C n c n EX n 图2-141. 随机变量X 只取-1, 0, 1三个值,且相应概率的比为1 : 2 : 3,计算EX . 解设P { X =-1 } = a ,则P { X =0 } =2a , P { X =1 } =3a ( a >0 ) ,因a + 2a + 3a = 1 , 故a =1/631631620611=⨯+⨯+⨯-=EX42. 随机变量X 服从参数为0.8的0-1分布,通过计算说明EX 2是否等于( EX )2 ? 解EX =P { X =1 } =0.8,( EX )2 =0.64EX 2=1×0.8=0.8>( EX )243. 随机变量X ~f ( x ) ,f ( x ) =0.5e - | x |,计算EX n ,n 为正整数.解当n 为奇数时,)(x f x n 是奇函数,且积分x x x n d e 0-∞⎰收敛,因此0d e 5.0||=⎰=-∞+∞-x x EX x n n当n 为偶数时,x x x x EX x n x n n d e 5.02d e 5.00||-∞+-∞+∞-⎰=⎰=!)1(d e 0n n x x x n =+Γ=⎰=-∞+44. 随机变量X ~f ( x ) ,⎪⎩⎪⎨⎧-≤≤=.,0,21,2,10,)(<<x x x x x f计算EX n (n 为正整数) .解x x x x x x x f x EX n n n n d )2(d d )(21101⎰-+⎰=⎰=+∞+∞-1)2(21)12(122121-+--+++=++n n n n n )2()1(222++-=+n n n 45. 随机变量X ~f ( x ) ,⎩⎨⎧≤≤=.,0,10,)(其他x cx x f bb ,c 均大于0,问EX 可否等于1,为什么?解11d d )(10=+=⎰=⎰∞+∞-b c x cx x x f b 而2d 101+=⎰=+b c x cx EX b 由于方程组⎪⎪⎩⎪⎪⎨⎧=+=+1211b c b c无解,因此EX 不能等于1. 46. 计算第6,40各题中X 的方差DX . 解在第6题中,从第39题计算知EX =49, 22012152208492201084220272=⨯+⨯+=EX DX =EX 2-( EX )2≈0.46其他 其他在第40题中,已计算出EX =137300, c cn n c n EX n n 15515122=∑=⨯∑=== =137900DX =EX 2-(EX )2≈1.7747. 计算第23,29各题中随机变量的期望和方差.解在第23题中,由于f ( x ) =x21(0<x <1),因此31d 210=⎰=x xx EX51d 22102=⎰=x xx EXDX = EX 2- ( EX )2 =454在第29题中,由于f ( x ) =2π2x( 0<x <π ) , 因此π32d π2π022=⎰=x xEX2πd π22π0232=⎰=x x EX DX =EX 2- ( EX )2=18π248. 计算第34题中随机变量Y 的期望和方差.解EY =π2d 1π2d )(12=⎰-=⎰∞+∞-y y y y y yf Y EY 2=21d 1π2122=⎰-y y y DY =222π28ππ421-=-49. 已知随机变量X 的分布函数F ( x ) 为:F ( x ) =⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≤-++-.1,11022101,2211,022x x ,x x x x x x ,<-,<,<计算EX 与DX .解依题意,X 的密度函数f ( x ) 为:⎪⎩⎪⎨⎧≤-≤-+=.010,101,1)(其他,<,<,x x x x x f解EX =0d )1(d )1(0101=-⎰++⎰--x x x x x xEX 2=61d )1(d )1(102012=-⎰++⎰-x x x x x xDX =61 50. 已知随机变量X 的期望E X =μ,方差DX =σ2,随机变量Y = σμ-X ,求EY 和DY .解EY =σ1( EX -μ ) =0 DY = 2σDX =151. 随机变量Y n ~B ( n , 41) ,分别就n =1, 2, 4, 8, 列出Y n 的概率分布表,并画出概率函数图 .其中a = 1/65536 . 