导数及应用解答题

合集下载

专题04 导数及其应用解答题(解析版)

专题04 导数及其应用解答题(解析版)

专题04导数及其应用解答题1.【2019年天津理科20】设函数f(x)=e x cos x,g(x)为f(x)的导函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)当x∈[,]时,证明f(x)+g(x)(x)≥0;(Ⅲ)设x n为函数u(x)=f(x)﹣1在区间(2nπ,2nπ)内的零点,其中n∈N,证明2nπx n.【解答】(Ⅰ)解:由已知,f′(x)=e x(cos x﹣sin x),因此,当x∈(,)(k∈Z)时,有sin x>cos x,得f′(x)<0,f(x)单调递减;当x∈(,)(k∈Z)时,有sin x<cos x,得f′(x)>0,f(x)单调递增.∴f(x)的单调增区间为[,](k∈Z),单调减区间为[,](k∈Z);(Ⅱ)证明:记h(x)=f(x)+g(x)(),依题意及(Ⅰ),有g(x)=e x(cos x﹣sin x),从而h′(x)=f′(x)+g′(x)•()+g(x)•(﹣1)=g′(x)()<0.因此,h(x)在区间[,]上单调递减,有h(x)≥h()=f()=0.∴当x∈[,]时,f(x)+g(x)(x)≥0;(Ⅲ)证明:依题意,u(x n)=f(x n)﹣1=0,即.记y n=x n﹣2nπ,则y n∈(),且f(y n)e﹣2nπ(x∈N).由f(y n)=e﹣2nπ≤1=f(y0)及(Ⅰ),得y n≥y0,由(Ⅱ)知,当x∈(,)时,g′(x)<0,∴g(x)在[,]上为减函数,因此,g(y n)≤g(y0)<g()=0,又由(Ⅱ)知,,故.∴2nπx n.2.【2019年新课标3理科20】已知函数f(x)=2x3﹣ax2+b.(1)讨论f(x)的单调性;(2)是否存在a,b,使得f(x)在区间[0,1]的最小值为﹣1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由.【解答】解:(1)f′(x)=6x2﹣2ax=6x(x).令f′(x)=6x(x)=0,解得x=0,或.①a=0时,f′(x)=6x2≥0,函数f(x)在R上单调递增.②a>0时,函数f(x)在(﹣∞,0),(,+∞)上单调递增,在(0,)上单调递减.③a<0时,函数f(x)在(﹣∞,),(0,+∞)上单调递增,在(,0)上单调递减.(2)由(1)可得:①a=0时,函数f(x)在[0,1]上单调递增.则f(0)=b=﹣1,f(1)=2﹣a+b=1,解得b=﹣1,a=0,满足条件.②a>0时,函数f(x)在[0,]上单调递减.1,即a时,函数f(x)在[0,1]上单调递减.则f(0)=b=1,f(1)=2﹣a+b=﹣1,解得b =1,a=4,满足条件.01,即0<a时,函数f(x)在[0,)上单调递减,在(,1]上单调递增.则f()a b=﹣1,而f(0)=b,f(1)=2﹣a+b>b,∴f(1)=2﹣a+b=1,联立解得:无解,舍去.③a<0时,函数f(x)在[0,1]上单调递增,则f(0)=b=﹣1,f(1)=2﹣a+b=1,解得b=﹣1,a=0,不满足条件,舍去.综上可得:存在a,b,使得f(x)在区间[0,1]的最小值为﹣1且最大值为1.a,b的所有值为:,或.3.【2019年全国新课标2理科20】已知函数f(x)=lnx.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=lnx在点A(x0,lnx0)处的切线也是曲线y=e x的切线.【解答】解析:(1)函数f(x)=lnx.定义域为:(0,1)∪(1,+∞);f′(x)0,(x>0且x≠1),∴f(x)在(0,1)和(1,+∞)上单调递增,①在(0,1)区间取值有,代入函数,由函数零点的定义得,∵f()<0,f()>0,f()•f()<0,∴f(x)在(0,1)有且仅有一个零点,②在(1,+∞)区间,区间取值有e,e2代入函数,由函数零点的定义得,又∵f(e)<0,f(e2)>0,f(e)•f(e2)<0,∴f(x)在(1,+∞)上有且仅有一个零点,故f(x)在定义域内有且仅有两个零点;(2)x0是f(x)的一个零点,则有lnx0,曲线y=lnx,则有y′;曲线y=lnx在点A(x0,lnx0)处的切线方程为:y﹣lnx0(x﹣x0)即:y x﹣1+lnx0即:y x而曲线y=e x的切线在点(ln,)处的切线方程为:y(x﹣ln),即:y x,故曲线y=lnx在点A(x0,lnx0)处的切线也是曲线y=e x的切线.故得证.4.【2019年新课标1理科20】已知函数f(x)=sin x﹣ln(1+x),f′(x)为f(x)的导数.证明:(1)f′(x)在区间(﹣1,)存在唯一极大值点;(2)f(x)有且仅有2个零点.【解答】证明:(1)f(x)的定义域为(﹣1,+∞),f′(x)=cos x,f″(x)=﹣sin x,令g(x)=﹣sin x,则g′(x)=﹣cos x0在(﹣1,)恒成立,∴f″(x)在(﹣1,)上为减函数,又∵f″(0)=1,f ″()=﹣11+1=0,由零点存在定理可知,函数f″(x)在(﹣1,)上存在唯一的零点x0,结合单调性可得,f′(x)在(﹣1,x0)上单调递增,在(x0,)上单调递减,可得f′(x)在区间(﹣1,)存在唯一极大值点;(2)由(1)知,当x∈(﹣1,0)时,f′(x)单调递增,f′(x)<f′(0)=0,f(x)单调递减;当x∈(0,x0)时,f′(x)单调递增,f′(x)>f′(0)=0,f(x)单调递增;由于f′(x)在(x0,)上单调递减,且f′(x0)>0,f ′()0,由零点存在定理可知,函数f′(x)在(x0,)上存在唯一零点x1,结合单调性可知,当x∈(x0,x1)时,f′(x)单调递减,f′(x)>f′(x1)=0,f(x)单调递增;当x∈()时,f′(x)单调递减,f′(x)<f′(x1)=0,f(x)单调递减.当x∈(,π)时,cos x<0,0,于是f′(x)=cos x0,f(x)单调递减,其中f ()=1﹣ln(1)>1﹣ln(1)=1﹣ln2.6>1﹣lne=0,f(π)=﹣ln(1+π)<﹣ln3<0.于是可得下表:)(﹣﹣﹣结合单调性可知,函数f(x)在(﹣1,]上有且只有一个零点0,由函数零点存在性定理可知,f(x)在(,π)上有且只有一个零点x2,当x∈[π,+∞)时,f(x)=sin x﹣ln(1+x)<1﹣ln(1+π)<1﹣ln3<0,因此函数f(x)在[π,+∞)上无零点.综上,f(x)有且仅有2个零点.5.【2019年北京理科19】已知函数f(x)x3﹣x2+x.(Ⅰ)求曲线y=f(x)的斜率为l的切线方程;(Ⅱ)当x∈[﹣2,4]时,求证:x﹣6≤f(x)≤x;(Ⅲ)设F(x)=|f(x)﹣(x+a)|(a∈R),记F(x)在区间[﹣2,4]上的最大值为M(a).当M(a)最小时,求a的值.【解答】解:(Ⅰ)f′(x),由f′(x)=1得x(x)=0,得.又f(0)=0,f(),∴y=x和,即y=x和y=x;(Ⅱ)证明:欲证x﹣6≤f(x)≤x,只需证﹣6≤f(x)﹣x≤0,令g(x)=f(x)﹣x,x∈[﹣2,4],则g′(x),可知g′(x)在[﹣2,0]为正,在(0,)为负,在[]为正,∴g(x)在[﹣2,0]递增,在[0,]递减,在[]递增,又g(﹣2)=﹣6,g(0)=0,g()6,g(4)=0,∴﹣6≤g(x)≤0,∴x﹣6≤f(x)≤x;(Ⅲ)由(Ⅱ)可得,F(x)=|f(x)﹣(x+a)|=|f(x)﹣x﹣a|=|g(x)﹣a|∵在[﹣2,4]上,﹣6≤g(x)≤0,令t=g(x),h(t)=|t﹣a|,则问题转化为当t∈[﹣6,0]时,h(t)的最大值M(a)的问题了,①当a≤﹣3时,M(a)=h(0)=|a|=﹣a,此时﹣a≥3,当a=﹣3时,M(a)取得最小值3;②当a≥﹣3时,M(a)=h(﹣6)=|﹣6﹣a|=|6+a|,∵6+a≥3,∴M(a)=6+a,也是a=﹣3时,M(a)最小为3.综上,当M(a)取最小值时a的值为﹣3.6.【2019年江苏19】设函数f(x)=(x﹣a)(x﹣b)(x﹣c),a,b,c∈R,f′(x)为f(x)的导函数.(1)若a=b=c,f(4)=8,求a的值;(2)若a≠b,b=c,且f(x)和f′(x)的零点均在集合{﹣3,1,3}中,求f(x)的极小值;(3)若a=0,0<b≤1,c=1,且f(x)的极大值为M,求证:M.【解答】解:(1)∵a=b=c,∴f(x)=(x﹣a)3,∵f(4)=8,∴(4﹣a)3=8,∴4﹣a=2,解得a=2.(2)a≠b,b=c,设f(x)=(x﹣a)(x﹣b)2.令f(x)=(x﹣a)(x﹣b)2=0,解得x=a,或x=b.f′(x)=(x﹣b)2+2(x﹣a)(x﹣b)=(x﹣b)(3x﹣b﹣2a).令f′(x)=0,解得x=b,或x.∵f(x)和f′(x)的零点均在集合A={﹣3,1,3}中,若:a=﹣3,b=1,则∉A,舍去.a=1,b=﹣3,则∉A,舍去.a=﹣3,b=3,则1∉A,舍去..a=3,b=1,则∉A,舍去.a=1,b=3,则∉A,舍去.a=3,b=﹣3,则1∈A,.因此a=3,b=﹣3,1∈A,可得:f(x)=(x﹣3)(x+3)2.f′(x)=3[x﹣(﹣3)](x﹣1).可得x=1时,函数f(x)取得极小值,f(1)=﹣2×42=﹣32.(3)证明:a=0,0<b≤1,c=1,f(x)=x(x﹣b)(x﹣1).f′(x)=(x﹣b)(x﹣1)+x(x﹣1)+x(x﹣b)=3x2﹣(2b+2)x+b.△=4(b+1)2﹣12b=4b2﹣4b+4=43≥3.令f′(x)=3x2﹣(2b+2)x+b=0.解得:x1∈,x2.x1<x2,x1+x2,x1x2,可得x=x1时,f(x)取得极大值为M,∵f′(x1)(2b+2)x1+b=0,可得:[(2b+2)x1﹣b],M=f(x1)=x1(x1﹣b)(x1﹣1)=(x1﹣b)(x1)=(x1﹣b)(x1)[(2b﹣1)2b2x1+b2],∵﹣2b2+2b﹣2=﹣20,∴M在x1∈(0,]上单调递减,∴M.∴M.7.【2019年浙江22】已知实数a≠0,设函数f(x)=alnx,x>0.(Ⅰ)当a时,求函数f(x)的单调区间;(Ⅱ)对任意x∈[,+∞)均有f(x ),求a的取值范围.注意:e=2.71828……为自然对数的底数.【解答】解:(1)当a时,f(x ),x>0,f′(x ),∴函数f(x)的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由f(x ),得0<a,当0<a时,f(x ),等价于2lnx≥0,令t,则t,设g(t)=t 22t2lnx,t,则g(t )(t)22lnx,(i)当x∈[,+∞)时,,则g(x)≥g(2),记p(x)=42lnx,x,则p′(x ),列表讨论:(∴p (x)≥p(1)=0,∴g(t)≥g(22p(x )≥0.(ii)当x∈[)时,g(t)≥g(),令q (x)=2lnx+(x+1),x ∈[,],则q′(x)1>0,故q(x)在[,]上单调递增,∴q(x )≤q(),由(i)得q()p()p(1)=0,∴q(x)<0,∴g(t)≥g()0,由(i)(ii)知对任意x∈[,+∞),t∈[2,+∞),g(t)≥0,即对任意x∈[,+∞),均有f(x),综上所述,所求的a的取值范围是(0,].8.【2018年江苏19】记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x).对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.【解答】解:(1)证明:f′(x)=1,g′(x)=2x+2,则由定义得,得方程无解,则f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)f′(x)=2ax,g′(x),x>0,由f′(x)=g′(x)得2ax,得x,f()g()lna2,得a;(3)f′(x)=﹣2x,g′(x),(x≠0),由f′(x0)=g′(x0),假设b>0,得b0,得0<x0<1,由f(x0)=g(x0),得﹣x02+a,得a=x02,令h(x)=x2a,(a>0,0<x<1),设m(x)=﹣x3+3x2+ax﹣a,(a>0,0<x<1),则m(0)=﹣a<0,m(1)=2>0,得m(0)m(1)<0,又m(x)的图象在(0,1)上不间断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则存在b>0,使f(x)与g(x)在区间(0,+∞)内存在“S”点.9.【2018年新课标1理科21】已知函数f(x)x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:a﹣2.【解答】解:(1)函数的定义域为(0,+∞),函数的导数f′(x )1,设g(x)=x2﹣ax+1,当a≤0时,g(x)>0恒成立,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,当a>0时,判别式△=a2﹣4,①当0<a≤2时,△≤0,即g(x)≥0,即f′(x)≤0恒成立,此时函数f(x)在(0,+∞)上是减函数,②当a>2时,x,f′(x),f(x)的变化如下表:),,+∞)+综上当a≤2时,f(x)在(0,+∞)上是减函数,当a>2时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a>2,0<x1<1<x2,x1x2=1,则f(x1)﹣f(x2)=(x2﹣x1)(1)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),则2,则问题转为证明1即可,即证明lnx1﹣lnx2>x1﹣x2,则lnx1﹣ln x1,即lnx1+lnx1>x1,即证2lnx1>x1在(0,1)上恒成立,设h(x)=2lnx﹣x,(0<x<1),其中h(1)=0,求导得h′(x)10,则h(x)在(0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x0,故2lnx>x,则a﹣2成立.(2)另解:注意到f()=x alnx=﹣f(x),即f(x)+f()=0,由韦达定理得x1x2=1,x1+x2=a>2,得0<x1<1<x2,x1,可得f(x2)+f()=0,即f(x1)+f(x2)=0,要证a﹣2,只要证a﹣2,即证2alnx2﹣ax20,(x2>1),构造函数h(x)=2alnx﹣ax,(x>1),h′(x)0,∴h(x)在(1,+∞)上单调递减,∴h(x)<h(1)=0,∴2alnx﹣ax0成立,即2alnx2﹣ax20,(x2>1)成立.即a﹣2成立.10.【2018年新课标2理科21】已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.【解答】证明:(1)当a=1时,函数f(x)=e x﹣x2.则f′(x)=e x﹣2x,令g(x)=e x﹣2x,则g′(x)=e x﹣2,令g′(x)=0,得x=ln2.当x∈(0,ln2)时,g′(x)<0,当x∈(ln2,+∞)时,g′(x)>0,∴g(x)≥g(ln2)=e ln2﹣2•ln2=2﹣2ln2>0,∴f(x)在[0,+∞)单调递增,∴f(x)≥f(0)=1,解:(2)方法⇔a在(0,+∞)只有一个根,即函数y=a与G(x)的图象在(0,+∞)只有一个交点.G,当x∈(0,2)时,G′(x)<0,当∈(2,+∞)时,G′(x)>0,∴G(x)在(0,2)递减,在(2,+∞)递增,当→0时,G(x)→+∞,当→+∞时,G(x)→+∞,∴f(x)在(0,+∞)只有一个零点时,a=G(2).方法二:①当a≤0时,f(x)=e x﹣ax2>0,f(x)在(0,+∞)没有零点..②当a>0时,设函数h(x)=1﹣ax2e﹣x.f(x)在(0,+∞)只有一个零点⇔h(x)在(0,+∞)只有一个零点.h′(x)=ax(x﹣2)e﹣x,当x∈(0,2)时,h′(x)<0,当x∈(2,+∞)时,h′(x)>0,∴h(x)在(0,2)递减,在(2,+∞)递增,∴,(x≥0).当h(2)<0时,即a,由于h(0)=1,当x>0时,e x>x2,可得h(4a)=110.h(x)在(0,+∞)有2个零点当h(2)>0时,即a,h(x)在(0,+∞)没有零点,当h(2)=0时,即a,h(x)在(0,+∞)只有一个零点,综上,f(x)在(0,+∞)只有一个零点时,a.11.【2018年新课标3理科21】已知函数f(x)=(2+x+ax2)ln(1+x)﹣2x.(1)若a=0,证明:当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0;(2)若x=0是f(x)的极大值点,求a.【解答】(1)证明:当a=0时,f(x)=(2+x)ln(1+x)﹣2x,(x>﹣1).,,可得x∈(﹣1,0)时,f″(x)≤0,x∈(0,+∞)时,f″(x)≥0∴f′(x)在(﹣1,0)递减,在(0,+∞)递增,∴f′(x)≥f′(0)=0,∴f(x)=(2+x)ln(1+x)﹣2x在(﹣1,+∞)上单调递增,又f(0)=0.∴当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)解:由f(x)=(2+x+ax2)ln(1+x)﹣2x,得f′(x)=(1+2ax)ln(1+x)2,令h(x)=ax2﹣x+(1+2ax)(1+x)ln(x+1),h′(x)=4ax+(4ax+2a+1)ln(x+1).当a≥0,x>0时,h′(x)>0,h(x)单调递增,∴h(x)>h(0)=0,即f′(x)>0,∴f(x)在(0,+∞)上单调递增,故x=0不是f(x)的极大值点,不符合题意.当a<0时,h″(x)=8a+4aln(x+1),显然h″(x)单调递减,①令h″(0)=0,解得a.∴当﹣1<x<0时,h″(x)>0,当x>0时,h″(x)<0,∴h′(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,∴h′(x)≤h′(0)=0,∴h(x)单调递减,又h(0)=0,∴当﹣1<x<0时,h(x)>0,即f′(x)>0,当x>0时,h(x)<0,即f′(x)<0,∴f(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,∴x=0是f(x)的极大值点,符合题意;②若a<0,则h″(0)=1+6a>0,h″(1)=(2a﹣1)(1)<0,∴h″(x)=0在(0,+∞)上有唯一一个零点,设为x0,∴当0<x<x0时,h″(x)>0,h′(x)单调递增,∴h′(x)>h′(0)=0,即f′(x)>0,∴f(x)在(0,x0)上单调递增,不符合题意;③若a,则h″(0)=1+6a<0,h″(1)=(1﹣2a)e2>0,∴h″(x)=0在(﹣1,0)上有唯一一个零点,设为x1,∴当x1<x<0时,h″(x)<0,h′(x)单调递减,∴h′(x)>h′(0)=0,∴h(x)单调递增,∴h(x)<h(0)=0,即f′(x)<0,∴f(x)在(x1,0)上单调递减,不符合题意.综上,a.12.【2018年浙江22】已知函数f(x)lnx.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.【解答】证明:(Ⅰ)∵函数f(x)lnx,∴x>0,f′(x),∵f(x)在x=x1,x2(x1≠x2)处导数相等,∴,∵x1≠x2,∴,由基本不等式得:,∵x1≠x2,∴x1x2>256,由题意得f(x1)+f(x2)ln(x1x2),设g(x),则,∴列表讨论:∴g(x)在[256,+∞)上单调递增,∴g(x1x2)>g(256)=8﹣8ln2,∴f(x1)+f(x2)>8﹣8ln2.(Ⅱ)令m=e﹣(|a|+k),n=()2+1,则f(m)﹣km﹣a>|a|+k﹣k﹣a≥0,f(n)﹣kn﹣a<n(k)≤n(k)<0,∴存在x0∈(m,n),使f(x0)=kx0+a,∴对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点,由f(x)=kx+a,得k,设h(x),则h′(x),其中g(x)lnx,由(1)知g(x)≥g(16),又a≤3﹣4ln2,∴﹣g(x)﹣1+a≤﹣g(16)﹣1+a=﹣3+4ln2+a≤0,∴h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,∴方程f(x)﹣kx﹣a=0至多有一个实根,综上,a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.13.【2018年北京理科18】设函数f(x)=[ax2﹣(4a+1)x+4a+3]e x.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;(Ⅱ)若f(x)在x=2处取得极小值,求a的取值范围.【解答】解:(Ⅰ)函数f(x)=[ax2﹣(4a+1)x+4a+3]e x的导数为f′(x)=[ax2﹣(2a+1)x+2]e x.由题意可得曲线y=f(x)在点(1,f(1))处的切线斜率为0,可得(a﹣2a﹣1+2)e=0,且f(1)=3e≠0,解得a=1;(Ⅱ)f(x)的导数为f′(x)=[ax2﹣(2a+1)x+2]e x=(x﹣2)(ax﹣1)e x,若a=0则x<2时,f′(x)>0,f(x)递增;x>2,f′(x)<0,f(x)递减.x=2处f(x)取得极大值,不符题意;若a>0,且a,则f′(x)(x﹣2)2e x≥0,f(x)递增,无极值;若a,则2,f(x)在(,2)递减;在(2,+∞),(﹣∞,)递增,可得f(x)在x=2处取得极小值;若0<a,则2,f(x)在(2,)递减;在(,+∞),(﹣∞,2)递增,可得f(x)在x=2处取得极大值,不符题意;若a<0,则2,f(x)在(,2)递增;在(2,+∞),(﹣∞,)递减,可得f(x)在x=2处取得极大值,不符题意.综上可得,a的范围是(,+∞).14.【2018年天津理科20】已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2);(Ⅲ)证明当a时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.【解答】(Ⅰ)解:由已知,h(x)=a x﹣xlna,有h′(x)=a x lna﹣lna,令h′(x)=0,解得x=0.由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表:∴函数h(x)的单调减区间为(﹣∞,0),单调递增区间为(0,+∞);(Ⅱ)证明:由f′(x)=a x lna,可得曲线y=f(x)在点(x1,f(x1))处的切线的斜率为lna.由g′(x),可得曲线y=g(x)在点(x2,g(x2))处的切线的斜率为.∵这两条切线平行,故有,即,两边取以a为底数的对数,得log a x2+x1+2log a lna=0,∴x1+g(x2);(Ⅲ)证明:曲线y=f(x)在点()处的切线l1:,曲线y=g(x)在点(x2,log a x2)处的切线l2:.要证明当a时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线,只需证明当a时,存在x1∈(﹣∞,+∞),x2∈(0,+∞)使得l1与l2重合,即只需证明当a时,方程组由①得,代入②得:,③因此,只需证明当a时,关于x1的方程③存在实数解.设函数u(x),既要证明当a时,函数y=u(x)存在零点.u′(x)=1﹣(lna)2xa x,可知x∈(﹣∞,0)时,u′(x)>0;x∈(0,+∞)时,u′(x)单调递减,又u′(0)=1>0,u′0,故存在唯一的x0,且x0>0,使得u′(x0)=0,即.由此可得,u(x)在(﹣∞,x0)上单调递增,在(x0,+∞)上单调递减,u(x)在x=x0处取得极大值u(x0).∵,故lnlna≥﹣1.∴.下面证明存在实数t,使得u(t)<0,由(Ⅰ)可得a x≥1+xlna,当时,有u(x).∴存在实数t,使得u(t)<0.因此,当a时,存在x1∈(﹣∞,+∞),使得u(x1)=0.∴当a时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.15.【2017年江苏20】已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(Ⅰ)求b关于a的函数关系式,并写出定义域;(Ⅱ)证明:b2>3a;(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于,求实数a的取值范围.【解答】(Ⅰ)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x.由于当x时g′(x)>0,g(x)=f′(x)单调递增;当x时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f()=0,即1=0,所以b(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有实根,所以4a2﹣12b>0,即a20,解得a>3,所以b(a>3).(Ⅱ)证明:由(1)可知h(a)=b2﹣3a(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(Ⅲ)解:由(1)可知f′(x)的极小值为f′()=b,设x1,x2是y=f(x)的两个极值点,则x1+x2,x1x2,所以f(x1)+f(x2)a()+b(x1+x2)+2=(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+22,又因为f(x),f′(x)这两个函数的所有极值之和不小于,所以b2,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].16.【2017年新课标1理科21】已知函数f(x)=ae2x+(a﹣2)e x﹣x.(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.【解答】解:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x)(e x),令f′(x)=0,解得:x=ln,当f′(x)>0,解得:x>ln,当f′(x)<0,解得:x<ln,∴x∈(﹣∞,ln)时,f(x)单调递减,x∈(ln,+∞)单调递增;当a<0时,f′(x)=2a(e x)(e x)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,当a>0时,f(x)=ae2x+(a﹣2)e x﹣x,当x→﹣∞时,e2x→0,e x→0,∴当x→﹣∞时,f(x)→+∞,当x→∞,e2x→+∞,且远远大于e x和x,∴当x→∞,f(x)→+∞,∴函数有两个零点,f(x)的最小值小于0即可,由f(x)在(﹣∞,ln)是减函数,在(ln,+∞)是增函数,∴f(x)min=f(ln)=a×()+(a﹣2)ln0,∴1ln0,即ln1>0,设t,则g(t)=lnt+t﹣1,(t>0),求导g′(t)1,由g(1)=0,∴t1,解得:0<a<1,∴a的取值范围(0,1).方法二:(1)由f(x)=ae2x+(a﹣2)e x﹣x,求导f′(x)=2ae2x+(a﹣2)e x﹣1,当a=0时,f′(x)=﹣2e x﹣1<0,∴当x∈R,f(x)单调递减,当a>0时,f′(x)=(2e x+1)(ae x﹣1)=2a(e x)(e x),令f′(x)=0,解得:x=﹣lna,当f′(x)>0,解得:x>﹣lna,当f′(x)<0,解得:x<﹣lna,∴x∈(﹣∞,﹣lna)时,f(x)单调递减,x∈(﹣lna,+∞)单调递增;当a<0时,f′(x)=2a(e x)(e x)<0,恒成立,∴当x∈R,f(x)单调递减,综上可知:当a≤0时,f(x)在R单调减函数,当a>0时,f(x)在(﹣∞,﹣lna)是减函数,在(﹣lna,+∞)是增函数;(2)①若a≤0时,由(1)可知:f(x)最多有一个零点,②当a>0时,由(1)可知:当x=﹣lna时,f(x)取得最小值,f(x)min=f(﹣lna)=1ln,当a=1,时,f(﹣lna)=0,故f(x)只有一个零点,当a∈(1,+∞)时,由1ln0,即f(﹣lna)>0,故f(x)没有零点,当a∈(0,1)时,1ln0,f(﹣lna)<0,由f(﹣2)=ae﹣4+(a﹣2)e﹣2+2>﹣2e﹣2+2>0,故f(x)在(﹣∞,﹣lna)有一个零点,假设存在正整数n0,满足n0>ln(1),则f(n0)(a a﹣2)﹣n0n0n0>0,由ln(1)>﹣lna,因此在(﹣lna,+∞)有一个零点.∴a的取值范围(0,1).17.【2017年新课标2理科21】已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0.(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.【解答】(1)解:因为f(x)=ax2﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则f(x)≥0等价于h(x)=ax﹣a﹣lnx≥0,求导可知h′(x)=a.则当a≤0时h′(x)<0,即y=h(x)在(0,+∞)上单调递减,所以当x0>1时,h(x0)<h(1)=0,矛盾,故a>0.因为当0<x时h′(x)<0、当x时h′(x)>0,所以h(x)min=h(),又因为h(1)=a﹣a﹣ln1=0,所以1,解得a=1;另解:因为f(1)=0,所以f(x)≥0等价于f(x)在x>0时的最小值为f(1),所以等价于f(x)在x=1处是极小值,所以解得a=1;(2)证明:由(1)可知f(x)=x2﹣x﹣xlnx,f′(x)=2x﹣2﹣lnx,令f′(x)=0,可得2x﹣2﹣lnx=0,记t(x)=2x﹣2﹣lnx,则t′(x)=2,令t′(x)=0,解得:x,所以t(x)在区间(0,)上单调递减,在(,+∞)上单调递增,所以t(x)min=t()=ln2﹣1<0,从而t(x)=0有解,即f′(x)=0存在两根x0,x2,且不妨设f′(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+∞)上为正,所以f(x)必存在唯一极大值点x0,且2x0﹣2﹣lnx0=0,所以f(x0)x0﹣x0lnx0x0+2x0﹣2x0,由x0可知f(x0)<(x0)max;由f′()<0可知x0,所以f(x)在(0,x0)上单调递增,在(x0,)上单调递减,所以f(x0)>f();综上所述,f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2.18.【2017年新课标3理科21】已知函数f(x)=x﹣1﹣alnx.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,(1)(1)…(1)<m,求m的最小值.【解答】解:(1)因为函数f(x)=x﹣1﹣alnx,x>0,所以f′(x)=1,且f(1)=0.所以当a≤0时f′(x)>0恒成立,此时y=f(x)在(0,+∞)上单调递增,这与f(x)≥0矛盾;当a>0时令f′(x)=0,解得x=a,所以y=f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,即f(x)min=f(a),若a≠1,则f(a)<f(1)=0,从而与f(x)≥0矛盾;所以a=1;(2)由(1)可知当a=1时f(x)=x﹣1﹣lnx≥0,即lnx≤x﹣1,所以ln(x+1)≤x当且仅当x=0时取等号,所以ln(1),k∈N*.ln(1)+ln(1)+…+ln(1)11,即(1)(1)…(1)<e;因为m为整数,且对于任意正整数n,(1)(1)…(1)<m成立,当n=3时,不等式左边大于2,所以m的最小值为3.19.【2017年浙江20】已知函数f(x)=(x)e﹣x(x).(1)求f(x)的导函数;(2)求f(x)在区间[,+∞)上的取值范围.【解答】解:(1)函数f(x)=(x)e﹣x(x),导数f′(x)=(1••2)e﹣x﹣(x)e﹣x=(1﹣x)e﹣x=(1﹣x)(1)e﹣x;(2)由f(x)的导数f′(x)=(1﹣x)(1)e﹣x,可得f′(x)=0时,x=1或,当x<1时,f′(x)<0,f(x)递减;当1<x时,f′(x)>0,f(x)递增;当x时,f′(x)<0,f(x)递减,且x⇔x2≥2x﹣1⇔(x﹣1)2≥0,则f(x)≥0.由f(),f(1)=0,f(),即有f(x)的最大值为,最小值为f(1)=0.则f(x)在区间[,+∞)上的取值范围是[0,].20.【2017年上海21】设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2).(1)若f(x)=ax3+1,求a的取值范围;(2)若f(x)是周期函数,证明:f(x)是常值函数;(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值.函数h(x)=f(x)g(x).证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”.【解答】(1)解:由f(x1)≤f(x2),得f(x1)﹣f(x2)=a(x13﹣x23)≤0,∵x1<x2,∴x13﹣x23<0,得a≥0.故a的范围是[0,+∞);(2)证明:若f(x)是周期函数,记其周期为T k,任取x0∈R,则有f(x0)=f(x0+T k),由题意,对任意x∈[x0,x0+T k],f(x0)≤f(x)≤f(x0+T k),∴f(x0)=f(x)=f(x0+T k).又∵f(x0)=f(x0+nT k),n∈Z,并且…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,∴对任意x∈R,f(x)=f(x0)=C,为常数;(3)证明:充分性:若f(x)是常值函数,记f(x)=c1,设g(x)的一个周期为T g,则h(x)=c1•g(x),则对任意x0∈R,h(x0+T g)=c1•g(x0+T g)=c1•g(x0)=h(x0),故h(x)是周期函数;必要性:若h(x)是周期函数,记其一个周期为T h.若存在x1,x2,使得f(x1)>0,且f(x2)<0,则由题意可知,x1>x2,那么必然存在正整数N1,使得x2+N1T k>x1,∴f(x2+N1T k)>f(x1)>0,且h(x2+N1T k)=h(x2).又h(x2)=g(x2)f(x2)<0,而h(x2+N1T k)=g(x2+N1T k)f(x2+N1T k)>0≠h(x2),矛盾.综上,f(x)>0恒成立.由f(x)>0恒成立,任取x0∈A,则必存在N2∈N,使得x0﹣N2T h≤x0﹣T g,即[x0﹣T g,x0]⊆[x0﹣N2T h,x0],∵…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,∴…∪[x0﹣2N2T h,x0﹣N2T h]∪[x0﹣N2T h,x0]∪[x0,x0+N2T h]∪[x0+N2T h,x0+2N2T h]∪…=R.h(x0)=g(x0)•f(x0)=h(x0﹣N2T h)=g(x0﹣N2T h)•f(x0﹣N2T h),∵g(x0)=M≥g(x0﹣N2T h)>0,f(x0)≥f(x0﹣N2T h)>0.因此若h(x0)=h(x0﹣N2T h),必有g(x0)=M=g(x0﹣N2T h),且f(x0)=f(x0﹣N2T h)=c.而由(2)证明可知,对任意x∈R,f(x)=f(x0)=C,为常数.综上,必要性得证.21.【2017年北京理科19】已知函数f(x)=e x cos x﹣x.(1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间[0,]上的最大值和最小值.【解答】解:(1)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,可得曲线y=f(x)在点(0,f(0))处的切线斜率为k=e0(cos0﹣sin0)﹣1=0,切点为(0,e0cos0﹣0),即为(0,1),曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(2)函数f(x)=e x cos x﹣x的导数为f′(x)=e x(cos x﹣sin x)﹣1,令g(x)=e x(cos x﹣sin x)﹣1,则g(x)的导数为g′(x)=e x(cos x﹣sin x﹣sin x﹣cos x)=﹣2e x•sin x,当x∈[0,],可得g′(x)=﹣2e x•sin x≤0,即有g(x)在[0,]递减,可得g(x)≤g(0)=0,则f(x)在[0,]递减,即有函数f(x)在区间[0,]上的最大值为f(0)=e0cos0﹣0=1;最小值为f()cos.22.【2017年天津理科20】设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0,2],满足|x0|.【解答】(Ⅰ)解:由f(x)=2x4+3x3﹣3x2﹣6x+a,可得g(x)=f′(x)=8x3+9x2﹣6x﹣6,进而可得g′(x)=24x2+18x﹣6.令g′(x)=0,解得x=﹣1,或x.当x变化时,g′(x),g(x)的变化情况如下表:,,所以,g(x)的单调递增区间是(﹣∞,﹣1),(,+∞),单调递减区间是(﹣1,).(Ⅱ)证明:由h(x)=g(x)(m﹣x0)﹣f(m),得h(m)=g(m)(m﹣x0)﹣f(m),h(x0)=g(x0)(m﹣x0)﹣f(m).令函数H1(x)=g(x)(x﹣x0)﹣f(x),则H′1(x)=g′(x)(x﹣x0).由(Ⅰ)知,当x∈[1,2]时,g′(x)>0,故当x∈[1,x0)时,H′1(x)<0,H1(x)单调递减;当x∈(x0,2]时,H′1(x)>0,H1(x)单调递增.因此,当x∈[1,x0)∪(x0,2]时,H1(x)>H1(x0)=﹣f(x0)=0,可得H1(m)>0即h(m)>0,令函数H2(x)=g(x0)(x﹣x0)﹣f(x),则H′2(x)=g(x0)﹣g(x).由(Ⅰ)知,g(x)在[1,2]上单调递增,故当x∈[1,x0)时,H′2(x)>0,H2(x)单调递增;当x∈(x0,2]时,H′2(x)<0,H 2(x )单调递减.因此,当x ∈[1,x 0)∪(x 0,2]时,H 2(x )>H 2(x 0)=0,可得得H 2(m )<0即h (x 0)<0,.所以,h (m )h (x 0)<0.(Ⅲ)对于任意的正整数p ,q ,且,令m,函数h (x )=g (x )(m ﹣x 0)﹣f (m ).由(Ⅱ)知,当m ∈[1,x 0)时,h (x )在区间(m ,x 0)内有零点; 当m ∈(x 0,2]时,h (x )在区间(x 0,m )内有零点.所以h (x )在(1,2)内至少有一个零点,不妨设为x 1,则h (x 1)=g (x 1)(x 0)﹣f ()=0.由(Ⅰ)知g (x )在[1,2]上单调递增,故0<g (1)<g (x 1)<g (2),于是|x 0|.因为当x ∈[1,2]时,g (x )>0,故f (x )在[1,2]上单调递增,所以f (x )在区间[1,2]上除x 0外没有其他的零点,而x 0,故f ()≠0.又因为p ,q ,a 均为整数,所以|2p 4+3p 3q ﹣3p 2q 2﹣6pq 3+aq 4|是正整数, 从而|2p 4+3p 3q ﹣3p 2q 2﹣6pq 3+aq 4|≥1.所以|x 0|.所以,只要取A =g (2),就有|x 0|.1.【湖北省黄冈中学2019届高三第三次模拟考试】已知函数()||ln (0)f x x a x a =-->. (Ⅰ)讨论()f x 的单调性;(Ⅱ)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.【答案】(I )见解析;(II )见解析【解析】(Ⅰ)函数()f x 可化为ln ,()ln ,0x x a x af x a x x x a --≥⎧=⎨--<<⎩,当0x a <<时,1()10f x x '=--<,从而()f x 在(0,)a 上总是递减的, 当x a ≥时,11()1x f x x x-=-=',此时要考虑a 与1的大小.若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减, 在(1,)+∞上递增,而()f x 在x a =处连续,所以 当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增; 当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增.(Ⅱ)由(Ⅰ)可知当1a =,1x >时,1ln 0x x -->,即ln 1x x >-,所以ln 11x x x<-.所以 222222ln 2ln 3ln 23n n+++22211111123n <-+-+-222111123n n ⎛⎫=--+++⎪⎝⎭11112334(1)n n n ⎛⎫<--+++ ⎪⨯⨯+⎝⎭11121n n ⎛⎫=--- ⎪+⎝⎭1(1)2(1)n n n -=--+ 2221(1)(21)2(1)2(1)n n n n n n --+-+==++.2.【湖南省师范大学附属中学2019届高三下学期模拟(三)】已知函数()ln 1f x x ax =-+,其中a 为实常数.(1)若当0a >时,()f x 在区间[1,]e 上的最大值为1-,求a 的值;(2)对任意不同两点()()11,A x f x ,()()22,B x f x ,设直线AB 的斜率为k ,若120x x k ++>恒成立,求a 的取值范围.【答案】(1) 2a = (2) (,-∞ 【解析】 (1)1()(0)f x a x x '=->,令1()0f x a x '=->,则10x a<<.所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.①当101a<≤,即1a ≥时,()f x 在区间[]1,e 上单调递减,则max ()(1)1f x f a ==-+, 由已知,11a -+=-,即2a =,符合题意. ②当11e a<<时,即11a e <<时,()f x 在区间上单调递增,在上单调递减,则max 1()ln f x f a a ⎛⎫==- ⎪⎝⎭,由已知,ln 1a -=-,即a e =,不符合题意,舍去. ③当1e a ≥,即10a e<≤时,()f x 在区间[]1,e 上单调递增,则, 由已知,21ae -=-,即3a e=,不符合题意,舍去.综上分析,2a =.(2)由题意,()()1212f x f x k x x -=-,则原不等式化为()()1212120f x f x x x x x -++>-, 不妨设120x x >>,则()()()()1212120x x x x f x f x +-+->,即()()2212120x x f x f x -+->,即()()221122f x x f x x +>+.设22()()ln 1g x f x x x x ax =+=+-+,则2121()2x ax g x x a x x'-+=+-=,由已知,当120x x >>时,不等式()()12g x g x >恒成立,则()g x 在(0,)+∞上是增函数.所以当0x >时,()0g x '≥,即2210x ax -+≥,即22112x a x x x+≤=+恒成立,因为12x x +≥12x x =,即x =时取等号,所以min 12x x ⎛⎫+= ⎪⎝⎭故a的取值范围是(,-∞.3.【2019年湖北省武汉市高考数学(5月份)】已知函数2()12xx f x e =--(1)若直线y x a =+为()f x 的切线,求a 的值.(2)若[)0,x ∀∈+∞,()f x bx ≥恒成立,求b 的取值范围. 【答案】(1)0;(2)1b ≤ 【解析】(1)设切点为()00,P x y ,()'xf x e x =-,∴()000'1xf x e x =-=,令()xh x e x =-,则()'1xh x e =-,当0x >时,()'0h x >,()h x 在()0,∞+上为增函数; 当0x <时,()'0h x <,()h x 在(),0-∞上为减函数; 所以()()min 01h x h ==,所以00x =, 又0200112xe x x a --=+,所以0a =. (2)[)0,x ∀∈+∞,()f x bx ≥恒成立2102xx e bx ⇔---≥,[)0,x ∈+∞.令2()12xx g x e bx =---,[)0,x ∈+∞.()()'x g x e x b h x =--=,()'1x h x e =-,当0x >时,()'10xh x e =->,所以()h x 在[)0,+∞上为增函数,()min 1h x b =-,①若1b ≤,则当0x >时'()0g x >,故()g x 在[)0,+∞上为增函数,故[)0,x ∈+∞时,有()()00g x g ≥=即2102xx e bx ---≥恒成立,满足题意.②若1b >,因为()'g x 为()0,∞+上的增函数且()'010g b =-<,()'ln 2ln ln 2g b b b =--⎡⎤⎣⎦, 令()ln ln 2s b b b =--,其中1b >,()1'10s b b=->, 所以()s b 在()1,+∞为增函数,所以()()11ln 20s b s >=->, 故存在0x ,使得()0'0g x =且()00,x x ∈时,()'0g x <,()g x 在()00,x 为减函数,故当()00,x x ∈时,()()00g x g <=,矛盾,舍去.综上可得:1b ≤.4.【山东省淄博市部分学校2019届高三5月阶段性检测(三模)】已知函数()()21ln ,2f x x xg x mx ==. (1)若函数()f x 与()g x 的图象上存在关于原点对称的点,求实数m 的取值范围; (2)设()()()F x f x gx =-,已知()F x 在()0,∞+上存在两个极值点12,x x ,且12x x <,求证:2122x x e>(其中e 为自然对数的底数). 【答案】(1)2m e≥-;(2)证明见解析. 【解析】(1)函数()f x 与()g x 的图像上存在关于原点对称的点, 即21()()2g x m x --=--的图像与函数()ln f x x x =的图像有交点, 即21()ln 2m x x x --=在(0,)+∞上有解. 即1ln 2x m x=-在(0,)+∞上有解. 设ln ()x x x ϕ=-,(0x >),则2ln 1()x x x ϕ'-=当(0,)x e ∈时,()x ϕ为减函数;当(,)x e ∈+∞时,()x ϕ为增函数,所以min 1()()x e e ϕϕ==-,即2m e≥-. (2)21()()()ln 2F x f x g x x x mx =-=-,()ln 1F x x mx '=-+()F x 在(0,)+∞上存在两个极值点1x ,2x ,且12x x <,所以1122ln 10ln 10x mx x mx -+=⎧⎨-+=⎩因为1212ln ln 2x x m x x ++=+且1212ln ln x x m x x -=-,所以12121212ln ln 2ln ln x x x x x x x x ++-=+-,即112212112112221lnln ln 2ln 1x x x x x x x x x x x x x x ⎛⎫+ ⎪+⎝⎭++==--设12(0,1)x t x =∈,则12(1)ln ln ln 21t t x x t +++=- 要证2122x x e >,即证12ln ln 22x x ++>,只需证(1)ln 21t t t +>-,即证2(1)ln 01t t t --<+设2(1)()ln 1t h t t t -=-+,22214(1)()0(1)(1)t h t t t t t '-=-=>++, 则2(1)()ln 1t h t t t -=-+在(0,1)上单调递增,()(1)0h t h <=, 即2(1)()ln 01t h t t t -=-<+ 所以,12ln ln 2x x +>即2122x x e >.5.【广东省深圳市高级中学2019届高三适应性考试(6月)】已知函数()xf x e =,()()210g x ax x a =++>. (1)设()()()g x F x f x =,讨论函数()F x 的单调性;(2)若102a <≤,证明:()()f x g x >在()0,∞+恒成立. 【答案】(1)见解析;(2)见解析 【解析】(1)因为2()1()()xg x ax x F x f x e++==, 所以221(21)'()x xa ax x ax a x a F x e e -⎛⎫-- ⎪-+-⎝⎭==, ①若12a =,2'()0xax F x e-=≤.∴()F x 在R 上单调递减. ②若12a >,则210a a->, 当0x <,或21a x a ->时,'()0F x <,当210a x a-<<时,'()0F x >,∴()F x 在(,0)-∞,21,a a -⎛⎫+∞⎪⎝⎭上单调递减,在210,a a -⎛⎫⎪⎝⎭上单调递增.③若102a <<,则210a a-<, 当21a x a -<,或0x >时,'()0F x <,当210a x a-<<时,'()0F x >. ∴()F x 在21,a a -⎛⎫-∞ ⎪⎝⎭,(0,)+∞上单调递减,在21,0a a -⎛⎫ ⎪⎝⎭上单调递增. (2)∵102a <≤,∴221112ax x x x ++≤++. 设21()12xh x e x x =---,则'()1x h x e x =--. 设()'()1x p x h x e x ==--,则'()1xp x e =-,在(0,)+∞上,'()0p x ≥恒成立.∴)'(h x 在(0,)+∞上单调递增.又∵'(0)0h =,∴(0,)x ∈+∞时,'()0h x >,所以()h x 在(0,)+∞上单调递增, ∴()(0)0h x h >=,∴21102xx e x --->,2112x x e x >++, 所以221112xe x x ax x >++≥++, 所以()()f x g x >在(0,)+∞上恒成立.6.【湖南省师范大学附属中学2019届高三下学期模拟(三)】已知函数1()ln af x a x x x-=-++. (1)当2a ≥时,求函数()f x 的单调区间;(2)设()23xg x e mx =+-,当21a e =+时,对任意1[1,)x ∈+∞,存在2[1,)x ∈+∞,使212()2()f x e g x +≥,证明:2m e e ≤-.【答案】(1)见解析;(2)见证明 【解析】(1)函数()f x 的定义域为(0,)+∞, 又221(1)[(1)]()1a a x x a f x x x x '----=-++=, 由()0f x '=,得1x =或1x a =-.当2a >即11a ->时,由()0f x '<得11x a <<-,由()0f x '>得01x <<或1x a >-; 当2a =即11a -=时,当0x >时都有()0f x '≥;∴当2a >时,单调减区间是()1,1a -,单调增区间是()0,1,()1,a -+∞;当2a =时,单调增区间是()0,+∞,没有单调减区间;(2)当21a e =+时,由(1)知()f x 在()21,e 单调递减,在()2,e +∞单调递增. 从而()f x 在[)1,+∞上的最小值为22()3f e e =--.对任意[)11,x ∈+∞,存在[)21,x ∈+∞,使()()2212g x f x e ≤+,即存在[)21,x ∈+∞,使的值不超过()22f x e +在区间[)1,+∞上的最小值23e -.由222e 32e e 3xmx --+≥+-得22xmx e e +≤,22xe e m x-∴≤. 令22()xe e h x x-=,则当[)1,x ∈+∞时,max ()m h x ≤. ()()()22223222()x x x x e x e e xxe e e h x x x ---+-'==-,当[1,2]x ∈时()0h x '<;当[2,)x ∈+∞时,()22e 20xxxx xe exee +->-≥,()0h x '<.故()h x 在[1,)+∞上单调递减,从而2max ()(1)h x h e e ==-, 从而实数2m e e ≤-得证7.【山东省临沂市2019年普通高考模拟考试(三模)】已知函数()ln xf x a x e=+,其中a 为常数. (1)若直线2y x e=是曲线()y f x =的一条切线,求实数a 的值; (2)当1a =-时,若函数()()ln xg x f x b x=-+在[)1+∞,上有两个零点.求实数b 的取值范围. 【答案】(1) 1a = (2) 11,b e e ⎡⎫∈-⎪⎢⎣⎭【解析】(1)函数()f x 的定义域为(0,)+∞,1()a x ae f x e x ex +'=+=, 曲线()y f x =在点()00,x y 处的切线方程为2y x e=.由题意得000012,2ln a e x ex x a xee ⎧+=⎪⎪⎨⎪=+⎪⎩ 解得1a =,0x e =.所以a 的值为1. (2)当1a =-时,()ln x f x x e =-,则11()x ef x e x ex-'=-=, 由()0f x '>,得x e >,由()0f x '<,得0x e <<,则()f x 有最小值为()0f e =,即()0f x …, 所以ln ()ln x xg x x b e x=--+,(0)x >, 由已知可得函数ln ln x xy x x e=+- 的图象与直线y b =有两个交点, 设ln ()ln (0)x xh x x x x e=+->, 则211ln 1()x h x x x e -'=+-22ln ex e e x x ex +--=,令2()ln x ex e e x x ϕ=+--,22()2e ex e x x e x x xϕ--'=--=,由220ex e x --<,可知()0x ϕ'<,所以()x ϕ在(0,)+∞上为减函数, 由()0e ϕ=,得0x e <<时,()0x ϕ>,当x e >时,()0x ϕ<, 即当0x e <<时,()0h x '>,当x e >时,()0h x '<, 则函数()h x 在(0,)e 上为增函数,在(,)e +∞上为减函数, 所以,函数()h x 在x e =处取得极大值1()h e e=, 又1(1)h e=-,()322331341h ee e e e=+-<-<-<-, 所以,当函数()g x 在[1,)+∞上有两个零点时,b 的取值范围是11b ee-<…, 即11,b e e ⎡⎫∈-⎪⎢⎣⎭.8.【江苏省镇江市2019届高三考前模拟(三模)】已知函数()()xf x mx n e -=+(,m n R ∈,e 是自然对数的底数).。

