Orphan Nuclear Receptor Nur77 Is Involved in Caspase-independent Macrophage Cell Death

合集下载

雷公藤红素衍生物结合核受体Nur77亲合力研究

雷公藤红素衍生物结合核受体Nur77亲合力研究

雷公藤红素衍生物结合核受体Nur77亲合力研究发布时间:2022-08-25T10:44:23.865Z 来源:《科学与技术》2022年8期作者:刘洋张馨妮解芮[导读] 孤儿核受体Nur77能够参与细胞增殖、分化、凋亡等多个过程刘洋张馨妮解芮山东省济南市历城区遥墙镇(遥墙校区)邮编:250107摘要:孤儿核受体Nur77能够参与细胞增殖、分化、凋亡等多个过程,并在自身免疫性疾病、癌症等多种疾病的发生及发展过程中发挥重要作用。

本实验室通过大量研究发现并证明,一个源于中国传统中药雷公藤根皮部的生物活性—雷公藤红素,能够靶向结合孤儿核受体Nur77,并诱导Nur77下游信号分子的表达、调控相关细胞信号通路,发挥抗炎作用。

但是,水溶解度差、毒性大等缺陷同时也限制了雷公藤红素的进一步应用。

因此,我们实验室希望优化雷公藤红素作为靶向Nur77核受体的药物。

经过近三年研宄,围绕优化雷公藤红素我们进行以下工作并得到相关结论:1)利用多种合成方法对雷公藤红素进行多位点修饰,丰富了雷公藤红素的修饰方法,合成并表征得到了 29个雷公藤红素的衍生物,包括C20位羧基酰氟化、糖基化、亚磷酸酯化产物8个,C6位双键还原、加成、偶联产物13个,C20位竣基及C6位双键同时修饰产物6个,骨架改造产物2个;2)利用己合成的雷公藤红素衍生物,和同实验室生物组合作进行雷公藤红素衍生物结合Nur77核 受体亲和力的SAR研宄,并评价其抗炎活性,发现羧基端修饰产物和C6位引入原子尊小基团产物保留结合Nur77能力及抗炎活性;3)发现雷公藤红素羧基端亚磷酸二甲酯衍生物(XS0486)能够结合Nur77且结合能力与雷公藤红素相当,并具有良好的抗炎活性。

关键词:雷公藤红素;Nur77;构效关系。

中国传统中草药,作为中华文明史的重要组成部分,在过去的几千年里对中华民族的健康发挥着巨大作用,但是同时,中草药也具有相当大的局限性,例如主要有效成分不明确,治疗周期长等。

SF1在内分泌领域的研究进展

SF1在内分泌领域的研究进展
Recent progress of orphan nuclear receptor steroidogenic factor-1 in endocrinology Wei.Department 200127,China HUANG Rong,LIU
of Endocrinology,Renji
Hospital,School
SF.1基因与内分泌器官的生长发育 SF一1基因敲除(SF.1 KO)小鼠模型 SF一1与下丘脑腹正中核(VMH) Shima等旧。
色体核型为46,XY,性腺发育不全,但肾上腺功能正 常的男性患者的DNA进行分析,发现从2783位开 始8个连续核苷酸的杂合缺失,这个位于外显子6 的突变导致了读码框移位。细胞转染实验证实,在 大多数细胞类型中,这种突变的蛋白没有内在的转 录活性,但竞争性抑制了野生型蛋白的功能。
an
SO on.
organs.It might be involved in the estab—
essential regulator of steroidogenesis,sexual
【Key words】Orphan/1LlC]o_x3r
lanaas
receptor steroidogenic factor-1;Adrenal
different from other nuclear receptors.SF-1 regulates the
ex—
pression of many genes including cytochrome P450 steroid hy&10xylases,luteinizing hormone,aromatase and SF-1 has considerably broader roles during the development of endocrine lishment of hypothalamic—pituitary—gonadal axis and has eme曙ed as differentiation and metabolism.

孤儿核受体NURR1在前列腺癌中的表达以及功能研究

孤儿核受体NURR1在前列腺癌中的表达以及功能研究

现代泌尿外科杂志2018年4月第23卷第4期299•基础研究!孤儿核受体NURR1在前列腺癌中的表达以及功能研究胡七一,张建文,王宏亮,邓琼,张颖,梁辉,王铸(深圳市龙华区人民医院泌尿外科,广东深圳518109)The expression profile and role of orphan nuclear receptor NURR1 HU Qi-y i,ZHANG Jian-wen,WANG Hong-liang,DENGQiong’ZHANGYing,LIANG H ui’WANGZhu (Department ofU rology,People’s Hospital of Longhua,Shenzhen 518109 ,China)ABSTRACT:Objective To explore the expression file and role of orphan nuclear Methods Rncomine datasets-ere analyze# to(15#' t.e expression o4NURR1in clinical prostate%ancer samples.!eal-time N E!-a(586# to assa' t.e expression pattern o4NURR1in prostatospheroids an# PEaN-E!NE xen〇7raft models.The pLenti-NURR1plasmid-as7enerated and overexpressed in DU145 cells.The p rostate cancer stem cell markers tion capacity-ere determined—ith Real-time N E R and sphere formation experiment.Results NURR1—as significantly up-regulated inprostate cancer samples,prostatospheroids and VEaN-ERNE xenograft models.Overexpressed NURR1in DU145 cells could increase expression of prostate cancer stem cell markers and enhance the sphere The orphan nuclear receptor NURR1may serve as an important marker and therapeutic target in prostate cancer.KEY WORDS:nuclear receptor;orphan nuclear receptor;NURR1;prostate cancer摘要:目的探讨孤儿核受体NURR1在前列腺癌中的表达水平及其对前列腺癌恶性进展的影响。

NR4A2基因与关节炎研究进展_百替生物

NR4A2基因与关节炎研究进展_百替生物

NR4A2基因与关节炎研究进展林坚伟医学院06本硕二班学号:200671045指导教师:吴炳礼李恩民指导教师点评:该生能阅读较多的外文文献,对该基因以及关节炎的关系作出较为全面、深入的阐述,在说明疾病的原因中,将目的基因与其他因素联系在一起,较为合理的解释了目的基因与关节炎的关系。

摘要:锌指蛋白(zinc finger protein)通常由一系列锌指组成。

具有重复结构的氨基酸模式,相隔特定距离的胱氨酸结合锌指,能与某些RNA/DNA结合。

转录因子(transcription factor)是起正调控作用的反式作用因子。

转录因子是转录起始过程中RNA聚合酶所需的辅助因子。

NR4A2基因编码一个能结合DNA的锌指蛋白,在关节炎的发生和发展中起着一定的作用。

NR4A2的官方全称为细胞核受体第四亚科,A组,第二成员。

它的原始来源于HGNC:7981。

NR4A2的别称有NOT;RNR1;HZF-3;NURR1;TINUR,它的基因定位于2q22-q23。

NR4A2这个基因编码类固醇——甲状腺荷尔蒙——类维生素A受体。

这个编码蛋白可能充担转录因子的角色。

基因突变与病症德关系主要归因于多巴胺能的机能障碍,包括帕金森病,精神分裂症和躁狂忧郁。

基因的误调节可能与风湿性关节炎相关联。

虽然它们被描述为能可选择性接合转录物的变异体,但是它们的生物学有效性一直到现在还没有确定下来。

1.NR4A2的官方全称细胞核受体第四亚科,A组,第二成员2.NR4A2别称的符号相关的核受体:NURR1T细胞的核受体:NOT诱导信使核糖核酸形成的受体:TINUR3.NR4A2的基因定位NR4A2的基因定位于2q22-q23﹙如图1)图14.NR4A2遗传基因的结构通过普通的顺序的分析,Ichinose及其科研小组和Torii及其科研小组认为单拷贝NR4A2遗传因子包括了8个外显子和跨越8.3kb的距离﹙见图2)。

他们记录了其在遗传基因中潜在的调节区,并一致同意将其定为NFKB,CREB,和SP1结合位点[1-2]。

前列腺素及其受体在胚胎着床中的作用

前列腺素及其受体在胚胎着床中的作用

前列腺素及其受体在胚胎着床中的作用前列腺素(PGs)是一族具有生理活性的二十碳不饱和脂肪酸和羟基脂肪酸,广泛存在于机体的组织和体液中,在局部以自分泌和旁分泌的形式对生殖生理、内分泌功能、精神行为、心血管、呼吸、消化、泌尿、血凝系统的功能及脂肪、碳水化合物的代谢起着各种调节作用。

前列腺素类物质包括PGE2、PGD2、PGI2及PGF2α等,它们的结构相似而又有差别,功能上有差别。

环氧化酶(COX)是前列腺素合成的限速酶,可催化细胞膜释放出的花生四烯酸转变成PGH2,PGH2在相应各前列腺素合成酶作用下合成各种功能不同的前列腺素。

种类不同前列腺素又与相应的受体相结合发挥生理作用。

随着胚胎着床机制研究的深入,人们发现PG对啮齿类动物子宫中胚泡的均匀分布、着床和蜕膜反应等过程十分重要[1],它们在介导雌性生殖功能中具有促进血管增殖、促有丝分裂及促分化特性,广泛参与着床过程中子宫上皮细胞分化、与胚泡滋养层的相互作用、着床位点基质细胞的增殖和分化、子宫血管通透性增加以及胎盘形成所必需的血管发生等过程[2]。

PGs在植入前短暂的升高以增加子宫内膜血管通透性和参与发动子宫蜕膜化形成以及胎盘血管生成是必不可少的,前列腺素H合成酶抑制剂的使用可以造成胚胎着床障碍的动物模型[3]。

现就前列腺素及其受体在胚胎着床中的作用做一综述。

1 前列腺素I2前列腺素I2(PGI2)是血管内皮素细胞及其他一些细胞花生四烯酸代谢的一种生物活性物质,1976年由Moncada首先发现并命名为前列环素(prostacyclin)。

所有血管组织以及肾间质细胞、胃粘膜上皮细胞、白细胞和皮肤成纤维细胞均可通过旁分泌的方式产生PGI2,它具有强烈的抑制血小板聚集、舒张血管和细胞保护作用,化学性质不稳定,在生理pH值条件下,循环血液中的半衰期为2~3 min,降解为稳定的代谢产物6-酮-PGF1α[4]。

PGI2参与胎盘形成中血管发生[4],是早期怀孕小鼠子宫中表达最丰富的前列腺素,其在着床位点的表达远高于非着床位点[5]。

猪NR4A1基因的多态性与产仔数性状的关联分析

猪NR4A1基因的多态性与产仔数性状的关联分析

2021第2期 65猪 NR4A1 基 因 的 多 态 性 与 产 仔 数 性 状 的 关 联 分 析刘林清,李庆岗,苏世广,周 梅,张 威,王重龙(安徽省农业科学院畜牧兽医研究所,猪分子数量遗传学安徽省农业科学院重点实验室,畜禽产品安全工程安徽省重点实验室,安徽 合肥 230031) 中图分类号:S828.8 文献标志码:A 文章编号:1002-1957(2021)02-0065-03摘 要 通过比较序列测定法,在NR4A1基因第5内含子发现A/G突变,建立了PCR-DdeI -RFLP分型技术,并在3个中外猪种中进行多态性分型,分析其基因型频率和等位基因频率,还在长白猪猪群中检测该位点的多态性并与产仔数性状进行关联分析。

结果表明,在长白猪猪群中,所有胎次产仔数呈现GG>AG>AA的趋势。

其中,GG型个体和AG型个体的所有胎次产仔数分别显著高于AA型个体(P <0.05)。

因此,NR4A1基因在长白猪猪群中与产仔数性状显著性相关,可能为提高猪产仔数性状提供一个有用的分子标记。

关键词 猪;NR4A1;产仔数;关联分析Analysis of Relationship between Polymorphisms of Porcine NR4A1 Gene with Litter Size Trait LIU Linqing, LI Qinggang, SU Shiguang, ZHOU Mei, ZHANG Wei, WANG Chonglong(Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Key Laboratoryof Pig Molecular Quantitative Genetics of Anhui Academy of Agricultural Sciences, Anhui Provincial KeyLaboratory of Livestock and Poultry Product Safety Engineering, Hefei 230031, China)Abstract By comparision of the sequences of NR4A1 gene, a A/G mutation in intron 5 was found and developed a PCR-DdeI -RFLP genotyping assay. Genotype frequencyies and allele frequencies of this SNP were investigated in 3 pig breeds. Association of the SNP and litter size was assessed in New Strain Huai Pig Ⅱ. Statistical analysis demonstrated that it showed the tendency of GG>AG>AA in all parity. In addition, those with the GG genotype and AG genotype had additional piglets born compared to the AA animals(P <0.05), respectively in New Strain Huai Pig Ⅱ. Therefore, NR4A1 gene has significant associated with litter size in New Strain Huai Pig Ⅱ, could be a useful molecular marker in selection for increasing litter size in pigs.Key words pig; NR4A1; litter size; association收稿日期:2020-09-09基金项目:安徽省农业科学院重点实验室项目(2020YL031);安徽省科技重大专项(17030701008);国家自然科学基金项目(31371258);安徽省自然科学基金项目(2008085QC138);安徽省生猪产业技术体系项目(AHCYTX-05-09);安徽省生猪遗传改良计划专项(2018FACN4373)作者简介:刘林清(1980-),女,山东莱芜人,助理研究员,博士,主要从事猪的遗传育种研究工作.E-mail:*********************通讯作者:王重龙(1976-),男,安徽怀宁人,研究员,博士,研究方向为猪遗传育种和健康养殖.E-mail:**************NR4A1基因作为一个孤核受体的转录因子,编码类固醇-甲状腺激素超家族,是一类配体依赖转录调节蛋白[1]。

NR4A1_在肥胖相关炎症反应中的研究进展

NR4A1_在肥胖相关炎症反应中的研究进展

Advances in Clinical Medicine 临床医学进展, 2023, 13(6), 9182-9187 Published Online June 2023 in Hans. https:///journal/acm https:///10.12677/acm.2023.1361286NR4A1在肥胖相关炎症反应中的研究进展信立霞1,何天阳1,张玉超2,左 丹2,王延淼2,刘元涛3*1大连医科大学研究生院,辽宁 大连2青岛市市立医院内分泌科,山东 青岛3山东大学齐鲁医院(青岛)内分泌科,山东 青岛收稿日期:2023年5月9日;录用日期:2023年6月2日;发布日期:2023年6月12日摘要 孤核受体NR4A1作为转录调节因子,它可识别特异性受体并在转录水平调控线粒体自噬和细胞凋亡等生物学过程的基因表达,在物质代谢、能量平衡、炎症反应等机体活动中发挥重要作用。

肥胖是导致胰岛素抵抗和2型糖尿病等代谢性疾病的重要危险因素,它的主要特征是脂肪组织低度慢性炎症和巨噬细胞浸润。

肥胖的发展过程中,营养过剩产生的危险分子信号会激活核苷酸结合寡聚化结构域样受体蛋白3 (nucleotide-binding oligomerization domain-like receptor protein 3, NLRP3)炎症小体信号通路,导致炎症反应和细胞焦亡。