图略 .52. 设每次实验的成功率为0.8,重复实验4次,失败次数记为X ,求X 的概率分布 . 解X 可以取值0, 1,2, 3, 4.相应概率为P ( X =m ) =m m mC 2.08.0444⨯⨯--( m=0,1,2,3, 4 ) 计算结果列于下表53. 设每次投篮的命中率为0.7,求投篮10次恰有3次命中的概率 ;至少命中3次的概率 . 解 记X 为10次投篮中命中的次数,则X ~B ( 10 , 0.7 ) .{}009.03.07.0373310≈==C X P{}{}{}{}21013=-=-=-=≥X P X P X P X P =1-0.310-10×0.7×0.39-45×0.72×0.38≈0.998454.掷四颗骰子,求“6点”出现的平均次数及“6点”出现的最可能(即概率最大)次数及相应概率.解 掷四颗骰子,记“6点”出现次数为X ,则X ~B (4,61).EX = np =32由于np + p =65,其X 的最可能值为[ np + p ]=0 {}1296625)65(04===X P 若计算{}12965001==X P ,显然{}{},3,2==x P x P{}4=x P 概率更小.55.已知随机变量X ~B (n , p ),并且EX =3,DX =2,写出X 的全部可能取值,并计算{}8≤X P . 解根据二项分布的期望与方差公式,有⎩⎨⎧==23npq np 解方程,得q =32,p =31,n =9 . X 的全部可能取值为0, 1, 2, 3, …, 9. {}{}918=-=≤X P X P= 1-9)31(≈ 0.999956.随机变量X ~B (n ,p ),EX =0.8,EX 2=1.28,问X 取什么值的概率最大,其概率值为何? 解由于DX = EX 2-(EX)2=0.64, EX =0.8, 即⎩⎨⎧==8.064.0np npq 解得q = 0.8,p = 0.2,n = 4 .由于np +p =1,因此X 取0与取1的概率最大,其概率值为 {}{}4096.08.0104=====X P X P57.随机变量X ~B (n , p ),Y =e aX ,计算随机变量Y 的期望EY 和方差DY .解随机变量Y 是X 的函数,由于X 是离散型随机变量,因此Y 也是离散型随机变量,根据随机变量函数的期望公式,有 }{ }{∑+==∑==∑+==∑∑====-==-==-ni n a i n i a i n ni ai ni na i n i a i n ni ni in i i n ai ai q p q p C i X P EY q p q p C qp C i X P EY 022022000)e ()e ()e ()e ()e (e en ap n ap q q DY 22)e ()e (+-+=58. 从一副扑克牌(52张)中每次抽取一张,连续抽取四次,随机变量X ,Y 分别表示采用不放回抽样及有放回抽样取到的黑花色张数,分别求X ,Y 的概率分布以及期望和方差.解X 服从超几何分布,Y 服从二项分布B (4,21).)4,3,2,1,0(45242626===-m C C C m X P m m }{)4,3,2,1,0()21()21(44===-m C m Y P mm m }{ 具体计算结果列于下面两个表中.1 2214171651485226522641252264211===⨯===⨯⨯⨯=--⋅⋅==⨯==npq DY np EY N n N N N N N n DX N N nEX 59. 随机变量X 服从参数为2的泊松分布,查表写出概率4,3,2,1,0,==m m X P }{并与上题中的概率分布进行比较.X0 1 2 3 4 P0.13530.27070.27070.18040.090260.从废品率是0.001的100000件产品中,一次随机抽取500件,求废品率不超过0.01的概率.解 设500件中废品件数为X ,它是一个随机变量且X 服从N=100000,1N =100,n =500的超几何分布.由于n 相对于N 较小,因此它可以用二项分布B (500,0.001)近似.又因在二项分布B (500,0.001)中,n =500比较大,而p =0.001非常小,因此该二项分布又可用泊松分布近似,其分布参数λ=np =0.5.