河北省唐山市2017-2018学年高三年级摸底考试理数试题 Word版含答案
河北省唐山市2017—2018学年度高三年级第三次模拟考试理科数学试题
唐山市2017—2018学年度高三年级第三次模拟考试理科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A. B. C.【答案】C【解析】分析:求出详解:或,,则集合D.或,,,(),可得.,故选C.点睛:本题主要考查集合的补集与交集,属于容易题,在解题过程中要注意在求补集与交集时要考虑端点是否可以取到,这是一个易错点,同时将不等式与集合融合,体现了知识点之间的交汇.2.复数满足A. B. C.【答案】A (为虚数单位),则D.()【解析】分析:先利用复数模的公式求得可得结果,然后两边同乘以,利用复数运算的乘法法则化简,即详解:,,,故选A.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.3.已知,则()A. B. C. D.【答案】D【解析】分析:利用“拆角”技巧可得详解:,,利用两角差的正切公式可得结果.,故选D.点睛:三角函数求值时要注意:(1)观察角,分析角与角之间的差异以及角与角之间的和、差、倍的关系,巧用诱导公式或拆分技巧;(2)观察名,尽可能使三角函数统一名称;(3)观察结构,以便合理利用公式,整体化简求值.4.已知命题在中,若,则;命题,.则下列命题为真命题的是()A. B. C. D.【答案】B【解析】分析:命题在中,,根据正弦函数的性质可判断命题为真命题;时,结论不成立,故为假命题,逐一判断四个选项中的命题即可.详解:命题在中,,若命题,则,当,故为真命题;时,不成立,故为假命题,故选B.点睛:本题通过判断或命题、且命题以及非命题的真假,综合考查函数的正弦函数的性质以及不等式恒成立问题,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.5.已知双曲线的离心率为()的两条渐近线分别为,若的一个焦点关于的对称点在上,则A. B.2【答案】BC. D.【解析】分析:求得,可得的斜率为,化简后,结合,从而可得结果.详解:分别为双曲线的两条渐近线,不妨设为为,由右焦点关于的对称点在上,设焦点关于的对称点为,右焦点坐标为,中点坐标为,可得,解得,即有,可得的斜率为,即有即可得,可得,则,故选B.,,点睛:本题主要考查双曲线的简单性质及离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造心率的定义以及圆锥曲线的定义来求解.6.某几何体的三视图如图所示,则该几何体的体积为()的齐次式,求出;③采用离A.6B.7C.D.【答案】B【解析】分析:由三视图可知,该几何体为五棱柱,其底面为正视图,根据三视图中数据,利用柱体体积公式求解即可.详解:由三视图可知,该几何体为五棱柱底面为正视图,底面面积为,,高为,体积为,故选B.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.7.已知函数A. B. C. D.【答案】B的图象与轴相切,则()详解:所以最大值,且的图象与轴相切,,,即,,,故选B.点睛:本题主要考查由三角函数的性质求解析式,以及特殊角的三角函数,属于简单题.8.已知是抛物线A. B.3 C.上任意一点,是圆D.上任意一点,则的最小值为()【答案】D【解析】分析:可设点的坐标为据圆的几何性质即可得到的最小值.,由圆方程得圆心坐标,求出的最小值,根详解:设点的坐标为,由圆的方程可得圆心坐标,,,是圆的最小值为上任意一点,,故选D.点睛:解决解析几何中的最值问题一般有两种方法:一是几何意义,特别是用曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将解析几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.9.利用随机模拟的方法可以估计圆周率的值,为此设计如图所示的程序框图,其中上的均匀随机数(实数),若输出的结果为786,则由此可估计的近似值为()表示产生区间A.3.134B.3.141C.3.144D.3.147【答案】C【解析】分析:由模拟试验可得所取的点在圆内的概率为,则由几何概型概率公式,可得所取的点在圆内的概率为圆的面积比正方形的面积,由二者相等列方程可估计的值.详解:由程序框图可知,共产生了其中对的共有内的随机数对,,即在以边长为的正方形中随机取点次,所取之点在以正方形中心为圆心,为半径的圆中的次数为设事件是在以边长为的正方形中随机取点,所取之点在以正方形中心为圆心,为半径的圆中,则,又由试验结果可得,,,故选C.次,点睛:本题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,是否等可能性导致错误.忽视验证事件10.在中,点满足.若存在点,使得,且,则()A.2 C.1B. D.【答案】D【解析】分析:由求得详解:,,可得,解得,,从而可得结果.,,可得,,故选D.11.若异面直线所成的角是,则以下三个命题:①存在直线,满足与的夹角都是;②存在平面,满足,与所成角为;③存在平面,满足其中正确命题的个数为(),与所成锐二面角为.A.0B.1C.2D.3【答案】D【解析】分析:在①中,在上任取一点,过作,与的夹角均为;在②中,在上取一点,过作;在③中,在上取一点,过作,确定一个平面平面即可.详解:异面直线所成的角是,在①中,由异面直线所成的角是,在上任取一点,过作,在空间中过点能作出直线,使得与的夹角均为,存在直线,满足与的夹角都是,故①正确;在②中,在上取一点,过作,则以确定的平面,满足与所成的角是,故②正确;在③中,在上取一点,过作,确定一个平面平面,过能作出一个平面,满足与所成锐二面角为,故③正确,故选D点睛:本题主要通过对多个命题真假的判断,主要综合考查空间线性角、线面角、面面角的定义与性质,属于难题.这种题型综合性较强,也是高考的命题热点,同学们往往因为某一处知识点掌握不好而导致“全盘皆输”,因此做这类题目更要细心、多读题,尽量挖掘出题目中的隐含条件,另外,要注意从简单的自己已经掌握的知识点入手,然后集中精力突破较难的命题.的最小值为,则()12.已知,若A. B. C. D.【答案】A,结合的最【解析】分析:求出导函数,设导函数的零点,即原函数的极值点为,可得小值为列方程组,求得,则值可求.详解:由,得,令,则,则在上为增函数,又,存在,使,即,,①函数在上为减函数,在上为增函数,,即,②则的最小值为联立①②可得,把代入①,可得,故选A.点睛:本题主要考查利用导数判断函数的单调性以及函数的极值与最值,属于难题.求函数极值的步骤:(1)确定函数的定义域;(2)求导数;(3)解方程求出函数定义域内的所有根;(4)列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.(5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设变量满足约束条件则的最大值为__________.【答案】4.【解析】分析:画出可行域,平移直线,由图可知,当直线过点时,有最大值,从而可得结果.详解:画出表示的可行域,如图,,化为,平移直线,由图可知,当直线过点时,有最大值,由,到,此时,故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的定点就是最优解);(3)将最优解坐标代入目标函数求出最值.14.某种袋装大米的质量(单位:)服从正态分布的概率为__________.,任意选一袋这种大米,质量在(【答案】0.8185.【解析】分析:先求出详解:因为(单位:)服从正态分布所以,,根据正态分布的对称性,可得),再求得,,,从而可得结果.,,故答案为.点睛:本题主要考查正态分布的性质与实际应用,属于中档题.有关正态分布的应用题考查知识点较为清晰,只要掌握以下两点,问题就能迎刃而解:(1)仔细阅读,将实际问题与正态分布“挂起钩来”;(2)熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系.15.设函数则使得成立的得取值范围是__________.【答案】.【解析】分析:分两种情况讨论,分别解不等式组,然后求并集即可.详解:由,得或,得或,即得取值范围是,故答案为.点睛:本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.16.的内角的对边分别为,角的内角平分线交于点,若,则的取值范围是__________.【答案】.【解析】分析:先由合函数的单调性即的结果.详解:,,当且仅当根据基本不等式可得,再根据角平分线的定理和角平分线公式,换元后结,时取等号,角的内角平分线交设,则,由角平分线公式可得于,,,设,易知函数单调递增,当且仅当,,时取等号,故答案为.点睛:本题主要考查角平分线定理基本不等式的应用以及利用单调性求范围,属于难题.求范围问题往往先将所求问题转化为函数问题,然后根据:配方法、换元法、不等式法、三角函数法、图象法、函数单调性法求解,利用函数的单调性求范围,首先确定函数的定义域,然后准确地找出其单调区间,最后再根据其单调性求凼数的取值范围即可.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列是等差数列,是等比数列,,.(1)求和的通项公式;(2)若,求数列的前项和.【答案】(1)a=2n-1,b=2n.n n(2).【解析】分析:(1)根据,列出关于公比、公差的方程组,解方程组可得与的值,从而可得数列与的通项公式;(2)由(1)可得根据分组求和,结合等差数列的求和公式以及等比数列求和公式可得结果.详解:(1)设数列{a}的公差为d,数列{b}的公比为q,n n依题意有,解得d=2,q=2,故a=2n-1,b=2n nn,(2)由已知c=a=4n-3,c=b=4n,2n-1 2n-1 2n 2n所以数列{c}的前2n项和为nS=(a+a+…a)+(b+b+…b)2n 1 3 2n-1 2 4 2n=+=2n2-n+(4n-1).点睛:本题主要考查等差数列的定义及等比数列的通项和利用“分组求和法”求数列前项和,属于中档题.利用“分组求和法”求数列前项和常见类型有两种:一是通项为两个公比不相等的等比数列的和或差,可以分别用等比数列求和后再相加减;二是通项为一个等差数列和一个等比数列的和或差,可以分别用等差数列求和、等比数列求和后再相加减.18.某球迷为了解两支球队的攻击能力,从本赛季常规赛中随机调查了20场与这两支球队有关的比赛.两队所得分数分别如下:球队:122110 105 105109101107129115100114 118 118104 93 120 96102 105 83球队:114114 110 10810311793124 7510691 81107 112 107 10110612010779(1)根据两组数据完成两队所得分数的茎叶图,并通过茎叶图比较两支球队所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可);(2)根据球队所得分数,将球队的攻击能力从低到高分为三个等级:球队所得分数攻击能力等级低于100分较弱100分到119分较强不低于120分很强记事件“球队的攻击能力等级高于球队的攻击能力等级”.假设两支球队的攻击能力相互独立. 根据所给数据,以事件发生的频率作为相应事件发生的概率,求的概率.【答案】(1)茎叶图见解析,A球队所得分数的平均值高于B球队所得分数的平均值;A球队所得分数比较集中,B球队所得分数比较分散.(2)0.31.【解析】分析:(1)通过茎叶图可以看出,球队所得分数的平均值高于球队所得分数的平均值;球队所得分数比较集中,球队所得分数比较分散;(2)由古典概型概率公式,利用互斥事件概率公式,独立事件的概率公式可求得事件的概率.详解:(1)两队所得分数的茎叶图如下A球队B球队759381 36931524078189554501011843467772167 0921240通过茎叶图可以看出,A球队所得分数的平均值高于B球队所得分数的平均值;A球队所得分数比较集中,B球队所得分数比较分散.(2)记C 表示事件:“A球队攻击能力等级为较强”,A1C表示事件:“A球队攻击能力等级为很强”;A2C表示事件:“B球队攻击能力等级为较弱”,B1B表示事件:“B球队攻击能力等级为较弱或较强”,B2则C与C 独立,C与C 独立,C与C互斥,C=(C C)∪(C C).A1 B1 A2 B2 A1 A2 A1 B1 A2 B2P(C)=P(C C)+P(C C )=P(C)P(C)+P(C)P(C ).A1 B1 A2 B2 A1 B1 A2 B2由所给数据得C ,C,C,C发生的频率分别为,,A1 A2 B1 B2,,故P(C)=,P(C)=,P(C)=,P(C)=,A1 A2 B1 B2P(C)=×+×=0.31.点睛:本题主要考查互斥事件、对立事件及必然事件的概率及分段函数的解析式,属于难题.解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.19.如图,四棱锥的底面是平行四边形,.(1)求证:平面平面;(2)若,为的中点,为棱上的点,平面,求二面角的余弦值.【答案】(1)见解析.(2).【解析】分析:(1)由平面,可得,由,可得,利用线面垂直的判定定理可得平面,从而根据面面垂直的判定定理可得结果;(2)以所在直线分别为轴,轴,轴建立空间直角坐标系,利用向量垂直数量积为零,列方程组分别求出平面向量,利用空间向量夹角余弦公式求解即可.详解:(1)∵AB∥CD,PC⊥CD,∴AB⊥PC,∵AB⊥AC,AC∩PC=C,∴AB⊥平面PAC,∴AB⊥PA,又∵PA⊥AD,AB∩AD=A,∴PA⊥平面ABCD,PA平面PAB,∴平面PAB⊥平面ABCD.(2)连接BD交AE于点O,连接OF,∵E为BC的中点,BC∥AD,∴==,∵PD∥平面AEF,PD平面PBD,平面AEF∩平面PBD=OF,∴PD∥OF,∴==,以AB,AC,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系A-xyz,与平面的一个法则A(0,0,0),B(3,0,0),C(0,3,0),D(-3,3,0),P(0,0,3),E( ,,0),F(2,0,1),设平面ADF的法向量m=(x,y,z),1 1 1∵=(2,0,1),=(-3,3,0),由·m=0,·m=0得取m=(1,1,-2).设平面DEF的法向量n=(x,y,z),2 2 2∵=(,-,0),=(,-,1),由·n=0,·n=0得取n=(1,3,4).cos m,n==-,∵二面角A-DF-E为钝二面角,∴二面角A-DF-E的余弦值为-.点睛:本题主要考查利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.20.已知点,点,点,动圆与轴相切于点,过点的直线与圆相切于点,过点的直线与圆相切于点(均不同于点),且与交于点,设点的轨迹为曲线.(1)证明:为定值,并求的方程;(2)设直线与的另一个交点为,直线与交于两点,当三点共线时,求四边形的面积.【答案】(1)证明见解析,方程为.(2).【解析】分析:(1)根据圆的切线性质可得,,从而根据椭圆的可得结果;(2)直线与曲线联立,利用韦达定理、弦长公式以及三角形面积公式可得四边形的面积为.详解:(1)由已知可得|PD|=|PE|,|BA|=|BD|,|CE|=|CA|,所以|PB|+|PC|=|PD|+|DB|+|PC|=|PE|+|PC|+|AB|=|CE|+|AB|=|AC|+|AB|=4>|BC|所以点P 的轨迹是以B,C为焦点的椭圆(去掉与x轴的交点),可求的方程为+=1(y≠0).(2)由O,D,C三点共线及圆的几何性质,可知PB⊥CD,又由直线CE,CA为圆O的切线,可知CE=CA,OA=OE,所以△OAC≌△O EC,进而有∠ACO =∠ECO,所以|PC|=|BC|=2,又由椭圆的定义,|PB|+|PC|=4,得|PB|=2,所以△PBC为等边三角形,即点P在y轴上,点P的坐标为(0,±)(i)当点P的坐标为(0,此时直线l的方程为y=1)时,∠PBC=60,∠BCD=30,(x+1),直线CD的方程为y=-(x-1),由整理得5x2+8x=0,得Q(-,-),所以|PQ|=,由整理得13x2-8x-32=0,设M(x,y),N(x,y),x+x=,x x=-,1 12 2 1 2 1 2|MN|=|x-x|=,1 2所以四边形MPNQ的面积S=|PQ|·|MN|=.(ii)当点P的坐标为(0,-综上,四边形MPNQ的面积为)时,由椭圆的对称性,四边形MPNQ的面积为..点睛:求椭圆标准方程的方法一般为定义法与待定系数法,定义法是若题设给条件符合椭圆的定义,直接写出方程;也可以根据条件确定关于的方程组,解出从而写出椭圆的标准方程.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.21.已知,函数.(1)记,求的最小值;(2)若有三个不同的零点,求的取值范围.【答案】(1)g(a)的最小值为g(1)=0.(2) 0<a<1.【解析】分析:(1)先求出,再求出,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,根据单调性可得的最小值;(2),因为有三个不同的零点,所以至少有三个单调区间,而方程在至多有两个不同正根,所以,有内各有一个零点,可得的范围是.解得,,然后再证明详解:(1)g(a)=lna2+-2=2(lna+-1),g(a)=2(-)=,所以0<a<1时,g(a)<0,g(a)单调递减;a>1时,g(a)>0,g(a)单调递增,所以g(a)的最小值为g(1)=0.(2)f(x)=-=,x>0.因为y=f(x)有三个不同的零点,所以f(x)至少有三个单调区间,而方程x2+(2a2-4a)x+a4=0至多有两个不同正根,所以,有解得,0<a<1.由(1)得,当x≠1时,g(x)>0,即lnx+-1>0,所以lnx>-,则x>e-(x>0),令x=,得>e-.因为f(e-)<-+-2=-<0,f(a2)>0,f(1)=-2=<0,f(e2)=>0,所以y=f(x)在(e-,a2),(a2,1),(1,e2)内各有一个零点,故所求a的范围是0<a<1.点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知点在椭圆上,将射线绕原点逆时针旋转,所得射线交直线于点.以为极点,轴正半轴为极轴建立极坐标系.(1)求椭圆和直线的极坐标方程;(2)证明::中,斜边上的高为定值,并求该定值.【答案】(1), (2)h为定值,且h=.【解析】分析:(1)直接利用.即可得椭圆和直线的极坐标方程;(2)由(1)得,代入,化简即可得结果.详解: (1)由 x =ρ cos θ ,y =ρ sin θ 得椭圆 C 极坐标方程为 ρ22 2 2 =;直线 l 的极坐标方程为 ρ sin θ =2,即 ρ =.(2)证明:设 A(ρ ,θ ),B(ρ ,θ + ),- A B<θ <.由(1)得|OA| =ρ =,|OB| =ρ == ,由 S△=OAB×|OA|×|OB|=×|AB|×h 可得,h 2===2.故 h 为定值,且 h = .点睛:本题主要考查直接坐标方程化为极坐标方程,以及坐标方程的应用,属于中档题.即可实现直接坐标方程化为极坐标方程的互化.23. 选修 4-5:不等式选讲利用已知函数(1)求不等式(2)设【答案】(1).的解集;,求.的最大值.(2) 故 x =± 时,g(x)取得最大值-3.【解析】分析:(1)不等式等价于,两边平方后利用一元二次不等式的解法求解即可;(2)将,写成分段函数形式,利用函数的单调性,可得当时,取得最大值 .详解:(1)由题意得|x -1|≥|2x -3|,所以|x -1|2≥|2x -3| 2整理可得 3x 2-10x +8≤0,解得≤x≤2,故原不等式的解集为{x|≤x ≤2}.(2)显然 g(x)=f(x)+f(-x)为偶函数,所以只研究 x ≥0 时 g(x)的最大值.g(x)=f(x)+f(-x)=|x -1|-|2x -3|+|x +1|-|2x +3|,(cos θ +2sin θ )=4,即 ρ 2 2所以x≥0时,g(x)=|x-1|-|2x-3|-x-2=所以当x=故x=±时,g(x)取得最大值-3,时,g(x)取得最大值-3.点睛:绝对值不等式的常见解法:①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想;①不等式两边都含绝对值,可以两边平方后再求解,体现了转化与划归思想。
河北省唐山市2017届高三第三次模拟考试数学理(含答案)word版
河北唐山市 2017届高三第三次模拟数学(理)试题说明:一、本试卷共4面,包括三道大题,24道小题,共150分,其中(1)~(21)小题为必做题,(22)~(24)小题为选做题。
二、答题前请仔细阅读答题卡上的“注意事项”,按照“注意事项”的规定答题。
三、做选择题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的标号涂黑,如需改动,用橡皮将原选涂答案擦干净后,再选涂其他答案。
四、考试结束后,将本试卷与原答题卡一并交回。
参考公式:样本数据12,,n x x x 的标准差锥体的体积公式13v sh =s =其中S 为底面面积,h 为高其中x 为样本平均数 球的表面积、体积公式2344,3s R V R ππ==柱体的体积公式V sh = 其中R 为球的半径其中S 为底面面积,h 为高一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,有且只有一项是符合题目要求的。
1.复数43(2)ii +=-( )A .1B .-1C .iD .-i 2.函数31()(2)()2xf x x =+-的零点所在的一个区间是 ( )A .(-2,-1)B .(-1,0)C .(0,1) `D .(1,2)3.已知随机变量X 服从正态分布N 2(1,)σ,若P (X≤2)=0.72,则P(X≤0)=A .0.22B .0.28C .0.36D .0.644.执行右面的程序框图,若输出的k=2,则输入x 的取值范围是( ) A .(21,41) B .(21,41) C .(21,41) D .(21,41)5.从6名学生中选3名分别担任数学、物理、化学科代表,若甲、乙2人至少有一人入选,则不同有方法有 ( ) A .40种 B .60种 C .96种 D .120种6. 六棱柱'''''''ABCDEF A B C D E F -的底面是正六边形,侧棱垂直于底面,且侧棱长等于底面边长,则直线''B D 与'EF 所成角的余弦植为( )ABC .14`D .347.设a 、b R ∈,则“a>1且0<b<1”是“a-b>0且ab>1”成立的 ( )A .充分面不必要条件B .必要而不充分条件C .充分且必要条件D .既不充分也不必要条件8.函数2sin()cos()36y x x ππππ=+++的一个单调增区间是 ( )A .21[,]33-B .511[,]66C .14[,]33D .15[,]66-9.等差数列{}n a 的前n 项和为17510,100,5770,n t S a S S S =-==已知且则A .100B .50C .0D .-5010.椭圆2222:1(0)x y C a b a b+=>>的左、右顶点为A 、B ,点P 是C 上不与A 、B 重合的任意一点,设∠PAB=a,∠PBA=β,则 ( )A .sin cos a β<B .sin cos a β>C .sin cos a β=D .sin cos a β与的大小不确定11.函数22(),()1,(()(())[,](0)f x x g x og x f g x g f x a b a b ==<<若与的定义域都为,值域相同,则 ( ) A .1,4a b == B .1,1a b =≤C .1,4a b ≥≤D .1,4a b ≥=12.动点P (x ,y )满足1,25,3,y x y x y ≥⎧⎪+≤⎨⎪+≥⎩点Q 为(1,-1),O 为坐标原点,||OP OP OQ λ=⋅ ,则λ的取值范围是( ) A.[ B. C.[ D.[二、填空题:本大题共4小题,每小题5分,共20分。
河北唐山市2018届高三数学一模试卷理科有答案
河北唐山市2018届高三数学一模试卷(理科有答案)唐山市2017-2018学年度高三年级第一次模拟考试理科数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.()A.B.C.D.2.设集合,,则()A.B.C.D.3.已知,且,则()A.B.C.D.4.两个单位向量,的夹角为,则()A.B.C.D.5.用两个,一个,一个,可组成不同四位数的个数是()A.B.C.D.6.已知,,,则()A.B.C.D.7.如图是根据南宋数学家杨辉的“垛积术”设计的程序框图,该程序所能实现的功能是()A.求B.求C.求D.求8.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度B.向右平移个单位长度C.向右平移个单位长度D.向左平移个单位长度9.某几何体的三视图如图所示,则该几何体的表面积是()A.B.C.D.10.已知为双曲线:的右焦点,过点向的一条渐近线引垂线,垂足为,交另一条渐近线于点.若,则的离心率是()A.B.C.D.11.已知函数,则下列关于的表述正确的是()A.的图象关于轴对称B.,的最小值为C.有个零点D.有无数个极值点12.已知,,,是半径为的球面上的点,,,点在上的射影为,则三棱锥体积的最大值是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分.13.设,满足约束条件,则的最小值是.14.的展开式中,二项式系数最大的项的系数是.(用数字作答)15.已知为抛物线上异于原点的点,轴,垂足为,过的中点作轴的平行线交抛物线于点,直线交轴于点,则.16.在中,角,,的对边分别为,,,边上的高为,若,则的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第(22)、(23)题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知数列为单调递增数列,为其前项和,.(1)求的通项公式;(2)若,为数列的前项和,证明:.18.某水产品经销商销售某种鲜鱼,售价为每公斤元,成本为每公斤元.销售宗旨是当天进货当天销售.如果当天卖不出去,未售出的全部降价处理完,平均每公斤损失元.根据以往的销售情况,按,,,,进行分组,得到如图所示的频率分布直方图.(1)求未来连续三天内,该经销商有连续两天该种鲜鱼的日销售量不低于公斤,而另一天日销售量低于公斤的概率;(2)在频率分布直方图的需求量分组中,以各组区间的中点值代表该组的各个值.(i)求日需求量的分布列;(ii)该经销商计划每日进货公斤或公斤,以每日利润的数学期望值为决策依据,他应该选择每日进货公斤还是公斤?19.如图,在三棱柱中,平面平面,.(1)证明:;(2)若是正三角形,,求二面角的大小.20.已知椭圆:的左焦点为,上顶点为,长轴长为,为直线:上的动点,,.当时,与重合.(1)若椭圆的方程;(2)若直线交椭圆于,两点,若,求的值.21.已知函数,.(1)设,求的最小值;(2)证明:当时,总存在两条直线与曲线与都相切. (二)选考题:共10分.请考生在(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系中,圆:,圆:.以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求,的极坐标方程;(2)设曲线:(为参数且),与圆,分别交于,,求的最大值.23.选修4-5:不等式选讲设函数的最大值为.(1)求的值;(2)若正实数,满足,求的最小值.唐山市2017—2018学年度高三年级第一次模拟考试理科数学参考答案一.选择题:A卷:DCBDADCCABDBB卷:ACBDDDCAABDB二.填空题:(13)-5(14)-160(15)32(16)[2,22]三.解答题:(17)解:(Ⅰ)当n=1时,2S1=2a1=a21+1,所以(a1-1)2=0,即a1=1,又为单调递增数列,所以a n≥1.…2分由2Sn=a2n+n得2Sn+1=a2n+1+n+1,所以2Sn+1-2Sn=a2n+1-a2n+1,整理得2an+1=a2n+1-a2n+1,所以a2n=(an+1-1)2.所以an=an+1-1,即an+1-an=1,所以是以1为首项,1为公差的等差数列,所以an=n.…6分(Ⅱ)bn=an+22n+1anan+1=n+22n+1n(n+1)=12nn-12n+1(n+1)…9分所以Tn=(1211-1222)+(1222-1233)+…+[12nn-12n+1(n+1)]=1211-12n+1(n+1)<12.…12分(18)解:(Ⅰ)由频率分布直方图可知,日销售量不低于350公斤的概率为(0.0025+0.0015)×100=0.4,则未来连续三天内,有连续两天的日销售量不低于350公斤,而另一天日销售量低于350公斤的概率P=0.4×0.4×(1-0.4)+(1-0.4)×0.4×0.4=0.192.…3分(Ⅱ)(ⅰ)X可取100,200,300,400,500,P(X=100)=0.0010×10=0.1;P(X=200)=0.0020×10=0.2;P(X=300)=0.0030×10=0.3;P(X=400)=0.0025×10=0.25;P(X=500)=0.0015×10=0.15;所以X的分布列为:X100200300400500P0.10.20.30.250.15…6分(ⅱ)当每日进货300公斤时,利润Y1可取-100,700,1500,此时Y1的分布列为:Y1-1007001500P0.10.20.7此时利润的期望值E(Y1)=-100×0.1+700×0.2+1500×0.7=1180;…8分当每日进货400公斤时,利润Y2可取-400,400,1200,2000,此时Y2的分布列为:Y2-40040012002000P0.10.20.30.4此时利润的期望值E(Y2)=-400×0.1+400×0.2+1200×0.3+2000×0.4=1200;…10分因为E(Y1)<E(Y2),所以该经销商应该选择每日进货400公斤.…12分(19)解:(Ⅰ)过点B1作A1C的垂线,垂足为O,由平面A1B1C⊥平面AA1C1C,平面A1B1C∩平面AA1C1C =A1C,得B1O⊥平面AA1C1C,又AC平面AA1C1C,得B1O⊥AC.由∠BAC=90°,AB∥A1B1,得A1B1⊥AC.又B1O∩A1B1=B1,得AC⊥平面A1B1C.又CA1平面A1B1C,得AC⊥CA1.…4分(Ⅱ)以C为坐标原点,CA→的方向为x轴正方向,|CA→|为单位长,建立空间直角坐标系C-xyz.由已知可得A(1,0,0),A1(0,2,0),B1(0,1,3).所以CA→=(1,0,0),AA1→=(-1,2,0),AB→=A1B1→=(0,-1,3).…6分设n=(x,y,z)是平面A1AB的法向量,则nAA1→=0,nAB→=0,即-x+2y=0,-y+3z=0.可取n=(23,3,1).…8分设m=(x,y,z)是平面ABC的法向量,则mAB→=0,mCA→=0,即-y+3z=0,x=0.可取m=(0,3,1).…10分则cosn,m=nm|n||m|=12.又因为二面角A1-AB-C为锐二面角,所以二面角A1-AB-C的大小为3.…12分(20)解:(Ⅰ)依题意得A(0,b),F(-c,0),当AB⊥l时,B(-3,b),由AF⊥BF得kAFkBF=bcb-3+c=-1,又b2+c2=6. 解得c=2,b=2.所以,椭圆Γ的方程为x26+y22=1.…4分(Ⅱ)由(Ⅰ)得A(0,2),依题意,显然m≠0,所以kAM=-2m,又AM⊥BM,所以kBM=m2,所以直线BM的方程为y=m2(x-m),设P(x1,y1),Q(x2,y2).y=m2(x-m)与x26+y22=1联立得(2+3m2)x2-6m3x+3m4-12=0,x1+x2=6m32+3m2,x1x2=3m4-122+3m2.…7分|PM||QM|=(1+m22)|(x1-m)(x2-m)|=(1+m22)|x1x2-m(x1+x2)+m2|=(1+m22)|2m2-12|2+3m2=(2+m2)|m2-6|2+3m2,|AM|2=2+m2,…9分由AP⊥AQ得,|AM|2=|PM||QM|,所以|m2-6|2+3m2=1,解得m=±1.…12分(21)解:(Ⅰ)F(x)=(x+1)ex-1,当x<-1时,F(x)<0,F(x)单调递减;当x>-1时,F(x)>0,F(x)单调递增,故x=-1时,F(x)取得最小值F(-1)=-1e2.…4分(Ⅱ)因为f(x)=ex-1,所以f(x)=ex-1在点(t,et-1)处的切线为y=et-1x +(1-t)et-1;…5分因为g(x)=1x,所以g(x)=lnx+a在点(m,lnm+a)处的切线为y=1mx +lnm+a-1,…6分由题意可得et-1=1m,(1-t)et-1=lnm+a-1,则(t-1)et-1-t+a=0.…7分令h(t)=(t-1)et-1-t+a,则h(t)=tet-1-1由(Ⅰ)得t<-1时,h(t)单调递减,且h(t)<0;当t>-1时,h(t)单调递增,又h(1)=0,t<1时,h(t)<0,所以,当t<1时,h(t)<0,h(t)单调递减;当t>1时,h(t)>0,h(t)单调递增.…9分由(Ⅰ)得h(a-1)=(a-2)ea-2+1≥-1e+1>0,…10分又h(3-a)=(2-a)e2-a+2a-3>(2-a)(3-a)+2a -3=(a-32)2+34>0,…11分h(1)=a-1<0,所以函数y=h(t)在(a-1,1)和(1,3-a)内各有一个零点,故当a<1时,存在两条直线与曲线f(x)与g(x)都相切.…12分(22)解:(Ⅰ)由x=ρcosθ,y=ρsinθ可得,C1:ρ2cos2θ+ρ2sin2θ-2ρcosθ+1=1,所以ρ=2cosθ;C2:ρ2cos2θ+ρ2sin2θ-6ρcosθ+9=9,所以ρ=6cosθ.…4分(Ⅱ)依题意得|AB|=6cosα-2cosα=4cosα,-2<α<2,C2(3,0)到直线AB的距离d=3|sinα|,所以S△ABC2=12×d×|AB|=3|sin2α|,故当α=±4时,S△ABC2取得最大值3. (10)分(23)解:(Ⅰ)f(x)=|x+1|-|x|=-1,x≤-1,2x+1,-1<x<1,1,x≥1,由f(x)的单调性可知,当x≥1时,f(x)有最大值1.所以m=1.…4分(Ⅱ)由(Ⅰ)可知,a+b=1,a2b+1+b2a+1=13(a2b+1+b2a+1)[(b+1)+(a+1)] =13[a2+b2+a2(a+1)b+1+b2(b+1)a+1]≥13(a2+b2+2a2(a+1)b+1b2(b+1)a+1)=13(a+b)2=13.当且仅当a=b=12时取等号.即a2b+1+b2a+1的最小值为13.…10分。
【唐山二模】唐山市2018届高三第二次模拟考试理科数学(含答案)
…12 分
…1 分 …2 分
…5 分
所以 g (x)<0,g (x)在(a,1)上单调递减, 即 g (x)>g (1)=a+1>1. 1 当 <a<1 时,-1<ln a<0. e
…8 分
令 t (x)=ax-xln a-1,0<a<x<1,则 t (x)=axln a-ln a=(ax-1)ln a>0, 所以 t (x)在(0,1)上单调递增,即 t (x)>t (0)=0, 所以 ax>xln a+1. …10 分 - 所以 g (x)=ax+xa>xa+xln a+1=x(xa 1+ln a)+1>x(1+ln a)+1>1. 综上,g (x)>1. …12 分 22.解: (1)曲线 C1 的直角坐标方程为:x2+y2-2y=0; 曲线 C2 的直角坐标方程为:x=3. (2)P 的直角坐标为(-1,0),设直线 l 的倾斜角为α, 0<α< 则直线 l 的参数方程为: …4 分
z C1 B1 C B A y A1
→ x (2) 如图, 以 C 为坐标原点, 分别以→ CB , CA 为 x 轴,y 轴的正方向建立空间直角坐标系 C-xyz. 由∠A1CC1=90°,AC= 2AA1 得 A1C=AA1. 不妨设 BC=AC= 2AA1=2, 则 B(2,0,0),C1(0,-1,1),A(0,2,0),A1(0,1,1), → → → 所以A 1C1=(0,-2,0), BC1 =(-2,-1,1), AB =(2,-2,0), 设平面 A1BC1 的一个法向量为 m, → → 由A 1C1·m=0, BC1 ·m=0,可取 m=(1,0,2).
