IPC-TM-650 Section 2.5.1b-Arc Resistance of Printed Wiring Materials

合集下载

IPC-TM-650中文解读

IPC-TM-650中文解读

IPC-TM-650中文解读IPC-TM-650是电子工业协会(IPC)制定的测试方法标准,用于评估电子产品的可靠性和性能。

本文将对IPC-TM-650进行中文解读。

1. 引言IPC-TM-650包含了广泛的测试方法,用于评估电子产品的材料、性能和可靠性。

这些测试方法可用于生产过程中的质量控制,也可用于产品验证和故障分析。

2. 标准结构IPC-TM-650标准由多个章节组成,每个章节覆盖了不同的测试方法或测试参数。

以下是标准的主要章节:2.1 第一章:引言该章节介绍了IPC-TM-650的范围和目的,以及如何正确使用该标准进行测试。

2.2 第二章:物理性能测试该章节涵盖了测试材料的物理性能,如硬度、弯曲强度、拉伸强度等。

2.3 第三章:耐热性能测试该章节主要用于评估材料和组件在高温环境下的性能和可靠性。

2.4 第四章:耐湿性能测试该章节用于评估材料和组件在湿度和潮湿环境下的性能和可靠性。

2.5 第五章:化学性能测试该章节涵盖了材料和组件的化学性能测试,如腐蚀性、耐化学剂性等。

2.6 第六章:电气性能测试该章节用于评估电子产品的电气性能,如绝缘电阻、电容、电感等。

2.7 第七章:可靠性测试该章节包括了一系列可靠性测试方法,用于评估电子产品在不同环境条件下的可靠性和寿命。

3. 使用IPC-TM-650进行测试使用IPC-TM-650进行测试时,应根据具体的测试要求选择适当的测试方法和参数。

测试过程中需要严格按照标准中的要求进行操作,并记录测试结果。

4. 测试结果的解读测试结果的解读应根据IPC-TM-650标准中提供的指导进行。

对于不同的测试方法和参数,标准中通常会给出相应的评估标准或参考值,以帮助解读测试结果。

5. 结论IPC-TM-650是评估电子产品性能和可靠性的重要标准,通过正确使用该标准进行测试,可以提高产品质量并满足客户需求。

在进行测试和解读结果时,应严格遵守标准中的要求和指导。

请注意,本文仅对IPC-TM-650进行了简要解读,具体的测试方法和要求请参考标准原文。

IPC650-2.5

IPC650-2.5
11/98
2.5.33.4
Measurement of Electrical Overstress from Soldering Hand Tools (Shielded Enclosure)
11/98
Volume and Surface Resistivity of Dielectric Materials
12/94
2.5.17.2
Volume Resistivity of Conductive Resistance Used in High Dentisty Interconnection (HDI) and Microvias, Two-Wire Method
3/79
2.5.28.A
Q Resonance, Flexible Printed Wiring Materials
4/88
2.5.30
Balanced and Unbalanced Cable Attenuation Measurements
12/87
2.5.31
Current Leakage (Through Overglaze Films)
3/98
2.5.5.5.1
Stripline Test for Complex Relative Permittivity of Circuit Board Materials to 14 GHZ
3/98
2.5.5.6
Non-Destructive Full Sheet Resonance Test for Permittivity of Clad Laminates
Propagation Delay of Flat Cables Using Time Domain Reflectometer (TDR)

IPC-TM-650全面中文解读

IPC-TM-650全面中文解读

IPC-TM-650全面中文解读简介本文档旨在全面解读IPC-TM-650标准,该标准是国际电子产品协会(IPC)制定的测试方法手册。

IPC-TM-650提供了一系列测试方法,用于评估电子产品的可靠性和性能。

标准内容IPC-TM-650标准包括以下主要内容:1. 测试方法:该标准提供了多种测试方法,如物理性能测试、电气性能测试、可靠性测试等。

每种测试方法都详细描述了测试步骤、测试设备和测试参数。

2. 测试参数解释:IPC-TM-650对测试方法中使用的各种参数进行了解释和定义。

这些参数包括电压、电流、温度、湿度等。

3. 测试结果评估:标准提供了评估测试结果的指导,以便根据测试数据判断产品的可靠性和性能。

4. 标准更新:IPC-TM-650是一个持续更新的标准,以适应新技术和新测试方法的发展。

本文档提供了对最新版本标准的解读。

使用建议1. 理解测试方法:在进行测试之前,首先要仔细阅读IPC-TM-650标准中的测试方法描述。

确保对测试步骤、设备和参数有清晰的理解。

2. 确定适用性:根据产品类型和测试需求,选择适当的测试方法和参数。

确保测试方法与产品的特性和要求相匹配。

3. 数据分析和解释:在测试完成后,根据IPC-TM-650标准中的指导,对测试结果进行评估和解释。

确保数据分析准确可靠。

4. 持续学习和更新:由于IPC-TM-650标准持续更新,建议定期关注最新版本。

了解最新的测试方法和参数定义,以保持与最新技术的同步。

总结IPC-TM-650标准是评估电子产品可靠性和性能的重要工具。

通过全面中文解读该标准,我们可以更好地理解其中的测试方法、参数和数据分析要求。

建议在实际测试中遵循该标准,并持续学习更新,以提高产品的可靠性和性能。

IPC-TM-650测试方法手册-得迈斯仪器

IPC-TM-650测试方法手册-得迈斯仪器

IPC-TM-650 测试方法手册编号:2.6.26目的:直流热循环测试生成日期:99.111.0 概述:此项测试测量PCB板通孔孔壁和孔和内层连接在热循环下的电阻的变化,应用特定设计的测试COUPON进行相应的测试。

该测试技术通过在特定的科邦的内层和通孔的连接回路上通3分钟的直流电,使被测COUPON测试区的温度升温至设定的温度,该温度略高于生产材料的Tg温度。

测试采用直流的通断使测试COUPON从室温达到设定温度,在温度变化下对被测COUPON进行抗疲劳测试,加速潜在问题的发生。

测试通过的循环测试为生产出成品的性能决定。

详细的测试信息请见6.0。

2.0 应用文档2.1 IPC-TM-650 2.1.1 微切片制作2.2 IPC-TM-650 2.1.1.2 微切片制作-半自动/自动技术3.0 测试样件典型的测试COUPON如图一所示。

4.0 仪器或材料4.1 内层连接应力测试系统(IST)如6.04.2 四线2.54mm(0.1inch)公头连接器(参见MOLEX 2241-4042)4.3 Sn60Pb40或Sn63Pb37焊料4.4 阻焊剂4.5 电烙铁4.6 万用表-可选4.7 热影仪-可选5.0 程序5.1 测试样件准备5.1.1 在COUPON的第一面左右两端分别在0.040inch孔径中焊接上4个公头连接器,不能出现焊接不良即焊锡需灌满通孔。

5.1.2 由于测试前需进行预处理,故在COUPON安装入IST测试区前需使被测COUPON的温度降低到室温(降温过程大概需要10分钟)。

5.2 IST测试程序5.2.1 将测试COUPON 安装入IST 设备测试箱内5.2.3 输入数据文件名和启动预测试循环处理。

当预测试循环结束后,IST 测试系统开始对被测COUPON 进行热循环测试。

IST 测试过程中将对孔铜和孔壁与内层连接之间的电阻变化进行监控,并且记录各个COUPON 的测试表现资料。

IPC-TM-650中文指导手册

IPC-TM-650中文指导手册

IPC-TM-650中文指导手册简介IPC-TM-650是一份关于电子产品测试方法的指导手册。

本手册旨在提供一套标准的测试方法和流程,以确保电子产品的质量和可靠性。

目标本指导手册的目标是为电子产品制造商提供一套简单且没有法律复杂性的测试策略,以确保产品符合相关标准和规范。

内容IPC-TM-650指导手册包含了多个章节,涵盖了各种不同的电子产品测试方法。

以下是一些重要的章节和内容:1. IPC-TM-650测试方法介绍 - 该章节提供了对IPC-TM-650指导手册的概述,介绍了测试方法的分类和应用。

2. 物理性能测试 - 该章节介绍了各种物理性能测试方法,如机械强度测试、耐热性测试、耐寒性测试等。

3. 电气性能测试 - 该章节涵盖了电气性能测试的方法,如绝缘电阻测试、电流和电压测试、功率耗散测试等。

4. 环境适应性测试 - 该章节介绍了环境适应性测试的方法,包括高温高湿测试、低温低压测试、振动和冲击测试等。

5. 可靠性测试 - 该章节提供了一套可靠性测试方法,包括寿命测试、可靠性指标测试、失效分析等。

使用建议为了最大限度地发挥IPC-TM-650指导手册的优势,以下是一些建议:1. 熟悉手册内容 - 在使用IPC-TM-650指导手册之前,首先要对手册的内容进行全面的了解,并熟悉各个测试方法的原理和步骤。