导数应用精选50题(含有答案)

导数应用精选50题(含有答案)

)
99
A. a b c
B. c > b > a
C. c > a > b
D. a > c > b
10. f (x)是函数f (x)的导函数, 将y f (x)和y f (x) 的图象画在同一直角坐标系中,不
可能正确的是
()
11.已知函数 y xf (x) 的图象如图 3 所示(其中 f (x) 是函数 f (x) 的导函数).下面四个图 象中, y f (x) 的图象大致是( )
30.(本大题满分 14 分) 设 x=3 是函数 f(x)=(x2+a+b)e3-x(x∈R)的一个极值点. (1)求 a 与 b 的关系式(用 a 表示 b),并求 f(x)的单调区间;(2)a>0,g(x)=( a+ 25 ) ex.若
4 存在 x1、x2∈[0,4]使得| f(x1)- g(x2)|<1 成立,求 a 的取值范围.
(3)若函数 y=f(x)+g(x)有两个不同的极值点 x1,x2(xl <x2),且 x2 -xl >1n2,求实数 a 的取值范围.
28.(本题满分 14 分)
5
已知函数 f x a ln x 1 a x 1 x2, a R
2
(1)当 0 a 1时,求函数 f x 的单调区间;
(2)已知 f x 0 对定义域内的任意 x 恒成立,求实数 a 的范围.
(1)求 a, b 的值;(2)求函数 f (x) 的极小值.
26.(本小题满分 13 分)已知定义在正实数集上的函数 f (x) 1 x2 2ex , g(x) 3e2 ln x b (其中 e 为常数, e 2.71828 ),若这两个函数

导数及其应用测试题(有详细答案)

导数及其应用测试题(有详细答案)

《导数及其应用》一、选择题1。

0()0f x '=是函数()f x 在点0x 处取极值的:A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 2、设曲线21y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为A 。

B. C 。

D.3.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )4.若曲线y =x 2+ax +b在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 5.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( )A .2B .3C .4D .56。

设函数()f x 的导函数为()f x ',且()()221f x x x f '=+⋅,则()0f '等于 ( )A 、0B 、4-C 、2-D 、27。

直线y x =是曲线ln y a x =+的一条切线,则实数a 的值为( )A .1-B .eC .ln 2D .18。

若函数)1,1(12)(3+--=k k x x x f 在区间上不是单调函数,则实数k 的取值范围( ) A .3113≥≤≤--≤k k k 或或 B .3113<<-<<-k k 或C .22<<-kD .不存在这样的实数k9.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示, 则函数()f x 在(),a b 内有极小值点 ( )A .1个B .2个C .3个D .4个 10.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .32二、填空题(本大题共4个小题,每小题5分,共20分) 11。

导数专题训练(含答案)

导数专题训练(含答案)