}∑=≈≤=≤⎩⎨⎧=-505.0999986.0e !5.05X 001.0500m m m P X P }{ 61.某种产品每件表面上的疵点数服从泊松分布,平均每件上有0.8个疵点,若规定疵点数不超过1个为一等品,价值10元;疵点数大于1不多于4为二等品,价值8元;4个以上者为废品,求: (1)产品的废品率; (2)产品价值的平均值解 设X 为一件产品表面上的疵点数目,(1)}{}>{314≤-=X P X P ∑==-==300014.01m m X P }{(2)设一件产品的产值为Y 元,它可以取值为0,8,10. )(61.98088.0101898.08 110418 10108800元}{}<{}{}{}{≈⨯+⨯=≤+≤==⨯+=⨯+=⨯=X P X P Y P Y P Y P EY62.设书籍中每页的印刷错误服从泊松分布,经统计发现在某本书上,有一个印刷错误的页数与有2个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解设一页书上印刷错误为X ,4页中没有印刷错误的页数为Y ,依题意,}{}{21===X P X P 即λλλλ--=e !2e2解得λ=2,即X 服从λ=2的泊松分布.2e 0-===}{X P p 显然Y ~B )e ,4(2-84e 4-===p Y P }{63.每个粮仓内老鼠数目服从泊松分布,若已知一个粮仓内,有一只老鼠的概率为有两只老鼠概率的两倍,求粮仓内无鼠的概率. 解设X 为粮仓内老鼠数目,依题意λλλλ--⨯====e!22e 2212}{}{X P X P解得λ=1.1e 0-==}{X P64.上题中条件不变,求10个粮仓中有老鼠的粮仓不超过两个的概率.解 接上题,设10个粮仓中有老鼠的粮仓数目为Y ,则Y ~B (10,p ),其中,e 10101--==-==}{}>{X P X P 1e -=q)45e 80e 36(e 2102128+-==+=+==≤---}{}{}{}{Y P Y P Y P Y P65.设随机变量X 服从][3,2上的均匀分布,计算E (2X ),D (2X ),2)2(X D .解EX =2.5,DX =1276)(,12122=+=EX DX EXE (2X )=5,D (2X )=4DX =31,][⎰==-===32 442242225211d )(1616)4()2(x x EX EX EX DX X D X D 45150416)2(720150414457765211)(222242===-=-=DX X D EX EX DX66.随机变量X 服从标准正态分布,求概率P }{}{}{}{7,1,535.2,3-≤≤≤≤≤X P X P X P X . 解3(3)0.9987P X Φ≤=={} 2.355(5)(2.35)0.0094P X ΦΦ≤≤=-={}1(1)0.8413P X Φ≤=={}71(7)0P X Φ≤-=-={}67.随机变量X 服从标准正态分布,确定下列各概率等式中的a 的数值: (1);9.0=≤}{a X P ;(2){};9.0 =≤a X P(3){};97725.0=≤a X P (4){};1.0 =≤a X P 解(1){}()0.9P X a a Φ≤==,查表得a =1.28(2){} 2()10.9P X a a Φ≤=-=,得Φ(a )=0.95, 查表得a =1.64(3){}()0.97725P X a a Φ≤==,查表得a =2(4){}1.01)(2 =-Φ=≤a a X P ,得Φ(a )=0.55, 查表得a =0.1368. 随机变量X 服从正态分布)2,5(2N ,求概率{}85<<X P ,{}0≤X P ,{}25 <-X P .解{}⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=2552588X 5ΦΦ<<P (1.5)(0)0.4332ΦΦ=-=P {}()()00620521520...X =-=-=≤ΦΦ{}1)1(212525 -Φ=⎭⎬⎫⎩⎨⎧≤-=-X P X P <=0.682669.随机变量X 服从正态分布),(2σμN ,若{}975.09=<X P ,{}062.02=<X P ,计算μ和σ的值,求{}6>X P .。