2. 简化测试策略 - 根据产品的特点和需求,制定简单且有效的测试策略,避免不必要的测试步骤和复杂性。

3. 遵循标准和规范 - 在进行测试时,确保遵循相关的标准和规范,以确保测试结果的准确性和可靠性。

4. 记录和分析测试结果 - 对测试结果进行记录和分析,及时发现问题并采取相应的措施进行改进。

结论IPC-TM-650中文指导手册是一份重要的电子产品测试方法指导手册,通过遵循其中的测试方法和流程,可以确保产品的质量和可靠性。

制定简单且没有法律复杂性的测试策略,并遵循相关标准和规范,将有助于提高产品的竞争力和用户满意度。

关于IPC-TM-650的中文详解

关于IPC-TM-650的中文详解

关于IPC-TM-650的中文详解1. 简介IPC-TM-650是由国际电子工业协会(IPC)制定的一套印刷电路板(PCB)的测试和测量标准。

该标准为PCB制造商提供了一系列的测试方法和指标,以确保产品的质量和可靠性。

2. 标准结构IPC-TM-650标准总共包含24个部分,主要分为以下几个大类:- 一般测试方法:包括样品制备、外观检查、尺寸测量等基本测试方法。

- 电性能测试:包括电阻、电容、电感、绝缘阻抗等电性能的测试方法。

- 物理性能测试:包括厚度、硬度、抗拉强度、断裂伸长率等物理性能的测试方法。

- 化学性能测试:包括化学成分、耐化学性等化学性能的测试方法。

- 附录:提供了测试设备的选择、测试方法的验证等附加信息。

3. 测试方法详解3.1 外观检查外观检查是用来评估PCB表面是否存在明显的缺陷,如划痕、气泡、分层等。

检查时,应使用适当的光源和放大镜,并根据标准中的要求进行评估。

3.2 尺寸测量尺寸测量是用来确定PCB的各项尺寸,如板厚、线路宽度、线路间距等。

测量时,应使用精确的测量工具,如卡尺、千分尺等,并按照标准中的要求进行测量。

3.3 电阻测试电阻测试是用来确定PCB上的导体电阻。

测试时,应使用适当的测试仪器,如万用表、电阻测试仪等,并按照标准中的要求进行测试。

3.4 绝缘阻抗测试绝缘阻抗测试是用来评估PCB绝缘材料的性能。

测试时,应使用适当的测试仪器,如绝缘阻抗测试仪,并按照标准中的要求进行测试。

4. 测试设备的选择根据IPC-TM-650标准,选择合适的测试设备是非常重要的。

应根据具体的测试项目和要求,选择适当的设备,并确保设备的准确性和可靠性。

5. 测试方法的验证为了确保测试结果的准确性和可靠性,应定期对测试方法进行验证。

验证方法包括与已知标准的样品进行比较、使用标准物质进行校准等。

6. 总结IPC-TM-650标准为PCB的测试和测量提供了一套详细的方法和要求。

通过遵循这些方法和要求,可以确保PCB产品的质量和可靠性。

ipc-tm-650中文

ipc-tm-650中文

IPC-TM-650 实验方法手册目·录Section 目视检测方法 Visual Test Methods手动微切片法陶瓷物质金相切片半自动或全自动微切片设备针孔评估,染色渗透法镀通孔结构评估未覆和覆金属材料表面检查玻纤厚度玻璃纤维的重量玻璃纤维的纤维数量纤维数计算,有机纤维工艺铜箔表面刮伤检验不溶解的双氰胺目视检验绕性印制电路材料内含物和空洞的检验物理量纲测试方法 Dimensional Test Methods外观尺寸确认目视检测尺寸导体边界清晰度测量介电质尺寸稳定性和柔韧性钻孔孔径的测量镀通孔孔径的测量孔的位置孔位和线路位置连接焊盘重合度【层与层之间】重量方法测定铜的厚度处理后和未经处理的铜箔总厚度和外观因素剥离载体后铜箔重量和厚度可蚀刻载体铜箔重量和厚度测量孔内镀层厚度锡粉颗粒尺寸分配-对于类型1-4使用屏幕方法锡粉颗粒尺寸-使用显微镜测试方法锡粉颗粒尺寸-光学图片分析器方法最大锡粉颗粒的定义电线尺寸(扁平的线路)用钻孔样板来评估底片透明图评估原图底片金属箔表面粗糙度和轮廓(触针法)金属箔表面粗糙度和外观(触针法)机械法测量基材板厚度切片测定基材覆铜厚度测量图形孔位剪切的层压板和半固化片长度、宽度和垂直度化学量纲测试方法 Chemical Test Methods覆金属铜箔层压板的化学清洗层压板、半固化片及涂胶箔产品的耐药品性(暴露于溶剂)基材的耐化学性(耐二氯甲烷)过硫酸铵蚀刻法氯化铁蚀刻法氯化铜蚀刻法印制线路板用材料的燃烧性印制线路板用层压板的燃烧性玻璃布结构印制、蚀刻、电镀测试铜箔或镀层的纯度半固化的树脂含量(灼烧法)半固化片的树脂含量(称重法)上胶后的半固化重量半固化片的数值流动百分度不流动”半固化片的树脂流动度半固化片的凝胶化时间半固化片的挥发物含量铜箔保护涂层质量热固性防旱的(耐久性)固化测试UV诱发的干膜阻焊剂的固化(耐久性)溶剂萃取的电阻率表面污染物的离子检测(动态法).固化物料的固化程度表面有机污染物的检测方法(企业内)表面有机污染物的检测方法(红外分析法)机械测试方法 Mechanical Test Methods 镀层附着力文字油墨附着力加工转移测定铜箔的弯曲疲劳和延展性层压板的弯曲强度(室温下)层压板的弯曲强度(高温下)热油冲击印制电路材料的加工性覆金属箔板的剥离强度。

IPC-TM-650中文指南

IPC-TM-650中文指南

IPC-TM-650中文指南1. 简介IPC-TM-650是一份由电子工业联盟(IPC)发布的测试方法指南,用于评估电子产品和组件的可靠性和性能。

该指南提供了一套标准化的测试方法和程序,以确保产品符合特定的质量和可靠性要求。

2. 目的IPC-TM-650的主要目的是为电子制造商和供应商提供一套统一的测试方法,以确保他们的产品符合行业标准和客户要求。

该指南的目标是提供可重复、可验证和准确的测试方法,以便进行产品质量控制和性能评估。

3. 内容IPC-TM-650中文指南涵盖了各种测试方法和程序,包括但不限于以下内容:- 材料测试:测试电子产品和组件所使用的材料的物理、化学和机械性质,如粘度、密度、硬度等。