设平面 ABC1 的一个法向量为 n, 由→ BC1 ·n=0,→ AB ·n=0,可取 n=(1,1,3). m· n 7 55 cosm,n= = , 55 |m||n| …10 分 …11 分 …8 分
2017届河北省唐山市高三第一次模拟考试试题理科数学试题及答案
唐山市2017学年度高三年级第一次模拟考试理 科 数 学一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、已知全集{}2U 1x x =>,集合{}2430x x x A =-+<,则U A =ð( ) A .()1,3 B .()[),13,-∞+∞ C .()[),13,-∞-+∞ D .()(),13,-∞-+∞2、221i i ⎛⎫= ⎪-⎝⎭( ) A .2i - B .4i - C .2i D .4i3、已知抛物线的焦点()F ,0a (0a <),则抛物线的标准方程是( ) A .22y ax= B .24y ax= C .22y ax =-D .24y ax =-4、命题:p x ∃∈N ,32x x <;命题:q ()()0,11,a ∀∈+∞ ,函数()()log 1a f x x =-的图象过点()2,0,则( ) A .p 假q 真 B .p 真q 假 C .p 假q 假 D .p 真q 真5、执行右边的程序框图,则输出的A 是( ) A .2912B .7029C .2970D .169706、在直角梯形CD AB 中,//CD AB ,C 90∠AB = ,2C 2CD AB =B =,则cos D C ∠A =( )A .B .C .D .7、已知2sin 21cos 2αα=+,则tan 2α=( ) A .43- B .43C .43-或0D .43或08、32212x x ⎛⎫+- ⎪⎝⎭展开式中的常数项为( )A .8-B .12-C .20-D .209、函数()sin 2cos f x x x =+的值域为( ) A .⎡⎣ B .[]1,2 C .⎡⎣D .⎤⎦10、F 是双曲线C :22221x y a b-=(0a >,0b >)的右焦点,过点F 向C的一条渐近线引垂线,垂足为A ,交另一条渐近线于点B .若2F F A =B,则C 的离心率是( )A .B .2C .D .311、直线y a =分别与曲线()21y x =+,ln y x x =+交于A ,B ,则AB 的最小值为( )A .3B .2C .4D .3212、某几何体的三视图如图所示,则该几何体的表面积为( )A .4 B .21C .12 D 12+ 二、填空题(本大题共4小题,每小题5分,共20分.)13、已知()1,3a =-,()1,b t = ,若()2a b a -⊥ ,则b = .14、为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据,计算得回归直线方程为ˆ0.850.25yx =-.由以上2A ,B ,C ,D ,若C D 2AB =A =A =,则平面CDB 被球所截得图形的面积为 .16、已知x ,R y ∈,满足22246x xy y ++=,则224z x y =+的取值范围为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17、(本小题满分12分)设数列{}n a 的前n 项和为n S ,满足()11n n q S qa -+=,且()10q q -≠. ()I 求{}n a 的通项公式;()II 若3S ,9S ,6S 成等差数列,求证:2a ,8a ,5a 成等差数列. 18、(本小题满分12分)小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.()I 若小王发放5元的红包2个,求甲恰得1个的概率;()II 若小王发放3个红包,其中5元的2个,10元的1个.记乙所得红包的总钱数为X ,求X 的分布列和期望.19、(本小题满分12分)如图,在斜三棱柱111C C AB -A B 中,侧面11CC A A 与侧面11C C BB 都是菱形,111CC CC 60∠A =∠B = ,C 2A =. ()I 求证:11CC AB ⊥;()II 若1AB =11C -AB -A .20、(本小题满分12分)已知圆:O 224x y +=,点)A ,以线段AB 为直径的圆内切于圆O ,记点B 的轨迹为Γ.()I 求曲线Γ的方程;()II 直线AB 交圆O 于C ,D 两点,当B 为CD 的中点时,求直线AB 的方程.21、(本小题满分12分)已知函数()()212xx f x e +=-,()()2ln 1x g x x e -=++.()I ()1,x ∈-+∞时,证明:()0f x >; ()II 0a >,若()1g x ax ≤+,求a 的取值范围.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号. 22、(本小题满分10分)选修4-1:几何证明选讲 如图,圆周角C ∠BA 的平分线与圆交于点D ,过点D 的切线与弦C A 的延长线交于点E ,D A 交C B 于点F .()I 求证:C//D B E ;()II 若D ,E ,C ,F 四点共圆,且 C C A =B ,求C ∠BA .23、(本小题满分10分)选修4-4:坐标系与参数方程已知椭圆C :22143x y +=,直线:l 3x y t⎧=-+⎪⎨=⎪⎩(t 为参数).()I 写出椭圆C 的参数方程及直线l 的普通方程;()II 设()1,0A ,若椭圆C 上的点P 满足到点A 的距离与其到直线l 的距离相等,求点P 的坐标. 24、(本小题满分10分)选修4-5:不等式选讲 已知函数()21f x x a x =-++. ()I 当1a =时,解不等式()3f x <; ()II 若()f x 的最小值为1,求a 的值.参考答案一、选择题:1、C2、A3、B4、A5、B6、B7、D8、C9、A 10、C 11、D 12、C 二、填空题:13、 5 14、6 15、16π 16、[4,12] 三、解答题:17、解:(Ⅰ)当n =1时,由(1-q )S 1+qa 1=1,a 1=1. 当n ≥2时,由(1-q )S n +qa n =1,得(1-q )S n -1+qa n -1=1,两式相减得a n =qa n -1, 又q (q -1)≠0,所以{a n }是以1为首项,q 为公比的等比数列,故a n =q n -1. …6分(Ⅱ)由(Ⅰ)可知S n =1-a n q 1-q ,又S 3+S 6=2S 9,得1-a 3q 1-q +1-a 6q1-q=2(1-a 9q )1-q,化简得a 3+a 6=2a 9,两边同除以q 得a 2+a 5=2a 8. 故a 2,a 8,a 5成等差数列. …12分 18、解:(Ⅰ)设“甲恰得一个红包”为事件A ,P (A )=C 12×1 3× 2 3= 4 9. …4分(Ⅱ)X 的所有可能值为0,5,10,15,20.P (X =0)= ( 2 3)2× 2 3=827, P (X =5)=C 12× 1 3×( 2 3)2=827,P(X=10)=( 13)2×23+(23)2×13=627,P(X=15)=C12×( 13)2×23=427,P(X=20)=( 13)3=127.…10分X的分布列:E(X)=0×827+5×827+10×627+15×427+20×127=203.…12分19、解:(Ⅰ)证明:连AC1,CB1,则△ACC1和△B1CC1皆为正三角形.取CC1中点O,连OA,OB1,则CC1⊥OA,CC1⊥OB1,则CC1⊥平面OAB1,则CC1⊥AB1. (4)分(Ⅱ)解:由(Ⅰ)知,OA=OB1=3,又AB1=6,所以OA⊥OB1.如图所示,分别以OB1,OC1,OA为正方向建立空间直角坐标系,则C(0,-1,0),B1(3,0,0),A(0,0,3),…6分设平面CAB1的法向量为m=(x1,y1,z1),因为AB1→=(3,0,-3),AC→=(0,-1,-3),所以⎩⎪⎨⎪⎧3×x 1+0×y 1-3×z 1=0,0×x 1-1×y 1-3×z 1=0,取m =(1,-3,1).…8分设平面A 1AB 1的法向量为n =(x 2,y 2,z 2), 因为AB 1→=(3,0,-3),AA 1→= (0,2,0),所以⎩⎪⎨⎪⎧3×x 2+0×y 2-3×z 2=0,0×x 1+2×y 1+0×z 1=0,取n =(1,0,1).…10分则cos 〈m ,n 〉=m ·n |m ||n |=25×2=105,因为二面角C -AB 1-A 1为钝角,所以二面角C -AB 1-A 1的余弦值为-105.…12分20、解:(Ⅰ)设AB 的中点为M ,切点为N ,连OM ,MN ,则|OM |+|MN |=|ON |=2取A 关于y 轴的对称点A ',连A 'B ,故|A 'B |+|AB |=2(|OM |+|MN |)=4.所以点B 的轨迹是以A ',A 其中,a =2,c =3,b =1,则曲线Γ的方程为x 24+y 2=1.…5分(Ⅱ)因为B 为CD 的中点,所以OB ⊥CD ,则OB →⊥AB →.设B (x 0,y 0), 则x 0(x 0-3)+y 02=0. …7分又x024+y02=1 解得x0=23,y0=±23.则k OB=±22,k AB= 2,…10分则直线AB的方程为y=±2(x-3),即x-y-6=0或2x+y-6=0.…12分21、解:(Ⅰ)令p(x)=f'(x)=e x-x-1,p'(x)=e x-1,在(-1,0)内,p'(x)<0,p(x)单减;在(0,+∞)内,p'(x) >0,p(x)单增.所以p(x)的最小值为p(0)=0,即f'(x)≥0,所以f(x)在(-1,+∞)内单调递增,即f(x)>f(-1)>0.…4分(Ⅱ)令h(x)=g(x)-(ax+1),则h'(x)=2x+1-e-x-a,令q(x)=2x+1-e-x-a,q'(x)=1e x-2(x+1)2.由(Ⅰ)得q'(x)<0,则q(x)在(-1,+∞)上单调递减.…6分(1)当a=1时,q(0)=h'(0)=0且h(0)=0.在(-1,0)上h'(x)>0,h(x)单调递增,在(0,+∞)上h'(x)<0,h(x)单调递减,所以h(x)的最大值为h(0),即h(x)≤0恒成立.…7分(2)当a>1时,h'(0)<0,x∈(-1,0)时,h'(x)=2x+1-e-x-a<2x+1-1-a=0,解得x =1-a a +1∈(-1,0). 即x ∈(1-a a +1,0)时h '(x )<0,h (x )单调递减, 又h (0)=0,所以此时h (x )>0,与h (x )≤0恒成立矛盾. …9分(3)当0<a <1时,h '(0)>0,x ∈(0,+∞)时,h '(x )= 2 x +1-e -x -a > 2 x +1-1-a =0,解得x =1-a a +1∈(0,+∞). 即x ∈(0,1-a a +1)时h '(x )>0,h (x )单调递增, 又h (0)=0,所以此时h (x )>0,与h (x )≤0恒成立矛盾. …11分综上,a 的取值为1. …12分22、解:(Ⅰ)证明:因为∠EDC =∠DAC ,∠DAC =∠DAB ,∠DAB =∠DCB ,所以∠EDC =∠DCB ,所以BC ∥DE . …4分 (Ⅱ)解:因为D ,E ,C ,F 四点共圆,所以∠CFA =∠CED由(Ⅰ)知∠ACF =∠CED ,所以∠CFA =∠ACF . 设∠DAC =∠DAB =x , 因为AC ⌒=BC ⌒,所以∠CBA =∠BAC =2x ,所以∠CFA =∠FBA +∠FAB =3x ,在等腰△ACF 中,π=∠CFA +∠ACF +∠CAF =7x ,则x = π 7, 所以∠BAC =2x =2π7. …10分 A D BF C E23、解:(Ⅰ)C :⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为为参数),l :x -3y+9=0. …4分 (Ⅱ)设P (2cos θ,3sin θ),则|AP |=(2cos θ-1)2+(3sin θ)2=2-cos θ,P 到直线l 的距离d =|2cos θ-3sin θ+9|2=2cos θ-3sin θ+92. 由|AP |=d 得3sin θ-4cos θ=5,又sin 2θ+cos 2θ=1,得sin θ= 3 5, cos θ=- 4 5. 故P (- 8 5, 33 5). …10分24、解:(Ⅰ)因为f (x )=|2x -1|+|x +1|=⎩⎪⎨⎪⎧-3x , x ≤-1;-x +2,-1≤x ≤ 1 2;3x , x ≥ 12 且f (1)=f (-1)=3,所以,f (x )<3的解集为{x |-1<x <1}; …4分(Ⅱ)|2x -a |+|x +1|=|x - a 2|+|x +1|+|x - a 2|≥|1+ a 2|+0=|1+ a 2|当且仅当(x+1)(x-a2)≤0且x-a2=0时,取等号.所以|1+a2|=1,解得a=-4或0.…10分。
河北省唐山市2017-2018学年高三第三次模拟考试数学(理)试题 Word版含答案
2017-2018学年 理科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.集合{1,2,3,4}A =,*2{340}B x N x x =∈--<,则AB =( )A .{1,2,3}B .{1,2,3,4}C .{0,1,2,3,4}D .(1,4]- 2. 以下三个中,真有( ) ①若数据123,,,,n x x x x 的方差为1,则1232,2,2,,2n x x x x 的方差为4;②对分类变量x 与y 的随机变量2K 的观测值k 来说,k 越小,判断“x 与y 有关系”的把握程度越大;③已知两个变量线性相关,若它们的相关性越强,则相关系数的绝对值越接近于1. A .①② B .②③ C .①③ D .①②③ 3. 若复数z 满足232i z z i--=(i 为虚数单位),则z =( )A B .5 C D .134. 圆22()5x y m +-=与双曲线2214y x -=的渐近线相切,则正实数m =( )A .5B .1C .D 5. 若向量,a b 满足22a b ==,427a b -=,则a 在b 方向上的投影为( )A B C .1 D .-16. 执行下面的程序框图,若输出的y 值为5,则判断框中可填入的条件是( ) A .3i < B .4i < C .5i < D .6i <7.等差数列{}n a 的各项均为正值,若3626a a +=,则46a a 的最大值为( ) A .1 B .2 C .4 D .68.若变量,x y 满足25050250x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则22x y +的最小值为( )A .254 B .52C .5 D9.函数()2sin()(0,)2f x x πωϕωϕ=+><的图象如图所示,则()f π=( )AB. C .1 D .-110.一个四棱锥的三视图如图所示,则该四棱锥的体积为( ) A .16 B .13 C .14 D .1211.设抛物线2:4C x y =的焦点为F ,斜率为k 的直线l 经过点F ,若抛物线C 上存在四个点到直线l 的距离为2,则k 的取值范围是( )A .(,(3,)-∞+∞B .(1)(1,3)-C .(D .(,1)(1,)-∞-+∞12.在数列{}n a 中,11a =,且11)10n n n n a a a a ++-+=,则2016a =( )A .1B .-1C .2D .2第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分,将答案填写在题中模线上.)13.若函数2)y x =为奇函数,则a =___________.14.在六棱锥P ABCDEF -2PA =且与底面垂直,则该六棱锥外接球的体积等于___________. 15.若6270127(2)(1)x x a a x a x a x +-=++++,则23a a +=___________.16.已知函数3221,0()3,0x ax x f x x a x ⎧--<⎪=⎨-+≥⎪⎩,恰有两个零点,则a 的取值范围是___________.三、解答题:本大题共70分,其中(17)—(21)题为必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,2cos cos a b cB C+-=. (1)求角C 的大小;(2)求sin sin A B 的最大值. 18.(本小题满分12分)某3D 打印机,其打出的产品质量按照百分制衡量,若得分不低于85分则为合格品,低于85分则为不合格品,商家用该打印机随机打印了15件产品,得分情况如下表:(1)写出该组数据的中位数和众数,并估计该打印机打出的产品为合格品的概率; (2)若打印一件合格品可获利54元,打印一件不合格品则亏损18元,记X 为打印3件产品商家所获得的利润,在(1)的前提下,求随机变量X 的分布列和数学期望. 19.(本小题满分12分)如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为梯形,//AD BC ,6BC =,2PA AD CD ===,E 为BC 上一点且23BE BC =,PB AE ⊥. (1)求证:AB PE ⊥;(2)求二面角B PC D --的余弦值.20.(本小题满分12分)已知椭圆C 的右焦点(1,0)F ,过F 的直线l 与椭圆C 交于,A B 两点,当l 垂直于x 轴时,3AB =.(1)求椭圆C 的标准方程;(2)在x 轴上是否存在点T ,使得TA TB ∙为定值?若存在,求出点T 坐标;若不存在,说明理由.21.(本小题满分12分) 已知函数()ln 2mx f x e x =--.(1)若1m =,证明:存在唯一实数1(,1)2t ∈,使得'()0f t =; (2)求证:存在01m <<,使得()0f x >请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.22.(本小题满分10分)选修4-1:几何证明选讲如图,,,A B C 为O 上三点,B 为AC 的中点,P 为AC 延长线上一点,PQ 与O 相切于点Q ,BQ 与AC 相交于点D . (1)证明:DPQ ∆为等腰三角形;(2)若1,PC AD PD ==,求BD QD ∙的值.23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,(2,0)M -,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,(,)A ρθ为曲线C 上一点,(,)3B πρθ+,且1BM =.(1)求曲线C 的直角坐标方程; (2)求22OA MA +的取值范围.24. (本小题满分10分)选修4-5:不等式选讲 已知0a b c d >>>>,ad bc =. (1)证明:a d b c +>+;(2)比较a b dca b c d 与b a cda b c d 的大小.唐山市2015—2016学年度高三年级第三次模拟考试理科数学参考答案一、选择题A 卷:BCAAD BCCBB AD B 卷:BCAAD BBCDCAD二、填空题(13)4 (14)43π(15)-1(16)(-3,0)三、解答题 (17)解:(Ⅰ)因为2a +b cos B =-c cos C ,所以由正弦定理可得:2sin A +sin B cos B =-sin Ccos C , 所以2sin A cos C =-(sin B cos C +sin C cos B )=-sin A .因为sin A ≠0,所以cos C =- 12.又0<C <π,故C = 2π3.…5分(18)解:(Ⅰ)该组数据的中位数为87,众数为92,打印的15件产品中,合格品有10件,由此可估计该打印机打出的产品为合格品的概率为 23. …5分 (Ⅱ)随机变量X 可以取-54,18,90,162,P (X =-54)=C 03×(1- 2 3)3= 1 27, P (X =18)=C 13× 2 3×(1- 2 3)2= 29, P (X =90)=C 23×( 2 3)2×(1- 2 3)1= 4 9, P (X =162)=C 33×( 2 3)3= 827,X 的分布列为∴随机变量X 的期望E (X )=(-54)× 1 27+18× 2 9+90× 4 9+162× 827=90. …12分(19)解:(Ⅰ)∵PA ⊥平面ABCD ,AE ⊂平面ABCD , ∴PA ⊥AE ,又∵PB ⊥AE ,PB ∩PA =P ,∴AE ⊥平面PAB ,又∵AB ⊂平面PAB , ∴AE ⊥AB .又∵PA ⊥AB ,PA ∩AE =A , ∴AB ⊥平面PAE ,又∵PE ⊂平面PAE , ∴AB ⊥PE . …6分(Ⅱ)以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则B (0,0),P (0,0,2),C (3,0),D (1,0),∴BC =(-3,0),PC =(3,-2),DC =(0,2,0). 设平面PBC 的一个法向量m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·BC →=0,m ·PC →=0,即⎩⎪⎨⎪⎧-33x +3y =0,-3x +3y -2z =0,令x =1,得n =(1.同理可求平面PCD 的一个法向量n =(2,0.∴cos 〈m ,n 〉=||||7m n m n ∙==-17. ∵二面角B -PC -D 为钝二面角, ∴二面角B -PC -D 的余弦值为-17.…12分(20)解:(Ⅰ)设椭圆C 的标准方程为22221x y a b+=(a >b >0),由已知可得:2222231b ac a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2a b =⎧⎪⎨=⎪⎩故所求椭圆C 的方程为22143x y +=. …4分(Ⅱ)假设存在满足条件的点T (t ,0),当直线AB 斜率不为0时,可设直线AB 为x =my +1,A (x 1,y 1),B (x 2,y 2), 将x =my +1代入C 得(4+3m 2)y 2+6my -9=0,显然Δ>0,且y 1+y 2=2643m -+,y 1y 2=2943m -+,x 1+x 2=2843m +,x 1x 2=2241243m m-+. 所以TA TB ∙=(x 1-t )(x 2-t )+y 1y 2=x 1x 2-t (x 1+x 2)+t 2+y 1y 2=22(615)943t m m--++t 2-2t +1, 要使TA TB ∙为定值须有6153t -=94-,得t =118,此时T (118,0), TA TB ∙为定值-13564.当直线AB 斜率为0时,TA TB ∙=-13564.故存在点T (118,0)满足题设. …12分(21)解:(Ⅰ)m =1时,f (x )=e x -ln x -2,f '(x )=e x -1x,x >0. 显然f '(x )在(0,+∞)上单调递增,又f '(12)<0,f '(1)>0, 故存在唯一实数t ∈(12,1),使得f '(t )=0.…4分(Ⅱ)f '(x )=m e mx -1x =m (e mx -1mx),由0<m <1得f '(x )在(0,+∞)上单调递增,由(Ⅰ)得mx 0=t 时,f '(x 0)=0,所以f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 即f (x )的最小值为f (x 0)=f (tm)=e t -ln t +ln m -2, ∵e t -1t=0,∴e t =1t ,t =-ln t .于是f (x 0)=f (t m )=1t +t +ln m -2,所以当ln m >2-(1t +t )时,f (x )>0.取k =2-(1t+t )<0,故m ∈(e k ,1)时成立. …12分(22)解:(Ⅰ)证明:连接CQ ,BC ,AB ,因为PQ 是圆O 的切线,所以∠PQC =∠CBD ,因为B 为AC ⌒的中点,所以∠CQB =∠ACB , 所以∠PQC +∠CQB =∠CBD +∠ACB ,即∠PQD =∠CDQ ,故△DPQ 为等腰三角形. …5分 (Ⅱ)设CD =t ,则PD =PQ =1+t ,PA =2+2t , 由PQ 2=PC ·PA 得t =1,所以CD =1,AD =PD =2, 所以BD ·QD =CD ·AD =2. …10分(23)解:(Ⅰ)设A (x ,y ),则x =ρcos θ,y =ρsin θ,所以x B =ρcos (θ+3π3π)=12x;y B =ρsin (θ+3π)+12y , 故B (12xyx +12y ).由|BM |2=1得(12x+2)2+(x +12y )2=1,整理得曲线C 的方程为(x +1)2+(y2=1.…5分(Ⅱ)圆C:1cos sin x y αα=-+⎧⎪⎨=⎪⎩(α为参数),则|OA |2+|MA |2=43sin α+10,所以|OA |2+|MA |2∈[10-10+.…10分(24)解:(Ⅰ)由a >b >c >d >0得a -d >b -c >0,即(a -d )2>(b -c )2, 由ad =bc 得(a -d )2+4ad >(b -c )2+4bc ,即(a +d )2>(b +c )2, 故a +d >b +c .…5分(Ⅱ)a b d cb acd a b c d a b c d=(a b )a -b(cd )d -c=(a b)a -b(d c)c -d ,由(Ⅰ)得a -b >c -d ,又a b >1,所以(a b )a -b >(ab)c -d,即(a b )a -b (d c )c -d >(a b )c -d (d c)c -d =(ad bc )c -d =1,故a a b b c d d c >a b b a c c d d . …10分。
河北省唐山市2017-2018学年度高三年级第三次模拟考试