本文旨在阐述肥胖与炎症反应的联系、NR4A1在炎症反应中的应用,为治疗肥胖及预防相关炎症性疾病提供新的思路。

关键词NR4A1,肥胖,炎症反应,NLRP3炎症小体信号通路,细胞焦亡Research Progress of NR4A1 in Obesity-Related Inflammatory ResponseLixia Xin 1, Tianyang He 1, Yuchao Zhang 2, Dan Zuo 2, Yanmiao Wang 2, Yuantao Liu 3*1Graduate School of Dalian Medical University, Dalian Liaoning 2Department of Endocrinology, Qingdao Municipal Hospital, Qingdao Shandong 3Department of Endocrinology, Qilu Hospital of Shandong University (Qingdao), Qingdao ShandongReceived: May 9th , 2023; accepted: Jun. 2nd , 2023; published: Jun. 12th , 2023AbstractAs a transcriptional regulator, orphan nuclear receptor NR4A1 can identify specific receptors and *通讯作者。

孤儿核受体TR3Nur77多功能性及其调控机制

孤儿核受体TR3Nur77多功能性及其调控机制

孤儿核受体TR3/Nur77多功能性及其调控机制提名单位:福建省科技厅提名意见:该项目历时15年,在十多项国家和省部级基金项目的支持下完成。

项目组紧紧围绕孤儿核受体TR3/Nur77开展分子机制和信号转导的研究,并结合生物学功能研究TR3/Nur77与疾病的相关性,发现相应的具有很好调控功能和潜在应用前景的小分子化合物,为临床治疗提供很好的理论基础和先导化合物。

该项目在Nat Chem Biol、 Gut、EMBO J等期刊发表SCI论文24篇,得到广泛关注和高度评价,8篇代表性论文他引总数677次(谷歌检索)和521次(SCI 检索)。

项目部分成果曾获2012及2017年福建省自然科学奖一等奖。

提名该项目为国家自然科学奖二等奖。

项目简介:TR3/Nur77为孤儿核受体,其生理性配体至今未发现。

TR3/Nur77几乎在人体各组织器官均有表达,其功能紊乱将导致癌症、肥胖、糖尿病、心血管病等疾病。

早期他人主要把TR3/Nur77作为转录因子研究其调控基因表达的机制。

事实上TR3/Nur77还可作为功能调节蛋白,通过蛋白定位、相互作用和修饰等途径发挥作用。

然而十多年前极少学者在这些方面开展研究。

另外由于TR3/Nur77体内配体没有被发现,严重地影响对其生物学功能和生理性效应的进一步阐明。

该项目历时15年,在十多项国家/省部级基金支持下,围绕上述问题开展深入研究,获得以下原创性成果(注:仅对8篇代表性论著进行介绍):(1)从蛋白亚细胞定位阐明TR3/Nur77核浆转运和线粒体定位是其诱导肿瘤细胞凋亡的重要前提;发现TR3/Nur77调控结肠癌Wnt通路的新功能与其磷酸化密切相关;从蛋白互作和修饰阐明p53作为架构蛋白介导TR3/Nur77对癌蛋白MDM2泛素化降解以及TR3/Nur77对p53乙酰化调控的意义。

工作发表在Carcinogenesis、Gut和EMBO J,揭示了TR3/Nur77以转录激活非依赖的方式通过不同的信号通路发挥抗肿瘤的新功能。

211105505_基于重组减毒沙门氏菌载体递送疫苗及药物的肿瘤免疫治疗研究新进展

211105505_基于重组减毒沙门氏菌载体递送疫苗及药物的肿瘤免疫治疗研究新进展

中国免疫学杂志2023 年第 39 卷基于重组减毒沙门氏菌载体递送疫苗及药物的肿瘤免疫治疗研究新进展李琦 陈多多 王弘瑞 胡迪 杨明 孙丽媛 (北华大学医学技术学院,吉林132013)中图分类号 R392.11 文献标志码 A 文章编号 1000-484X (2023)03-0670-05[摘要] 沙门氏菌介导的肿瘤免疫治疗方法已经成为抗肿瘤研究领域的热点之一。

首先,沙门氏菌作为兼性厌氧菌,能够特异性地定植在肿瘤区域,直接杀伤肿瘤细胞或诱导机体产生免疫反应,介导包括巨噬细胞、中性粒细胞和T 细胞等在内的免疫细胞浸润从而发挥抗肿瘤效应。

其次,沙门氏菌具有高度遗传修饰性,可被改造为毒力减低或精准靶向的重组沙门氏菌。

此外,重组沙门氏菌还可作为疫苗、细胞毒性药物、RNAi 和纳米颗粒递送的有效平台,在治疗的同时还可预防肿瘤的复发和转移。

如重组沙门氏菌载体活疫苗裂解系统,能够加强肿瘤抗原呈递,促进T 细胞发挥杀伤效应。

本文介绍了减毒沙门氏菌载体的抗肿瘤免疫特性和肿瘤靶向性,并对以重组减毒沙门氏菌为递送系统进行肿瘤免疫治疗的研究进展进行综述。

[关键词] 沙门氏菌;肿瘤;疫苗;细胞毒性药物;RNAiAdvances in vaccine and drug delivery for tumor immunotherapy based on recombinant attenuated Salmonella vectorLI Qi , CHEN Duoduo , WANG Hongrui , HU Di , YANG Ming , SUN Liyuan. School of Medical Technology , Beihua University , Jilin 132013, China[Abstract ] Salmonella -mediated immunotherapeutic approaches for tumors have become one of hot spots in the field of antitu⁃mor research. First , Salmonella , as a parthenogenic anaerobic bacterium , is able to specifically colonize the tumor area. It can also directly kill tumor cells and induce immune responses in body , mediating the infiltration of immune cells such as macrophages , neu⁃trophils and T cells to exert anti -tumor effects. Second , based on the highly genetically modified features , it can be modified to become virulence -reduced or precisely targeted recombinant Salmonella. In addition , recombinant Salmonella could serve as an efficient plat⁃form for the delivery of cancer vaccine , cytotoxic agents , RNAi and nanoparticles , which showed a strong inhibitory effect on growth of cancer , and exhibited a prevention of tumor recurrence and metastasis. For example , a vaccine lysis system based on recombinantattenuated Salmonella vector , which can enhance tumor antigen presentation and promote antitumor effects of T -cell. This reviewdescribes the antitumor immune properties and tumor targeting of Salmonella ,and also elaborate the progress of research on tumor immunotherapy using recombinant attenuated Salmonella as a delivery system.[Key words ] Salmonella ;Tumor ;Vaccines ;Cytotoxic agents ;RNAi传统的肿瘤疗法有手术、化疗和放疗等,但存在靶点选择性差、药物渗透性差和患者不良反应性等缺点[1]。