- 焊接测试:评估焊接质量和可靠性,包括焊接接头的拉力、剪力和耐热性等。

- 环境测试:模拟产品在不同环境条件下的工作情况,如高温、低温、湿度、振动和冲击等。

- 电气测试:测试产品的电气特性和性能,如电阻、电容、电感、耐压等。

- 可靠性测试:评估产品在长期使用和应力条件下的可靠性和寿命。

4. 应用IPC-TM-650中文指南适用于各种电子产品和组件的制造和测试过程。

它可以用于电子制造商、供应商、测试实验室和质量控制部门等各个环节。

5. 使用方法要正确使用IPC-TM-650中文指南,用户应遵循以下步骤:1. 仔细阅读指南的整体结构和目录,了解各个测试方法的分类和顺序。

2. 根据实际需求,选择适用的测试方法和程序进行产品测试。

3. 遵循指南中提供的详细步骤和要求,进行测试操作。

4. 记录和分析测试结果,以评估产品的可靠性和性能。

5. 根据测试结果,采取必要的措施和改进措施,以提高产品的质量和可靠性。

6. 重要注意事项使用IPC-TM-650中文指南时,用户应注意以下重要事项:- 确保遵守所有的安全操作规程和要求,以保护测试人员和设备的安全。

- 在进行测试之前,确保所有测试设备和仪器的准确性和可靠性。

- 严格按照指南提供的测试步骤和要求进行操作,以确保测试结果的准确性和可重复性。

IPC TM-650实验方法手册

IPC TM-650实验方法手册

IPC TM-650实验方法手册IPC TM-650 Test Methods ManualIPC Member Testing Laboratories ListSection 1.0Reporting and Measurement Analysis MethodsSection 2.1Visual Test MethodsSection 2.2Dimensional T est MethodsSection 2.3Chemical T est MethodsSection 2.4Mechanical T est MethodsSection 2.5Electrical Test MethodsSection 2.6Environmental T est MethodsSECTION 1.0 - Reporting and Measurement Analysis Methods1.1Introduction1.2Calibration1.3Ambient Conditions1.4Reporting, General1.5Reporting, Format1.6Numerical Reporting1.7Reporting, Invalid T est Results1.8Measurement Precision Estimation for Binary Data - 1/03Measurement Precision Calculator-Binary DataMeasurement Precision Calculator Users Guide(for use with test method 1.8)1.9 Measurement Precision Estimation for Variables Data - 1/03Measurement Precision Calculator-Variable DataMeasurement Precision Calculator Users Guide(for use with test method 1.9)SECTION 2.1 - VISUAL TEST METHODS2.1.1D Microsectioning - 3/982.1.1.1Microsectioning, Ceramic Substrate - 12/872.1.1.2Microsectioning - Semi or Automatic T echnique Microsection Equipment (Alternate) - 7/932.1.2A Pinhole Evaluation, Dye Penetration Method - 3/762.1.3A Plated-Through Hole Structure Evaluation - 8/762.1.5A Surface Examination, Unclad and Metal Clad Material - 12/822.1.6B Thickness of Glass Fabric - 12/942.1.6.1Weight of Fabric Reinforcements - 12/942.1.7C Thread Count of Glass Fabric - 12/942.1.7.1Thread Count, Organic Fibers - 12/872.1.8B Workmanship - 12/942.1.9Surface Scratch Examination Metal Clad Foil - 5/862.1.10A Visual Inspection for Undissolved Dicyandiamide - 12/942.1.13A Inspection for Inclusions and Voids in Flexible Printed Wiring Materials - 5/98SECTION 2.2 - DIMENSIONAL TEST METHODS2.2.1A Mechanical Dimensional Verification - 8/972.2.2B Optical Dimensional Verification - 8/972.2.4C Dimensional Stability, Flexible Dielectric Materials - 5/98 2.2.5A Dimensional Inspections Using Mircosections - 8/972.2.6A Hole Size Measurement, Drilled - 8/972.2.7A Hole Size Measurement, Plated - 5/862.2.8Location of Holes - 4/732.2.10A Hole Location and Conductor Location - 12/832.2.12A Thickness of Copper by Weight- 3/762.2.12.1Overall Thickness and Profile Factor of Copper Foils Treated and Untreated - 9/872.2.12.2Weight and Thickness of Copper Foils with Releasable Carriers - 7/892.2.12.3Weight and Thickness Determination of Copper Foils With Etchable Carriers - 7/892.2.13.1A Thickness, Plating in Holes, Microhm Method - 1/832.2.14Solder Powder Particle Size Distribution - Screen Method for T ypes 1-4 - 1/952.2.14.1Solder Powder Particle Size Distribution - Measuring Microscope Method - 1/952.2.14.2Solder Powder Particle Size Distribution - Optical Image Analyzer Method--1/952.2.14.3Determination of Maximum Solder Powder Particle Size - 1/95 2.2.15Cable Dimensions (Flat Cable) - 6/792.2.16Artwork Master Evaluation by Use of a Drilled Panel - 12/872.2.16.1Artwork Master Evaluation by Overlay - 12/872.2.17Surface Roughness and Profile of Metallic Foils (Contacting Stylus T echnique)- 3/902.2.17A Surface Roughness and Profile of Metallic Foils (Contacting Stylus T echnique) - 2/012.2.18Determination of Thickness of Laminates by Mechanical Measurement - 12/942.2.18.1Determination of Thickness of Metallic Clad Laminates, Cross-sectional - 12/942.2.19Measuring Hole Pattern Location-12/872.2.19.1Length, Width and Perpendicularity of Laminate and Prepreg Panels - 12/94 2.2.20Solder Paste Metal Content by Weight - 1/952.2.21Planarity of Dielectrics for High Density Interconnection (HDI) Microvia T echnology - 11-98SECTION 2.3 - CHEMICAL TEST METHODS2.3.1Chemical Processing, Suitable Processing Material- 4/732.3.1.1B Chemical Cleaning of Metal Clad Laminates- 5/862.3.2F Chemical Resistance Of Flexible Printed Wiring Materials - 5/98 2.3.3A Chemical Resistance of Insulating Materials- 2/782.3.4B Chemical Resistance, Marking Paints and Inks - 8/972.3.4.2A Chemical Resistance of Laminates, Prepreg and Coated Foil Products, by Solvent Exposure - 12/942.3.4.3Chemical Resistance of Core Materials to Methylene Chloride- 5/86 2.3.5B Density, Insulating Material - 8/972.3.6A Etching, Ammonium Persulfate Method - 7/752.3.7A Etching, Ferric Chloride Method - 7/752.3.7.1A Cupric Chloride Etching Method - 12/942.3.7.2A Alkaline Etching Method - 12/942.3.8A Flammability, Flexible Insulating Materials- 12/822.3.8.1Flammability of Flexible Printed Wiring- 12/882.3.9D Flammability of Prepreg and Thin Laminate - 8/972.3.10B Flammability of Laminate - 12/942.3.10.1Flammability of Soldermask on Printed Wiring Laminate- 8/98 2.3.11Glass Fabric Construction- 4/732.3.13Determination of Acid Value of Liquid Solder Flux- Potentiometric and Visual Titration Methods- 1/952.3.14Print, Etch, and Plate T est- 4/732.3.15C Purity, Copper Foil or Plating - 8/972.3.16B Resin Content of Prepreg, by Burn-off - 12/942.3.16.1C Resin Content of Prepeg, by Treated Weight--12/942.3.16.2Treated Weight of Prepreg - 12/942.3.17D Resin Flow Percent of Prepreg - 8/972.3.17.1B Resin Flow of Adhesive Coated Films and Unsupported Adhesive Films - 5/98 2.3.17.2B Resin Flow of "No Flow" Prepreg - 8/972.3.18A Gel Time, Prepreg Materials - 4/862.3.19C Volatile Content of Prepreg - 12/942.3.21Plating Quality, Hull Cell Method - 8/972.3.22Copper Protective Coating Quality - 2-782.3.23B Cure (Permanency) Thermally Cured Solder Mask - 2/88 2.3.23.1A Cure (Permanency) UV Initiated Dry Film Solder Mask - 2/88 2.3.24Porosity of Gold Plating- 2/782.3.24.1Porosity T esting of Gold Electrodeposited on a Nickel Plated Copper Substrate Electrographic Method - 10/852.3.24.2A Porosity of Metallic Coatings on Copper-Based Alloys and Nickel (Nitric Acid Vapor Test) - 8/972.3.25B Detection and Measurement of Ionizable Surface Contaminants - 8/97---Supersedes 2.3.26 and 2.3.26.12.3.25C Detection and Measurement of Ionizable Surface Contaminants by Resistivity of Solvent Extract - 2/012.3.25.1Ionic Cleanliness Testing of Bare PWBs2.3.26A Superseded by T est Method 2.3.252.3.26.1Superseded by T est Method 2.3.252.3.26.2Mobile Ion Content of Polymer Films - 7/952.3.27Cleanliness T est - Residual Rosin - 1/952.3.27.1Rosin Flux Residue Analysis-HPLC Method - 1/952.3.28Ionic Analysis of Circuit Boards, Ion Chromatography Method - 1/95 2.3.29Flammability, Flexible Flat Cable- 11/882.3.30A Solvent pH Determination in Anhydrous Flourocarbon Solvents- 11/81 2.3.31Relative Degree of Cure of U.V. Curable Material - 2/882.3.32C Flux Induced Corrosion (Copper Mirror Method)- 1/952.3.33C Presence of Halides in Flux, Silver Chromate Method - 1/952.3.34B Solids Content, Flux - 1/952.3.34.1B Percentage of Flux on/in Flux-Coated and/or Flux-Cored Solder - 1/952.3.35B Halide Content, Quantitative (Chloride and Bromide)- 1/95 2.3.35.1Fluorides by Spot T est, Fluxes - Qualitative - 1/952.3.35.2Flouride Concentration, Fluxes - Quantitative--1/952.3.36Acid Acceptance of Chlorinated Solvents- 10/852.3.37B Volatile Content of Adhesive Coated Dielectric Films - 5/98 2.3.38B Surface Organic Contaminant Detection T est - 8/972.3.39B Surface Organic Contaminant Identification T est (Infrared Analytical Method) - 8/972.3.40Thermal Stability - 7/95SECTION 2.4 - MECHANICAL TEST METHODS2.4.1D Adhesion, T ape T esting--8/972.4.1.1B Adhesion, Marking Paints and Inks--11/882.4.1.2Adhesion of Conductors on Hybrid Substrates--12/872.4.1.3Adhesion, Resistors (Hybrid Circuits)--12/872.4.1.4Adhesion, Overglaze (Hybrid Circuits)--12/872.4.1.5A Determination of Heat Transfer--5/952.4.1.6Adhesion, Polymer Coating--7/952.4.2A Ductility of Copper Foil--3/762.4.2.1D Flexural Fatigue and Ductility, Foil--3/912.4.3D Flexural Fatigue, Flexible Printed Wiring Materials--5/98 2.4.3.1C Flexural Fatigue and Ductility, Flexible Printed Wiring--3/912.4.3.2C Flexural Fatigue and Ductility, Flexible Metal-Clad Dielectrics--3/91 2.4.4B Flexural Strength of Laminates (at Ambient T emperature)--12/94 2.4.4.1A Flexural Strength of Laminates (at Elevated Temperature)--12/94 2.4.5Folding Endurance, Flexible Printed Wiring Materials--4/732.4.5.1Flexibility - Conformal Coating2.4.6Hot Oil--4/732.4.7A Machinability, Printed Wiring Materials--7/752.4.8C Peel Strength of Metallic Clad Laminates--12/942.4.8.1Peel Strength, Metal Foil (Keyhole Method for Thin Laminates)--1/862.4.8.2A Peel Strength of Metallic Clad Laminates at Elevated T emperature (Hot Fluid Method)--12/942.4.8.3A Peel Strength of Metallic Clad Laminates at Elevated T emperature (Hot Air Method)--12/942.4.8.4Carrier Release, Thin Copper--1/902.4.9D Peel Strength, Flexible Dielectric Materials--10/882.4.9.1Peel Strength of Flexible Circuits - 11/982.4.9.2Bonding Process - 11/982.4.10Plating Adhesion--4/732.4.11Shear Strength Flexible Dielectric Materials--4/732.4.12A Solderability, Edge Dip Method--6/912.4.13F Solder Float Resistance Flexible Printed Wiring Materials--5/98 2.4.13.1Thermal Stress of Laminates--12/942.4.14Solderability of Metallic Surfaces--4/732.4.14.1Solderability, Wave Solder Method--3/792.4.14.2Liquid Flux Activity, Wetting Balance Method--1/952.4.15A Surface Finish, Metal Foil--3/762.4.16A Initiation T ear Strength, Flexible Insulating Materials--12/822.4.17T ear Strength, Propagation--4/732.4.17.1A Propagation, T ear Strength, Flexible Insulating Materials--12/822.4.18B T ensile Strength and Elongation, Copper Foil--8/802.4.18.1T ensile Strength and Elongation, In-House Plating--8/972.4.18.2Hot Rupture Strength, Foil--7/892.4.18.3T ensile Strength, Elongation, and Modulus--7/952.4.19C T ensile Strength and Elongation, Flexible Printed Wiring Materials--5/98 2.4.20T erminal Bond Strength, Flexible Printed Wiring--4/732.4.21D Land Bond Strength, Unsupported