导数专题训练及答案专题一导数的几何意义及其应用导数的几何意义是高考重点考查的内容之一,常与解析几何知识交汇命题,主要题型是利用导数的几何意义求曲线上某点处切线的斜率或曲线上某点的坐标或过某点的切线方程,求解这类问题的关键就是抓住切点P(x0,f(x0)),P点的坐标适合曲线方程,P点的坐标也适合切线方程,P点处的切线斜率k=f′(x0).解题方法:(1) 解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”的问法.(2)解决“过某点的切线”问题,一般是设切点坐标为P(x0,y0),然后求其切线斜率k=f′(x0),写出其切线方程.而“在某点处的切线”就是指“某点”为切点.(3)曲线与直线相切并不一定只有一个公共点,当曲线是二次曲线时,我们知道直线与曲线相切,有且只有一个公共点,这种观点对一般曲线不一定正确.[例1]已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.[变式训练]已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.专题二导数在研究函数单调性中的应用利用导数的符号判断函数的单调性,进而求出函数的单调区间,是导数几何意义在研究曲线变化规律时的一个重要应用,体现了数形结合思想.这类问题要注意的是f(x)为增函数⇔f′(x)≥0且f′(x)=0的根有有限个,f(x)为减函数⇔f′≤0且f′(x)=0的根有有限个.解题步骤:(1)确定函数的定义域;(2)求导数f′(x);(3)①若求单调区间(或证明单调性),只需在函数f(x)的定义域内解(或证明)不等式f′(x)>0或f′(x)<0.②若已知函数f(x)的单调性,则将原问题转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题,再进行求解.[例2]设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.[变式训练]设函数f(x)=xekx(k≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.专题三 导数在求函数极值与最值中的应用利用导数可求出函数的极值或最值,反之,已知函数的极值或最值也能求出参数的值或取值范围.该部分内容也可能与恒成立问题、函数零点问题等结合在一起进行综合考查,是高考的重点内容.解题方法:(1)运用导数求可导函数y =f(x)的极值的步骤:①先求函数的定义域,再求函数y =f(x)的导数f ′(x);②求方程f ′(x)=0的根;③检查f ′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值,如果左负右正,那么f(x)在这个根处取得极小值.(2)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值,可不再作判断,只需要直接与端点的函数值比较即可获得.(3)当连续函数的极值点只有一个时,相应的极值点必为函数的最值.[例3] 已知函数f (x )=-x 3+ax 2+bx 在区间(-2,1)内,当x =-1时取极小值,当x =23时取极大值.(1)求函数y =f (x )在x =-2时的对应点的切线方程;(2)求函数y =f (x )在[-2,1]上的最大值与最小值.[变式训练] 设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线方程与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.专题四 导数在证明不等式中的应用在用导数方法证明不等式时,常构造函数,利用单调性和最值方法证明不等式.解题方法:一般地,如果证明f(x)>g(x),x ∈(a ,b),可转化为证明F(x)=f(x)-g(x)>0,若F ′(x)>0,则函数F(x)在(a ,b)上是增函数,若F(a)≥0,则由增函数的定义知,F(x)>F(a)≥0,从而f(x)>g(x)成立,同理可证f(x)<g(x),f(x)>g(x).[例4] 已知函数f (x )=ln x -(x -1)22. (1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1.[变式训练] 已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间;(2)证明:当a ≥1e 时,f (x )≥0.专题五 定积分及其应用定积分的基本应用主要有两个方面:一个是求坐标平面上曲边梯形的面积,另一个是求变速运动的路程(位移)或变力所做的功.高考中要求较低,一般只考一个小题.解题方法:(1)用微积分基本定理求定积分,关键是找出被积函数的原函数,这就需要利用求导运算与求原函数是互逆运算的关系来求原函数.(2) 利用定积分求平面图形的面积的步骤如下:①画出图形,确定图形范围;②解方程组求出图形交点坐标,确定积分上、下限;③确定被积函数,注意分清函数图形的上、下位置;④计算定积分,求出平面图形面积.(3)利用定积分求加速度或路程(位移),要先根据物理知识得出被积函数,再确定时间段,最后用求定积分方法求出结果.[例5] 已知抛物线y =x 2-2x 及直线x =0,x =a ,y =0围成的平面图形的面积为43,求a 的值.[变式训练] (1)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则∫20f (x )d x = ____;(2)在平面直角坐标系xOy 中,直线y =a (a >0)与抛物线y =x 2所围成的封闭图形的面积为823,则a =____.专题六 化归与转化思想在导数中的应用化归与转化就是在处理问题时,把待解决的问题或难解决的问题,通过某种转化过程,归结为一类已解决或易解决的问题,最终求得问题的解答.解题方法:与函数相关的问题中,化归与转化思想随处可见,如,函数在某区间上单调可转化为函数的导数在该区间上符号不变,不等式的证明可转化为最值问题等.[例6] 设f (x )=e x1+ax 2,其中a 为正实数. (1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.[变式训练] 如果函数f(x)=2x2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.答案例1 解:(1)因为P (2,4)在曲线y =13x 3+43上,且y ′=x 2,所以在点P (2,4)处的切线的斜率k =y ′|x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y -13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率k =y ′|x =x 0=x 20,所以切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20·x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43,即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.(3)设切点为(x 1,y 1),则切线的斜率k =x 21=4,得x 0=±2.所以切点为(2,4),⎝ ⎛⎭⎪⎫-2,-43, 所以切线方程为y -4=4(x -2)和y +43=4(x +2),即4x -y -4=0和12x -3y +20=0.变式训练 解:(1)因为f (2)=23+2-16=-6,所以点(2,-6)在曲线上.因为f ′(x )=(x 3+x -16)′=3x 2+1,所以在点(2,-6)处的切线的斜率为k =f ′(2)=3×22+1=13,所以切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得x 30=-8,所以x 0=-2,y 0=(-2)3+(-2)-16=-26,所以k =3×(-2)2+1=13,所以直线l 的方程为y =13x ,切点坐标为(-2,-26).例2 解:(1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )e a -x +b .依题设,知⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).变式训练 解:(1)f ′(x )=(1+kx )e kx (k ≠0), 令f ′(x )=0得x =-1k (k ≠0).若k >0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f ′(x )<0,函数f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )>0,函数f (x )单调递增; 若k <0,则当x ∈⎝⎛⎭⎪⎫-∞,-1k 时,f ′(x )>0,函数f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )<0,函数f (x )单调递减. (2)由(1)知,若k >0时,则当且仅当-1k ≤-1,即k ≤1,函数f (x )在(-1,1)上单调递增.若k <0时,则当且仅当-1k ≥1,即k ≥-1时,函数f (x )在(-1,1)上单调递增.综上可知,函数f (x )在(-1,1)上单调递增时,k 的取值范围是[-1,0)∪(0,1].例3 解:(1)f ′(x )=-3x 2+2ax +b .又x =-1,x =23分别对应函数取得极小值、极大值的情况,所以-1,23为方程-3x 2+2ax +b =0的两个根.所以a =-12,b =2,则f (x )=-x 3-12x 2+2x . x =-2时,f (x )=2,即(-2,2)在曲线上. 又切线斜率为k =f ′(x )=-3x 2-x +2, f ′(-2)=-8,所求切线方程为y -2=-8(x +2), 即为8x +y +14=0.(2)x 在变化时,f ′(x )及f (x )的变化情况如下表: ↘↗↘则f (x )在[-2,1]上的最大值为2,最小值为-32.变式训练 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[2ax -(4a +1)]e x +[ax 2-(4a +1)x +4a +3]e x =[ax 2-(2a +1)x +2]e x .所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.例4 (1)解:f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0,解得0<x <1+52. 故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞). 则有F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0, 所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.变式训练 (1)解:f (x )的定义域为(0,+∞),f ′(x )=a e x -1x .由题设知,f ′(2)=0,所以a =12e 2. 从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x . 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增. (2)证明:当a ≥1e 时,f (x )≥e xe -ln x -1. 设g (x )=e x e -ln x -1,则g ′(x )=e x e -1x . 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,f (x )≥0.例5 解:作出y =x 2-2x 的图象如图所示.(1)当a <0时,S =∫0a (x 2-2x )d x =⎝⎛⎭⎪⎫13x 3-x 2|0a =-a 33+a 2=43,所以(a +1)(a -2)2=0, 因为a <0,所以a =-1. (2)当a >0时, ①若0<a ≤2,则S =-∫a 0(x 2-2x )d x = -⎝ ⎛⎭⎪⎫13x 3-x 2|a 0=a 2-a 33=43, 所以a 3-3a 2+4=0, 即(a +1)(a -2)2=0. 因为a >0,所以a =2. ②当a >2时,不合题意. 综上a =-1或a =2.变式训练 解析:(1)因为f (x )=x 3+x 2f ′ 所以f ′(x )=3x 2+2xf ′(x ), 所以f ′(1)=3+2f ′(1), 所以f ′(1)=-3,所以∫20f (x )d x =⎝⎛⎭⎪⎫14x 4+13x 3f ′(1)|20=-4.(2)由⎩⎪⎨⎪⎧y =x 2,y =a 可得A (-a ,a ),B (a ,a ),S = (a -x 2)d x=⎝ ⎛⎭⎪⎫ax -13x 3|=2⎝ ⎛⎭⎪⎫a a -13a a =4a 323=823, 解得a =2. 答案:(1)-4 (2)2例6 解:(1)对f (x )求导得f ′(x )=e x·1+ax 2-2ax (1+ax 2)2.①当a =43时,若f ′(x )=0,则4x 2-8x +3=0, 解得x 1=32,x 2=12. 综合①,可知: ↗↘↗所以,x 1=32是极小值点,x 2=12是极大值点. (2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0, 知ax 2-2ax +1≥0在R 上恒成立, 因此Δ=4a 2-4a =4a (a -1)≤0, 由此并结合a >0,知0<a ≤1.变式训练 解析:显然函数f (x )的定义域为(0,+∞), y ′=4x -1x =4x 2-1x .由y ′>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞; 由y ′<0,得函数f (x )的单调递减区间为⎝⎛⎭⎪⎫0,12,由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎨⎧k -1<12<k +1,k -1≥0,解得1≤k <32. 答案:⎣⎢⎡⎭⎪⎫1,32。

导数及其应用试题及详细解答(基础)

导数及其应用试题及详细解答(基础)
x
当 x 1时, f x 0 ,即 f x 1 ln x 单调递减,
x
又函数 f x 1 ln x 在区间 a, a 2 上不是单调函数,
x
a 0 所以有 a 1 ,解得 0 a 1 .故选 C.
a 2 1
8.【答案】B
(2)求曲线 y = f (x) 过原点 O 的切线方程.
20.(12 分)已知函数 (1)当 时,求曲线 (2)求 的单调区间.
. 在点
处的切线方程;
18.(12 分)设函数 f (x) a ln x bx2 ,若函数 f (x) 的图象在点 (1, f (1)) 处与直线 y 1 x 相切. 2
可得切线斜率 k 3m2 3 ,
由点斜式方程可得切线方程为 y﹣m3+3m=(3m2-3)(x﹣m),
代入点 P(2, 6) ,可得﹣6﹣m3+3m=(3m2-3)(2﹣m),解得 m=0 或 m=3,
当 m=0 时,切线方程为 3x y 0 ; 当 m=3 时,切线方程为 24x y 54 0 ,故选 A.
x
x
若函数 f x 有两个不同的极值点,则 g x x2 2x a 在(0,+∞)由 2 个不同的实数根,
Δ 4 4a 0


x1

2

4
4a

,解得 0 0

a
1 ,故选
D.
2
6.【答案】A
【解析】设切点为(m,m3-3m), f (x) x3 3x 的导数为 f (x) 3x2 3 ,
,即
1 3 5 2a 8 12 5 3a 27 27 5 4a

专题04 导数及其应用(解答题)

专题04  导数及其应用(解答题)