孤儿核受体Nur77与肺部疾病

孤儿核受体Nur77与肺部疾病

㊃综述㊃D O I :10.3760/c m a .j .i s s n .1673-436X.2014.24.016基金项目:国家自然科学基金(81000006);第二军医大学创新基金(M S 2013029);上海市浦江人才计划(14P J 1411000)作者单位:200433上海,第二军医大学附属长海医院呼吸内科通信作者:商艳,E m a i l :s h a n g ya n 751200@163.c o m 孤儿核受体N u r 77与肺部疾病张畅 徐希 商艳 李强ʌ摘要ɔ N u r 77作为N R 4A 孤儿核受体超家族的一员,可被多种激素㊁炎症反应和生长因子诱导表达,具有复杂的生物学功能,参与细胞的增殖㊁分化和凋亡过程㊂其中值得注意的是N u r 77可通过由细胞核向细胞质移位介导一种新的细胞凋亡机制㊂大量研究表明N u r 77与多种肺部疾病发病机制关系密切,如呼吸机过度通气引发的肺部炎症性损伤,镉中毒诱发的肺组织细胞凋亡和肺动脉高压血管平滑肌细胞增殖的负反馈调节机制等㊂此外,N u r 77还与肺癌的发生发展有关,同时也参与维甲酸的抗肺癌机制㊂因此,本文就N u r 77及其与肺部疾病的关系作一综述㊂ʌ关键词ɔ N u r 77;呼吸机所致肺损伤;镉中毒致肺损伤;肺动脉高压;肺癌O r p h a nn u c l e a rr e c e p t o rN u r 77a n d p u l m o n a r y di s e a s e Z h a n g C h a n g ,X u X i ,S h a n g Y a n ,L iQ i a n g .D e p a r t m e n t o f R e s p i r a t o r y M e d i c i n e ,C h a n g h a i H o s p i t a l ,t h eS e c o n d M i l i t a r y M e d i c a lU n i v e r s i t y ,S h a n gh a i 200433,C h i n a C o r r e s p o n d i n g a u t h o r :S h a n g Y a n ,E m a i l :s h a n g ya n 751200@163.c o m ʌAb s t r ac t ɔ N u r 77,o n eo fn u c l e a rr e c e p t o r4A (N R 4A )f a m i l y m e m b e r s ,i sa c t i v a t e db y m a n yp h y s i o l o g i c a l s t i m u l i i n c l u d i n g h o r m o n e s ,i n f l a mm a t i o na n d g r o w t hf a c t o r s ,a n di n v o l v e di nav a r i e t y o f b i o l o g i c a l p r o c e s s e s s u c ha s p r o l i f e r a t i o n ,d i f f e r e n t i a t i o n ,a n da p o p t o s i s .S i g n i f i c a n t l y ,N u r 77c a n i n d u c ea n e w k i n d o fa p o p t o t i c m e c h a n i s m b y t r a n s l o c a t i n g f r o m t h e n u c l e u st o m i t o c h o n d r i a .A c c u m u l a t i n ge v i d e n c e sd e m o n s t r a t et h a t N u r 77i sa s s o c i a t e d w i t h m a n y p u l m o n a r y d i s e a s e s ,i n c l u d i n g v e n t i l a t o r -i n d u c e dl u n g i n f l a mm a t o r y i n j u r y ,c a d m i u m -i n d u c e d a p o p t o s i s i n l u n g ,a n d n e g a t i v e r e g u l a t i o n o f p u l m o n a r y a r t e r y s m o o t hm u s c l e c e l l p r o l i f e r a t i o n .F u r t h e r m o r e ,N u r 77a l s o p l a y s c r i t i c a l r o l e s i n i n d u c i n gl u n g c a n c e r a n d a n t i -c a n c e rm e c h a n i s mo f r e t i n o i c a c i d .T h e r e f o r e ,t h e p r e s e n t p a p e r r e v i e w sN u r 77a n d i t s r e l a t i o n s h i p w i t h p u l m o n a r y di s e a s e s .ʌK e y w o r d s ɔ N u r 77;V e n t i l a t o r -i n d u c e dl u n g i n j u r y ;C a d m i u m -i n d u c e dl u n g i n j u r y ;P u l m o n a r y a r t e r y h y p e r t e n s i o n ;L u n g c a n c e r N u r 77(T R 3,N R 4A 1)是一种孤儿核受体,属于N R 4A 孤儿核受体超家族,广泛参与生物的炎症㊁代谢㊁生长㊁分化及凋亡的调控㊂研究发现,许多肺部疾病如呼吸机相关性肺损伤㊁镉中毒致肺损伤㊁肺动脉高压及肺癌等常伴N u r 77的高度表达,表明N u r 77在肺部疾病的发生㊁发展过程中起到一定作用㊂对N u r 77的深入研究可能是揭示肺部疾病发病机制的一个新的方向㊂1 N u r 77的结构与分布N u r 77又称神经生长因子诱导基因I -B ,是1988年M i l b r a n d t [1]用神经生长因子诱导大鼠嗜铬细胞瘤细胞系P C 12后发现的一种新基因㊂它与受体N u r r l (N R 4A 2)和N o r l (N R 4A 3)高度同源,同属于N R 4A 孤儿核受体超家族[2]㊂所谓孤儿核受体是指一类目前为止还未发现相应配体的核受体,这些受体的共同特征是有经典的N 端功能激活结构域㊁C 端的配体结合结构域以及由2个锌指结构组成在序列上高度保守的D N A 结合结构域[3]㊂但是其配体结合域缺乏经典的核受体配体结合域中的配体接受袋和共激活位点[4]㊂因此,它们没有特定的配体,其功能的调节不是通过与配体结合,而是通过自身的表达以及翻译后的修饰完成[5-6]㊂其D N A结合结构域可与下游基因启动子区域的N u r 77反应元件相结合并发挥调控作用[7-8]㊂此外,N u r 77还可以与维甲酸X 受体(r e t i n o i dXr e c e pt o r ,R X R )或N R 4A 孤儿核受体超家族的其他成员形成异二聚体㊃0091㊃国际呼吸杂志2014年12月第34卷第24期 I n t JR e s pi r ,D e c e m b e r 2014,V o l .34,N o .24诱导基因的激活转录,从而参与调控细胞凋亡等过程[8-9]㊂同时,N u r77是一种立刻早期基因的产物,在生长因子㊁炎症等刺激下可以在很多组织中快速诱导表达[10],其中包括肺㊁肝脏㊁肌肉㊁睾丸㊁卵巢㊁胸腺㊁前列腺㊁肾上腺㊁甲状腺和脑垂体等㊂N u r77具有复杂的生物学功能,参与细胞的增殖㊁分化和凋亡过程[11]㊂2N u r77的生物学特性2.1 N u r77与细胞凋亡研究表明,N u r77参与多种细胞的凋亡过程㊂例如在鼠的胸腺细胞发育过程中,N u r77参与了胸腺细胞的阴性选择,还有T细胞杂交瘤细胞与外周T细胞的凋亡[12-15]㊂利用细胞凋亡诱导剂处理肺癌肿瘤细胞后,可以检测到凋亡过程中有N u r77的表达[16-17]㊂新近研究发现了一种由N u r77介导的特殊的细胞凋亡机制[18],即在正常状况下,N u r77作为孤儿核受体在细胞核中与染色体D N A结合,但当受到凋亡诱导剂刺激后, N u r77发生移位,从细胞核移位至细胞浆并与线粒体膜发生结合㊂二者结合后引起线粒体膜通透性增加并释放细胞色素C,从而启动了凋亡过程㊂如果使N u r77蛋白的N端或C端发生部分缺失,使其不能发生移位或与线粒体膜结合,或者用阻断剂阻止N u r77从细胞核移出,均可阻断细胞凋亡㊂然而,表皮生长因子诱导产生的N u r77受体则位于细胞核内,能引起下游基因的转录及细胞增殖,不发生细胞凋亡㊂说明N u r77诱导细胞凋亡和调控基因转录的不同功能状态,是由其不同的亚细胞定位决定的,即在核内N u r77发挥核转录因子的作用,对其下游基因进行调控,与细胞的增殖有关;而当其移位至细胞质并与线粒体膜结合后,则引起细胞凋亡㊂另外, N u r77受体D N A结合结构域缺失也不影响其细胞凋亡功能,更进一步说明N u r77的反式激活功能与细胞凋亡无关㊂这种特殊的凋亡机制可能代表一种新的调控方式,很有可能也参与了一些肺部疾病的病理机制,值得进一步探究㊂2.2 N u r77与肿瘤细胞研究揭示N u r77在肿瘤细胞的生长㊁增殖㊁凋亡过程中具有双重作用,即除了具有促凋亡作用外,还发现其促增殖的作用㊂K o l l u r i等[19]发现N u r77有促肿瘤细胞生长发育的作用,并且,N u r77常在肿瘤细胞中高度表达,如肺癌㊁胃癌㊁大肠癌和前列腺癌[20-22]㊂此外,N u r77具有稳定缺氧诱导因子-1α的功能[23],而缺氧诱导因子-1α与肿瘤具有密切的关系㊂同时,利用R N A干扰N u r77蛋白表达可以抑制肺癌细胞的生长,表明N u r77具有促肿瘤生长的作用㊂相反,还有一些研究表明,N u r77参与肿瘤细胞的促凋亡机制㊂最早,利用T细胞受体信号诱导N u r77,发现其在细胞凋亡中过度表达㊂在对一种新型维甲酸6-3-金刚烷基-4羟苯-2-萘羧基酸(A H P N/C D437)的研究中发现,N u r77参与A H P N诱导肺癌细胞株的G0/G1生长停滞和凋亡,而反义N u r77R N A则大大抑制了凋亡[16]㊂此外,从箭毒木中提取的毒性强心甾D 能够抑制肿瘤细胞株的增殖,在抑制过程中发现有N u r77表达的上调,体现了N u r77抗肿瘤增殖的作用[24]㊂N u r77在细胞周期调控中的双重作用表明其具有复杂的作用机制,但该机制目前尚未完全揭示㊂N u r77在细胞核中的转录激活很可能促进肿瘤细胞的生长,但在向线粒体的靶向转移中又可能介导肿瘤凋亡机制㊂N u r77的线粒体靶向转移模式为抗癌药物的研发提供了发展方向,具有潜在药用价值㊂2.3 N u r77与巨噬细胞的炎症反应研究表明, N u r77在巨噬细胞参与的炎症反应中也具有双向调控的作用,既能激活又能抑制炎症反应㊂N u r77可被多种促炎症因子诱导表达㊂B o n t a等[25]研究发现在人巨噬细胞系中,转染N u r77㊁N u r r l或N o r l等均可抑制多种促炎细胞因子和趋化因子的表达㊂而P e i等[26]的研究结果恰好相反,认为N u r77具有促炎作用㊂他们利用逆转录病毒诱导鼠巨噬细胞高表达N u r77,发现其过程中激活了许多与炎症相关的基因,如M x1㊁T N F-α和I P-10等,还增加了I K K i 和N I K的表达,两者都是核因子κB(N F-κB)的激活激酶㊂此外,他们利用D N A序列分析发现鼠I K K i 基因的近端启动子中含有潜在的N u r77反应元件序列,可被N u r77激活㊂在巨噬细胞中,N F-κB被认为是介导一系列炎症基因激活的转录因子,在炎症反应中起着重要作用,能够结合到N u r77启动子的反应元件上激活N u r77㊂以上研究提示N u r77在鼠巨噬细胞中可能通过放大N F-κB信号通路起到促炎作用㊂这一作用的进一步探究对揭示肺部疾病的炎症反应机制和治疗方法有重要意义,尤其是A L I等以炎症反应为主的肺部疾病㊂3N u r77与肺部疾病3.1呼吸机所致肺损伤(v e n t i l a t o r-i n d u c e dl u n gi n j u r y,V I L I) V I L I是机械通气常见的严重并发症,发现或处理不及时可导致患者死亡㊂最初的研究认为,设置过度的潮气量或者气道支持压力可造成V I L I,引起肺内和/或气道内的容量或压力过大,导致类似于撕裂伤或剪切伤的损伤[27]㊂然而,越来越多的证据显示,肺内炎症激活在V I L I的发生㊁发㊃1091㊃国际呼吸杂志2014年12月第34卷第24期I n t JR e s p i r,D e c e m b e r2014,V o l.34,N o.24展中也占有重要地位,其本质是炎症细胞在肺内的募集和活化,以及各种炎性介质泛滥导致的瀑布样炎症反应[28-31]㊂有研究表明孤儿核受体N u r77在巨噬细胞中参与促炎症反应,D o l i n a y等利用基因表达谱分析了20000个小鼠基因,发现很多与炎症反应和凋亡机制相关的基因在肺过度通气后都高表达,最终利用R T-P C R确定并验证了N u r77参与其中,作为靶基因诱导形成V I L I[32]㊂表明N u r77极有可能参与到V I L I的病理过程,其具体机制仍需进一步研究㊂3.2镉中毒致肺损伤环境中的镉及其化合物多来源于工业生产和烟草,以烟㊁尘的形式经呼吸道吸入并累及肺脏㊂其肺毒性包括急性炎症㊁慢性水肿㊁支气管炎以及癌症[33-35]㊂最近,有越来越多的研究显示金属镉有诱导细胞凋亡的作用[36-37],但其凋亡机制还未阐明㊂S h i n等[38]确定了一组与炎症㊁细胞寿命和细胞凋亡有关的由镉诱导的基因,并在最近研究中发现N u r77家族基因在镉处理后的W I-38和A549人肺腺癌细胞株中均可被诱导表达㊂他们利用R T-P C R与W e s t e r nb l o t分别检测N u r77在基因水平与蛋白水平上被诱导后的表达变化㊂发现镉是在转录水平上诱导N u r77的表达,从而生成具备功能活性的N u r77蛋白㊂将显性失活的N u r77突变体转染入A549人肺腺癌细胞中后,发现受镉诱导的凋亡细胞核数量明显降低,验证了N u r77确实参与镉诱导的肺癌细胞的凋亡㊂与此同时凋亡基因B a x的表达也被抑制,说明B a x可能是N u r77的靶基因,参与镉诱导的细胞凋亡㊂研究还发现蛋白激酶A和胞外信号调节激酶信号通路参与镉诱导N u r77的基因表达,并在诱导过程中起重要作用㊂人们还证实镉诱导肺组织细胞凋亡在体内㊁体外都可发生,范围包括鼠肺泡Ⅱ型细胞㊁鼠C l a r a细胞㊁人肺成纤维细胞和鼠肺上皮细胞㊂除了镉,其他环境毒素,例如二氯二丁基锡[39]㊁聚氯乙烯㊁双酚A等也被发现可诱导N u r77表达㊂利用此特性,N u r77还可以用作这些毒素的生物标记物㊂3.3肺动脉高压(p u l m o n a r y a r t e r y h y p e r t e n s i o n, P A H) P A H是以肺血管阻力进行性升高为主要特征的病理过程,是临床众多肺部疾病常见的并发症,其发病机制也不十分明了㊂P A H的典型病理改变为肺血管收缩反应增强和肺动脉血管平滑肌细胞(p u l m o n a r y a r t e r y s m o o t hm u s c l e c e l l,P A S M C)增殖,最终导致肺血管重构[40]㊂既往研究发现,N R4A 孤儿核受体超家族在血管平滑肌增殖和血管重塑中起到重要作用,其中N u r77的作用尤为显著㊂王丽岳等[41]发现利用血小板源性生长因子诱导的鼠血管平滑肌细胞增殖受N u r77调控㊂A r k e n b o u t 等[42]发现在颈动脉血管平滑肌细胞中N u r77可减少D N A复制并促进周期素蛋白依赖性激酶抑制剂p27(k i p1)表达,从而抑制细胞增殖㊂d e W a a r d 等[43]发现N u r77可阻止因P A H等原因引起的环形张力所诱导的血管平滑肌增殖㊂L i u等[44]发现N u r77在P A H大鼠P A S M C中大量表达㊂同时利用5-羟色胺诱导P A S M C增殖,发现N u r77在此过程中也能高度表达㊂然而高表达的N u r77负反馈抑制P A S M C的增殖并减少血管损伤后内膜的新生㊂研究发现信号传导与转录激活因子3与P A S M C增殖关系密切,而在上述负反馈机制中, N u r77可抑制信号传导与转录激活因子3磷酸化和其下游靶基因P i m-1㊁N F A T c2和生存素的表达[45-47]㊂进一步研究将有助于P A H的治疗㊂3.4肺癌既往研究发现,孤儿核受体N u r77在大部分肺癌患者中都高度表达,并对肺癌患者的不良预后有提示意义[48]㊂同时,敲除N u r77基因则能抑制多种癌细胞的增殖㊁诱导癌细胞凋亡和减少血管新生㊂这表明N u r77基因的高表达具有一定的致癌性[49-52]㊂L e e等[48]研究发现N u r77的致癌作用与对抑癌基因p53的抑制和对m T O R C1通路的激活有关㊂同时,反义N u r77可激活抑癌基因p53和m T O R C1的阻断物AM P Kα,从而阻断m T O R C1通路,验证了N u r77的致癌作用㊂此研究具有潜在的临床药物价值,N u r77的抑制剂,如D I M-C-p P h OH,可以通过抑制N u r77来阻断m T O R C1通道,从而起到抗肿瘤作用㊂此外,孤儿核受体N u r77与维甲酸的抗肺癌机理密切相关㊂W u等[53]研究发现N u r77可联合另一孤儿核受体C O U P-T F s参与调节维甲酸对肺癌细胞的敏感性㊂在此调节过程中N u r77和C O U P-T F s之间存在拮抗作用㊂C O U P-T F s可以通过与维甲酸反应元件(r e t i n o i c a c i dr e s p o n s ee l e m e n t s,R A R E s)结合,抑制其基础的反式激活,从而增加维甲酸的敏感性㊂N u r77不需直接与R A R E s结合,而是通过与C O U P-T F s相作用阻遏C O U P-T F s与R A R E s间的结合,从而增强R A R E s的反式激活,降低维甲酸的敏感性,增强肺癌耐药性㊂这一新的发现有利于改进维甲酸治疗肺癌的功效,尤其是消除肺癌细胞对维甲酸的耐药性,改善治疗效果㊂同时,研究发现,孤儿核受体N u r77参与一种新型维甲酸AH P N (C D437)的抗癌机制㊂新型维甲酸A H P N(C D437)抑制多种肿瘤细胞生长并诱导其凋亡㊂L i等[16]进㊃2091㊃国际呼吸杂志2014年12月第34卷第24期I n t JR e s p i r,D e c e m b e r2014,V o l.34,N o.24一步研究发现AH P N(C D437)可以通过使G0/G1细胞周期停滞,从而抑制肺癌细胞的生长并诱导凋亡㊂具体机制还不十分明了,但经研究发现,在肺癌细胞中,经A H P N(C D437)处理后可使N u r77激活㊂而且通过转染表达反义N u r77c D N A,可以明显减弱AH P N(C D437)的促凋亡作用㊂以上表明N u r77可能是A H P N(C D437)促凋亡机制中的一个重要的下游靶点㊂这一新的机制很可能提高A H P N(C D437)及其类似物的抗肺癌功效㊂4展望随着研究的深入,N u r77与肝炎㊁肿瘤㊁心血管疾病等发病机制的关系已日渐明朗,但目前对N u r77参与肺部疾病病理生理过程的研究仍非常少㊂已知N u r77可以诱导肺组织细胞增殖㊁凋亡和炎症反应,但其具体调节机制尚未阐明,值得进一步研究㊂如N u r77如何通过由胞核至胞浆移位诱导细胞凋亡?N u r77在维甲酸治疗肺癌过程中的促凋亡作用是如何产生的,以及在V I L I的机制中, N u r77是如何激活炎症反应引起相关病理改变的?明确这些问题必将促进我们对N u r77在不同肺部疾病发生机制中作用的认识,并可能为疾病进一步的预防和治疗提供新的靶点㊂参考文献[1] M i l b r a n d t J.N e r v e g r o w t h f a c t o r i n d u c e s a g e n eh o m o l o g o u st o t h e g l u c o c o r t i c o i dr e c e p t o r g e n e[J].N e u r o n,1988,1:183-188.[2] P e a r e n MA,M u s c a t G E.M i n i r e v i e w:N u c l e a r h o r m o n er e c e p t o r4As i g n a l i n g:i m p l i c a t i o n s f o rm e t a b o l i cd i s e a s e[J].M o l E n d o c r i n o l,2010,24:1891-1903.[3] E s c r i v aH,D e l a u n a y F,L a u d e tV.L i g a n db i n d i n g a n dn u c l e a rr e c e p t o r e v o l u t i o n[J].B i o e s s a y s,2000,22:717-727.[4] M a x w e l lMA,M u s c a tG E.T h e N R4A s u b g r o u p:i mm e d i a t ee a r l y r e s p o n s e g e n e sw i t h p l e i o t r o p i c p h y s i o l o g i c a l r o l e s[J].N u c lR e c e p t S i g n a l,2006,4:e002.[5] G i g u e r eV.O r p h a nn u c l e a rr e c e p t o r s:f r o m g e n et of u n c t i o n[J].E n d o c rR e v,1999,20:689-725.[6] W a n g Z,B e n o i t G,L i uJ,e ta l.S t r u c t u r ea n df u n c t i o n o fN u r r1i d e n t i f i e s a c l a s s o f l i g a n d-i n d e p e n d e n t n u c l e a rr e c e p t o r s[J].N a t u r e,2003,423:555-560.[7] C h e n g L E,C h a nF K,C a d oD.F u n c t i o n a l r e d u n d a n c y o f t h eN u r77a n dN o r-1o r p h a n s t e r o i d r e c e p t o r s i nT-c e l l a p o p t o s i s[J].E M B OJ,1997,16:1865.[8] W i l s o nT E,F a h r n e rT J,J o h n s t o n M,e ta l.I d e n t i f i c a t i o no ft h eD N Ab i n d i n g s i t e f o rN G F I-Bb y g e n e t i c s e l e c t i o n i n y e a s t[J].S c i e n c e,1991,252:1296-1300.[9] P h i l i p sA,L e s a g eS,G i n g r a sR,e ta l.N o v e ld i m e r i c N u r77s i g n a l i n g m e c h a n i s mi ne n d o c r i n e a n d l y m p h o i d c e l l s[J].M o lC e l l B i o l,1997,17:5946-5951.[10] P o l s TW,B o n t a P I,d e V r i e s C J.N R4A n u c l e a r o r p h a nr e c e p t o r s:p r o t e c t i v ei n v a s c u l a r d i s e a s e?[J].C u r r O p i nL i p i d o l,2007,18:515-520.[11]张琳,郝选明,邓树勋,等.N u r77与胸腺细胞阴性选择[J].南阳师范学院学报,2011,10:55-57.