Component Hole--8/972.4.21.1C Bond Strength, Surface Mount Lands Perpendicular Pull Method--5/912.4.22C Bow and T wist (Percentage)--6/992.4.22.1C Bow and T wist-Laminate--5/932.4.22.2Substrate Curvature: Silicon Wafers with Deposited Dielectrics--7/952.4.23Soldering Resistance of Laminate Materials--3/792.4.24C Glass Transition T emperature and Z-Axis Thermal Expansion by TMA--12/94 2.4.24.1Time to Delamination (TMA Method)--12/942.4.24.2Glass Transition T emperature of Organic Films - DMA Method--7/952.4.24.3Glass Transition T emperature of Organic Films - TMA Method--7/952.4.24.4Glass Transition and Modulus of Materials Used in High Density Interconnection (HDI) and Microvias -DMA Method - 11/982.4.24.5Glass Transition T emperature and Thermal Expansion of Materials Used In High Density Interconnection (HDI) and Microvias -TMA Method -11/982.4.25C Glass Transition T emperature and Cure Factor by DSC--12/942.4.26T ape Test for Additive Printed Boards--3/792.4.27.1B Abrasion (T aber Method), Solder Mask and Conformal Coating--1/95 2.4.27.2A Solder Mask Abrasion (Pencil Method)--2/882.4.28B Adhesion, Solder Mask (Non-Melting Metals)--8/972.4.28.1C Adhesion, Solder Resist (Mask), T ape T est Method--3/982.4.29B Adhesion, Solder Mask, Flexible Circuit--2/882.4.30Impact Resistance, Polymer Film--10/862.4.31A Folding, Flexible Flat Cable--4/862.4.32A Fold Temperature T esting, Flexible Flat Cable--4/862.4.33C Flexural Fatigue and Ductility, Flat Cable--3/912.4.34Solder Paste Viscosity - T-Bar Spin Spindle Method (applicable for 300,000 to 1,600,000 Centipose)--1/952.4.34.1Solder Paste Viscosity - T-Bar Spindle Method (Applicable at Less Than 300,000 Centipose)--1/952.4.34.2Solder Paste Viscosity - Spiral Pump Method (Applicable for 300,000 to 1,600,000 Centipose)--1/952.4.34.3Solder Paste Viscosity - Spiral Pump Method (Applicable at Less Than 300,000 Centipose)--1/952.4.34.4Paste Flux Viscosity - T-Bar Spindle Method--1/952.4.35Solder Paste - Slump T est--1/952.4.36B Rework Simulation, Plated-Through Holes for Leaded Components--8/97 2.4.37A Evaluation of Hand Soldering T ools for Terminal Connections--7/912.4.37.1A Evaluation of Hand Soldering T ools for Printed Wiring Board Applications--7/91 2.4.37.2Evaluation of Hand Soldering T ools on Heavy Thermal Loads--7/932.4.38A Prepeg Scaled Flow T esting--6/912.4.39A Dimensional Stability, Glass Reinforced Thin Laminates--2/862.4.40Inner Layer Bond Strength of Multilayer Printed Circuit Boards--10/872.4.41Coefficient of Lintear Thermal Expansion of Electrical Insulating Boards--3/862.4.41.1A Coefficient of Thermal Expansion by the Vitreous Silica (Quartz) Dilatometer Method--8/972.4.41.2Coefficient of Thermal Expansion - Strain Gage Method--8/972.4.41.3In-Plane Coefficient of Thermal Expansion, Organic Films--7/952.4.41.4Volumetric Thermal Expansion Polymer Coatings on Inorganic Substrates--7/95 2.4.42T orsional Strength of Chip Adhesives--2/882.4.42.1High Tempreature Mechanical Strength Retention of Adhesives--3/882.4.42.2Die Shear Strength--2/982.4.42.3Wire Bond Pull Strength--2/982.4.43Solder Paste - Solder Ball Test--1/952.4.44Solder Paste - T ack Test--3/982.4.45Solder Paste - Wetting T est--1/952.4.46Spread Test, Liquid or Extracted Solder Flux, Solder Paste and Extracted Cored Wires or Preforms--1/952.4.47Flux Residue Dryness--1/952.4.48Spitting of Flux-Cored Wire Solder--1/95 2.4.49Solder Pool T est--1/952.4.50Thermal Conductivity, Polymer Films--7/952.4.51Self Shimming Thermally Conductive Adhesives--1/95SECTION 2.5 - ELECTRICAL TEST METHODS2.5.1B Arc Resistance of Printed Wiring Materials--5/862.5.2A Capacitance of Insulating Materials--7/752.5.3B Current Breakdown, Plated Through Holes--8/972.5.4Current Carrying Capacity, Multilayer Printed Wring--4/732.5.4.1A Conductor Temperature Rise Due to Current Changes in Conductors--8/97 2.5.5A Dielectric Constant of Printed Wiring Materials--7/752.5.5.1B Permittivity (Dielectric Constant) and Loss T angent (Dissipation Factor) of Insulating Material at 1MHz (Contacting Electrode Systems)--5/862.5.5.2A Dielectric Constant and Dissipation Factor of Printed Wiring Board Material--Clip Method--12/872.5.5.3C Permittivity (Dielectric Constant) and Loss T angent (Dissipation Factor) of Materials (T wo Fluid Cell Method)--12/872.5.5.4Dielectric Constant and Dissipation Factor of Printed Wiring Board Material--Micrometer Method--10/852.5.5.5C Stripline Test for Permittivity and Loss T angent (Dielectric Constant and Dissipation Factor) at X-Band--3/982.5.5.5.1Stripline Test for Complex Relative Permittivity of Circuit Board Materials to 14 GHZ--3/982.5.5.6Non-Destructive Full Sheet Resonance Test for Permittivity of Clad Laminates--5/892.5.5.7Characteristic Impedance and Time Delay of Lines on Printed Boards by TDR--11/922.5.5.8Low Frequency Dielectric Constant and Loss T angent, Polymer Films--7/95 2.5.5.9Permittivity and Loss T angent, Parallel Plate, 1MHz to 1.5 GHz--11/982.5.6B Dielectric Breakdown of Rigid Printed Wiring Material--5/862.5.6.1A Dielectric Strength, Polymer Solder Mask and/or Conformal Coatings--2/88 2.5.6.2A Electric Strength of Printed Wiring Material--8/972.5.6.3Dielectric Breakdown Voltage and Dielectric Strength--10/862.5.7C Dielectric Withstanding Voltage, PWB--8/972.5.7.1Dielectric Withstanding Voltage - Polymeric Conformal Coating - 7/002.5.8A Dissipation Factor of Flexible Printed Wiring Material--7/752.5.10A Insulation Resistance, Multilayer Printed Wiring (Between Layers)--12/87 2.5.10.1Insulation Resistivity for Adhesive Interconnection Bonds--11/982.5.11Insulation Resistance, Multilayer Printed Wiring (Within a Layer)--4/732.5.12Interconnection Resistance, Multilayer Printed Wiring--4/732.5.13A Resistance of Copper Foil--3/762.5.14A Resistivity of Copper Foil--8/762.5.15A Guidelines and Test Methods for RFI-EMI Shielding of Flat Cable--10/862.5.16A Shorts, Internal on Multilayer Printed Wiring--11/882.5.17E Volume Resistivity and Surface Resistance of Printed Wiring Materials--5/98 2.5.17.1A Volume and Surface Resistivity of Dielectric Materials--12/942.5.17.2Volume Resistivity of Conductive Resistance Used in High Dentisty Interconnection (HDI) and Microvias, T wo-Wire Method--11/982.5.18B Characteristic Impedance Flat Cables (Unbalanced)--7/842.5.19A Propagation Delay of Flat Cables Using Time Domain Reflectometer--7/842.5.19.1A Propagation Delay of Flat Cables Using Time Domain Reflectometer(TDR)--7/842.5.21A Digital Unbalanced Crosstalk, Flat Cable--3/842.5.24Conductor Resistance, Flexible Flat Cable--6/792.5.25A Dielectric Withstand Voltage Flexible Fat Cable--11/852.5.26A Insulation Resistance Flexible Flat Cable--11/852.5.27Surface Insulation Resistance of Raw Printed Wiring Board Material--3/79 2.5.28A Q Resonance, Flexible Printed Wiring Materials--4/882.5.30Balanced and Unbalanced Cable Attenuation Measurements--12/872.5.31Current Leakage (Through Overglaze Films)--12/872.5.32Resistance T est, Plated Through-Holes--12/872.5.33Measurement of Electrical Overstress from Soldering Hand T ools--11/982.5.33.1Measurement of Electrical Overstress from Soldering Hand T ools(Ground Measurements)--11/982.5.33.2Measurement of Electrical Overstress from Soldering Hand T ools(Transient Measurements)--11/982.5.33.3Measurement of Electrical Overstress from Soldering Hand T ools(Current Leakage Measurements)--11/982.5.33.4Measurement of Electrical Overstress from Soldering Hand T ools(Shielded Enclosure)--11/98SECTION 2.6 - ENVIRONMENTAL TEST METHODS2.6.1E Fungus Resistance Printed Wiring Materials--8/97 2.6.1.1Fungus Resistance – Conformal Coating --7/002.6.2C Moisture Absorption, Flexible Printed Wiring--5/982.6.2.1A Water Absorption, Metal Clad Plastic Laminates--5/862.6.3E Moisture and Insulation Resistance, Printed Boards--8/972.6.3.1C Moisture and Insulation Resistance-Polymeric Solder Masks and ConformalCoatings--11/982.6.3.1D Moisture and Insulation Resistance - Solder Mask--7/002.6.3.2B Moisture and Insulation Resistance, Flexible Base Dielectric--5/882.6.3.3A Surface Insulation Resistance, Fluxes--1/952.6.3.4A Moisture and Insulation Resistance – Conformal Coating--7/032.6.4A Outgassing, Printed Boards--8/972.6.5C Physical Shock, Multilayer Printed Wiring--8/972.6.6B T emperature Cycling, Printed Wiring Board--12/872.6.7A Thermal Shock and Continuity, Printed Board--8/972.6.7.1Thermal Shock--Polymer Solder Mask Coatings--2/882.6.7.1A Thermal Shock - Conformal Coating--7/002.6.7.2A Thermal Shock, Continuity and Microsection, Printed Board--8/972.6.7.3Thermal Shock - Solder Mask--7/002.6.8D Thermal Stress, Plated Through-Holes--3/982.6.8.1Thermal Stress, Laminate--9/912.6.9A Vibration, Rigid Printed Wiring--8/972.6.9.1T est to Determine Sensitivity of Electronic Assemblies to UltrasonicEnergy--1/952.6.9.2T est to Determine Sensitivity of Electronic Components to UltrasonicEnergy--1/952.6.10A X-Ray (Radiography), Multilayer Printed Wiring Board Test Methods--8/972.6.11B Hydrolytic Stability Solder Mask and/or Conformal Coating--8/982.6.11C Hydrolytic Stability Solder Mask - 7/002.6.11.1Hydrolytic Stability - Conformal Coating - 7/002.6.12T emperature T esting, Flexible Flat Cable--6/792.6.13Assessment of Susceptibility to Metallic Dendritic Growth: Uncoated PrintedWiring--10/852.6.14A Resistance to Electrochemical Migration, Polymer Solder Mask--8/872.6.14C Resistance to Electrochemical Migration, Solder Mask--7/002.6.14.1Electrochemical Migration Resistance T est--9/002.6.15B Corrosion, Flux--1/952.6.16Pressure Vessel Method for Glass Epoxy Laminate Integrity--7/852.6.16.1Moisture Resistance of HDIS Under High T emperature and Pressure (PressureVessel)--8/982.6.17Hydrolitic Stability, Flexible Printed Wiring Material--12/822.6.18A Low T emperature Flexibility, Flexible Printed Wiring Materials--7/852.6.19Environmental and Insulation Resistance T est of Hybrid Ceramic MultilayerSubstrate Boards--12/872.6.20A 2.6.20A Superseded by J-STD-020A2.6.21Service T emperature of Flexible Printed Wiring--12/882.6.22Superseded by J-STD-035 (.pdf file)2.6.23T est Procedure for Steam Ager Temperature Repeatability--7/932.6.24Junction Stability Under Environmental Conditions2.6.25Conductive Anodic Filament (CAF) Resistance T est: X-Y Axis2.6.26DC Current Induced Thermal Cycling--5/01。