概率统计练习题

概率统计练习题

第一章 随机事件及其概率习题一 、填空题:1.设A ,B ,C 为三个事件,用A 、B 、C 的运算关系表示(1)A 和B 都发生,而C 不发生为 ,(2)A 、B 、C 至少有两个发生的事件为 。

2.设A ,B 为两个互不相容的事件,P(A)=0.2, P(B)=0.4, P(A+B)= 。

3.设A ,B ,C 为三个相互独立的事件,已知P(A)=a, P(B)=b, P(C)=c,则A ,B ,C 至少有一个发生的概率为 。

4.把一枚硬币抛四次,则无反面的概率为 ,有反面的概率为 。

5.电话号码由0,1,……9中的8数字排列而成,则电话号码后四位数字全都不相同的概率表示为 。

6.设公寓中的每一个房间都有4名学生,任意挑选一个房间,则这4人生日无重复的概率表示为 (一年以365天计算)。

7. 设A ,B 为两个事件,P(A)=0.4, ,P(B)=0.8,P(B A )=0.5,则P(B|A)= 。

8.设A ,B ,C 构成一个随机试验的样本空间的一个划分,且7.0)(,5.0)(==B P A P ,则P(C)= ,P(AB)= 。

9.设A ,B 为两个相互独立的事件,P(A)=0.4,P(A+B)=0.7,则P(B)= 。

10.3个人独立地猜一谜语,他们能够猜出的概率都是31,则此谜语被猜出的概率为 。

二 、选择题 :1. 设A 与B 是两随机事件,则AB 表示( )(A )A 与B 都不发生 (B )A 与B 同时发生(C )A 与B 中至少有一个发生 (D )A 与B 中至少有一个不发生 2.设c B A P b B P a A P =⋃==)(,)(,)(,则)(B A P 为 (A )b a -(B )b c -(C ))1(b a -(D ))1(c a -3.若A ,B 是两个互不相容的事件,P (A )>0,P (B )>0,则一定有( ) (A )P (A )=1—P (B ) (B ) P (A|B )=0 (C ) P (A|B )=1 (D )P (A |B )=04. 每次试验失败的概率为p (0<p<1),则在3次重复试验中至少成功一次的概率为( )(A ))1(3p - (B)3)1(p -(C) 31p - (D)13C 3)1(p p -三、计算:1.掷两颗质地均匀的骰子,求出现的两个点数之和等于5的概率。

概率论与数理统计第三四章习题

概率论与数理统计第三四章习题

. 第三、四章练习题 一、 填空题1. 设随机变量函数X 和Y 具有联合概率密度⎪⎩⎪⎨⎧<<<<=其他020,4081),(y x y x f ,则P{Y X <}= ;2. 已知离散型随机变量X 与Y 相互独立,且{0}{0}0.3P X P Y ====,{1}{1}0.7P X P Y ====,则{1}P X Y +== ,{}P X Y == ;3. 