[12] L i uZ G,S m i t hS W,M c L a u g h l i n K A,e ta l.A p o p t o t i cs i g n a l sd e l i v e r e dt h r o u g h t h e T-c e l lr e c e p t o r o f a T-c e l l h y b r i dr e q u i r et h ei mm e d i a t e-e a r l yg e n en u r77[J].N a t u r e,1994, 367:281-284.[13] v a n d e n B r i n k M R,K a p e l l e r R,P r a t t J C,e t a l.T h ee x t r a c e l l u l a r s i g n a l-r e g u l a t e dk i n a s e p a t h w a y i sr e q u i r e df o ra c t i v a t i o n-i n d u c e d c e l l d e a t h o f Tc e l l s[J].J B i o l C h e m,1999,274:11178-11185.[14]W o r o n i c z J D,C a l n a n B,N g o V,e ta l.R e q u i r e m e n tf o rt h eo r p h a n s t e r o i d r e c e p t o r N u r77i n a p o p t o s i s o f T-c e l lh y b r i d o m a s[J].N a t u r e,1994,367:277-281.[15] Y o u n H D,S u n L,P r y w e s R,e ta l.A p o p t o s i s o f T c e l l sm e d i a t e db y C a2+-i n d u c e dr e l e a s eo f t h e t r a n s c r i p t i o nf a c t o rM E F2[J].S c i e n c e,1999,286:790-793.[16] L iY,L i n B,A g a d i r A,e ta l.M o l e c u l a r d e t e r m i n a n t s o fA H P N(C D437)-i n d u c e d g r o w t h a r r e s t a n d a p o p t o s i si nh u m a n l u n g c a n c e rc e l l l i n e s[J].M o lC e l lB i o l,1998,18:4719-4731.[17] O h k u b oT,O h k u r aN,M a r u y a m aK,e t a l.E a r l y i n d u c t i o no ft h e o r p h a nn u c l e a r r e c e p t o rN O R-1d u r i n g c e l ld e a t ho f t h eh u m a n b r e a s t c a n c e r c e l l l i n e M C F-7[J].M o l C e l lE n d o c r i n o l,2000,162:151-156.[18] L iH,K o l l u r iS K,G u J,e ta l.C y t o c h r o m ecr e l e a s ea n da p o p t o s i si n d u c e db y m i t oc h o nd r i a l t a r ge t i n g of n u c l e a ro r p h a n r e c e p t o rT R3[J].S c i e n c e,2000,289:1159-1164. [19] K o l l u r i S K,B r u e y-S e d a n oN,C a oX,e t a l.M i t o g e n i c e f f e c t o fo r p h a n r e c e p t o rT R3a n di t sr e g u l a t i o nb y M E K K1i nl u n gc a n c e r c e l l s[J].M o l C e l l B i o l,2003,23:8651-8667.[20] H o l l aV R,M a n nJ R,S h iQ,e t a l.P r o s t a g l a n d i nE2r e g u l a t e st h e n u c l e a rr e c e p t o r N R4A2i nc o l o r e c t a lc a n c e r[J].JB i o lC h e m,2006,281:2676-2682.[21]J e o n g J H,P a r kJ S,M o o n B,e ta l.O r p h a nn u c l e a rr e c e p t o rN u r77t r a n s l o c a t e st o m i t o c h o n d r i ai nt h ee a r l y p h a s e o fa p o p t o s i s i n d u c e db y s y n t h e t ic c h e n ode o x y c h o l i c a c i dd e r i v a t i v e s i nh u m a n s t o m a c h c a n c e r c e l l l i n e S N U-1[J].A n nN Y A c a dS c i,2003,1010:171-177.[22] U e m u r a H,C h a n g C.A n t i s e n s e T R3o r p h a nr e c e p t o rc a ni n c r e a s e p r o s t a t e c a n c e r c e l l v i a b i l i t y w i t h e t o p o s i d e t r e a t m e n t[J].E n d o c r i n o l o g y,1998,139:2329-2334.[23] Y o oY G,Y e o MG,K i m D K,e ta l.N o v e l f u n c t i o no fo r p h a nn u c l e a r r e c e p t o rN u r77i n s t a b i l i z i n g h y p o x i a-i n d u c i b l e f a c t o r-1a l p h a[J].JB i o l C h e m,2004,279:53365-53373. [24]J i a n g MM,D a iY,G a o H,e ta l.C a r d e n o l i d e s f r o m A n t i a r i st o x i c a r i aa s p o t e n ts e l e c t i v e N u r77m o d u l a t o r s[J].C h e mP h a r m B u l l(T o k y o),2008,56:1005-1008.[25] B o n t aP I,v a n T i e l C M,V o s M,e ta l.N u c l e a rr e c e p t o r sN u r77,N u r r1,a n dN O R-1e x p r e s s e d i na t h e r o s c l e r o t i c l e s i o nm a c r o p h a g e s r e d u c e l i p i d l o a d i n g a n d i n f l a mm a t o r y r e s p o n s e s㊃3091㊃国际呼吸杂志2014年12月第34卷第24期I n t JR e s p i r,D e c e m b e r2014,V o l.34,N o.24[J].A r t e r i o s c l e rT h r o m bV a s cB i o l,2006,26:2288-2294.[26] P e iL,C a s t r i l l o A,T o n t o n o z P.R e g u l a t i o n o f m a c r o p h a g ei n f l a mm a t o r yg e n e e x p r e s s i o nb y t h e o r p h a nn u c l e a r r e c e p t o rN u r77[J].M o l E n d o c r i n o l,2006,20:786-794.[27] B a e z a O R,W a g n e r R B,L o w e r y B D.P u l m o n a r yh y p e r i n f l a t i o n.A f o r m o f b a r o t r a u m a d u r i n g m e c h a n i c a lv e n t i l a t i o n[J].JT h o r a cC a r d i o v a s c S u r g,1975,70:790-805.[28] D o sS a n t o sC C,S l u t s k y A S.I n v i t e dr e v i e w:m e c h a n i s m so fv e n t i l a t o r-i n d u c e dl u n g i n j u r y:a p e r s p e c t i v e[J].J A p p lP h y s i o l(1985),2000,89:1645-1655.[29] H o e g lS,B a c h m a n n M,S c h e i e r m a n n P,e t a l.P r o t e c t i v ep r o p e r t i e so f i n h a l e dI L-22i na m o d e lo fv e n t i l a t o r-i n d u c e dl u n g i n j u r y[J].A mJR e s p i r C e l lM o l B i o l,2011,44:369-376.[30]J a e c k l i n T,O t u l a k o w s k i G,K a v a n a g h B P.D o s o l u b l em e d i a t o r sc a u s e v e n t i l a t o r-i n d u c e dl u n g i n j u r y a n d m u l t i-o r g a n f a i l u r e?[J].I n t e n s i v eC a r eM e d,2010,36:750-757.[31] T r e m b l a y L N,S l u t s k y A S.V e n t i l a t o r-i n d u c e di n j u r y:f r o mb a r o t r a u m a t o b i o t r a u m a[J].P r oc A s s o c A m P h y s i c i a n s,1998,110:482-488.[32] D o l i n a y T,K a m i n s k i N,F e l g e n d r e h e r M,e t a l.G e n ee x p r e s s i o n p r of i l i ng o f t a r g e t g e n e s i nv e n t i l a t o r-i n d u c e d l u n gi n j u r y[J].P h y s i o lG e n o m i c s,2006,26:68-75.[33] D r i s c o l lK E,M a u r e rJ K,P o y n t e rJ,e ta l.S t i m u l a t i o no fr a ta l v e o l a rm a c r o p h a g e f ib r o n ec t i n r e l e a s e i n a c ad m i u mc h l o r i d em o d e lo f l u n g i n j u r y a n d f i b r o s i s[J].T o x i c o l A p p lP h a r m a c o l,1992,116:30-37.[34] N i e w o e h n e rD E,H o i d a l J R.L u n g f i b r o s i sa n de m p h y s e m a:d i ve r g e n t r e s p o n s e s t o ac o mm o n i n j u r y?[J].S c i e n c e,1982,217:359-360.[35] L i nC J,Y a n g P C,H s u M T,e ta l.I n d u c t i o n o f p u l m o n a r yf i b r o s i s i no rg a n-c u l t u r e dr a t l u n g b y c a d m i u m ch l o ri d ea n dt r a n s f o r m i n gg r o w t h f a c t o r-b e t a1[J].T o x i c o l o g y,1998,127: 157-166.[36] L a g M,W e s t l y S,L e r s t a d T,e t a l.C a d m i u m-i n d u c e da p o p t o s i s o f p r i m a r y e p i t h e l i a l l u n g c e l l s:i n v o l v e m e n t o fB a xa n d p53,b u tn o to fo x i d a t i v es t r e s s[J].C e l lB i o lT o x ic o l,2002,18:29-42.[37] S h i m o d a R,N a g a m i n e T,T a k a g i H,e t a l.I n d u c t i o n o fa p o p t o s i s i n c e l l sb yc ad m i u m:q u a n t i t a t i ve n e g a t i v ec o r r e l a t i o n b e t w e e n b a s a l o r i nd u ce d m e t a l l o t h i o n e i nc o n c e n t r a t i o na n da p o p t o t i cr a t e[J].T o x i c o lS c i,2001,64:208-215.[38] S h i nH J,L e eB H,Y e oM G,e t a l.I n d u c t i o no f o r p h a nn u c l e a rr e c e p t o r N u r77g e n ee x p r e s s i o n a n di t sr o l ei n c a d m i u m-i n d u c e d a p o p t o s i s i n l u n g[J].C a r c i n o g e n e s i s,2004,25:1467-1475.[39] G e n n a r iA,B l e u m i n k R,V i v i a n iB,e ta l.I d e n t i f i c a t i o n b yD N A m a c r o a r r a y o f n u r77a s a g e n e i n d u c e db y d i-n-b u t y l t i nd i c h l o r i d e:i t s r o le i no r g a n o t i n-i n d u c e da p o p t o s i s[J].T o x i c o lA p p l P h a r m a c o l,2002,181:27-31.[40] C h a nS Y,L o s c a l z oJ.P a t h o g e n i c m e c h a n i s m so f p u l m o n a r ya r t e r i a l h y p e r t e n s i o n[J].JM o l C e l l C a r d i o l,2008,44:14-30.[41]王丽岳,李俊,王珣,等.血小板源生长因子诱导核受体N u r77调节血管平滑肌细胞增殖[J].中国动脉硬化杂志,2011,19: 483-488.[42] A r k e n b o u tE K,d e W a a r d V,v a n B r a g t M,e ta l.P r o t e c t i v ef u n c t i o n o f t r a n s c r i p t i o n f a c t o r T R3o r p h a n r e c e p t o r i na t h e r o g e n e s i s:d e c r e a s e dl e s i o nf o r m a t i o ni n c a r o t i d a r t e r yl i g a t i o nm o d e l i nT R3t r a n s g e n i cm i c e[J].C i r c u l a t i o n,2002, 106:1530-1535.[43] d e W a a r d V,A r k e n b o u t E K,V o s M,e ta l.T R3n u c l e a ro r p h a nr e c e p t o r p r e v e n t sc y c l i cs t r e t c h-i n d u c e d p r o l i f e r a t i o no f v e n o u s s m o o t h m u s c l ec e l l s[J].A m JP a t h o l,2006,168: 2027-2035.[44] L i u Y,Z h a n g J,Y iB,e ta l.N u r77S u p p r e s s e sP u l m o n a r yA r t e r y S m o o t h M u s c l eC e l lP r o l i f e r a t i o nT h r o u g hI n h i b i t i o no f t h eS T A T3/P i m-1/N F A TP a t h w a y[J].A mJR e s p i rC e l lM o l B i o l,2014,50:379-388.[45] B o n n e t S,R o c h e f o r tG,S u t e n d r aG,e t a l.T h en u c l e a r f a c t o ro f a c t i v a t e dTc e l l s i n p u l m o n a r y a r t e r i a l h y p e r t e n s i o n c a nb et h e r a p e u t i c a l l y t a r g e t e d[J].P r o cN a t lA c a dS c iUSA,2007, 104:11418-11423.[46] P a u l i nR,C o u r b o u l i nA,B a r r i e rM,e t a l.F r o mo n c o p r o t e i n s/t u m o rs u p p r e s s o r st o m i c r o R N A s,t h e n e w e s tt h e r a p e u t i ct a r g e t s f o r p u l m o n a r y a r t e r i a lh y p e r t e n s i o n[J].J M o l M e d(B e r l),2011,89:1089-1101.[47] P a u l i nR,C o u r b o u l i n A,M e l o c h eJ,e ta l.S i g n a l t r a n s d u c e r sa n d a c t i v a t o r s o f t r a n s c r i p t i o n-3/p i m1a x i s p l a y s a c r i t i c a l r o l ei n t h e p a t h o g e n e s i s o f h u m a n p u l m o n a r y a r t e r i a l h y p e r t e n s i o n[J].C i r c u l a t i o n,2011,123:1205-1215.[48] L e eS O,A n d e y T,J i n UH,e ta l.T h en u c l e a rr e c e p t o rT R3r e g u l a t e sm T O R C1s i g n a l i n g i n l u n g c a n c e r c e l l se x p r e s s i n gw i l d-t y p e p53[J].O n c o g e n e,2012,31:3265-3276.[49] A z o i t e iN,P u s a p a t iG V,K l e g e rA,e t a l.P r o t e i nk i n a s eD2i sa c r u c i a l r e g u l a t o r o f t u m o u r c e l l-e n d o t h e l i a l c e l lc o mm u n i c a t i o n i n g a s t r o i n t e s t i n a l t u m o u r s[J].G u t,2010,59:1316-1330.[50] B r a s A,A l b a rJ P,L e o n a r d o E,e ta l.C e r a m i d e-i n d u c e dc e l ld e a t h i si n d e p e n d e n to ft h eF a s/F a sl i g a n d p a t h w a y a n di sp r e v e n t e db y N u r77o v e r e x p r e s s i o ni n A20Bc e l l s[J].C e l lD e a t hD i f f e r,2000,7:262-271.[51] K eN,C l a a s s e n G,Y u D H,e ta l.N u c l e a rh o r m o n er e c e p t o rN R4A2i s i n v o l v e d i nc e l l t r a n s f o r m a t i o na n da p o p t o s i s[J].C a n c e rR e s,2004,64:8208-8212.[52] Z e n g H,Q i nL,Z h a oD,e t a l.O r p h a nn u c l e a r r e c e p t o rT R3/N u r77r e g u l a t e s V E G F-A-i n d u c e da n g i o g e n e s i st h r o u g hi t st r a n s c r i p t i o n a l a c t i v i t y[J].JE x p M e d,2006,203:719-729.[53]W u Q,L i Y,L i u R,e t a l.M o d u l a t i o n o f r e t i n o i c a c i ds e n s i t i v i t y i nl u n g c a n c e rc e l l st h r o u g hd y n a m i cb a l a n c eo fo r p h a n r e c e p t o r s n u r77a n d C O U P-T F a n d t h e i rh e t e r o d i m e r i z a t i o n[J].E M B OJ,1997,16:1656-1669.(收稿日期:2013-11-03)㊃4091㊃国际呼吸杂志2014年12月第34卷第24期I n t JR e s p i r,D e c e m b e r2014,V o l.34,N o.24。