IPC-TM-650中文版详解

IPC-TM-650中文版详解

IPC-TM-650中文版详解1. 简介IPC-TM-650是国际电子连接器委员会(IPC)制定的一套测试方法标准,用于评估电子连接器的性能和可靠性。

本文将详细解释IPC-TM-650中文版的相关内容。

2. 标准结构IPC-TM-650标准分为多个章节,每个章节都涵盖了不同的测试方法和指导原则。

以下是IPC-TM-650的主要章节:2.1. 引言- 介绍IPC-TM-650的背景和目的。

2.2. 一般规定- 描述了测试方法的一般原则和要求。

2.3. 物理测试方法- 包括了各种物理性能的测试方法,如外观检查、尺寸测量、机械强度测试等。

2.4. 电气测试方法- 包括了电气性能的测试方法,如电阻测量、电流负载能力测试等。

2.5. 环境测试方法- 包括了在不同环境条件下进行的测试方法,如高温、低温、湿热等。

2.6. 可靠性测试方法- 包括了对连接器可靠性进行评估的测试方法,如振动测试、冲击测试等。

2.7. 特殊测试方法- 包括了特殊情况下的测试方法,如防雷击测试、防电磁干扰测试等。

2.8. 数据分析和报告- 介绍了如何进行测试数据分析和编写测试报告的方法。

3. 使用IPC-TM-650的注意事项在使用IPC-TM-650进行测试时,需要注意以下几点:3.1. 确认测试方法的适用性- 在选择测试方法时,需要确认其适用于具体的连接器类型和应用场景。