专题04 导数及其应用(解答题)1.【2019年高考全国Ⅰ卷文数】已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围. 【答案】(1)见解析;(2)(],0a ∈-∞.【解析】(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=.当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈ ⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫⎪⎝⎭单调递减. 又π(0)0,0,(π)22g g g ⎛⎫=>=-⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =…,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x …. 又当0,[0,π]a x ∈…时,ax ≤0,故()f x ax …. 因此,a 的取值范围是(,0]-∞.【名师点睛】本题考查利用导数讨论函数零点个数、根据恒成立的不等式求解参数范围的问题.对于此类端点值恰为恒成立不等式取等的值的问题,通常采用构造函数的方式,将问题转变成函数最值与零之间的比较,进而通过导函数的正负来确定所构造函数的单调性,从而得到最值.2.【2019年高考全国Ⅱ卷文数】已知函数()(1)ln 1f x x x x =---.证明:(1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.【答案】(1)见解析;(2)见解析.【解析】(1)()f x 的定义域为(0,+∞).11()ln 1ln x f x x x x x-'=+-=-. 因为ln y x =单调递增,1y x=单调递减,所以()f x '单调递增,又(1)10f '=-<,1ln 41(2)ln 2022f -'=-=>,故存在唯一0(1,2)x ∈,使得()00f x '=.又当0x x <时,()0f x '<,()f x 单调递减;当0x x >时,()0f x '>,()f x 单调递增. 因此,()f x 存在唯一的极值点.(2)由(1)知()0(1)2f x f <=-,又()22e e 30f =->,所以()0f x =在()0,x +∞内存在唯一根x α=.由01x α>>得011x α<<.又1111()1ln 10f f αααααα⎛⎫⎛⎫=---==⎪ ⎪⎝⎭⎝⎭,故1α是()0f x =在()00,x 的唯一根. 综上,()0f x =有且仅有两个实根,且两个实根互为倒数.【名师点睛】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究函数的单调性、极值,以及函数零点的问题,属于常考题型.3.【2019年高考天津文数】设函数()ln (1)e x f x x a x =--,其中a ∈R .(Ⅰ)若a ≤0,讨论()f x 的单调性; (Ⅱ)若10ea <<, (i )证明()f x 恰有两个零点;(ii )设0x 为()f x 的极值点,1x 为()f x 的零点,且10x x >,证明0132x x ->. 【答案】(Ⅰ)()f x 在(0,)+∞内单调递增.;(Ⅱ)(i )见解析;(ii )见解析. 【解析】(Ⅰ)解:由已知,()f x 的定义域为(0,)+∞,且211e ()e (1)e x x xf ax x a a x x x-⎡⎤=-+-=⎣'⎦. 因此当a ≤0时,21e 0x ax ->,从而()0f x '>,所以()f x 在(0,)+∞内单调递增.(Ⅱ)证明:(i )由(Ⅰ)知21e ()xax f x x-'=.令2()1e x g x ax =-,由10e a <<, 可知()g x 在(0,)+∞内单调递减,又(1)1e 0g a =->,且221111ln 1ln 1ln 0g a a a a a ⎛⎫⎛⎫⎛⎫=-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故()0g x =在(0,)+∞内有唯一解,从而()0f x '=在(0,)+∞内有唯一解,不妨设为0x ,则011l n x a<<.当()00,x x ∈时,()0()()0g x g x f x x x'=>=,所以()f x 在()00,x 内单调递增;当()0,x x ∈+∞时,()0()()0g x g x f x x x'=<=,所以()f x 在()0,x +∞内单调递减,因此0x 是()f x 的唯一极值点.令()ln 1h x x x =-+,则当1x >时,1()10h'x x=-<,故()h x 在(1,)+∞内单调递减,从而当1x >时,()(1)0h x h <=,所以ln 1x x <-.从而ln 1111111ln ln ln ln 1e ln ln ln 1ln 0a f a h a a a a a a ⎛⎫⎛⎫⎛⎫=--=-+=< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又因为()0(1)0f x f >=,所以()f x 在0(,)x +∞内有唯一零点.又()f x 在()00,x 内有唯一零点1,从而,()f x 在(0,)+∞内恰有两个零点.(ii )由题意,()()010,0,f x f x '=⎧⎪⎨=⎪⎩即()012011e 1,ln e ,1x x ax x a x ⎧=⎪⎨=-⎪⎩从而1011201ln e x x x x x --=,即102011ln e 1x x x x x -=-.因为当1x >时,ln 1x x <-,又101x x >>,故()102012011e 1x x x x x x --<=-,两边取对数,得1020ln e ln x x x -<,于是()10002ln 21x x x x -<<-,整理得0132x x ->.【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法.考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力. 4.【2019年高考全国Ⅲ卷文数】已知函数32()22f x x ax =-+.(1)讨论()f x 的单调性;(2)当0<a <3时,记()f x 在区间[0,1]的最大值为M ,最小值为m ,求M m -的取值范围. 【答案】(1)见详解;(2)8[,2)27. 【解析】(1)2()622(3)f x x ax x x a '=-=-. 令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)当03a <<时,由(1)知,()f x 在0,3a ⎛⎫ ⎪⎝⎭单调递减,在,13a ⎛⎫ ⎪⎝⎭单调递增,所以()f x 在[0,1]的最小值为32327a a f ⎛⎫=-+ ⎪⎝⎭,最大值为(0)=2f 或(1)=4f a -.于是 3227a m =-+,4,02,2,2 3.a a M a -<<⎧=⎨≤<⎩所以332,02,27,2 3.27a a a M m a a ⎧-+<<⎪⎪-=⎨⎪≤<⎪⎩当02a <<时,可知3227a a -+单调递减,所以M m -的取值范围是8,227⎛⎫⎪⎝⎭. 当23a ≤<时,327a 单调递增,所以M m -的取值范围是8[,1)27.综上,M m -的取值范围是8[,2)27. 【名师点睛】这是一道常规的导数题目,难度比往年降低了不少.考查函数的单调性,最大值、最小值的计算.5.【2019年高考北京文数】已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程; (Ⅱ)当[2,4]x ∈-时,求证:6()x f x x -≤≤;(Ⅲ)设()|()()|()F x f x x a a =-+∈R ,记()F x 在区间[2,4]-上的最大值为M (a ),当M (a )最小时,求a 的值.【答案】(Ⅰ)y x =与6427y x =-;(Ⅱ)见解析;(Ⅲ)3a =-. 【解析】(Ⅰ)由321()4f x x x x =-+得23()214f x x x '=-+.令()1f x '=,即232114x x -+=,得0x =或83x =.又(0)0f =,88()327f =,所以曲线()y f x =的斜率为1的切线方程是y x =与88273y x -=-,即y x =与6427y x =-.(Ⅱ)令()(),[2,4]g x f x x x =-∈-.由321()4g x x x =-得23()24g'x x x =-. 令()0g'x =得0x =或83x =.(),()g'x g x 的情况如下:x2-(2,0)-8(0,)3 838(,4)34()g'x+-+()g x6-6427-所以()g x 的最小值为6-,最大值为0. 故6()0g x -≤≤,即6()x f x x -≤≤. (Ⅲ)由(Ⅱ)知,当3a <-时,()(0)|(0)|3M F g a a a ≥=-=->; 当3a >-时,()(2)|(2)|63M F a g a a ≥-=--=+>; 当3a =-时,()3M a =. 综上,当()M a 最小时,3a =-.【名师点睛】本题主要考查利用导函数研究函数的切线方程,利用导函数证明不等式的方法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.6.【2019年高考浙江】已知实数0a ≠,设函数()=ln 1,0.f x a x x x ++>(1)当34a =-时,求函数()f x 的单调区间; (2)对任意21[,)ex ∈+∞均有(),2x f x a ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)20,4⎛⎤⎥ ⎝⎦. 【解析】(1)当34a =-时,3()ln 1,04f x x x x =-++>. 31(12)(211)()42141x x f 'x x x x x+-++=-+=++, 所以,函数()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得204a <≤.当204a <≤时,()2x f x a ≤等价于2212ln 0x xx a a+--≥. 令1t a=,则22t ≥. 设2()212ln ,22g t t x t x x t =-+-≥,则211()(1)2ln xg t x t x x x+=-+--.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭时,1122x+≤,则 ()(22)84212ln g t g x x x ≥=-+-.记1()4221ln ,7p x x x x x =-+-≥,则 2212121()11x x x x p'x x x x x x +--+=--=++(1)[1(221)]1(1)(12)x x x x x x x x -++-=++++.故x171(,1)71(1,)+∞()p'x-0 +()p x1()7p 单调递减极小值(1)p单调递增所以,()(1)0p x p ≥=.因此,()(22)2()0g t g p x ≥=≥. (ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,12ln (1)()12x x x g t g x x ⎛⎫--++= ⎪ ⎪⎝⎭…. 令211()2ln (1),,e 7q x x x x x ⎡⎤=++∈⎢⎥⎣⎦ , 则ln 2()10x q'x x+=+>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫⎪⎝⎭….由(i )得,127127(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭. 所以,()<0q x .因此1()()102q x g t g x x⎛⎫+=-> ⎪ ⎪⎝⎭…. 由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,[22,),()0t g t ∈+∞…, 即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2x f x a …. 综上所述,所求a 的取值范围是20,4⎛⎤⎥ ⎝⎦.【名师点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.7.【2019年高考江苏】设函数()()()(),,,f x x a x b x c a b c =---∈R 、()f 'x 为f (x )的导函数. (1)若a =b =c ,f (4)=8,求a 的值;(2)若a ≠b ,b =c ,且f (x )和()f 'x 的零点均在集合{3,1,3}-中,求f (x )的极小值;(3)若0,01,1a b c =<=…,且f (x )的极大值为M ,求证:M ≤427. 【答案】(1)2a =;(2)见解析;(3)见解析.【解析】(1)因为a b c ==,所以3()()()()()f x x a x b x c x a =---=-. 因为(4)8f =,所以3(4)8a -=, 解得2a =. (2)因为b c =,所以2322()()()(2)(2)f x x a x b x a b x b a b x ab =--=-+++-, 从而2()3()3a b f 'x x b x +⎛⎫=--⎪⎝⎭.令()0f 'x =,得x b =或23a bx +=.因为2,,3a ba b +都在集合{3,1,3}-中,且a b ≠, 所以21,3,33a b a b +===-.此时2()(3)(3)f x x x =-+,()3(3)(1)f 'x x x =+-. 令()0f 'x =,得3x =-或1x =.列表如下:x (,3)-∞-3-(3,1)-1 (1,)+∞()f 'x + 0 – 0 + ()f x极大值极小值所以()f x 的极小值为2(1)(13)(13)32f =-+=-.(3)因为0,1a c ==,所以32()()(1)(1)f x x x b x x b x bx =--=-++,2()32(1)f 'x x b x b =-++.因为01b <≤,所以224(1)12(21)30b b b ∆=+-=-+>, 则()f 'x 有2个不同的零点,设为()1212,x x x x <.由()0f 'x =,得22121111,33b b b b b b x x +--+++-+==.列表如下:x 1(,)x -∞1x()12,x x2x2(,)x +∞()f 'x+ 0 – 0 + ()f x极大值极小值所以()f x 的极大值()1M f x =. 解法一:()321111(1)M f x x b x bx ==-++()221111211(1)[32(1)]3999b b x b b b x b x b x -+++⎛⎫=-++--+ ⎪⎝⎭()()23221(1)(1)2127927b b b b b b b --+++=++-+23(1)2(1)(1)2((1)1)272727b b b b b b +-+=-+-+(1)24272727b b +≤+≤.因此427M ≤. 解法二:因为01b <≤,所以1(0,1)x ∈.当(0,1)x ∈时,2()()(1)(1)f x x x b x x x =--≤-. 令2()(1),(0,1)g x x x x =-∈,则1()3(1)3g'x x x ⎛⎫=-- ⎪⎝⎭. 令()0g'x =,得13x =.列表如下: x 1(0,)3131(,1)3()g'x + 0 – ()g x极大值所以当13x =时,()g x 取得极大值,且是最大值,故max 14()327g x g ⎛⎫== ⎪⎝⎭.所以当(0,1)x ∈时,4()()27f x g x ≤≤,因此427M ≤. 【名师点睛】本题主要考查利用导数研究函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.8.【2018年高考全国Ⅲ卷文数】已知函数21()exax x f x +-=. (1)求曲线()y f x =在点(0,1)-处的切线方程; (2)证明:当1a ≥时,()e 0f x +≥. 【答案】(1)210x y --=;(2)见解析.【解析】(1)2(21)2()exax a x f x -+-+'=,(0)2f '=. 因此曲线()y f x =在点(0,1)-处的切线方程是210x y --=. (2)当1a ≥时,21()e (1e )e x x f x x x +-+≥+-+.令21()1ex g x x x +=+-+,则1()21ex g x x +'=++.当1x <-时,()0g x '<,()g x 单调递减;当1x >-时,()0g x '>,()g x 单调递增; 所以()g x (1)=0g ≥-.因此()e 0f x +≥.【名师点睛】本题考查函数与导数的综合应用,第一问由导数的几何意义可求出切线方程,第二问当1a ≥时,21()e (1e)e x x f x x x +-+≥+-+,令21()1e x g x x x +=+-+,求出()g x 的最小值即可证明.9.【2018年高考全国Ⅰ卷文数】已知函数()e ln 1xf x a x =--.(1)设2x =是()f x 的极值点,求a ,并求()f x 的单调区间; (2)证明:当1ea ≥时,()0f x ≥. 【答案】(1)在(0,2)单调递减,在(2,+∞)单调递增;(2)见解析.【解析】(1)f (x )的定义域为(0)+∞,,f ′(x )=a e x –1x. 由题设知,f ′(2)=0,所以a =212e. 从而f (x )=21e ln 12e x x --,f ′(x )=211e 2e x x-. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)单调递减,在(2,+∞)单调递增.(2)当a ≥1e 时,f (x )≥e ln 1exx --.设g (x )=e ln 1e x x --,则e 1()e x g x x'=-.当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0.所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当1ea ≥时,()0f x ≥.【名师点睛】该题考查的是有关导数的应用问题,涉及的知识点有导数与极值、导数与最值、导数与函数的单调性的关系以及证明不等式问题,在解题的过程中,首先要确定函数的定义域,之后根据导数与极值的关系求得参数值,之后利用极值的特点,确定出函数的单调区间,第二问在求解的时候构造新函数,应用不等式的传递性证得结果. 10.【2018年高考全国Ⅱ卷文数】已知函数()()32113f x x a x x =-++. (1)若3a =,求()f x 的单调区间;(2)证明:()f x 只有一个零点.【答案】(1)在(–∞,323-),(323+,+∞)单调递增,在(323-,323+)单调递减;(2)见解析.【解析】(1)当a =3时,f (x )=3213333x x x ---,f ′(x )=263x x --. 令f ′(x )=0解得x =323-或x =323+.当x ∈(–∞,323-)∪(323+,+∞)时,f ′(x )>0; 当x ∈(323-,323+)时,f ′(x )<0.故f (x )在(–∞,323-),(323+,+∞)单调递增,在(323-,323+)单调递减.(2)由于210x x ++>,所以()0f x =等价于32301x a x x -=++.设()g x =3231x a x x -++,则g ′(x )=2222(23)(1)x x x x x ++++≥0,仅当x =0时g ′(x )=0, 所以g (x )在(–∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a –1)=22111626()0366a a a -+-=---<, f (3a +1)=103>,故f (x )有一个零点. 综上,f (x )只有一个零点.【名师点睛】(1)用导数求函数单调区间的步骤如下:①确定函数的定义域;②求导数;③由(或)解出相应的的取值范围,当时,在相应区间上是增函数;当时,在相应区间上是减增函数.(2)本题第二问重在考查零点存在性问题,解题的关键在于将问题转化为求证函数有唯一零点,可先证明其单调,再结合零点存在性定理进行论证.11.【2018年高考北京文数】设函数2()[(31)32]e x f x ax a x a =-+++.(Ⅰ)若曲线()y f x =在点(2,(2))f 处的切线斜率为0,求a ; (Ⅱ)若()f x 在1x =处取得极小值,求a 的取值范围. 【答案】(Ⅰ)12a =;(Ⅱ)(1,)+∞. 【解析】(Ⅰ)因为2()[(31)32]e xf x ax a x a =-+++, 所以2()[(1)1]e xf x ax a x '=-++.2(2)(21)e f a '=-,由题设知(2)0f '=,即2(21)e 0a -=,解得12a =. (Ⅱ)方法一:由(Ⅰ)得2()[(1)1]e (1)(1)e xxf x ax a x ax x '=-++=--. 若a >1,则当1(,1)x a∈时,()0f x '<; 当(1,)x ∈+∞时,()0f x '>. 所以()f x 在x =1处取得极小值.若1a ≤,则当(0,1)x ∈时,110ax x -≤-<, 所以()0f x '>.所以1不是()f x 的极小值点. 综上可知,a 的取值范围是(1,)+∞.方法二:()(1)(1)e xf x ax x '=--.(1)当a =0时,令()0f x '=得x =1.(),()f x f x '随x 的变化情况如下表:x(,1)-∞1 (1,)+∞()f x ' + 0 − ()f x↗极大值↘∴()f x 在x =1处取得极大值,不合题意. (2)当a >0时,令()0f x '=得121,1ax x ==. ①当12x x =,即a =1时,2()(1)e 0xf x x '=-≥, ∴()f x 在R 上单调递增, ∴()f x 无极值,不合题意.②当12x x >,即0<a <1时,(),()f x f x '随x 的变化情况如下表:x(,1)-∞1 1(1,)a1a1(,)a+∞ ()f x '+ 0 − 0 + ()f x↗极大值↘极小值↗∴()f x 在x =1处取得极大值,不合题意.③当12x x <,即a >1时,(),()f x f x '随x 的变化情况如下表:x1(,)a-∞1a1(,1)a1(1,)+∞()f x ' + 0 − 0 + ()f x↗极大值↘极小值↗∴()f x 在x =1处取得极小值,即a >1满足题意. (3)当a <0时,令()0f x '=得121,1ax x ==. (),()f x f x '随x 的变化情况如下表:x1(,)a-∞1a1(,1)a1(1,)+∞()f x '− 0 + 0 − ()f x↘极小值↗极大值↘∴()f x 在x =1处取得极大值,不合题意. 综上所述,a 的取值范围为(1,)+∞.【名师点睛】导数类问题是高考数学中的必考题,也是压轴题,主要考查的形式有以下四个:①考查导数的几何意义,涉及求曲线切线方程的问题;②利用导数证明函数的单调性或求单调区间问题;③利用导数求函数的极值、最值问题;④关于不等式的恒成立问题.解题时需要注意以下两个方面:①在求切线方程问题时,注意区别在某一点和过某一点解题步骤的不同;②在研究单调性及极值、最值问题时常会涉及分类讨论的思想,要做到不重不漏;③不等式的恒成立问题属于高考中的难点,要注意问题转换的等价性.12.【2018年高考天津文数】设函数123()=()()()f x x t x t x t ---,其中123,,t t t ∈R ,且123,,t t t 是公差为d 的等差数列.(I )若20,1,t d ==求曲线()y f x =在点(0,(0))f 处的切线方程; (II )若3d =,求()f x 的极值;(III )若曲线()y f x =与直线2()63y x t =---有三个互异的公共点,求d 的取值范围. 【答案】(I )x +y =0;(II )函数f (x )的极大值为63;函数f (x )的极小值为−63;(III )d 的取值范围为(,10)(10,)-∞-+∞.【解析】(Ⅰ)解:由已知,可得f (x )=x (x −1)(x +1)=x 3−x ,故()f x '=3x 2−1, 因此f (0)=0,(0)f '=−1,又因为曲线y =f (x )在点(0,f (0))处的切线方程为y −f (0)=(0)f '(x −0), 故所求切线方程为x +y =0. (Ⅱ)解:由已知可得f (x )=(x −t 2+3)(x −t 2)(x −t 2−3)=(x −t 2)3−9(x −t 2)=x 3−3t 2x 2+(3t 22−9)x −t 23+9t 2.故()f x '=3x 2−6t 2x +3t 22−9.令()f x '=0,解得x =t 2−3,或x =t 2+3. 当x 变化时,()f x ',f (x )的变化如下表:x(−∞,t 2−3)t 2−3 (t 2−3,t 2+3)t 2+3 (t 2+3,+∞)()f x '+ 0 − 0 + f (x )↗极大值↘极小值↗所以函数f (x )的极大值为f (t 2−3)=(−3)3−9×(−3)=63;函数f (x )的极小值为f (t 2+3)=(3)3− 9×(3)=−63.(Ⅲ)解:曲线y =f (x )与直线y =−(x −t 2)−63有三个互异的公共点等价于关于x 的方程(x −t 2+d )(x −t 2)(x −t 2 −d )+(x −t 2)+ 63=0有三个互异的实数解,令u =x −t 2,可得u 3+(1−d 2)u +63=0.设函数g (x )=x 3+(1−d 2)x +63,则曲线y =f (x )与直线y =−(x −t 2)−63有三个互异的公共点等价于函数y =g (x )有三个零点.()g'x =3x 3+(1−d 2).当d 2≤1时,()g'x ≥0,这时()g x 在R 上单调递增,不合题意.当d 2>1时,()g'x =0,解得x 1=213d --,x 2=213d -.易得,g (x )在(−∞,x 1)上单调递增,在[x 1,x 2]上单调递减,在(x 2,+∞)上单调递增. g (x )的极大值g (x 1)=g (213d --)=32223(1)639d -+>0. g (x )的极小值g (x 2)=g (213d -)=−32223(1)639d -+. 若g (x 2)≥0,由g (x )的单调性可知函数y =g (x )至多有两个零点,不合题意.若2()0,g x <即322(1)27d ->,也就是||10d >,此时2||d x >,(||)||630,g d d =+>且312||,(2||)6||2||636210630d x g d d d -<-=--+<-+<,从而由()g x 的单调性,可知函数()y g x =在区间1122(2||,),(,),(,||)d x x x x d -内各有一个零点,符合题意.所以,d 的取值范围是(,10)(10,)-∞-+∞.【名师点睛】本小题主要考查导数的运算、导数的几何意义、运用导数研究函数的性质等基础知识和方法,考查函数思想和分类讨论思想,考查综合分析问题和解决问题的能力. 13.【2018年高考浙江】已知函数f (x )=x −ln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 【答案】(Ⅰ)见解析;(Ⅱ)见解析. 【解析】(Ⅰ)函数f (x )的导函数11()2f x xx '=-, 由12()()f x f x ''=得1212111122x x x x -=-, 因为12x x ≠,所以121112x x +=. 由基本不等式得4121212122x x x x x x =+≥. 因为12x x ≠,所以12256x x >. 由题意得12112212121()()ln ln ln()2f x f x x x x x x x x x +=-+-=-. 设1()ln 2g x x x =-, 则1()(4)4g x x x'=-, 所以x(0,16)16 (16,+∞)()g x ' −0 +()g x2−4ln2所以g (x )在[256,+∞)上单调递增, 故12()(256)88ln 2g x x g >=-, 即12()()88ln 2f x f x +>-. (Ⅱ)令m =()e a k -+,n =21()1a k++,则f (m )–km –a >|a |+k –k –a ≥0, f (n )–kn –a <1()a n k nn --≤||1()a n k n +-<0, 所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a ,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a 得ln x x a k x--=.设l (n )x ah xx x --=,则22ln )1)((12xx ag x x x a x h '=--+--+=, 其中2(n )l xg x x -=. 由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2, 故–g (x )–1+a ≤–g (16)–1+a =–3+4ln2+a ≤0,所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0至多1个实根. 综上,当a ≤3–4ln2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.【名师点睛】本题主要考查函数的单调性,导数的运算及其应用,同时考查逻辑思维能力和综合应用能力.14.【2018年高考江苏】某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1];(2)当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.【解析】(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=14,θ0∈(0,π6).当θ∈[θ0,π2]时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[14,1].答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ)平方米,sinθ的取值范围是[14,1].(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,π2 ].设f (θ)=sin θcos θ+cos θ,θ∈[θ0,π2], 则222()cos sin sin (2sin sin 1)(2sin 1)(sin 1)f θθθθθθθθ'=--=-+-=--+. 令()=0f θ',得θ=π6, 当θ∈(θ0,π6)时,()0f θ'>,所以f (θ)为增函数; 当θ∈(π6,π2)时,()0f θ'<,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 【名师点睛】本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.15.【2018年高考江苏】记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f xg x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”. (1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由. 【答案】(1)见解析;(2)e2;(3)见解析. 【解析】(1)函数f (x )=x ,g (x )=x 2+2x -2,则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )= g ′(x ),得222122x x x x ⎧=+-⎨=+⎩,此方程组无解, 因此,f (x )与g (x )不存在“S ”点.(2)函数21f x ax =-(),()ln g x x =, 则12f x ax g x x'='=(),(). 设x 0为f (x )与g (x )的“S ”点,由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得200001ln 12ax x ax x ⎧-=⎪⎨=⎪⎩,即200201ln 21ax x ax ⎧-=⎪⎨=⎪⎩,(*) 得01ln 2x =-,即120e x -=,则1221e 22(e )a -==. 当e2a =时,120e x -=满足方程组(*),即0x 为f (x )与g (x )的“S ”点.因此,a 的值为e 2. (3)对任意a >0,设32()3h x x x ax a =--+.因为(0)0(1)1320h a h a a =>=--+=-<,,且h (x )的图象是不间断的,所以存在0x ∈(0,1),使得0()0h x =.令03002e (1)x x b x =-,则b >0.函数2e ()()xb f x x a g x x=-+=,,则2e (1)()2()x b x f x x g x x-'=-=′,. 由f (x )=g (x )且f ′(x )=g ′(x ),得22e e (1)2xx b x a x b x x x ⎧-+=⎪⎪⎨-⎪-=⎪⎩,即00320030202e e (1)2e (1)2e (1)x x xx x x a x x x x x x x ⎧-+=⋅⎪-⎪⎨-⎪-=⋅⎪-⎩,(**) 此时,0x 满足方程组(**),即0x 是函数f (x )与g (x )在区间(0,1)内的一个“S 点”. 因此,对任意a >0,存在b >0,使函数f (x )与g (x )在区间(0,+∞)内存在“S 点”.【名师点睛】本小题主要考查利用导数研究初等函数的性质,考查综合运用数学思想方法分析与解决问题以及逻辑推理能力.16.【2017年高考全国Ⅰ卷文数】已知函数()f x =e x (e x −a )−a 2x .(1)讨论()f x 的单调性;(2)若()0f x ≥,求a 的取值范围.【答案】(1)当0a =时,)(x f 在(,)-∞+∞单调递增;当0a >时,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;当0a <时,()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增;(2)34[2e ,1]-.【解析】(1)函数()f x 的定义域为(,)-∞+∞,22()2e e (2e )(e )xx x x f x a a a a '=--=+-,①若0a =,则2()e xf x =,在(,)-∞+∞单调递增. ②若0a >,则由()0f x '=得ln x a =.当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,故()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.③若0a <,则由()0f x '=得ln()2a x =-.当(,ln())2a x ∈-∞-时,()0f x '<;当(ln(),)2a x ∈-+∞时,()0f x '>,故()f x 在(,ln())2a -∞-单调递减,在(ln(),)2a-+∞单调递增.(2)①若0a =,则2()e xf x =,所以()0f x ≥.②若0a >,则由(1)得,当ln x a =时,()f x 取得最小值,最小值为2(ln )ln f a a a =-.从而当且仅当2ln 0a a -≥,即1a ≤时,()0f x ≥.③若0a <,则由(1)得,当ln()2a x =-时,()f x 取得最小值,最小值为23(ln())[ln()]242a a f a -=--.从而当且仅当23[ln()]042aa --≥,即342e a ≥-时()0f x ≥.综上,a 的取值范围为34[2e ,1]-.【名师点睛】本题主要考查导数两大方面的应用:(1)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f x ',由()f x '的正负,得出函数()f x 的单调区间;(2)函数的最值(极值)的求法:由确认的单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.17.【2017年高考全国Ⅱ卷文数】设函数2()(1)e x f x x =-.(1)讨论()f x 的单调性;(2)当0x ≥时,()1f x ax ≤+,求a 的取值范围.【答案】(1)在(,12)-∞--和(12,)-++∞单调递减,在(12,12)---+单调递增;(2)[1,)+∞. 【解析】(1)2()(12)e xf x x x '=--.令()0f x '=得121+2x x =--=-,.当(,12)x ∈-∞--时,()0f x '<;当(12,12)x ∈---+时,()0f x '>;当(12,)x ∈-++∞时,()0f x '<.所以()f x 在(,12)-∞--和(12,)-++∞单调递减,在(12,12)---+单调递增.(2)()(1+)(1)e x f x x x =-.当a ≥1时,设函数h (x )=(1−x )e x ,h ′(x )= −x e x<0(x >0),因此h (x )在[0,+∞)单调递减,而h (0)=1, 故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x −x −1,g ′(x )=e x−1>0(x >0),所以g (x )在[0,+∞)单调递增,而g (0)=0,故e x≥x +1.当0<x <1时,2()(1)(1)f x x x >-+,22(1)(1)1(1)x x ax x a x x -+--=---,取05412a x --=,则2000000(0,1),(1)(1)10,()1x x x ax f x ax ∈-+--=>+故.当0a ≤时,取051,2x -=则0(0,1),x ∈20000()(1)(1)11f x x x ax >-+=>+. 综上,a 的取值范围是[1,+∞).【名师点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.18.【2017年高考全国Ⅲ卷文数】已知函数()2(1)ln 2x ax a x f x =+++.(1)讨论()f x 的单调性; (2)当a ﹤0时,证明3()24f x a≤--.【答案】(1)当0≥a 时,)(x f 在),0(+∞单调递增;当0<a 时,)(x f 在)21,0(a-单调递增,在),21(+∞-a单调递减;(2)详见解析 【解析】(1)()f x 的定义域为(0,+),()()1211()221x a x f x a x a x x++'=+++=.若0a ≥,则当(0)x ∈+∞,时,()0f x '>,故()f x 在(0,+)单调递增. 若0a <,则当1(0,)2x a ∈-时,()0f x '>;当1()2x a ∈-+∞,时,()0f x '<.故()f x 在1(0,)2a-单调递增,在1()2a-+∞,单调递减. (2)由(1)知,当0a <时,()f x 在12x a=-取得最大值,最大值为 111()ln()1224f a a a-=---. 所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11ln()1022a a-++≤. 设()ln 1g x x x =-+,则1()1g x x '=-.当(0,1)x ∈时,()0g x '>;当x ∈(1,+)时,()0g x '<.所以()g x 在(0,1)单调递增,在(1,+)单调递减.故当x =1时()g x 取得最大值,最大值为g (1)=0.所以当x >0时,()0g x ≤.从而当a <0时,11ln()1022a a -++≤,即3()24f x a≤--. 【名师点睛】利用导数证明不等式的常见类型及解题策略:(1)构造差函数()()()h x f x g x =-.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.19.【2017年高考浙江】已知函数f (x )=(x –21x -)e x -(12x ≥). (1)求f (x )的导函数;(2)求f (x )在区间1[+)2∞,上的取值范围.【答案】(1)(1)(212)e 1()()221x x x f x x x ----'=>-;(2)121[0,e ]2-.【解析】(1)因为1(21)121x x 'x --=--,(e )e x x'--=-, 所以1()(1)e (21)e 21x xf x x x x --'=-----(1)(212)e 1()221x x x x x ----=>-.(2)由(1)(212)e ()021x x x f x x ----'==-,解得1x =或52x =.因为x12(12,1) 1 (1,52) 52(52,+∞) ()f x '–0 +–f (x )121e 2-521e 2-又21()(211)e 02x f x x -=--≥, 所以f (x )在区间1[,)2+∞上的取值范围是121[0,e ]2-.【名师点睛】本题主要考查导数两大方面的应用:(一)函数单调性的讨论:运用导数知识来讨论函数单调性时,首先考虑函数的定义域,再求出()f'x ,由()f'x 的正负,得出函数()f x 的单调区间;(二)函数的最值(极值)的求法:由单调区间,结合极值点的定义及自变量的取值范围,得出函数()f x 的极值或最值.20.【2017年高考北京文数】已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值. 【答案】(Ⅰ)1y =;(Ⅱ)最大值为1;最小值为π2-. 【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=.又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.(Ⅱ)设()e (cos sin )1xh x x x =--,则()e (cos sin sin cos )2e sin xxh x x x x x x '=---=-.当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点的是需要两次求导数,因为通过()f x '不能直接判断函数的单调性,所以需要再求一次导数,设()()h x f x '=,再求()h x ',一般这时就可求得函数()h x '的零点,或是()0h x '>(()0h x '<)恒成立,这样就能知道函数()h x 的单调性,再根据单调性求其最值,从而判断()y f x =的单调性,最后求得结果. 21.【2017年高考天津文数】设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =.(Ⅰ)求()f x 的单调区间;(Ⅱ)已知函数()y g x =和e x y =的图象在公共点(x 0,y 0)处有相同的切线,(i )求证:()f x 在0x x =处的导数等于0;(ii )若关于x 的不等式()e x g x ≤在区间00[1,1]x x -+上恒成立,求b 的取值范围.【答案】(Ⅰ)递增区间为(,)a -∞,(4,)a -+∞,递减区间为(),4a a -;(Ⅱ)(ⅰ)见解析,(ⅱ)[7],1-.【解析】(Ⅰ)由324()63()f x x a x x a b =--+-,可得2()3123()3()((44))f 'x x a x a a x x a -=---=--,令()0f 'x =,解得x a =或4x a =-.由||1a ≤,得4a a <-. 当x 变化时,()f 'x ,()f x 的变化情况如下表:x (,)a -∞ (),4a a - (4,)a -+∞()f 'x+-+()f x所以,()f x 的单调递增区间为(,)a -∞,(4,)a -+∞,单调递减区间为(),4a a -.(Ⅱ)(i )因为()e (()())xx x g'f f 'x =+,由题意知000()e ()e x x x x g g'⎧=⎪⎨=⎪⎩, 所以000000()e e e (()())ex x xx f f f x 'x x ⎧=⎪⎨+=⎪⎩,解得00()1()0f 'x x f =⎧⎨=⎩. 所以,()f x 在0x x =处的导数等于0.(ii )因为()e xg x ≤,00[11],x x x ∈-+,由e 0x >,可得()1f x ≤.又因为0()1f x =,0()0f 'x =,故0x 为()f x 的极大值点,由(Ⅰ)知0x a =. 另一方面,由于||1a ≤,故14a a +<-,由(Ⅰ)知()f x 在(,)1a a -内单调递增,在(),1a a +内单调递减, 故当0x a =时,()()1f f x a ≤=在[1,1]a a -+上恒成立,从而()e xg x ≤在00,[11]x x -+上恒成立.由32()63()14a a f a a a a b =---+=,得32261b a a =-+,11a -≤≤.令32()261t x x x =-+,[1,1]x ∈-,所以2()612t'x x x =-,令()0t'x =,解得2x =(舍去),或0x =. 因为(1)7t -=-,(1)3t =-,(0)1t =, 故()t x 的值域为[7],1-. 所以,b 的取值范围是[7],1-.【名师点睛】本题考查导数的应用,属于中档问题,第一问的关键是根据条件判断两个极值点的大小,从而避免讨论;第二问要注意切点是公共点,切点处的导数相等,求b 的取值范围的关键是得出0x a =,然后构造函数进行求解.22.【2017年高考山东文数】已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(Ⅱ)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ)390x y --=,(Ⅱ)见解析.【解析】(Ⅰ)由题意2()f x x ax '=-,所以,当2a =时,(3)0f =,2()2f x x x '=-, 所以(3)3f '=,因此,曲线()y f x =在点(3,(3))f 处的切线方程是3(3)y x =-, 即390x y --=.(Ⅱ)因为()()()cos sin g x f x x a x x =+--, 所以()()cos ()sin cos g x f x x x a x x ''=+---,()()sin x x a x a x =--- ()(sin )x a x x =--,令()sin h x x x =-, 则()1cos 0h x x '=-≥, 所以()h x 在R 上单调递增, 因为(0)0h =,所以,当0x >时,()0h x >;当0x <时,()0h x <. (1)当0a <时,()()(sin )g x x a x x '=--,当(,)x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(,0)x a ∈时,0x a ->,()0g x '<,()g x 单调递减; 当(0,)x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当x a =时()g x 取到极大值,极大值是31()sin 6g a a a =--,当0x =时()g x 取到极小值,极小值是(0)g a =-. (2)当0a =时,()(sin )g x x x x '=-, 当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以()g x 在(,)-∞+∞上单调递增,()g x 无极大值也无极小值. (3)当0a >时,()()(sin )g x x a x x '=--,当(,0)x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增; 当(0,)x a ∈时,0x a -<,()0g x '<,()g x 单调递减; 当(,)x a ∈+∞时,0x a ->,()0g x '>,()g x 单调递增. 所以当0x =时()g x 取到极大值,极大值是(0)g a =-; 当x a =时()g x 取到极小值,极小值是31()sin 6g a a a =--. 综上所述:当0a <时,函数()g x 在(,)a -∞和(0,)+∞上单调递增,在(,0)a 上单调递减,函数既有极大值,又有极小值,极大值是31()sin 6g a a a =--,极小值是(0)g a =-; 当0a =时,函数()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(,0)-∞和(,)a +∞上单调递增,在(0,)a 上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--. 【名师点睛】(1)求函数f (x )极值的步骤:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.23.【2017年高考江苏】已知函数32()1(0,)f x x ax bx a b =+++>∈R 有极值,且导函数()'f x 的极值点是()f x 的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b 关于a 的函数关系式,并写出定义域; (2)证明:23>b a ;(3)若()f x ,()'f x 这两个函数的所有极值之和不小于72-,求a 的取值范围.。

函数求导练习题(含解析)

函数求导练习题(含解析)

一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=,C为常数;(2)(xα)′=,α为常数;(3)(a x)′=,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=;(6)(cos x)′=.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).4.求下列函数的导数:(1)y=ln(2x+1);(2).5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.6.求下列函数的导数.(Ⅰ);(Ⅱ).7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).9.求下列函数的导数:(1);(2).10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).11.求下列函数的导数.(1);(2).12.求下列函数的导数:(1)y=;(2)y=.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2)解析一.解答题(共15小题)1.请默写基础初等函数的导数公式:(1)(C)′=0,C为常数;(2)(xα)′=αxα﹣1,α为常数;(3)(a x)′=a x lna,a为常数,a>0且a≠1;(4)(log a x)′=,a为常数,a>0且a≠1;(5)(sin x)′=cos x;(6)(cos x)′=﹣sin x.分析:根据初等函数的导数公式,直接求解即可.解答:解:(1)(C)′=0,(2)(xα)′=αxα﹣1,(3)(a x)′=a x lna,(4)(log a x)′=,(5)(sin x)′=cos x,(6)(cos x)′=﹣sin x.故答案为:(1)0;(2)αxα﹣1;(3)a x lna;(4);(5)cos x;(6)﹣sin x.点评:本题主要考查初等函数的导数公式,比较基础.2.求下列函数的导数(1)y=x2﹣7x+6;(2)y=x+2sin x,x∈(0,2π).分析:利用导数的运算性质逐个化简即可求解.解答:解:(1)由已知可得y′=2x﹣7;(2)由已知可得y′=1+2cos x.点评:本题考查了导数的运算性质,属于基础题.3.求下列函数的导数:(1)f(x)=3x4+sin x;(2).分析:(1)(2)由基本初等函数的导数公式及导数加减、乘法法则求导函数即可.解答:解:(1)f(x)=3x4+sin x则f′(x)=12x3+cos x;(2),则f′(x)=+﹣2e2x﹣1.点评:本题主要考查导数的基本运算,比较基础.4.求下列函数的导数:(1)y=ln(2x+1);(2).分析:根据导数的公式即可得到结论.解答:解:(1)∵y=ln(2x+1),∴y′=×2=,(2)∵,∴y′=﹣sin(﹣2x)×(﹣2)=2sin(﹣2x)=﹣2sin(2x﹣).点评:本题主要考查导数的基本运算,比较基础.5.求下列函数的导数:(1);(2)g(x)=(8﹣3x)7;(3)p(x)=5cos(2x﹣3);(4)w(x)=ln(5x+6)2.分析:根据复合函数的求导法则、基本初等函数的求导公式求导计算即可.解答:解:(1)∵,∴.(2)∵g(x)=(8﹣3x)7,∴g'(x)=7(8﹣3x)6⋅(8﹣3x)'=﹣21(8﹣3x)6.(3)∵p(x)=5cos(2x﹣3),∴p'(x)=﹣5sin(2x﹣3)⋅(2x﹣3)'=﹣10sin(2x﹣3).(4)∵w(x)=ln(5x+6)2,∴点评:本题考查导数的计算,注意复合函数的导数计算,属于基础题.(Ⅰ);(Ⅱ).分析:根据导数的公式即可得到结论.解答:解:(Ⅰ)=.(Ⅱ).点评:本题主要考查导数的基本运算,比较基础.7.求下列函数的导数.(1)f(x)=sin x cos x;(2)y=.分析:利用导数的运算性质化简即可求解.解答:解:(1)因为f(x)=sin x cos x=sin2x,所以f′(x)=cos2x×=cos2x,(2)∵y=,∴y′==.点评:本题考查了导数的运算性质,考查了学生的运算求解能力,属于基础题.8.求下列函数的导数.(1)y=;(2)y=(2x2+3)(3x﹣2).分析:根据导数的公式,即可依次求解.解答:解:(1)y'==.(2)因为y=(2x2+3)(3x﹣2)=6x3﹣4x2+9x﹣6,所以y′=18x2﹣8x+9.点评:本题主要考查导数的运算,属于基础题.(1);(2).分析:(1)先展开f(x),然后求导即可;(2)根据基本初等函数和商的导数的求导公式求导即可.解答:解:(1),;(2).点评:本题考查了基本初等函数和商的导数的求导公式,考查了计算能力,属于基础题.10.求下列函数的导数:(1)S(t)=;(2)h(x)=(2x2+3)(3x﹣2).分析:结合基本初等函数的求导公式及求导法则求解即可.解答:解:(1)S(t)==t+,所以S′(t)=1﹣;(2)h(x)=(2x2+3)(3x﹣2),所以h′(x)=4x(3x﹣2)+3(2x2+3)=18x2﹣8x+9.点评:本题主要考查了基本初等函数的求导公式及求导法则,属于基础题.11.求下列函数的导数.(1);(2).分析:利用复合函数的导函数的求法,结合导数的运算求解即可.解答:解:(1),所以;(2)所以.点评:本题考查了导函数的求法,重点考查了导数的运算,属基础题.12.求下列函数的导数:(1)y=;(2)y=.分析:直接利用基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算求解即可.解答:解:(1)令t=1﹣2x2,则,所以;(2).点评:本题考查了导数的运算,解题的关键是掌握基本初等函数的导数公式,复合函数的导数公式以及导数的四则运算,考查了运算能力,属于基础题.13.求下列函数的导数:(1)y=sin x+lnx;(2)y=cos x+x;(3)y=x sin x;(4);(5)y=3x2+x cos x;(6).分析:由已知结合函数的求导公式即可求解.解答:解:(1)y′=cos x+;(2)y′=﹣sin x+1;(3)y′=sin x+x cos x;(4)y′==;(5)y′=6x+cos x﹣x sin x;(6)y′==﹣.点评:本题主要考查了函数的求导公式的应用,属于基础题.14.求下列函数的导数.(1)y=x3﹣2x+3;(2)y=x sin(2x+5).分析:根据基本初等函数和复合函数的求导公式求导即可.解答:解:(1)y′=3x2﹣2;(2)y′=sin(2x+5)+2x cos(2x+5).点评:本题考查了基本初等函数和复合函数的求导公式,考查了计算能力,属于基础题.15.求下列函数的导数:(1)y=(x2+3x+3)e x+1;(2).分析:利用导数的运算法则以及常见函数的导数进行求解即可.解答:解:(1)因为y=(x2+3x+3)e x+1,所以y'=[(x2+3x+3)e x+1]'=(x2+3x+3+2x+3)e x+1=(x2+5x+6)e x+1=(x+2)(x+3)e x+1;(2)因为,所以.点评:本题考查了导数的运算,主要考查了导数的运算法则以及常见函数的导数公式,考查了化简运算能力,属于基础题.。