设随机变量~(,)X b n p ,且5.0)(=X E , 45.0)(=X D ,则=n ,=p ;4. 若~(2)X π,则(22)D X += ;5. 已知随机变量~(2,4)X N ,~(1,3)Y N ,X 与Y 相互独立,则32X Y -服从的分布为 ;6. 已知()1E X =-,()3D X =,则2(31)E X -= ;7. 设~(10,0.6)X N ,~(1,2)Y N ,且X 与Y 相互独立,则=)(XYE ,=-)3(Y XD ; 8. 设随机变量X 在区间(0,2)上服从均匀分布,且21Y X =+,则()E Y=, ()D Y=;9. 设随机变量X 与Y 的方差分别为()25D X =,()16D Y =,相关系数0.4XY ρ=,则()D X Y += ;10. 若随机变量X 与Y 相互独立,则相关系数XY ρ= .二、 判断题1. 设X 为随机变量,C 为常数,则()()D X C D X C +=+;2. 设X 为随机变量,C 为常数,则()()E X C E X C +=+;3. 若随机变量,X Y 相互独立,则,X Y 一定不相关;4. 设随机变量X 和Y 都服从标准正态分布,则Y X +一定服从正态分布;5. 若X 与Y 相互独立,则cov()0X Y =,;6. 已知随机变量~(0,1)X U ,2Y X =,则随机变量X 与Y 不相关;7. 已知随机变量~(1,1)X U -,2Y X =,则随机变量X 与Y 不相关;8. 随机变量X 和Y 的联合分布决定X 和Y 的边缘分布.三、 计算题1. 设(,)X Y 的概率密度为, 01,0(,)0, cxy x y xf x y ≤≤≤≤⎧=⎨⎩其他,求(1)c 的值;(2)两个边缘概率密度;(3)说明,X Y 是否相互独立;(4)条件概率密度()X Y f x y .2. 二维随机变量(,)X Y 的概率密度为(2),0,0(,)0,x y Ae x y f x y -+⎧>>=⎨⎩其他,求:(1)系数A ;(2),X Y 的边缘概率密度函数;(3)问,X Y 是否独立;(4)Z X Y =+的概率密度.3. 某射手有5发子弹,射击一次命中率为0.9,如果他命中目标就停止射击,不命中就一直射到 用完5发子弹,求所用子弹数X 的分布律、数学期望和方差.4. 设二维随机变量(,)X Y 的分布律为(见右表),已知()1E Y =,试求:(1)常数,αλ;(2)()E X .5. 设连续型随机变量X 的分布函数为381, 2,()0, 2x F x x x ⎧⎪-≥=⎨⎪<⎩.,求X 的期望与方差.6. 按节气出售的某种节令商品,每售出1kg 可获利10元,过了节气可将剩余的这种商品全部处理,每处理1kg 净亏损2元.设某商店在节令内这种商品的销售量X (单位:kg )服从(20,40)内的均匀分布.为使商店获得利润Y 的数学期望最大,问该商店的进货量t 应为多少?。