3.2. 准备充分的测试设备和环境- 确保测试设备符合要求,并提供适当的测试环境。

3.3. 按照标准要求进行测试- 严格按照IPC-TM-650中的测试要求进行测试,确保测试结果准确可靠。

3.4. 记录和分析测试数据- 在测试过程中,及时记录测试数据,并进行数据分析,以便后续的测试报告编写和问题排查。

3.5. 编写详细的测试报告- 根据测试结果,编写详细的测试报告,包括测试方法、测试条件、测试数据和结论等内容。

结论IPC-TM-650是一套广泛应用于电子连接器测试的标准,通过遵循其中的测试方法和指导原则,可以评估连接器的性能和可靠性。

IPC TM-650实验方法手册

IPC TM-650实验方法手册

IPC TM-650实验方法手册IPC TM-650 Test Methods ManualIPC Member Testing Laboratories ListSection 1.0Reporting and Measurement Analysis Methods Section 2.1Visual Test MethodsSection 2.2Dimensional Test MethodsSection 2.3Chemical Test MethodsSection 2.4Mechanical Test MethodsSection 2.5Electrical Test MethodsSection 2.6Environmental Test MethodsSECTION 1.0 - Reporting and Measurement Analysis Methods1.1Introduction1.2Calibration1.3Ambient Conditions1.4Reporting, General1.5Reporting, Format1.6Numerical Reporting1.7Reporting, Invalid Test Results1.8Measurement Precision Estimation forBinary Data - 1/03Measurement Precision Calculator-Binary DataMeasurement Precision CalculatorUsers Guide(for use with test method 1.8)1.9Measurement Precision Estimation for Variables Data - 1/03Measurement Precision Calculator-Variable DataMeasurement Precision Calculator Users Guide(for use with test method 1.9)SECTION 2.1 - VISUAL TEST METHODS2.1.1D Microsectioning - 3/982.1.1.1Microsectioning, Ceramic Substrate - 12/872.1.1.2Microsectioning - Semi or Automatic TechniqueMicrosection Equipment (Alternate) - 7/932.1.2A Pinhole Evaluation, Dye Penetration Method - 3/76 2.1.3A Plated-Through Hole Structure Evaluation - 8/762.1.5A Surface Examination, Unclad and Metal CladMaterial - 12/822.1.6B Thickness of Glass Fabric - 12/942.1.6.1Weight of Fabric Reinforcements - 12/942.1.7C Thread Count of Glass Fabric - 12/942.1.7.1Thread Count, Organic Fibers - 12/872.1.8B Workmanship - 12/942.1.9Surface Scratch Examination Metal Clad Foil - 5/862.1.10A Visual Inspection for Undissolved Dicyandiamide -12/942.1.13A Inspection for Inclusions and Voids in FlexiblePrinted Wiring Materials - 5/98SECTION 2.2 - DIMENSIONAL TEST METHODS2.2.1A Mechanical Dimensional Verification - 8/972.2.2B Optical Dimensional Verification - 8/972.2.4C Dimensional Stability, Flexible DielectricMaterials - 5/982.2.5A Dimensional Inspections Using Mircosections -8/972.2.6A Hole Size Measurement, Drilled - 8/972.2.7A Hole Size Measurement, Plated - 5/862.2.8Location of Holes - 4/732.2.10A Hole Location and Conductor Location - 12/83 2.2.12A Thickness of Copper by Weight- 3/762.2.12.1Overall Thickness and Profile Factor of Copper FoilsTreated and Untreated - 9/872.2.12.2Weight and Thickness of Copper Foilswith Releasable Carriers - 7/892.2.12.3Weight and Thickness Determination of Copper FoilsWith Etchable Carriers - 7/892.2.13.1A Thickness, Plating in Holes, Microhm Method -1/832.2.14Solder Powder Particle Size Distribution- Screen Method for Types 1-4 - 1/952.2.14.1Solder Powder Particle Size Distribution- Measuring Microscope Method - 1/952.2.14.2Solder Powder Particle Size Distribution -Optical Image Analyzer Method--1/952.2.14.3Determination of Maximum Solder PowderParticle Size - 1/952.2.15Cable Dimensions (Flat Cable) - 6/792.2.16Artwork Master Evaluation by Use of a DrilledPanel - 12/872.2.16.1Artwork Master Evaluation by Overlay - 12/872.2.17Surface Roughness and Profile of Metallic Foils(Contacting Stylus Technique)- 3/902.2.17A Surface Roughness and Profile of Metallic Foils(Contacting Stylus Technique) - 2/012.2.18Determination of Thickness of Laminates byMechanical Measurement - 12/942.2.18.1Determination of Thickness of Metallic Clad Laminates,Cross-sectional - 12/942.2.19Measuring Hole Pattern Location-12/872.2.19.1Length, Width and Perpendicularity of Laminateand Prepreg Panels - 12/942.2.20Solder Paste Metal Content by Weight - 1/952.2.21Planarity of Dielectrics for High Density Interconnection (HDI) Microvia Technology - 11-98SECTION 2.3 - CHEMICAL TEST METHODS2.3.1Chemical Processing, Suitable ProcessingMaterial- 4/732.3.1.1B Chemical Cleaning of Metal Clad Laminates-5/862.3.2F Chemical Resistance Of Flexible Printed WiringMaterials - 5/982.3.3A Chemical Resistance of Insulating Materials-2/782.3.4B Chemical Resistance, Marking Paints and Inks -8/97Chemical Resistance of Laminates, Prepreg and2.3.4.2A Coated Foil Products, by Solvent Exposure -12/942.3.4.3Chemical Resistance of Core Materials toMethylene Chloride- 5/862.3.5B Density, Insulating Material - 8/972.3.6A Etching, Ammonium Persulfate Method - 7/75 2.3.7A Etching, Ferric Chloride Method - 7/752.3.7.1A Cupric Chloride Etching Method - 12/942.3.7.2A Alkaline Etching Method - 12/942.3.8A Flammability, Flexible Insulating Materials-12/822.3.8.1Flammability of Flexible Printed Wiring- 12/882.3.9D Flammability of Prepreg and Thin Laminate -8/972.3.10B Flammability of Laminate - 12/942.3.10.1Flammability of Soldermask on Printed WiringLaminate- 8/982.3.11Glass Fabric Construction- 4/732.3.13Determination of Acid Value of Liquid Solder Flux- Potentiometric and Visual Titration Methods- 1/952.3.14Print, Etch, and Plate Test- 4/732.3.15C Purity, Copper Foil or Plating - 8/972.3.16B Resin Content of Prepreg, by Burn-off - 12/942.3.16.1C Resin Content of Prepeg, by Treated Weight--12/942.3.16.2Treated Weight of Prepreg - 12/942.3.17D Resin Flow Percent of Prepreg - 8/972.3.17.1B Resin Flow of Adhesive Coated Films andUnsupported Adhesive Films - 5/982.3.17.2B Resin Flow of "No Flow" Prepreg - 8/972.3.18A Gel Time, Prepreg Materials - 4/862.3.19C Volatile Content of Prepreg - 12/942.3.21Plating Quality, Hull Cell Method - 8/972.3.22Copper Protective Coating Quality - 2-782.3.23B Cure (Permanency) Thermally Cured Solder Mask- 2/882.3.23.1A Cure (Permanency) UV Initiated Dry Film SolderMask - 2/882.3.24Porosity of Gold Plating- 2/782.3.24.1Porosity Testing of Gold Electrodeposited on a Nickel Plated Copper Substrate Electrographic Method - 10/852.3.24.2A Porosity of Metallic Coatings on Copper-BasedAlloys and Nickel (Nitric Acid Vapor Test) - 8/972.3.25B Detection and Measurement of Ionizable Surface Contaminants - 8/97---Supersedes 2.3.26 and 2.3.26.12.3.25C Detection and Measurement of Ionizable Surface Contaminants by Resistivity of Solvent Extract -2/012.3.25.1Ionic Cleanliness Testing of Bare PWBs2.3.26A Superseded by Test Method 2.3.252.3.26.1Superseded by Test Method 2.3.252.3.26.2Mobile Ion Content of Polymer Films - 7/952.3.27Cleanliness Test - Residual Rosin - 1/952.3.27.1Rosin Flux Residue Analysis-HPLC Method - 1/952.3.28Ionic Analysis of Circuit Boards, IonChromatography Method - 1/952.3.29Flammability, Flexible Flat Cable- 11/882.3.30A Solvent pH Determination in AnhydrousFlourocarbon Solvents- 11/812.3.31Relative Degree of Cure of U.V. Curable Material- 2/882.3.32C Flux Induced Corrosion (Copper Mirror Method)-1/952.3.33C Presence of Halides in Flux, Silver ChromateMethod - 1/952.3.34B Solids Content, Flux - 1/952.3.34.1B Percentage of Flux on/in Flux-Coated and/orFlux-Cored Solder - 1/952.3.35B Halide Content, Quantitative (Chloride andBromide)- 1/952.3.35.1Fluorides by Spot Test, Fluxes - Qualitative -1/952.3.35.2Flouride Concentration, Fluxes - Quantitative--1/952.3.36Acid Acceptance of Chlorinated Solvents- 10/852.3.37B Volatile Content of Adhesive Coated DielectricFilms - 5/982.3.38B Surface Organic Contaminant Detection Test -8/972.3.39B Surface Organic Contaminant Identification Test(Infrared Analytical Method) - 8/972.3.40Thermal Stability - 7/95SECTION 2.4 - MECHANICAL TEST METHODS2.4.1D Adhesion, Tape Testing--8/972.4.1.1B Adhesion, Marking Paints and Inks--11/882.4.1.2Adhesion of Conductors on Hybrid Substrates--12/872.4.1.3Adhesion, Resistors (Hybrid Circuits)--12/872.4.1.4Adhesion, Overglaze (Hybrid Circuits)--12/872.4.1.5A Determination of Heat Transfer--5/952.4.1.6Adhesion, Polymer Coating--7/952.4.2A Ductility of Copper Foil--3/762.4.2.1D Flexural Fatigue and Ductility, Foil--3/912.4.3D Flexural Fatigue, Flexible Printed WiringMaterials--5/982.4.3.1C Flexural Fatigue and Ductility, Flexible PrintedWiring--3/912.4.3.2C Flexural Fatigue and Ductility, Flexible Metal-Clad Dielectrics--3/912.4.4B Flexural Strength of Laminates (at AmbientTemperature)--12/942.4.4.1A Flexural Strength of Laminates (at ElevatedTemperature)--12/942.4.5Folding Endurance, Flexible Printed WiringMaterials--4/732.4.5.1Flexibility - Conformal Coating2.4.6Hot Oil--4/732.4.7A Machinability, Printed Wiring Materials--7/75 2.4.8C Peel Strength of Metallic Clad Laminates--12/942.4.8.1Peel Strength, Metal Foil (Keyhole Method forThin Laminates)--1/862.4.8.2A Peel Strength of Metallic Clad Laminates at Elevated Temperature (Hot Fluid Method)--12/942.4.8.3A Peel Strength of Metallic Clad Laminates atElevated Temperature (Hot Air Method)--12/94 2.4.8.4Carrier Release, Thin Copper--1/902.4.9D Peel Strength, Flexible Dielectric Materials--10/882.4.9.1Peel Strength of Flexible Circuits - 11/982.4.9.2Bonding Process - 11/982.4.10Plating Adhesion--4/732.4.11Shear Strength Flexible Dielectric Materials--4/732.4.12A Solderability, Edge Dip Method--6/912.4.13F Solder Float Resistance Flexible Printed WiringMaterials--5/982.4.13.1Thermal Stress of Laminates--12/942.4.14Solderability of Metallic Surfaces--4/732.4.14.1Solderability, Wave Solder Method--3/792.4.14.2Liquid Flux Activity, Wetting Balance Method--1/952.4.15A Surface Finish, Metal Foil--3/762.4.16A Initiation Tear Strength, Flexible InsulatingMaterials--12/822.4.17Tear Strength, Propagation--4/732.4.17.1A Propagation, Tear Strength, Flexible InsulatingMaterials--12/822.4.18B Tensile Strength and Elongation, Copper Foil--8/802.4.18.1Tensile Strength and Elongation, In-HousePlating--8/972.4.18.2Hot Rupture Strength, Foil--7/892.4.18.3Tensile Strength, Elongation, and Modulus--7/952.4.19C Tensile Strength and Elongation, FlexiblePrinted Wiring Materials--5/982.4.20Terminal Bond Strength, Flexible Printed Wiring--4/732.4.21D Land Bond Strength, Unsupported ComponentHole--8/972.4.21.1C Bond Strength, Surface Mount LandsPerpendicular Pull Method--5/912.4.22C Bow and Twist (Percentage)--6/992.4.22.1C Bow and Twist-Laminate--5/932.4.22.2Substrate Curvature: Silicon Wafers withDeposited Dielectrics--7/952.4.23Soldering Resistance of Laminate Materials--3/792.4.24C Glass Transition Temperature and Z-AxisThermal Expansion by TMA--12/942.4.24.1Time to Delamination (TMA Method)--12/942.4.24.2Glass Transition Temperature of Organic Films -DMA Method--7/952.4.24.3Glass Transition Temperature of Organic Films -TMA Method--7/952.4.24.4Glass Transition and Modulus of Materials Used in High Density Interconnection (HDI) and Microvias -DMA Method - 11/982.4.24.5Glass Transition Temperature and Thermal Expansion of Materials Used In High Density Interconnection (HDI) and Microvias -TMA Method -11/982.4.25C Glass Transition Temperature and Cure Factorby DSC--12/942.4.26Tape Test for Additive Printed Boards--3/792.4.27.1B Abrasion (Taber Method), Solder Mask andConformal Coating--1/952.4.27.2A Solder Mask Abrasion (Pencil Method)--2/882.4.28B Adhesion, Solder Mask (Non-Melting Metals)--8/972.4.28.1C Adhesion, Solder Resist (Mask), Tape TestMethod--3/982.4.29B Adhesion, Solder Mask, Flexible Circuit--2/88 2.4.30Impact Resistance, Polymer Film--10/862.4.31A Folding, Flexible Flat Cable--4/862.4.32A Fold Temperature Testing, Flexible Flat Cable--4/862.4.33C Flexural Fatigue and Ductility, Flat Cable--3/912.4.34Solder Paste Viscosity - T-Bar Spin Spindle Method (applicable for 300,000 to 1,600,000 Centipose)--1/952.4.34.1Solder Paste Viscosity - T-Bar Spindle Method (Applicable at Less Than 300,000 Centipose)--1/952.4.34.2Solder Paste Viscosity - Spiral Pump Method (Applicable for 300,000 to 1,600,000 Centipose)--1/952.4.34.3Solder Paste Viscosity - Spiral Pump Method (Applicable at Less Than 300,000 Centipose)--1/952.4.34.4Paste Flux Viscosity - T-Bar Spindle Method--1/952.4.35Solder Paste - Slump Test--1/952.4.36B Rework Simulation, Plated-Through Holes forLeaded Components--8/972.4.37A Evaluation of Hand Soldering Tools for TerminalConnections--7/912.4.37.1A Evaluation of Hand Soldering Tools for PrintedWiring Board Applications--7/912.4.37.2Evaluation of Hand Soldering Tools on HeavyThermal Loads--7/932.4.38A Prepeg Scaled Flow Testing--6/91Dimensional Stability, Glass Reinforced Thin2.4.39A Laminates--2/862.4.40Inner Layer Bond Strength of Multilayer PrintedCircuit Boards--10/872.4.41Coefficient of Lintear Thermal Expansion ofElectrical Insulating Boards--3/862.4.41.1A Coefficient of Thermal Expansion by the Vitreous Silica (Quartz) Dilatometer Method--8/972.4.41.2Coefficient of Thermal Expansion - Strain GageMethod--8/972.4.41.3In-Plane Coefficient of Thermal Expansion,Organic Films--7/952.4.41.4Volumetric Thermal Expansion Polymer Coatingson Inorganic Substrates--7/952.4.42Torsional Strength of Chip Adhesives--2/882.4.42.1High Tempreature Mechanical StrengthRetention of Adhesives--3/882.4.42.2Die Shear Strength--2/982.4.42.3Wire Bond Pull Strength--2/982.4.43Solder Paste - Solder Ball Test--1/952.4.44Solder Paste - Tack Test--3/982.4.45Solder Paste - Wetting Test--1/952.4.46Spread Test, Liquid or Extracted Solder Flux, Solder Paste and Extracted Cored Wires or Preforms--1/952.4.47Flux Residue Dryness--1/952.4.48Spitting of Flux-Cored Wire Solder--1/952.4.49Solder Pool Test--1/952.4.50Thermal Conductivity, Polymer Films--7/952.4.51Self Shimming Thermally Conductive Adhesives--1/95SECTION 2.5 - ELECTRICAL TEST METHODS2.5.1B Arc Resistance of Printed Wiring Materials--5/86 2.5.2A Capacitance of Insulating Materials--7/752.5.3B Current Breakdown, Plated Through Holes--8/972.5.4Current Carrying Capacity, Multilayer PrintedWring--4/732.5.4.1A Conductor Temperature Rise Due to CurrentChanges in Conductors--8/972.5.5A Dielectric Constant of Printed Wiring Materials--7/752.5.5.1B Permittivity (Dielectric Constant) and Loss Tangent (Dissipation Factor) of Insulating Material at 1MHz (Contacting Electrode Systems)--5/862.5.5.2A Dielectric Constant and Dissipation Factor of Printed Wiring Board Material--Clip Method--12/872.5.5.3C Permittivity (Dielectric Constant) and Loss Tangent (Dissipation Factor) of Materials (Two Fluid Cell Method)--12/872.5.5.4Dielectric Constant and Dissipation Factor of Printed Wiring Board Material--Micrometer Method--10/852.5.5.5C Stripline Test for Permittivity and Loss Tangent (Dielectric Constant and Dissipation Factor) at X-Band--3/982.5.5.5.1Stripline Test for Complex Relative Permittivityof Circuit Board Materials to 14 GHZ--3/982.5.5.6Non-Destructive Full Sheet Resonance Test forPermittivity of Clad Laminates--5/892.5.5.7Characteristic Impedance and Time Delay ofLines on Printed Boards by TDR--11/922.5.5.8Low Frequency Dielectric Constant and LossTangent, Polymer Films--7/952.5.5.9Permittivity and Loss Tangent, Parallel Plate,1MHz to 1.5 GHz--11/982.5.6B Dielectric Breakdown of Rigid Printed WiringMaterial--5/862.5.6.1A Dielectric Strength, Polymer Solder Mask and/orConformal Coatings--2/882.5.6.2A Electric Strength of Printed Wiring Material--8/972.5.6.3Dielectric Breakdown Voltage and DielectricStrength--10/862.5.7C Dielectric Withstanding Voltage, PWB--8/972.5.7.1Dielectric Withstanding Voltage - PolymericConformal Coating - 7/002.5.8A Dissipation Factor of Flexible Printed WiringMaterial--7/752.5.10A Insulation Resistance, Multilayer Printed Wiring(Between Layers)--12/872.5.10.1Insulation Resistivity for AdhesiveInterconnection Bonds--11/982.5.11Insulation Resistance, Multilayer Printed Wiring(Within a Layer)--4/732.5.12Interconnection Resistance, Multilayer PrintedWiring--4/732.5.13A Resistance of Copper Foil--3/762.5.14A Resistivity of Copper Foil--8/762.5.15A Guidelines and Test Methods for RFI-EMIShielding of Flat Cable--10/862.5.16A Shorts, Internal on Multilayer Printed Wiring--11/882.5.17E Volume Resistivity and Surface Resistance ofPrinted Wiring Materials--5/982.5.17.1A Volume and Surface Resistivity of DielectricMaterials--12/942.5.17.2Volume Resistivity of Conductive Resistance Used in High Dentisty Interconnection (HDI) and Microvias, Two-Wire Method--11/982.5.18B Characteristic Impedance Flat Cables(Unbalanced)--7/842.5.19A Propagation Delay of Flat Cables Using TimeDomain Reflectometer--7/842.5.19.1A Propagation Delay of Flat Cables Using TimeDomain Reflectometer (TDR)--7/842.5.21A Digital Unbalanced Crosstalk, Flat Cable--3/84 2.5.24Conductor Resistance, Flexible Flat Cable--6/792.5.25A Dielectric Withstand Voltage Flexible Fat Cable--11/852.5.26A Insulation Resistance Flexible Flat Cable--11/852.5.27Surface Insulation Resistance of Raw PrintedWiring Board Material--3/792.5.28A Q Resonance, Flexible Printed Wiring Materials--4/882.5.30Balanced and Unbalanced Cable AttenuationMeasurements--12/872.5.31Current Leakage (Through Overglaze Films)--12/872.5.32Resistance Test, Plated Through-Holes--12/872.5.33Measurement of Electrical Overstress fromSoldering Hand Tools--11/982.5.33.1Measurement of Electrical Overstress from Soldering Hand Tools(Ground Measurements)--11/982.5.33.2Measurement of Electrical Overstress from Soldering Hand Tools(Transient Measurements)--11/982.5.33.3Measurement of Electrical Overstress fromSoldering Hand Tools(Current LeakageMeasurements)--11/982.5.33.4Measurement of Electrical Overstress from Soldering Hand Tools(Shielded Enclosure)--11/98SECTION 2.6 - ENVIRONMENTAL TEST METHODS2.6.1E Fungus Resistance Printed Wiring Materials--8/97 2.6.1.1Fungus Resistance – Conformal Coating --7/00 2.6.2C Moisture Absorption, Flexible Printed Wiring--5/982.6.2.1A Water Absorption, Metal Clad Plastic Laminates--5/862.6.3E Moisture and Insulation Resistance, PrintedBoards--8/972.6.3.1C Moisture and Insulation Resistance-PolymericSolder Masks and Conformal Coatings--11/982.6.3.1D Moisture and Insulation Resistance - Solder Mask--7/002.6.3.2B Moisture and Insulation Resistance, Flexible BaseDielectric--5/882.6.3.3A Surface Insulation Resistance, Fluxes--1/952.6.3.4A Moisture and Insulation Resistance – ConformalCoating--7/032.6.4A Outgassing, Printed Boards--8/972.6.5C Physical Shock, Multilayer Printed Wiring--8/97 2.6.6B Temperature Cycling, Printed Wiring Board--12/872.6.7A Thermal Shock and Continuity, Printed Board--8/972.6.7.1Thermal Shock--Polymer Solder Mask Coatings--2/882.6.7.1A Thermal Shock - Conformal Coating--7/002.6.7.2A Thermal Shock, Continuity and Microsection,Printed Board--8/972.6.7.3Thermal Shock - Solder Mask--7/002.6.8D Thermal Stress, Plated Through-Holes--3/982.6.8.1Thermal Stress, Laminate--9/912.6.9A Vibration, Rigid Printed Wiring--8/972.6.9.1Test to Determine Sensitivity of ElectronicAssemblies to Ultrasonic Energy--1/952.6.9.2Test to Determine Sensitivity of ElectronicComponents to Ultrasonic Energy--1/952.6.10A X-Ray (Radiography), Multilayer Printed WiringBoard Test Methods--8/972.6.11B Hydrolytic Stability Solder Mask and/orConformal Coating--8/982.6.11C Hydrolytic Stability Solder Mask - 7/002.6.11.1Hydrolytic Stability - Conformal Coating - 7/00 2.6.12Temperature Testing, Flexible Flat Cable--6/79 2.6.13Assessment of Susceptibility to Metallic DendriticGrowth: Uncoated Printed Wiring--10/852.6.14A Resistance to Electrochemical Migration,Polymer Solder Mask--8/872.6.14C Resistance to Electrochemical Migration, SolderMask--7/002.6.14.1Electrochemical Migration Resistance Test--9/00 2.6.15B Corrosion, Flux--1/952.6.16Pressure Vessel Method for Glass Epoxy LaminateIntegrity--7/852.6.16.1Moisture Resistance of HDIS Under HighTemperature and Pressure (Pressure Vessel)--8/982.6.17Hydrolitic Stability, Flexible Printed WiringMaterial--12/822.6.18A Low Temperature Flexibility, Flexible PrintedWiring Materials--7/852.6.19Environmental and Insulation Resistance Test ofHybrid Ceramic Multilayer Substrate Boards--12/872.6.20A 2.6.20A Superseded by J-STD-020A2.6.21Service Temperature of Flexible Printed Wiring--12/882.6.22Superseded by J-STD-035 (.pdf file)2.6.23Test Procedure for Steam Ager TemperatureRepeatability--7/932.6.24Junction Stability Under EnvironmentalConditions2.6.25Conductive Anodic Filament (CAF) ResistanceTest: X-Y Axis2.6.26DC Current Induced Thermal Cycling--5/01。