河北省唐山市2017-2018学年度高三年级第三次模拟考试文科数学第Ⅰ卷(共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={x|y=ln(x2﹣3x﹣4)},N={y|y=2x﹣1},则M∩N等于()A.{x|x>4}B.{x|x>0}C.{x|x<﹣1}D.{x|x>4或x<﹣1}2.复数的共轭复数是()A.1+i B.1﹣i C.2i D.﹣2i3.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4B.ω=1C.φ=D.B=44.平面α截半径为2的球O所得的截面圆的面积为π,则球心到O平面α的距离为()A.B.C.1D.25.已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.6.已知某空间几何体的三视图如图所示,则该几何体的表面积为()A.4+4πB.4+3πC.3+4πD.3+3π7.抛掷两枚质地的骰子,得到的点数分别为a,b,那么直线bx+ay=1的斜率的概率是()A.B.C.D.8.已知函数y=f(x)的图象关于直线x=3对称,f(﹣1)=320且,则的值为()A.240B.260C.320D.﹣3209.3世纪中期,魏晋时期的数学家刘徽首创“割圆术”,也就是在圆内割正多边形,求的近似值,刘徽容他的“割圆术”说:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失唉,当圆内接正多边形的边数无限增加时,多边形面积可无限近圆的面积,利用“割圆术”刘徽得到圆周率精确到小数点后两位的计算值3.14,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的n值为(参考数据:sin15°=0.259)()A.6B.12C.24D.4810.已知函数f(x)=,若关于x的方程f[f(x)]=0有且只有一个实数根,则实数a的取值范围是()A .(﹣∞,0)B .(﹣∞,0)∪(0,1)C .(0,1)D .(0,1)∪(1,+∞) 11.双曲线﹣=1(a >0,b >0)的左、右顶点分别为A 、B ,渐近线分别为l 1、l 2,点P 在第一象限内且在l 1上,若PA ⊥l 2,PB ∥l 2,则该双曲线的离心率为( ) A .B .2C .D .12.已知函数g (x )=x 3+2x ﹣m +(m >0)是[1,+∞)上的增函数.当实数m 取最大值时,若存在点Q ,使得过点Q 的直线与曲线y=g (x )围成两个封闭图形,且这两个封闭图形的面积总相等,则点Q 的坐标为( ) A .(0,﹣3) B .(2,﹣3) C .(0,0) D .(0,3)第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量()4,x =-a ,()1,2=b ,若⊥a b ,则x = .14.已知双曲线Γ过点(,且与双曲线2214x y -=有相同的渐近线,则双曲线Γ的标准方程为 .15.直线ABC △的三个顶点都在球O 的球面上,2AB AC ==,若球O 的表面积为12π,则球心O 到平面ABC 的距离等于 .16.{}n a 是公差不为0的等差数列,{}n b 是公比为正数的等比数列,111a b ==,43a b =,84a b =,则数列{}n n a b 的前n 项和等于 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在ABC △中,角A ,B ,C 所对应的边分别为a ,b ,c ,cos a b b C -=. (1)求证:sin tan C B =; (2)若1a =,2b =,求c .18.某学校用简单随机抽样方法抽取了30名同学,对其每月平均课外阅读时间(单位:小时)进行调查,茎叶图如图:若将月均课外阅读时间不低于30小时的学生称为“读书迷”. (1)将频率视为概率,估计该校900名学生中“读书迷”有多少人?(2)从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动.(i )共有多少种不同的抽取方法?(ii )求抽取的男、女两位“读书迷”月均读书时间相差不超过2小时的概率.19.如图,平行四边形ABCD 中,24BC AB ==,60ABC ∠=︒,PA ⊥平面ABCD ,2PA =,E ,F 分别为BC ,PE 的中点.(1)求证:AF ⊥平面PED ; (2)求点C 到平面PED 的距离.20.已知椭圆()2222:10x y a b a b Γ+=>>经过点12M ⎫⎪⎭.(1)求椭圆Γ的方程;(2)设点M 在x 轴上的射影为点N ,过点N 的直线l 与椭圆Γ相交于A ,B 两点,且30NB NA +=,求直线l 的方程.21.已知函数()x f x e =,()ln g x x a =+. (1)设()()h x xf x =,求()h x 的最小值;(2)若曲线()y f x =与()y g x =仅有一个交点P ,证明:曲线()y f x =与()y g x =在点P 处有相同的切线,且52,2a ⎛⎫∈ ⎪⎝⎭.22.点P 是曲线()221:24C x y -+=上的动点,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,以极点O 为中心,将点P 逆时针旋转90︒得到点Q ,设点Q 的轨迹方程为曲线2C .(1)求曲线1C ,2C 的极坐标方程; (2)射线()03πθρ=>与曲线1C ,2C 分别交于A ,B 两点,定点()2,0M ,求MAB △的面积.23.已知函数()21f x x a x =++-. (1)若1a =,解不等式()5f x ≤;(2)当0a ≠时,()1g a f a ⎛⎫= ⎪⎝⎭,求满足()4g a ≤的a 的取值范围.文科数学参考答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合M={x|y=ln(x2﹣3x﹣4)},N={y|y=2x﹣1},则M∩N等于()A.{x|x>4}B.{x|x>0}C.{x|x<﹣1}D.{x|x>4或x<﹣1}【考点】交集及其运算.【分析】求出M中x的范围确定出M,求出N中y的范围确定出N,找出两集合的交集即可.【解答】解:由M中x2﹣3x﹣4>0,即M={x|x>4或x<﹣1},N={y|y=2x﹣1}={y|y>0},则M∩N={x|x>4},故选:A.2.复数的共轭复数是()A.1+i B.1﹣i C.2i D.﹣2i【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数z得答案.【解答】解:=,则复数的共轭复数是:﹣2i.故选:D.3.已知函数y=Asin(ωx+φ)+B的一部分图象如图所示,如果A>0,ω>0,|φ|<,则()A.A=4B.ω=1C.φ=D.B=4【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】先根据函数的最大值和最小值求得A和B,然后利用图象中﹣求得函数的周期,求得ω,最后根据x=时取最大值,求得φ.【解答】解:如图根据函数的最大值和最小值得求得A=2,B=2函数的周期为(﹣)×4=π,即π=,ω=2当x=时取最大值,即sin(2×+φ)=1,2×+φ=2kπ+φ=2kπ﹣∵∴φ=故选C.4.平面α截半径为2的球O所得的截面圆的面积为π,则球心到O平面α的距离为()A.B.C.1D.2【考点】球的体积和表面积.【分析】先求截面圆的半径,然后求出球心到截面的距离.【解答】解:∵截面圆的面积为π,∴截面圆的半径是1,∵球O半径为2,∴球心到截面的距离为.故选:A5.已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A、B两点,F为C的焦点,若|FA|=2|FB|,则k=()A.B.C.D.【考点】抛物线的简单性质.【分析】根据直线方程可知直线恒过定点,如图过A、B分别作AM⊥l于M,BN ⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知,进而推断出|OB|=|BF|,进而求得点B的横坐标,则点B的坐标可得,最后利用直线上的两点求得直线的斜率.【解答】解:设抛物线C:y2=8x的准线为l:x=﹣2直线y=k(x+2)(k>0)恒过定点P(﹣2,0)如图过A、B分别作AM⊥l于M,BN⊥l于N,由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则,∴|OB|=|BF|,点B的横坐标为1,故点B的坐标为,故选D6.已知某空间几何体的三视图如图所示,则该几何体的表面积为()A.4+4πB.4+3πC.3+4πD.3+3π【考点】由三视图求面积、体积.【分析】由三视图知该几何体是上半部分是直径为1的球,下半部分是底面半径为1,高为2的圆柱体的一半,由此能求出该几何体的表面积.【解答】解:由三视图知该几何体是上半部分是直径为1的球,其表面积为S1==π,下半部分是底面半径为1,高为2的圆柱体的一半,其表面积为S2==4+3π,∴该几何体的表面积S=S1+S2=4+4π.故选:A.7.抛掷两枚质地的骰子,得到的点数分别为a,b,那么直线bx+ay=1的斜率的概率是()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数n=6×6=36,由直线bx+ay=1的斜率,得到,利用列举法求出满足题意的(a,b)可能的取值,由此能求出直线bx+ay=1的斜率的概率.【解答】解:抛掷两枚质地的骰子,得到的点数分别为a,b,基本事件总数n=6×6=36,∵直线bx+ay=1的斜率,∴,满足题意的(a,b)可能的取值有:(3,1),(4,1),(5,1),(5,2),(6,1),(6,2),共6种,∴直线bx+ay=1的斜率的概率p==.故选:B.8.已知函数y=f(x)的图象关于直线x=3对称,f(﹣1)=320且,则的值为()A.240B.260C.320D.﹣320【考点】三角函数中的恒等变换应用.【分析】把cosx﹣sinx提取,利用两角和的余弦函数公式的逆运算化为一个角的余弦函数,即可求得cos(x+)的值,然后利用诱导公式求出sin2x的值,进而求得等于f(7),根据f(x)的图象关于直线x=3对称,得到f(3+x)=f(3﹣x),即可推出f(7)=f(﹣1)可求出值.【解答】解:∵,∴cos(x+)=,得cos(x+)=,又∵sin2x=﹣cos(+2x)=1﹣2cos2(x+)=∴=f(7)由题意y=f(x)关于直线x=3对称∴f(3+x)=y=f(3﹣x)即f(7)=f(3+4)=f(3﹣4)=f(﹣1)=320,故选C.9.3世纪中期,魏晋时期的数学家刘徽首创“割圆术”,也就是在圆内割正多边形,求的近似值,刘徽容他的“割圆术”说:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失唉,当圆内接正多边形的边数无限增加时,多边形面积可无限近圆的面积,利用“割圆术”刘徽得到圆周率精确到小数点后两位的计算值3.14,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的n值为(参考数据:sin15°=0.259)()A.6B.12C.24D.48【考点】程序框图.【分析】根据已知中的程序框图可得,该程序的功能是计算并输出变量n的值,模拟程序的运行过程,可得答案.【解答】解:第1次执行循环体后,S=3cos30°=<3.14,不满足退出循环的条件,则n=6,第2次执行循环体后,S=6cos60°==3<3.14,不满足退出循环的条件,则n=12,第3次执行循环体后,S=12sin15°≈3.106<3.14,不满足退出循环的条件,则n=24,第4次执行循环体后,S=24sin7.5°≈3.144>3.14,满足退出循环的条件,故输出的n值为24,故选:C.10.已知函数f(x)=,若关于x的方程f[f(x)]=0有且只有一个实数根,则实数a的取值范围是()A.(﹣∞,0)B.(﹣∞,0)∪(0,1)C.(0,1)D.(0,1)∪(1,+∞)【考点】根的存在性及根的个数判断.【分析】利用换元法设f(x)=t,则方程等价为f(t)=0,根据指数函数和对数函数图象和性质求出t=1,利用数形结合进行求解即可.【解答】解:令f(x)=t,则方程f[f(x)]=0等价为f(t)=0,由选项知a≠0,当a>0时,当x≤0,f(x)=a•2x>0,当x>0时,由f(x)=log2x=0得x=1,即t=1,作出f(x)的图象如图:若a<0,则t=1与y=f(x)只有一个交点,恒满足条件,若a>0,要使t=1与y=f(x)只有一个交点,则只需要当x≤0,t=1与f(x)=a•2x,没有交点,即此时f(x)=a•2x<1,即f(0)<1,即a•20<1,解得0<a<1,综上0<a<1或a<0,即实数a的取值范围是(﹣∞,0)∪(0,1),故选:B.11.双曲线﹣=1(a>0,b>0)的左、右顶点分别为A、B,渐近线分别为l1、l2,点P在第一象限内且在l1上,若PA⊥l2,PB∥l2,则该双曲线的离心率为()A.B.2C.D.【考点】双曲线的简单性质.【分析】求出双曲线的顶点和渐近线方程,设P(m,m),再由两直线垂直和平行的条件,得到m,a,b的关系式,消去m,可得a,b的关系,再由离心率公式计算即可得到.【解答】解:双曲线﹣=1(a>0,b>0)的左、右顶点分别为A(﹣a,0)、B(a,0),渐近线分别为l1:y=x,l2:y=﹣x.设P(m,m),若PA⊥l2,PB∥l2,则=﹣1①,且=﹣,②由②可得m=,代入①可得b2=3a2,即有c2﹣a2=3a2,即c=2a,则有e==2.故选B.12.已知函数g(x)=x3+2x﹣m+(m>0)是[1,+∞)上的增函数.当实数m取最大值时,若存在点Q,使得过点Q的直线与曲线y=g(x)围成两个封闭图形,且这两个封闭图形的面积总相等,则点Q的坐标为()A.(0,﹣3)B.(2,﹣3)C.(0,0)D.(0,3)【考点】利用导数求闭区间上函数的最值;定积分.【分析】求出函数的导数,利用导数研究函数的单调性,求出m的最大值,结合过点Q的直线与曲线y=g(x)围成两个封闭图形,且这两个封闭图形的面积总相等,判断函数的对称性进行求解即可.【解答】解:由g(x)=x3+2x﹣m+,得g′(x)=x2+2﹣.∵g(x)是[1,+∞)上的增函数,∴g′(x)≥0在[1,+∞)上恒成立,即x2+2﹣≥0在[1,+∞)上恒成立.设x2=t,∵x∈[1,+∞),∴t∈[1,+∞),即不等式t+2﹣≥0在[1,+∞)上恒成立.设y=t+2﹣,t∈[1,+∞),∵y′=1+>0,∴函数y=t+2﹣在[1,+∞)上单调递增,因此y min=3﹣m.∵y min≥0,∴3﹣m≥0,即m≤3.又m>0,故0<m≤3.m的最大值为3.故得g(x)=x3+2x﹣3+,x∈(﹣∞,0)∪(0,+∞).将函数g(x)的图象向上平移3个长度单位,所得图象相应的函数解析式为φ(x)=x3+2x+,x∈(﹣∞,0)∪(0,+∞).由于φ(﹣x)=﹣φ(x),∴φ(x)为奇函数,故φ(x)的图象关于坐标原点成中心对称.由此即得函数g(x)的图象关于点Q(0,﹣3)成中心对称.这表明存在点Q(0,﹣3),使得过点Q的直线若能与函数g(x)的图象围成两个封闭图形,则这两个封闭图形的面积总相等.故选:A二.填空题:(13)2 (14)22128y x -=(15)1(16)()121n n -+三.解答题: (17)解:(Ⅰ)由cos a b b C -=根据正弦定理得sin sin sin cos A B B C -=, 即()sin sin sin cos B C B B C +=+,sin cos cos sin sin sin cos B C B C B B C +=+, sin cos sin C B B =,得sin tan C B =.(Ⅱ)由cos a b b C -=,且1a =,2b =,得1cos 2C =-,由余弦定理,22212cos 1421272c a b ab C ⎛⎫=+-=+-⨯⨯⨯-= ⎪⎝⎭,所以c (18)解:(Ⅰ)设该校900名学生中“读书迷”有x 人,则730900x=,解得210x =. 所以该校900名学生中“读书迷”约有210人.(Ⅱ)(ⅰ)设抽取的男“读书迷”为35a ,38a ,41a ,抽取的女“读书迷”为 34b ,36b ,38b ,40b (其中下角标表示该生月平均课外阅读时间),则从7名“读书迷”中随机抽取男、女读书迷各1人的所有基本事件为:()3534,a b ,()3536,a b ,()3538,a b ,()3540,a b ,()3834,a b ,()3836,a b ,()3838,a b ,()3840,a b , ()4134,a b ,()4136,a b ,()4138,a b ,()4140,a b ,所以共有12种不同的抽取方法.(ⅱ)设A 表示事件“抽取的男、女两位读书迷月均读书时间相差不超过2小时”, 则事件A 包含()3534,a b ,()3536,a b ,()3836,a b ,()3838,a b ,()3840,a b ,()4140,a b 6个基本事件, 所以所求概率()61122P A ==.(19)解:(Ⅰ)连接AE ,在平行四边形ABCD 中,24BC AB ==,60ABC ∠=︒,∴2AE =,ED =,从而有222AE ED AD +=, ∴AE ED ⊥.∵PA ⊥平面ABCD ,ED ⊂平面ABCD ,∴PA ED ⊥, 又∵PAAE A =,∴ED ⊥平面PAE ,AF ⊂平面PAE从而有ED AF ⊥.又∵2PA AE ==,F 为PE 的中点, ∴AF PE ⊥,又∵PE ED E =,∴AF ⊥平面PED .(Ⅱ)设点C 到平面PED 的距离为d ,在Rt PED △中,PE =ED =,∴PED S =△. 在ECD △中,2EC CD ==,120ECD ∠∠=︒,∴ECD S =△ 由C PED P ECD V V --=得,1133PED ECD S d S PA ⋅=⋅△△,∴ECD PED S PA d S ⋅==△△.所以点C 到平面PED.(20)解:(Ⅰ)由已知可得223114a b+==,解得2a =,1b =, 所以椭圆Γ的方程为2214x y +=.(Ⅱ)由已知N的坐标为),当直线l 斜率为0时,直线l 为x 轴,易知30NB NA +=不成立.PF DCBA当直线l 斜率不为0时,设直线l的方程为x my =,代入2214x y +=,整理得,()22410m y ++-=,设()11,A x y ,()22,B x y则12y y +=,①12214y y m -=+,② 由30NB NA +=,得213y y =-,③由①②③解得m = 所以直线l的方程为x y =,即y x =. (21)解:(Ⅰ)()()'1x h x x e =+,当1x <-时,()'0h x <,()h x 单调递减; 当1x >-时,()'0h x >,()h x 单调递增, 故1x =-时,()h x 取得最小值1e-.(Ⅱ)设()()()ln xt x f x g x e x a =-=--,则()()11'0x xxe t x e x x x -=-=>,由(Ⅰ)得()1x T x xe =-在()0,+∞单调递增,又102T ⎛⎫< ⎪⎝⎭,()10T >,所以存在01,12x ⎛⎫∈ ⎪⎝⎭使得()00T x =,所以当()00,x x ∈时,()'0t x <,()t x 单调递减; 当()0,x x ∈+∞时,()'0t x >,()t x 单调递增, 所以()t x )的最小值为()000ln 0x t x e x a =--=,由()00T x =得001x e x =,所以曲线()y f x =与()y g x =在P 点处有相同的切线, 又00ln x a e x =-,所以001a x x =+, 因为01,12x ⎛⎫∈ ⎪⎝⎭,所以52,2a ⎛⎫∈ ⎪⎝⎭.(22)解:(Ⅰ)曲线1C 的极坐标方程为4cos ρθ=.设(),Q ρθ,则,2P πρθ⎛⎫- ⎪⎝⎭,则有4cos 4sin 2πρθθ⎛⎫=-= ⎪⎝⎭.所以,曲线2C 的极坐标方程为4sin ρθ=.(Ⅱ)M 到射线3πθ=的距离为2sin3d π=)4sin cos 2133B A AB ππρρ⎛⎫=-=-= ⎪⎝⎭,则132S AB d =⨯= (23)解:(Ⅰ)()21f x x x =++-,所以表示数轴上的点x 到2-和1的距离之和, 因为3x =-或2时()5f x =,依据绝对值的几何意义可得()5f x ≤的解集为{}32x x -≤≤. (Ⅱ)()1121g a a a a=++-, 当0a <时,()2215g a a a=--+≥,等号当且仅当1a =-时成立,所以()4g a ≤无解;当01a <≤时,()221g a a a=+-, 由()4g a ≤得22520a a -+≤,解得122a ≤≤,又因为01a <≤,所以112a ≤≤; 当1a >时,()214g a a =+≤,解得312a <≤, 综上,a 的取值范围是13,22⎡⎤⎢⎥⎣⎦.。
(全优试卷)河北省唐山市高三年级第一次模拟考试数学(理)试题Word版含答案
唐山市2017-2018学年度高三年级第一次模拟考试理科数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)AC2.)A3.)A4.b=)A5.)A6.)A7. 如图是根据南宋数学家杨辉的“垛积术”设计的程序框图,该程序所能实现的功能是()ABCD8.)ABCD9. 某几何体的三视图如图所示,则该几何体的表面积是()A10.)A11. )A BC D12.)AC二、填空题:本题共4小题,每小题5分,共20分.13.的最小值是 .的展开式中,二项式系数最大的项的系数是 .(用数字作答)15.16.的取值范围是 . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第(22)、(23)题为选考题,考生根据要求作答. (一)必考题:共60分.17.(1(218..销售宗旨是当天进货当天销售..根据组,得到如图所示的频率分布直方图.(1(2)在频率分布直方图的需求量分组中,以各组区间的中点值代表该组的各个值.(i(ii)19.(1(2.20..(1(2.21.(1(2.(二)选考题:共10分.请考生在(22)、(23)题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程以坐标原点为.(1(2.23.选修4-5:不等式选讲(1(2.唐山市2017—2018学年度高三年级第一次模拟考试理科数学参考答案一.选择题:A卷:DCBDA DCCAB DBB卷:ACBDD DCAAB DB二.填空题:(13)-5 (14)-160 (15)32(16)[2,22]三.解答题:(17)解:(Ⅰ)当n=1时,2S1=2a1=a21+1,所以(a1-1)2=0,即a1=1,又{a n}为单调递增数列,所以a n≥1.…2分由2S n=a2n+n得2S n+1=a2 n+1+n+1,所以2S n+1-2S n=a2 n+1-a2n+1,整理得2a n +1=a 2 n +1-a 2n +1,所以a 2n =(a n +1-1)2. 所以a n =a n +1-1,即a n +1-a n =1,所以{a n }是以1为首项,1为公差的等差数列,所以a n =n .…6分(Ⅱ)b n =a n +22n +1·a n ·a n +1=n +22n +1·n ·(n +1)=12n ·n -12n +1·(n +1)…9分所以T n =(121·1-122·2)+(122·2-123·3)+…+[12n ·n -12n +1·(n +1)]=121·1-12n +1·(n +1)< 12. …12分(18)解:(Ⅰ)由频率分布直方图可知,日销售量不低于350公斤的概率为(0.0025+0.0015)×100=0.4,则未来连续三天内,有连续两天的日销售量不低于350公斤,而另一天日销售量低于350公斤的概率P =0.4×0.4×(1-0.4)+(1-0.4)×0.4×0.4=0.192. …3分(Ⅱ)(ⅰ)X 可取100,200,300,400,500,P (X =100)=0.0010×10=0.1; P (X =200)=0.0020×10=0.2; P (X =300)=0.0030×10=0.3; P (X =400)=0.0025×10=0.25; P (X =500)=0.0015×10=0.15;所以X 的分布列为:…6分(ⅱ)当每日进货300公斤时,利润Y 1可取-100,700,1500, 此时Y 1的分布列为:此时利润的期望值E (Y 1=1180; …8分 当每日进货400公斤时,利润Y 2可取-400,400,1200,2000, 此时Y 2的分布列为:此时利润的期望值22000×0.4 =1200;…10分因为E (Y 1)<E (Y 2),所以该经销商应该选择每日进货400公斤.…12分(19)解:(Ⅰ)过点B 1作A 1C 的垂线,垂足为O ,由平面A 1B 1C ⊥平面AA 1C 1C ,平面A 1B 1C ∩平面AA 1C 1C =A 1C , 得B 1O ⊥平面AA 1C 1C ,又AC 平面AA 1C 1C ,得B 1O ⊥AC . 由∠BAC =90°,AB ∥A 1B 1,得A 1B 1⊥AC . 又B 1O ∩A 1B 1=B 1,得AC ⊥平面A 1B 1C . 又CA 1平面A 1B 1C ,得AC ⊥CA 1.…4分(Ⅱ)以C 为坐标原点,CA →的方向为x 轴正方向,|CA →|为单位长,建立空间直角坐标系C -xyz .由已知可得A (1,0,0),A 1(0,2,0),B 1(0,1,3).所以CA →=(1,0,0),AA 1→=(-1,2,0),AB →=A 1B 1→=(0,-1,3). …6分全优试卷设n =(x ,y ,z )是平面A 1AB 的法向量,则⎩⎨⎧n ·AA 1→=0,n ·AB →=0,即⎩⎨⎧-x +2y =0,-y +3z =0. 可取n =(23,3,1). …8分 设m =(x ,y ,z )是平面ABC 的法向 量,则⎩⎨⎧m ·AB →=0,m ·CA →=0,即⎩⎨⎧-y +3z =0,x =0. 可取m =(0,3,1).…10分则cos n ,m =n ·m |n ||m |= 12.又因为二面角A 1-AB -C 为锐二面角,所以二面角A 1-AB -C 的大小为3. …12分(20)解:(Ⅰ)依题意得A (0,b ),F (-c ,0),当AB ⊥l 时,B (-3,b ), 由AF ⊥BF 得k AF ·k BF = b c · b -3+c =-1,又b 2+c 2=6.解得c =2,b =2.所以,椭圆Γ的方程为x 26+y 22=1.…4分(Ⅱ)由(Ⅰ)得A (0,2),依题意,显然m ≠0,所以k AM =-2m,又AM ⊥BM ,所以k BM =m2,所以直线BM 的方程为y =m2(x -m ), 设P (x 1,y 1),Q (x 2,y 2).y =m2(x -m )与x 26+y 22=1联立得(2+3m 2)x 2-6m 3x +3m 4-12=0,x 1+x 2=6m 32+3m 2,x 1x 2=3m 4-122+3m2.…7分|PM |·|QM |=(1+m 22)|(x 1-m )(x 2-m )|=(1+m 22)|x 1x 2-m (x 1+x 2)+m 2|=(1+m 22)·|2m 2-12|2+3m 2=(2+m 2)|m 2-6|2+3m2, |AM |2=2+m 2,…9分由AP ⊥AQ 得,|AM |2=|PM |·|QM |, 所以|m 2-6|2+3m 2=1,解得m =±1.…12分(21)解:(Ⅰ)F(x )=(x +1)ex -1,当x <-1时,F (x )<0,F (x )单调递减; 当x >-1时,F(x )>0,F (x )单调递增,故x =-1时,F (x )取得最小值F (-1)=-1e 2.…4分(Ⅱ)因为f (x )=ex -1,所以f (x )=ex -1在点(t ,e t -1)处的切线为y =et -1x +(1-t )e t -1;…5分因为g(x )= 1 x,所以g (x )=ln x +a 在点(m ,ln m +a )处的切线为y =1mx +ln m +a -1, …6分由题意可得⎩⎪⎨⎪⎧e t -1= 1 m ,(1-t )e t -1=ln m +a -1,则(t -1)e t -1-t +a =0.…7分令h (t )=(t -1)et -1-t +a ,则h (t )=t et -1-1 由(Ⅰ)得t <-1时,h (t )单调递减,且h(t )<0;当t >-1时,h(t )单调递增,又h (1)=0,t <1时,h(t )<0,所以,当t <1时,h (t )<0,h (t )单调递减;当t >1时,h(t )>0,h (t )单调递增.…9分由(Ⅰ)得h (a -1)=(a -2)e a -2+1≥-1e+1>0, …10分又h (3-a )=(2-a )e2-a+2a -3>(2-a )(3-a )+2a -3=(a -32)2+34>0, …11分h (1)=a -1<0,所以函数y =h (t )在(a -1,1)和(1,3-a )内各有一个零点,故当a <1时,存在两条直线与曲线f (x )与g (x )都相切.…12分(22)解:(Ⅰ)由x =ρcos θ,y =ρsin θ可得,C 1:ρ2cos 2θ+ρ2sin 2θ-2ρcos θ+1=1,所以ρ=2cos θ; C 2:ρ2cos 2θ+ρ2sin 2θ-6ρcos θ+9=9,所以ρ=6cos θ.…4分(Ⅱ)依题意得|AB |=6cos α-2cos α=4cos α,-2<α<2,C 2(3,0)到直线AB 的距离d =3|sin α|,所以S △ABC 2=12×d ×|AB |=3|sin 2α|, 故当α=±4时,S △ABC 2取得最大值3. …10分(23)解:(Ⅰ)f (x )=|x +1|-|x |=⎩⎪⎨⎪⎧-1,x ≤-1,2x +1,-1<x <1,1,x ≥1,由f (x )的单调性可知,当x ≥1时,f (x )有最大值1. 所以m =1.…4分(Ⅱ)由(Ⅰ)可知,a +b =1,a 2b +1+b 2a +1= 13(a 2b +1+b 2a +1)[(b +1)+(a +1)] = 13[a 2+b 2+a 2(a +1)b +1+b 2(b +1)a +1] ≥ 1 3(a 2+b 2+2a 2(a +1)b +1·b 2(b +1)a +1) =13(a +b )2=13. 当且仅当a =b =12时取等号. 即a 2b +1+b 2a +1的最小值为 13. …10分。