数的概率与统计练习题

数的概率与统计练习题

数的概率与统计练习题
以下是一份关于数的概率与统计的练习题:
题目一:选择题
1. 下面哪个不是随机事件?
A. 抛硬币结果是正面朝上
B. 从扑克牌中抽取一张A
C. 掷骰子结果为偶数
D. 爬山时碰到下雨
2. 一副标准扑克牌共有52张,其中红心牌有13张,那么从中随机抽取一张牌是红心牌的概率是多少?
A. 1/13
B. 1/26
C. 1/52
D. 13/52
3. 从一个装有8个红球和4个蓝球的袋子中随机取出一球,取出红球的概率是多少?
A. 1/12
B. 2/3
C. 2/12
D. 1/4
题目二:计算题
1. 小明家有三个抽屉,每个抽屉里有红球3个和蓝球2个。

小明先随机选择一个抽屉,然后从该抽屉中随机取球。

若小球为红色,求其来自第一个抽屉的概率。

2. 有一个含有8只白球和5只黑球的袋子,从袋子中依次取球不放回,取出3只,求:
a) 相同颜色的球至少有2只的概率;
b) 取出的3只球均为黑球的概率。

题目三:应用题
甲、乙、丙三位同学分别参加英语和数学两门科目的考试。

已知甲的英语成绩优秀,乙的数学成绩优秀,那么丙同学同时在英语和数学两门科目上优秀的概率是多少?
请将答案写在纸上,答案不唯一。

注意:本试卷是一份练习题,可以根据自己的实际情况适当调整题目。

以上题目仅供参考,不保证完全无误。

祝您学习进步!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率论与数理统计》练习四注意一、选择填空题1.A、B是两个随机事件,P( A ) = 0.3,P( B ) = 0.4,且A与B相互独立,则()P A B= ;(A) 0.7(B) 0.58(C) 0.82(D) 0.122.A、B是两个随机事件,P( A ) = 0.3,P( B ) = 0.4,且A与B互不相容,则()P A B=;(A) 0(B) 0.42(C) 0.88(D) 13.已知B,C是两个随机事件,P( B | C ) = 0.5,P( BC ) = 0.4,则P( C ) = ;(A) 0.4(B) 0.5(C) 0.8(D) 0.94.袋中有6只白球,4只红球,从中抽取两只,如果作不放回抽样,则抽得的两个球颜色不同的概率为: ;(A)815(B)415(C)1225(D)6255.袋中有6只白球,4只红球,从中抽取两只,如果作放回抽样,则抽得的两个球颜色不同的概率为: ;(A)815(B)415(C)1225(D)6256.在区间[0,1]上任取两个数,则这两个数之和小于12的概率为;(A) 1/2(B) 1/4(C) 1/8(D) 1/167.在一次事故中,有一矿工被困井下,他可以等可能地选择三个通道之一逃生.假设矿工通过第一个通道逃生成功的可能性为1/2,通过第二个通道逃生成功的可能性为1/3,通过第三个通道逃生成功的可能性为1/6.请问:该矿工能成功逃生的可能性是 .(A) 1 (B) 1/2(C) 1/3(D) 1/68.已知某对夫妇有四个小孩,但不知道他们的具体性别。

设他们有Y 个儿子,如果生男孩的概率为0.5,则Y 服从 分布. (A) (01)- 分布 (B) (4,0.5)B (C) (2,1)N(D)(2)π9.假设某市公安机关每天接到的110报警电话次数X 可以用泊松(Poisson)分布()πλ来描述.已知{99}{100}.P X P X ===则该市公安机关平均每天接到的110报警电话次数为 次. (A) 98 (B) 99(C) 100(D) 10110.指数分布又称为寿命分布,经常用来描述电子器件的寿命。

设某款电器的寿命(单位:小时)的密度函数为则这种电器的平均寿命为 小时.(A) 500 (B) 5000 (C) 250000(D) 2500000011.设随机变量X 具有概率密度则常数k = .(A) 1 (B) 12(C) 13(D) 1412.在第11小题中, {11}P X -≤≤= .(A) 0 (B) 12(C) 14(D) 1813.抛掷两颗骰子,用X 和Y 分别表示它们的点数(向上的面上的数字),则这两颗骰子的点数之和(Z=X+Y)为7的概率为 .0.0020.002, 0()0,t e t f t -⎧>=⎨⎩其它,02,()0,kx x f x ≤≤⎧=⎨⎩其它.(A) 112 (B) 16(C) 13(D) 1214.抛掷两颗骰子,用X 和Y 分别表示它们的点数(向上的面上的数字),则这两颗骰子的最小点数(min{,}U X Y =)为1的概率为 .(A) 1236 (B) 1136(C) 1036(D) 93615.根据世界卫生组织的数据,全球新生婴儿的平均身长为50厘米,身长的标准差估计为2.5厘米。

