覃巨石:高中必修二圆练习题

合集下载

高一物理必修2圆周运动测试题汇总

高一物理必修2圆周运动测试题汇总

高一物理必修2圆周运动测试题第Ⅰ卷(选择题)小题)一.选择题(请将你认为正确的答案代号填在Ⅱ卷的答题栏中,本题共12的圆周滑行R1. 冰面对滑冰运动员的最大摩擦力为其重力的k倍,在水平冰面上沿半径为的运动员,若仅依靠摩擦力来提供向心力而不冲出圆形滑道,其运动的速度应满足2v?kRgv?kRg/v?kRgv?2kRg D. B. C. A.高速行驶的竞赛汽车依靠摩擦力转弯是有困难的,所以竞赛场地的弯道处做成斜坡,如2.?. 角,则汽车完全不依靠摩擦力转弯时的速度大小为果弯道半径为r,斜坡和水平面成??grcot??grtan D.C. sin gr B.cos A.gr、是竖直平面内两根固定的光滑细杆,a如图所示,ab、cd3.点为圆周点为圆周的最低点,c、d位于同一圆周上,bb、c,将的最高点,若每根杆上都套着一个小滑环(图中未画出)at分别表示滑环从处由静止释放,用t、a两滑杆同时从、c21 d所用的时间,则、c到到b 无法确定C.t>t<tD. B.tA.t=t 2 12 1 2 1用一根20cm.和B.相距4.在光滑的水平面上钉有两个钉子A另一端栓.0.4kg的小球1m长度为的细绳.一端系一个质量为并以.A的左边在钉子A上.使小球开始位于.做匀速圆周运动的速率在水平面上绕A2m/s B A那么从开始运动.的拉力就会断若绳子承受4N 小球转的半圆周数到绳被拉断.A.2 B.3 C.4 D.5一个小球先后从与球心在同两个半径不同而内壁光滑的半圆轨道固定于地面,5. 如图所示, B一水平高度的A、小球对两轨道的压力相同A. B.C.此时小球的向心加速度不相等D.?,一质量为m的小物块沿竖直面内半径为R的圆孤轨道下滑,滑到最低点时的速度是6.若小物块与轨道的动摩擦因数是μ,则当小物块滑到最低点时受到的摩擦力为:222????m???)gg)?m(?m(mg D. C. B. A. RRR如图所示,在匀速转动的圆筒内壁上,有一物体随圆筒一起转动而未滑7.动。

高中数学必修二圆及其方程综合练习题

高中数学必修二圆及其方程综合练习题

圆及其方程综合练习题一、选择题1.022=++-+m y x y x 表示一个圆,则 ( )A .2≤mB .2<mC .21<mD .21≤m 2 若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是 ( )A.03=--y xB.032=-+y xC.01=-+y xD.052=--y x 3.两圆4)1()2(22=-+-y x 与()()162222=-++y x 的公切线有 ( )A. 1条B. 2条C.4条D.3条4. 圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是( )A. 30x y ++= B 250x y --= C 390x y --= D 4370x y -+= 5已知圆C :22()(2)4(0)x a y a -+-=>及直线03:=+-y x l ,当直线l 被C 截得的弦长为32时,则a = ( ) A 2 B 22- C 12- D 12+ 6圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是 ( ) A 2 B 21+ C 221+ D 221+ 7.直线0443=--y x 被圆()9322=+-y x 截得的弦长为 ( ) A. 22 B.4 C.24 D.28.自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为 ( ) A. 5 B. 3 C.10 D. 59.圆044422=+-++y x y x 关于直线02:=+-y x l 对称的圆的方程是 ( )A.422=+y xB.04422=-++y x y xC.222=+y xD.044422=--++y x y x10.),(00y x M 为圆)0(222>=+a a y x 内异于圆心的一点,则直线200a y y x x =+与该圆的位置关系是 A.相切 B.相交 C.相离 D.相切或相交二、填空题11.已知直线0125=++a y x 与圆0222=+-y x x 相切,则a 的值为________.12. 圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程为__________13.点)12,15(a a P +在圆1)1(22=+-y x 的内部,则a 的取值范围是_____________14若直线2=-y x 被圆4)(22=+-y a x 所截得的弦长为22, 则实数a 的值为三、解答题1. 已知圆心为C 的圆经过点A (5,2)和B (3,-2),且圆心C 在直线l :2x-y-3=0上,求圆C 的标准方程.2.圆50)3()6(:10)1()2(:222221=+++=-+-y x C y x C 与圆交于A 、B 两点(1) 求AB 所在直线的直线方程(2) 求公共弦AB 的长3.(1)求过点M(3,1),且与圆(x-1)2+y 2=4相切的直线l 的方程. (2)已知过点M(-3,-3)的直线l 被圆x 2+y 2+4y-21=0所截得的弦长为4 ,求直线l 的方程.(2)设直线:l y x b =+,若曲线C 上恰有三个点到直线l 的距离为1,求实数b 的值。

高中必修圆练习题及讲解

高中必修圆练习题及讲解

高中必修圆练习题及讲解1. 题目一:已知圆的方程为 \( x^2 + y^2 = 16 \),求过点\( (3,2) \) 的圆的切线方程。

2. 题目二:圆心在原点,半径为 5 的圆与直线 \( y = -\frac{1}{2}x + 3 \) 相切,求该直线与圆的切点坐标。

3. 题目三:已知两圆 \( x^2 + y^2 = 1 \) 和 \( (x-2)^2 + (y-3)^2 = 4 \),求它们的公共弦所在的直线方程。

4. 题目四:圆 \( (x-1)^2 + (y+1)^2 = 25 \) 与直线 \( y = 2x \) 相交于 A,B 两点,求弦 AB 的中点坐标。

5. 题目五:圆 \( x^2 + y^2 = 9 \) 内有一点 P(1,1),求过点 P 作圆的切线,切点为 T,求点 T 的坐标。

讲解1. 题目一讲解:- 首先,我们知道圆心为 \( (0,0) \),半径为 4。

- 点 \( (3,2) \) 到圆心的距离为 \( \sqrt{3^2 + 2^2} =\sqrt{13} \),小于半径,所以点在圆内。

- 切线与半径垂直,所以切线的斜率与半径的斜率互为相反数的倒数。

- 半径的斜率为 \( -\frac{2}{3} \),切线的斜率为\( \frac{3}{2} \)。

- 切线方程为 \( y - 2 = \frac{3}{2}(x - 3) \),简化得\( 3x - 2y - 5 = 0 \)。

2. 题目二讲解:- 圆心到直线的距离等于半径,即 \( \frac{|-\frac{1}{2}\cdot 0 + 3|}{\sqrt{(-\frac{1}{2})^2 + 1^2}} = 5 \)。

- 解得 \( \sqrt{5^2 - 3^2} = 4 \),所以切点坐标为 \( (\pm 4, -\frac{1}{2} \cdot 4 + 3) \),即 \( (4, 1) \) 和 \( (-4, 5) \)。