河北省唐山市2017届高三第三次模拟考试理数试题+Word版含答案
唐山市2016-2017学年度高三年级第三次模拟考试理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}220A x x x =-<,(){}log 1B x y x ==-,则A B = ( ) A.()0,+∞B.()1,2C.()2,+∞D.(),0-∞2.已知i 为虚数单位,()211z i i -=+,则复数z 的共轭复数为( )A.1355i --B.1355i +C.1355i -+D.1355i - 3.总体由编号为01,02,03,…,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的4个个体的编号为( ) A.05B.09C.11D.204.已知双曲线()2222:10,0x y C a b a b -=>>的一条渐近线方程为20x y +=,则C 的离心率为( )C.25.执行下图程序框图,若输出4y =,则输入的x 为( ) A.3-或2-或1B.2-C.2-或1D.16.数列{}n a 是首项11a =,对于任意*,m n N ∈,有3n m n a a m +=+,则{}n a 前5项和5S =( ) A.121B.25C.31D.357.某三棱锥的三视图如图所示,则其体积为( ) A.4 B.8 C.43D.838.函数()()11x xe f x x e +=-(其中e 为自然对数的底数)的图象大致为( )ABCD9.若()92901291x a a x a x a x -=++++…,则1239a a a a ++++=…( )A.1B.513C.512D.51110.函数()cos 6f x x πω⎛⎫=+ ⎪⎝⎭(0ω>)在[]0,π内的值域为⎡-⎢⎣⎦,则ω的取值范围是( )A.35,23⎡⎤⎢⎥⎣⎦B.53,62⎡⎤⎢⎥⎣⎦C.5,6⎡⎫+∞⎪⎢⎣⎭D.55,63⎡⎤⎢⎥⎣⎦11.抛物线2:4C y x =的焦点为F ,N 为准线上一点,M 为y 轴上一点,MNF ∠为直角,若线段MF 的中点E 在抛物线C 上,则MNF △的面积为( )D.12.已知函数()32f x x ax bx =++有两个极值点12,x x ,且12x x <,若10223x x x +=,函数()()()0g x f x f x =-,则()g x ( )A.恰有一个零点B.恰有两个零点C.恰有三个零点D.至多两个零点第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量()3,1=-a ,()2,1=b ,则a 在b 方向上的投影为 .14.直线ABC △的三个顶点都在球O 的球面上,2AB AC ==,若三棱锥O ABC -的体积为2,则该球的表面积为 .15.已知变量,x y 满足约束条件102100x y x y x y a -+≥⎧⎪--≤⎨⎪+-≥⎩,目标函数2z x y =+的最小值为5-,则实数a =.16.数列{}n a 的前n 项和为n S ,若()*2142n n n S a n N -+=-∈,则na= .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在ABC △中,角A ,B ,C 所对应的边分别为a ,b ,c ,cos a b b C -=.(1)求证:sin tan C B =;(2)若1a =,C 为锐角,求c 的取值范围.18.某学校用简单随机抽样方法抽取了100名同学,对其日均课外阅读时间(单位:分钟)进行调查,结果如下:若将日均课外阅读时间不低于60分钟的学生称为“读书迷”. (1)将频率视为概率,估计该校4000名学生中“读书迷”有多少人? (2)从已抽取的8名“读书迷”中随机抽取4位同学参加读书日宣传活动. (i )求抽取的4位同学中既有男同学又有女同学的概率;(ii )记抽取的“读书迷”中男生人数为X ,求X 的分布列和数学期望. 19.如图,平行四边形ABCD 中,24BC AB ==,60ABC ∠=︒,PA AD ⊥,E ,F 分别为BC ,PE 的中点,AF ⊥平面PED .(1)求证:PA ⊥平面ABCD ;(2)求直线BF 与平面AFD 所成角的正弦值.20.已知椭圆()2222:10x y a b a b Γ+=>>经过点12E ⎫⎪⎭.(1)求椭圆Γ的方程;(2)直线l 与圆222:O x y b +=相切于点M ,且与椭圆Γ相交于不同的两点A ,B ,求AB 的最大值.21.已知函数()()2ln 1f x x ax =++,0a >.(1)讨论函数()f x 的单调性;(2)若函数()f x 在区间()1,0-有唯一零点0x ,证明:2101e x e --<+<.22.点P 是曲线()221:24C x y -+=上的动点,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,以极点O 为中心,将点P 逆时针旋转90︒得到点Q ,设点Q 的轨迹方程为曲线2C .(1)求曲线1C ,2C 的极坐标方程;(2)射线()03πθρ=>与曲线1C ,2C 分别交于A ,B 两点,定点()2,0M ,求MAB △的面积.23.已知函数()21f x x a x =++-.(1)若1a =,解不等式()5f x ≤;(2)当0a ≠时,()1g a f a ⎛⎫= ⎪⎝⎭,求满足()4g a ≤的a 的取值范围.唐山市2016—2017学年度高三年级第三次模拟考试理科数学参考答案一.选择题:BACCD DBDAC BA 二.填空题:(13(14)44π(15)3-(16)12n n - 三.解答题: (17)解:(Ⅰ)由cos a b b C -=根据正弦定理得sin sin sin cos A B B C -=, 即()sin sin sin cos B C B B C +=+,sin cos cos sin sin sin cos B C B C B B C +=+, sin cos sin C B B =,得sin tan C B =.(Ⅱ)由余弦定理得()222222cos 4428c a b ab C b b b =+-=+-=+-, 由cos a b b C -=知21cos 1cos a b C C==++, 由C 为锐角,得0cos 1C <<,所以12b <<. 从而有218c <<.所以c的取值范围是(1,. (18)解:(Ⅰ)设该校4000名学生中“读书迷”有x 人,则81004000x=,解得320x =. 所以该校4000名学生中“读书迷”约有320人.(Ⅱ)(ⅰ)抽取的4名同学既有男同学,又有女同学的概率: 454813114C P C =-=.(ⅱ)X 可取0,1,2,3.()45481014C P X C ===,()133548317C C P X C ===,()223548327C C P X C ===,()3155481314C C P X C ===, X 的分布列为:()1331301231477142E X =⨯+⨯+⨯+⨯=. (19)解:(1)连接AE ,因为AF ⊥平面PED ,ED ⊂平面PED ,所以AF ED ⊥,PF EDCBA在平行四边形ABCD 中,24BC AB ==,60ABC ∠=︒,所以2AE =,ED =,从而有222AE ED AD +=, 所以AE ED ⊥, 又因为AF AE A = ,所以ED ⊥平面PAE ,PA ⊂平面PAE ,从而有ED PA ⊥,又因为PA AD ⊥,AD ED D = , 所以PA ⊥平面ABCD .(2)以E 为坐标原点,建立如图所示的空间直角坐标系,则()0,2,0A,()D,()B , 因为AF ⊥平面PED ,所以AF PE ⊥, 又因为F 为PE 中点,所以2PA AE ==, 所以()0,2,2P ,()0,1,1F ,()0,1,1AF =-,()2,0AD =-,)BF =,设平面AFD 的法向量为(),,n x y z =, 由0AF n ⋅= ,0AD n ⋅=得,020y z y -+=⎧⎪⎨-=⎪⎩,令1x =,得(n =.设直线BF 与平面AFD 所成的角为θ,则:sin cos ,BF n BF n BF nθ⋅=<>=== 即直线BF 与平面AFD. (20)解:(Ⅰ)由已知可得223114a b+==,解得2a =,1b =, 所以椭圆Γ的方程为2214x y +=.(Ⅱ)当直线l 垂直于x 轴时,由直线l 与圆O :221x y +=相切, 可知直线l 的方程为1x =±,易求AB =当直线l 不垂直于x 轴时,设直线l 的方程为y kx m =+,由直线l 与圆22:1O x y +=1=,即221m k =+,将y kx m =+代入2214x y +=,整理得()222148440k x kmx m +++-=,设()11,A x y ,()22,B x y ,则122814km x x k -+=+,21224414m x x k -=+,12AB x -= 又因为221m k =+,所以()222231214k k AB k ++=≤=+,=k = 综上所述,AB 的最大值为2.(21)解:(Ⅰ)()21221'211ax ax f x ax x x ++=+=++,1x >-, 令()2221g x ax ax =++,()24842a a a a ∆=-=-, 若0∆<,即02a <<,则()0g x >,当()1,x ∈-+∞时,()'0f x >,()f x 单调递增,若0∆=,即2a =,则()0g x ≥,仅当12x =-时,等号成立,当()1,x ∈-+∞时,()'0f x ≥,()f x 单调递增.若0∆>,即2a >,则()g x 有两个零点1x =2x =,由()()1010g g -==>,102g ⎛⎫-< ⎪⎝⎭得121102x x -<<-<<,当()11,x x ∈-时,()0g x >,()'0f x >,()f x 单调递增; 当()12,x x x ∈时,()0g x <,()'0f x <,()f x 单调递减; 当()2,x x ∈+∞时,()0g x >,()'0f x >,()f x 单调递增. 综上所述,当02a <≤时,()f x 在()1,-+∞上单调递增;当2a >时,()f x 在⎛ - ⎝⎭和⎫⎪+∞⎪⎝⎭上单调递增,在⎝⎭上单调递减. (Ⅱ)由(1)及()00f =可知:仅当极大值等于零,即()10f x =时,符合要求. 此时,1x 就是函数()f x 在区间()1,0-的唯一零点0x .所以2002210ax ax ++=,从而有()00121a x x =-+,又因为()()2000ln 10f x x ax =++=,所以()()00ln 1021x x x +-=+,令01x t +=,则1ln 02t t t--=, 设()11ln 22h t t t =+-,则()221'2t h t t -=, 再由(1)知:102t <<,()'0h t <,()h t 单调递减, 又因为()22502e h e --=>,()1302e h e --=<, 所以21e t e --<<,即2101e x e --<+<. (22)解:(Ⅰ)曲线1C 的极坐标方程为4cos ρθ=.设(),Q ρθ,则,2P πρθ⎛⎫- ⎪⎝⎭,则有4cos 4sin 2πρθθ⎛⎫=-= ⎪⎝⎭.所以,曲线2C 的极坐标方程为4sin ρθ=. (Ⅱ)M 到射线3πθ=的距离为2sin3d π==)4sin cos 2133B A AB ππρρ⎛⎫=-=-= ⎪⎝⎭,则132S AB d =⨯=. (23)解:(Ⅰ)()21f x x x =++-,所以表示数轴上的点x 到2-和1的距离之和, 因为3x =-或2时()5f x =,依据绝对值的几何意义可得()5f x ≤的解集为{}32x x -≤≤.(Ⅱ)()1121g a a a a=++-, 当0a <时,()2215g a a a =--+≥,等号当且仅当1a =-时成立,所以()4g a ≤无解;当01a <≤时,()221g a a a=+-, 由()4g a ≤得22520a a -+≤,解得122a ≤≤,又因为01a <≤,所以112a ≤≤; 当1a >时,()214g a a =+≤,解得312a <≤, 综上,a 的取值范围是13,22⎡⎤⎢⎥⎣⎦.高考资源网。
【河北省唐山市】2017届高三第三次模拟考试理科数学试卷-答案
河北省唐山市2017届高三第三次模拟考试理科数学试卷答 案一、选择题:1~5.BACCD 6~10.DBDAC 11~12.BA二、填空题:1314.44π15.3-16.12n n-三、解答题:17.解:(Ⅰ)由cos a b b C -=根据正弦定理得sin sin sin cos A B B C -=,即sin()sin sin cos B C B B C +=+,sin cos cos sin sin sin cos B C B C B B C +=+,sin cos sin C B B =,得sin tan C B =.(Ⅱ)由余弦定理得222222cos 44(2)8c a b ab C b b b =+-=+-=+-, 由cos a b b C -=知21cos 1cos a b C C==++, 由C 为锐角,得0cos 1C <<,所以12b <<.从而有218c <<.所以c的取值范围是.18.解:(Ⅰ)设该校4000名学生中“读书迷”有x 人,则81004000x =,解得320x =. 所以该校4000名学生中“读书迷”约有320人.(Ⅱ)(ⅰ)抽取的4名同学既有男同学,又有女同学的概率: 454813114C P C =-=. (ⅱ)X 可取0,1,2,3.45481(0)14C P X C ===,1335483(1)7C C P X C ===, 2235483(2)7C C P X C ===,3155481(3)14C C P X C ===, X 的分布列为:13313()01231477142E X =⨯+⨯+⨯+⨯=. 19.解: (Ⅰ)连接AE ,因为AF ⊥平面PED ,ED ⊂平面PED ,所以AF ED ⊥,在平行四边形ABCD 中,24BC AB ==,60ABC ∠=︒,所以2AE =,ED =从而有222AE ED AD +=,所以AE ED ⊥,又因为AF AE A =,所以ED ⊥平面PAE ,PA ⊂平面PAE ,从而有EDPA ⊥,又因为PA AD ⊥,ADED D =,所以PA ⊥平面ABCD .(Ⅱ)以E 为坐标原点,建立如图所示的空间直角坐标系,PFE DCB A则(0,2,0)A ,D ,(B ,因为AF ⊥平面PED ,所以AF PE ⊥,又因为F 为PE 中点,所以2PA AE ==,所以(0,2,2)P ,(0,1,1)F ,(0,1,1)AF =-,(23,2,0)AD =-,(3,0,1)BF =,设平面AFD 的法向量为(,,)n x y z =, 由0AF n =,0AD n =得,020y z y -+=⎧⎪⎨-=⎪⎩,令1x =,得(1,3,n =.设直线BF 与平面AFD 所成的角为θ,则:23sin cos ,7BF nBF n BF n θ=<>===,即直线BF 与平面AFD 20.解:(Ⅰ)由已知可得223114a b+=,2a =,解得2a =,1b =, 所以椭圆Γ的方程为2214x y +=. (Ⅱ)当直线l 垂直于x 轴时,由直线l 与圆O :221x y +=相切,可知直线l 的方程为1x =±,易求AB 当直线l 不垂直于x 轴时,设直线l 的方程为y kx m =+,由直线l 与圆22:1O x y +=1=,即221m k =+,将y kx m =+代入2214x y +=,整理得222(14)8440k x kmx m +++-=, 设11(,)A x y ,22(,)B x y ,则122814km x x k -+=+,21224414m x x k -=+,12AB x -又因为221m k =+,所以2222(31)214k k AB k ++==+,=,即k =时等号成立, 综上所述,AB 的最大值为2.21.解: (Ⅰ)21221'()211ax ax f x ax x x ++=+=++,1x ->, 令2()221g x ax ax =++,2484(2)a a a a ∆=-=-, 若0∆<,即02a <<,则()0g x >,当(1,)x ∈-+∞时,'()0f x >,()f x 单调递增,若0∆=,即2a =,则()0g x ≥,仅当12x =-时,等号成立, 当(1,)x ∈-+∞时,'()0f x ≥,()f x 单调递增.若0∆>,即2a >,则()g x有两个零点1x2x = 由(1)(0)10g g -==>,1()02g -<得121102x x --<<<<, 当1(1,)x x ∈-时,()0g x >,'()0f x >,()f x 单调递增; 当12(,)x x x ∈时,()0g x <,'()0f x <,()f x 单调递减; 当2(,)x x ∈+∞时,()0g x >,'()0f x >,()f x 单调递增. 综上所述,当02a <≤时,()f x 在(1,)-+∞上单调递增;当2a >时,()f x在(-和)+∞上单调递增,在上单调递减. (Ⅱ)由(Ⅰ)及(0)0f =可知:仅当极大值等于零,即1()0f x =时,符合要求. 此时,1x 就是函数()f x 在区间(1,0)-的唯一零点0x .所以2002210ax ax ++=,从而有0012(1)a x x =-+,又因为2000()ln(1)0f x x ax =++=,所以000ln(1)02(1)x x x +-=+, 令01x t +=,则1ln 02t t t--=, 设11()ln 22h t t t =+-,则221'()2t h t t -=, 再由(Ⅰ)知:102t <<,'()0h t <,()h t 单调递减, 又因为22e 5(e )02h --=>,1e 3(e )02h --=<, 所以21e e t --<<,即210e 1e x --+<<.22.解:(Ⅰ)曲线1C 的极坐标方程为4cos ρθ=.设(,)Q ρθ,则π(,)2P ρθ-,则有π4cos()4sin 2ρθθ=-=. 所以,曲线2C 的极坐标方程为4sin ρθ=.(Ⅱ)M 到射线π3θ=的距离为π2sin 3d ==, ππ4(sin cos )1)33B A AB ρρ=-=-=,则132S AB d =⨯= 23.解: (Ⅰ)()21f x x x =++-,所以()f x 表示数轴上的点x 到2-和1的距离之和, 因为3x =-或2时()5f x =,依据绝对值的几何意义可得()5f x ≤的解集为{}32x x -≤≤. (Ⅱ)11()21g a a a a=++-, 当0a <时,2()215g a a a=--+≥,等号当且仅当1a =-时成立,所以()4g a ≤无解; 当01a <≤时,2()21g a a a=+-, 由()4g a ≤得22520a a -+≤,解得122a ≤≤,又因为01a <≤,所以112a ≤≤;当1a >时,()214g a a =+≤,解得312a <≤, 综上,a 的取值范围是13,22⎡⎤⎢⎥⎣⎦.。
河北省唐山市2018届高三第二次模拟考试数学(理)试题+Word版含解析
唐山市2017—2018学年度高三年级第二次模拟考试理科数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,,集合,则集合()A. B. C. D.【答案】B【解析】由题得,,所以,,故选B.2. 复数是虚数单位,)是纯虚数,则的虚部为()A. B. C. D.【答案】A【解析】由题得,由于z是纯虚数,所以,所以z的虚部为,故选A.3. 设,则“”是“”为偶函数的()A. 充分而不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C【解析】如果为偶函数,则,所以,所以“”是“”为偶函数的充要条件.故选C.4. 若,则函数的增区间为()A. B. C. D.【答案】D【解析】由题得,令令k=0得,因为,所以函数的增区间是,故选D.5. 已知双曲线的左右焦点分别为为坐标原点,点在双曲线上,且,则()A. B. C. D.【答案】B【解析】由题得,故选C.6. 如下图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则其表面积为()A. B. C. D.【答案】C【解析】由题得几何体原图是球被切割后剩下的,所以它的表面积由三个部分组成,所以故选C.7. 设是任意等差数列,它的前项和、前项和与前项和分别为,则下列等式中恒成立的是()A. B.C. D.【答案】D【解析】设数列前3n项的和为R,则由等差数列的性质得X,Y-X,R-Y,Z-R成等差数列,所以2(Y-X)=X+R-Y,解之得R=3Y-3X, 又因为2(R-Y)=Y-X+Z-R,把R=3Y-3X代入得,故选D.8. 椭圆右焦点为,存在直线与椭圆交于两点,使得为等腰直角三角形,则椭圆的离心率()A. B. C. D.【答案】B【解析】由题得当时,△ABF为等腰直角三角形,所以,,由于椭圆的离心率,所以e=,故选B.9. 甲乙等人参加米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是()A. B. C. D.【答案】D【解析】由题得甲不跑第一棒的总的基本事件有个,甲不跑第一棒,乙不跑第二棒的基本事件有,由古典概型的概率公式得在甲不跑第一棒的条件下,乙不跑第二棒的概率是.故选D.10. 下图是某桌球游戏计分程序框图,下列选项中输出数据不符合该程序的为()A. B.C. D.【答案】C【解析】假设i=11前都是红球落袋,黑球落袋,运行程序:i=1,s=1,s=8;i=2,s=9,s=16;i=3,s=17,s=24,,i=11,s=81,如果此时黑球没有落袋,则输出i=11,s=81.如果此时黑球落袋,则s=88,i=12,s=89,所以不可能i=11,s=88.故选C.点睛:本题的关键是在运行程序时,要灵活运用假设.当i=11时,有两种情况,分别讨论即可得解.11. 已知函数满足,在下列不等关系中,一定成立的是()A. B. C. D.【答案】A,故选A.点睛:本题的关键在于通过(x)能得到,得到,问题就迎刃而解.所以在这里,观察和联想的数学能力很重要.12. 在中,,点满足,则的最大值为()A. B. C. D.【答案】B【解析】取AB的中点D,连接CD.,所以当时,的最大值为16.故选B.点睛:本题的难点在于解题思路. 要能很快找到解题思路,必须熟悉本章的高频考点,对于平面向量来说,高频考点主要有向量的加法、减法、平行四边形法则、基底法、数量积等,所以看到,要想到通过向量的加法、减法、平行四边形法则、基底法、数量积等把未知的向已知的条件转化,最后得到=4+12cosa,即可得解.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 展开式的常数项为__________.(用数字作答)【答案】15【解析】由题得展开式的通项为,令6-2r=0,所以r=3.所以展开式的常数项为,故填15.14. 曲线与直线所围成的封闭图形的面积为__________.【答案】【解析】把曲线与直线的方程联立解之得x=0或x=1.由题得曲线与直线所围成的封闭图形的面积为,故填.15. 在四棱锥中,底面,底面是正方形,,三棱柱的顶点都位于四棱锥的棱上,已知分别是棱的中点,则三棱柱的体积为__________.【答案】1【解析】由题得中点,是DC中点,是SC中点,PN=1,MN=,且PN⊥MN,所以三棱柱的底面积为.由题得正方形的对角线长,三棱柱的高为,所以三棱柱的体积为,故填1.点睛:本题的关键是确定、和位置,后面求三棱柱的体积就可以迎刃而解了.16. 数列满足,若时,,则的取值范围是__________.【答案】【解析】,,故填.点睛:本题的难点在于解题思路,看到这种递推关系,要能确定这种数列可以通过构造求出数列的通项,再利用数列的单调性性质即可得到的取值范围.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 如图,在平面四边形中,,设.(1)若,求的长度;(2)若,求.【答案】(1);(2)【解析】试题分析:(1)第(1)问,在△ABD中,利用余弦定理直接求出BD.(2)第(2)问,在△ABD中,写出正弦定理再化简即得解.试题解析:(1)由题意可知,AD=1.在△ABD中,∠DAB=150°,AB=2,AD=1,由余弦定理可知,BD2=(2)2+12-2×2×1×(-)=19,BD=.(2)由题意可知,AD=2cosθ,∠ABD=60°-θ,在△ABD中,由正弦定理可知,.18. 为了研究黏虫孵化的平均温度(单位:)与孵化天数之间的关系,某课外兴趣小组通过试验得到如下6组数据:他们分别用两种模型①,②分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图:经计算得,(1)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?(给出判断即可,不必说明理由)(2)残差绝对值大于1的数据被认为是异常数据,需要剔除,剔除后应用最小二乘法建立关于的线性回归方程.(精确到0.1),.【答案】(1)应该选择模型①;(2)【解析】试题分析:(1)第(1)问,由于模型①的残差带比较窄,在x轴附近,所以说明拟合效果好,故选模型①. (2)第(2)问,先计算出最小二乘法公式的各个基本量,再代入公式计算,得到关于的线性回归方程.试题解析:(1)应该选择模型①.