孤核受体Nur77在肿瘤治疗中的研究进展

孤核受体Nur77在肿瘤治疗中的研究进展

孤核受体Nur77在肿瘤治疗中的研究进展张文歆吴子媚石焕英王天笑 陈海飞施孝金李群益(复旦大学附属华山医院药剂科 上海 200040)摘要孤核受体Nur77是核受体超家族成员之一,广泛参与细胞的生长、代谢、分化和衰老等生理过程。

作为一种多功能转录因子,Nur77具有促进细胞增殖和诱导细胞凋亡的双重生物学功能,在肿瘤发生、发展过程中起着重要作用,已成为抗肿瘤药物开发的重要新靶点之一。

本文概要介绍Nur77在肿瘤发生、发展中的生物学功能,以及靶向Nur77的抗肿瘤药物的研究进展。

关键词 孤核受体Nur77 肿瘤 抗肿瘤药物中图分类号:R730.23; R979.19 文献标志码:A 文章编号:1006-1533(2021)23-0003-05Research progress of orphan nuclear receptor Nur77 in cancer therapy ZHANG Wenxin, WU Zimei, SHI Huanying, WANG Tianxiao, CHEN Haifei, SHI Xiaojin, LI Qunyi(Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200040, China) ABSTRACT The orphan nuclear receptor Nur77 is a member of the nuclear receptor superfamily and is widely involved in physiological processes such as cell growth, metabolism, differentiation, and aging. As a multifunctional transcription factor, Nur77 exhibits dual biological functions in promoting cell proliferation and inducing apoptosis and plays an important role in tumor growth. Therefore, Nur77 has become an important target for the design of anticancer drugs. This article mainly focuses on the biological function of Nur77 in tumorigenesis and development, as well as the research progress of anticancer drugs targeting Nur77.KEY WORDS orphan nuclear receptor Nur77; tumor; anticancer drugs核受体是一类转录因子超家族,包含48个结构相似的成员,它们广泛表达于人体各组织,参与人体的生长发育、新陈代谢和细胞分化等生理过程[1]。

Nur77在肺癌中的研究进展

Nur77在肺癌中的研究进展

- 150 -*基金项目:国家自然科学基金项目(81860021);广西自然科学基金面上项目(2021GXNSFAA325003);广西高校中青年教师科研基础能力提升项目(2021KY0540);百色市科学研究与技术开发计划项目(百科字〔2019〕31号);2020年度高层次人才科研项目(Y202011722)①右江民族医学院附属医院呼吸与危重症医学科 广西 百色 533000②右江民族医学院研究生院 广西 百色 533000通信作者:蒋玉洁Nur77在肺癌中的研究进展*韩谊①② 莫黎芳② 李小玲② 覃春艳① 蒋玉洁① 【摘要】 核受体Nur77是立早基因NR4A1编码的产物,在包括肺癌在内的多种肿瘤组织中表达,并广泛参与肿瘤的生物学进程。

肺癌发病率高,发病机制复杂,早期不易发现,治疗效果差,是人类常见的恶性肿瘤之一。

大量研究显示Nur77在肺癌发生发展、侵袭转移、凋亡、免疫调节及治疗等方面扮演着重要角色。

本文主要概述Nur77在肺癌中的研究进展。

【关键词】 Nur77 NR4A1 肺癌 Research Progress of Nur77 in Lung Cancer/HAN Yi, MO Lifang, LI Xiaoling, QIN Chunyan, JIANG Yujie. //Medical Innovation of China, 2024, 21(03): 150-155 [Abstract] The nuclear receptor Nur77 is a product encoded by the immediate early gene NR4A1, which is expressed in various tumor tissues including lung cancer, and is widely involved in the biological process of tumors. Lung cancer is one of the common human malignant tumors with high incidence, complex pathogenesis, difficult to find in the early stage and poor treatment effect. A large number of studies have shown that Nur77 plays an important role in the development, invasion and metastasis, apoptosis, immune regulation and treatment of lung cancer. This article reviews the research progress of Nur77 in lung cancer. [Key words] Nur77 NR4A1 Lung cancer First-author's address: Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China doi:10.3969/j.issn.1674-4985.2024.03.036 2022年发布的癌症统计数据显示,中国2022年肺癌死亡率约占癌症相关死亡人数的1/5[1],肺癌是全球发病率和死亡率均较高的癌症,且发病率仍呈上升趋势。

210975589_Nur77对葡萄糖代谢调控作用的研究进展

210975589_Nur77对葡萄糖代谢调控作用的研究进展

Nur77对葡萄糖代谢调控作用的研究进展黄玉兰1,严慧玲1综述蒋玉洁2审校1.右江民族医学院研究生学院,广西百色533000;2.右江民族医学院附属医院呼吸与危重症医学科,广西百色533000【摘要】Nur77(Neuron-derived clone 77)是孤儿核受体家族成员之一,其表达和激活在多种生理及病理刺激下被迅速诱导,具有复杂的生物学功能。

近年研究显示,Nur77以组织依赖的方式调控葡萄糖代谢,其过程可能在急性呼吸窘迫综合征(ARDS)的发生发展中发挥作用。

了解Nur77如何调控葡萄糖代谢及其如何影响ARDS 的发生发展,将有望提供操纵Nur77调控葡萄糖代谢的机会并由此探寻ARDS 药物治疗的新靶点。

本文将围绕Nur77分子生物学功能及其表达、Nur77对葡萄糖代谢的调控及可能在ARDS 中的作用的研究进展进行综述。

【关键词】核受体;Nur77;NR4A1;葡萄糖代谢;基因表达;急性呼吸窘迫综合征【中图分类号】R394【文献标识码】A【文章编号】1003—6350(2023)05—0732—04Regulatory effects of Nur77on glucose metabolism regulation.HUANG Yu-lan 1,YAN Hui-ling 1,JIANG Yu-Jie 2.1.Graduate School,Youjiang Medical University for Nationalities,Baise 533000,Guangxi,CHINA;2.Department of Pulmonary and Critical Care Medicine,Affiliated Hospital of Youjiang Medical University for Nationalities,Baise 533000,Guangxi,CHINA【Abstract 】Nur77(Neuron-derived clone 77)is a member of the orphan nuclear receptor family,whose expres-sion and activation are rapidly induced by a variety of physiological and pathological stimuli and has complex biological functions.Recent studies have shown that Nur77regulates glucose metabolism in a tissue-dependent manner,which may play a role in the pathoplysidogy of acute respiratory distress syndrome (ARDS).Understanding how Nur77regulates glucose metabolism and how it affects the development of ARDS will provide an opportunity to manipulate Nur77regu-lation of glucose metabolism and thus explore new targets for drug treatment of ARDS.In this paper,we will review the progress of research on the molecular biological function of Nur77and its expression,the regulation of glucose metabo-lism by Nur77and its possible role in ARDS.【Key words 】Nuclear receptor;Nur77;NR4A1;Glucose metabolism;Gene expression;Acute respiratory distress syndrome ·综述·doi:10.3969/j.issn.1003-6350.2023.05.030基金项目:国家自然科学基金(编号:81860021);广西自然科学基金(编号:2021GXNSFAA325003)。