高中数学必修二第四章 章末复习题圆的相关试题(含答案)

高中数学必修二第四章 章末复习题圆的相关试题(含答案)

章末复习一、知识导图二、要点归纳1.圆的方程(1)圆的标准方程:(x-a)2+(y-b)2=r2.(2)圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0).2.点和圆的位置关系设点P(x0,y0)及圆的方程(x-a)2+(y-b)2=r2.(1)(x0-a)2+(y0-b)2>r2⇔点P在圆外.(2)(x0-a)2+(y0-b)2<r2⇔点P在圆内.(3)(x0-a)2+(y0-b)2=r2⇔点P在圆上.3.直线与圆的位置关系设直线l与圆C的圆心之间的距离为d,圆的半径为r,则d>r⇒相离;d=r⇒相切;d<r⇒相交.4.圆与圆的位置关系设C1与C2的圆心距为d,半径分别为r1与r2,则位置关系外离外切相交内切内含图示d与r1,r2的d>r1+r2d=r1+r2|r1-r2|<d<r1+r2d=|r1-r2| d<|r1-r2|关系(1)求相交两圆的弦长时,可先求出两圆公共弦所在直线的方程,再利用相交两圆的几何性质和勾股定理来求弦长.(2)过圆C1:x2+y2+D1x+E1y+F1=0与圆C2:x2+y2+D2x+E2y+F2=0的交点的直线方程为(D1-D2)x+(E1-E2)y+F1-F2=0.5.空间直角坐标系(1)建立的空间直角坐标系要遵循右手法则,空间上的任意一点都与有序实数组(x,y,z)一一对应.(2)空间中P1(x1,y1,z1),P2(x2,y2,z2)之间的距离|P1P2|=(x1-x2)2+(y1-y2)2+(z1-z2)2.(3)可利用“关于谁对称,谁保持不变,其余坐标相反”的方法来求空间直角坐标系下的对称点.题型一圆的方程例1一个圆和已知圆x2+y2-2x=0相外切,并与直线l:x+3y=0相切于M(3,-3)点,求该圆的方程.考点题点解∵圆C与圆x2+y2-2x=0相外切,故两个圆心之间的距离等于半径的和,又∵圆C与直线l:x+3y=0相切于M(3,-3)点,可得圆心与点M(3,-3)的连线与直线x+3y=0垂直,其斜率为 3.设圆C的圆心为(a,b),则⎩⎪⎨⎪⎧ b +3a -3=3,(a -1)2+b 2=1+|a +3b |2.解得a =4,b =0,r =2或a =0,b =-43,r =6,∴圆C 的方程为(x -4)2+y 2=4或x 2+(y +43)2=36.反思感悟 求圆的方程主要是根据圆的标准方程和一般方程,利用待定系数法求解,采用待定系数法求圆的方程的一般步骤:第一步:选择圆的方程的某一形式.第二步:由题意得a ,b ,r (或D ,E ,F )的方程(组).第三步:解出a ,b ,r (或D ,E ,F ).第四步:代入圆的方程.注:解题时充分利用圆的几何性质可获得解题途径,减少运算量,例如:圆的切线垂直于经过切点的半径;圆心与弦的中点连线垂直于弦;当两圆相交时,连心线垂直平分两圆的公共弦;当两圆相切时,连心线过切点等.跟踪训练1 (1)如图所示,圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2,则圆C 的标准方程为____________________.答案 (x -1)2+(y -2)2=2解析 取AB 的中点D ,连接CD ,AC ,则CD ⊥AB .由题意知,|AD |=|CD |=1,故|AC |=|CD |2+|AD |2=2,即圆C 的半径为 2.又因为圆C 与x 轴相切于点T (1,0),所以圆心C (1,2),故圆的标准方程为(x -1)2+(y -2)2=2.(2)求半径为10,圆心在直线y =2x 上,被直线x -y =0截得的弦长为42的圆的方程. 解 设圆的方程为(x -a )2+(y -b )2=r 2,则圆心坐标为(a ,b ),半径r =10,圆心(a ,b )到直线x -y =0的距离d =|a -b |2, 由半弦长,弦心距,半径组成的直角三角形得,d 2+⎝⎛⎭⎫4222=r 2, 即(a -b )22+8=10, ∴(a -b )2=4,又∵b =2a ,∴a =2,b =4或a =-2,b =-4,故所求圆的方程是(x -2)2+(y -4)2=10或(x +2)2+(y +4)2=10.题型二 直线与圆、圆与圆的位置关系例2 (1)已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( )A.内切B.相交C.外切D.相离考点题点答案 B解析 由垂径定理得⎝⎛⎭⎫a 22+(2)2=a 2,解得a 2=4, ∴圆M :x 2+(y -2)2=4, ∴圆M 与圆N 的圆心距d =(0-1)2+(2-1)2= 2.∵2-1<2<2+1,∴两圆相交.(2)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________.考点题点答案 4解析 联立⎩⎨⎧ x -3y +6=0,x 2+y 2=12,消去x 得y 2-33y +6=0, 解得⎩⎨⎧ x =-3,y =3或⎩⎨⎧x =0,y =2 3. 不妨设A (-3,3),B (0,23),则过点A 且与直线l 垂直的直线方程为3x +y +23=0,令y =0得x C =-2.同理得过点B 且与l 垂直的直线与x 轴交点的横坐标x D =2,∴|CD |=4.反思感悟 直线与圆、圆与圆的主要题型为:①位置关系的判断,②弦长问题,③求圆的方程.解决问题的方法主要有两种,一种代数法,一种几何法.跟踪训练2 (1)圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为( )A.1B.2C. 2D.2 2考点题点答案 C(2)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.考点题点答案 4π解析 x 2+y 2-2ay -2=0,即x 2+(y -a )2=a 2+2,则圆心为C (0,a ).又|AB |=23,C 到直线y =x +2a 的距离为|0-a +2a |2, 所以⎝⎛⎭⎫2322+⎝ ⎛⎭⎪⎫|0-a +2a |22=a 2+2, 得a 2=2,所以圆C 的面积为π(a 2+2)=4π.题型三 对称问题例3 从点B (-2,1)发出的光线经x 轴上的点A 反射,反射光线所在的直线与圆x 2+y 2=12相切,求点A 的坐标.考点题点解 点B (-2,1)关于x 轴对称的点为B ′(-2,-1),易知反射光线所在直线的斜率存在,设反射光线所在的直线方程为y +1=k (x +2),即kx -y +2k -1=0.由题意,得|0-0+2k -1|k 2+1=12, 化简得7k 2-8k +1=0,解得k =1或k =17, 故所求切线方程为x -y +1=0或x -7y -5=0.令y =0,则x =-1或x =5.所以A 点的坐标为(-1,0)或(5,0).反思感悟 (1)对称的两种类型即轴对称与中心对称.(2)准确把握对称的几何性质.(3)圆的对称图形关键是圆心的对称,其半径不变.跟踪训练3 若圆C 的半径为1,其圆心与点(1,0)关于直线y =x 对称,则圆C 的标准方程为________________________________________________________________________. 答案 x 2+(y -1)2=1解析 由题意知圆C 的圆心为(0,1),半径为1,所以圆C 的标准方程为x 2+(y -1)2=1.题型四 圆中的最值问题例4 圆x 2+y 2+2ax +2ay +2a 2-1=0与x 2+y 2+2bx +2by +2b 2-2=0的公共弦长的最大值为( )A.2 2B.2C. 2D.1考点 与圆有关的最值问题题点 与圆的几何性质有关的最值答案 B解析 由题意得,两圆的标准方程分别为(x +a )2+(y +a )2=1和(x +b )2+(y +b )2=2,两圆的圆心坐标分别为(-a ,-a ),(-b ,-b ),半径分别为1,2,则当公共弦为圆(x +a )2+(y +a )2=1的直径时,公共弦长最大,最大值为2.反思感悟 与圆有关的最值问题包括(1)求圆O 上一点到圆外一点P 的最大距离、最小距离:d max =|OP |+r ,d min =||OP |-r |.(2)求圆上的点到某条直线的最大、最小距离:设圆心到直线的距离为m ,则d max =m +r ,d min=|m -r |.(3)已知点的运动轨迹是(x -a )2+(y -b )2=r 2,求①y x ;②y -m x -n;③x 2+y 2等式子的最值,一般是运用几何法求解.跟踪训练4 已知P 是直线3x +4y +8=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 是切点,C 是圆心,那么四边形P ACB 的面积的最小值为________. 考点 与圆有关的最值问题题点 与面积有关的最值答案 2 2解析 圆x 2+y 2-2x -2y +1=0的圆心为C (1,1),半径为1,由题意知,当圆心C 到点P 的距离最小时(即为圆心到直线的距离),四边形的面积最小,又圆心到直线的距离d =|3+4+8|32+42=3, ∴|P A |=|PB |=d 2-r 2=22,∴S 四边形P ACB =2×12|P A |r =2 2.1.以点(-3,4)为圆心,且与x 轴相切的圆的方程是( )A.(x -3)2+(y +4)2=16B.(x +3)2+(y -4)2=16C.(x -3)2+(y +4)2=9D.(x +3)2+(y -4)2=9考点 圆的标准方程题点 求与某直线相切的圆的标准方程答案 B2.已知圆C 与直线x -y =0和x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为( )A.(x +1)2+(y -1)2=2B.(x -1)2+(y +1)2=2C.(x -1)2+(y -1)2=2D.(x +1)2+(y +1)2=2题点 求圆的标准方程答案 B3.两圆x 2+y 2-6x +16y -48=0与x 2+y 2+4x -8y -44=0的公切线的条数为( )A.4B.3C.2D.1考点 圆与圆的位置关系题点 两圆的位置关系与其公切线答案 C解析 两圆的标准方程分别为(x -3)2+(y +8)2=121;(x +2)2+(y -4)2=64,则两圆的圆心与半径分别为C 1(3,-8),r 1=11;C 2(-2,4),r 2=8.圆心距为|C 1C 2|=(3+2)2+(-8-4)2=13.∵r 1-r 2<|C 1C 2|<r 1+r 2,∴两圆相交,则公切线共2条.4.经过两个定点A (a,0),A 1(a ,a ),且圆心在直线y =13x 上的圆的方程为________________________.答案 ⎝⎛⎭⎫x -32a 2+⎝⎛⎭⎫y -a 22=a 22 解析 圆过点A (a,0),A 1(a ,a ),则圆心在直线y =a 2上. 又圆心在直线y =13x 上, 所以圆心坐标为⎝⎛⎭⎫32a ,a 2,则半径r =⎝⎛⎭⎫a -32a 2+⎝⎛⎭⎫-a 22=22|a |, 故圆的方程为⎝⎛⎭⎫x -32a 2+⎝⎛⎭⎫y -a 22=a 22. 5.已知直线x -my +3=0和圆x 2+y 2-6x +5=0.(1)当直线与圆相切时,求实数m 的值;(2)当直线与圆相交,且所得弦长为2105时,求实数m 的值. 考点 直线和圆的位置关系解 (1)因为圆x 2+y 2-6x +5=0可化为(x -3)2+y 2=4,所以圆心坐标为(3,0),r =2. 因为直线x -my +3=0与圆相切, 所以|3+3|1+(-m )2=2, 解得m =±2 2.(2)圆心(3,0)到直线x -my +3=0的距离为d =|3+3|1+(-m )2.由24-⎝ ⎛⎭⎪⎫|3+3|1+(-m )22=2105, 得2+2m 2=20m 2-160,即m 2=9.故m =±3.。