(2)剔除异常数据,即组号为4的数据,剩下数据的平均数=(18×6-18)=18;(12.25×6-13.5)=12.=1283.01-18×13.5=1040.01;=1964.34-182=1640.34.12+1.97×18≈47.5,所以y关于x的线性回归方程为:=-2.0x+47.5.19. 如图,在三棱柱中,,平面平面.(1)求证:;(2)若,求.【答案】(1)见解析;(2)【解析】试题分析:(1)第(1)问,通过证明C1C⊥平面A1BC得到CC1⊥A1B. (2)第(2)问,以C为坐标原点,分别以的方向为x轴,y轴的正方向建立空间直角坐标系,利用空间向量求二面角A1-BC1-A的余弦值 .试题解析:(1)因为平面AA1C1C⊥平面ABC,交线为AC,又BC⊥AC,所以BC⊥平面AA1C1C,因为C1C平面AA1C1C,从而有BC⊥C1C.因为∠A1CC1=90°,所以A1C⊥C1C,又因为BC∩A1C=C,所以C1C⊥平面A1BC,A 1B平面A1BC,所以CC1⊥A1B.(2)如图,以C为坐标原点,分别以的方向为x轴,y轴的正方向建立空间直角坐标系C-xyz.由∠A1CC1=90°,AC=AA1得A1C=AA1.不妨设BC=AC=AA1=2,则B(2,0,0),C1(0,-1,1),A(0,2,0),A1(0,1,1),所以=(0,-2,0),=(-2,-1,1),=(2,-2,0),设平面A1BC1的一个法向量为,由·=0,·=0,可取=(1,0,2).设平面ABC1的一个法向量为,由·=0,·=0,可取=(1,1,3).cos〈,〉==,又因为二面角A1-BC1-A为锐二面角,所以二面角A1-BC1-A的余弦值为.20. 已知抛物线的焦点为,过点的直线与抛物线交于两点,交轴于点为坐标原点.(1)若,求直线的方程;(2)线段的垂直平分线与直线轴,轴分别交于点,求的最小值.【答案】(1);(2)2【解析】试题分析:(1)第(1)问,设出直线l的方程,把直线的方程和抛物线方程联立,得到韦达定理,根据韦达定理和已知直线的方程.(2)先计算出点M,N,C,D,F 的坐标,再计算出两个三角形的面积,再求,最后利用基本不等式求它的最小值.试题解析:(1)设直线l的方程为x=my+1,A(x1,y1),B(x2,y2),由得y2-4my-4=0,y1+y2=4m,y1y2=-4.所以k OA+k OB==-4m=4.所以m=-1,所以l的方程为x+y-1=0.(2)由(1)可知,m≠0,C(0,-),D(2m2+1,2m).则直线MN的方程为y-2m=-m(x-2m2-1),则M(2m2+3,0),N(0,2m3+3m),F(1,0),S△NDC=·|NC|·|x D|=·|2m3+3m+|·(2m2+1)=,S△FDM=·|FM|·|y D|=·(2m2+2)·2|m|=2|m| (m2+1),则=+1≥2,当且仅当m2=,即m2=时取等号.所以,的最小值为2.点睛:本题第(2)问,求的最小值,主要利用了函数的方法,先求出=,再想方法求它的最值.函数的思想是高中数学处理最值问题常用的思想,大家要理解掌握并灵活运用.21. 设 .(1)证明:在上单调递减;(2)若,证明:.【答案】(1)见解析;(2)见解析【解析】试题分析:(1)第(1)问,直接求导,证明0<x<1时,f'(x)<0 .(2)第(2)问,分0<a≤和<a<1两种情况证明,每一种情况都是先通过求单调性再求函数的最小值大于1.试题解析:(1)f'(x)=.令h(x)=1--ln x,则h'(x)=,x>0,所以0<x<1时,h'(x)>0,h(x)单调递增,又h(1)=0,所以h(x)<0,即f'(x)<0,所以f(x)单调递减.(2)g'(x)=a x ln a+ax a-1=a(a x-1ln a+x a-1),当0<a≤时,ln a≤-1,所以a x-1ln a+x a-1≤x a-1-a x-1.由(Ⅰ)得,所以(a-1)ln x<(x-1)ln a,即x a-1<a x-1,所以g'(x)<0,g(x)在(a,1)上单调递减,即g(x)>g(1)=a+1>1.当<a<1时,-1<ln a<0.令t(x)=a x-x ln a-1,0<a<x<1,则t'(x)=a x ln a-ln a=(a x-1)ln a>0,所以t(x)在(0,1)上单调递增,即t(x)>t(0)=0,所以a x>x ln a+1所以g(x)=a x+x a>x a+x ln a+1=x(x a-1+ln a)+1>x(1+ln a)+1>1.综上,g(x)>1.点睛:本题的难点在第(2)问,当0<a≤时求导之后,怎么证明g'(x)=a x ln a+ax a-1=a(a x-1ln a+x a-1)<0,其中用到了第一问的结论,不然不是很好判断导数的正负. 22. 在极坐标系中,曲线,曲线,点,以极点为原点,极轴为轴正半轴建立直角坐标系.(1)求曲线和的直角坐标方程;(2)过点的直线交于点,交于点,若,求的最大值.【答案】(1),;(2)【解析】试题分析:(1)第(1)问,利用极坐标化直角坐标的公式解答 .(2)第(2)问,试题解析:(1)曲线C1的直角坐标方程为:x2+y2-2y=0;曲线C2的直角坐标方程为:x=3.(2)P的直角坐标为(-1,0),设直线l的倾斜角为α,(0<α<),则直线l的参数方程为:, (t为参数,0<α<)代入C1的直角坐标方程整理得,t2-2(sinα+cosα)t+1=0,t1+t2=2(sinα+cosα)直线l的参数方程与x=3联立解得,t3=,由t的几何意义可知,|PA|+|PB|=2(sinα+cosα)=λ|PQ|=,整理得,4λ=2(sinα+cosα)cosα=sin2α+cos2α+1=sin(2α+)+1,由0<α<,<2α+<,所以,当2α+=,即α=时,λ有最大值.23. 已知.(1)求证:;(2)判断等式能否成立,并说明理由.【答案】(1)见解析;(2)见解析【解析】试题分析:(1)第(1)问,利用基本不等式证明,(a+b)2=3ab+1≤3()2+1 .(2)第(2)问,先证明,再证明c+d>,即得等式不成立. 试题解析:(1)由题意得(a+b)2=3ab+1≤3()2+1,当且仅当a=b时,取等号.解得(a+b)2≤4,又a,b>0,所以,a+b≤2.(2)不能成立.,因为a+b≤2,所以,因为c>0,d>0,cd>1,所以c+d=≥>,故=c+d不能成立.。
河北省唐山市2018届高三第二次模拟考试数学(理)试题含答案
河北省唐山市2018届高三第二次模拟考试数学(理)试题含答案唐山市2017—2018学年度高三年级第二次模拟考试理科数学试卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设全集U =R ,{}10A x x =+<,集合{}2|log 1B x x =<,则集合()U A B =I ð( ) A .[1,2]- B .(0,2) C .[1,)-+∞ D .[1,1)- 2.复数1(iz i a i+=-是虚数单位,a R ∈)是纯虚数,则z 的虚部为( ) A .12B .iC .2D .2i 3.设m R ∈,则“1m =”是“()22xf x m =⋅+ ”为偶函数的 ( )A .充分而不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.若[0,]x π∈,则函数()cos sin f x x x =-的增区间为 ( ) A .[0,]4πB .[,]4ππC .3[0,]4πD .3[,]4ππ 5. 已知双曲线22:2C x y -=的左右焦点12,,F F O 分别为为坐标原点,点P 在双曲线C 上,且2OP =,则12PF F S ∆=( )A .4B ..2 D6. 如下图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则其表面积为( )A .2πB .5πC .8πD .10π7. 设{}n a 是任意等差数列,它的前n 项和、前2n 项和与前4n 项和分别为,,X Y Z ,则下列等式中恒成立的是( ) A .23X Z Y += B .44X Z Y +=C .237X Z Y +=D .86X Z Y +=8. 椭圆2222:1(0)x y C a b a b+=>>右焦点为F ,存在直线y t =与椭圆C 交于,A B 两点,使得ABF ∆为等腰直角三角形,则椭圆C 的离心率e = ( )A .2 B 1 C 1 D .129. 甲乙等4人参加4100⨯米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是( ) A .29 B .49 C .23 D .7910. 下图是某桌球游戏计分程序框图,下列选项中输出数据不符合该程序的为( )A .15,120i S ==B .13,98i S ==C .11,88i S ==D .11,81i S ==11. 已知函数()f x 满足()()f x f x '>,在下列不等关系中,一定成立的是( ) A .()()12ef f > B .()()12ef f < C .()()12f ef > D .()()12f ef <12. 在ABC ∆中,090,6C AB ∠==,点P 满足2CP =,则PA PB ⋅uu r uu r的最大值为( )A .9B .16C .18D .25第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.261()x x+展开式的常数项为 .(用数字作答) 14.曲线3y x =与直线y x =所围成的封闭图形的面积为 .15. 在四棱锥S ABCD -中,SD ⊥底面ABCD ,底面ABCD 是正方形,2SD AD ==,三棱柱111MNP M N P -的顶点都位于四棱锥S ABCD -的棱上,已知,,M N P 分别是棱,,AB AD AS 的中点,则三棱柱111MNP M N P -的体积为 .16.数列{}n a 满足132n n n a a +=-,若n N +∈时,1n n a a +>,则1a 的取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 如图,在平面四边形ABCD 中,02,90AB AC ADC CAB ==∠=∠=,设DAC θ∠=. (1)若060θ=,求BD 的长度; (2)若030ADB ∠=,求tan θ.18. 为了研究黏虫孵化的平均温度x (单位:0C )与孵化天数y 之间的关系,某课外兴趣小组通过试验得到如下6组数据:他们分别用两种模型①y bx a =+,②dxy ce =分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图:经计算得21117,13.5,1297,1774nni ii i i x y x yx ======∑∑,(1)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?(给出判断即可,不必说明理由)(2)残差绝对值大于1的数据被认为是异常数据,需要剔除,剔除后应用最小二乘法建立y 关于x 的线性回归方程.(精确到0.1)121()()ˆˆ,()niii nii x x y y b ay bx x x =---==--∑∑ ,. 19. 如图,在三棱柱111ABC A B C -中,0190ACB AA C ∠=∠=,平面11AA CC ⊥平面ABC .(1)求证:11CC A B ⊥;(2)若12BC AC AA ==,求11A BC A --.20. 已知抛物线2:4E y x =的焦点为F ,过点F 的直线l 与抛物线交于,A B 两点,交y 轴于点,C O 为坐标原点. (1)若4OA OB k k +=,求直线l 的方程;(2)线段AB 的垂直平分线与直线,l x 轴,y 轴分别交于点,,D M N ,求NDCFDMS S ∆∆ 的最小值. 21.设()()2ln ,1x xf xg x a x x ==+- . (1)证明:()f x 在(0,1)上单调递减; (2)若01a x <<<,证明:()1g x >.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在极坐标系中,曲线1:2sin C ρθ=,曲线2:cos 3C ρθ=,点(1,)P π,以极点为原点,极轴为x 轴正半轴建立直角坐标系.(1)求曲线1C 和2C 的直角坐标方程;(2)过点P 的直线l 交1C 于点,A B ,交2C 于点Q ,若PA PB PQ λ+=,求λ的最大值. 23.选修4-5:不等式选讲已知220,0,0,0,1,1a b c d a b ab cd >>>>+=+>. (1)求证:2a b +≤;(2c d =+ 能否成立,并说明理由.唐山市2017—2018学年度高三年级第二次模拟考试理科数学参考答案一.选择题:A 卷:BACDB CDBDC AB B 卷:BACDC CDBDB AB 二.填空题: (13)15(14)12(15)1 (16)[2,+∞)三.解答题: 17.解:(1)由题意可知,AD =1.在△ABD 中,∠DAB =150°,AB =23,AD =1,由余弦定理可知,BD 2=(23)2+12-2×23×1×(-32)=19,BD =19.(2)由题意可知,AD =2cos θ,∠ABD =60°-θ, 在△ABD 中,由正弦定理可知,ADsin ∠ABD =ABsin ∠ADB,即2cos θsin(60°-θ)=43,整理得tan θ=233.18.解:(1)应该选择模型①.(2)剔除异常数据,即组号为4的数据,剩下数据的平均数x -= 15(18×6-18)=18;y -= 15(12.25×6-13.5)=12.5i =1∑x i y i =1283.01-18×13.5=1040.01;5i =1∑x 2i =1964.34-182=1640.34.b ˆ=ni =1∑x i y i -n ·x -y-ni =1∑x 2i -nx-2=1040.01-5×18×121640.34-5×182≈-1.97,a ˆ=y --b ˆx -=12+1.97×18≈47.5,所以y 关于x 的线性回归方程为:y ˆ=-2.0x +47.5.19.解:(1)因为平面AA 1C 1C ⊥平面ABC ,交线为AC ,又BC ⊥AC , 所以BC ⊥平面AA 1C 1C , 因为C 1C 平面AA 1C 1C , 从而有BC ⊥C 1C .因为∠A 1CC 1=90°,所以A 1C ⊥C 1C , 又因为BC ∩A 1C =C , 所以C 1C ⊥平面A 1BC ,A 1B 平面A 1BC ,所以CC 1⊥A 1B .(2)如图,以C 为坐标原点,分别以CB →,CA →的方向为x 轴,y 轴的正方向建立空间直角坐标系C -xyz .由∠A 1CC 1=90°,AC =2AA 1得A 1C =AA 1.不妨设BC =AC =2AA 1=2,则B (2,0,0),C 1(0,-1,1),A (0,2,0),A 1(0,1,1),所以A 1C 1→=(0,-2,0),BC 1→=(-2,-1,1),AB →=(2,-2,0),设平面A 1BC 1的一个法向量为m ,由A 1C 1→·m =0,BC 1→·m =0,可取m =(1,0,2).设平面ABC 1的一个法向量为n ,由BC 1→·n =0,AB →·n =0,可取n =(1,1,3).cosm ,n =m ·n |m ||n |=75555,又因为二面角A 1-BC 1-A 为锐二面角, 所以二面角A 1-BC 1-A 的余弦值为75555.20.解:(1)设直线l 的方程为x =my +1,A (x 1,y 1),B (x 2,y 2),由⎩⎨⎧y 2=4x ,x =my +1,得y 2-4my -4=0,y 1+y 2=4m ,y 1y 2=-4.所以k OA +k OB =4y 1+4y 2=4(y 1+y 2)y 1y 2=-4m =4.所以m =-1,所以l 的方程为x +y -1=0.(2)由(1)可知,m ≠0,C (0,-1m),D (2m 2+1,2m ).则直线MN 的方程为y -2m =-m (x -2m 2-1),则M (2m 2+3,0),N (0,2m 3+3m ),F (1,0),S △NDC = 12·|NC |·|x D |= 1 2·|2m 3+3m + 1m |·(2m 2+1)=(m 2+1)(2m 2+1)22|m |,S △FDM = 12·|FM |·|y D |= 12·(2m 2+2)·2|m |=2|m | (m 2+1), 则S △NDC S △FDM =(2m 2+1)24m 2=m 2+ 14m2+1≥2, 当且仅当m 2= 14m 2,即m 2= 1 2时取等号. 所以,S △NDCS △FDM的最小值为2.其它解法参考答案给分. 21.解:(1)f (x )=1- 1x-ln x(x -1)2. 令h (x )=1-1x-ln x ,则h(x )=1x 2- 1 x =1-xx2,x >0,所以0<x <1时,h (x )>0,h (x )单调递增,又h (1)=0,所以h (x )<0, 即f (x )<0,所以f (x )单调递减.(2)g(x )=a x ln a +axa -1=a (ax -1ln a +x a -1),当0<a ≤1 e时,ln a ≤-1,所以a x -1ln a +x a -1≤x a -1-a x -1. 由(Ⅰ)得ln x x -1<ln a a -1,所以(a -1)ln x <(x -1)ln a ,即x a -1<a x -1, 所以g(x )<0,g (x )在(a ,1)上单调递减,即g (x )>g (1)=a +1>1.当1e<a <1时,-1<ln a <0. 令t (x )=a x-x ln a -1,0<a <x <1,则t (x )=a x ln a -ln a =(a x-1)ln a >0,所以t (x )在(0,1)上单调递增,即t (x )>t (0)=0, 所以a x>x ln a +1.所以g (x )=a x+x a>x a+x ln a +1=x (x a -1+ln a )+1>x (1+ln a )+1>1. 综上,g (x )>1.22.解:(1)曲线C 1的直角坐标方程为:x 2+y 2-2y =0;曲线C 2的直角坐标方程为:x =3.(2)P 的直角坐标为(-1,0),设直线l 的倾斜角为α,(0<α< π 2),则直线l 的参数方程为:⎩⎨⎧x =-1+t cos α,y =t sin α,(t 为参数,0<α< π2)代入C 1的直角坐标方程整理得,t 2-2(sin α+cos α)t +1=0, t 1+t 2=2(sin α+cos α)直线l 的参数方程与x =3联立解得,t 3=4cos α,由t 的几何意义可知,|PA |+|PB |=2(sin α+cos α)=λ|PQ |=4λcos α,整理得,4λ=2(sin α+cos α)cos α=sin 2α+cos 2α+1=2sin (2α+ π4)+1,由0<α< π 2, π 4<2α+ π 4<5π4,所以,当2α+ π 4= π 2,即α= π8时,λ有最大值 1 4(2+1).23.解:(1)由题意得(a +b )2=3ab +1≤3(a +b 2)2+1,当且仅当a =b 时,取等号.解得(a +b )2≤4,又a ,b >0, 所以,a +b ≤2.(2)不能成立.ac +bd ≤a +c 2+b +d2,因为a +b ≤2, 所以ac +bd ≤1+c +d2,因为c >0,d >0,cd >1,所以c +d =c +d 2+c +d 2≥c +d2+cd >c +d2+1, 故ac +bd =c +d 不能成立.。
河北省唐山市2017年高考数学一模试卷(理科) Word版含解析
2017年河北省唐山市高考数学一模试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一个选项符合题目要求.1.若复数z满足(3+4i)z=25,则复平面内表示z的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|x2﹣x>0},,则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B3.若函数,则f(f(2))=()A.1 B.4 C.0 D.5﹣e24.一个几何体的三视图如图所示,则其体积为()A.π+2 B.2π+4 C.π+4 D.2π+25.在△ABC中,∠B=90°,,,则λ=()A.﹣1 B.1 C.D.46.设等差数列{a n}的前n项和为S n,若S4=﹣4,S6=6,则S5=()A.1 B.0 C.﹣2 D.47.已知双曲线的右顶点为A,过右焦点F的直线l与C的一条渐近=()线平行,交另一条渐近线于点B,则S△ABFA.B.C.D.8.二项式(x﹣a)7的展开式中,含x4项的系数为﹣280,则dx=()A.ln2 B.ln2+1 C.1 D.9.一种在实数域和复数域上近似求解方程的方法可以设计如图所示的程序框图,若输入的n为6时,输出结果为2.45,则m可以是()A.0.6 B.0.1 C.0.01 D.0.0510.已知ω>0,将函数f(x)=cosωx的图象向右平移个单位后得到函数的图象,则ω的最小值是()A.B.3 C.D.11.在一次比赛中某队共有甲,乙,丙等5位选手参加,赛前用抽签的方法决定出场的顺序,则乙、丙都不与甲相邻出场的概率是()A.B.C.D.12.已知a>b>0,a b=b a,有如下四个结论:①b<e;②b>e;③∃a,b满足a•b<e2;④a•b>e2.则正确结论的序号是()A.①③B.②③C.①④D.②④二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上.13.若变量x,y满足约束条件,则z=x+y的最小值是.14.设数列{a n}的前n项和为S n,且,若a4=32,则a1=.15.已知抛物线C:y2=2px(p>0)的焦点为F,,抛物线C上的点B满足AB⊥AF,且|BF|=4,则p=.16.在三棱锥P﹣ABC中,PA,PB,PC两两互相垂直,且AB=4,AC=5,则BC 的取值范围是.三、解答题:本大题共70分,其中17-21题为必考题,22、23题为选考题,解答应写出文字说明,证明过程或演算步骤.17.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,a2+b2=λab.(1)若,,求sinA;(2)若λ=4,AB边上的高为,求C.18.(12分)某市春节期间7家超市的广告费支出x i(万元)和销售额y i(万元)数据如下:超市A B C D E F G广告费支出x i1246111319销售额y i19324044525354(1)若用线性回归模型拟合y与x的关系,求y关于x的线性回归方程;(2)用对数回归模型拟合y与x的关系,可得回归方程:,经计算得出线性回归模型和对数模型的R2分别约为0.75和0.97,请用R2说明选择哪个回归模型更合适,并用此模型预测A超市广告费支出为8万元时的销售额.参数数据及公式:,,,ln2≈0.7.19.(12分)如图,三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=2,M、N分别是AB、A1C的中点.(1)求证:MN∥平面BB1C1C;(2)若平面CMN⊥平面B1MN,求直线AB与平面B1MN所成角的正弦值.20.(12分)已知椭圆的离心率为,点在椭圆上,O为坐标原点.(1)求椭圆C的方程;(2)已知点P,M,N为椭圆C上的三点,若四边形OPMN为平行四边形,证明四边形OPMN的面积S为定值,并求该定值.21.(12分)已知函数f(x)=sinx+tanx﹣2x.(1)证明:函数f(x)在(﹣,)上单调递增;(2)若x∈(0,),f(x)≥mx2,求m的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)已知直线l的参数方程为(t为参数,0≤φ<π),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=1,l与C交于不同的两点P1,P2.(1)求φ的取值范围;(2)以φ为参数,求线段P1P2中点轨迹的参数方程.23.已知x,y∈(0,+∞),x2+y2=x+y.(1)求的最小值;(2)是否存在x,y,满足(x+1)(y+1)=5?并说明理由.2017年河北省唐山市高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一个选项符合题目要求.1.若复数z满足(3+4i)z=25,则复平面内表示z的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:(3+4i)z=25,∴(3﹣4i)(3+4i)z=25(3﹣4i),∴z=3﹣4i.则复平面内表示z的点(3,﹣4)位于第四象限.故选:D.【点评】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.2.已知集合A={x|x2﹣x>0},,则()A.A∩B=∅B.A∪B=R C.B⊆A D.A⊆B【考点】集合的表示法.【分析】先分别求出集合A和B,由此得到A∪B=R.【解答】解:∵集合A={x|x2﹣x>0}={x|x>1或x<0},,∴A∩B={x|﹣或1<x<},A∪B=R.故选:B.【点评】本题考查并集、交集的求法及应用,是基础题,解题时要认真审题,注意并集、交集定义的合理运用.3.若函数,则f(f(2))=()A.1 B.4 C.0 D.5﹣e2【考点】函数的值.【分析】由函数的解析式先求出f(2)的值,再求出f(f(2))的值.【解答】解:由题意知,,则f(2)=5﹣4=1,f(1)=e0=1,所以f(f(2))=1,故选A.【点评】本题考查分段函数的函数值,对于多层函数值应从内到外依次求值,注意自变量的范围,属于基础题.4.一个几何体的三视图如图所示,则其体积为()A.π+2 B.2π+4 C.π+4 D.2π+2【考点】由三视图求面积、体积.【分析】由三视图可得,直观图是直三棱柱与半圆柱的组合体,由图中数据,可得体积.【解答】解:由三视图可得,直观图是直三棱柱与半圆柱的组合体,体积为+=π+2,故选A.【点评】本题考查由三视图求体积,考查学生的计算能力,确定直观图的形状是关键.5.在△ABC中,∠B=90°,,,则λ=()A.﹣1 B.1 C.D.4【考点】平面向量数量积的运算.【分析】根据平面向量的三角形法则求出,再由⊥得出•=0,列出方程求出λ的值.【解答】解:△ABC中,,,∴=﹣=(2,λ+2),又∠B=90°,∴⊥,∴•=0,即2﹣2(λ+2)=0,解得λ=﹣1.故选:A.【点评】本题考查了平面向量的线性运算与数量积运算问题,是基础题目.6.设等差数列{a n}的前n项和为S n,若S4=﹣4,S6=6,则S5=()A.1 B.0 C.﹣2 D.4【考点】等差数列的前n项和.【分析】利用等差数列的求和公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵S4=﹣4,S6=6,∴d=﹣4,d=6,解得a1=﹣4,d=2.则S5=5×(﹣4)+×2=0,故选:B.【点评】本题考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题.7.已知双曲线的右顶点为A,过右焦点F的直线l与C的一条渐近=()线平行,交另一条渐近线于点B,则S△ABFA.B.C.D.