导数练习题及答案

导数练习题及答案

导数练习题及答案导数练习题及答案导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。

以下是导数练习题及答案,欢迎阅读。

一、选择题1.函数在某一点的导数是( )A.在该点的函数值的增量与自变量的增量的比B.一个函数C.一个常数,不是变数D.函数在这一点到它附近一点之间的平均变化率[答案] C[解析] 由定义,f′(x0)是当Δx无限趋近于0时,ΔyΔx无限趋近的常数,故应选C.2.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为( )A.6 B.18C.54 D.81[答案] B[解析] ∵s(t)=3t2,t0=3,∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-332=18Δt+3(Δt)2∴ΔsΔt=18+3Δt.当Δt→0时,ΔsΔt→18,故应选B.3.y=x2在x=1处的导数为( )A.2x B.2C.2+Δx D.1[答案] B[解析] ∵f(x)=x2,x=1,∴Δy=f(1+Δx)2-f(1)=(1+Δx)2-1=2Δx+(Δx)2∴ΔyΔx=2+Δx当Δx→0时,ΔyΔx→2∴f′(1)=2,故应选B.4.一质点做直线运动,若它所经过的路程与时间的关系为s(t)=4t2-3(s(t)的单位:m,t的单位:s),则t=5时的`瞬时速度为( ) A.37 B.38C.39 D.40[答案] D[解析] ∵ΔsΔt=4(5+Δt)2-3-4×52+3Δt=40+4Δt,∴s′(5)=limΔt→0 ΔsΔt=limΔt→0 (40+4Δt)=40.故应选D.5.已知函数y=f(x),那么下列说法错误的是( )A.Δy=f(x0+Δx)-f(x0)叫做函数值的增量B.ΔyΔx=f(x0+Δx)-f(x0)Δx叫做函数在x0到x0+Δx之间的平均变化率C.f(x)在x0处的导数记为y′D.f(x)在x0处的导数记为f′(x0)[答案] C[解析] 由导数的定义可知C错误.故应选C.6.函数f(x)在x=x0处的导数可表示为y′|x=x0,即( )A.f′(x0)=f(x0+Δx)-f(x0)B.f′(x0)=limΔx→0[f(x0+Δx)-f(x0)]C.f′(x0)=f(x0+Δx)-f(x0)ΔxD.f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx[答案] D[解析] 由导数的定义知D正确.故应选D.7.函数y=ax2+bx+c(a≠0,a,b,c为常数)在x=2时的瞬时变化率等于( )A.4a B.2a+bC.b D.4a+b[答案] D[解析] ∵ΔyΔx=a(2+Δx)2+b(2+Δx)+c-4a-2b-cΔx=4a+b+aΔx,∴y′|x=2=limΔx→0 ΔyΔx=limΔx→0 (4a+b+aΔx)=4a+b.故应选D.8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( ) A.圆 B.抛物线C.椭圆 D.直线[答案] D[解析] 当f(x)=b时,f′(x)=0,所以f(x)的图象为一条直线,故应选D.9.一物体作直线运动,其位移s与时间t的关系是s=3t-t2,则物体的初速度为( )A.0 B.3C.-2 D.3-2t[答案] B[解析] ∵ΔsΔt=3(0+Δt)-(0+Δt)2Δt=3-Δt,∴s′(0)=limΔt→0 ΔsΔt=3.故应选B.10.设f(x)=1x,则limx→a f(x)-f(a)x-a等于( )A.-1a B.2aC.-1a2 D.1a2[答案] C[解析] limx→a f(x)-f(a)x-a=limx→a 1x-1ax-a=limx→a a-x(x-a)xa=-limx→a 1ax=-1a2.二、填空题11.已知函数y=f(x)在x=x0处的导数为11,则limΔx→0f(x0-Δx)-f(x0)Δx=________;limx→x0 f(x)-f(x0)2(x0-x)=________.[答案] -11,-112[解析] limΔx→0 f(x0-Δx)-f(x0)Δx=-limΔx→0 f(x0-Δx)-f(x0)-Δx=-f′(x0)=-11;limx→x0 f(x)-f(x0)2(x0-x)=-12limΔx→0 f(x0+Δx)-f(x0)Δx=-12f′(x0)=-112.12.函数y=x+1x在x=1处的导数是________.[答案] 0[解析] ∵Δy=1+Δx+11+Δx-1+11=Δx-1+1Δx+1=(Δx)2Δx+1,∴ΔyΔx=ΔxΔx+1.∴y′|x=1=limΔx→0 ΔxΔx+1=0.13.已知函数f(x)=ax+4,若f′(2)=2,则a等于______.[答案] 2[解析] ∵ΔyΔx=a(2+Δx)+4-2a-4Δx=a,∴f′(1)=limΔx→0 ΔyΔx=a.∴a=2.14.已知f′(x0)=limx→x0 f(x)-f(x0)x-x0,f(3)=2,f′(3)=-2,则limx→3 2x-3f(x)x-3的值是________.[答案] 8[解析] limx→3 2x-3f(x)x-3=limx→3 2x-3f(x)+3f(3)-3f(3)x-3=limx→3 2x-3f(3)x-3+limx→3 3(f(3)-f(x))x-3.由于f(3)=2,上式可化为limx→3 2(x-3)x-3-3limx→3 f(x)-f(3)x-3=2-3×(-2)=8.三、解答题15.设f(x)=x2,求f′(x0),f′(-1),f′(2).[解析] 由导数定义有f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx=limΔx→0 (x0+Δx)2-x20Δx=limΔx→0 Δx(2x0+Δx)Δx=2x0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求枪弹射出枪口时的瞬时速度.[解析] 位移公式为s=12at2∵Δs=12a(t0+Δt)2-12at20=at0Δt+12a(Δt)2∴ΔsΔt=at0+12aΔt,∴limΔt→0 ΔsΔt=limΔt→0 at0+12aΔt=at0,已知a=5.0×105m/s2,t0=1.6×10-3s,∴at0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y=f(x)=x2+3的图象上取一点P(1,4)及附近一点(1+Δx,4+Δy),求(1)ΔyΔx (2)f′(1).[解析] (1)ΔyΔx=f(1+Δx)-f(1)Δx=(1+Δx)2+3-12-3Δx=2+Δx.(2)f′(1)=limΔx→0 f(1+Δx)-f(1)Δx=limΔx→0 (2+Δx)=2.18.函数f(x)=|x|(1+x)在点x0=0处是否有导数?若有,求出来,若没有,说明理由.[解析] f(x)=x+x2 (x≥0)-x-x2 (x<0)Δy=f(0+Δx)-f(0)=f(Δx)=Δx+(Δx)2 (Δx>0)-Δx-(Δx)2 (Δx<0)∴limx→0+ΔyΔx=limΔx→0+ (1+Δx)=1,limΔx→0-ΔyΔx=limΔx→0- (-1-Δx)=-1,∵limΔx→0-ΔyΔx≠limΔx→0+ΔyΔx,∴Δx→0时,ΔyΔx无极限.∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可导.(x→0+表示x从大于0的一边无限趋近于0,即x>0且x趋近于0)。

导数考试题型及答案详解

导数考试题型及答案详解

导数考试题型及答案详解一、选择题1. 函数f(x) = x^2 + 3x + 2的导数是:A. 2x + 3B. x^2 + 2C. 2x + 6D. 3x + 2答案:A2. 若f(x) = sin(x),则f'(π/4)的值是:A. 1B. √2/2C. -1D. -√2/2答案:B二、填空题1. 求函数g(x) = x^3 - 2x^2 + x的导数,g'(x) = __________。

答案:3x^2 - 4x + 12. 若h(x) = cos(x),求h'(x) = __________。

答案:-sin(x)三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x + 2的导数,并求f'(2)的值。

解:首先求导数f'(x) = 3x^2 - 12x + 9。

然后将x = 2代入得到f'(2) = 3 * 2^2 - 12 * 2 + 9 = 12 - 24 + 9 = -3。

2. 已知函数y = ln(x),求y'。

解:根据对数函数的导数公式,y' = 1/x。

四、证明题1. 证明:若函数f(x) = x^n,其中n为常数,则f'(x) = nx^(n-1)。

证明:根据幂函数的导数公式,对于任意实数n,有f'(x) = n * x^(n-1)。

五、应用题1. 某物体的位移函数为s(t) = t^3 - 6t^2 + 9t + 5,求该物体在t = 3时的瞬时速度。

解:首先求位移函数的导数s'(t) = 3t^2 - 12t + 9。

然后将t = 3代入得到s'(3) = 3 * 3^2 - 12 * 3 + 9 = 27 - 36 + 9 = 0。

因此,该物体在t = 3时的瞬时速度为0。

六、综合题1. 已知函数f(x) = x^4 - 4x^3 + 6x^2 - 4x + 5,求f'(x),并求曲线y = f(x)在点(1, f(1))处的切线斜率。

专题21 导数及其应用(解答题)-备战2022年高考数学(理)母题题源解密(全国甲卷)(原卷版)

专题21 导数及其应用(解答题)-备战2022年高考数学(理)母题题源解密(全国甲卷)(原卷版)

专题21 导数及其应用(解答题)1.已知0a >且1a ≠,函数()(0)ax x f x x a =>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围. 【试题来源】2021年全国高考甲卷(理)【答案】(1)20,ln2⎛⎤⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减;(2)()()1,,e e ⋃+∞. 【分析】(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性; (2)利用指数对数的运算法则,可以将曲线()y f x =与直线1y =有且仅有两个交点等价转化为方程ln ln x ax a =有两个不同的实数根,即曲线()y g x =与直线ln a y a=有两个交点,利用导函数研究()g x 的单调性,并结合()g x 的正负,零点和极限值分析()g x 的图象,进而得到ln 10a a e<<,发现这正好是()()0g a g e <<,然后根据()g x 的图象和单调性得到a 的取值范围.【解析】(1)当2a =时,()()()()22222ln 2222ln 2,242xx x x x x x x x x x f x f x ⋅-⋅-⋅===', 令()'0f x =得2ln 2x =,当20ln 2x <<时,()0f x '>,当2ln 2x >时,()0f x '<, 所以函数()f x 在20,ln2⎛⎤⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减; (2)()ln ln 1ln ln a x a x x x af x a x x a a x a x a==⇔=⇔=⇔=,设函数()ln x g x x =, 则()21ln xg x x -'=,令()0g x '=,得x e =, 在()0,e 内()0g x '>,()g x 单调递增;在(),e +∞上()0g x '<,()g x 单调递减;()()1max g x g e e∴==, 又()10g =,当x 趋近于+∞时,()g x 趋近于0,所以曲线()y f x =与直线1y =有且仅有两个交点, 即曲线()y g x =与直线ln a y a =有两个交点的充分必要条件是ln 10a a e<<,这即是()()0g a g e <<, 所以a 的取值范围是()()1,,e e +∞.【名师点睛】本题考查利用导数研究函数的单调性,根据曲线和直线的交点个数求参数的取值范围问题,属较难试题,关键是将问题进行等价转化,分离参数,构造函数,利用导数研究函数的单调性和最值,图象,利用数形结合思想求解.1.【2020年高考全国Ⅰ卷理数】已知函数2()e x f x ax x =+-.(1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 2.【2020年高考全国Ⅰ卷理数】已知函数2() sin sin2f x x x =.(1)讨论f (x )在区间(0,π)的单调性; (2)证明:33()8f x ≤; (3)设*n ∈N ,证明:2222sin sin 2sin 4sin 234nn nx x xx ≤.3.【2020年高考全国Ⅰ卷理数】设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直.(1)求B .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 4.【2019年高考全国Ⅰ卷理数】已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点; (2)()f x 有且仅有2个零点.5.【2019年高考全国Ⅱ卷理数】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e xy =的切线.6.【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+.(1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.1.从全国看,高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一般有三个层次:(1)主要考查求导公式,求导法则与导数的几何意义; (2)导数的简单应用,包括求函数的单调区间、极值、最值等;(3)综合考查,如零点、证明不等式、恒成立问题、求参数等,包括解决应用问题,将导数内容和传统内容中有关不等式、数列及函数单调性有机结合,设计综合题.2.利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式()0f x '>(()0f x '<)在给定区间上恒成立.一般步骤为: (1)求f ′(x );(2)确认f ′(x )在(a ,b )内的符号;(3)作出结论,()0f x '>时为增函数,()0f x '<时为减函数.注意:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论. 3.由函数()f x 的单调性求参数的取值范围的方法(1)可导函数在某一区间上单调,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()f x '在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而得参数的取值范围; (2)可导函数在某一区间上存在单调区间,实际上就是()0f x '>(或()0f x '<)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;(3)若已知()f x 在区间I 上的单调性,区间I 中含有参数时,可先求出()f x 的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围. 4.函数极值问题的常见类型及解题策略(1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号. (2)求函数()f x 极值的方法: ①确定函数()f x 的定义域. ②求导函数()f x '. ③求方程()0f x '=的根.④检查()f x '在方程的根的左、右两侧的符号,确定极值点.如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值;如果()f x '在这个根的左、右两侧符号不变,则()f x 在这个根处没有极值.(3)利用极值求参数的取值范围:确定函数的定义域,求导数()f x ',求方程()0f x '=的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围. 5.求函数f (x )在[a ,b ]上最值的方法(1)若函数f (x )在[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值.(2)若函数f (x )在区间(a ,b )内有极值,先求出函数f (x )在区间(a ,b )上的极值,与f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.(3)函数f (x )在区间(a ,b )上有唯一一个极值点时,这个极值点就是最大(或最小)值点. 注意:(1)若函数中含有参数时,要注意分类讨论思想的应用.(2)极值是函数的“局部概念”,最值是函数的“整体概念”,函数的极值不一定是最值,函数的最值也不一定是极值.要注意利用函数的单调性及函数图象直观研究确定. 6.利用导数解决不等式恒成立问题的“两种”常用方法:(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,()f x a ≥恒成立,只需min ()f x a ≥即可;()f x a ≤恒成立,只需max ()f x a ≤即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.7.利用导数解决函数的零点问题时,一般先由零点的存在性定理说明在所求区间内至少有一个零点,再利用导数判断在所给区间内的单调性,由此求解.1.已知函数321()23f x ax x x =+-+,其中a R ∈.(1)若函数()f x 恰好有三个单调区间,求实数a 的取值范围;(2)已知函数()f x 的图象经过点()1,3,且[2,2]x ∈-,求()f x 的最大值.2.已知函数()()ln 1xf x e ax =+-.(1)若函数()y f x =在点()()0,0f 处切线的斜率为0,求a 的值; (2)在第(1)问的前提下,讨论函数()y f x =的单调性及最值.3.已知函数21()2ln (2)2f x x a x a x =-+-. (1)当1a =-时,求函数()f x 的单调区间;(2)是否存在实数a ,使函数()()g x f x ax =-在(0,)+∞上单调递增?若存在,求出a 的取值范围;若不存在,请说明理由.4.已知函数()ln f x x a x =-. (1)讨论()f x 的单调性;(2)若()f x 有两个相异零点12,x x ,求证:212x x e ⋅>.5.已知函数()()2ln =+-∈f x ax x x a R .(1)当1a =时,求()f x 在区间1[,1]3上的最值;(2)若()()g x f x x =-在定义域内有两个零点,求a 的取值范围. 6.定义在()0,∞+上的关于x 的函数2()(1)2x ax f x x e =--. (1)若a e =,讨论()f x 的单调性;(2)()3f x ≤在(]0,2上恒成立,求a 的取值范围.7.已知函数32()3f x x x ax b =-++在1x =-处的切线与x 轴平行. (1)求a 的值和函数()f x 的单调区间; (2)若函数()y f x =的图象与抛物线231532y x x =-+恰有三个不同交点,求b 的取值范围. 8.设函数()()22ln f x x a x a x =---(1)求函数()f x 的单调区间;(2)若函数()f x 有两个零点,求正整数a 的最小值. 9.已知函数()ln ()f x ax x a a R =--∈. (1)求函数()f x 的极值;(2)当1,22x ⎡∈⎤⎢⎥⎣⎦|时,函数()f x 有两个不同的零点,求实数a 的取值范围.10.已知函数2()cos f x x a x =+,且曲线()y f x =在6x π=处的切线方程为6y x b π=-+.(1)求实数a ,b 的值;(2)若对任意(0,)x ∈+∞,都有2()0f x m -恒成立,求m 的取值范围.11.已知函数()xe f x x=,()ln g x x =.(1)当0a >时,讨论函数1()()()=--F x af x g x x的单调性;(2)当1a >时,求证:()()(1)1->-+axf x g ax e x . 12.已知函数2()e x f x mx =-.(1)若x 轴是曲线()y f x =的一条切线,求m 的值; (2)若当0x ≥时,()2sin 1f x x x ≥-+,求m 的取值范围.13.已知函数()2xf x xe ax a =-+()a R ∈.(1)当0a =时,求()f x 在[]22-,上的最值; (2)设()22x g x e ax =-,若()()()h x f x g x =-有两个零点,求a 的取值范围.14.已知函数()2ln f x ax x x =-+-.(1)讨论()f x 的单调性:(2)若()f x 在定义城上有两个极值点12x x ,,求证:()()1232ln 2f x f x +>-.15.已知函数()31ln 2f x x x x a =-+,()13212x a g x xe x x --=+-(a R ∈,e 为自然对数的底数). (1)若函数()f x 在1,1e ⎛⎫⎪⎝⎭上有零点,求a 的取值范围;(2)当1≥x 时,不等式()()f x g x ≤恒成立,求实数a 的取值范围. 16.已知函数()()23312x f x x e ax =--,其中实数()0,a ∈+∞.(1)讨论函数()f x 的单调性; (2)当12a >时,证明:关于x 的方程()233322f x ax x +=-有唯一实数解. 17.已知函数()ln f x a x x a =-+,()lng x kx x x b =--,其中,,a b k R ∈. (1)讨论函数()f x 的单调区间;(2)若1a =,任意[1,e]x ∈,不等式()()f x g x ≥恒成立时最大的k 记为c ,当[1,]b e ∈时,求b c +的取值范围.18.已知2()46ln f x x x x =--,(1)求()f x 在(1,(1))f 处的切线方程以及()f x 的单调性;(2)令()()4(6)ln g x f x x a x =+--,若()g x 有两个零点分别为1x ,2x ()12x x <且0x 为()g x 唯一极值点,求证:12034x x x +>.19.已知函数()ln f x a x x =-.(1)若0a ≥,讨论函数()f x 的零点个数;(2)设1x ,2x 是函数()f x 的两个零点,证明:122eln 0x x a +->.20.已知函数()2ln f x x ax a x =+-.(1)若函数()f x 在[2,5]上单调递增,求实数a 的取值范围;(2)当2a =时,若方程()22f x x m =+有两个不等实数根12,x x ,求实数m 的取值范围,并证明121x x <.21.已知函数()ln (0)f x a x x a =+≠,2()e ()x g x bx b =+∈R . (1)记2()()h x f x x =+,试讨论函数()h x 的单调性;(2)若曲线()y f x =与曲线()y g x =在1x =处的切线都过点(0,1).求证:当0x >时,()1()e 1g x f x x-+≥-. 22.已知函数()ln 1f x a x x =++(其中0a ≠, 2.71828e =⋅⋅⋅⋅⋅⋅) (1)当34a =-时,求函数()f x 的单调区间; (2)对任意的21,x e ⎡⎫∈+∞⎪⎢⎣⎭均满足()f x x≤,试确定a 的取值范围.。

2.3导数的计算(讲义+典型例题+小练)(解析版)

2.3导数的计算(讲义+典型例题+小练)(解析版)

2.3导数的计算(讲义+典型例题+小练)基本初等函数的导数公式及常用导数运算公式:①'0()C C =为常数;②1()'n n x nx -=;11()'()'n n n x nx x---==-;1()'()'m mn n n m m x x x n -==③(sin )'cos x x =; ④(cos )'sin x x =- ⑤()'x xe e = ⑥()'ln (0,1)x x a a a a a =>≠且;⑦1(ln )'x x =; ⑧1(log )'(0,1)ln a x a a x a=>≠且 例:1.已知在一次降雨过程中,某地降雨量y (单位:mm )与时间t (单位:min )的函数关系可表示为10y t =40min t =时的瞬时降雨强度为( )mm/min. A .12 B .14C .20D .400【答案】B 【解析】 【分析】对题设函数求导,再求40min t =时对应的导数值,即可得答案. 【详解】 由题设,1102y t '=401101|2404t y ='==, 所以在40min t =时的瞬时降雨强度为14mm/min. 故选:B2.设()f x 是定义在R 上的可导函数,若()()000lim2h f x h f x h a h→+--=(a 为常数),则0()f x '=( ) A .2a - B .a -C .aD .2a【答案】C 【解析】 【分析】根据导数的定义即可求解. 【详解】0()f x '=()()0001lim222h f x h f x h a a h→+--=⨯=. 故选:C. 3.有下列结论:①()sin cos x x '=; ②5233x x '⎛⎫ ⎪⎝⎭=; ③()31log 3ln x x '=; ④()1ln x x'=. 其中正确的有( ) A .0个 B .1个C .2个D .3个【答案】C 【解析】 【分析】由基本初等函数的导数公式即可求得答案. 【详解】①()sin cos x x '=,正确;②523353x x '⎛⎫ ⎪=⎝⎭,错误; ③()31log ln 3x x '=,错误; ④()1ln x x'=,正确.故选:C .4.求下列函数在指定点处的导数.(1)()πf x x =,1x =;(2)()sin f x x =,π2x =. 【答案】(1)π (2)0 【解析】 【分析】(1)先求出函数()πf x x =的导数fx ,将1x =代入f x ,即可求出结果;(2)先求出函数()sin f x x =的导数f x ,将π2x =代入fx ,即可求出结果.(1)解:因为()πf x x =,所以()1f x x ππ-'=,所以()1f π'=. (2)解:因为()sin f x x =,所以()cos f x x '=,所以cos 022f ππ⎛⎫'== ⎪⎝⎭.5.用不等式推理或借助计算机,比较函数2log y x =和y x =增长的快慢. 【答案】答案见解析 【解析】 【分析】求得函数2log y x =和y x =导数,结合二次函数的性质,得到其导数的大小关系,即可求解. 【详解】由函数2log y x =,可得1,0ln 2y x x '=>,又由函数y x =,可得12y x'=, 令()ln 2,02f x x x x =->,令()0f x =,即ln 220x x -=,解得22()ln 2x =, 当220()ln 2x <<时,()0f x <,可得11ln 22x x >,此时函数2log y x =的增长更快; 当22()ln 2x >时,()0f x >,可得11ln 22x x <,此时y x =的增长更快; 举一反三:1.若函数10x y =,则1x y ='等于( )A .110B .10C .10ln10D .110ln10【答案】C 【解析】 【分析】先求出函数10x y =的导数,再将x =1代入即可求得答案. 【详解】∵10ln10x y '=,∵110ln10|x y ='=. 故选:C. 2.曲线2yx 在点()1,1P 处的切线方程是( )A .230x y -+=B .210x y --=C .210x y -+=D .230x y --=【答案】B 【解析】 【分析】先求出函数的导函数,进而根据导数的几何意义求出切线的斜率,然后求出切线方程. 【详解】依题意得2y x '=,当1x =时,212y '=⨯=,即切线的斜率为2,故切线方程为()121y x -=-,即210x y --=. 故选:B .3.12'⎛⎫ ⎪⎝⎭等于( )A .12B .1C .0D .122【答案】C 【解析】 【分析】由常数的导数为0即可求得答案. 【详解】由题意,102'⎛⎫= ⎪⎝⎭.故选:C.4.已知f (x )=cos x ,g (x ) = x ,则关于x 的不等式()()0f x g x ''+≤的解集为__________.【答案】|2,2Z x x k k ππ⎧⎫=+∈⎨⎬⎩⎭【解析】 【分析】由题可得sin 1x ≥,利用正弦函数的性质即求. 【详解】由题可得sin 10x -+≤,即sin 1x ≥, 又sin 1x ≤, 所以sin 1x =, 所以2,2Z x k k ππ=+∈,∵原不等式的解集为|2,2Z x x k k ππ⎧⎫=+∈⎨⎬⎩⎭.故答案为:|2,2Z x x k k ππ⎧⎫=+∈⎨⎬⎩⎭5.某质点的运动方程是3s t =,求该质点在3t =时的速度. 【答案】27 【解析】 【分析】根据导数的运算法则,代值计算即可. 【详解】因为质点的运动方程是3s t =,故质点的速度关于时间的函数关系为:v ='s 23t =, 故当3t =时,27v =. 故答案为:27.6.求下列函数的导数: (1)0y x =; (2) 12xy ⎛⎫= ⎪⎝⎭;(3)2y x=;(4) 212s 2iny x =-. 【答案】(1)0y '=(2)1ln 22xy ⎛⎫=- ⎪⎭'⎝(3)32y x '=(4)sin y x '=- 【解析】 【分析】(1)根据常函数的求导公式,即可求出结果; (2)根据指数函数的求导公式,即可求出结果; (3)根据幂函数的求导公式,即可求出结果;(4)利用余弦二倍角公式化简,再根据余弦函数的求导公式,即可求出结果; (1)解:因为01y x ==,所以0y '=. (2)解:因为12xy ⎛⎫= ⎪⎝⎭,所以111ln ln 2222x x y ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭',即1ln 22xy ⎛⎫=- ⎪⎭'⎝.(3)解:因为322x x y x == ,所以123322y x x '==,即32y x '=. (4)解:因为212s s 2in co y x x=-=,所以sin y x '=-.巩固提升一、单选题1.函数2()f x x =在点(1,1)处的切线斜率为( ) A .2- B .1-C .1D .2【答案】D 【解析】 【分析】先判断点(1,1)是否在()f x 上,再求函数()f x 导数,进而得()1f ',即可求得答案. 【详解】 2()f x x =由2(1)11f ==,可得点(1,1)在2()f x x =上 ()2f x x '=∴()12f '=可得函数()f x 在点(1,1)处的切线斜率为2 故选:D.2.已知()sin 2f x x π⎛⎫=- ⎪⎝⎭,则()f x '=( )A .cos xB .cos x -C .sin xD .sin x -【答案】D 【解析】 【分析】化简函数()f x 的解析式,利用基本初等函数的导数公式可求得结果. 【详解】因为()sin cos 2f x x x π⎛⎫=-= ⎪⎝⎭,因此,()sin f x x '=-.故选:D. 3.函数()1f x x=在2x =和3x =处的导数的大小关系是( ) A .()()23f f ''< B .()()23f f ''> C .()()23f f ''= D .不能确定【答案】A 【解析】 【分析】求出函数导数即可比较. 【详解】 ()1f x x =,()21f x x '∴=-,所以()()112,349f f ''=-=-,即()()23f f ''<.故选:A.4.已知函数()tan f x x =,则4f π⎛⎫' ⎪⎝⎭等于( )A .12 B 2 C .1 D .2【答案】D 【解析】 【分析】先对函数求导,然后求出4f π⎛⎫' ⎪⎝⎭即可【详解】 由()sin tan cos x f x x x ==,得2222cos sin 1()cos cos x x f x x x+==', 所以2124cos4f ππ⎛⎫=='= ⎪⎝⎭, 故选:D5.函数()ln f x x =在x e =处的导数等于( ) A .0 B .1eC .1D .e【答案】B 【解析】 【分析】利用导数公式求解. 【详解】因为函数()ln f x x =, 所以1()f x x'=, 所以1()f e e '=, 故选;B6.下列结论正确的个数为( ) ①若y =ln2,则12y ; ②若()21f x x =,则()2327f '=-;③若2x y =,则2x y '=; ④若2log y x =,则1ln 2xy '=. A .4 B .3 C .2 D .1【答案】C 【解析】 【分析】根据求导公式依次对选项求导即可. 【详解】①:由ln 2y =,得0y '=,故①错误; ②:由221()f x x x -==,得332()2f x x x -'=-=-,所以2(3)27f '=-,故②正确;③:由2x y =,得ln 22x y '=⋅,故③错误;④:由2log y x =,得11ln 2ln 2xy x '==,故④正确; 故选:C 二、多选题7.已知()2f x x =的导数为()f x ',则必有( ) A .()()f x f x '> B .()()f x f x '≥(1≥x ) C .()()f x f x '< D .()()f x f x '≤(1x ≤)【答案】BD 【解析】 【分析】求出导数,作差可得出答案. 【详解】由()2f x x =,得()2f x '=,所以()()()21f x f x x '-=-,当1≥x 时,()()f x f x '≥,当1x ≤时,()()f x f x '≤,所以选项BD 正确. 故选:BD.8.下列求导过程正确的是( )A .211x x '⎛⎫= ⎪⎝⎭B .()12x x '=C .()1a a x ax -'=D .()ln log a ax x'=【答案】BC 【解析】 【分析】根据基本初等函数的导函数判断可得选项. 【详解】解:由211x x '⎛⎫=- ⎪⎝⎭,得A 错误; 由()12x x '=,得B 正确;由()1a a x ax -'=,得C 正确; 由()1log ln a x x a'=,得D 错误. 故选:BC. 三、填空题9.已知()2f x x =,()lng x x =,若()()23f x xg x ''+=,则x =________.【答案】12##0.5【解析】 【分析】对()2f x x =与()lng x x =求导后代入题干中的条件,列出方程,求出x 的值.【详解】函数的导数公式可知()2f x x '=,()1g x x'=, 由()()23f x xg x ''+=得1223x x x +⋅=,即21x =,解得12x =. 故答案为:1210.设函数()1f x ax =+,若()12f '=,则=a ___________. 【答案】2 【解析】【分析】 根据函数在()()00,x f x 处的导数的定义()()()00000limlim x x f x x f x y f x x x ∆→∆→+∆-∆'==∆∆得到方程,即可求出参数的值【详解】解:因为()1f x ax =+,所以()()()()()00111111limlim x x f x f a x a f a x x∆→∆→+∆-∆++-+'===∆∆, 且()12f '=,∵2a =.故答案为:2四、解答题11.设b 为实数,直线12y x b =+能作为下列函数图象的切线吗?若能,求出切点坐标;若不能,简述理由.(1)1()f x x =; (2)4()f x x =;(3)()sin f x x =;(4)()x f x e =.【答案】(1)详见解析;(2)详见解析;(3)详见解析;(4)详见解析.【解析】【分析】求导,令1()2f x '=求解判断. (1)解:因为1()f x x =, 所以211()2f x x '=-=无解, 所以直线12y x b =+不能作为函数图象的切线;(2)因为4()f x x =,所以3()4f x x , 令31()42f x x '==,解得12x =,此时116y =, 所以切点坐标为11,216⎛⎫ ⎪⎝⎭, 所以直线12y x b =+能作为函数图象的切线;(3)因为()sin f x x =,所以()cos f x x '=, 令1()cos 2f x x '==,解得2,3x k k Z ππ=±∈,此时3y = 所以切点坐标为32,3k k Z ππ⎛+∈ ⎝⎭或32,,3k k Z ππ⎛-∈ ⎝⎭, 所以直线12y x b =+能作为函数图象的切线;(4)因为()x f x e =,所以()x f x e '=, 令()12x f x e '==,解得1ln 2x =,此时12y =, 所以切点坐标为11ln ,22⎛⎫ ⎪⎝⎭, 所以直线12y x b =+能作为函数图象的切线;12.已知函数()a b f x ax +=的导数为()26f x x '=,求a ,b 的值. 【答案】2,1a b ==【解析】【分析】求导,再由待定系数法得出a ,b 的值.【详解】1()()a b f x a a b x '+-=+,因为()26f x x '=,所以()6,2,112a a b a b a b +=⎧==⎨+-=⎩。