人乳寡糖对放射性肠损伤保护作用机制

人乳寡糖对放射性肠损伤保护作用机制

㊃论 著㊃[收稿日期]2022-12-15[作者简介]王君(1988-),女,山东招远人,海军青岛特勤疗养中心主管技师,医学学士,从事医学检验学㊁分子生物学㊁辐射检测医学等研究㊂*通信作者㊂E -m a i l :719664390@q q.c o m 人乳寡糖对放射性肠损伤保护作用机制王 君,于丽华*,王伟娜,王 宏(海军青岛特勤疗养中心检验科,山东青岛266071) [摘要] 目的探究人乳寡糖对放射性肠损伤保护作用机制㊂方法构建小鼠放射性肠损伤模型,使用人乳寡糖灌胃对小鼠进行治疗㊂H E 染色检测小鼠肠道绒毛长度和隐窝深度,分光光度法检测小鼠血清D -乳酸及D -木糖的变化以判断肠道通透性㊂髓过氧化物酶(m y e l o p e r o x i d a s e ,M P O )活性试剂盒检测肠道组织中性粒细胞浸润,酶联免疫吸附测定试剂盒检测小鼠肠道组织炎症因子的变化,实时荧光定量聚合酶链式反应技术(r e a l -t i m e q u a n t i t a t i v e p o l y m e r a s e c h a i n r e a c t i o n ,q R T -P C R )检测肠道组织T o l l 样受体4(T o l l -l i k e r e c e pt o r 4,T L R 4)m R N A 表达水平㊂结果与I R 组相比,I R+HMO s 组促使上皮厚度[(413.21ʃ37.04)μm ]及隐窝数量[(65.11ʃ8.23)个]显著增加(P <0.05),血清D -乳酸水平[(1.80ʃ0.16)μg /L ]显著下降,D -木糖水平[(76.82ʃ12.21)m g /L ]显著升高(P <0.05)㊂并且,I R+HMO s 组小鼠肠组织肿瘤坏死因子α(t u m o rn e c r o s i sf a c t o r -α,T N F -α)[(42.00ʃ5.86)n g /L ]和白细胞介素1β(i n t e r l e u k i n1β,I L -1β)[(38.84ʃ4.02)n g /L ]的水平㊁中性粒细胞的浸润[(4.02ʃ0.42)U /L ]显著降低,抗炎症因子白细胞介素10(i n t e r l e u k i n -10,I L -10)水平[(24.39ʃ2.99)n g /L ]显著上升㊂另外,与S h a m 组(1.00ʃ0.09)相比,I R 组小鼠肠道组织T L R 4表达(3.22ʃ0.53)上升,而I R+HMO s 组T L R 4m R N A 的表达水平显著高于I R 组㊂结论人乳寡糖介导T L R 4对放射性肠损伤发挥保护作用㊂ [关键词] 放射性肠损伤;寡糖类;炎症因子 d o i :10.3969/j.i s s n .1007-3205.2024.02.018 [中图分类号] R 373.25 [文献标志码] A [文章编号] 1007-3205(2024)02-0226-05P r o t e c t i v em e c h a n i s mo f h u m a nm i l ko l i g o s a c c h a r i d e s o n r a d i a t i o n -i n d u c e d i n t e s t i n a l i n j u r yWA N GJ u n ,Y U L i -h u a *,WA N G W e i -n a ,WA N G H o n g(D e p a r t m e n t o f C l i n i c a lL a b o r a t o r y ,Q i n g d a oN a v y S p e c i a lS e r v i c eR e c u p e r a t i o nC e n t e r ,S h a n d o n g P r o v i n c e ,Q i n gd a o 266071,C h i n a )[A b s t r a c t ] O b je c t i v e T o e x p l o r e t h e p r o t e c t i v em e c h a n i s mof h u m a nm i l k o l ig o s a c ch a ri d e s (HMO s )o nr a d i a t i o n -i n d u c e di n t e s t i n a l i nj u r y (R I I I ).M e t h o d s A m o u s e m o d e lo fR I I Iw a s c o n s t r u c t e d a n dt r e a t e d w i t h HMO sb yg a v a g e .H Es t a i n i n g w a su s e dt od e t e c tt h e i n t e s t i n a l v i l l u s l e n g t h a n d c r y p t d e p t h o fm i c e .S p e c t r o p h o t o m e t r y w a s u s e d t o d e t e c t t h e c h a n ge s of s e r u m D -l a c t i ca c i da n d D -x y l o s ei n m i c et od e t e r m i n ei n t e s t i n a l p e r m e a b i l i t y ,a n d m y e l o p e r o x i d a s e (M P O )a c t i v i t y k i tw a su s e d t od e t e c tn e u t r o p h i l i n f i l t r a t i o n i n i n t e s t i n a l t i s s u e .E n z ym e -l i n k e d i mm u n o s o r b e n t a s s a y k i tw a su s e dt od e t e c tt h ec h a n g e so f i n f l a mm a t o r y fa c t o r s i ni n t e s t i n a l t i s s u e ,a n d q R T -P C Rw a s u s e d t o d e t e c t t h e e x p r e s s i o n l e v e l o fT L R 4m R N A i n i n t e s t i n a l t i s s u e .R e s u l t s C o m p a r e dw i t h t h e I R g r o u p ,t h e I R+HMO s g r o u pp r o m p t e da s i gn i f i c a n t i n c r e a s e i n e p i t h e l i a l t h i c k n e s s (413.208ʃ37.042)μm a n dc r y p tn u m b e r (65.109ʃ8.225)(P <0.05),a s i g n i f i c a n t d e c r e a s e i n s e r u m D -l a c t i c a c i d l e v e l (1.799ʃ0.158)μg /L ,a n d a s i g n i f i c a n t i n c r e a s e i n D -x y l o s e l e v e l (76.823ʃ12.206)m g /L (P <0.05).M o r e o v e r ,i nt h eI R+HMO s g r o u p,t h e ㊃622㊃第45卷第2期2024年2月河北医科大学学报J O U R N A L O F H E B E I M E D I C A L U N I V E R S I T YV o l .45 N o .2F e b . 2024l e v e l so ft u m o rn e c r o s i sf a c t o r-α(T N F-α)(42.000ʃ5.858)n g/La n di n t e r l e u k i n-1β(I L-1β) (38.836ʃ4.022)n g/Li nt h ei n t e s t i n a lt i s s u e so f m i c e,a n dt h ei n f i l t r a t i o n o fn e u t r o p h i l s(4.024ʃ0.419)U/L w e r es i g n i f i c a n t l y d e c r e a s e d,w h i l et h el e v e lo fa n t i-i n f l a mm a t o r y f a c t o ri n t e r l e u k i n-10(I L-10)(24.392ʃ2.989)n g/L w a s i n c r e a s e ds i g n i f i c a n t l y.I na d d i t i o n,T L R4 e x p r e s s i o n i n t h e i n t e s t i n a l t i s s u e s o fm i c e i n t h e I R g r o u p(3.22ʃ0.53)w a s i n c r e a s e dc o m p a r e d w i t h t h a t i nt h eS h a m g r o u p(1.00ʃ0.09),w h e r e a s t h ee x p r e s s i o n l e v e l o fT L R4m R N A w a s s i g n i f i c a n t l y h i g h e r i nt h eI R+HMO s g r o u p t h a nt h a t i nt h eI R g r o u p.C o n c l u s i o n HMO s-m e d i a t e dT L R4p l a y s a p r o t e c t i v e r o l e i nR I I I.[K e y w o r d s]r a d i a t i o n-i n d u c e d i n t e s t i n a l i n j u r y;o l i g o s a c c h a r i d e s;i n f l a mm a t o r y f a c t o r s放射性肠损伤(r a d i a t i o n-i n d u c e di n t e s t i n a l i n j u r y,R I I I)是盆腹部肿瘤放疗患者常见的并发症[1]㊂辐射可致肠干细胞的流失[2-3]㊁损害上皮再生㊁降低黏膜完整性㊁促进病原体的入侵,导致败血症和死亡㊂因此尚需寻找策略对抗辐射不利影响㊂母乳喂养可减少坏死性小肠结肠炎㊁白血病㊁肥胖症㊁糖尿病等风险[4]㊂寡糖是乳汁中的一种独特成分,人乳寡糖(h u m a n l a c t o o l i g o s a c c h a r i d e s, HMO s)通过可增强免疫与多种上皮细胞相互作用以改善肠道屏障功能[5-6]㊂T o l l样受体(T o l l-l i k e r e c e p t o r,T L R s)在小鼠辐射保护作用发挥调控作用,其中T L R4发挥重要作用[7]㊂本研究中试图探索HMO s对C57B L/6小鼠R I I I的保护作用㊂1材料与方法1.1动物实验6周大的雄性C57B L/6小鼠,体重20~25g,购自北京维通利华实验动物技术有限公司上海分公司(上海,中国),使用许可S Y X K(沪) 2022-0018㊂在无特定病原体的条件下饲养在我中心动物中心,所有动物实验均按照我中心伦理委员会的指导方针进行㊂建立R I I I体内模型步骤如下,首先采用3%戊巴比妥钠麻醉小鼠,用直线加速器(S i e m e n s P R I MU S)以300c G y/m i n的剂量率对其进行20 G y全腹照射㊂小鼠每组10只,分为以下3组: s h a m组,既不接受辐照也不接受人乳寡糖治疗;I R 组:接受20G y辐射照射;I R+HMO s组:辐照小鼠在7d内(辐照后第0㊁1㊁2㊁3㊁4㊁5㊁6天)每天灌胃3m L人乳寡糖(400m g/k g),辐射后立即进行第一次人乳寡糖处理,之后每隔24h对小鼠进行人乳寡糖灌胃㊂小鼠接受最后一次人乳寡糖治疗7d后接受安乐死,在14d的实验过程中,每24h对受辐射小鼠的生存状况进行监测㊂1.2苏木精和伊红(h e m a t o x y l i n-e o s i ns t a i n i n g,H E)染色处死小鼠后立刻收集肠道组织㊂从T r e i t z 韧带获得2.5c m的空肠近端连续片段㊂组织样本在10%的中性缓冲多聚甲醛中固定12h以上,然后脱水,用石蜡包埋㊂用4μm的切片进行H E染色㊂1.3绒毛长度和隐窝深度的确定应用I m a g eJ 1.37软件对H E染色玻片的隐窝进行分析,以检测隐窝底部到隐窝绒毛交界处的像素高度㊂绒毛长度通过测量从隐窝绒毛交界处到绒毛顶端的长度来确定㊂1.4 D-乳酸检测在处死小鼠取肠道标本前,采集小鼠眼眶血样,采用酶促分光光度法测定D-乳酸水平㊂将50μL的血清加入到试管中,与含有4.6mm o l/LN A D+的碳酸盐缓冲液混合㊂在试管中加入50μL D-乳酸脱氢酶后开始反应,测定340n m处的吸光度变化㊂1.5 D-木糖检测用分光光度法测定了D-木糖的浓度㊂小鼠首先灌胃1.5m L5%D-木糖溶液,1h 后,收集50μL血清样本㊂将样本与5m L间苯三酚着色试剂混合,在100ħ下反应4m i n㊂平衡至室温后,测定554n m处的吸光度变化㊂1.6生化分析肠道组织中性粒细胞浸润采用髓过氧化物酶(m y e l o p e r o x i d a s e,M P O)活性试剂盒(A b c a m,剑桥,MA,U S A)进行检测,采用酶联免疫吸附测定试剂盒(R&D s y s t e m s,M i n n e a p o l i s, MN,U S)检测促炎细胞因子肿瘤坏死因子α(t u m o rn e c r o s i s f a c t o r-α,T N F-α)㊁白细胞介素1β(i n t e r l e u k i n-1β,I L-1β)和抗炎因子白细胞介素10(i n t e r l e u k i n-10,I L-10)表达水平㊂1.7实时荧光定量聚合酶链式反应技术(r e a l-t i m e q u a n t i t a t i v e p o l y m e r a s ec h a i nr e a c t i o n,q R T-P C R)使用T R I z o l试剂(i n v i t r o g e n,c a r l s b a d,C A)从肠组织中提取总R N A,并根据制造商的说明使用R e v e r t A i d第一链c D N A合成试剂盒(t h e r m o s c i e n t i f i c,w i l m i n g t o n,D E)合成c D N A㊂使用7500 F a s tR e a l-T i m eP C R S y s t e m(a p p l i e db i o s y s t e m s, F o s t e r C i t y,C A)和S Y B R P r e m i x E x T a qⅡ㊃722㊃河北医科大学学报第45卷第2期(T a k a r a,J a p a n)对T L R4的m R N A表达进行定量㊂β-a c t i n作为内参㊂所用引物的序列如下,T L R4: f o r w a r d5'-C T G G G T G A G A A A G C T G G T-A A-3', r e v e r s e5'-A G C C T T C C T G G A T G A T G T T-G G-3',β-A c t i n:f o r w a r d5'-A G C T T A C T G C T C T G-G C T C C T A G C-3',r e v e r s e5'-A C T C A T C G T A C T-C C T G C T T G C T-3'㊂1.8统计学方法应用S P S S21.0统计软件处理数据㊂计量资料采用单因素方差分析㊁S N K-q检验㊂L o g-r a n k检验分析小鼠生存曲线㊂P<0.05为差异有统计学意义㊂2结果2.1人乳寡糖延长接受辐射小鼠存活时间对小鼠生存状况进行每日监测㊂生存曲线显示,I R组生存率较S h a m组显著降低,而人乳寡糖的治疗则延长了受腹部辐射小鼠的生存时间(P=0.0187,图1)㊂图1人乳寡糖延长接受辐射小鼠存活时间F i g u r e1P r o l o n g a t i o no f t h e s u r v i v a l t i m e o f i r r a d i a t e dm i c eb y h u m a nm i l ko l i g o s ac c h a r ide s2.2 HMO s减少辐射引起的肠道结构和功能的损伤 20G y对小鼠腹部进行照射,诱发绒毛顶端断裂,绒毛脱落,小肠绒毛长度缩短(图2)㊂与I R组相比,人乳寡糖促使上皮厚度及隐窝数量显著增加,差异有统计学意义(P<0.05),见表1㊂此外, HMO s治疗使得血清D-乳酸水平显著下降,D-木糖水平显著升高,差异有统计学意义(P<0.05),见表2㊂图2H E染色检测肠道组织结构变化F i g u r e2C h a n g e s i ni n t e s t i n a l t i s s u e s t r u c t u r ed e t e c t e db y H Es t a i n i n g表1各组小鼠肠道隐窝数量及上皮厚度T a b l e1N u m b e r o f i n t e s t i n a l c r y p t s a n d e p i t h e l i a lt h i c k n e s s o fm i c e i n e a c h g r o u p(n=10,x-ʃs)组别隐窝数量(个)上皮厚度(μm) S h a m组112.343ʃ17.822490.028ʃ67.880 I R组21.174ʃ2.213*200.815ʃ28.642* I R+HMO s组65.109ʃ8.225*#413.208ʃ37.042*# F值159.80299.008P值<0.001<0.001*P值<0.05与S h a m组比较 #P值<0.05与I R组比较(S N K-q 检验)2.3 HMO s减少辐射诱导的肠道炎症反应为了研究人乳寡糖对炎症活性的影响,本研究评估了辐照小鼠的肠T N F-α㊁I L-1β㊁I L-10和M P O㊂与S h a m组相比,I R组小鼠肠组织中促炎细胞因子水平T N F-α和I L-1β水平显著升高,I L-10水平显著下降,差异有统计学意义(均P<0.05)㊂通过M P O 检测也发现了I R组小鼠肠组织出现中性粒细胞浸润的显著积累,而I R+HMO s组小鼠肠组织T N F-α和I L-1β的水平㊁中性粒细胞的浸润显著降低,抗炎症因子I L-10水平显著上升,见表3㊂表2各组小鼠血清D-乳酸及D-木糖水平T a b l e2S e r u m D-l a c t i c a c i da n dD-x y l o s e l e v e l s o fm i c e i n e a c h g r o u p(n=10,x-ʃs)组别D-乳酸(μg/L)D-木糖(m g/L) S h a m组0.429ʃ0.033100.000ʃ17.383 I R组3.097ʃ0.273*50.296ʃ7.299* I R+HMO s组1.799ʃ0.158*#76.823ʃ12.206*# F值530.89636.787P值<0.001<0.001*P值<0.05与S h a m组比较 #P值<0.05与I R组比较(S N K-q 检验)㊃822㊃河北医科大学学报第45卷第2期表3 各组小鼠肠道组织T N F -α㊁I L -1β㊁I L -10㊁M P O 水平T a b l e 3 L e v e l s o fT N F -α,I L -1βan d I L -10i n i n t e s t i n a l t i s s u e s o fm i c e i n e a c h g r o u p (n =10,x -ʃs )组别T N F -α(n g/L )I L -1β(n g /L )I L -10(n g/L )M P O (U /g)S h a m 组24.013ʃ2.23719.873ʃ1.22630.000ʃ4.8772.000ʃ0.033I R 组71.372ʃ8.208*71.201ʃ9.373*12.998ʃ1.706*8.026ʃ0.684*I R+HMO s 组42.000ʃ5.858*#38.836ʃ4.022*#24.392ʃ2.989*#4.024ʃ0.419*#F 值158.334191.78263.024437.742P 值<0.001<0.001<0.001<0.001*P 值<0.05与S h a m 组比较 #P 值<0.05与I R 组比较(S N K -q 检验)2.4 人乳寡糖抑制放射性肠损伤小鼠肠道组织T L R 4水平 q R T -P C R 结果显示,与S h a m 组相比,I R 组小鼠肠道组织T L R 4表达上升,而I R+HMO s 组T L R 4m R N A 的表达水平显著高于I R组,差异有统计学意义(P <0.05),见表4㊂表4 各组小鼠肠道组织T L R 4水平T a b l e 4 T L R 4l e v e l s i n i n t e s t i n a l t i s s u e s o fm i c e i n e a c h g r o u p(n =10,x -ʃs )组别T L R 4S h a m 组1.000ʃ0.093I R 组3.216ʃ0.525*I R+HMO s 组1.984ʃ0.107*#F 值125.063P 值<0.001*P 值<0.05与S h a m 组比较 #P 值<0.05与I R 组比较(S N K -q 检验)3 讨 论本研究初步探讨了人乳寡糖对R I I I 的保护作用㊂本研究表明,人乳寡糖对R I I I 保护机制可能归因于抑制炎症反应和氧化应激,即人乳寡糖具有治疗R I I I 的潜力㊂小肠黏膜更新快速并且对辐射敏感,该黏膜中的上皮细胞,尤其是隐窝干细胞,对电离辐射的细胞杀伤作用高度敏感,这将导致肠上皮细胞供应不足㊁绒毛脱落㊁隐窝萎缩或消失以及黏膜损伤[8-9]㊂尽管进行了大量的研究,辐射诱导的胃肠毒性和胃肠综合征诱导的细胞死亡的分子机制仍然存在争议㊂一些研究表明,辐射对肠黏膜毛细血管内皮细胞的损伤会导致胃肠综合征[10]㊂药物对R I I I 成为了近期国内外的研究热点,S e z e n 等[11]认为褪黑激素对预防辐射引起的肠道损伤是有效的,K i m 等[12]认为达沙替尼治疗是通过靶向E ph A 2-肾上腺素A 1复合物保护辐射介导的肠道损伤的潜在方法㊂艾默等[13]研究报道,使用人乳寡糖预处理大鼠可通过抑制炎症反应及氧化应激反应减轻大鼠放射性结直肠损伤㊂普遍的共识是隐窝中的上皮细胞和内皮细胞都参与辐射诱导的肠损伤,上皮细胞是辐射损伤的最重要的目标,这可能随后诱导内皮细胞的凋亡㊂本研究中观察到辐射降低了小鼠的生存率,而人乳寡糖处理后改善了由辐射引起的生存率降低㊂肠道环境是一个复杂的生态系统,介导耐受诱导反应并参与宿主防御的肠免疫细胞定位于肠黏膜内的诱导和效应位点[14]㊂肠道富含多种免疫效应细胞,包括T 细胞㊁B 细胞㊁树突细胞和巨噬细胞/单核细胞谱系细胞,此外,各种免疫细胞的相互调节影响炎症小体的活化,炎症小体的过度活化可导致肠道损伤[15-16]㊂早期的炎症反应在辐射后几小时内被激活,在炎症发生的过程中,白细胞被招募并释放促炎症细胞因子,如T N F -α和I L -1β,这放大了炎症反应,而不受控制的炎症加剧了肠道损伤[17]㊂在本研究还发现人乳寡糖通过减少炎症反应来保护R I I I㊂炎症是病理过程的基础,辐射诱导的炎症反应主要由R O S 引起[18],大量的白细胞被招募并产生大量的R O S 和促炎因子,从而产生强大的炎症反应并破坏肠道屏障㊂此外,促炎和抗炎因子之间的不平衡可能导致更长的㊁更大的肠黏膜损伤㊂本研究中,人乳寡糖降低促炎症因子T G F -α㊁I L -1β及M P O 水平,提升抗炎症因子I L -10水平,修复辐射造成的肠损伤㊂人乳寡糖是一种复杂的㊁不可消化的碳水化合物,直接与肠上皮细胞相互作用,以改变屏障功能和宿主炎症[19]㊂T L R s 是一类病原相关分子模式,T L R s 的多个成员被证实具有辐射防护作用㊂研究报道T L R 4通过激活N F -κB 信号通路在放射抵抗中发挥重要作用[20],且单磷酰脂质A 可以通过激活T L R 4信号通路和调节炎症细胞因子来保护肠道免受电离辐射的损伤[21]㊂本研究观察到人乳寡糖显著降低T L R 4的表达水平,由此推断,人乳寡糖可能介导T L R 4对R I I I 的发挥保护作用㊂但是,本研究存在的不足之处在于,未在动物体内对T L R 4进行调控以此确认人乳寡糖介导T L R 4对肠损伤的保护作用,将在未来的研究中展开在R I I I 中㊃922㊃河北医科大学学报 第45卷 第2期人乳寡糖对T L R4及其相关通路的调控机制研究㊂[参考文献][1] L i uL N,S h i L,L iS C,e ta l.P r o t e c t i v er o l e o fr h e u mt a n g u t i c u m p o l y s a c c h a r i d e1i n r a d i a t i o n-i n d u c e di n t e s t i n a lm u c o s a l i n j u r y[J].I r a nJP h a r m R e s,2015,14(3):833-841.[2]S a h aS,B h a n j aP,L i u L,e ta l.T L R9a g o n i s t p r o t e c t s m i c ef r o mr a d i a t i o n-i n d u c e dg a s t r o i n t e s t i n a ls y n d r o m e[J].P L o SO n e,2012,7(1):e29357.[3]S a h aS,A r a n d a E,H a y a k a w a Y,e ta l.M a c r o p h a g e-d e r i v e de x t r a c e l l u l a rv e s i c l e-p a c k a g e d WN T sr e s c u ei n t e s t i n a ls t e mc e l l sa nde n h a n c es u r v i v a laf t e rr a d i a t i o ni n j u r y[J].N a tC o mm u n,2016,7:13096.[4] Z h o u J,S h u k l aV V,J o h nD,e t a l.H u m a n m i l k f e e d i n g a s ap r o t e c t i v e f a c t o r f o r r e t i n o p a t h y o f p r e m a t u r i t y:a m e t a-a n a l y s i s[J].P e d i a t r i c s,2015,136(6):e1576-e1586.[5] C h e n g L,K o n g C,W a l v o o r t M,e t a l.H u m a n m i l ko l i g o s a c c h a r i d e s d i f f e r e n t l y m o d u l a t e g o b l e t c e l l s u n d e rh o m e o s t a t i c,p r o i n f l a mm a t o r y c o n d i t i o n sa n d E R s t r e s s[J].M o lN u t rF o o dR e s,2020,64(5):e1900976.[6]邢敏钰,谭丹,冉淦侨.人乳寡糖2'-岩藻糖基乳糖的功能及其全细胞生物合成[J].微生物学报,2022,62(7):2478-2497.[7] Y a n L,X u G,Q i a o T,e t a l.C p G-O D N7909i n c r e a s e sr a d i a t i o n s e n s i t i v i t y o f r a d i a t i o n-r e s i s t a n t h u m a n l u n ga d e n o c a r c i n o m a c e l l l i n eb y o v e r e x p r e s s i o n o f T o l l-l i k er e c e p t o r9[J].C a n c e r B i o t h e r R a d i o p h a r m,2013,28(7):559-564.[8] P o t t e n C S.A c o m p r e h e n s i v e s t u d y o ft h e r a d i o b i o l o g i c a lr e s p o n s e o ft h e m u r i n e(B D F1)s m a l l i n t e s t i n e[J].I n tJR a d i a tB i o l,1990,58(6):925-973.[9] H a r f o u c h eG,M a r t i n MT.R e s p o n s eo fn o r m a l s t e mc e l l s t oi o n i z i n g r a d i a t i o n:a b a l a n c e b e t w e e nh o m e o s t a s i s a n d g e n o m i cs t a b i l i t y[J].M u t a tR e s,2010,704(1/3):167-174. [10] P a r i sF,F u k sZ,K a n g A,e ta l.E n d o t h e l i a l a p o p t o s i sa st h ep r i m a r y l e s i o ni n i t i a t i n g i n t e s t i n a l r a d i a t i o nd a m a g e i n m i c e[J].S c i e n c e,2001,293(5528):293-297.[11]S e z e nO,E r d e m c iB,C a l i k M,e t a l.T h e r o l eo fm e l a t o n i n i np r e v e n t i n g r a d i a t i o n-i n d u c e di n t e s t i n a li n j u r y[J].J B u o n,2021,26(2):626-633.[12] K i m A,S e o n g K M,C h o iY Y,e t a l.I n h i b i t i o no fE p h A2b yd a s a t i n i b s u p p re s s e s r a d i a t i o n-i n d u c e d i n t e s t i n a l i n j u r y[J].I n tJM o l S c i,2020,21(23):9096.[13]艾默,杨宏,曲冬颖,等.人乳寡糖对大鼠结直肠组织放射性肠损伤保护作用研究[J].创伤与急危重病医学,2022,10(4):281-286.[14] G a r r e t t W S,G o r d o n J I,G l i m c h e r L H.H o m e o s t a s i s a n di n f l a mm a t i o n i nt h e i n t e s t i n e[J].C e l l,2010,140(6):859-870.[15] B e k i a r i sV,P e r s s o nE K,A g a c eWW.I n t e s t i n a l d e n d r i t i c c e l l si n t h er e g u l a t i o no f m u c o s a l i mm u n i t y[J].I mm u n o lR e v,2014,260(1):86-101.[16] H i r o t aS A,N g J,L u e n g A,e t a l.N L R P3i n f l a mm a s o m e p l a y sak e y r o l ei nt h er e g u l a t i o n o fi n t e s t i n a lh o m e o s t a s i s[J].I n f l a mm B o w e lD i s,2011,17(6):1359-1372.[17] Z h o u W,C h e nK,L uQ,e t a l.T h eP r o t e c t i v e e f f e c t o f r o s a v i nf r o mr h o d i o l a r o s e ao nr a d i a t i o n-i n d u c e d i n t e s t i n a l i n j u r y[J].C h e m B i o d i v e r s,2020,17(12):e2000652.[18] F r a nço i sA,M i l l i a tF,G u i p a u d O,e ta l.I n f l a mm a t i o na n di mm u n i t y i n r a d i a t i o nd a m a g e t o t h e g u tm u c o s a[J].B i o m e dR e s I n t,2013,2013:123241.[19] W uR Y,B o t t s S R,J o h n s o n-H e n r y K C,e t a l.V a r i a t i o n s i n t h ec o m p o s i t i o no fh u m a n m i l ko l i g o s a c c h a r ide sc o r r e l a t e s w i t he f f e c t so n b o t h t h ei n t e s t i n a l e p i t h e l i a l b a r r i e r a n d h o s ti n f l a mm a t i o n:a p i l o t s t u d y[J].N u t r i e n t s,2022,14(5):1014.[20] G u o J,C h e n Y,L e i X,e t a l.M o n o p h o s p h o r y ll i p i d aa t t e n u a t e sr a d i a t i o n i n j u r y t h r o u g h T L R4a c t i v a t i o n[J].O n c o t a r g e t,2017,8(49):86031-86042.[21] G u o J,L i u Z,Z h a n g D,e t a l.T L R4a g o n i s tm o n o p h o s p h o r y l l i p i dAa l l e v i a t e dr a d i a t i o n-i n d u c e d i n t e s t i n a li n j u r y[J].J I mm u n o lR e s,2019,2019:2121095.(本文编辑:刘斯静)㊃032㊃王君等人乳寡糖对放射性肠损伤保护作用机制。