【考点】双曲线的简单性质.【分析】根据题意,由双曲线的方程可得a、b的值,进而可得c的值,可以确定A、F的坐标,设BF的方程为y=(x﹣2),代入y=﹣x,解得B的坐标,由三角形的面积公式,计算可得答案.【解答】解:由双曲线,可得a2=1,b2=3,故c==2,∴A(1,0),F(2,0),渐近线方程为y=±x,不妨设BF的方程为y=(x﹣2),代入方程y=﹣x,解得:B(1,﹣).=|AF|•|y B|=•1•=.∴S△AFB故选:B.【点评】本题考查双曲线方程的运用,注意运用渐近线方程,关键求出B的坐标;解此类面积的题目时,注意要使三角形的底或高与坐标轴平行或重合,以简化计算.8.二项式(x﹣a)7的展开式中,含x4项的系数为﹣280,则dx=()A.ln2 B.ln2+1 C.1 D.【考点】二项式系数的性质.【分析】在(x﹣a)7的展开式的通项中,令x的指数为4,求出r值,再表示出x4项的系数,解关于a的方程即可求出a,利用定积分可得结论.【解答】解:(x﹣a)7的展开式的通项为(﹣1)r a r C7r x7﹣r,令7﹣r=4得r=3,∴展开式中x4项的系数(﹣1)3 a3C73=﹣35a3=﹣280,∴a=2,∴dx=lnx=1.故选:C.【点评】本题考查二项式定理的应用,解决指定项的系数问题.牢记定理是前提,准确计算是关键.9.一种在实数域和复数域上近似求解方程的方法可以设计如图所示的程序框图,若输入的n为6时,输出结果为2.45,则m可以是()A.0.6 B.0.1 C.0.01 D.0.05【考点】程序框图.【分析】根据已知中的流程图,我们模拟程序的运行,可得:|2.5﹣3|≥m,且|2.45﹣2.5|<m,解得m的取值范围,比较各个选项即可得解.【解答】解:模拟程序的运行,可得n=6,a=3b=2.5,不满足条件|b﹣a|<m,执行循环体,a=2.5,b=2.45,由题意,此时应该满足条件|b﹣a|<m,退出循环,输出b的值为2.45.可得:|2.5﹣3|≥m,且|2.45﹣2.5|<m,解得:0.05<m≤0.5,故选:B.【点评】本题主要考查的知识点是程序框图,模拟循环的执行过程是解答此类问题常用的办法,属于基础题.10.已知ω>0,将函数f(x)=cosωx的图象向右平移个单位后得到函数的图象,则ω的最小值是()A.B.3 C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用诱导公式化简和同名函数,根据三角函数平移变换规律,建立关系.即可求ω的最小值.【解答】解:由函数f(x)=cosωx=sin(ωx)图象向右平移个单位后得到:sin(),由题意可得:,(k∈Z)解得:,∵ω>0,∴当k=0时,ω的值最小值为.故选A【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.11.在一次比赛中某队共有甲,乙,丙等5位选手参加,赛前用抽签的方法决定出场的顺序,则乙、丙都不与甲相邻出场的概率是()A.B.C.D.【考点】列举法计算基本事件数及事件发生的概率.【分析】先求出基本事件总数n==120,再求出乙、丙都不与甲相邻出场包含的基本事件个数m=++=36,由此能求出乙、丙都不与甲相邻出场的概率.【解答】解:在一次比赛中某队共有甲,乙,丙等5位选手参加,赛前用抽签的方法决定出场的顺序,基本事件总数n==120,乙、丙都不与甲相邻出场包含的基本事件个数m=++=36,∴乙、丙都不与甲相邻出场的概率p==.故选:D.【点评】本题考查概率的求法,是中档题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.12.已知a>b>0,a b=b a,有如下四个结论:①b<e;②b>e;③∃a,b满足a•b<e2;④a•b>e2.则正确结论的序号是()A.①③B.②③C.①④D.②④【考点】有理数指数幂的化简求值.【分析】根据题意,得出=,f(x)=,x>0,利用导数判断0<x<e 时f(x)增,x>e时f(x)减;x=e时f(x)取得最大值;根据f(a)=f(b)得出a>e>b,判断①正确②错误;由>e>b得出f(b)<f()且f(a)<f(),即ab>e2,判断④正确③错误.【解答】解:∵a>b>0,a b=b a,∴blna=alnb,∴=,设f(x)=,x>0,∴f′(x)=,当0<x<e时,f′(x)>0,函数f(x)单调递增,当x>e时,f′(x)<0,函数f(x)单调递减,当x=e时,f(x)max=f(e)=;∵f(a)=f(b),∴a>e>b>0,∴①正确,②错误;∴>e>b,∴f(b)<f(),∴f(a)<f(),∴a>>e,∴ab>e2,④正确,③错误;综上,正确的命题是①④.故选:C.【点评】本题考查了利用构造函数的方法判断数值大小的应用问题,是综合性题目.二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上.13.若变量x,y满足约束条件,则z=x+y的最小值是﹣2.【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合定点最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,得A(﹣1,﹣1),化目标函数z=x+y为y=﹣x+z,由图可知,当直线y=﹣x+z过点A时,直线在y轴上的截距最小,z有最小值为﹣1﹣1=﹣2.故答案为:﹣2.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法和数学转化思想方法,是中档题.14.设数列{a n}的前n项和为S n,且,若a4=32,则a1=.【考点】数列的概念及简单表示法.【分析】利用,a4=32,可得=32,即可得出结论.【解答】解:∵,a4=32,∴=32,∴a1=,故答案为.【点评】本题考查数列的通项与求和,考查学生的计算能力,比较基础.15.已知抛物线C:y2=2px(p>0)的焦点为F,,抛物线C上的点B满足AB⊥AF,且|BF|=4,则p=2或6.【考点】抛物线的简单性质.【分析】求出直线AB的方程,与抛物线方程联立,求出B的横坐标,利用抛物线的定义,即可得出结论.【解答】解:由题意,k AF=﹣,∴直线AB的方程为y=x+,代入y2=2px,可得p2x2﹣12px+36=0,∴x=,∵|BF|=4,∴+=4,∴p=2或6,故答案为2或6.【点评】本题考查抛物线的定义,考查直线与抛物线位置关系的运用,属于中档题.16.在三棱锥P﹣ABC中,PA,PB,PC两两互相垂直,且AB=4,AC=5,则BC 的取值范围是(1,).【考点】点、线、面间的距离计算.【分析】如图设PA、PB、PC的长分别为a、b、c,BC=m.由PA,PB,PC两两互相垂直,得a2+b2=16,a2+c2=25,b2+c2=m2⇒m2=41﹣2a2,在△ABC中,⇒1<m<.【解答】解:如图设PA、PB、PC的长分别为a、b、c,BC=m.∵PA,PB,PC 两两互相垂直,∴a2+b2=16,a2+c2=25,b2+c2=m2⇒m2=41﹣2a2在△ABC中,⇒1<m<故答案为(1,)【点评】本题考查了空间位置关系,关键是把空间问题转化为平面问题,属于中档题.三、解答题:本大题共70分,其中17-21题为必考题,22、23题为选考题,解答应写出文字说明,证明过程或演算步骤.17.(12分)(2017•唐山一模)已知△ABC的内角A,B,C的对边分别为a,b,c,a2+b2=λab.(1)若,,求sinA;(2)若λ=4,AB边上的高为,求C.【考点】余弦定理;正弦定理.【分析】(1)由已知结合正弦定理得:,结合范围可求,即可得解sinA的值.(2)由题意及三角形面积公式可求,由余弦定理,三角函数恒等变换的应用化简可得,结合范围,可求C的值.【解答】解:(1)由已知,,结合正弦定理得:,于是.因为,所以,可得.(2)由题意可知,得:.从而有:,即,又因为,所以,.【点评】本题主要考查了正弦定理,三角形面积公式,余弦定理,三角函数恒等变换的应用,正弦函数的图象和性质的综合应用,考查了计算能力和转化思想,属于中档题.18.(12分)(2017•唐山一模)某市春节期间7家超市的广告费支出x i(万元)和销售额y i(万元)数据如下:超市A B C D E F G广告费支出x i1246111319销售额y i19324044525354(1)若用线性回归模型拟合y与x的关系,求y关于x的线性回归方程;(2)用对数回归模型拟合y与x的关系,可得回归方程:,经计算得出线性回归模型和对数模型的R2分别约为0.75和0.97,请用R2说明选择哪个回归模型更合适,并用此模型预测A超市广告费支出为8万元时的销售额.参数数据及公式:,,,ln2≈0.7.【考点】线性回归方程.【分析】(1)求出回归系数,可得y关于x的线性回归方程;(2)对数回归模型更合适.当x=8万元时,预测A超市销售额为47.2万元.【解答】解:(1),所以,y关于x的线性回归方程是(2)∵0.75<0.97,∴对数回归模型更合适.当x=8万元时,预测A超市销售额为47.2万元.【点评】本题考查线性回归方程,考查学生的计算能力,比较基础.19.(12分)(2017•唐山一模)如图,三棱柱ABC﹣A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=2,M、N分别是AB、A1C的中点.(1)求证:MN∥平面BB1C1C;(2)若平面CMN⊥平面B1MN,求直线AB与平面B1MN所成角的正弦值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(1)连接AC1,BC1,则N∈AC1且N为AC1的中点,证明:MN∥BC1,即可证明MN∥平面BB1C1C;(2)以C为原点,分别以CB,CC1,CA所在直线为x轴,y轴,z轴建立如图所示的空间直角坐标系,求出平面B1MN,即可求直线AB与平面B1MN所成角的正弦值.【解答】(1)证明:连接AC1,BC1,则N∈AC1且N为AC1的中点,又∵M为AB的中点,∴MN∥BC1,又BC1⊂平面BB1C1C,MN⊄平面BB1C1C,故MN∥平面BB1C1C.…(4分)(2)解:由A1A⊥平面ABC,得AC⊥CC1,BC⊥CC1.以C为原点,分别以CB,CC1,CA所在直线为x轴,y轴,z轴建立如图所示的空间直角坐标系,设CC1=2λ(λ>0),则M(1,0,1),N(0,λ,1),B1(2,2λ,0),,=(﹣1,λ,0),.取平面CMN的一个法向量为,由,得:,令y=1,得,同理可得平面B1MN的一个法向量为,∵平面CMN⊥平面B1MN,∴,解得,得,又,设直线AB与平面B1MN所成角为θ,则.所以,直线AB与平面B1MN所成角的正弦值是.【点评】本题考查线面平行的证明,考查线面角,考查向量方法的运用,考查学生分析解决问题的能力,属于中档题.20.(12分)(2017•唐山一模)已知椭圆的离心率为,点在椭圆上,O为坐标原点.(1)求椭圆C的方程;(2)已知点P,M,N为椭圆C上的三点,若四边形OPMN为平行四边形,证明四边形OPMN的面积S为定值,并求该定值.【考点】直线与椭圆的位置关系.【分析】(1)由椭圆的离心率得出a、c的关系,再由a、b、c的平方关系,把点Q的坐标代入椭圆C的方程,求出b、a的值,写出椭圆C的方程;(2)讨论直线PN的斜率k不存在和斜率k存在时,分别计算四边形OPMN的面积S,即可得出四边形OPMN的面积为定值.【解答】解:(1)由椭圆的离心率为,得,∴=∴,∴a2=2b2;将Q代入椭圆C的方程,得+=1,解得b2=4,∴a2=8,∴椭圆C的方程为;(2)当直线PN的斜率k不存在时,PN方程为:或,从而有,所以四边形OPMN的面积为;当直线PN的斜率k存在时,设直线PN方程为:y=kx+m(m≠0),P(x1,y1),N(x2,y2);将PN的方程代入C整理得:(1+2k2)x2+4kmx+2m2﹣8=0,所以,,,由得:,将M点坐标代入椭圆C方程得:m2=1+2k2;点O到直线PN的距离为,,四边形OPMN的面积为.综上,平行四边形OPMN的面积S为定值.【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了分类讨论思想的应用问题,考查了转化法与方程组以及根与系数关系的应用问题,是综合性题目.21.(12分)(2017•唐山一模)已知函数f(x)=sinx+tanx﹣2x.(1)证明:函数f(x)在(﹣,)上单调递增;(2)若x∈(0,),f(x)≥mx2,求m的取值范围.【考点】三角函数中的恒等变换应用.【分析】(1)利用导函数的性质证明即可.(2)利用导函数求解x∈(0,),对m进行讨论,构造函数思想,结合导函数的单调性,求解m的取值范围.【解答】解:(Ⅰ)函数f(x)=sinx+tanx﹣2x则,∵,∴cosx∈(0,1],于是(等号当且仅当x=0时成立).故函数f(x)在上单调递增.(Ⅱ)由(Ⅰ)得f(x)在上单调递增,又f(0)=0,∴f(x)>0,(ⅰ)当m≤0时,f(x)>0≥mx2成立.(ⅱ)当m>0时,令p(x)=sinx﹣x,则p'(x)=cosx﹣1,当时,p'(x)<0,p(x)单调递减,又p(0)=0,所以p(x)<0,故时,sinx<x.(*)由(*)式可得f(x)﹣mx2=sinx+tanx﹣2x﹣mx2<tanx﹣x﹣mx2,令g(x)=tanx﹣x﹣mx2,则g'(x)=tan2x﹣2mx由(*)式可得,令h(x)=x﹣2mcos2x,得h(x)在上单调递增,又h(0)<0,,∴存在使得h(t)=0,即x∈(0,t)时,h(x)<0,∴x∈(0,t)时,g'(x)<0,g(x)单调递减,又∵g(0)=0,∴g(x)<0,即x∈(0,t)时,f(x)﹣mx2<0,与f(x)>mx2矛盾.综上,满足条件的m的取值范围是(﹣∞,0].【点评】本题主要考查导函数的性质来解决三角函数的问题,构造函数,利用导函数求单调性讨论m解决本题的关键.属于难题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)(2017•唐山一模)已知直线l的参数方程为(t为参数,0≤φ<π),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=1,l与C交于不同的两点P1,P2.(1)求φ的取值范围;(2)以φ为参数,求线段P1P2中点轨迹的参数方程.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)求解曲线C的直角坐标方程,将直线l的参数方程(t 为参数,0≤φ<π),带入,得到关于t的一元二次方程的关系式,由题意判别式大于0,可得φ的取值范围.(2)利用参数的几何意义即可求线段P1P2中点轨迹的参数方程.【解答】解:(1)曲线C的极坐标方程为ρ=1,根据ρ2=x2+y2可得曲线C的直角坐标方程为x2+y2=1,将代入x2+y2=1得t2﹣4tsinφ+3=0(*)由16sin2φ﹣12>0,得,又0≤φ≤π,∴所求φ的取值范围是;(Ⅱ)由(1)中的(*)可知,,代入中,整理:得P1P2的中点的轨迹方程为(φ为参数,).故得线段P1P2中点轨迹的参数方程为为(φ为参数,).【点评】本题主要考查了极坐标方程与直角坐标方程的互换和参数方程的几何意义的运用.23.(2017•唐山一模)已知x,y∈(0,+∞),x2+y2=x+y.(1)求的最小值;(2)是否存在x,y,满足(x+1)(y+1)=5?并说明理由.【考点】基本不等式.【分析】(1)根据基本不等式的性质求出的最小值即可;(2)根据基本不等式的性质得到(x+1)(y+1)的最大值是4,从而判断出结论即可.【解答】解:(1),当且仅当x=y=1时,等号成立.所以的最小值为2.(2)不存在.因为x2+y2≥2xy,所以(x+y)2≤2(x2+y2)=2(x+y),∴(x+y)2﹣2(x+y)≤0,又x,y∈(0,+∞),所以x+y≤2.从而有(x+1)(y+1)≤≤=4,因此不存在x,y,满足(x+1)(y+1)=5.【点评】本题考查了基本不等式的性质,注意应用性质的条件,本题是一道中档题.。
(全优试卷)河北省唐山市—学年度高三年级第三次模拟考试理科数学试卷Word版含答案
唐山市2017—2018学年度高三年级第三次模拟考试理科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.)A2.)A3.)A4.则下列命题为真命题的是()A5.)A.6.某几何体的三视图如图所示,则该几何体的体积为()A.6 B.)7.A8.值为()A.9.为此设计如图所示的程序框图,),若输出的结果为786为()A.3.134 B.3.141 C.3.144 D.3.14710.)A.2 B11.:其中正确命题的个数为()A.0 B.1 C. 2 D.3)12.A第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.的最大值为.14.的概率为.15.得取值范围是.的取值范围是.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(1(218.从本赛季常规赛中随机调查了20场与这两支球队有关的比赛.两队所得分数分别如下:122 110 105 105 109 101 107 129 115 100114 118 118 104 93 120 96 102 105 83114 114 110 108 103 117 93 124 75 10691 81 107 112 107 101 106 120 107 79(1)根据两组数据完成两队所得分数的茎叶图,并通过茎叶图比较两支球队所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可);(2)根据球队所得分数,将球队的攻击能力从低到高分为三个等级:.假设两支球队的攻击能力相互独立. .19.(1(2.20.(1(2.21.(1(2.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程.(1(2)证明:.23.选修4-5:不等式选讲(1(2.试卷答案一、选择题1-5: CADBB 6-10: BBDCD 11、12:DA 二、填空题三、解答题 17.解:(1)设数列{a n }的公差为d ,数列{b n }的公比为q , 依题意有,⎩⎨⎧1+d +2q =7,1+2d +2q 2=13,解得d =2,q =2, 故a n =2n -1,b n =2n,(2)由已知c 2n -1=a 2n -1=4n -3,c 2n =b 2n =4n, 所以数列{c n }的前2n 项和为S 2n =(a 1+a 3+…a 2n -1)+(b 2+b 4+…b 2n )=n(1+4n -3)2+4(1-4n)1-4=2n 2-n + 4 3(4n -1).18.解:(1)两队所得分数的茎叶图如下A 球队所得分数比较集中,B 球队所得分数比较分散.(2)记C A1表示事件:“A 球队攻击能力等级为较强”, C A2表示事件:“A 球队攻击能力等级为很强”; C B1表示事件:“B 球队攻击能力等级为较弱”, C B2表示事件:“B 球队攻击能力等级为较弱或较强”,则C A1与C B1独立,C A2与C B2独立,C A1与C A2互斥,C =(C A1C B1)∪(C A2C B2). P (C)=P (C A1C B1)+ P (C A2C B2)=P (C A1)P (C B1)+P (C A2)P (C B2).由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1420,320,520,1820,故P (C A1)=1420,P (C A2)=320,P (C B1)=520,P (C B2)=1820,P (C)=1420×520+320×1820=0.31.19.解:(1)∵AB ∥CD ,PC ⊥CD ,∴AB ⊥PC , ∵AB ⊥AC ,AC ∩PC =C ,∴AB ⊥平面PAC , ∴AB ⊥PA ,又∵PA ⊥AD ,AB ∩AD =A , ∴PA ⊥平面ABCD ,PA 平面PAB , ∴平面PAB ⊥平面ABCD . (2)连接BD 交AE 于点O ,连接OF , ∵E 为BC 的中点,BC ∥AD , ∴BO OD = BE AD = 12, ∵PD ∥平面AEF ,PD 平面PBD , 平面AEF ∩平面PBD =OF ,∴PD ∥OF ,∴ BF FP = BO OD = 12,以AB ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系A -xyz ,则A(0,0,0),B(3,0,0),C(0,3,0),D(-3,3,0), P(0,0,3),E ( 3 2, 32,0),F(2,0,1),设平面ADF 的法向量m =(x 1,y 1,z 1), ∵AF →=(2,0,1),AD →=(-3,3,0),由AF →·m =0,AD →·m =0得⎩⎨⎧2x 1+z 1=0,-3x 1+3y 1=0,取m =(1,1,-2).设平面DEF 的法向量n =(x 2,y 2,z 2),∵DE →=( 9 2,- 3 2,0),EF →=( 1 2,- 32,1),由DE →·n =0,EF →·n =0得⎩⎨⎧ 9 2x 2- 32y 2=0, 1 2x 2- 32y 2+z 2=0,取n =(1,3,4). cos m ,n=m ·n |m ||n |=-23939, ∵二面角A-DF-E 为钝二面角,∴二面角A-DF-E 的余弦值为-23939.20.解:(1)由已知可得|PD|=|PE|,|BA|=|BD|,|CE|=|CA|, 所以|PB|+|PC|=|PD|+|DB|+|PC| =|PE|+|PC|+|AB| =|CE|+|AB|=|AC|+|AB|=4>|BC| 所以点P 的轨迹是以B ,C 为焦点的椭圆(去掉与x 轴的交点),可求的方程为x 24+y23=1(y ≠0).(2)由O ,D ,C 三点共线及圆的几何性质,可知PB ⊥CD , 又由直线CE ,CA 为圆O 的切线,可知CE =CA ,O A =O E , 所以△OAC ≌△O EC ,进而有∠ACO =∠ECO ,所以|PC|=|BC|=2,又由椭圆的定义,|PB|+|PC|=4,得|PB|=2, 所以△PBC 为等边三角形,即点P 在y 轴上,点P 的坐标为(0,±3) (i)当点P 的坐标为(0,3)时,∠PBC =60,∠BCD =30,此时直线l 1的方程为y =3(x +1),直线CD 的方程为y =-33(x -1), 由⎩⎪⎨⎪⎧x 24+y 23=1,y =3(x +1)整理得5x 2+8x =0,得Q (- 8 5,-335),所以|PQ|=165,由⎩⎪⎨⎪⎧x 24+y23=1,y =-33(x -1)整理得13x 2-8x -32=0,设M(x 1,y 1),N(x 2,y 2),x 1+x 2=813,x 1x 2=-3213,|MN|=1+ 1 3|x 1-x 2|=4813,所以四边形MPNQ 的面积S = 1 2|PQ|·|MN|=38465.(ii)当点P 的坐标为(0,-3)时,由椭圆的对称性,四边形MPNQ 的面积为38465.综上,四边形MPNQ 的面积为38465.21.解:(1)g (a)=ln a 2+4a a 2+a 2-2=2(ln a +1 a -1),g(a)=2(1a - 1 a 2)=2(a -1)a2,所以0<a <1时,g (a)<0,g (a)单调递减;a >1时,g(a)>0,g (a)单调递增,所以g (a)的最小值为g (1)=0.(2)f(x)= 1x -4a (x +a 2)2=x 2+(2a 2-4a)x +a 4x(x +a 2)2,x >0. 因为y =f (x)有三个不同的零点,所以f (x)至少有三个单调区间, 而方程x 2+(2a 2-4a)x +a 4=0至多有两个不同正根,所以,有⎩⎨⎧2a 2-4a <0,Δ=16a 2(1-a)>0,解得,0<a <1.由(1)得,当x ≠1时,g (x)>0,即ln x +1x-1>0, 所以ln x >- 1x,则x >e -1x (x >0),令x =a 22,得a 22>e - 2 a 2.因为f (e - 2a 2)<- 2 a 2+ 4 a -2=-2(a -1)2a2<0,f (a 2)>0, f (1)=4a 1+a 2-2=-2(a -1)21+a 2<0,f (e 2)=4a e 2+a2>0, 所以y =f (x)在(e - 2a 2,a 2),(a 2,1),(1,e 2)内各有一个零点,故所求a 的范围是0<a <1.22.解:(1)由x =ρcos θ,y =ρsin θ得椭圆C 极坐标方程为ρ2(cos 2θ+2sin 2θ)=4,即ρ2=41+sin 2θ;直线l 的极坐标方程为ρsin θ=2,即ρ= 2sin θ.(2)证明:设A(ρA ,θ),B (ρB ,θ+2),-2<θ<2.由(1)得|OA|2=ρ2A =41+sin 2θ,|OB|2=ρ2B = 4 sin 2(θ+2)=4cos 2θ,由S △OAB = 1 2×|OA|×|OB|= 12×|AB|×h 可得,h 2=|OA|2×|OB|2|AB|2=|OA|2×|OB|2|OA|2+|OB|2=2.故h 为定值,且h =2.23.解:(1)由题意得|x -1|≥|2x -3|, 所以|x -1|2≥|2x -3|2整理可得3x 2-10x +8≤0,解得 4 3≤x ≤2,故原不等式的解集为{x | 43≤x ≤2}.(2)显然g (x)=f (x)+f (-x)为偶函数, 所以只研究x≥0时g (x)的最大值.g (x)=f (x)+f (-x)=|x -1|-|2x -3|+|x +1|-|2x +3|, 所以x≥0时,g (x)=|x -1|-|2x -3|-x -2=⎩⎪⎨⎪⎧-4, 0≤x ≤1,2x -6,1<x < 32,-2x , x ≥ 32,所以当x = 32时,g (x)取得最大值-3,故x =± 32时,g (x)取得最大值-3.。
2017-2018学年河北省唐山市高三期末数学模拟试卷和答案详细解析