高中数学必修二同步练习题库:圆的方程(简答题:一般)

高中数学必修二同步练习题库:圆的方程(简答题:一般)

圆的方程(简答题:一般)1、求圆心在直线上,与轴相切,且被直线截得的弦长为的圆的方程。

2、(1)求过点且在两个坐标轴上截距相等的直线方程。

(2)已知圆心为的圆经过点和,且圆心在直线上,求圆心为的圆的标准方程.3、(1)已知圆的圆心是与轴的交点,且与直线相切,求圆的标准方程. (2)若点在圆上,求的最大值.4、已知为圆上的动点,,为定点.(1)求线段中点M的轨迹方程;(2)若,求线段中点N的轨迹方程.5、求圆心在直线上,且过两圆,交点的圆的方程.6、已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积7、已知圆过,,且圆心在直线上.(Ⅰ)求此圆的方程.(Ⅱ)求与直线垂直且与圆相切的直线方程.(Ⅲ)若点为圆上任意点,求的面积的最大值.8、已知直线与相较于点,直线.(1)若点在直线上,求的值;(2)若直线交直线分别为点和点,且点的坐标为,求的外接圆的标准方程。

9、已知圆的圆心在直线上,且圆在轴、轴上截得的弦长和分别为和.(1)求圆的方程;(2)若圆心位于第四象限,点是圆内一动点,且,满足,求的范围.10、已知圆经过,两点,且圆心在直线上.(1)求圆的方程;(2)动直线:过定点,斜率为的直线过点,直线和圆相交于,两点,求的长度.11、已知圆的圆心在直线上,且与直线相切于点,(1)求圆方程;(2)是否存在过点的直线与圆交于两点,且的面积是(为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.12、(1)求与圆心在直线上,且过点A(2,-3),B(-2,-5)的圆C的方程.(2)设是圆C上的点,求的最大值和最小值.13、已知方程表示一个圆.(1)求实数的取值范围;(2)求该圆半径的取值范围;(3)求该圆心的纵坐标的最小值.14、如图,经过点作两条互相垂直的直线和,直线交轴正半轴于点,直线交轴正半轴于点.(1)如果,求点的坐标.(2)试问是否总存在经过,,,四点的圆?如果存在,求出半径最小的圆的方程;如果不存在,请说明理由.15、已知为圆上任一点,且点.(1)若在圆上,求线段的长及直线的斜率.(2)求的最大值和最小值.(3)若,求的最大值和最小值.16、求圆心在直线上,且与直线相切于点的圆的方程.17、若直线与两坐标轴的交点分别为,,求以为直径的圆的方程.18、已知圆过点,圆心在直线上且圆心在第一象限,圆被轴截得的弦长为.(I)求圆的方程.(II)过点作圆的切线,求切线的方程.19、在平面直角系中,已知两点,,直线关于直线对称.()求直线的方程.()圆的圆心在直线上,且与轴相切于点,求圆的方程.20、已知圆的半径为,圆心在第一象限,且与直线和轴都相切.(Ⅰ)求圆的方程.(Ⅱ)过的直线与圆相交所得的弦长为,求直线的方程.21、求半径为2,圆心在直线上,且被直线:所截弦的长为的圆的方程.22、如图,l1,l2是通过某城市开发区中心O的两条南北和东西走向的街道,连结M、N两地之间的铁路线是圆心在l2上的一段圆弧.若点M在点O正北方向,且|MO|=3 km,点N到l1,l2的距离分别为4 km和5 km.(1)建立适当的坐标系,求铁路线所在圆弧的方程;(2)若该城市的某中学拟在点O正东方向选址建分校,考虑环境问题,要求校址到点O的距离大于4 km,并且铁路线上任意一点到校址的距离不能少于km,求该校址距点O的最近距离.(注:校址视为一个点)23、如图,已知矩形四点坐标为A(0,-2),C(4,2),B(4,-2),D(0,2).(1)求对角线所在直线的方程;(2)求矩形外接圆的方程;(3)若动点为外接圆上一点,点为定点,问线段PN中点的轨迹是什么,并求出该轨迹方程。

高中数学必修2:第四章-圆与方程测试(含解析)

高中数学必修2:第四章-圆与方程测试(含解析)