《导数》解答题16道(含详解答案)

《导数》解答题16道(含详解答案)

《导数》解答题16道专项练习1.已知函数22()x f x e ax e x =+-.(Ⅰ)若曲线()y f x =在点(2,(2))f 处的切线平行于x 轴,求函数()f x 的单调性;(Ⅱ)若0x >时,总有2()f x e x >-,求实数a 的取值范围.【详解答案】(Ⅰ)由22()x f x e ax e x =+-,得2()2x f x e ax e '=+-,即()y f x =在点(2,(2))f 处的切线斜率40k a ==此时2()x f x e e x =-,2()x f x e e '=-由()0f x '=,得2x =当(,2)x ∈-∞时,()0f x '<,()f x 在(,2)-∞上为单调递减函数;当(2,)x ∈+∞时,()0f x '>,()f x 在(2,)+∞上为单调递增函数.(Ⅱ)2()f x e x >-得2x e a x >-,设2()x e g x x =-(0)x >,则2(2)()x e x g x x -'=当02x <<时,()0g x '>,()g x 在(0,2)上单调递增;当2x >时,()0g x '<,()g x 在(0,2)上单调递减;2()(2)4e g x g ≤=-,所以实数a 的取值范围为2(,)4e -+∞2.函数()ln()ln f x x m n x =+-.(Ⅰ)当1m =,0n >时,求()f x 的单调减区间;(Ⅱ)1n =时,函数()(2)()g x m x f x am =+-,若存在0m >,使得()0g x >恒成立,求实数a 的取值范围.【详解答案】(Ⅰ)由()ln()ln f x x m n x =+-((0,))x ∈+∞,1(1)()1(1)n n x n f x x x x x --'=-=++①当1n =时,1()(1)f x x x -'=+,所以函数()f x 的单调递减区间为:(0,)+∞②当01n <<时,由()0f x '<,得01n x n <<-,所以函数()f x 的单调递减区间为:(0,)1n n-③当1n >时,由()0f x '<,得0x >,所以函数()f x 的单调递减区间为:(0,)+∞综上可得:当1n ≥时,函数()f x 的单调递减区间为:(0,)+∞当01n <<时,函数()f x 的单调递减区间为:(0,1n n-(Ⅱ)当1n =时,函数()(2)()(2)[ln()ln ]g x m x f x am m x x m x am =+⋅-=++--,(0,)+∞由()0g x >可得()0g x x >,即(1)ln (1)0m x m x m x a x x x ++++-->,设1m x t x +=>,所以(1)ln (1)0t t a t +-->,(1)ln 01a t t t -->+令(1)()ln 1a t h t t t -=-+,1t >,222(1)1()(1)t a t h t t t +-+'=+,(1)0h =①当2a ≤时,222(1)1210t a t t t +-+≥-+>,所以()0h t '>可得函数()h t 在(1,)+∞上单调递增.可得()(1)0h t h >=②当2a >时,()0h t '=,即2t +2(1-a )t +1=0,得11t a =--,21t a =-+由21t >,121t t =,可得11t <,所以函数()h t 在2(1,)t 上单调递减可得()(1)0h t h <=,舍去综上可得,实数a 的取值范围为2a ≤3.已知函数(a ∈R ),当时,讨论f (x )的单调性.【详解答案】(1)求函数的导数,可得导函数的零点为1,,根据一元二次不等式的解法可确定函数的单调性.试题解析:因为,所以,,令,可得两根分别为1,,因为,所以,当时,,函数单调递减;当时,,函数单调递增;当时,,函数单调递减.4.已知函数,x >1.(1)若f (x )在(1,+∞)上单调递减,求实数a 的取值范围;(2)若a =2,求函数f (x )的极小值.【详解答案】(1),由题意可得在上恒成立,∴.∵,∴,∴当时函数的最小值为,∴.故实数的取值范围为.(2)当时,,,令得,解得或(舍),即.当时,,当时,,∴的极小值为.5.已知函数f (x )=ln x -ax +1-a x-1(a ∈R).当0<a <12时,讨论f (x )的单调性.【详解答案】因为f (x )=ln x -ax +1-a x -1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x 2,x ∈(0,+∞),令f ′(x )=0,可得两根分别为1,1a -1,因为0<a <12,所以1a-1>1>0,当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减;当x,1a -f ′(x )>0,函数f (x )单调递增;当x1,+f ′(x )<0,函数f (x )单调递减.6.已知函数f (x )=x ln x +ax ,x >1.(1)若f (x )在(1,+∞)上单调递减,求实数a 的取值范围;(2)若a =2,求函数f (x )的极小值.解析:(1)f ′(x )=ln x -12+a ,由题意可得f ′(x )≤0在(1,+∞)上恒成立,∴a ≤1ln 2x -1ln x =-14.∵x ∈(1,+∞),∴ln x ∈(0,+∞),∴当1ln x -12=0时函数t -14的最小值为-14,∴a ≤-14.故实数a ∞,-14.(2)当a =2时,f (x )=x ln x +2x ,f ′(x )=ln x -1+2ln 2x ln 2x ,令f ′(x )=0得2ln 2x +ln x -1=0,解得ln x =12或ln x=-1(舍),即x =e 12.当1<x <e 12时,f ′(x )<0,当x >e 12时,f ′(x )>0,∴f (x )的极小值为=e 1212+2e 12=4e 12.7.已知函数()1ln f x x a x x=-+(a R ∈).(Ⅰ)若函数()f x 在区间[)1,+∞上单调递增,求实数a 的取值范围;(Ⅱ)已知()()21112g x x m x x =+-+,2m ≤-,()()()h x f x g x =+,当1a =时,()h x 有两个极值点1x ,2x ,且12x x <,求()()12h x h x -的最小值.【详解答案】(1)由已知可得()0f x '≥在[)1,+∞上恒成立,()222111a x ax f x x x x ++'=++= ,210x ax ∴++≥恒成立,21x a x--∴≥,记()2112x x x x x ϕ--⎛⎫==-+≤- ⎪⎝⎭,当且仅当1x =时等号成立,2a ∴≥-.………………+4分(2)()21ln 2h x a x x mx =++,当1a =时,由()21ln 2h x x x mx =++,()211x mx h x x m x x ++'=++=,由已知210x mx ++=有两互异实根1x ,2x ,由根与系数的关系得12x x m +=-,1x ,21x =.()()221211122211ln ln 22h x h x x x mx x mx ⎛⎫⎛⎫∴-=++-++ ⎪ ⎪⎝⎭⎝⎭()()221212121ln ln 2x x m x x x x =-+-+-()()()()222211212121212211ln ln ln 22x x x x x x x x x x x x =--+-+-=--+1212121ln 2x x x x x x ⎛⎫=--+ ⎪⎝⎭.……………………+7分令12x t x =,()0,1t ∴∈,()2222121212922x x x x x x m +=++=≥ ,221252x x ∴+≥,221212122152x x x x x x x x +∴=+≥,152t t +≥,10,2t ⎛⎤∴∈ ⎥⎝⎦,()()()1211ln 2h x h x t t t t ϕ⎛⎫∴-=--= ⎪⎝⎭,()()2212t t t ϕ-'∴=-,()t ϕ∴10,2t ⎛⎤∈ ⎥⎝⎦单调递减,()min 13ln 224t ϕϕ⎛⎫∴==- ⎪⎝⎭. (12)8.已知函数()222x f x e ax a =+-,a R ∈.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若0x ≥时,()23f x x ≥-恒成立,求实数a 的取值范围.【详解答案】(Ⅰ)()22x f x e a '=+,①0a ≥时,()0f x '>恒成立,此时()f x 在R 上单调递增;②当0a <时,由()0f x '>,得()ln x a >-;由()0f x '<,得()ln x a <-,此时()f x 在()(),ln a -∞-上递减,在())ln ,a -+∞⎡⎣上递增.…………………+4分(Ⅱ)令()()()22323x g x f x x e x a =-+=--+,0x ≥,则()()2x g x e x a '=-+,又令()()2x h x e x a =-+,则()()210x h x e '=-≥,()h x ∴在[)0,+∞上递增,且()()021h a =+.①当1a ≥-时,()0g x '≥恒成立,即函数()g x 在[)0,+∞上递增,从而须满足()2050g a =-≥,解得a ≤≤,又1a ≥-,1a ∴-≤≤;②当1a <-时,则00x ∃>,使()00h x =,且()00,x x ∈时,()0h x <,即()0g x '<,即()g x 递减,()0,x x ∈+∞时,()0h x >,即()0g x '>,即()g x 递增.()()()0200min 230x g x g x e x a ∴==--+≥,又()()00020x h x e x a =-+=,从而()002230x x e e-+≥,解得00ln 3x <≤,由0000x x e x a a x e =-⇒=-,令()x M x x e =-,0ln 3x <≤,则()10xM x e '=-<,()M x ∴在(]0,ln 3上递减,则()()ln 3ln 33M x M ≥=-,又()()01M x M <=-,故ln 331a -≤<-,综上ln 335a -≤≤.……………………+12分9.(本小题满分12分)已知函数()()22ln f x x a x a x =-++,其中a R ∈.(1)若曲线()y f x =在点()()2,2f f 处的切线的斜率为1,求a 的值;(2)讨论函数()f x 的单调性.【详解答案】(1)由()()22ln f x x a x a x =-++可知,函数的定义域为{}0x x >,且()()22a f x x a x '=-++.由题意,()()24212a f a '=-++=,解得2a =.(2)()()()()()2222122x a x a x a x a f x x a x x x-++--'=-++==(0x >)令()0f x '=,得11x =,22a x =①当0a ≤时,02a ≤,令()0f x '>,得1x >,令()0f x '<,得01x <<所以,()f x 在()0,1上为减函数,在()1,+∞上为增函数②当012a <<,即02a <<时,令()0f x '>,得1x >或02a x <<,令()0f x '<,得12a x <<所以,()f x 在,12a ⎛⎫⎪⎝⎭上为减函数,在0,2a ⎛⎫ ⎪⎝⎭和()1,+∞上为增函数③当12a =,即2a =时,()0f x '≥恒成立,所以,()f x 在()0,+∞上为增函数④当12a >,即2a >时,令()0f x '>,得01x <<或2a x >,令()0f x '<,得12a x <<所以,()f x 在1,2a ⎛⎫ ⎪⎝⎭上为减函数,在()0,1和,2a ⎛⎫+∞ ⎪⎝⎭上为增函数10.(本小题满分12分)已知函数()()22x f x ax x e =++(0a >),其中e 是自然对数的底数.(1)当2a =时,求()f x 的极值;(2)若()f x 在[]2,2-上是单调增函数,求a 的取值范围;(3)当1a =时,求整数t 的所有值,使方程()4f x x =+在[],1t t +上有解.【详解答案】(1)()()222x f x x x e =++,则()()()()2253123x x f x x x e x x e '=++=++令()0f x '=,1x =-,32-()32352f x f e -⎛⎫∴=-= ⎪⎝⎭极大值,()()113f x f e -=-=极小值(2)问题转化为()()22130xf x ax a x e '⎡⎤=+++≥⎣⎦在[]2,2x ∈-上恒成立;又0x e >即()22130ax a x +++≥在[]2,2x ∈-上恒成立;令()()2213g x ax a x =+++0a > ,对称轴1102x a=--<①当1122a --≤-,即102a <≤时,()g x 在[]2,2-上单调增,()()min 210g x g ∴=-=>102a ∴<≤②当12102a -<--<,即12a >时,()g x 在12,12a ⎡⎤---⎢⎥⎣⎦上单调减,在11,22a ⎡⎤--⎢⎥⎣⎦上单调增,()221120a a ∴∆=+-≤解得:331122a -≤≤+13122a ∴<≤+综上,a 的取值范围是30,12⎛⎤+ ⎥ ⎝⎦.(3)1a = ,设()()224x h x x x e x =++--,()()2331xh x x x e '=++-令()()2331x x x x e ϕ=++-,()()256xx x x e ϕ'=++令()()2560x x x x e ϕ'=++=,得2x =-,3-()()33310x e ϕϕ∴=-=-<极大值,()()21210x eϕϕ=-=-<极小值()1110e ϕ-=-< ,()020ϕ=>∴存在()01,0x ∈-,()0,x x ∈-∞时()0x ϕ<,()0,x x ∈+∞时()0x ϕ>()h x ∴在()0,x -∞上单调减,在()0,x +∞上单调增又()41440h e -=> ,()38310h e-=-<,()020h =-<,()1450h e =->由零点的存在性定理可知:()0h x =的根()14,3x ∈--,()20,1x ∈即4t =-,0.11.设函数211()ln 42f x x x x =--.(1)求()f x 的极值;(2)若21()(()1)4g x x f x x =++,当1x >时,()g x 在区间(,1)n n +内存在极值,求整数n 的值.【详解答案】(1)2'1112()0)222x x f x x x x x --+=--=>,令'()0f x =,解得1x =(-2舍去),根据',(),()x f x f x 的变化情况列出表格:由上表可知函数()f x 的单调增区间为(0,1),递减区间为(1,)+∞,在1x =处取得极大值34-,无极小值.(2)2211()(()1)ln 42g x x f x x x x x x =++=-+,'()ln 11ln 2g x x x x x =+-+=-+,令()ln 2h x x x =-+,∴'11()1x h x x x -=-=,∵1x >,∴'()0h x <恒成立,所以()h x 在(1,)+∞为单调递减函数,∵(1)10h =>,(2)ln 20h =>,(3)ln 31h =-,(4)ln 420h =-<.所以()h x 在(3,4)上有零点0x ,且函数()g x 在0(3,)x 和0(,4)x 上单调性相反,因此,当3n =时,()g x 的区间(,1)n n +内存在极值,所以3n =.12.已知函数21()(2)2x f x a x e x x =-∙-+.(1)若1a =,求函数()f x 在(2,(2))f 处切线方程;(2)讨论函数()f x 的单调区间.【详解答案】(1)'()1()x x f x e x e x x R =--+∈,故切线斜率'2(2)1f e =-,(2)0f =,所以,切线方程22(1)2(1)0e x y e ----=.(2)令'()0f x =,(1)(1)0x x ae --=,当(,0]a ∈-∞时,()f x 在(,1)-∞上为增函数,在(1,)+∞上为减函数,当1(0,)a e ∈时,()f x 在(,1)-∞,1(ln,)a +∞上为增函数,在1(1,ln a 上为减函数当1a e =时,()f x 在R 上恒为增函数当1(,)a e ∈+∞时,()f x 在1(,ln )a -∞,(1,)+∞上为增函数,在1(ln ,1)a上为减函数13.已知函数()x f x ae x b =-+,()ln(1)g x x x =-+,(,,a b R e ∈为自然对数的底数),且曲线()y f x =与()y g x =在坐标原点处的切线相同.(1)求()f x 的最小值;(2)若0x ≥时,()()f x kg x ≥恒成立,试求实数k 的取值范围.【详解答案】(1)因为'()1x f x ae =-,'1()1(1)1g x x x =->-+,依题意,''(0)(0)f g =,且(0)0f =,解得1,1a b ==-,所以'()1x f x e =-,当0x <时,'()0f x <;当0x >时,'()0f x >.故()f x 的单调递减区间为(,0)-∞,单调递增区间为(0,)+∞.∴当0x =时,()f x 取得最小值为0.(2)由(1)知,()0f x ≥,即1x e x ≥+,从而ln(1)x x ≥+,即()0g x ≥.设()()()ln(1)(1)1x F x f x kg x e k x k x =-=++-+-,则'()(1)1(1)11x kkF x e k x k x x =+-+≥++-+++,①当1k =时,因为0x ≥,∴'1()1201F x x x ≥++-≥+(当且仅当0x =时等号成立)此时()F x 在[0,)+∞上单调递增,从而()(0)0F x F ≥=,即()()f x kg x ≥.②当1k <时,由于()0g x ≥,所以()()g x kg x ≥,又由(1)知,()()0f x g x -≥,所以()()()f x g x kg x ≥≥,故()0F x ≥,即()()f x kg x ≥.(此步也可以直接证1k ≤)③当1k >时,令()(1)1x kh x e k x =+-++,则'2()(1)x kh x e x =-+,显然'()h x 在[0,)+∞上单调递增,又'(0)10h k =-<,'11)10h -=->,所以'()h x 在1)上存在唯一零点0x ,当0(0,)x x ∈时,'()0h x <,∴()h x 在0[0,)x 上单调递减,从而()(0)0h x h <=,即'()0F x <,所以()F x 在0[0,)x 上单调递减,从而当0(0,)x x ∈时,()(0)0F x F <=,即()()f x kg x <,不合题意.综上,实数k 的取值范围为(,1]-∞.14.已知函数()ln ()f x x a x a R =-∈.(1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程;(2)讨论函数()f x 的单调区间.【详解答案】(1)∵2a =,∴()2ln f x x x =-,∴(1)12ln11f =-=,即(1,1)A '2()1f x x =-,'(1)121f =-=-,当0a ≤时,∵0x >,∴'()0f x >恒成立,∴()f x 在定义域(0,)+∞上单调递增;当0a >时,令'()0f x =,得x a =,∵0x >,∴'()0f x >,得x a >;'()0f x <得0x a <<;∴()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增.15.已知函数1()f x x x=-.(1)用函数单调性的定义证明:函数()f x 在区间(0,)+∞上为增函数;(2)若2(4)(2)0t t tf mf -=,当[1,2]t ∈时,求实数m 的取值范围.【详解答案】(1)证明:任取12,(0,)x x ∈+∞,且12x x <,则1212121212121212()(1)1111()()()x x x x f x f x x x x x x x x x x x -+-=---=-+=∵120x x <<,∴1210x x +>,120x x >,120x x -<,有12()()0f x f x -<即12()()f x f x <,∴函数()f x 在区间(0,)+∞上为增函数(2)∵22112(4)(2)2(2)(2)022t t t t t t t t f mf m -=---=即24(21)21t t m -=-∵2210t ->,∴221t m =+∵[1,2]t ∈,∴212[5,17]t +∈故m 的取值范围是[5,17].16.已知函数2()ln 2f x x ax x =--.(1)若函数()f x 在1[,2]4x ∈内单调递减,求实数a 的取值范围;(2)当14a =-时,关于x 的方程1()2f x x b =-+在[1,4]上恰有两个不相等的实数根,求实数b 的取值范围.【详解答案】(1)2'1221()22ax x f x ax x x --+=--=由题意'()0f x ≤在1[,2]4x ∈时恒成立,即221212(1)1x a x x-≥=--在1[,2]4x ∈时恒成立,即2max 12[(1)1]a x ≥--,当14x =时,21(1)1x --取得最大值8,∴实数a 的取值范围是4a ≥(2)当14a =-时,1()2f x x b =-+可变形为213ln 042x x x b -+-=令213()ln (0)42g x x x x b x =-+->,则'(2)(1)()2x x g x x --=列表如下:∴()(2)ln 22g x g b ==--极小值,5(1)4g b =--又(4)2ln 22g b =--∵方程()0g x =在[1,4]上恰有两个不相等的实数根,∴(1)0(2)0(4)0g g g ≥⎧⎪<⎨⎪≥⎩得5ln 224b -<≤-.17.已知函数2()2ln f x x x =-+,函数()f x 与()a g x x x =+有相同极值点.(1)求函数()f x 的最大值;(2)求实数a 的值;(3)若121,[,3]x x e ∀∈,不等式12()()11f x g x k -≤-恒成立,求实数k 的取值范围.【详解答案】(1)'22(1)(1)()20)x x f x x x x x--+=-+=>,由'()00f x x ⎧>⎨>⎩,得01x <<;由'()00f x x ⎧<⎨>⎩,得1x >∴()f x 在(0,1)上为增函数,在(1,)+∞上为减函数,∴函数()f x 的最大值为(1)1f =-.(2)因为()a g x x x =+,所以'2()1a g x x=-,由(1)知,1x =是函数()f x 的极值点,又因为函数()f x 与()a g x x x=+有相同极值点,∴1x =是函数()g x 的极值点,∴'(1)10g a =-=,解得1a =经检验,当1a =时,函数()g x 取到极小值,符合题意(3)因为211(2f ee =--,(1)1f =-,(3)92ln 3f =-+∵2192ln 321e -+<--<-,即1(3)()(1)f f f e <<,∴11[,3]x e ∀∈,1min ()(3)92ln 3f x f ==-+,1max ()(1)1f x f ==-,由(2)知,1()g x x x=+,∴'21()1g x x =-∴()g x 在1[,1)e 上,'()0g x <;当(1,3]x ∈时,'()0g x >∴()g x 在1[,1)e 上为减函数,在(1,3]上为增函数,∵11()g e e e =+,(1)2g =,110(3)333g =+=,而11023e e <+<,∴1(1)()(3)g g g e <<∴21[,3]x e ∀∈,2min ()(1)2g x g ==,2max 10()(3)3g x g ==①当10k ->,即1k >时,对于121,[,3]x x e ∀∈,不等式12()()11f x g x k -≤-恒成立即12max [()()]1k f x g x ≥-+,∵12()()(1)(1)123f x g x f g -≤-=--=-,∴312k ≥-+=-,由12k k >⎧⎨≥-⎩,得1k >.②当10k -<时,即1k <,对于121,[,3]x x e ∀∈,不等式12()()11f xg x k -≤-恒成立即12min [()()]1k f x g x ≤-+,∵121037()()(3)(3)92ln 32ln 333f x g x f g -≥-=-+-=-+,∴342ln 33k ≤-+综上所述,所求的实数k 的取值范围为34(,2ln 3](1,)3-∞-++∞ .。

导数函数综合应用(含答案)

导数函数综合应用(含答案)