2017-2018学年河北省唐山市高三期末数学模拟试卷一.选择题(共12小题,满分60分,每小题5分)1.已知集合A={x|x2<16},B={x|4﹣2x>0},则A∩B=()A.(﹣4,2)B.(﹣4,4)C.(﹣2,2)D.(﹣2,4)2.设z=﹣+i,则z2+z=()A.﹣1B.0C.1D.23.已知地铁列车每10分钟一班,在车站停1分钟.则乘客到达站台立即乘上车的概率是()A.B.C.D.4.已知函数f(x)是定义在R上的偶函数,且在(﹣∞,0)上是减函数,若a=f(log25),b=f(log24.1),c=f(20.8),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.c<a<b5.执行如图所示的程序框图,输出的结果是()A.B.C.D.16.如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I37.最小正周期为π的函数是()A.y=sin4x B.y=cos2x C.D.8.某四棱锥的三视图如图所示,则该四棱锥的表面积是()A.36B.32C.30D.279.已知数列{an }前n项和为Sn,a1=15,且满足(2n﹣5)an+1=(2n﹣3)an+4n2﹣16n+15,已知n,m∈N+,n>m,则Sn ﹣Sm的最小值为()A.B.C.﹣14D.﹣2810.已知点F为双曲线C:(a>0,b>0)的右焦点,直线x=a与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()A.B.C.D.11.已知,则满足f(2x+1)>f(2)成立的x取值范围是()A.B.C.D.12.若x是三角形的最小内角,则函数y=sinx+cosx﹣sinxcosx的最小值是()A.﹣ +B. +C.1D.二.填空题(共4小题,满分20分,每小题5分)13.设Sn 为等差数列{an}的前n项和,若S7<0,a5>|a4|,则使Sn>0成立的最小正整数n 为.14.已知实数x,y满足,则(x+1)2+y2的最大值为.15.已知椭圆的离心率是,则实数m的值是.16.已知正三棱锥所有棱长均为,且四个顶点都在同一个球面上,则该球的表面积为.三.解答题(共5小题,满分60分,每小题12分)17.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,sinB﹣sinC=sin (A﹣C).(Ⅰ)求角A的值;(Ⅱ)若a=2,△ABC的面积为,求b+c的值.18.(12分)为了调查一款电视机的使用时间,研究人员对该款电视机进行了相应的测试,将得到的数据统计如下图所示:并对不同年龄层的市民对这款电视机的购买意愿作出调查,得到的数据如下表所示:愿意购买这款电视机不愿意购买这款电视机总计40岁以上8001000 40岁以下600总计1200(1)根据图中的数据,试估计该款电视机的平均使用时间;(2)根据表中数据,判断是否有99.9%的把握认为“愿意购买该款电视机”与“市民的年龄”有关;(3)若按照电视机的使用时间进行分层抽样,从使用时间在[0,4)和[4,20]的电视机中抽取5台,再从这5台中随机抽取2台进行配件检测,求被抽取的2台电视机的使用时间都在[4,20]内的概率.附:K2=P(K2≥k)0.1000.0500.0100.001k 2.706 3.841 6.63510.82819.(12分)如图,在四棱锥P﹣ABCD中,棱PA⊥底面ABCD,且AB⊥BC,AD∥BC,PA=AB=BC=2AD=2,E是PC的中点.(1)求证:DE⊥平面PBC;(2)求三棱锥A﹣PDE的体积.20.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,抛物线C与直线l1:y=﹣x的一个交点的横坐标为4.(1)求抛物线C的方程;(2)不过原点的直线l2与l1垂直,且与抛物线C交于不同的两点A、B,若线段AB的中点为P,且|OP|=|PB|,求△FAB的面积.21.(12分)已知函数f(x)=xlnx+m.(Ⅰ)若函数f(x)的图象经过点P(1,2),求曲线f(x)在点P(1,2)处的切线方程;(Ⅱ)若f(x)≥0恒成立,求实数m的取值范围.四.解答题(共1小题,满分10分,每小题10分)22.(10分)在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.已知直线l的参数方程为(t为参数);曲线C1的极坐标方程为ρ=4cosθ,点P在曲线C1上,点P的极角为.(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),由曲线C2按变换得曲线C3,点Q为曲线C3上的动点,求线段PQ的中点M到直线l的距离的最大值.五.解答题(共1小题)23.已知函数f(x)=|2x﹣1|+a|x﹣1|(Ⅰ)当a=1时,解关于x的不等式f(x)≥4;(Ⅱ)若f(x)≥|x﹣2|的解集包含,求实数a的取值范围.2017-2018学年河北省唐山市高三期末数学模拟试卷答案解析一.选择题(共12小题,满分60分,每小题5分)1.已知集合A={x|x2<16},B={x|4﹣2x>0},则A∩B=()A.(﹣4,2)B.(﹣4,4)C.(﹣2,2)D.(﹣2,4)【分析】可解出集合A,B,然后进行交集的运算即可.【解答】解:A={x|﹣4<x<4},B={x|x<2};∴A∩B=(﹣4,2).故选:A.【点评】考查描述法、区间表示集合的概念,以及交集的运算.2.设z=﹣+i,则z2+z=()A.﹣1B.0C.1D.2【分析】直接把z代入z2+z,再利用复数代数形式的乘除运算化简得答案.【解答】解:由z=﹣+i,得z2+z==.故选:A.【点评】本题考查了复数代数形式的乘除运算,是基础题.3.已知地铁列车每10分钟一班,在车站停1分钟.则乘客到达站台立即乘上车的概率是()A.B.C.D.【分析】根据几何概型的概率计算问题,求出对应时间的比即可.【解答】解:由于地铁列车每10分钟一班,列车在车站停1分钟,乘客到达站台立即乘上车的概率为P==.故选:A.【点评】本题考查了几何概型的概率计算问题,是求对应时间的比值.4.已知函数f(x)是定义在R上的偶函数,且在(﹣∞,0)上是减函数,若a=f(log25),b=f(log24.1),c=f(20.8),则a,b,c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.c<a<b【分析】根据题意,分析函数f(x)在区间(0,+∞)上为增函数,又由20.8<21=2<log24.1<log25,分析可得答案.【解答】解:根据题意,函数f(x)是定义在R上的偶函数,且在(﹣∞,0)上是减函数,则函数f(x)在区间(0,+∞)上为增函数,则20.8<21=2<log24.1<log25,则c<b<a,故选:B.【点评】本题考查函数的奇偶性与单调性的综合应用,注意分析函数的单调性,属于基础题.5.执行如图所示的程序框图,输出的结果是()A.B.C.D.1【分析】根据框图的流程模拟运行程序,直到不满足条件,计算输出S的值.【解答】解:模拟程序的运行,可得共循环2013次,由裂项求和得S=++…+=1﹣=.故选:B.【点评】本题考查了循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法,属于基础题.6.如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3【分析】根据向量数量积的定义结合图象边角关系进行判断即可.【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I3<I1<I2,故选:C.【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键.7.最小正周期为π的函数是()A.y=sin4x B.y=cos2x C.D.【分析】根据函数y=Asin(ωx+φ)、函数y=Acos(ωx+φ)的最小正周期为,得出结论.【解答】解:∵函数y=sin4x的最小正周期为=,故排除A;∵函数y=cos2x的最小正周期为=π,故满足条件;由于函数y=sin的最小正周期为=4π,故排除C;由于函数y=cos的最小正周期为=8π,故排除D,故选:B.【点评】本题主要考查三角函数的周期性,属于基础题.8.某四棱锥的三视图如图所示,则该四棱锥的表面积是()A.36B.32C.30D.27【分析】由三视图知该几何体是一个四棱锥,由三视图求出几何元素的长度,由锥体的表面积公式求出几何体的表面积.【解答】解:根据三视图可知几何体是一个四棱锥,是长方体的一部分,底面是一个边长为4,3正方形,且四棱锥的高为3,∴几何体的表面积为:3×3+=36,故选:A.【点评】本题考查三视图求几何体的表面积,由三视图正确复原几何体是解题的关键,考查空间想象能力.9.已知数列{an }前n项和为Sn,a1=15,且满足(2n﹣5)an+1=(2n﹣3)an+4n2﹣16n+15,已知n,m∈N+,n>m,则Sn ﹣Sm的最小值为()A.B.C.﹣14D.﹣28【分析】由等式变形,可得{}为等差数列,公差为1,首项为﹣5,运用等差数列的通项公式可得an ,再由自然数和的公式、平方和公式,可得Sn,讨论n的变化,Sn的变化,僵尸可得最小值.【解答】解:∵(2n﹣5)an+1=(2n﹣3)an+4n2﹣16n+15,∴﹣=1, =﹣5.可得数列{}为等差数列,公差为1,首项为﹣5.∴=﹣5+n﹣1=n﹣6,∴an=(2n﹣5)(n﹣6)=2n2﹣17n+30.∴Sn=2(12+22+……+n2)﹣17(1+2+……+n)+30n=2×﹣17×+30n =.可得n=2,3,4,5,Sn 递减;n>5,Sn递增,∵n,m∈N+,n>m,S 1=15,S2=19,S5=S6=5,S7=14,S8=36,S n ﹣Sm的最小值为5﹣19=﹣14,故选:C.【点评】本题考查了数列递推关系、等差数列的通项公式、分组求和方法,考查了推理能力与计算能力,属于中档题.10.已知点F为双曲线C:(a>0,b>0)的右焦点,直线x=a与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()A.B.C.D.【分析】设出双曲线的右焦点和渐近线方程,可得将交点A的坐标,运用中点坐标公式,可得中点坐标,代入双曲线的方程,结合离心率公式,计算即可得到所求值.【解答】解:设双曲线C:的右焦点F(c,0),双曲线的渐近线方程为y=x,由x=a代入渐近线方程可得y=b,则A(a,b),可得AF的中点为(, b),代入双曲线的方程可得﹣=1,可得4a2﹣2ac﹣c2=0,由e=,可得e2+2e﹣4=0,解得e=﹣1(﹣1﹣舍去),故选:D.【点评】本题考查双曲线的离心率的求法,考查渐近线方程的运用,以及中点坐标公式,考查方程思想和运算能力,属于中档题.11.已知,则满足f(2x+1)>f(2)成立的x取值范围是()A.B.C.D.【分析】判断函数的奇偶性,然后转化求解不等式的解集即可.【解答】解:,f(﹣x)=f(x),所以函数f(x)是偶函数,在x>0时是增函数,所以f(2x+1)>f(2),可得|2x+1|>2,解得:x∈.故选:B.【点评】本题考查分段函数以及函数的大小以及函数的奇偶性的应用,绝对值不等式的解法,考查计算能力.12.若x是三角形的最小内角,则函数y=sinx+cosx﹣sinxcosx的最小值是()A.﹣ +B. +C.1D.【分析】令sinx+cosx=t,则sinxcosx=,则y是关于t的二次函数,根据x的范围得出t的范围,利用二次函数性质推出y的最小值.【解答】解:令sinx+cosx=t,则sinxcosx=,∴y=t﹣=﹣(t﹣1)2+1.∵x是三角形的最小内角,∴x∈(0,],∵t=sinx+cosx=sin(x+),∴t∈(1,],∴当t=时,y取得最小值.故选:A.【点评】本题考查了三角函数的恒等变换,三角函数的最值,二次函数的性质,属于中档题.二.填空题(共4小题,满分20分,每小题5分)13.设Sn 为等差数列{an}的前n项和,若S7<0,a5>|a4|,则使Sn>0成立的最小正整数n为8 .【分析】根据给出的已知条件,得到a5+a4>0,然后由等差数列的前n项和公式,结合等差数列的性质得答案.【解答】解:在等差数列{an}中,∵a4<0,a5>|a4|,得a 5>0,a5+a4>0,S 7==7a4<0,=a4+a5>0.∴使Sn>0成立的最小正整数n为8.故答案为:8.【点评】本题考查等差数列中使Sn>0成立的最小正整数n的求示,解题时要认真审题,注意通项公式、等差数列的性质的合理运用,是基础题.14.已知实数x,y满足,则(x+1)2+y2的最大值为 4 .【分析】画出约束条件的可行域,利用目标函数的几何意义求解即可.【解答】解:实数x,y满足的可行域如图:则的几何意义是可行域内的点与P(﹣1,0)的距离的平方,由可行域可知A(1,0)到P(﹣1,0)距离最大,显然距离最大值为:2.则(x+1)2+y2的最大值为:4.故答案为:4【点评】本题考查线性规划的应用,目标函数的几何意义,是基本知识的考查.15.已知椭圆的离心率是,则实数m的值是18 .【分析】利用椭圆的离心率,列出方程求解即可.【解答】解:椭圆的离心率是,可得: =,解得m=18.故答案为:18.【点评】本题考查椭圆的简单性质的应用,是基本知识的考查.16.已知正三棱锥所有棱长均为,且四个顶点都在同一个球面上,则该球的表面积为3π.【分析】构造一个各棱长为1的正方体,连接各面的对角线可作出一个正四面体,此四面体各棱为,而此四面体的外接球即为正方体的外接球.由此能求出该球表面积.【解答】解:构造一个各棱长为1的正方体,连接各面的对角线可作出一个正四面体,此四面体各棱为,而此四面体的外接球即为正方体的外接球.此球的直径为正方体的体对角线,即,所以该球表面积S=4πR2==3π.故答案为:3π.【点评】本题考查球的表面积的求法,考查正方体、正四面体、球等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.三.解答题(共5小题,满分60分,每小题12分)17.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,sinB﹣sinC=sin (A﹣C).(Ⅰ)求角A的值;(Ⅱ)若a=2,△ABC的面积为,求b+c的值.【分析】(Ⅰ)利用两角和与差的正弦函数公式,三角形内角和定理,诱导公式化简已知可得cosAsinC=﹣cosAsinC+sinC,由于sinC>0,可得:cosA=,结合范围A∈(0,π),利用特殊角的三角函数值可求A的值.(Ⅱ)利用三角形面积公式可求bc=12,进而根据余弦定理可求b+c的值.【解答】解:(Ⅰ)∵sinB﹣sinC=sin(A﹣C),可得:sin(A+C)=sin(A﹣C)+sinC,∴可得:sinAcosC+cosAsinC=sinAcosC﹣cosAsinC+sinC,可得:cosAsinC=﹣cosAsinC+sinC,∵sinC>0,∴cosA=1﹣cosA,可得:cosA=,∵A∈(0,π),∴A=.(Ⅱ)∵A=,a=2,△ABC的面积为=bcsinA=bc,可得:bc=12,∴由余弦定理a2=b2+c2﹣2bccosA,可得:4=b2+c2﹣bc=(b+c)2﹣3bc=(b+c)2﹣36,可得:b+c=2.【点评】本题主要考查了两角和与差的正弦函数公式,三角形内角和定理,诱导公式,特殊角的三角函数值,三角形面积公式,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.18.(12分)为了调查一款电视机的使用时间,研究人员对该款电视机进行了相应的测试,将得到的数据统计如下图所示:并对不同年龄层的市民对这款电视机的购买意愿作出调查,得到的数据如下表所示:愿意购买这款电视机不愿意购买这款电视机总计40岁以上 800100040岁以下600总计1200(1)根据图中的数据,试估计该款电视机的平均使用时间;(2)根据表中数据,判断是否有99.9%的把握认为“愿意购买该款电视机”与“市民的年龄”有关;(3)若按照电视机的使用时间进行分层抽样,从使用时间在[0,4)和[4,20]的电视机中抽取5台,再从这5台中随机抽取2台进行配件检测,求被抽取的2台电视机的使用时间都在[4,20]内的概率. 附:K 2=P (K 2≥k )0.100 0.050 0.010 0.001k2.7063.841 6.635 10.828【分析】(1)利用频率分布直方图求出平均数;(2)依题意填写列联表,计算观测值,对照临界值得出结论;(3)依题意用列举法求出基本事件数,再计算所求的概率值.【解答】解:(1)依题意,所求平均数为=2×0.2+6×0.36+10×0.28+14×0.12+18×0.04=0.4+2.16+2.8+1.68+0.72=7.76;…(3分)(2)依题意,完善表中的数据如下所示:愿意购买该款电视机不愿意购买该款电视机总计40岁以上800200100040岁以下4006001000总计12008002000故K2=≈333.33>10.828;故有99.9%的把握认为“愿意购买该款电视机”与“市民的年龄”有关;…(7分)(3)依题意,使用时间在[0,4)内的有1台,记为A,使用时间在[4,20]内的有4台,记为a,b,c,d;则随机抽取2台,所有的情况为(A,a),(A,b),(A,c),(A,d),(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共10种;其中满足条件的为(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共6种,故所求概率为P==.…(12分)【点评】本题考查了频率分布直方图与独立性检验的应用问题,是基础题.19.(12分)如图,在四棱锥P﹣ABCD中,棱PA⊥底面ABCD,且AB⊥BC,AD∥BC,PA=AB=BC=2AD=2,E是PC的中点.(1)求证:DE⊥平面PBC;(2)求三棱锥A﹣PDE的体积.【分析】(1)取PB中点H,连接AH,EH,证明PA⊥BC,BC⊥AB,推出BC⊥平面PAB,得到BC⊥AH.AH⊥PB,说明AH⊥平面PBC,证明四边形ADEH是平行四边形,推出AH∥DE,即可证明DE⊥平面PBC.(2)说明PH是三棱锥P﹣ADE的高,通过求解即可;另解E到平面PAD的距离是B到平面PAD的距离的一半,利用体积求解即可.【解答】(1)证明:取PB中点H,连接AH,EH,∵PA⊥底面ABCD,BC⊂底面ABCD,PA⊥BC,BC⊥AB,且PA∩AB=A,∴BC⊥平面PAB,又AH⊂平面PAB,所以BC⊥AH.又∵PA=AB,H为PB的中点,∴AH⊥PB,又BC∩PB=B,AH⊥平面PBC,在△PBC中,H,E分别为PB,PC中点,,又∵BC=2AD,AD∥BC,∴AD∥HE,AD=HE,∴四边形ADEH是平行四边形,∴AH∥DE、DE⊥平面PBC.(2)解:由(1)知,BC⊥PB,∴AD⊥PB,又∴PB⊥AH,且AH∩AD=A,∴PB⊥平面ADEH,∴PH是三棱锥P﹣ADE的高,又可知四边形ADEH为矩形,且AD=1,,所以=.另解:E是PC的中点,∴E到平面PAD的距离是B到平面PAD的距离的一半,所以.【点评】本题考查直线与平面垂直以及直线与平面平行的判断定理的应用,几何体的体积的求法,考查空间想象能力以及计算能力.20.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,抛物线C与直线l1:y=﹣x的一个交点的横坐标为4.(1)求抛物线C的方程;(2)不过原点的直线l2与l1垂直,且与抛物线C交于不同的两点A、B,若线段AB的中点为P,且|OP|=|PB|,求△FAB的面积.【分析】(1)求出直线与抛物线的交点坐标为(4,﹣4),然后求解p,即可得到抛物线方程.、(2)直线l2与l1垂直,故可设直线l2:x=y+m,A(x1,y1),B(x2,y2),且直线l2与x轴的交点为M.由,通过韦达定理,y1+y2=4,y1•y2=﹣4m,结合OA⊥OB,得到求出准线方程,然后通过S△FAB =S△FMB+S△FMA求解即可.【解答】(1)解:易知直线与抛物线的交点坐标为(4,﹣4),∴(﹣4)2=2p×4,∴2p=4,∴抛物线方程为y2=4x.(2)解:直线l2与l1垂直,故可设直线l2:x=y+m,A(x1,y1),B(x2,y2),且直线l2与x轴的交点为M.由得y2﹣4y﹣4m=0,△=16+16m>0,∴m>﹣2.y1+y2=4,y1•y2=﹣4m,∴.由题意可知OA⊥OB,即,∴m=4或m=0(舍),∴直线l2:x=y+4,M(4,0).故S△FAB =S△FMB+S△FMA==.【点评】本题考查直线与抛物线的位置关系的应用,抛物线方程的求法,考查转化思想以及计算能力.21.(12分)已知函数f(x)=xlnx+m.(Ⅰ)若函数f(x)的图象经过点P(1,2),求曲线f(x)在点P(1,2)处的切线方程;(Ⅱ)若f(x)≥0恒成立,求实数m的取值范围.【分析】(Ⅰ)函数f(x)=xlnx+m的定义域为(0,+∞),求出m,求解函数的导数,求出切线的斜率,然后求解切线方程.(Ⅱ)函数f(x)=xlnx+m.求出导函数f'(x)=1+lnx,求出极值点,判断函数的单调性,求解函数的最小值,然后求解实数m的取值范围.【解答】(本题满分12分)解:(Ⅰ)函数f(x)=xlnx+m的定义域为(0,+∞),因为函数f(x)的图象经过点P(1,2),∴m=2,∴f(x)=xlnx+2,∴f'(x)=1+lnx,∴f'(1)=1曲线f(x)在点P(1,2)处的切线方程是y﹣2=x﹣1,即为x﹣y+1=0.(Ⅱ)函数f(x)=xlnx+m.∴f'(x)=1+lnx,由f'(x)=0,可得,当时f'(x)<0,当时f'(x)>0,函数f(x)在单调递减,在时单调递增,∴函数f(x)在时取得最小值,∵f(x)≥0恒成立,∴,∴,∴实数m的取值范围是.【点评】本题考查函数的导数的应用,切线方程的求法,函数的最值的求法,考查转化思想以及计算能力.四.解答题(共1小题,满分10分,每小题10分)22.(10分)在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.已知直线l的参数方程为(t为参数);曲线C1的极坐标方程为ρ=4cosθ,点P在曲线C1上,点P的极角为.(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),由曲线C2按变换得曲线C3,点Q为曲线C3上的动点,求线段PQ的中点M到直线l的距离的最大值.【分析】(1)首先利用参数方程直角坐标方程和极坐标方程之间的转换求出结果.(2)利用关系式的伸缩变换和点到直线的距离公式的应用及三角函数关系式的恒等变变换求出结果.【解答】解:(1)已知直线l的参数方程为(t为参数);转换为直角坐标方程为:x+2y﹣3=0.曲线C1的极坐标方程为ρ=4cosθ,转换为直角坐标方程为:(x﹣2)2+y2=4.(2)点P在曲线C1上,点P的极角为.则:P(2,2),曲线C2的参数方程为(α为参数),由曲线C2按变换得曲线C3,则: +y2=1.则:Q(2cosα,sinα),所以:PQ的中点坐标为M(),所以:点M到直线x+2y﹣3=0的距离d==,当时,.【点评】本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,关系式的伸缩变换的应用,点到直线的距离公式的应用,三角函数关系式的恒等变变换,主要考查学生的运算能力和转化能力,属于基础题型.五.解答题(共1小题)23.已知函数f(x)=|2x﹣1|+a|x﹣1|(Ⅰ)当a=1时,解关于x的不等式f(x)≥4;(Ⅱ)若f(x)≥|x﹣2|的解集包含,求实数a的取值范围.【分析】(Ⅰ)由条件利用绝对值的意义求得不等式f(x)>4的解集.(Ⅱ)f(x)≥|x﹣2|的解集包含[,2],即为a|x﹣1|≥3﹣3x对x∈[,2]恒成立,分类解得即可.【解答】解:(Ⅰ)a=1时,原问题等价于|2x﹣1|+|x﹣1|≥4,若,则2﹣3x≥4,解得;若,则x≥4,不符合题意,舍;若x>1,则3x≥6,解得x≥2;不等式的解集为;(Ⅱ)∵f(x)≥|x﹣2|的解集包含,∴a|x﹣1|≥3﹣3x对恒成立,故时,a(1﹣x)≥3﹣3x,a≥3,∴1≤x≤2时,a(x﹣1)≥3﹣3x,∴a≥﹣3;综上:a≥3.【点评】本题主要考查绝对值的意义,绝对值不等式的解法,函数的恒成立问题,属于中档题.。
河北省唐山市2018届高三下学期第一次模拟考试数学(理)试题及答案解析
唐山市2017-2018学年度高三年级第一次模拟考试理科数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. ( )A. B.C.D.【答案】A 【解析】,故答案为:A. 2. 设集合,,则( )A.B.C.D.【答案】C【解析】集合 , ,故两个集合相等. 故答案为:C. 3. 已知,且,则( )A. B. C. D.【答案】B【解析】已知, ,将代入得到.故答案为:B.4. 两个单位向量,的夹角为,则( )A. B. C. D.【答案】D【解析】两个单位向量,的夹角为, 则代入得到.故答案为:.5. 用两个,一个,一个,可组成不同四位数的个数是()A. B. C. D.【答案】D【解析】根据题意得到有两个1是相同的,故可以组成不同的四个数字为故答案为:D.6. 已知,,,则()A. B. C. D.【答案】D【解析】根据题意得到,,故,,故得到.故答案为:D.7. 如图是根据南宋数学家杨辉的“垛积术”设计的程序框图,该程序所能实现的功能是()A. 求B. 求C. 求D. 求【答案】C【解析】根据题意得到:a=0,s=0,i=1,A=1,s=1,i=2,A=4,s=1+4,i=3,A=9,s=1+4+9,i=4,A=16,s=1+4+9+16,i=5,依次写出s的表达式,发现规律,满足C.故答案为:C.8. 为了得到函数的图象,可以将函数的图象()A. 向左平移个单位长度B. 向右平移个单位长度C. 向右平移个单位长度D. 向左平移个单位长度【答案】A【解析】函数,将函数的图象向做平移个单位长度即可.故答案为:A.9. 某几何体的三视图如图所示,则该几何体的表面积是()A. B. C. D.【答案】A【解析】根据题意得到该几何体是一个三棱柱切下了一个三棱锥,剩下的部分的表面积由一个等腰三角形,两个直角梯形,一个等腰直角三角形,一个长方形构成.面积和为故答案为:A.10. 已知为双曲线:的右焦点,过点向的一条渐近线引垂线,垂足为,交另一条渐近线于点.若,则的离心率是()A. B. C. D.【答案】B【解析】根据题意画出图像,得到由结论焦点到对应渐近线的距离为b得到:AF=b,故OA=a,OF=c,而角AOF 等于角FOB ,又因为三角形AOB为直角三角形,由二倍角公式得到化简得到c=2b,故得到离心率为.故答案为:B.11. 已知函数,则下列关于的表述正确的是()A. 的图象关于轴对称B. ,的最小值为C. 有个零点D. 有无数个极值点【答案】D【解析】A因为函数,故函数不是偶函数,图像也不关于y轴对称;A 不正确;B. 假设,使得的最小值为,即有解,在同一坐标系中画出图像,得到的最大值为2,最小值为2,且不是在同一个x处取得的,故得到两个图像无交点,故B是错误的;C ,其中一个零点为0,另外的零点就是两个图像的交点,两者的图像只有一个交点,故选项不正确;D,化一得到,,此时满足的x值有无数个;或者根据排除法也可得到D.故答案为:D.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题.研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现。
河北省唐山市2018年高考第三次模拟考试理科数学试卷含答案.docx