第四章测试(时间:120分钟总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知两圆的方程是x2+y2=1和x2+y2-6x-8y+9=0,那么这两个圆的位置关系是()A.相离B.相交C.外切D.内切解析将圆x2+y2-6x-8y+9=0,化为标准方程得(x-3)2+(y-4)2=16.∴两圆的圆心距(0-3)2+(0-4)2=5,又r1+r2=5,∴两圆外切.答案 C2.过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程为()A.3x-y-5=0 B.3x+y-7=0C.x+3y-5=0 D.x-3y+1=0解析依题意知所求直线通过圆心(1,-2),由直线的两点式方程,得y+2 1+2=x-12-1,即3x-y-5=0.答案 A3.若直线(1+a)x+y+1=0与圆x2+y2-2x=0相切,则a的值为() A.1,-1 B.2,-2C .1D .-1解析 圆x 2+y 2-2x =0的圆心C (1,0),半径为1,依题意得|1+a +0+1|(1+a )2+1=1,即|a +2|=(a +1)2+1,平方整理得a =-1.答案 D4.经过圆x 2+y 2=10上一点M (2,6)的切线方程是( ) A .x +6y -10=0 B.6x -2y +10=0 C .x -6y +10=0D .2x +6y -10=0解析 ∵点M (2,6)在圆x 2+y 2=10上,k OM =62, ∴过点M 的切线的斜率为k =-63. 故切线方程为y -6=-63(x -2). 即2x +6y -10=0. 答案 D5.垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是( ) A .x +y -2=0 B .x +y +1=0 C .x +y -1=0D .x +y +2=0解析 由题意可设所求的直线方程为y =-x +k ,则由|k |2=1,得k =±2.由切点在第一象限知,k = 2.故所求的直线方程y =-x +2,即x +y -2=0.答案 A6.关于空间直角坐标系O -xyz 中的一点P (1,2,3)有下列说法: ①点P 到坐标原点的距离为13; ②OP 的中点坐标为⎝⎛⎭⎪⎫12,1,32;③与点P关于x轴对称的点的坐标为(-1,-2,-3);④与点P关于坐标原点对称的点的坐标为(1,2,-3);⑤与点P关于坐标平面xOy对称的点的坐标为(1,2,-3).其中正确的个数是()A.2 B.3C.4 D.5解析点P到坐标原点的距离为12+22+32=14,故①错;②正确;点P关于x轴对称的点的坐标为(1,-2,-3),故③错;点P关于坐标原点对称的点的坐标为(-1,-2,-3),故④错;⑤正确.答案 A7.已知点M(a,b)在圆O:x2+y2=1处,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定解析∵点M(a,b)在圆x2+y2=1外,∴a2+b2>1,又圆心(0,0)到直线ax+by=1的距离d=1a2+b2<1=r,∴直线与圆相交.答案 B8.与圆O1:x2+y2+4x-4y+7=0和圆O2:x2+y2-4x-10y+13=0都相切的直线条数是()A.4 B.3C.2 D.1解析两圆的方程配方得,O1:(x+2)2+(y-2)2=1,O2:(x-2)2+(y-5)2=16,圆心O1(-2,2),O2(2,5),半径r1=1,r2=4,∴|O1O2|=(2+2)2+(5-2)2=5,r1+r2=5.∴|O1O2|=r1+r2,∴两圆外切,故有3条公切线.答案 B9.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0垂直,则直线l的方程是()A.2x-y=0 B.2x-y-2=0C.x+2y-3=0 D.x-2y+3=0解析依题意知直线l过圆心(1,2),斜率k=2,∴l的方程为y-2=2(x-1),即2x-y=0.答案 A10.圆x2+y2-(4m+2)x-2my+4m2+4m+1=0的圆心在直线x+y-4=0上,那么圆的面积为()A.9π B.πC.2π D.由m的值而定解析∵x2+y2-(4m+2)x-2my+4m2+4m+1=0,∴[x-(2m+1)]2+(y-m)2=m2.∴圆心(2m+1,m),半径r=|m|.依题意知2m+1+m-4=0,∴m=1.∴圆的面积S=π×12=π.答案 B11.当点P在圆x2+y2=1上变动时,它与定点Q(3,0)的连结线段PQ的中点的轨迹方程是()A.(x+3)2+y2=4 B.(x-3)2+y2=1C.(2x-3)2+4y2=1 D.(2x+3)2+4y2=1解析 设P (x 1,y 1),Q (3,0),设线段PQ 中点M 的坐标为(x ,y ), 则x =x 1+32,y =y 12,∴x 1=2x -3,y 1=2y . 又点P (x 1,y 1)在圆x 2+y 2=1上, ∴(2x -3)2+4y 2=1.故线段PQ 中点的轨迹方程为(2x -3)2+4y 2=1. 答案 C12.曲线y =1+4-x 2与直线y =k (x -2)+4有两个交点,则实数k 的取值范围是( )A .(0,512) B .(512,+∞) C .(13,34]D .(512,34] 解析 如图所示,曲线y =1+4-x 2变形为x 2+(y -1)2=4(y ≥1), 直线y =k (x -2)+4过定点(2,4), 当直线l 与半圆相切时,有 |-2k +4-1|k 2+1=2,解得k =512. 当直线l 过点(-2,1)时,k =34. 因此,k 的取值范围是512<k ≤34. 答案 D二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.圆x 2+y 2=1上的点到直线3x +4y -25=0的距离最小值为____________.解析 圆心(0,0)到直线3x +4y -25=0的距离为5, ∴所求的最小值为4. 答案 414.圆心为(1,1)且与直线x +y =4相切的圆的方程是________. 解析 r =|1+1-4|2=2,所以圆的方程为(x -1)2+(y -1)2=2.