导数函数综合应用一.选择题(共6小题)1.定义在R上的函数y=f(x),满足f(4﹣x)=f(x),(x﹣2)f′(x)<0,若x1<x2,且x1+x2>4,则有()A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.不确定2.定义在(1,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x;记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰有两个零点,则实数k的取值范围是()A.[1,2)B.C.D.3.设函数f(x)是定义在实数集上的奇函数,在区间[﹣1,0)上是增函数,且f(x+2)=﹣f(x),则有()A.B.C.D.4.已知函数f(x)=,若函数y=f(x)+|x﹣1|﹣kx在定义域内有且只有三个零点,则实数k的取值范围是()A.[)B.[]C.[﹣)D.[﹣]5.设函数f(x)=,若对任意给定的y∈(2,+∞),都存在唯一的x∈R,满足f(f(x))=2a2y2+ay,则正实数a的最小值是()A.2B.C.D.46.已知函数f(x)=2mx2﹣2(4﹣m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是()A.(0,2)B.(0,8)C.(2,8)D.(﹣∞,0)二.填空题(共1小题)7.已知函数f(x)=,若关于x的方程f(x)=3恰有两个互异的实数解,则实数a的取值范围是.三.解答题(共19小题)8.已知函数f(x)=﹣alnx(a∈R).(1)讨论f(x)的单调性;(2)若存在实数x0=[1,e],使得f(x0)<0,求正实数a的取值范围.9.已知函数f(x)=x2﹣(a+)x+lnx,其中a>0.(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处切线的方程;(Ⅱ)当a≠1时,求函数f(x)的单调区间;(Ⅲ)若a∈(0,),证明对任意x1,x2∈[,1](x1≠x2),<恒成立.10.已知函数f(x)=lnx﹣ax2+(2﹣a)x.(1)若f′(1)=﹣6,求函数f(x)在(1,f(1))处的切线;(2)设a>0,证明:当0<x<时,f(+x)>f(﹣x);(3)若函数f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f′(x0)<0.11.已知a≠0,函数f(x)=|e x﹣e|+e x+ax(1)讨论f(x)的单调性(2)若对∀x∈(﹣,+∞),不等式f(x)≥恒成立,求a的取值范围(3)已知当a<﹣e时,函数f(x)有两个零点x1,x2(x1<x2),求证:f(x1x2)>a+e12.已知函数f(x)=a(x﹣1)e x(a>0),g(x)=﹣cos x.(1)求函数f(x)的单调区间;(2)若对于任意的实数x1,x2∈[0,],(其中x1≠x2),都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|恒成立求实数a的取值范围.13.已知函数f(x)=a+2lnx﹣ax(a>0),(1)求f(x)的最大值φ(a);(2)若f(x)≤0恒成立,求a的值;(3)在(2)的条件下,设g(x)=在(a,+∞)上的最小值为m,求证:﹣11<f(m)<﹣1014.已知函数f(x)=(x2﹣mx)e x(e为自然对数的底数).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若m=2,2n+1≥0,证明:关于x的不等式nf(x)+1≥e x在(﹣∞,0]上恒成立.15.已知函数f(x)=(其中e是自然对数的底数),g(x)=1﹣ax2(a∈R).(Ⅰ)求函数f(x)的极值;(Ⅱ)设h(x)=f(x)﹣g(x),若a满足0<a<且ln2a+1>0,试判断方程h(x)=0的实数根个数,并说明理由.16.已知函数f(x)=ax2﹣lnx.(1)求函数f(x)的单调区间;(2)若函数f(x)有两个零点x1,x2,求a的取值范围,并证明:x1•x2>1.17.己知p:实数m使得函数f(x)=lnx(m﹣2)x2﹣x在定义域内为增函数:q:实数m使得函数g(x)=mx2+(m+1)x﹣5在R上存在两个零点x1,x2,且x1<1<x2(1)分别求出条件p,q中的实数m的取值范围;(2)甲同学认为“p是q的充分条件”,乙同学认为“p是q的必要条件”,请判断两位同学的说法是否正确,并说明理由.18.已知函数f(x)=In+cos x﹣|x|.(Ⅰ)求证:函数f(x)在[0,+∞)上单调递减;(Ⅱ)若f(2x﹣3)+π+1+ln(2+3π2)<0,求x的取值范围.19.已知函数f(x)=lnx﹣sin(x﹣1),f′(x)为f(x)的导函数.证明:(1)f′(x)在区间(0,2)存在唯一极小值点;(2)f(x)有且仅有2个零点.20.已知函数f(x)=te2x+(t+2)e x﹣1,t∈R.(Ⅰ)当t=﹣1时,求f(x)的单调区间与极值;(Ⅱ)当t>0时,若函数g(x)=f(x)﹣4e x﹣x+1在R上有唯一零点,求t的值.21.已知函数f(x)=e x﹣x2﹣ax+b(e为自然对数的底数).(Ⅰ)若a≥1,判断f(x)极值点个数;(Ⅱ)若f(x)≥f′(x)在x∈[﹣1,1]上恒成立,求a+b的取值范围.22.设函数f(x)=lnx﹣a2x+2a(a∈R)(1)若函数f(x)在上递增,在上递减,求实数a的值.(2)讨论f(x)在(1,+∞)上的单调性;(3)若方程x﹣lnx﹣m=0有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.23.已知函数f(x)=2x3﹣3(a﹣1)x2﹣6ax+a2+1.(Ⅰ)设﹣1≤a≤1,曲线y=f(x)在点(1,f(1))处的切线在y轴上的截距为b,求b的最小值;(Ⅱ)若f(x)只有一个零点x0,且x0<0,求a的取值范围.24.设函数f(x)=x﹣﹣alnx(a∈R,a>0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个极值点x1和x2,记过A(x1,f(x1)),B(x2,f(x2))的直线的斜率为k.问:是否存在a,使k=2﹣a?若存在,求出a的值;若不存在,请说明理由.25.已知.(1)讨论函数f(x)的单调区间;(2)若f(x)存在极值且f(x)≥0,求实数a的取值范围;(3)求证:当x>1时,.26.已知函数f(x)=(ax+1)e x,a∈R(1)当a=1时,求函数f(x)的最小值.(2)当a=时,对于两个不相等的实数x1,x2,有f(x1)=f(x2),求证:x1+x2<2.导数函数综合应用参考答案与试题解析一.选择题(共6小题)1.定义在R上的函数y=f(x),满足f(4﹣x)=f(x),(x﹣2)f′(x)<0,若x1<x2,且x1+x2>4,则有(B)A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.不确定【解答】解:由题意f(4﹣x)=f(x),可得出函数关于x=2对称,又(x﹣2)f′(x)<0,得x>2时,导数为负,x<2时导数为正,即函数在(﹣∞,2)上是增函数,在(2,+∞)上是减函数又x1<x2,且x1+x2>4,下进行讨论若2<x1<x2,显然有f(x1)>f(x2)若x1<2<x2,有x1+x2>4可得x1>4﹣x2,故有f(x1)>f(4﹣x2)=f(x2)综上讨论知,在所给的题设条件下总有f(x1)>f(x2)2.定义在(1,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x;记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰有两个零点,则实数k的取值范围是(C)A.[1,2)B.C.D.【解答】解:因为对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立,且当x∈(1,2]时,f(x)=2﹣x 所以f(x)=﹣x+2b,x∈(b,2b].由题意得f(x)=k(x﹣1)的函数图象是过定点(1,0)的直线,如图所示红色的直线与线段AB相交即可(可以与B点重合但不能与A点重合)所以可得k的范围为3.设函数f(x)是定义在实数集上的奇函数,在区间[﹣1,0)上是增函数,且f(x+2)=﹣f(x),则有(A)A.B.C.D.【解答】解:根据题意,函数f(x)满足f(x+2)=﹣f(x),当x=﹣时,有f()=﹣f(﹣)=f(),函数f(x)是定义在实数集上的奇函数,在区间[﹣1,0)上是增函数,则f(x)在区间(0,1]上是增函数,则有f()<f()<f(1),则有f()<f()<f(1),4.已知函数f(x)=,若函数y=f(x)+|x﹣1|﹣kx在定义域内有且只有三个零点,则实数k的取值范围是(A)A.[)B.[]C.[﹣)D.[﹣]【解答】解:函数y=f(x)+|x﹣1|﹣kx在定义域内有且只有三个零点,即为方程f(x)+|x﹣1|=kx在[﹣3,+∞)内有3个不等实根,可令g(x)=f(x)+|x﹣1|=,作出g(x)的图象(如右),直线y=kx,当k=0时,y=g(x)和y=0显然有3个交点,符合题意;当直线y=kx与y=x2+3x+1相切,可得x2+(3﹣k)x+1=0,△=(3﹣k)2﹣4=0,解得k=1(k=5舍去),由k=1时,y=g(x)和y=x有两个交点,可得0≤k<1时,符合题意;当k<0时,且直线y=kx经过点(﹣3,1)时,直线y=kx与y=g(x)有3个交点,此时k=﹣,由y=kx绕着原点旋转,可得﹣≤k<0,综上可得,k的范围是[﹣,1).5.设函数f(x)=,若对任意给定的y∈(2,+∞),都存在唯一的x∈R,满足f(f(x))=2a2y2+ay,则正实数a的最小值是(C)A.2B.C.D.4【解答】解:函数f(x)=的值域为R.∵f(x)=2x,(x≤0)的值域为(0,1];f(x)=log2x,(x>0)的值域为R.∴f(x)的值域为(0,1]上有两个解,要想f(f(x))=2a2y2+ay在y∈(2,+∞)上只有唯一的x∈R满足,必有f(f(x))>1 (2a2y2+ay>0).∴f(x)>2,即log2x>2,解得:x>4.当x>4时,x与f(f(x))存在一一对应的关系.∴问题转化为2a2y2+ay>1,y∈(2,+∞),且a>0.∴(2ay﹣1)(ay+1)>0,解得:y>或者y<﹣(舍去).∴≤2,得a.6.已知函数f(x)=2mx2﹣2(4﹣m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是(B)A.(0,2)B.(0,8)C.(2,8)D.(﹣∞,0)【解答】解:当m≤0时,当x接近+∞时,函数f(x)=2mx2﹣2(4﹣m)x+1与g(x)=mx均为负值,显然不成立当x=0时,因f(0)=1>0当m>0时,若,即0<m≤4时结论显然成立;若,时只要△=4(4﹣m)2﹣8m=4(m﹣8)(m﹣2)<0即可,即4<m<8则0<m<8二.填空题(共1小题)7.已知函数f(x)=,若关于x的方程f(x)=3恰有两个互异的实数解,则实数a的取值范围是(﹣∞,6).【解答】解:函数f(x)=,当x≥1时,方程f(x)=3,可得lnx+1=3,解得x=e2,函数有一个零点;x<1时,函数只有一个零点,即x2﹣4x+a=3,在x<1时只有一个解,因为y=x2﹣4x+a ﹣3开口向上,对称轴为x=2,x<1时,函数是减函数,所以f(1)<3,可得﹣3+a<3,解得a<6.三.解答题(共19小题)8.已知函数f(x)=﹣alnx(a∈R).(1)讨论f(x)的单调性;(2)若存在实数x0=[1,e],使得f(x0)<0,求正实数a的取值范围.【解答】解:(1)由f(x)=﹣alnx(a∈R),得f′(x)=x﹣=(x>0).当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增;当a>0时,由f′(x)>0,得x>,由f′(x)<0,得0<x<.∴f(x)在(0,)上单调递减,在(,+∞)上单调递增;(2)由(1)知,当a>0时,f(x)在(0,)上单调递减,在(,+∞)上单调递增.①当,即0<a≤1时,f(x)在[1,e]上单调递增,>0,不合题意;②当1<<e,即1<a<e2时,f(x)在[1,]上单调递减,在[,e]上单调递增,由<0,解得e<a<e2;③当≥e,即a≥e2时,f(x)在[1,e]上单调递减,由<0,解得a≥e2.综上所述,a的取值范围为(e,+∞).9.已知函数f(x)=x2﹣(a+)x+lnx,其中a>0.(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处切线的方程;(Ⅱ)当a≠1时,求函数f(x)的单调区间;(Ⅲ)若a∈(0,),证明对任意x1,x2∈[,1](x1≠x2),<恒成立.【解答】(Ⅰ)解:当a=2时,f(x)=,f′(x)=,∴f′(1)=,∵f(1)=.∴切线方程为:y+2=(x﹣1),整理得:x+2y+3=0;(Ⅱ)f′(x)x﹣=(x>0),令f′(x)=0,解得:x=a或x=.①若0<a<1,,当x变化时,f′(x),f(x)的变化情况如表:∴f(x)在区间(0,a)和()内是增函数,在(a,)内是减函数;②若a>1,,当x变化时,f′(x),f(x)的变化情况如表:∴f(x)在区间(0,)和(a,+∞)内是增函数,在(,+∞)内是减函数;(Ⅲ)∵0<a<,∴f(x)在[,1]内是减函数,又x1≠x2,不妨设0<x1<x2,则f(x1)>f(x2),.于是等价于,即.令(x>0),∵g′(x)=在[,1]内是减函数,故g′(x)≤g′()=2﹣(a+).从而g(x)在[,1]内是减函数,∴对任意,有g(x1)>g(x2),即,∴当,对任意,恒成立.10.已知函数f(x)=lnx﹣ax2+(2﹣a)x.(1)若f′(1)=﹣6,求函数f(x)在(1,f(1))处的切线;(2)设a>0,证明:当0<x<时,f(+x)>f(﹣x);(3)若函数f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f′(x0)<0.【解答】解:(1)函数f(x)的定义域为(0,+∞),∵f(x)=lnx﹣ax2+(2﹣a)x,∴f'(x)=﹣2ax+2﹣a==﹣.f′(﹣1)=a+1=﹣6,解得a=﹣7,则函数f(x)在(1,f(1))处的切线斜率为k=﹣6,切点为(1,16),则所求切线的方程为y﹣16=﹣6(x ﹣1),即为6x+y﹣22=0;(2)证明:设函数g(x)=f(+x)﹣f(﹣x),则g(x)=ln(1+ax)﹣ln(1﹣ax)﹣2ax,g′(x)=+﹣2a=,当x∈(0,)时,g′(x)>0,g(x)递增,而g(0)=0,即有g(x)>0,故当0<x<时,f(+x)>f(﹣x).(3)证明:当a≤0时,f′(x)>0恒成立,因此f(x)在(0,+∞)单调递增,即有函数y=f(x)的图象与x轴至多有一个交点,故a>0,从而f(x)的最大值为f(),且f()>0,不妨设A(x1,0),B(x2,0),0<x1<x2,则0<x1<<x2,由(2)得,f(﹣x1)=f(+﹣x1)>f(x1)=f(x2)=0,又f(x)在(,+∞)单调递减,∴﹣x1<x2,于是x0=,当x∈(,+∞)(a>0)时,f′(x)<0,则f′(x0)<0成立.11.已知a≠0,函数f(x)=|e x﹣e|+e x+ax(1)讨论f(x)的单调性(2)若对∀x∈(﹣,+∞),不等式f(x)≥恒成立,求a的取值范围(3)已知当a<﹣e时,函数f(x)有两个零点x1,x2(x1<x2),求证:f(x1x2)>a+e【解答】解:(1)函数f(x)=|e x﹣e|+e x+ax=,∴f′(x)=,当a>0时,f(x)在R上是增函数;当a<0时,x≥1时,令f′(x)>0,⇒e x>﹣⇒x>ln(﹣),①ln(﹣)≤1,即﹣2e≤a<0,f(x)在(﹣∞,1)是减函数;在(1,+∞)是增函数;②ln(﹣)>1,即a<﹣2e,f(x)在(﹣∞,ln(﹣))是减函数;在(ln(﹣),+∞)是增函数;(2)函数f(x)=|e x﹣e|+e x+ax=,若x∈(﹣,1),ax+e.∴可得﹣,当x∈[1,+∞)时,,即2a,设g(x)=,g′(x)=,所以g(x)在[1,+∞)上是减函数,所以g(x)max=g(1)=﹣e,所以a.综上.(3)证明:∵f(1)=a+e,∴不等式f(x1x2)>a+e转化为f(x1x2)>f(1),∵a<﹣e,∴f(1)=a+e<0,∴f(x)的两个零点x1<1<x2,∴,∴,∴x1x2=,令h(x)=,h′(x)=,令t(x)=e x﹣xe x﹣e,t′(x)=(1﹣x)e x<0,∴t(x)在(1,+∞)上是减函数,t(x)<t(1)=0,即h′(x)<0,h(x)在(1,+∞)是减函数,h(x)<h(1)=1,即x1x2<1,∵a<﹣e时,f(x)在(﹣∞,1)是减函数,∴f(x1x2)>a+e.12.已知函数f(x)=a(x﹣1)e x(a>0),g(x)=﹣cos x.(1)求函数f(x)的单调区间;(2)若对于任意的实数x1,x2∈[0,],(其中x1≠x2),都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|恒成立求实数a的取值范围.【解答】解:(1)函数f(x)的定义域为(﹣∞,+∞),f′(x)=a[e x+(x﹣1)e x]=ax•e x.当x=0时,f′(x)=0;当x<0时,f′(x)<0;当x>0时,f′(x)>0,所以函数f(x)的单调减区间为(﹣∞,0),单调增区间为(0,+∞).(2)不妨设x1<x2,因为g(x)在[0,]上是增函数,所以g(x1)<g(x2),即g(x1)﹣g(x2)<0,由(1)得f(x)在[0,]上是增函数,所以f(x1)<f(x2),即f(x1)﹣f(x2)<0.由题意,得f(x2)﹣f(x1)>g(x2)﹣g(x1),即f(x2)﹣g(x2)>f(x1)﹣g(x1).令h(x)=f(x)﹣g(x)=a(x﹣1)e x+cos x在[0,]上是增函数,则h′(x)=axe x﹣sin x≥0对任意的x恒成立.设F(x)=(0),则F(x)≤0恒成立,.令,则,从而G(x)在[0,]上是减函数,所以,即.当a≥1时,F(x)≤0′,当且仅当a=1,x=0时取等号,所以F(x)在上是减函数,所以当x时,F(x)≤F(0)=0,故a≥1满足题意.当0<a<1时,F′(0)=1﹣a>0,F.由零点存在定理,存在,使得F′(x0)=0.因为G(x)在(0,)上是减函数,所以F′(x)=G(x)﹣a在(0,)上是减函数,所以0<x<x0时,F′(x)>F′(x0)=0,所以F(x)在(0,x0)上是增函数,所以当x∈(0,x0)(这里(0,x0)⊊)时,F(x)>F(0)=0.所以0<a<1不满足题意,综上,实数a的取值范围是[1,+∞).13.已知函数f(x)=a+2lnx﹣ax(a>0),(1)求f(x)的最大值φ(a);(2)若f(x)≤0恒成立,求a的值;(3)在(2)的条件下,设g(x)=在(a,+∞)上的最小值为m,求证:﹣11<f(m)<﹣10【解答】解:(1)∵f(x)=a+2lnx﹣ax(a>0),∴f′(x)=(a>0),由f′(x)>0得0<x<;f′(x)<0得x>;所以f(x)在(0,)上单调递增,在(,+∞)上单调递减.故f(x)max=f()=a﹣2﹣2lna+2ln2即φ(a)=a﹣2﹣2lna+2ln2(a>0)(2)要使f(x)≤0 成立必须φ(a)=a﹣2﹣2lna+2ln2≤0.因为φ′(a)=,所以当0<a<2 时,φ′(a)<0;当a>2 时,φ′(a)>0.所以φ(a)在(0,2)上单调递减,在(2,+∞)上单调递增.∴φ(a)min=φ(2)=0,所以满足条件的a只有2,即a=2.(3)由(2)知g(x)=,∴g′(x)=令u(x)=x-2lnx﹣4,则u′(x)=>0,u(x)是(2,+∞)上的增函数;又u(8)<0,u(9)>0,所以存在x0∈(8,9)满足u(x0)=0,即2lnx0=x0﹣4,且当x∈(2,x0)时,u(x)<0,g′(x)<0;当x∈(x0,+∞)时,u(x)>0,g′(x)>0;所以g(x)在(2,x0)上单调递减;在(x0,+∞)上单调递增.所以g(x)min=g(x0)===x0,即m=x0.所以f(m)=f(x0)=2+2lnx0﹣2x0=x0﹣2∈(﹣11,﹣10),即﹣11<f(m)<﹣10.14.已知函数f(x)=(x2﹣mx)e x(e为自然对数的底数).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若m=2,2n+1≥0,证明:关于x的不等式nf(x)+1≥e x在(﹣∞,0]上恒成立.【解答】解:(Ⅰ)依题意x∈R,f′(x)=(x2﹣mx+2x﹣m)e x=[x2+(2﹣m)x﹣m]e x令y=x2+(2﹣m)x﹣m,则△=(2﹣m)2+4m=4+m2>0令f′(x)=0,则x2+(2﹣m)x﹣m=0解得x=结合二次函数图象可知:∴f(x)的单调递增区间为(﹣∞,)和(,+∞)单调递减区间为(,)(Ⅱ)令g(x)=nf(x)+1﹣e x=n(x2﹣2x)e x﹣e x+1当x∈(﹣∞,0]时,x2﹣2x≥0而2n+1≥0⇔n≥﹣故n(x2﹣2x)e x≥﹣(x2﹣2x)e x∴g(x)≥﹣(x2﹣2x)e x﹣e x+1令h(x)=﹣(x2﹣2x)e x﹣e x+1,x∈(﹣∞,0]∴h′(x)=﹣x2e x≤0故函数h(x)在(﹣∞,0]上单调递减,则h(x)≥h(0)=0则任意的x∈(﹣∞,0],g(x)≥h(x)≥0∴关于x的不等式nf(x)+1≥e x在(﹣∞,0]上恒成立.15.已知函数f(x)=(其中e是自然对数的底数),g(x)=1﹣ax2(a∈R).(Ⅰ)求函数f(x)的极值;(Ⅱ)设h(x)=f(x)﹣g(x),若a满足0<a<且ln2a+1>0,试判断方程h(x)=0的实数根个数,并说明理由.【解答】解:(Ⅰ)易知,当x<0时,f′(x)>0,此时f(x)单调递增;当x>0时,f′(x)<0,此时f(x)单调递减,所以f(x)极大值=f(0)=1,但无极小值.(Ⅱ)因为,所以.导数因为,所以,于是,令h′(x)=0,此时,当x<0时,f′(x)<0,此时f(x)单调递减;当时,f′(x)>0,此时f(x)单调递增;所以.因为,所以,,又函数h(x)在R上连续,故h(x)有一个零点0,且在上也有一个零点;综上,方程h(x)=0有2个实数根.16.已知函数f(x)=ax2﹣lnx.(1)求函数f(x)的单调区间;(2)若函数f(x)有两个零点x1,x2,求a的取值范围,并证明:x1•x2>1.【解答】解:(1)∵函数f(x)=ax2﹣lnx.定义域为(0,+∞)∴f′(x)=2ax﹣=①当a≤0时,f′(x)=<0恒成立,∴f(x)在(0,+∞)上为减函数.②当a>0时,令f′(x)=<0,解得0<x<令f′(x)=>0,解得x>∴f(x)=ax2﹣lnx在(0,)上为减函数,在(,+∞)上为增函数综上a≤0时f(x)的单调减区间为(0,+∞)a>0时f(x)的单调减区间为(0,),增区间是(,+∞).(2)∵函数f(x)有两个零点x1,x2,由(1)知x=是f(x)的最小值点,∴f(x)在(0,+∞)上的最小值f()=a•()2﹣ln<0时,f(x)有两个零点x1,x2∴解得0<a<要证x1•x2>1⇔要证lnx1•x2>ln1⇔要证lnx1+lnx2>0∵函数f(x)有两个零点x1,x2,不防设0<x1<<x2则f(x1)=ax12﹣lnx1=0 ①f(x2)=ax22﹣lnx2=0 ②①+②得:lnx1+lnx2=a(x12+x22),而a(x12+x22)>0,∴lnx1+lnx2>0即x1•x2>1得证.17.己知p:实数m使得函数f(x)=lnx(m﹣2)x2﹣x在定义域内为增函数:q:实数m使得函数g(x)=mx2+(m+1)x﹣5在R上存在两个零点x1,x2,且x1<1<x2(1)分别求出条件p,q中的实数m的取值范围;(2)甲同学认为“p是q的充分条件”,乙同学认为“p是q的必要条件”,请判断两位同学的说法是否正确,并说明理由.【解答】解:(1)p:实数m使得函数f(x)=lnx(m﹣2)x2﹣x在定义域内为增函数:则有在R上恒成立.∴m﹣2=()2﹣∴m.q:实数m使得函数g(x)=mx2+(m+1)x﹣5在R上存在两个零点x1,x2,且x1<1<x2则有m•f(1)<0⇒m(m﹣2)<0⇒0<m<2.(2)由(1)可得p:∴m.,q:0<m<2.∵{m|m}⊈{|0<m<2}{m|m}⊉{|0<m<2}∴p是q的既不充分也不必要条件.故两位同学都错.18.已知函数f(x)=In+cos x﹣|x|.(Ⅰ)求证:函数f(x)在[0,+∞)上单调递减;(Ⅱ)若f(2x﹣3)+π+1+ln(2+3π2)<0,求x的取值范围.【解答】(1)证明:∵函数f(x)=In+cos x﹣|x|.∴x∈[0,+∞)时f(x)=﹣ln(2+3x2)+cos x﹣x ∴f′(x)=﹣sin x﹣1,∴x∈[0,+∞)时f′(x)=﹣sin x﹣1<0,∴函数f(x)在[0,+∞)上单调递减;(2)∵函数f(x)=In+cos x﹣|x|.定义域为R∴f(﹣x)=)=﹣ln(2+3x2)+cos(﹣x)﹣|﹣x|=﹣ln(2+3x2)+cos x﹣x=f(x)∴f(x)是偶函数.由(1)知f(x)在[0,+∞)上单调递减;∴f(x)在(﹣∞,0]上单调递增;又f(2x﹣3)+π+1+ln(2+3π2)<0⇔f(2x﹣3)<f(π)∴|2x﹣3|>π⇔2x﹣3>π或2x﹣3<﹣π解得x>或x<∴x的取值范围为:(﹣∞,)∪(,+∞)19.已知函数f(x)=lnx﹣sin(x﹣1),f′(x)为f(x)的导函数.证明:(1)f′(x)在区间(0,2)存在唯一极小值点;(2)f(x)有且仅有2个零点.【解答】解:(1)令g(x)=f′(x)=,,当x∈(0,1)时,g′(x)<0恒成立,当x∈(1,2)时,>0.∴g′(x)在(1,2)递增,.故存在a∈(1,2)使得,x∈(1,a)时g′(x)<0,x∈(a,2)时,g′(x)>0.综上,f′(x)在区间(0,2)存在唯一极小值点x=a.(2)由(1)可得x∈(0,a)时,g′(x)<0,g(x)单调递减,x∈(a,2)时,g′(x)<0,g(x)单调递增.且g(1)=0,g(2)=.故g(x)的大致图象如下:当x∈(2,3)时,sin(x﹣1)∈(sin1,sin2),sin(x﹣1)>sin30°∴此时g′(x)>0,g(x)单调递增,而g(3)=﹣cos2>0.故存在∈(2,3),使得g(m)=0故在x∈(0,3)上,g(x)的图象如下:综上,x∈(0,1)时,g(x)<0,x∈(1,m)时,g(x)<0,x∈(m,3)时,g(x)>0.∴f(x)在(0,1)递增,在(1,m)递减,在(m,3)递增,而f(1)=0,f(3)=ln3﹣sin2>0,又当x>3时,lnx>1,f(x)>0恒成立.故在(0,+∞)上f(x)的图象如下:∴f(x)有且仅有2个零点.20.已知函数f(x)=te2x+(t+2)e x﹣1,t∈R.(Ⅰ)当t=﹣1时,求f(x)的单调区间与极值;(Ⅱ)当t>0时,若函数g(x)=f(x)﹣4e x﹣x+1在R上有唯一零点,求t的值.【解答】解:(Ⅰ)当t=﹣1时,f(x)=﹣e2x+e x﹣1,则f′(x)=﹣2e2x+e x=e x(1﹣2e x)令f′(x)=0,解得x=﹣ln2∴f(x)的单调递增区间是(﹣∞,﹣ln2),单调递减区间是(﹣ln2,+∞)∴f(x)的极大值是f(﹣ln2)=﹣,无极小值.(Ⅱ)当t>0时,g(x)=f(x)﹣4e x﹣x+1=te2x+(t﹣2)e x﹣x∴g′(x)=2te2x+(t﹣2)e x﹣1=(te x﹣1)(2e x+1)=0,解得x=﹣lnt∴g(x)的单调递减区间是(﹣∞,﹣lnt),单调递增区间是(﹣lnt,+∞)∴g(x)的极小值是g(﹣lnt)∴g(﹣lnt)=0,即lnt﹣+1=0时,能满足题意.令F(t)=lnt﹣+1,则F′(t)=+>0∴F(t)=lnt﹣+1在(0,+∞)上单调递增,唯有t=1时,F(1)=0∴t=121.已知函数f(x)=e x﹣x2﹣ax+b(e为自然对数的底数).(Ⅰ)若a≥1,判断f(x)极值点个数;(Ⅱ)若f(x)≥f′(x)在x∈[﹣1,1]上恒成立,求a+b的取值范围.【解答】解:(Ⅰ)∵f′(x)=e x﹣x﹣a,x∈R,f″(x)=e x﹣1可得函数f′(x)在(﹣∞,0)上单调递减;在(0,+∞)单调递增,f′(x)min=f′(0)=1﹣a当a>1时,1﹣a<0,且f′(﹣a)=e﹣a>0,取b>0,使得b>ln(b+a),∴f′(b)=e b﹣(b+a)>b+a﹣(b+a)=0即函数f′(x)的图象与x轴有两个交点,此时f(x)极值点个数为2,;当a=1时,f′(x)≥0,此时f(x)极值点个数为0;(Ⅱ)f(x)≥f′(x)在x∈[﹣1,1]上恒成立⇔e x﹣x2﹣ax+b≥e x﹣x﹣a在x∈[﹣1,1]上恒成立⇔a+b≥在x∈[﹣1,1]上恒成立.令h(x)=①当1﹣a≥0时,h(x).∴a+b②当1﹣a<0时,h(x)max=h(1)=a﹣综上得,a+b22.设函数f(x)=lnx﹣a2x+2a(a∈R)(1)若函数f(x)在上递增,在上递减,求实数a的值.(2)讨论f(x)在(1,+∞)上的单调性;(3)若方程x﹣lnx﹣m=0有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.【解答】解:(1)由于函数函数f(x)在上递增,在上递减,由单调性知,是函数的极大值点,无极小值点.所以∵故,经验证成立.(2)∵f(x)=lnx﹣a2x+2a,∴,①当a=0时,在(1,+∞)上单调递增.②当a2≥1,即a≤﹣1或a≥1时,f'(x)<0,∴f(x)在(1,+∞)上单调递减.③当﹣1<a<1且a≠0时,由f'(x)=0得.令f'(x)>0得;令f'(x)<0得.∴f(x)在上单调递增,在上单调递减.综上,当a=0时,f(x)在(1,+∞)上递增;当a≤﹣1或a≥1时,f(x)在(1,+∞)上递减;当﹣1<a<1且a≠0时,f(x)在上递增,在上递减.(3)令h(x)=x﹣lnx(x>0),g(x)=m,当x∈(0,1)时,,h(x)=x﹣lnx(x>0)单调递减;当x∈(1,+∞)时,,h(x)=x﹣lnx(x>0)单调递增;故h(x)在x=1处取得最小值,h(1)=1又当x→0,h(x)→+∞;x→+∞,h(x)→1,∴m∈(1,+∞)不妨设x1<x2,则有0<x1<1<x2,,要证x1x2<1⇔即证⇔即证h(x1)>h()∵h(x1)=h(x2)=m,∴=令,∴p(x)在(1,+∞)上单调递增,故p(x)>p(1)=0即>0,∴∴x1x2<1 得证23.已知函数f(x)=2x3﹣3(a﹣1)x2﹣6ax+a2+1.(Ⅰ)设﹣1≤a≤1,曲线y=f(x)在点(1,f(1))处的切线在y轴上的截距为b,求b的最小值;(Ⅱ)若f(x)只有一个零点x0,且x0<0,求a的取值范围.【解答】解:(Ⅰ)f(x)=2x3﹣3(a﹣1)x2﹣6ax+a2+1的导数为f′(x)=6x2﹣6(a﹣1)x﹣6a,f(x)在点(1,f(1))处的切线斜率为6﹣6(a﹣1)﹣6a=12﹣12a,切点为(1,6﹣9a+a2),可得切线方程为y﹣(6﹣9a+a2)=(12﹣12a)(x﹣1),由x=0,可得b=a2+3a﹣6=(a+)2﹣,由﹣1≤a≤1,可得b在[﹣1,1]上递增,可得b的最小值为﹣8;(Ⅱ)若f(x)只有一个零点x0,且x0<0,可得f(0)>0,f′(x)=6x2﹣6(a﹣1)x﹣6a,由f′(x)=0,可得x=﹣1或x=a,由f(﹣1)<0,且f(a)<0,即为a2+3a+2<0,且a3+2a2﹣1>0,解得<a<﹣1.24.设函数f(x)=x﹣﹣alnx(a∈R,a>0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个极值点x1和x2,记过A(x1,f(x1)),B(x2,f(x2))的直线的斜率为k.问:是否存在a,使k=2﹣a?若存在,求出a的值;若不存在,请说明理由.【解答】解:(1)显然定义域为(0,+∞),∴f′(x)=1+﹣=,(a∈R,a>0).令g(x)=x2﹣ax+2,其判别式△=a2﹣8,①当0<a时,△≤0,f′(x)≥0,f(x)在(0,+∞)上单调递增,②当a时,△>0,令f′(x)=0,得x1=,x2=,∵在(0,x1)上f′(x)>0,在(x1,x2)上f′(x)<0,在(x2,+∞)上f′(x)>0,∴f(x)在(0,x1),(x2,+∞)上为增函数,在(x1,x2)上为减函数.(2)由(1)知,a,∴f(x1)﹣f(x2)=(x1﹣x2)+﹣a(lnx1﹣lnx2),∴k==1+﹣a,∵x1x2=2,∴k=2﹣a,假设存在a,使k=2﹣a,则2﹣a=2﹣a,∴=1,∴lnx1﹣lnx2=x1﹣x2,即x2﹣﹣2lnx2=0(•),其中x2>1,令h(t)=t﹣﹣2lnt,∴h′(t)=1+﹣==>0,∴h(t)在(1,+∞)上是增函数,∴h(t)>h(1)=0,与(•)矛盾.故不存在a使k=2﹣a成立.25.已知.(1)讨论函数f(x)的单调区间;(2)若f(x)存在极值且f(x)≥0,求实数a的取值范围;(3)求证:当x>1时,.【解答】解:(1)显然定义域为(0,+∞),∵f′(x)=x﹣=,①当a≤0时,f′(x)>0,函数f(x)在(0,+∞)上是单调递增函数,②当a>0时,令f′(x)=0,得x=,∵在(0,)上f′(x)<0,∴f(x)是单调递减函数;∵在(,+∞)上f′(x)>0,∴f(x)是单调递增函数.(2)∵f(x)存在极值且f(x)≥0,∴a>0,∴只需f(x)min≥0,由上知f(x)min=f()=a﹣alna=a(1﹣lna)≥0,∴a∈(0,e](3)设F(x)=,∴F′(x)=2x2﹣x﹣=,∵x>1,∴F′(x)>0,即F(x)在(1,+∞)上为增函数,∴F(x)>F(1)=>0,∴F(x)>0在(1,+∞)上恒成立,故当x>1时,.26.已知函数f(x)=(ax+1)e x,a∈R(1)当a=1时,求函数f(x)的最小值.(2)当a=时,对于两个不相等的实数x1,x2,有f(x1)=f(x2),求证:x1+x2<2.【解答】解:(1)当a=1,f(x)=(x+1)e x,∴f′(x)=(x+2)e x,∴f(x)在(﹣∞,﹣2)上单调递减,在(﹣2,+∞)上单调递增,∴f(x)min=f(﹣2)=﹣.(2)当a=时,f(x)=(﹣x+1)e x,对于两个不相等的实数x1,x2,有f(x1)=f(x2),∵f′(x)=(1﹣x)e x,∴f(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,不妨设x1<1<x2,令g(x)=f(x)﹣f(2﹣x),(x<1)∴g′(x)=(1﹣x)(e x﹣e2﹣x),当x<1时,1﹣x>0,x<2﹣x,e x﹣e2﹣x<0,∴g′(x)<0,∴g(x)在(﹣∞,1)单调递减,∴g(x)>g(1)=f(1)﹣f(1)=0,即f(x)﹣f(2﹣x)>0,不妨设x1<1<x2,则2﹣x1>1,由以上可知f(x1)>f(2﹣x1),∵f(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,∵f(x1)=f(x2),∴f(x2)>f(2﹣x1),∵x2>1,2﹣x1>1,∵f(x)在(1,+∞)上单调递减,∴x2<2﹣x1,∴x1+x2<2。