唐山市 2017—2018 学年度高三年级第三次模拟考试理科数学试卷第Ⅰ卷(共60 分)一、选择题:本大题共12 个小题 , 每小题 5 分 , 共 60 分 . 在每小题给出的四个选项中,只有一项是符合题目要求的 .1. 已知集合 M x 1 x 3 , N x x 0 ,则集合 x 0 x 3 ( )A . M NB . M N C. MC R ND . C R MN2. 复数 z 满足 2 i z 3 4i ( i 为虚数单位),则 z ( )A . 2 iB . 2 i C. 2 i D . 2 i3. 已知 tan6 1 ,则 tan()6A . 23B. 23C. 23D . 234. 已知命题 p : 在 ABC 中,若 sin Asin B ,则 AB ;命题 q : x0, , sin x1 . 则下列命题为真命 2sin x题的是()A . p qB . p q C. p q D . p q5. 已知双曲线 E :x 2y 2 1 a 0,b 0 的两条渐近线分别为l 1, l 2 ,若 E 的一个焦点 F 关于 l 1 的对称点 F 在 l 2 上,a 2b 2 则 E 的离心率为()A . 5B . 2C.2 3D .5326. 某几何体的三视图如图所示,则该几何体的体积为( )A. 6B. 7 C.15D. 23237. 已知函数 f x sin x20 的图象与 x 轴相切,则f()3A.3B.1C.31D.31 22228. 已知 P 是抛物线 y24x上任意一点, Q 是圆x 421上任意一点,则PQ 的最小值为()y2A.5B. 3 C. 3 1D. 2 3 1 29. 利用随机模拟的方法可以估计圆周率的值,为此设计如图所示的程序框图,其中rand表示产生区间0,1 上的均匀随机数(实数) ,若输出的结果为786,则由此可估计的近似值为()A. 3.134B. 3.141 C.3.144D. 3.14710. 在ABC 中,点 G 满足 GA GB GC0 . 若存在点 O ,使得 OG 1BC ,且 OA mOB nOC ,则 m n(6)A. 2B. 2C. 1D. 111.若异面直线 m,n 所成的角是60,则以下三个命题:①存在直线l ,满足 l 与m,n的夹角都是60 ;②存在平面,满足 m,n与所成角为60;③存在平面,,满足m, n,与所成锐二面角为60 .其中正确命题的个数为()A. 0B. 1 C. 2D. 312. 已知 a0, fxe xx 的最小值为 1 ,则 a()x,若 fe x aA.1B.1C.eD. e2e2e第Ⅱ卷(共90 分)二、填空题(每题 5 分,满分20 分,将答案填在答题纸上)x y10,13. 设变量 x, y 满足约束条件 y1,则 z x y 的最大值为.x 2 y50,14. 某种袋装大米的质量X (单位: kg )服从正态分布N 50,0.01,任意选一袋这种大米,质量在49.850.1kg 的概率为.x2 , x 0,15. 设函数 f x则使得f x f x 成立的 x 得取值范围是.x, x 0,16. ABC 的内角A, B, C的对边分别为a,b,c,角 A 的内角平分线交11,则 AD 的取BC 于点 D ,若 a 1,2b c值范围是.三、解答题(本大题共 6 小题,共70 分 . 解答应写出文字说明、证明过程或演算步骤. )17.已知数列a n是等差数列,b n是等比数列,a11,b1 2 , a2b27, a3b313 .( 1)求a n和b n的通项公式;a , n为奇数( 2)若 c n n,求数列c n的前 2n 项和 S2 n .为偶数b n , n18.某球迷为了解A,B 两支球队的攻击能力,从本赛季常规赛中随机调查了20 场与这两支球队有关的比赛. 两队所得分数分别如下:A 球队: 122 110 105 105 109 101 107 129 115 100114 118 118 104 93 120 96 102 105 83B 球队: 114 114 110 108 103 117 93 124 75 10691 81 107 112 107 101 106 120 107 79(1)根据两组数据完成两队所得分数的茎叶图,并通过茎叶图比较两支球队所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可);(2)根据球队所得分数,将球队的攻击能力从低到高分为三个等级:球队所得分数低于 100 分100 分到 119 分不低于120分攻击能力等级较弱较强很强记事件 C : “ A 球队的攻击能力等级高于 B 球队的攻击能力等级”.假设两支球队的攻击能力相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求 C 的概率 .19. 如图,四棱锥P ABCD 的底面 ABCD 是平行四边形,BAC PAD PCD 90 .( 1)求证:平面PAB平面ABCD;( 2)若 AB AC PA 3 , E 为 BC 的中点, F 为棱 PB 上的点, PD / / 平面 AEF ,求二面角 A DF E 的余弦值 .20. 已知点 A2,0 ,点 B1,0 ,点 C 1,0,动圆 O 与 x 轴相切于点 A ,过点 B 的直线1与圆O 相切于点D,l过点 C 的直线 l2与圆 O 相切于点 E (D,E均不同于点 A ),且 l1与 l2交于点 P ,设点 P 的轨迹为曲线.( 1)证明:PB PC 为定值,并求的方程;( 2)设直线 l1与的另一个交点为Q ,直线 CD 与交于M , N两点,当O , D,C三点共线时,求四边形MPNQ 的面积 .21. 已知 a 0 ,函数 f x ln x4a2 . x a 2( 1)记 g af a 2,求 g a的最小值;( 2)若 y f x 有三个不同的零点,求 a 的取值范围 .请考生在22、23 两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修 4-4 :坐标系与参数方程已知点 A 在椭圆 C : x2 2 y2 4 上,将射线OA 绕原点 O 逆时针旋转,所得射线OB 交直线 l : y 2 于点 B .2以 O 为极点, x 轴正半轴为极轴建立极坐标系.( 1)求椭圆 C 和直线 l 的极坐标方程;( 2)证明: : Rt OAB 中,斜边AB 上的高 h 为定值,并求该定值.23.选修 4-5 :不等式选讲已知函数 f x x 1 2x 3 .( 1)求不等式 f x0 的解集;( 2)设 g x f x f x ,求 g x 的最大值 .试卷答案一、选择题1-5: CADBB6-10: BBDCD 11、12:DA二、填空题13. 414.0.818515.(- , 1)0,116.3 ,1 2三、解答题17.解:( 1)设数列 {a n } 的公差为 d,数列 {b n } 的公比为q,依题意有,1+ d+ 2q= 7,{1+2d+2q2=13, )解得d=2,q=2,故a n= 2n- 1, b n= 2n,( 2)由已知 c2n-1=a2n-1=4n- 3,c2n= b2n= 4n,所以数列 {c n} 的前 2n 项和为S2n= (a 1+ a3+⋯a2n-1 ) +(b 2+ b4+⋯b2n)n(1 + 4n- 3)4(1 - 4n)4=2+ 1- 4= 2n2- n+ 3(4 n- 1) .18.解:( 1)两所得分数的茎叶如下A 球B 球7593813693152407195510836771678845011440720921240通茎叶可以看出, A 球所得分数的平均高于 B 球所得分数的平均;A 球所得分数比集中,B 球所得分数比分散.( 2) C A1表示事件:“A球攻能力等”,C A2表示事件:“A球攻能力等很”;C B1表示事件:“B球攻能力等弱”,C B2表示事件:“B球攻能力等弱或”,C A1与 C B1独立, C A2与 C B2独立, C A1与 C A2互斥, C= (C A1C B1) ∪(C A2C B2) .P (C) =P (C A1C B1)+ P (C A2C B2) = P(C A1)P (C B1) +P (C A2)P (C B2) .143518由所数据得C A1, C A2, C B1, C B2生的率分20,20, 20,20,故143518P (C A1) = 20,P (C A2) = 20, P(C B1) =20, P (C B2) = 20,14 5 3 18P (C) =20×20+20×20=0.31 .19.解:(1)∵ AB∥CD,PC⊥CD,∴ AB⊥PC,∵AB⊥AC,AC∩PC= C,∴ AB⊥平面PAC,∴AB⊥PA,又∵ PA⊥AD,AB∩AD=A,∴PA⊥平面ABCD, PA平面PAB,∴平面 PAB⊥平面 ABCD.(2)连接 BD交 AE于点 O,连接 OF,∵E 为 BC的中点, BC∥AD,BO BE1∴OD=AD= 2,∵PD∥平面AEF, PD平面PBD,平面 AEF∩平面PBD= OF,∴PD∥OF,BF BO1∴FP=OD= 2,以 AB, AC, AP所在直线分别为 x 轴, y 轴, z 轴建立空间直角坐标系A- xyz ,则A(0 , 0, 0) , B(3 , 0, 0) , C(0, 3, 0) , D(- 3,3, 0) ,3 3P(0 ,0, 3) , E(2,2, 0),F(2 , 0,1) ,设平面 ADF 的法向量 m =(x 1, y 1, z 1) ,→→AFAD∵ =(2, 0,1), = ( - 3, 3,0) ,→ →2x1+ z1=0, )取 m = (1AFAD-3x1 + 3y1= 0,, 1,- 2) .由 ·m = 0, · m = 0 得{设平面 DEF 的法向量 n =(x 2, y 2, z 2) ,→93 →13DEEF∵ =(2,- 2, 0), =(2,- 2, 1),→ →DEEF得 取 n = (1 , 3, 4) .由 ·n = 0, · n = 0m ·n 2 39cos m , n| m|| n| =- 39 ,2 39∵二面角 A-DF-E 为钝二面角,∴二面角A-DF-E 的余弦值为-39 .20.解:( 1)由已知可得 |PD| =|PE| , |BA| = |BD| , |CE| = |CA| ,所以 |PB| + |PC| = |PD| +|DB| + |PC|= |PE| + |PC| +|AB|= |CE| + |AB|= |AC| + |AB| =4> |BC|所以点 P是以 B , C 为焦点的椭圆(去掉与 x 轴的交点),x2y2的方程为4 + 3 =1(y ≠0) .( 2)由又由直线O , D , C 三点共线及圆的几何性质,可知PB ⊥ CD ,CE ,CA 为圆 O 的切线,可知CE = CA ,OA =OE ,所以 |PC| = |BC| = 2,又由椭圆的定义, |PB| + |PC| = 4,得 |PB| = 2,所以△ PBC 为等边三角形,即点 P 在 y 轴上,点 P 的坐标为 (0 , ± 3) (i) 当点 P 的坐标为 (0 ,3) 时,∠ PBC = 60BCD = 303此时直线 l 1 的方程为 y =3(x + 1) ,直线 CD 的方程为 y =- 3 (x - 1) ,83 316由 整理得 5x 2+ 8x = 0,得 Q(- 5,- 5 ),所以 |PQ| =5,由整理得 13x 2- 8x - 32= 0,832设 M(x 1,y 1) , N(x 2, y 2) ,x 1+x 2=13, x 1x 2=-13,48|MN| =|x1- x 2| = 13,1384所以四边形 MPNQ 的面积S = 2|PQ| ·|MN|= 65 .384(ii) 当点P 的坐标为(0 ,-3) 时,由椭圆的对称性,四边形MPNQ 的面积为65 .384综上,四边形 MPNQ 的面积为 65 .21.解:4a 1( 1)g (a) = ln a 2 +a2+ a2-2= 2(ln a + a - 1),1 1 2(a -1)g (a) = 2(a -a2)= a2,所以 0< a < 1 时, g (a) < 0, g (a) 单调递减;a > 1 时, g(a) > 0, g (a) 单调递增,所以 g (a) 的最小值为 g (1) = 0.1 4a x2+(2a2 - 4a)x + a4( 2)f(x) =x - (x + a2)2 =x(x+ a2)2,x > 0.因为 y = f (x) 有三个不同的零点,所以 f (x) 至少有三个单调区间,而方程 x 2+ (2a 2- 4a)x + a 4= 0 至多有两个不同正根,2a2-4a < 0,所以,有{ = 16a2(1 - a) > 0, )解得, 0< a < 1.1由( 1)得,当 x ≠1时, g (x) > 0,即 ln x + x - 1>0,11所以 ln x >- x ,则 x > e -x(x >0) ,2a2a2令x = 2 ,得 2 > e-a2.2242(a - 1)2a2a2< 0, f (a 2) > 0,因为 f (e-)<- a2+a - 2=-4a- 2(a - 1)24af (1) =1+ a2-2=1+a2 < 0, f (e 2) = e2+ a2> 0,2所以 y = f (x) 在(e -a2222, a ), (a , 1) , (1 , e ) 内各有一个零点, 故所求 a 的范围是 0< a < 1. 22.解:( 1)由 x =ρ cos θ, y =ρ sinθ 得4椭圆 C 极坐标方程为 ρ 2(cos 2θ+ 2sin2θ) = 4,即 ρ 2= 1+ sin2 θ ;2直线 l 的极坐标方程为 ρ sin θ= 2,即 ρ= sin θ .( 2)证明:设 A( ρ A ,θ ) , B(ρ B ,θ+ 2 ),- 2 <θ< 2.444由( 1)得 |OA| 2 =ρ A2= 1+sin2 θ ,|OB| 2=ρ B2=sin2(θ+ \f(,2)) = cos2 θ ,1 1由 S △OAB = 2×|OA| ×|OB| = 2×|AB| ×h 可得,|OA|2 × |OB|2|OA|2 × |OB|2h 2=|AB|2= |OA|2 + |OB|2 = 2.故 h 为定值,且 h = 2.23.解:( 1)由题意得 |x -1| ≥|2x - 3|,所以 |x - 1| 2≥|2x - 3| 24整理可得 3x 2- 10x +8≤0,解得 3≤x ≤2,4故原不等式的解集为 {x | 3≤x ≤2}.( 2)显然 g (x) = f (x) + f ( - x) 为偶函数,所以只研究 x ≥0时 g (x) 的最大值.g (x) =f (x) + f ( - x) = |x - 1| - |2x - 3| +|x + 1| -|2x + 3| ,所以 x ≥0时, g (x) = |x - 1| - |2x - 3| - x - 2- 4, 0 ≤ x ≤ 1,= { 3)2x - 6,1< x < ,2 - 2x ,x ≥ 3,3所以当 x = 2时, g (x) 取得最大值- 3,3故 x =± 2时, g (x) 取得最大值- 3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年 理科数学 第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}1,2,3,4,5A ⊆,且{}{}1,2,31,2A =,则满足条件的集合A 的个数是( )A .2B .4C .8D .162.已知复数满足()1z =,则z =( )A .32+ B .32 C .34+ D .34 3.某班学生一次数学考试成绩频率分布直方图如图所示,数据分组依次为[)[)[)[]70,90,90,110,110,130,130,150,若成绩大于等于90分的人数为36,则成绩在[)110,130的人数为( )A .12B .9C .15D .18 4.设函数(),y f x x R =∈,“()y f x =是偶函数”是“()y f x =的图象关于原点对称”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.设12,F F 是双曲线2214x y -=的两个焦点,P 在双曲线上,且01290F PF ∠=,则12F PF ∆的面积为( )A .1B .2 C6.要得到函数()2sinxcosx,x f x R =∈的图像,只需将函数()22cos 1,g x x x R =-∈的图像( )A .向左平移2π个单位 B .向右平移2π个单位 C .向左平移4π个单位 D .向右平移4π个单位7.执行如图所示的程序框图,若输入1,2a b ==,则输出的x =( )A .1.25B .1.375C .1.4375D .1.406258.设0x是方程13x⎛⎫= ⎪⎝⎭0x 所在的范围是( )A .10,3⎛⎫ ⎪⎝⎭B .11,32⎛⎫ ⎪⎝⎭ C .12,23⎛⎫ ⎪⎝⎭ D .2,13⎛⎫⎪⎝⎭9.某几何体的三视图如图所示,则此几何体的体积为( )A.6+.6+.3 D .8310.把长为80cm 的铁丝随机截成三段,则每段铁丝长度都不小于20cm 的概率是( ) A .116 B .18 C .14 D .31611.在四棱锥P ABCD -中,底面ABCD 是正方形,PA ⊥底面ABCD ,4,,,PA AB E F H ==分别是棱,,PB BC PD 的中点,则过,F,H E 的平面截四棱锥P ABCD -所得截面面积为( )A .... 12.设函数()()3213853f x x x a x a =-+---,若存在唯一的正整数0x ,使得()00f x <,则a 的取值范围是( ) A .11,156⎛⎤⎥⎝⎦ B .11,154⎛⎤ ⎥⎝⎦ C .11,64⎛⎤ ⎥⎝⎦ D .15,418⎛⎤⎥⎝⎦第Ⅱ卷二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上 13.已知复数z 满足()14i z i -=,则z =___________. 14.若1tan 2θ=,则cos 2θ=__________. 15.已知抛物线24x y =与圆()()()222:120C x y r r -+-=>有公共点P ,若抛物线在P 点处的切线与圆C 也相切,则r =_________.16.如图,在平面四边形ABCD 中,8,5,AB AD CD ===0060,150A D ∠=∠=,则BC =_________.三、解答题 :本大题共6小题,共70分.其中(17)--(21)题必考题,(22),(23),(24)题为选考题.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)设n S 为等差数列{}n a 的前n 项和,1015110,240S S ==. (1)求数列{}n a 的通项公式;(2)令112n nn n n a a b a a ++=+-,求数列{}n b 的前n 项和n T . 18.(本小题满分12分)如图,在四棱锥P ABCD -中,PA ⊥底面,,ABCD BC PB PC ⊥与平面ABCD 所成角的正切值为2,BCD ∆为等边三角形,,PA AB AD E ==为PC 的中点.(1)求AB ;(2)求点E 到平面PBD 的距离. 19.(本小题满分12分)某班一次数学考试成绩频率分布直方图如图所示,数据分组依次为[)[)[)[]70,90,90,110,110,130,130,150,已知成绩大于等于90分的人数为36人,现采用分层抽样的方式抽取一个容量为10的样本.(1)求每个分组所抽取的学生人数;(2)从数学成绩在[]110,150的样本中任取2人,求恰有1人成绩在[)110,130的概率. 20.(本小题满分12分)如图,过椭圆()2222:10x y E a b a b+=>>上一点P 向x 轴作垂线,垂足为左焦点F ,,A B 分别为E 的右顶点,上顶点,且//,1AB OP AF =.(1)求椭圆E 的方程;(2),C D 为E 上的两点,若四边形ACBD (,C,B,D A 逆时针排列)的对角线CD 所在直线的斜率为1,求四边形ACBD 面积S 的最大值. 21.(本小题满分12分) 已知函数()1ln f x x x=+. (1)求()f x 的最小值;(2)若方程()f x a =有两个根()1212,x x x x <,证明:122x x +>.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-1:几何证明选讲如图,ABC ∆与ABD ∆都是以AB 为斜边的直角三角形,O 为线段AB 上一点,BD 平分ABC ∠,且//OD BC .(1)证明:,,,A B C D 四点共圆,且O 为圆心;(2)AC 与BD 相交于点F ,若26,5BC CF AF ===,求,C D 之间的距离. 23. (本小题满分10分)选修4-4:坐标系与参数方程以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程是2ρ=.矩形ABCD 内接于曲线 1C ,,A B 两点的极坐标分别为2,6π⎛⎫⎪⎝⎭和52,6π⎛⎫⎪⎝⎭.将曲线1C 上所有点的横坐标不变,纵坐标缩短为原来的一半,得到曲线2C . (1)写出,C D 的直角坐标及曲线2C 的参数方程;(2)设M 为2C 上任意一点,求2222MA MB MC MD +++的取值范围. 24. (本小题满分10分)选修4-5:不等式选讲 已知函数()11f x x mx =++-.(1)若1m =,求()f x 的最小值,并指出此时x 的取值范围; (2)若()2f x x ≥,求m 的取值范围.唐山市2016—2017学年度高三年级摸底考试理科数学参考答案一、选择题:A 卷: BCABA DCBDA CAB 卷: CCBBA DCBDD CA 二、填空题:(13)3; (14)14; (15)2; (16)70. 三、解答题:(17)(本小题满分12分) 解:(Ⅰ)设公差为d ,依题意有⎩⎨⎧10a 1+1092d =110,15a 1+15142d =240.解得,a 1=d =2. 所以,a n =2n .…6分(Ⅱ)b n =2n +22n +2n 2n +2=n +1n +n n +1= 1 n -1n +1+2,T n =1-1 2+ 1 2- 1 3+ 1 3- 1 4+…+ 1 n -1n +1+2n =n n +1+2n .…12分(18)(本小题满分12分) 解:(Ⅰ)连AC ,因为△BCD 为等边三角形,所以∠ABD =30°. 又已知AB =AD ,BD =3,可得AB =1.…5分(Ⅱ)分别以BC ,BA 所在直线为x ,y 轴,过B 且平行PA 的直线为z 轴建立空间直角坐标系.P (0,1,3),C (3,0,0),E (32, 1 2,32),D (32, 32,0). 由题意可知平面PAB 的法向量为m =(1,0,0). 设平面BDE 的法向量为n =(x ,y ,z ),则⎩⎨⎧BE →·n =0,BD →·n =0,即⎩⎪⎨⎪⎧32x + 1 2y +32z =0,32x + 3 2y =0,则n =(3,-3,-2). cos 〈m ,n 〉=3⨯1-3⨯0-2⨯032+(-3)2+(-2)2= 34. 所以平面BDE 与平面ABP 所成二面角的正弦值74.…12分(19)(本小题满分12分) 解:(Ⅰ)由已知可得:⎩⎪⎨⎪⎧m 2n 2=9100,(1-m )2(1-n )2=125,m >n ,解得:⎩⎨⎧m = 3 5,n = 1 2.(Ⅱ)X 可取0,1,2,3,4. …5分P (X =0)=125, P (X =1)=C 12×3 5×(1- 3 5)×(1- 1 2)2+(1- 3 5)2×C 12× 1 2×(1- 1 2)= 15, P (X =2)=C 12×3 5×(1- 3 5)×C 12× 1 2×(1- 1 2)+( 3 5)2×(1- 1 2)2+(1- 3 5)2×(1- 1 2)2=37100, P (X =3)=C 12× 3 5×(1- 3 5)×( 1 2)2+( 3 5)2×C 12× 1 2×(1- 1 2)=310, P (X =4)=9100. X 的分布列为E (X )=0×125+1×5+2×100+3×10+4×100=2.2…12分(20)(本小题满分12分)解:(Ⅰ)设焦距为2c ,则P (-c , b 2a).由AB ∥OP 得b 2ac = ba,则b =c ,a =2c ,则|AF |=a +c =(2+1)c ,又|AF |=2+1, 则c =1,b =1,a =2,椭圆E 的方程为x 22+y 2=1.…4分(Ⅱ)CD :y =kx ,设C (x 1,y 1),D (x 2,y 2),到AB 的距离分别为d 1,d 2, 将y =kx 代入x 22+y 2=1得x 2=21+2k 2,则x 1=21+2k 2,x 2=-21+2k 2. 由A (2,0),B (0,1)得|AB |=3,且AB :x +2y -2=0,d 1=x 1+2y 1-23,d 2=-x 2+2y 2-23,S =1 2|AB |(d 1+d 2)= 12=1 2(1+2k )(x 1-x 2)=2+2k 1+2k2, S 2=2(1+22k 1+2k2),因为1+2k 2≥22k ,当且仅当2k 2=1时取等号, 所以当k =22时,四边形ACBD 的面积S 取得最大值2.…12分(21)(本小题满分12分)解:(Ⅰ)f '(x )= 1 x -a x 2=x -a x2,(x >0)所以当a ≤0时,f '(x )>0,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.…5分(Ⅱ)若函数y =f (x )的两个零点为x 1,x 2(x 1<x 2),由(Ⅰ)可得0<x 1<a <x 2. 令g (x )=f (x )-f (2a -x ),(0<x <a )则g '(x )=f '(x )+f '(2a -x )=(x -a )[1x2-1(2a -x )2]<0,所以g (x )在(0,a )上单调递减,g (x )>g (a )=0, 即f (x )>f (2a -x ).令x =x 1<a ,则f (x 1)>f (2a -x 1),所以f (x 2)=f (x 1)>f (2a -x 1), 由(Ⅰ)可得f (x )在(a ,+∞)上单调递增,所以x 2>2a -x 1, 故x 1+x 2>2a .…12分(22)(本小题满分10分) 解:(Ⅰ)因为△ABC 与△ABD 都是以AB 为斜边的直角三角形, 所以A ,B ,C ,D 四点都在以AB 为直径的圆上. 因为BD 平分∠ABC ,且OD ∥BC , 所以∠OBD =∠CBD =∠ODB ,OB =OD .又∠OAD +∠OBD =90°,∠ODA +∠ODB =90°, 所以∠OAD =∠ODA ,OA =OD .所以OA =OB ,O 是AB 的中点,O 为圆心. …5分(Ⅱ)由BC =2CF =6,得BF =35, 由Rt △ADF ∽Rt △BCF 得AD DF =BCCF=2.设AD =2DF =2x ,则AF =5x ,由BD 平分∠ABC 得BD DA =BCCF=2,所以35+x2x =2,解得x =5,即AD =25.连CD ,由(Ⅰ),CD =AD =25. …10分(23)(本小题满分10分) 解:(Ⅰ)由A (3,1)、B (-3,1)得C (-3,-1)、D (3,-1); 曲线C 2的参数方程为⎩⎨⎧x =2cos θ,y =sin θ(θ为参数). …4分(Ⅱ)设M (2cos θ,sin θ),则|MA |2+|MB |2+|MC |2+|MD |2=(2cos θ-3)2+(sin θ-1)2+(2cos θ+3)2+(sin θ-1)2+(2cos θ+3)2+(sin θ+1)2+(2cos θ-3)2+(sin θ+1)2=16cos2θ+4sin2θ+16=12cos2θ+20,则所求的取值范围是.…10分(24)(本小题满分10分)解:(Ⅰ)f(x)=|x+1|+|x-1|≥|(x+1)-(x-1)|=2,当且仅当(x+1)(x-1)≤0时取等号.故f(x)的最小值为2,此时x的取值范围是.…5分(Ⅱ)x≤0时,f(x)≥2x显然成立,所以此时m∈R;x>0时,由f(x)=x+1+|mx-1|≥2x得|mx-1|≥x-1.由y=|mx-1|及y=x-1的图象可得|m|≥1且1m≤1,解得m≥1,或m≤-1.综上所述,m的取值范围是(-∞,-1]∪[1,+∞).…10分。