答案 (x -1)2+(y -1)2=215.方程x 2+y 2+2ax -2ay =0表示的圆,①关于直线y =x 对称;②关于直线x +y =0对称;③其圆心在x 轴上,且过原点;④其圆心在y 轴上,且过原点,其中叙述正确的是__________.解析 已知方程配方,得(x +a )2+(y -a )2=2a 2(a ≠0),圆心坐标为(-a ,a ),它在直线x +y =0上,∴已知圆关于直线x +y =0对称.故②正确.答案 ②16.直线x -2y -3=0与圆(x -2)2+(y +3)2=9相交于A ,B 两点,则△AOB (O 为坐标原点)的面积为________.解析 圆心坐标(2,-3),半径r =3,圆心到直线x -2y -3=0的距离d =5,弦长|AB |=2r 2-d 2=4.又原点(0,0)到AB 所在直线的距离h =35,所以△AOB 的面积为S =12×4×35=655.答案 655三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)自A (4,0)引圆x 2+y 2=4的割线ABC ,求弦BC 中点P 的轨迹方程. 解 解法1:连接OP ,则OP ⊥BC ,设P (x ,y ),当x ≠0时,k OP ·k AP =-1,即y x ·yx -4=-1.即x2+y2-4x=0.①当x=0时,P点坐标为(0,0)是方程①的解,∴BC中点P的轨迹方程为x2+y2-4x=0(在已知圆内).解法2:由解法1知OP⊥AP,取OA中点M,则M(2,0),|PM|=12|OA|=2,由圆的定义,知P点轨迹方程是以M(2,0)为圆心,2为半径的圆.故所求的轨迹方程为(x-2)2+y2=4(在已知圆内).18.(12分)已知圆M:x2+y2-2mx+4y+m2-1=0与圆N:x2+y2+2x+2y-2=0相交于A,B两点,且这两点平分圆N的圆周,求圆M的圆心坐标.解由圆M与圆N的方程易知两圆的圆心分别为M(m,-2),N(-1,-1).两圆的方程相减得直线AB的方程为2(m+1)x-2y-m2-1=0.∵A,B两点平分圆N的圆周,∴AB为圆N的直径,∴AB过点N(-1,-1).∴2(m+1)×(-1)-2×(-1)-m2-1=0.解得m=-1.故圆M的圆心M(-1,-2).19.(12分)点M在圆心为C1的方程x2+y2+6x-2y+1=0上,点N在圆心为C2的方程x2+y2+2x+4y+1=0上,求|MN|的最大值.解把圆的方程都化成标准形式,得(x+3)2+(y-1)2=9,(x+1)2+(y+2)2=4.如图所示,C 1的坐标是(-3,1),半径长是3;C 2的坐标是(-1,-2),半径长是2.所以,|C 1C 2|=(-3+1)2+(1+2)2=13.因此,|MN |的最大值是13+5.20.(12分)已知圆C :x 2+y 2+2x -4y +3=0,从圆C 外一点P 向圆引一条切线,切点为M ,O 为坐标原点,且有|PM |=|PO |,求|PM |的最小值.解 如图:PM 为圆C 的切线,则CM ⊥PM ,∴△PMC 为直角三角形,∴|PM |2=|PC |2-|MC |2.设P (x ,y ),C (-1,2),|MC |= 2. ∵|PM |=|PO |,∴x 2+y 2=(x +1)2+(y -2)2-2.化简得点P 的轨迹方程为2x -4y +3=0.求|PM |的最小值,即求|PO |的最小值,即求原点O 到直线2x -4y +3=0的距离,代入点到直线的距离公式可求得|PM |最小值为3510.21.(12分)已知圆C :x 2+y 2-4x -14y +45=0及点Q (-2,3), (1)若点P (m ,m +1)在圆C 上,求PQ 的斜率;(2)若点M 是圆C 上任意一点,求|MQ |的最大值、最小值;(3)若N (a ,b )满足关系:a 2+b 2-4a -14b +45=0,求出t =b -3a +2的最大值.解 圆C :x 2+y 2-4x -14y +45=0可化为(x -2)2+(y -7)2=8. (1)点P (m ,m +1)在圆C 上,所以m 2+(m +1)2-4m -14(m +1)+45=0,解得m =4,故点P (4,5).所以PQ 的斜率是k PQ =5-34+2=13;(2)如图,点M 是圆C 上任意一点,Q (-2,3)在圆外, 所以|MQ |的最大值、最小值分别是 |QC |+r ,|QC |-r . 易求|QC |=42,r =22, 所以|MQ |max =62,|MQ |min =2 2.(3)点N 在圆C :x 2+y 2-4x -14y +45=0上,t =b -3a +2表示的是定点Q (-2,3)与圆上的动点N 连线l 的斜率. 设l 的方程为y -3=k (x +2), 即kx -y +2k +3=0. 当直线和圆相切时,d =r ,即|2k -7+2k +3|k 2+1=22,解得k =2±3.所以t =b -3a +2的最大值为2+ 3.22.(12分)已知曲线C :x 2+y 2+2kx +(4k +10)y +10k +20=0,其中k ≠-1. (1)求证:曲线C 表示圆,并且这些圆心都在同一条直线上; (2)证明曲线C 过定点;(3)若曲线C 与x 轴相切,求k 的值.解 (1)证明:原方程可化为(x +k )2+(y +2k +5)2=5(k +1)2. ∵k ≠-1,∴5(k +1)2>0.故方程表示圆心为(-k ,-2k -5),半径为5|k +1|的圆.设圆心的坐标为(x ,y ),则⎩⎨⎧x =-k ,y =-2k -5.消去k ,得2x -y -5=0.∴这些圆的圆心都在直线2x -y -5=0上. (2)证明:将原方程变形为(2x +4y +10)k +(x 2+y 2+10y +20)=0, ∵上式对于任意k ≠-1恒成立,∴⎩⎨⎧2x +4y +10=0,x 2+y 2+10y +20=0.解得⎩⎨⎧x =1,y =-3.∴曲线C 过定点(1,-3). (3)∵圆C 与x 轴相切,∴圆心(-k ,-2k -5)到x 轴的距离等于半径. 即|-2k -5|=5|k +1|.两边平方,得(2k +5)2=5(k +1)2. ∴k =5±3 5.。