IPC-TM-650测试方法规范

IPC-TM-650测试方法规范

IPC-TM-650测试方法规范IPC-TM-650测试方法规范编号: 2.4.1主题:胶带测试镀层附着力制定日期:1997 年8月修订版本: D原创工作组:刚性板测试方法任务组(7-11d)1.0 范围本方法使用压敏胶带测定镀层、标记油墨或油漆以及与连接印制板有关的其它材料的附着质量。

2.0 适用文件商业产品规格型号(CID)A-A-113 压敏胶带3.0 试样试生产、检验或生产中印制板,每次鉴定应至少进行三次测试。

4.0 器具或材料4.1 胶带一卷3M 600型宽1/2英寸压敏胶带,或者是除了胶带为透明外,符合(CID)A-A-113规定的1型B级压敏胶带要求的其他胶带。

5.0 操作程序5.1 测试将一块至少长50 mm(2.0英寸)的压敏胶带紧紧贴在测试区域的表面上,排除压敏胶带下的空气。

压贴胶带和揭撕胶带之间的时间应少于1分钟。

与测试区域大致呈垂直(直角),迅速施加拉力,撕起胶带。

每次测试均应使用未使用过的胶带。

5.2 鉴定目视检查胶带和测试区域,是否有任何部分被撕掉的痕迹。

5.3 报告报告应说明测试中是否有材料被撕掉的痕迹。

6.0注6.1 如果镀层突沿断裂(碎屑)并附着在胶带上,这只是突沿断裂的痕迹,而不能证明附着力不合格。

6.2 如果测试表面有杂质(油、脂等),则可能影响测试结果。

注:本测试方法规范中所适用的材料是IPC技术委员会自行而定的,只是建议性的,使用与否或适用与否完全自定。

IPC对于这种材料的使用、应用或适用概不负责。

使用人还应完全负责保护自己,避免因侵犯专利权而遭受索赔或承担责任。

本测试方法规范中所提到的设备,仅供使用人参考,并不意味着是IPC所指定的设备。

编号: 2.4.3.2主题:挠性敷金属介质的弯曲疲劳和延展性测定制定日期:1991 年3月修订版本: C原创工作组:不适用1 范围本测试方法用于测定敷金属层在给定弯曲半径条件下的弯曲疲劳寿命、弯曲疲劳特性和拉伸断裂后的延展变形百分数。

IPC-TM-650 中文

IPC-TM-650 中文

IPC-TM-650 中文IPC-TM-650实验方法手册目录:n 2.1 目视检测方法2.1.1 手动微切片法2.1.1.1 陶瓷物质金相切片:通过手动微切片法来制作陶瓷物质的金相切片,以便观察其表面状态。