设新生婴儿的身长服从正态分布,则全球范围内大约有 新生婴儿身长超过52.5厘米.(A) 97.72% (B) 2.28% (C) 84.13%(D) 15.87%16. 在第15小题中,身长在48厘米到52厘米之间的新生婴儿大约占 .(A) 57.62% (B) 78.81% (C) 84.13%(D) 15.87%17.设随机变量X ~ N (20,16),Y ~ N (10,9),且X 与Y 相互独立,则X+Y 服从 分布.(A) (30,16)N (B) (15,16)N (C) (30,9)N (D) (30,25)N18. 在第17小题中,X –Y 服从 分布.(A) (10,7)N (B) (10,25)N (C) (30,25)N (D) (30,7)N19. 在第17小题中,P(X –Y>20) = .(A) 97.72% (B) 2.28% (C) 84.13% (D) 15.87%20.已知(10,0.1)X B ,则E(X 2) = .(A) 1 (B) 0.9 (C) 1.9(D) 1.81 21.已知E(X) = 1,D(X) = 2,E(Y) = 3,E( Y 2 )= 10,X 和Y 相互独立,则D(X+2Y+1) = .(A) 4 (B) 5 (C) 6(D) 722.已知E(X) = 1,D(X) = 2,E(Y) = 3,E( Y 2 )= 10,X 和Y 的相关系数6XY ρ=.则D(2X+Y) = .(A) 193 (B) 233(C) 293 (D) 31323.设随机向量(X,Y)具有联合密度函数(,)f x y =(2), 0,0,0, x y ke x y -+⎧>>⎨⎩其它.则密度函数中的常数k = .(A) 2 (B) 3 (C) 4 (D) 524. .设随机变量X ,Y 的概率密度分别为:=)(x f X 2, 01,0, x x ≤≤⎧⎨⎩其它, =)(y f Y 23, 01,0 ,y y ⎧≤≤⎨⎩其它. 已知随机变量X 和Y 相互独立.则概率{}0P Y X -< .(A) 15 (B) 25 (C) 35 (D) 4525.设X 1,X 2,X 3是来自总体X 的简单随机样本,则下列统计量1123212331231111111,(),2443234T X X X T X X X T X X X =++=++=++中, 是总体均值的无偏估计量.(A) 12T T 和 (B) 13T T 和 (C) 23T T 和 (D) 123,T T T 和 26.在第25小题中,属于无偏估计的统计量中最有效的一个为 . (A) 1T (B) 2T (C) 3T (D) 12,T T 27.已知随机变量X 与Y 相互独立,且2~(20)X χ,2~(40)Y χ,则Y X /2服从分布 . (A)2(60)χ (B) (20,40)F (C) (19,39)F (D) 2(80)χ28.设201,...,X X 是总体)10,20(N 的容量为20的一个样本,这个样本的样本均值记为X .则X 服从分布 .(A) (20,10)N (B) 1(20,)2N (C) 1(1,)2N (D) (1,10)N29.设201,...,X X 及301,...,Y Y 分别是总体)10,20(N 的容量为20和30的两个独立样本,这两组样本的样本均值分别记为Y X ,.Y X -服从分布 .(A) 2(0,)5N (B) 2(20,)5N (C)5(20,)6N (D)5(0,)6N 30.在第29小题中, {P X Y -<= . (A) 57.62% (B) 78.81% (C) 84.13% (D) 15.87%31.在第29小题中,2021()10ii XX =-∑服从分布 .(A)2(20)χ (B) 2(19)χ (C) (19)t (D) (20)t32. 设总体X 在区间(0,)θ上服从均匀分布,参数θ末知, 12,,,n X X X 是来自总体X 的样本,则θ的矩估计量为 .(A) ˆX θ= (B) ˆ2X θ= (C) ˆ3X θ= (D) ˆ4X θ= 33.设总体2(,),X N μσ 参数2σ已知, μ末知,12,,,n X X X 是来自总体X的样本,则μ的极大似然估计量为 .(A) ˆX μ= (B) ˆ2X μ= (C) ˆ3X μ= (D) ˆ1/X μ= 34.假设检验的第一类错误(弃真)是指:(A) 0H 为真且接受0H (B) (A) 0H 为真但拒绝0H (C) 0H 为假但接受0H (D) 0H 为假且拒绝0H 35.两个正态总体的方差的假设检验中选择的检验统计量为 .(A) X Z =(B) X t =(C) 222(1)n S χσ-=(D) 2122S F S =二、计算题1.欲调查某地居民每月用于食品的消费支出.随机抽取了16户家庭进行调查,发现平均每户家庭每月用于食品的消费支出为810元,标准差为80元.假设该地区每户家庭每月用于食品的消费支出服从正态分布.(1)以90%的置信度构造该地区平均每户家庭每月用于食品的消费支出的置信区间。

(2)以95%的置信度构造该地区平均每户家庭每月用于食品的消费支出的置信区间。

(3)从以上两个置信区间找出置信度与置信区间宽度的定性关系。

.2.随机抽取某班25名学生的概率统计课程的成绩,算得他们的平均成绩为70分标准差为5分.假定该班的学生成绩近似服从正态分布,请解答下列问题:(1)取0.05的显著性水平检验“该班学生的平均成绩是75分”这一命题能否接受。

(2)显著性水平为0.05α=,问该班学生的成绩的方差2σ是否为30.。

其中20.025(24)39.364,χ=20.975(24)12.401χ=,20.05(24)36.415χ=.。

相关文档
最新文档