高中数学必修二同步练习题库:圆的方程(选择题:较易)

高中数学必修二同步练习题库:圆的方程(选择题:较易)

圆的方程(选择题:较易)1、若圆与轴相切于点,与轴的正半轴交于两点,且,则圆的标准方程是()A. B.C. D.2、方程表示一个圆,则的范围是()A. B.C. D.3、与圆同圆心,且过的圆的方程是()A. B.C. D.4、已知圆的圆心与点关于直线对称.直线与圆相交于两点,且,则圆的方程为A. B.C. D.5、在平面直角坐标系中,动点的坐标满足方程,则点的轨迹经过()A.第一、二象限 B.第二、三象限C.第三、四象限 D.第一、四象限6、圆的圆心坐标和半径分别为()A.(0,2),2 B.(2,0),2 C.(-2,0),4 D.(2,0),47、以为圆心,且与两条直线与同时相切的圆的标准方程为()A. B.C. D.8、圆心为且过点的圆的方程是()A. B.C. D.9、点A(1,0)在圆上,则a的值为()A.1 B.-2 C.1或-2 D.2或-210、方程表示的圆()A.关于x轴对称B.关于y轴对称C.关于直线对称D.关于直线对称11、已知点P(x,y)为圆C:x2+y2﹣6x+8=0上的一点,则x2+y2的最大值是()A.2 B.4 C.9 D.1612、圆心在轴上,半径为1,且过点(1,2)的圆的方程是()A. B.C. D.13、圆:与圆:的位置关系是( )A.相交 B.外切 C.内切 D.相离14、已知圆的圆心为(-2,1),其一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A. B.C. D.15、圆的圆心坐标和半径分别是()A. B. C. D.16、由曲线围成的图形的面积为()A. B. C. D.17、点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是( )A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=118、若直线过圆的圆心,则实数的值为()A. B. C. D.19、圆,那么与圆有相同的圆心,且经过点的圆的方程是().A. B.C. D.20、圆的方程为,则其圆心坐标及半径分别为().A., B., C., D.,21、若圆与圆关于原点对称,则圆的方程为().A. B.C. D.22、圆的圆心坐标与半径是()A. B.C. D.23、已知A(-4,-5)、B(6,-1),则以线段AB为直径的圆的方程( )A.(x+1)2+(y-3)2=29 B.(x-1)2+(y+3)2=29C.(x+1)2+(y-3)2=116 D.(x-1)2+(y+3)2=11624、若表示圆,则实数的取值范围是()A. B. C. D.25、对于,直线恒过定点,则以为圆心,2为半径的圆的方程是()A. B.C. D.26、已知圆:,圆与圆关于直线对称,则圆的方程为()A. B.C. D.27、已知圆的方程为,则圆的半径为()A.3 B.9 C. D.28、已知圆心,一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A. B.C. D.29、圆的圆心坐标与半径是()A. B.C. D.30、经过圆x2+y2+2y=0的圆心C,且与直线2x+3y-4=0平行的直线方程为()A.2x+3y+3=0 B.2x+3y-3=0 C.2x+3y+2=0 D.3x-2y-2=031、以点A为圆心,且与轴相切的圆的方程为()A. B.C. D.32、方程x2+y2+x+y-m=0表示一个圆,则m的取值范围是().A.m>- B.m<- C.m≤- D.m≥-33、在平面直角坐标系中,以点为圆心且与直线相切的所有圆中,半径最大的圆的标准方程为()A. B. C. D.34、圆的圆心坐标和半径分别为A.圆心 B.圆心C.圆心 D.圆心35、过点P(2 ,1)且被圆C:x 2+y2– 2x+4y =" 0" 截得弦长最长的直线l的方程是()A.3x – y– 5 = 0 B.3x +y– 7 = 0C.x –3y+5 = 0 D.x +3y– 5 = 036、过点、点且圆心在直线上的圆的方程是()A.B.C.D.37、圆关于直线对称的圆的方程为()A. B.C. D.38、已知圆与直线及都相切,圆心在直线上,则圆的方程为()A. B. C. D.39、若直线(,),经过圆的圆心,则的最小值是()A. B. C. D.40、抛物线与坐标轴的交点在同一个圆上,则交点确定的圆的方程为()A. B.C. D.41、圆与轴相切于,与轴正半轴交于两点,且,则圆的标准方程为()A.B.C.D.42、过,圆心在轴上的圆的方程为()A. B.C. D.43、方程x2+y2+4x-2y+5=0表示的曲线是()A.两直线 B.圆 C.一点 D.不表示任何曲线44、如果方程x2+y2+Dx+Ey+F=0(D2+E2-4F>0)所表示的曲线关于y=x对称,则必有()A.D=E B.D=F C.F=E D.D=E=F45、圆x2+y2+4x-6y-3=0的圆心和半径分别为()A.(4,-6),r=16 B.(2,-3),r=4C.(-2,3),r=4 D.(2,-3),r=1646、若方程x2+y2-4x+2y+5k=0表示圆,则实数k的取值范围是()A.R B.(-∞,1) C.(-∞,1] D.[1,+∞)47、已知圆的方程为,过点的该圆的所有弦中,最短的弦长为()A. B. C.2 D.448、若圆始终平分圆的周长,则满足的关系是()A. B.C. D.49、已知圆心在x轴上的圆C与x轴交于两点A(1,0),B(5,0),此圆的标准方程为( ) A.(x-3)2+y2=4B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4D.(x+1)2+(y+1)2=450、已知点P(a,a+1)在圆x2+y2=25内部,那么a的取值范围是( )A.-4<a<3 B.-5<a<4 C.-5<a<5 D.-6<a<451、圆心是(4,-1),且过点(5,2)的圆的标准方程是( )A.(x-4)2+(y+1)2=10B.(x+4)2+(y-1)2=10C.(x-4)2+(y+1)2=100D.(x-4)2+(y+1)2=52、点P(a,5)与圆x2+y2=24的位置关系是( )A.点在圆外 B.点在圆内 C.点在圆上 D.不确定53、圆和圆的公共弦长为()A. B.C. D.54、方程表示的曲线为()A.一条直线和一个圆 B.一条线段与半圆C.一条射线与一段劣弧 D.一条线段与一段劣弧55、已知直线是圆的对称轴,过点作圆的一条切线,切点为,则=()A.2 B.C.6 D.56、已知圆,圆,圆与圆的位置关系为()A.外切 B.内切C.相交 D.相离57、设圆的方程是,若,则原点与圆的位置关系是()A.原点在圆上 B.原点在圆外C.原点在圆内 D.不确定58、已知圆,直线上至少存在一点,使得以点为圆心,半径为的圆与圆有公共点,则的最小值是()A. B.C. D.59、过两点的面积最小的圆的方程为()A.B.C.D.60、已知两圆的圆心距=" 3" ,两圆的半径分别为方程的两根,则两圆的位置关系是()A.相交 B.相离 C.相切 D.内含61、与圆及圆都外切的圆的圆心在()A.一个椭圆上 B.双曲线的一支上C.一条抛物线上 D.一个圆上62、圆与圆的位置关系是()A.相交 B.外切C.内切 D.相离63、已知圆的方程为是该圆内一点,过点的最长弦和最短弦分别为和,则四边形的面积是()A. B.C. D.64、已知圆的方程为是该圆内一点,过点的最长弦和最短弦分别为和,则四边形的面积是()A. B.C. D.65、已知圆心,一条直径的两个端点恰好在两坐标轴上,则这个圆的方程是()A. B.C. D.66、以为圆心,4为半径的圆的方程为()A. B.C. D.67、两圆与的位置关系为()A.内切 B.外切C.相交 D.相离68、过点且圆心在直线上的圆的方程是()A.B.C.D.69、若圆与圆的公共弦的长为,则()A.2 B.1C. D.70、动点与定点的连线的斜率之积为,则点的轨迹方程是()A.B.C.D.参考答案1、C2、A3、B4、A5、A.6、B7、A8、D9、B10、D11、D12、A13、A14、C15、D16、B17、A18、A19、B20、D21、A22、D23、B24、B25、A26、B27、A28、B29、D30、A31、A32、A33、B34、B35、A36、C37、D38、C39、B40、D41、A42、D43、C44、A45、C46、B47、C48、C49、A50、A51、A52、A53、A54、D55、C56、C57、B58、A59、A60、D61、B62、D63、D64、D65、D66、C67、D68、C69、B70、C【解析】1、设中点为,则∴故选C.2、试题分析:由圆的一般式方程可知考点:圆的方程3、试题分析:把原圆的方程写成标准方程为,由于两圆共圆心,可设另一个圆方程为:,把代入所设方程,得:,所以所求的圆的方程为,化简为:,故选B.考点:1、圆的一般式方程;2、圆的标准方程的.4、试题分析:易知关于直线的对称点为,即,圆心到直线的距离为,所以,圆方程为.故选A.考点:圆的标准方程.5、试题分析:由题意得,点在以为圆心,为半径的圆上,如下图所示,故可知点在第一、二象限,故选A.考点:圆的标准方程.6、试题分析:,所以圆心坐标和半径分别为(2,0)和2,选B.考点:圆标准方程7、试题分析:因为两条直线与的距离为,所以所求圆的半径为,所以圆心到直线的距离为即或,又因为圆心到直线的距离也为,所以,所以所求的标准方程为,故应选.考点:直线与圆的位置关系.8、试题分析:由圆的标准方程可知所求圆为考点:圆的方程9、试题分析:因为点在圆上,故解得.考点:圆的一般方程.10、试题分析:圆心,即圆心坐标满足方程,所以圆关于直线对称,考点:圆的性质11、试题分析:将圆C化为标准方程,找出圆心与半径,作出相应的图形,所求式子表示圆上点到原点距离的平方,根据图形得到当P与A重合时,离原点距离最大,求出所求式子的最大值即可.解:圆C化为标准方程为(x﹣3)2+y2=1,根据图形得到P与A(4,0)重合时,离原点距离最大,此时x2+y2=42=16.故选D考点:圆的一般方程.12、试题分析:设圆的标准方程为,由题可知,a=0,r=1,将(1,2)代入方程,可求得b=2,因此圆的标准方程为。