调节Nur77信号通路的抗肿瘤化合物研究进展

调节Nur77信号通路的抗肿瘤化合物研究进展

台州学院学报Journal of Taizhou University 2019年6月第41卷第3期Vol.41,No.3Jun.2019调节Nur77信号通路的抗肿瘤化合物研究进展*郑文涛,钱叶荷,胡琼莹*(台州学院医学院,浙江台州318000)收稿日期:2019-03-14。

基金项目:浙江省科技计划项目(2016C37143)。

作者简介:郑文涛(1997-),男,浙江宁波人,2015级临床医学专业学生。

通讯作者:胡琼莹(1976-),女,浙江宁海人,副教授,博士,主要从事抗肿瘤、抗病毒、抗糖尿病新药的发现及药物作用分子机制的研究及新的有效靶点寻找和研究。

摘要:Nur77广泛参与细胞分裂、生长、分化、衰老、凋亡、自噬等生理调控过程。

Nur77在肿瘤组织内的功能失调与肿瘤的发生发展相关。

随着对Nur77研究的深入,各种调节Nur77信号通路的天然或人工化合物被发现且被证实具有良好的抗肿瘤活性。

关键词:Nur77;抗肿瘤;信号通路;靶向DOI:10.13853/ki.issn.1672-3708.2019.03.011核受体是一类转录因子超家族,在人体组织中广泛表达,参与人体的生长发育、新陈代谢、细胞分化等生理过程,核受体功能失调与多种疾病的发生发展有关,如糖尿病、心血管疾病、肿瘤等[1]。

核受体依据其配体的不同分为三类,包括“类固醇激素受体”、“非类固醇激素受体”、“孤儿核受体”,一部分核受体被归类为“孤儿核受体”,是因为它们的特异性体内配体至今未知[2]。

这一特性使得孤儿核受体通过独特的作用机制影响着人体健康,受到了格外关注。

Nur77(也称为TR3/NR4A1/NGFI-B ),是NR4A 孤儿核受体亚家族的一员,现阶段的研究揭示了Nur77是具有潜在开发价值的抗肿瘤治疗新靶点[3-5]。

Nur77早在1988年即得到了研究者的关注[6]。

随后在1994年,Nur77的促凋亡作用首先在诱导T 细胞杂交瘤以及未成熟胸腺细胞的凋亡中被观察到[7]。

核受体Nurr1表达与鼻咽癌恶性演进的相关性研究

核受体Nurr1表达与鼻咽癌恶性演进的相关性研究

核受体Nurr1表达与鼻咽癌恶性演进的相关性研究王建;何志巍【摘要】目的探讨细胞核孤儿受体Nurr1的表达水平和亚细胞分布与鼻咽癌恶性演进的关系.方法采用免疫组化法检测66例鼻咽癌组织和20例鼻咽炎性组织中Nurr1蛋白表达情况,分析其与鼻咽癌各临床特征的相关性;采用细胞体外运动实验系统观察siRNA干扰Nurr1表达对鼻咽癌CNE-2Z细胞侵袭和迁移能力的影响.结果 Nurr1在肿瘤组织的高表达和在细胞胞质错位分布与鼻咽癌的T分期、N分期及临床分期显著相关(P<0.05);侵袭试验及迁移试验中干扰组的穿膜细胞数均明显少于空白对照组、阴性对照组(P均<0.05).结论 Nurr1高表达和胞质分布与鼻咽癌的恶性演进显著相关,有可能成为鼻咽癌的肿瘤标志物和新的治疗分子靶点.%Objective To explore the association between expression level, subcellular localization of nuclear receptor Nurr1 and tumor progression in nasopharyngeal carcinoma. Methods Immunohistochemical staining was used to detect the expression of Nurr1 in 66 nasopharyngeal carcinoma and 20 chronic nasopharyngitis specimens, and its relationship with clinical characteristics of nasopharyngeal carcinoma was analyzed. Transwell method was used to examine the invasion and migration of CNE-2Z cells after RNAi against Nurr1. Results Upregulation and cytoplasmic mislocalization of Nurrl were associated with T staging, N staging and clinical staging of nasopharyngeal carcinoma (P <0. 05). Number of cross-membrane cells in RNAi group was significantly lower than that in control group and scrambled control group(P <0.05). Conclusions Upregulation and cytoplasmic mislocalization of Nurrl are both associated with tumorprogression in nasopharyngeal carcinoma, and it may prove to be an important tumor marker and new therapeutic molecule target for nasopharyngeal carcinoma.【期刊名称】《山东医药》【年(卷),期】2012(052)031【总页数】3页(P17-19)【关键词】细胞核孤儿受体Nurr1;错位分布;鼻咽癌【作者】王建;何志巍【作者单位】广东医学院中美肿瘤研究所,广东东莞523808;广东医学院中美肿瘤研究所,广东东莞523808【正文语种】中文【中图分类】R739.91鼻咽癌多发于中国南方及东南亚地区,其致病因素复杂,包括病毒感染、遗传易感及环境因素[1]。