2.1.1.2 半自动或全自动微切片设备:使用半自动或全自动微切片设备来制作切片,以便观察样品表面状态。

2.1.2 针孔评估,染色渗透法:使用染色渗透法来评估针孔的数量和大小。

2.1.3 镀通孔结构评估:通过观察镀通孔的结构,评估其质量。

2.1.5 未覆和覆金属材料表面检查:对未覆和覆金属材料表面进行检查,以评估其表面状态。

2.1.6 玻纤厚度2.1.6.1 玻璃纤维的重量:通过测量玻璃纤维的重量来评估其厚度。

2.1.7 玻璃纤维的纤维数量2.1.7.1 纤维数计算,有机纤维:通过计算有机纤维的数量来评估玻璃纤维的纤维数量。

2.1.8 工艺:评估工艺的质量,以确保产品的稳定性和可靠性。

2.1.9 铜箔表面刮伤检验:检查铜箔表面是否有刮伤。

2.1.10 不溶解的双氰胺目视检验:使用双氰胺进行检验,以评估产品的质量。

2.1.13 绕性印制电路材料内含物和空洞的检验:检查绕性印制电路材料内含物和空洞,以评估产品的质量。

n 2.2 物理量纲测试方法2.2.1 外观尺寸确认:确认产品的外观尺寸是否符合要求。

2.2.2 目视检测尺寸:使用目视检测法来测量产品的尺寸。

2.2.3 导体边界清晰度测量:测量导体边界的清晰度,以评估产品的质量。

2.2.4 介电质尺寸稳定性和柔韧性:评估介电质的尺寸稳定性和柔韧性,以确保产品的稳定性和可靠性。

2.2.6 钻孔孔径的测量:测量钻孔的孔径,以确保孔径符合要求。

2.2.7 镀通孔孔径的测量:测量镀通孔的孔径,以确保孔径符合要求。

2.2.8 孔的位置:测量孔的位置,以确保位置符合要求。

2.2.10 孔位和线路位置:测量孔位和线路位置,以确保位置符合要求。

2.2.11 连接焊盘重合度【层与层之间】:测量连接焊盘的重合度,以确保连接的质量。

ipc tm650标准

ipc tm650标准

ipc tm650标准IPC-TM-650是国际电子工程师协会(IPC)制定的一项标准,适用于电子和电气产品的测试方法和可靠性评估。

该标准为电子行业提供了一套标准化的测试方法,以便评估产品的性能、可靠性和质量。

IPC-TM650标准涵盖了广泛的测试方法,包括材料特性测试、表面处理测试、焊接测试、电气性能测试、环境耐受性测试等。

这些测试方法旨在评估产品在各种条件下的性能表现,以及其是否符合相关的技术规范和可靠性需求。

对于材料特性测试,IPC-TM650标准提供了一系列的测试方法,如材料拉伸、硬度、密度、耐热性等。

这些测试方法可以帮助制造商评估材料的物理特性和机械性能,以确保其在实际使用中的可靠性和稳定性。

对于表面处理测试,IPC-TM650标准提供了包括金属膜厚度测量、化学镀膜测试、表面粗糙度测试等一系列测试方法。

这些测试方法旨在评估产品表面处理的质量和可靠性,以确保产品的精度和稳定性。

在焊接测试方面,IPC-TM650标准提供了一系列的测试方法,包括焊缝强度测试、焊缝可靠性测试、焊接疲劳测试等。

这些测试方法可以帮助制造商评估焊接接头的质量和可靠性,确保其满足相关的技术规范和可靠性要求。

在电气性能测试方面,IPC-TM650标准提供了一系列测试方法,包括电流电压特性测试、电阻测试、绝缘电阻测试等。

这些测试方法可以帮助制造商评估产品的电气性能,并确保其符合相关的技术规范和要求。

在环境耐受性测试方面,IPC-TM650标准提供了一系列的测试方法,包括高温、低温、湿热循环、盐雾等测试方法。

这些测试方法可以帮助制造商评估产品在不同环境条件下的性能和可靠性,以确保其在各种恶劣环境下的正常运行。

总之,IPC-TM650标准为电子和电气产品的测试提供了一套全面的、标准化的方法。

这些测试方法可以帮助制造商评估产品性能和可靠性,以提供更可靠的产品给消费者。

同时,该标准也可以帮助制造商提高产品的质量管理体系,以确保产品的一致性和稳定性。

IPC-TM-650试验方法手册(选登)手动微切片法

IPC-TM-650试验方法手册(选登)手动微切片法

IPC-TM-650试验方法手册(选登)手动微切片法
佚名
【期刊名称】《印制电路资讯》
【年(卷),期】2005(000)004
【摘要】1.0范围本程序用来准备印制电路产品的金相样板。

完成切片用来评价压合系统和镀通孔(PTH)的质量。

PTH可评价铜箔,测量镀层和/或皮膜是否和规格要求一致。

同样的过程可用作装配或其它区域检查。

因为很多人认为手工切片主要是一门艺术,这里描述的技术是通用的部分,它并不试图如此详细,以至可区分金象者的不可接受的变化。

另外这些技术很大程度上依靠单个金象者的操作的熟练程度。

【总页数】4页(P86-88,90)
【正文语种】中文
【中图分类】TN41
【相关文献】
1.IPC—TM-650试验方法手册(选登) [J],
2.IPC—TM-650试验方法手册(选登) [J],
3.IPC-TM-650试验方法手册(选登) [J],
4.IPC-TM-650试验方法手册(选登) [J],
5.印制电路常用IPC-TM-650试验方法的版本 [J], 陈培良
因版权原因,仅展示原文概要,查看原文内容请购买。

关于IPC-TM-650的中文详解

关于IPC-TM-650的中文详解

关于IPC-TM-650的中文详解
IPC-TM-650是国际电子连接器协会(International Electronics Manufacturing Initiative)制定的测试方法标准。

该标准旨在规定电子连接器产品的测试程序和要求,以确保产品的质量和可靠性。

IPC-TM-650包含了多个测试方法,涵盖了电子连接器的各个方面,例如材料特性、机械性能、电气性能等。

这些测试方法可以帮助制造商评估产品的性能,并指导他们进行产品设计和制造过程的改进。

IPC-TM-650的测试方法通常包括测试步骤、测试设备和测试参数等内容。

制造商可以根据自己的需求选择适合的测试方法,并根据标准的要求进行测试。

IPC-TM-650的中文详解提供了对该标准的解读和说明,以帮助读者更好地理解和应用该标准。

详解中会对每个测试方法进行解释,并提供示例和实际应用的案例分析,以便读者能够更好地掌握测试方法的要点和注意事项。

总之,IPC-TM-650是一个重要的标准,为电子连接器产品的测试提供了指导和规范。

通过研究和应用该标准,制造商可以提高产品质量和可靠性,满足市场需求,并获得竞争优势。

印制电路常用IPC-TM-650试验方法的版本

印制电路常用IPC-TM-650试验方法的版本

印制电路常用IPC-TM-650试验方法的版本
陈培良
【期刊名称】《印制电路信息》
【年(卷),期】1999(000)012
【摘要】随着 INC 技术标准与规范的发展,IPC-TM-650试验方法手册已在印制电路界广泛应用。

这本手册经常在修订和补充,到目前,手册的第2部分《印制板试验方法》已超过260种,其中不少是近几年制定或修订的。

现根据 IPC-TM-650的1998年11月目录,将与印制板基材、成品和阻焊剂密切相关的试验方法的最新版本列于下,以供大家参考:
【总页数】3页(P36-38)
【作者】陈培良
【作者单位】上海普林
【正文语种】中文
【中图分类】TN41
【相关文献】
1.印制电路板诱发气候环境试验方法研究 [J], 李长虹;胡湘洪;王春辉
2.IPC-TM-650试验方法手册(选登) [J],
3.IPC-TM-650试验方法手册(选登) [J],
4.IPC-TM-650试验方法手册(选登)手动微切片法 [J],
5.印制电路板加速寿命试验方法综述 [J], 刘立国;张永华;高蕊
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.0Scope This method describes a technique for evaluat-ing a material to resist tracking when subjected to a low cur-rent arc just above the surface of the material.It can be used on materials of various thickness by stacking materials.This procedure is based on techniques described in ASTM D495.2.0Applicable Documents ASTM D495Standard Test Method for High Voltage,Low-Current,Dry Arc Resistance of Solid Electrical InsulationManufacturer’s Instruction Manual3.0Test Specimens3.1Number Three specimens shall be used unless other-wise specified.3.2Form Each specimen shall be 3.0in.x 2.0in.Materialunder 0.06in.in thickness shall be built up to provide a speci-men at least 0.06in.but not exceeding 0.125in.For very thin laminates a 1/minate of the same type may be used under the actual specimen subjected to the arc,permitting a reduction of the material required without significantly affecting the results.3.3Location Specimens may be cut from any location in asheet (except from the outer 1in.of full size sheets).3.4Foil Clad MaterialsAll foil clad materials shall have thefoil removed by etching and shall be thoroughly cleaned prior to conditioning or testing.4.0Apparatus/Materials4.1Arc tester (Beckman ART-11or equivalent,see ASTMD495).4.2Tungsten electrodes (Beckman 2or equivalent,see ASTM D495).4.3Constant temperature water bath capable of 50°C ±2°C,filled with distilled water.4.4Beaker or pan filled with ambient temperature distilledwater.4.5Racks for supporting specimens in the water bath withall surfaces exposed.4.6Shear,saw or paper cutter for cutting specimen.4.7Alcohol or other solvent for cleaning electrode.4.8Crocus cloth.4.9Gage blocks for checking electrode spacing 0.248in.and 0.252in.4.10Lint free paper towels.4.11Variac 3autotransformer type W1OMT or equivalent.5.0Procedure5.1Preconditioning Unless otherwise specified the speci-mens shall be conditioned for 48hours (±2hours -0hours)in distilled water maintained at 50°C ±2°C.Following this step the specimens shall be immersed in ambient temperature dis-tilled water for 30minutes minimum,4hours maximum,to allow them to reach temperature equilibrium without loss of moisture.5.2Test Conditions The test shall be run at ambient tem-perature 23°C ±5°C and ambient humidity.5.3Equipment set up 5.3.1The electrode assembly shall be cleaned thoroughlyusing alcohol or other suitable solvent and,if required,with crocus cloth.The electrode gap shall be adjusted if necessary to provide a gap of 0.250in.±0.002in.when the electrodes1.ART-1or ART-2manufactured by Beckman Instruments Cedar Grove Essex County New Jersey,U.S.A.2.Electrodes manufactured by Beckman Instruments3.Variac available from General RadioThe Institute for Interconnecting and Packaging Electronic Circuits2215Sanders Road •Northbrook,IL 60062IPC-TM-650TEST METHODS MANUALNumber 2.5.1SubjectArc Resistance of Printed Wiring Material Date 5/86Revision BOriginating Task Group N/AMaterial in this Test Methods Manual was voluntarily established by Technical Committees of the IPC.This material is advisory only and its use or adaptation is entirely voluntary.IPC disclaims all liability of any kind as to the use,application,or adaptation of this ers are also wholly responsible for protecting themselves against all claims or liabilities for patent infringement.Equipment referenced is for the convenience of the user and does not imply endorsement by the IPC.Page 1of 2rest on the test specimen.5.3.2The arc tester should be set up for operation in the automatic mode.5.3.3Set the Variac to the voltage which produces12,500 volts based on the last calibration of the Instrument(generally 105V to115V).5.3.4Reset the timer on the tester to‘‘0’’seconds if required.5.4Test Procedure5.4.1Remove a preconditioned specimen from the ambient temperature distilled water and wipe dry with a lint free paper towel.5,4.2Place a specimen(individual or built up)in the elec-trode fixture.5.4.3Operate the tester in accordance with the manufactur-er’s instructions such that an arc is generated and automati-cally switched as indicated below.Time(sec)On/Off Time Amperage0-600.25sec/1.75sec10milliamps60-1200.25sec/0.75sec10milliamps120-1800.25sec/0.25sec10milliamps180continuous10milliamps5.4.4Observe the arc carefully and,at the point which the arc disappears and tracking occurs,stop the timer and record the time for the specimen to the nearest second.5.4.5Remove the specimen,remove and clean the elec-trodes thoroughly using a solvent and if necessary the crocus cloth.5.4.6Replace the electrode and check the electrode gap.5.4.7Reset the timer and proceed as in5.4.1through5.4.6.5.5Calculation5.5.1Average the values of the specimens tested from the same sample and round to the nearest second.5.6Report5.6.1Report the average value of the arc resistance in sec-onds.5.6.2Report the ambient temperature and relative humidity at the time of the test.5.6.3Report how the specimen was prepared, e.g.indi-vidual,#of plies built up,or with a spacer.5.6.4Report the preconditioning procedure.5.6.5Report any anomalies in the test or variations from procedures or tolerances specified.6.0Note6.1The results of arc tests may be significantly affected by contamination of the electrodes.Any irregularity of the arc in the early portion of the test may be an indication of contami-nation.If this occurs,the test should be stopped,the elec-trodes cleaned and a fresh specimen should be tested(or the test may be run in a different area of the same specimen).6.2While values for reinforced material may vary with the grain direction of reinforcement,the effect is generally insignifi-cant with glass reinforced product.At least one specimen in both machine and transverse direction is recommended to verify this.IPC-TM-650Number 2.5.1SubjectArc Resistance of Printed Wiring MaterialDate5/86RevisionBPage2of2。

相关文档
最新文档