高中必修二圆试题及答案

高中必修二圆试题及答案

高中必修二圆试题及答案一、选择题1. 若圆的方程为 \(x^2 + y^2 = r^2\),其中 \(r\) 为半径,则该圆的圆心坐标为()A. (0, 0)B. (r, 0)C. (0, r)D. (r, r)答案:A2. 已知圆 \(x^2 + y^2 - 4x - 6y + 9 = 0\),求该圆的半径。

A. 1B. 2C. 3D. 4答案:C3. 圆 \(x^2 + y^2 = 9\) 与圆 \(x^2 + y^2 - 6x - 8y + 24 = 0\) 的交点个数为()A. 0B. 1C. 2D. 4答案:C二、填空题4. 已知圆 \((x - 1)^2 + (y + 2)^2 = 9\),求该圆的圆心坐标和半径。

答案:圆心坐标为 (1, -2),半径为 3。

5. 若圆 \(x^2 + y^2 + 2x - 4y + 4 = 0\) 与直线 \(y = 2x + 3\) 相切,则圆心到直线的距离为______。

答案:2三、解答题6. 已知圆 \(x^2 + y^2 - 2x - 4y + 4 = 0\),求圆心坐标、半径以及圆的一般方程。

答案:圆心坐标为 (1, 2),半径为 1,一般方程为 \((x - 1)^2 + (y - 2)^2 = 1\)。

7. 已知圆 \(x^2 + y^2 - 4x + 6y + 9 = 0\) 与圆 \(x^2 + y^2 + 6x - 8y + 24 = 0\) 相交,求两圆的交点坐标。

答案:交点坐标为 (0, 3) 和 (-3, 0)。

四、计算题8. 已知圆 \(x^2 + y^2 - 6x + 8y + 9 = 0\),求圆心到直线 \(2x - 3y + 10 = 0\) 的距离。

答案:距离为 \(\frac{1}{\sqrt{13}}\)。

9. 已知圆 \(x^2 + y^2 - 2x + 4y - 21 = 0\),求通过圆心且与圆相切的直线方程。

高一数学必修2圆与方程单元检测试题(一)

高一数学必修2圆与方程单元检测试题(一)

(数学必修2) 圆与方程[基础训练A 组]一、选择题1.圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( )A .22(2)5x y -+=B .22(2)5x y +-=C .22(2)(2)5x y +++=D .22(2)5x y ++= 2.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB. 032=-+y xC. 01=-+y xD. 052=--y x 3.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )A .2B .21+C .221+ D .221+ 4.将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与圆22240x y x y ++-=相切,则实数λ的值为( )A .37-或B .2-或8C .0或10D .1或115.在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B距离为2的直线共有( )A .1条B .2条C .3条D .4条6.圆0422=-+x y x 在点)3,1(P 处的切线方程为( ) A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x二、填空题1.若经过点(1,0)P -的直线与圆032422=+-++y x y x 相切,则此直线在y 轴上的截距是 __________________.2.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0,,60A B APB ∠=,则动点P 的轨迹方程为 。

3.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程为 .4.已知圆()4322=+-y x 和过原点的直线kx y =的交点为,P Q 则OQ OP ⋅的值为________________。