导数试题及答案

导数试题及答案

导数试题及答案一、选择题1. 设函数 $f(x)=2x^3 - 3x^2 + 5x - 1$,则 $f'(x)$ 的值为:A) $6x^2 - 6x + 5$B) $6x - 5$C) $6x^2 - 3x + 5$D) $6x^2 - 6x - 3$2. 函数 $f(x) = e^x \sin x$ 的导数为:A) $e^x \sin x + e^x \cos x$B) $e^x \sin x - e^x \cos x$C) $e^x \sin x + e^{-x} \cos x$D) $e^{-x} \sin x + e^x \cos x$3. 设 $y = \arcsin(\cos x)$,则 $\frac{dy}{dx}$ 的值为:A) $-\sin(\cos x)$B) $-\sin x$C) $\cos(\cos x)$D) $\cos x$4. 函数 $f(x) = \frac{1}{x^2 + 1}$ 的导数为:A) $-\frac{2x}{(x^2 + 1)^2}$B) $\frac{-2x}{(x^2 + 1)^2}$C) $\frac{2x}{(x^2 + 1)^2}$D) $\frac{x^2 + 1}{2x}$5. 函数 $f(x) = \ln(2x + 1)$ 的导数为:A) $\frac{1}{2x + 1}$B) $\frac{1}{x}$C) $\frac{2}{2x + 1}$D) $\frac{2}{x}$二、解答题1. 求函数 $f(x) = x^3 - 6x^2 + 9x + 2$ 在 $x = 2$ 处的导数和导数值。

解:首先求导数 $f'(x)$,利用导数的定义及基本求导法则:$$f'(x) = (x^3 - 6x^2 + 9x + 2)' = (3x^2 - 12x + 9)$$然后代入 $x=2$,得到导数值 $f'(2)$:$$f'(2) = 3(2)^2 - 12(2) + 9 = 12 - 24 + 9 = -3$$所以函数 $f(x)$ 在 $x=2$ 处的导数为 $-3$。

高二数学导数及其应用试题答案及解析

高二数学导数及其应用试题答案及解析

高二数学导数及其应用试题答案及解析1.函数的导数是()A.B.C.D.【答案】D【解析】===【考点】基本函数的求导公式、积的求导法则点评:本题比较简单,直接代入求导公式运算。

要求学生熟记公式。

2.已知直线是的切线,则的值为()A.B.C.D.【答案】C【解析】,则∴切点为,曲线过∴,。

【考点】切线方程、对数运算。

点评:根据导数的几何意义,先把切点利用k表示,再利用切点是切线和曲线的公共点代入已知方程求值。

3.在曲线y=2x2-1的图象上取一点(1, 1)及邻近一点(1+Δx,1+Δy),则等于A.4Δx+2Δx2B.4+2Δx C.4Δx+Δx2D.4+Δx【答案】B【解析】∵△y=2(1+△x)2-1-1=2△x2+4△x,∴=4+2△x,故选B.【考点】本题主要考查导数的概念。

点评:遵循“算增量,求比值”,细心计算。

4.(2006年福建卷)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米。

(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(II)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?【答案】(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。

(II)当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.【解析】分析:结合物理知识进行求解.解:(I)当时,汽车从甲地到乙地行驶了小时,要耗没(升)。

答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。

(II)当速度为千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为升,依题意得令得当时,是减函数;当时,是增函数。

当时,取到极小值因为在上只有一个极值,所以它是最小值。

答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.【考点】本小题主要考查函数、导数及其应用。

专题05导数及其应用解答题(原卷版)

专题05导数及其应用解答题(原卷版)

大数据之十年高考真题(2013-2022)与优质模拟题(新高考卷与新课标理科卷)专题05导数及其应用解答题1.【2022年全国甲卷理科21】已知函数f(x)=e xx−lnx+x−a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则环x1x2<1.2.【2022年全国乙卷理科21】已知函数f(x)=ln(1+x)+axe−x(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在区间(−1,0),(0,+∞)各恰有一个零点,求a的取值范围.3.【2022年新高考1卷22】已知函数f(x)=e x−ax和g(x)=ax−lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.4.【2022年新高考2卷22】已知函数f(x)=x e ax−e x.(1)当a=1时,讨论f(x)的单调性;(2)当x>0时,f(x)<−1,求a的取值范围;(3)设n∈N∗,证明:1√12+1+1√22+2+⋯+1√n2+n>ln(n+1).5.【2021年全国甲卷理科21】已知a>0且a≠1,函数f(x)=x aa x(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.6.【2021年新高考1卷22】已知函数f(x)=x(1−lnx).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna−alnb=a−b,证明:2<1a +1b<e.7.【2021年全国乙卷理科20】设函数f(x)=ln(a−x),已知x=0是函数y=xf(x)的极值点.(1)求a;真题汇总(2)设函数g(x)=x+f(x)xf(x).证明:g(x)<1.8.【2021年新高考2卷22】已知函数f(x)=(x −1)e x −ax 2+b . (1)讨论f(x)的单调性;(2)从下面两个条件中选一个,证明:f(x)有一个零点 ①12<a ≤e 22,b >2a ;②0<a <12,b ≤2a .9.【2020年全国1卷理科21】已知函数f(x)=e x +ax 2−x . (1)当a =1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围. 10.【2020年全国2卷理科21】已知函数f (x )=sin 2x sin2x . (1)讨论f (x )在区间(0,π)的单调性; (2)证明:|f(x)|≤3√38; (3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤3n4n .11.【2020年全国3卷理科21】设函数f(x)=x 3+bx +c ,曲线y =f(x)在点(12,f (12))处的切线与y 轴垂直.(1)求b .(2)若f(x)有一个绝对值不大于1的零点,证明:f(x)所有零点的绝对值都不大于1. 12.【2020年山东卷21】已知函数f(x)=ae x−1−lnx +lna .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.13.【2020年海南卷22】已知函数f(x)=ae x−1−lnx +lna .(1)当a =e 时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.14.【2019年新课标3理科20】已知函数f (x )=2x 3﹣ax 2+b . (1)讨论f (x )的单调性;(2)是否存在a ,b ,使得f (x )在区间[0,1]的最小值为﹣1且最大值为1?若存在,求出a ,b 的所有值;若不存在,说明理由.15.【2019年全国新课标2理科20】已知函数f (x )=lnx −x+1x−1.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =lnx 在点A (x 0,lnx 0)处的切线也是曲线y =e x 的切线. 16.【2019年新课标1理科20】已知函数f (x )=sin x ﹣ln (1+x ),f ′(x )为f (x )的导数.证明: (1)f ′(x )在区间(﹣1,π2)存在唯一极大值点;(2)f (x )有且仅有2个零点.17.【2018年新课标1理科21】已知函数f (x )=1x −x +alnx . (1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f(x 1)−f(x 2)x 1−x 2<a ﹣2.18.【2018年新课标2理科21】已知函数f (x )=e x ﹣ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1; (2)若f (x )在(0,+∞)只有一个零点,求a .19.【2018年新课标3理科21】已知函数f (x )=(2+x +ax 2)ln (1+x )﹣2x . (1)若a =0,证明:当﹣1<x <0时,f (x )<0;当x >0时,f (x )>0; (2)若x =0是f (x )的极大值点,求a .20.【2017年新课标1理科21】已知函数f (x )=ae 2x +(a ﹣2)e x ﹣x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.21.【2017年新课标2理科21】已知函数f (x )=ax 2﹣ax ﹣xlnx ,且f (x )≥0. (1)求a ;(2)证明:f (x )存在唯一的极大值点x 0,且e ﹣2<f (x 0)<2﹣2.22.【2017年新课标3理科21】已知函数f (x )=x ﹣1﹣alnx . (1)若f (x )≥0,求a 的值;(2)设m 为整数,且对于任意正整数n ,(1+12)(1+122)…(1+12n )<m ,求m 的最小值. 23.【2016年新课标1理科21】已知函数f (x )=(x ﹣2)e x +a (x ﹣1)2有两个零点. (Ⅰ)求a 的取值范围;(Ⅱ)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.24.【2016年新课标2理科21】(Ⅰ)讨论函数f (x )=x−2x+2e x 的单调性,并证明当x >0时,(x ﹣2)e x +x +2>0;(Ⅱ)证明:当a∈[0,1)时,函数g(x)=e x−ax−ax2(x>0)有最小值.设g(x)的最小值为h(a),求函数h(a)的值域.25.【2016年新课标3理科21】设函数f(x)=a cos2x+(a﹣1)(cos x+1),其中a>0,记|f(x)|的最大值为A.(Ⅰ)求f′(x);(Ⅱ)求A;(Ⅲ)证明:|f′(x)|≤2A.26.【2015年新课标1理科21】已知函数f(x)=x3+ax+14,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.27.【2015年新课标2理科21】设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.28.【2014年新课标1理科21】设函数f(x)=ae x lnx+be x−1x,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.29.【2014年新课标2理科21】已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<√2<1.4143,估计ln2的近似值(精确到0.001).30.【2013年新课标1理科21】已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y =g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若x≥﹣2时,f(x)≤kg(x),求k的取值范围.31.【2013年新课标2理科21】已知函数f(x)=e x﹣ln(x+m)(Ⅰ)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.1.已知函数f(x)=x22+cosx−1.(1)求函数f(x)的最小值;(2)证明:∑cos1k >n+12n−1nk=1.2.已知函数f(x)=e x(sinx+cosx)−asinx..(1)当a=1时,求函数f(x)在区间[0,2π]上零点的个数;(2)若函数y=f(x)在(0,2π)上有唯一的极小值点,求实数a的取值范围3.已知函数ℎ(x)=x−alnx(a∈R).(1)若ℎ(x)有两个零点,a的取值范围;(2)若方程x e x−a(lnx+x)=0有两个实根x1、x2,且x1≠x2,证明:e x1+x2>e2x1x2.4.已知函数f(x)=a2x2+(a−1)x−lnx(a∈R).(1)求函数f(x)的单调区间;(2)当a>4时,若方程f(x)=ax2−x+a2在(0,1)内存在唯一实根x0,求证:x0∈(14,1e).5.已知函数f(x)=e1−x+a(x2−1),a∈R.(1)若a=12,求f(x)的最小值;(2)若当x>1时,f(x)>1x+lnx恒成立,求a的取值范围.6.已知函数f(x)=2x3+3(1+m)x2+6mx(x∈R).(1)讨论函数f(x)的单调性;(2)若f(1)=5,函数g(x)=a(lnx+1)−f(x)x2≤0在(1,+∞)上恒成立,求整数a的最大值.7.已知函数f(x)=lnx+ax,a∈R.(1)当a=1时,求函数f(x)的单调递增区间;(2)设函数g(x)=f(x)−1x,若g(x)在[1,e2]上存在极值,求a的取值范围.8.设函数f(x)=a e x−x−1,a∈R.(1)当a=1时,求f(x)在点(0,f(0))处的切线方程;(2)当x∈R时,f(x)≥0恒成立,求a的取值范围;模拟好题(3)求证:当x∈(0,+∞)时,e x−1x>e x2.9.已知f(x)=34x2−x22lnx−a(x−1).(1)若f(x)恒有两个极值点x1,x2(x1<x2),求实数a的取值范围;(2)在(1)的条件下,证明f(x1)+f(x2)>32.10.已知函数f(x)=xsinx+cosx+12ax2,x∈[0,π].(1)当a=0时,求f(x)的单调区间;(2)当a>0时,讨论f(x)的零点个数.11.已知函数f(x)=xe x−1+(1−a)lnx,g(x)=lnx+ax.(1)当a=1时,求y=f(x)在点(1,f(1))处的切线方程;(2)当a=2时,对于在(0,1)中的任意一个常数b,是否存在正数x0,使得e g(x0+1)−3x0−2+b2x02<1,请说明理由;(3)设ℎ(x)=f(x)−g(x),x1是ℎ(x)的极小值点,且ℎ(x1)≥0,证明:ℎ(x1)≥2(x12−x13).12.已知函数f(x)=ax−2e x+3(a∈R),g(x)=lnx+x e x(e为自然对数的底数,e<259).(1)求函数f(x)的单调区间;(2)若a=−1,ℎ(x)=f(x)+g(x),当x∈[12,1]时,ℎ(x)∈(m,n),(m,n∈Z),求n−m的最小值.13.已知函数f(x)=a e xx+lnx−x(a∈R).(1)若f(x)在(1,+∞)上单调递增,求a的取值范围;(2)当a>1时,设F(x)=f(x)−(2lnx−x+1x ),求证:F(x)>ln(ax)x−lnx+e−1.14.设函数f(x)=m e x−1,g(x)=lnx+n,m、n为实数,若F(x)=g(x)x 有最大值为1e2(1)求n的值;(2)若f(x)e2>xg(x),求实数m的最小整数值.15.已知f(x)=34x2−x22lnx−a(x−1),a>0.(1)若f(x)在区间(1,+∞)上有且仅有一个极值点m,求实数a的取值范围;(2)在(1)的条件下,证明34<f(m)<e24.16.已知函数f(x)=ln(x−1)−mx(m∈R),g(x)=2x+n−2.(1)讨论函数f(x)的单调性;(2)当−1≤m≤e−2时,若不等式f(x)≤g(x)恒成立,求n−3的最小值.m+217.已知函数f(x)=e x2lnx(x>0).(1)求f(x)的极值点.(2)若有且仅有两个不相等的实数x1,x2(0<x1<x2)满足f(x1)=f(x2)=e k.(i)求k的取值范围(ⅱ)证明x2e2−2e≤e−e21.x118.已知函数f(x)=xlnx−a(x2−1),a∈R(1)当a=0时,求f(x)的单调区间;(2)若过原点作曲线y=f(x)的切线有两条,求a的取值范围,并证明这两条切线的斜率互为相反数.19.已知函数f(x)=e−x+sinx−ax,g(x)为f(x)的导函数.]内存在唯一的极值点x0,√2<2cosx0<√3;(1)证明:当a=0时,函数g(x)在区[0,π2(2)若f(x)在(0,π)上单调递减,求整数a的最小值.(x>0).20.已知函数f(x)=1+ln(x+1)x(1)试判断函数f(x)在(0,+∞)上单调性并证明你的结论;(2)若f(x)>k对于∀x∈(0,+∞)恒成立,求正整数k的最大值;x+1(3)求证:(1+1×2)(1+2×3)(1+3×4)⋯[1+n(n+1)]>e2n−3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数及应用解答题11111111111
一.解答题(共30小题)
1.设函数f(x)=﹣klnx,k>0.
(1)求f(x)的单调区间和极值;
(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.
2.已知函数f(x)=alnx﹣ax﹣3(a∈R).
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈
[1,2],函数g(x)=x3+x2(f'(x)+)在区间(t,3)上总不是单调函数,求m的取值范围;
(Ⅲ)求证:×××…×<(n≥2,n∈N*).
3.已知函数f(x)=ax3+x2(a∈R)在x=处取得极值.
(Ⅰ)确定a的值;
(Ⅱ)若g(x)=f(x)e x,讨论g(x)的单调性.
4.设函数f(x)=lnx+a(1﹣x).
(Ⅰ)讨论:f(x)的单调性;
(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.
5.已知函数f(x)=ax3+bx2的图象经过点M(1,4),曲线在点M处的切线恰好与直线x+9y=0垂直.
(1)求实数a,b的值;
(2)若函数f(x)在区间[m,m+1]上单调递增,求m的取值范围.
6.设函数f(x)=(a∈R)
(Ⅰ)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)在[3,+∞)上为减函数,求a的取值范围.
7.已知函数f(x)=x2+ax﹣lnx,a∈R.
(1)若函数f(x)在[1,2]上是减函数,求实数a的取值范围;
(2)令g(x)=f(x)﹣x2,是否存在实数a,当x∈(0,e](e是自然常数)时,函数g (x)的最小值是3,若存在,求出a的值;若不存在,说明理由;
(3)当x∈(0,e]时,证明:.
8.设函数f(x)=e mx+x2﹣mx.
(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;
(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.
9.已知函数f(x)=+alnx(a≠0,a∈R)
(Ⅰ)若a=1,求函数f(x)的极值和单调区间;
(Ⅱ)若在区间[1,e]上至少存在一点x0,使得f(x0)<0成立,求实数a的取值范围.10.已知函数f(x)=﹣2(x+a)lnx+x2﹣2ax﹣2a2+a,其中a>0.
(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;
(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.
11.设函数f(x)=ln(x+1)+a(x2﹣x),其中a∈R,
(Ⅰ)讨论函数f(x)极值点的个数,并说明理由;
(Ⅱ)若∀x>0,f(x)≥0成立,求a的取值范围.
12.设函数f(x)=lnx+,m∈R.
(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;
(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;
(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.
13.设函数f(x)=lnx﹣﹣bx
(Ⅰ)当a=b=时,求函数f(x)的单调区间;
(Ⅱ)令F(x)=f(x)+<x≤3),其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;
(Ⅲ)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.
14.已知函数f(x)=x3+ax2+b(a,b∈R).
(1)试讨论f(x)的单调性;
(2)若b=c﹣a(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(﹣∞,﹣3)∪(1,)∪(,+∞),求c的值.
15.己知函数f(x)=x2e﹣x
(Ⅰ)求f(x)的极小值和极大值;
(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.
16.函数f(x)=ax3+3x2+3x(a≠0).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.
17.设a为实数,函数f(x)=e x﹣2x+2a,x∈R.
(1)求f(x)的单调区间及极值;
(2)求证:当a>ln2﹣1且x>0时,e x>x2﹣2ax+1.
18.已知函数f(x)=nx﹣x n,x∈R,其中n∈N•,且n≥2.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的正实数x,都有f(x)≤g(x);
(Ⅲ)若关于x的方程f(x)=a(a为实数)有两个正实数根x1,x2,求证:|x2﹣x1|<
+2.
19.设函数f(x)=﹣k(+lnx)(k为常数,e=2.71828…是自然对数的底数).
(Ⅰ)当k≤0时,求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.
20.设函数f(x)=(1+x)2﹣2ln(1+x)
(1)若关于x的不等式f(x)﹣m≥0在[0,e﹣1]有实数解,求实数m的取值范围.(2)设g(x)=f(x)﹣x2﹣1,若关于x的方程g(x)=p至少有一个解,求p的最小值.
(3)证明不等式:(n∈N*).
21.设a>1,函数f(x)=(1+x2)e x﹣a.
(1)求f(x)的单调区间;
(2)证明f(x)在(﹣∞,+∞)上仅有一个零点;
(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP
平行,(O是坐标原点),证明:m≤﹣1.
22.设函数f(x)=ax2﹣a﹣lnx,g(x)=﹣,其中a∈R,e=2.718…为自然对数的底
数.
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)证明:当x>1时,g(x)>0;
(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.
23.设f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(Ⅰ)令g(x)=f′(x),求g(x)的单调区间;
(Ⅱ)已知f(x)在x=1处取得极大值,求实数a的取值范围.
24.已知函数f(x)=x﹣alnx,g(x)=﹣,(a∈R).
(Ⅰ)若a=1,求函数f(x)的极值;
(Ⅱ)设函数h(x)=f(x)﹣g(x),求函数h(x)的单调区间;
(Ⅲ)若在[1,e](e=2.718…)上存在一点x0,使得f(x0)<g(x0)成立,求a的取值范围.
25.设函数f(x)=xe a﹣x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e﹣1)x+4,
(Ⅰ)求a,b的值;
(Ⅱ)求f(x)的单调区间.
26.已知函数f(x)=lnx﹣ax2﹣bx.
(I)当a=﹣1时,若函数f(x)在其定义域内是增函数,求b的取值范围;
(Ⅱ)若f(x)的图象与x轴交于A(x1,0),B(x2,0)(x1<x2)两点,且AB的中点为C(x0,0),求证:f′(x0)<0.
27.已知函数f(x)=(x+1)lnx﹣x+1.
(Ⅰ)若xf′(x)≤x2+ax+1,求a的取值范围;
(Ⅱ)证明:(x﹣1)f(x)≥0.
28.已知函数f(x)=ln,
(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)求证,当x∈(0,1)时,f(x)>;
(Ⅲ)设实数k使得f(x)对x∈(0,1)恒成立,求k的最大值.29.设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e
(x﹣1)+2.
(Ⅰ)求a、b;
(Ⅱ)证明:f(x)>1.
30.设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,
(Ⅰ)求a的取值范围,并讨论f(x)的单调性;
(Ⅱ)证明:f(x2)>.
导数及应用解答题11111111111
参考答案
一.解答题(共30小题)
1.;2.;3.;4.;5.;6.;7.;8.;9.;10.;11.;12.;13.;14.;15.;16.;17.;18.;19.;20.;21.;22.;23.;24.;25.;26.;27.;28.;29.;30.;。

相关文档
最新文档