数学必修二:圆与圆锥曲线习题答案

数学必修二:圆与圆锥曲线习题答案

数学必修二:圆与圆锥曲线习题答案第一章:圆1. 解:设圆心为O,半径为r。

(1) 设A、B分别为两个交点,则根据正弦定理有:sin∠AOB = sin∠OAB = AO/OBsin∠BOA = sin∠OBA = BO/OA由于∠AOB + ∠BOA = 180°,得到:sin∠AOB + sin∠BOA = (AO/OB) + (BO/OA)(2) 设A'、B'分别为两个交点,则根据余弦定理有:AA'^2 = AO^2 + O'A^2 - 2 * AO * O'A * cos∠AOA'BB'^2 = BO^2 + O'B^2 - 2 * BO * O'B * cos∠BOB'由于∠AOA' + ∠BOB' = 360°,得到:cos∠AOA' + cos∠BOB' = (AO^2 + O'A^2 - AA'^2) / (2 * AO * O'A) + (BO^2 + O'B^2 - BB'^2) / (2 * BO * O'B)2. 解:设圆A的圆心为O1,圆B的圆心为O2,两圆的半径分别为r1和r2。

(1) 如果O1O2 = r1 + r2,两圆相切。

(2) 如果O1O2 > r1 + r2,两圆相离。

(3) 如果r1 < O1O2 < r1 + r2,两圆相交于两个交点。

(4) 如果O1O2 = r1,圆B位于圆A的边界上,两圆相切于圆A的边界点。

(5) 如果O1O2 < r1,圆B位于圆A的内部。

第二章:圆锥曲线1. 解:设椭圆的焦点为F1和F2,椭圆上一点为P,直线PF1交椭圆于点A,PF2交椭圆于点B。

(1) 根据椭圆的定义,对于任意一点P,有PF1 + PF2 = 2a (a > 0)。

人教版高中数学必修二圆与方程题练习题

人教版高中数学必修二圆与方程题练习题

( 数 学2必 修 ) 第 四 章圆 与 方 程一、选择题1.圆 (x 2)2y 25 对于原点 P(0, 0) 对称的圆的方程为 ()A . (x 2)2y 2 5B . x 2 ( y 2)25C . ( x 2) 2 ( y 2)25D . x 2 ( y 2) 2 52.若 P(2,1) 为圆 ( x1)2y 2 25 的弦 AB 的中点,则直线 AB 的方程是()A. x y 3 0B. 2x y 3 0C. x y 1 0D. 2 x y 5 03.圆 x 2 y 2 2 x 2 y 1 0 上的点到直线 x y2 的距离最大值是()A . 2B . 12C . 12D .1222 4.圆 x 2 y 24x0 在点 P(1, 3) 处的切线方程为()A . x3 y 2 0B . x3y 4 0 C . x3y 4 0D . x3y 2 05.若直线 xy 2 被圆 (x a) 2y 24 所截得的弦长为 2 2 ,则实数 a 的值为()A . 1或 3B . 或C .或D . 或132646.直线 x2y30 与圆 (x 2)2( y 3) 29 交于 E, F 两点,则EOF 的面积为( )A.3B.3C. 2 5D.652457 . 直 线 l 过 点( 2,0), l 与 圆 x 2 y 2 2x 有 两 个 交 点 时 ,斜 率 k 的 取 值 范围 是( )A .( , ) B .( , ) C .( 2 2 1 12 2 2 2 2 24 4 8 82,0) ,且与圆 x 2 y 28.设直线 l 过点 (1相切,则 l 的斜率是( )A . 1B .1 C .3 D . 3239.圆: x 2y 2 4x 6 y 0 和圆: x 2 y 2 6 x 0交于 A,B 两点,则 AB 的垂直均分线的方程是( )A. x y 3 0 B . 2x y 5 0C . 3x y 9 0D . 4x 3y 7 010.已知圆 C : ( x a) 2 ( y 2) 2 4( a0) 及直线 l : x y 30 ,当直线 l 被 C 截得的弦长为 2 3 时,则 a ( )A . 2B . 22C .21D .2111.圆 ( x 1)2y21的圆心到直线 y3x 的距离是()3A .1B .3C .1D . 32212.两圆 x 2 y 29 和 x 2 y 2 8x 6 y 90 的地点关系是( )A .相离 B.订交C.内切D .外切二、填空题1.直线 x2 y 0 被曲线 x 2y 2 6x 2 y 150 所截得的弦长等于2. P 为圆 x 2y 21 上的动点,则点 P 到直线 3x 4 y 10 0 的距离的最小值为3.若曲线 y 1 x2与直线y x b 一直有交点,则b的取值范围是_________如有一个交点,则 b 的取值范围是 ________;若有两个交点,则 b 的取值范围是_______;三、解答题1.点P a, b 在直线 x y 1 0 上,求a2b2a b2的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

覃巨石:高中必修二圆练习题
一、选择题
1.圆C 1 : x 2+y 2+2x +8y -8=0与圆C 2 : x 2+y 2-4x +4y -2=0的位置关系是( ).
A .相交
B .外切
C .内切
D .相离
2.两圆x 2+y 2-4x +2y +1=0与x 2+y 2+4x -4y -1=0的公共切线有( ).
A .1条
B .2条
C .3条
D .4条
3.若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是( ).
A .(x -2)2+(y +1)2=1
B .(x -2)2+(y -1)2=1
C .(x -1)2+(y +2)2=1
D .(x +1)2+(y -2)2=1
4.与直线l : y =2x +3平行,且与圆x 2+y 2-2x -4y +4=0相切的直线方程是( ).
A .x -y ±5=0
B .2x -y +5=0
C .2x -y -5=0
D .2x -y ±5=0
5.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于( ).
A .2
B .2
C .22
D .42
6.圆x 2+y 2-4x -4y -10=0上的点到直线x +y -14=0的最大距离与最小距离的差是( ).
A .30
B .18
C .62
D .52
7.若直线3x -y +c =0,向右平移1个单位长度再向下平移1个单位,平移后与圆x 2+y 2=10相切,则c 的值为( ).
A .14或-6
B .12或-8
C .8或-12
D .6或-14
8.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM | =( ).
A .
453 B .253 C .2
53 D .213
二、填空题
11.若直线3x -4y +12=0与两坐标轴的交点为A ,B ,则以线段AB 为直径的圆的一般方程为
____________________.
12.已知直线x =a 与圆(x -1)2+y 2=1相切,则a 的值是_________.
13.直线x =0被圆x 2+y 2―6x ―2y ―15=0所截得的弦长为_________.
14.若A (4,-7,1),B (6,2,z ),|AB |=11,则z =_______________.
三、解答题
15.求下列各圆的标准方程:
(1)圆心在直线y =0上,且圆过两点A (1,4),B (3,2);
(2)圆心在直线2x+y=0上,且圆与直线x+y-1=0切于点M(2,-1).
16.圆心在直线5x―3y―8=0上的圆与两坐标轴相切,求此圆的方程
17.已知圆C :(x-1)2+(y-2)2=2,点P坐标为(2,-1),过点P作圆C的切线,切点为A,B.(1)求直线P A,PB的方程;
(2)求过P点的圆的切线长;
18.求与x轴相切,圆心C在直线3x-y=0上,且截直线x-y=0得的弦长为27的圆的方程.。

相关文档
最新文档