植物nur77蛋白

植物nur77蛋白

植物nur77蛋白Nur77蛋白,全名核内受体77(Nuclear receptor 77),是一种转录因子,属于核受体超家族的成员之一。

Nur77蛋白在细胞核内发挥重要的调控作用,参与多种生物学过程的调节。

Nur77蛋白在转录调控中起到关键作用。

它能够结合DNA并调控特定基因的转录活性。

Nur77蛋白通过与DNA结合形成复合物,进而调控下游基因的表达水平。

这种调控可以是激活或抑制,具体取决于Nur77与其他蛋白质的相互作用以及DNA序列的结构。

Nur77蛋白在细胞凋亡过程中也发挥着重要的作用。

凋亡是一种细胞主动死亡的过程,对于维持组织和器官的正常功能至关重要。

Nur77蛋白能够通过多种途径介导细胞凋亡。

在一些细胞类型中,Nur77蛋白的表达与细胞凋亡呈正相关,而在其他细胞类型中,Nur77蛋白则可以抑制凋亡过程。

这表明Nur77蛋白在不同细胞和组织中具有多样化的功能。

Nur77蛋白还参与了一系列与免疫调节相关的过程。

研究发现,在免疫细胞中,Nur77蛋白的表达水平与细胞的活化状态密切相关。

Nur77蛋白的活化可以促进免疫细胞的增殖和分化,从而参与免疫应答的调控。

最近的研究还发现,Nur77蛋白在调控能量代谢和疾病发生中也具有重要作用。

Nur77蛋白在脂肪细胞中的表达与脂肪代谢和肥胖密切相关。

研究人员发现,Nur77蛋白能够调控脂肪细胞的增殖和分化,并参与脂肪酸的合成和代谢过程。

此外,Nur77蛋白在某些疾病中的异常表达也与疾病的发生和发展密切相关,包括肿瘤、心血管疾病和自身免疫性疾病等。

总结起来,Nur77蛋白作为一种转录因子,在细胞核内发挥着重要的调控作用。

它参与了转录调控、细胞凋亡、免疫调节和能量代谢等多种生物学过程。

对于深入了解Nur77蛋白的功能和调控机制,有助于揭示其在健康和疾病中的作用,并为相关疾病的治疗提供新的靶点和策略。

随着技术的进步和研究的深入,相信我们对于Nur77蛋白的认识会越来越全面,为人类的健康做出更大的贡献。

Orphan核受体Nur77在肠道炎症中的功能与机制研究的开题报告

Orphan核受体Nur77在肠道炎症中的功能与机制研究的开题报告

Orphan核受体Nur77在肠道炎症中的功能与机制研究的开题报告一、选题背景肠道炎症是一类以肠道组织的炎性反应和病变为主要特征的疾病。

肠道炎症的发生和发展与多种因素有关,如环境、遗传、自身免疫等因素。

因此,针对肠道炎症的治疗和预防具有重要的临床意义。

Orphan核受体Nur77是一种转录因子,参与多种生物过程,包括细胞增殖、细胞凋亡、免疫调节等。

最近的研究表明,Nur77在肠道炎症中的表达水平与其发生和发展密切相关。

因此,深入研究Nur77参与肠道炎症的功能和机制,对于探讨肠道炎症的发生和发展机制,开发肠道炎症的治疗和预防手段具有重要的意义。

二、研究目的本研究旨在探讨Nur77在肠道炎症中的功能和机制,具体研究目的如下:1. 确定Nur77在肠道炎症中的表达变化及其与疾病的关系。

2. 探究Nur77在肠道炎症中的作用机制,包括对免疫因子、细胞凋亡等的调控。

3. 研究Nur77在肠道炎症的治疗和预防中的应用前景。

三、研究方法本研究将采用以下方法:1. 建立肠道炎症动物模型,观察Nur77在炎症发生和发展中的表达变化。

2. 利用siRNA和质粒转染技术调控Nur77表达,观察其对免疫因子、细胞凋亡等的影响。

3. 根据研究结果,寻找Nur77在肠道炎症治疗和预防中的应用前景。

四、研究意义本研究有助于深入探讨Nur77 参与肠道炎症的作用机制,为进一步探究肠道炎症的发生和发展机制,开发肠道炎症的治疗和预防手段提供理论和实验基础。

同时,本研究还有助于丰富Nur77的功能研究,促进Nur77的临床应用。

Nur77慢病毒表达载体的构建及在鼻咽癌CNE-2Z细胞中的稳定表达

Nur77慢病毒表达载体的构建及在鼻咽癌CNE-2Z细胞中的稳定表达

Nur77慢病毒表达载体的构建及在鼻咽癌CNE-2Z细胞中的稳定表达王建【摘要】目的构建人Nur77基因的慢病毒表达载体,建立稳定表达Nur77基因的CNE-2Z细胞株.方法根据人Nur77序列设计并合成引物,以CNE-2Z细胞Cdna 为模板,通过PCR扩增目的基因.双酶切目的基因并插入Pcdh-EG-FP-G4S-MCS 质粒,对重组质粒进行慢病毒包装并感染CNE-2Z细胞,而后通过荧光筛选阳性表达细胞单克隆.结果重组质粒经测序分析确定无误,包装慢病毒颗粒后感染CNE-2Z细胞,通过荧光筛选及Western blot验证得到Nur77稳定过表达的CNE-2Z细胞株.结论成功构建Pcdh-EGFP-G4S-Nur77慢病毒表达载体并获得Nur77稳定过表达的CNE-2Z细胞株.【期刊名称】《实用癌症杂志》【年(卷),期】2018(033)008【总页数】3页(P1219-1221)【关键词】Nur77;慢病毒载体;鼻咽癌【作者】王建【作者单位】523808 广东医科大学【正文语种】中文【中图分类】R739.63在世界大部分地区,鼻咽癌(nasopharyngeal carcinoma)是1种罕见的恶性肿瘤,但是在东南亚、北非和我国南方(尤其是广东省)其发病率显著增高,国内称之为“广东癌”[1]。

鼻咽癌恶性程度较高,易于转移且预后不良[2]。

Nur77是1个孤儿核受体家族成员,参与调控多种恶性肿瘤的发生发展[3]。

我们的前期研究发现微管相关蛋白与肿瘤的侵袭转移密切相关[4]。

为了探讨Nur77在鼻咽癌转移过程中的作用及机制,本研究构建绿色荧光蛋白标记的Nur77基因慢病毒表达载体并稳定转染鼻咽癌CNE-2Z细胞,为后续实验奠定基础。

1 材料与方法1.1 主要试剂限制性内切酶(Thermo);T4 DNA连接酶(Thermo);DNA回收试剂盒(Magen);KOD Plus DNA聚合酶(TOYOBO);cloneez无缝重组试剂盒(金斯瑞);质粒抽提试剂盒(康为);LipofectaminTM3000(Invitrogen);FItran:慢病毒包装专用转染试剂(辉骏生物);Trypsin-EDTA(MP);Polybrene(辉骏生物);Pyrex® cloning cylinder(Sigma)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T h e J o u r n a l o f E x p e r i m e n t a l M e d i c i n eJ. Exp. Med. The Rockefeller University Press • 0022-1007/2003/06/1441/12 $8.00Volume 197, Number 11,June 2, 20031441–1452/cgi/doi/10.1084/jem.200218421441Orphan Nuclear Receptor Nur77 Is Involved inCaspase-independent Macrophage Cell DeathDepartment of Immunology , The Scripps Research Institute, La Jolla, CA 92037AbstractActivation-induced cell death in macrophages has been observed, but the mechanism remains largely unknown. Activation-induced cell death in macrophages can be independent from caspases, and the death of activated macrophages can even be triggered by the pan-caspase in-hibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD). Here, we show that this type of macrophage death can occur in the septic mouse model and that toll-like receptor (TLR)-2 or TLR4 signaling is required in this process. We conclude that Nur77 is involved in the macrophage death because Nur77 expression correlates with cell death, and cell death is re-duced significantly in Nur77-deficient macrophages. The extracellular signal–regulated kinase pathway, which is downstream of TLR2 or TLR4, and myocyte-specific enhancer binding factor 2 (MEF2) transcription factor activity, which is up-regulated by zVAD, are required for Nur77 induction and macrophage death. Reporter gene analysis suggests that Nap, Ets, Rce,and Sp1 sites in the Nur77 promoter are regulated by TLR4 signaling and that MEF2 sites in the Nur77 promoter are regulated by zVAD treatment. MEF2 transcription factors are constitu-tively expressed and degraded in macrophages, and zVAD increases MEF2 transcription factor activity by preventing the proteolytic cleavage and degradation of MEF2 proteins. This paper delineates the dual signaling pathways that are required for Nur77 induction in macrophages and demonstrates a role of Nur77 in caspase-independent cell death.Key words:AICD • LPS • zVAD • MEF2IntroductionProgrammed cell death, often referred to as apoptosis, is a genetically regulated, self-destructive cellular process found in metazoans. It eliminates individual cells when they are no longer needed in development, tissue remodeling, or immune regulation, as well as in various diseases (1). In immune cells, apoptosis is a key phenomenon in what is referred to as activation-induced cell death (AICD). * Dur-ing T cell maturation, AICD is a mechanism for T cells to negatively select thymocyte clones through TCR-medi-ated stimuli (2, 3). AICD in B cell lymphocytes is involved in antigen tolerance, which is initiated by antigen interaction with the B cell receptor (4). A similar term, activation-induced apoptosis, has been used to describe IFN- ␥ and zymosan- or phorbol ester–induced death of macrophages (5). AICD in T and B cells has been a focus of intense study and the underlying molecular mechanisms have been well-described (3, 4, 6, 7). However, little is known about the mechanism of AICD in macrophages.Macrophage death occurs in vitro and in vivo, and has many different causes. Phagocytosis of infectious microor-ganisms by macrophages is a part of the host response to infection (8). Infectious microbial pathogens can be killed by macrophages, and their components are strong stimuli of macrophage activation. Activation of macrophages can lead to their own death if the macrophages are exposed to viruses, such as bovine herpes virus-1, or cytokines, such as IFN- ␥ and - ␣ (2, 9–11). Priming macrophages with IFN- ␥ is known to be required for macrophages to eliminate highly resistant microorganisms (12). Although IFN- ␥ –primed macrophages are crucial for host defense, they are also dangerous because they can cause extensive local dam-age if uncontrolled (13, 14). Teleological reasoning holds that the evolution of susceptible death in these cells may be a mechanism to control activated macrophages. The cellAddress correspondence to Jiahuai Han, Dept. of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037. Phone: (858) 784-8704; Fax: (858) 784-8665; E-mail: jhan@* Abbreviations used in this paper:AICD, activation-induced cell death;CLP, cecal ligation and puncture; EMSA, electrophoretic mobility shift assay; ERK, extracellular signal–regulated kinase; MEF2, myocyte-spe-cific enhancer binding factor 2; NF, nuclear factor; PG, peptidoglycan;PI, propidium iodide; TLR, toll-like receptor; zVAD, benzyloxycarbo-nyl-Val-Ala-Asp-fluoromethyl ketone.on April 8, 2008 Downloaded fromT h e J o u r n a l o f E x p e r i m e n t a l M e d i c i n e1442Nur77 in Caspase-independent Macrophage Cell Deathdeath of activated macrophages could be a mechanism to control the level of inflammation.Activation of macrophages with various stimuli, includ-ing the gram-negative bacterial cell wall product LPS at physiologically relevant concentrations, does not lead to cell death in vitro. Our recent work shows that treatment of macrophages with a pan-caspase inhibitor benzyloxycar-bonyl-Val-Ala-Asp-fluoromethyl ketone (zVAD), which has no effect on the viability of resting macrophages, in-duces the death of activated macrophages (15). We have demonstrated that this cell death is a caspase-independent process. Macrophage death induced by LPS ϩ zVAD and LPS ϩ IFN- ␥ may share some common mechanisms be-cause LPS ϩ IFN- ␥ –induced macrophage death is also in-dependent of the known proapoptotic caspases (unpub-lished data). LPS ϩ IFN- ␥ –induced macrophage death appears to be a complicated process because both direct and indirect mechanisms are likely involved (9, 10, 16). Nitric oxide, induced by LPS ϩ IFN- ␥ , is an indirect trigger of macrophage death, but a nitric oxide–independent mecha-nism also exists (9, 10, 16). LPS ϩ zVAD–induced macro-phage death was quicker and more effective than LPS ϩ IFN- ␥ –induced cell death, and was triggered directly by targeting intracellular molecules. Because LPS ϩ zVAD–induced cell death of macrophages could be simpler than other in vitro systems, such as LPS ϩ IFN- ␥ –induced mac-rophage death, we have used this system to study the mechanism of macrophage death. In addition, this system may be used to address the mechanism of caspase-indepen-dent cell death. Studying zVAD-promoted cell death of ac-tivated macrophages will also help in understanding cas-pases as drug targets for treating inflammatory diseases (17).Recent papers have shown that a pan-caspase inhibitor im-proves survival in a murine sepsis model (18). Caspases, as targets of gene therapy in rheumatoid arthritis, have been reported to have a therapeutic advantage (19). The effect of zVAD on the viability of macrophages could influence the outcome of these therapeutic interventions.There is no doubt that caspases play a key role in apop-tosis of many different cells. However, caspases are not in-dispensable in promoting cell death, as evidenced by the failure of pan-caspase inhibitors (such as zVAD and boc-D)to prevent cell death in some cell death programs (20–23).In many cases, zVAD completely blocked the nuclear events associated with apoptosis, but failed to prevent cell death (20–22). In our work, zVAD even promoted cell death (15). Thus, there seems to be parallel caspase-depen-dent and -independent cell death pathways (24). The mechanism of caspase-independent cell death is poorly de-fined. Death of activated macrophages promoted by pan-caspase inhibitors could be an extreme case of caspase-inde-pendent cell death.Apoptosis can be mediated through multiple pathways.Mitochondrial release of apoptogenic factors, such as cyto-chrome c , Smac/DIABLO, and apoptosis-inducing factor,occurs in many apoptotic processes (25). The release of these factors from mitochondria can be regulated by cas-pases, Bcl-2 family proteins, translocation of tumor sup- pressor p53, or the orphan nuclear receptor Nur77 (also known as TR3 or NG FI-B; reference 26). Nur77 was identified as an immediate early gene that is responsive to TCR signaling under conditions leading to thymocyte apoptosis, or serum or phorbol ester stimulation of quies-cent fibroblasts (27, 28). Structurally, Nur77 belongs to the steroid receptor family (29). It is referred to as an “orphan”receptor because its ligand is unknown. It has been implied that Nur77 induction plays a crucial role in AICD of T cells. Both transcription activity and mitochondrial target-ing of Nur77 has been suggested to be required for cell death (30, 31).We reported previously that macrophage cell death could be triggered by costimulation with LPS and zVAD (15). In this paper, we explore the role of Nur77 and delin-eate its regulatory pathways in macrophage death induced by the costimulation LPS and zVAD.Materials and MethodsPurified LPS from Escherichia coli O111. B4 was purchased from List Biological Laboratories. Synthetic phosphodiester CpG (5 Ј -AACGTTAACGTTAACGTT-3 Ј ) was obtained from Sigma-Flagellin was a gift from Dr. A. Aderem (University of Washing-ton, Seattle, WA). Polyclonal antibodies for myocyte-specific en-hancer binding factor 2 (MEF2)-C and MEF2D were raised against peptides YG NPRNSPG LLVSPG NLNKNMQAKSP and LLEDKYRRASEELDGLFRRYGSTVPA, respectively.Sepsis Model. Polymicrobial sepsis was induced using cecal li-gation and puncture (CLP) as described previously (32) with slight modifications. In brief, female ND4 mice weighing 20–25 g were anesthetized with an intramuscular injection of a mixture of 80 mg/kg/body weight ketamine and 16 mg/kg/body weight xylazine. The cecum was ligated and punctured twice with a 25-gauge needle. Sham-operated mice received cecal manipulation only, without ligation. The presence of sepsis was verified by checking the formation of bacterial colonies in agar plate from 30 ␮ l of blood. Approximately 10–500 colonies were obtained from CLP mice, whereas none were obtained from sham-operated mice. 10 mg/kg of caspase inhibitor, zVAD (Enzyme System Products), or its diluent DMSO, was injected 60 min after CLP by intraperitoneal injection and repeated every 12 h. Peritoneal macrophages were obtained 26–30 h after CLP.Nur77 and Toll-like Receptor (TLR)2/4 Knockout Mice. Het-erozygote Nur77 Ϫ / ϩ knockout mice were provided by J. Mil-brandt (Washington University, St. Louis, MO). Homozygote Nur77 wild-type ( ϩ / ϩ ) and knockout ( Ϫ / Ϫ ) mice were obtained from the same littermates by heterozygote mating. TLR4knockout mice were provided by S. Akira (Osaka University,Osaka, Japan).Preparations of Peritoneal Macrophages and FACS ® Analysis. Resident peritoneal macrophages were obtained from mice by normal saline lavage as described previously (33). Mice other than those used for the sepsis model received intraperitoneal injection of 3% thioglycollate 4 d before the preparation of peritoneal mac-rophages. Peritoneal macrophages were harvested by lavage of the peritoneal cavity with 5 ml of normal saline. The cells were washed twice in FACS ® buffer (phosphate-buffered saline with 1% fetal bovine serum [vol/vol] and 0.01% sodium azide [wt/vol]), and ف 10 6 cells were labeled for 20 min with 1 ␮g each ofon April 8, 2008 Downloaded fromT h e J o u r n a l o f E x p e r i m e n t a l M e d i c i n e1443 Kim et al.APC-conjugated monoclonal rat anti–mouse CD11b (BD Bio-sciences), RPE-cy5–conjugated rat anti–mouse F4/80 (Serotec),and R-PE–conjugated hamster anti–mouse CD11c monoclonal antibodies (BD Biosciences). After washing with annexin labeling solution, the cells were incubated with FITC-conjugated annexin V (Roche Molecular Biochemicals) for 30 min. Macrophages were identified as CD11b-positive, F4/80-positive, and CD11c-negative cells, and the degree of cell death was quantified by an-nexin V–positive cells as described previously (15).Cell Culture. Peritoneal macrophages were plated on plastic tissue culture plates and incubated at 37 Њ C for 2 h. The nonad-herent cells were removed by repeated washing three times with fresh DMEM, and the adherent macrophage cells were cultured overnight in DMEM medium supplemented with 10% fetal bo-vine serum, 100 U/ml penicillin, 100 ␮ g/ml streptomycin, and 2mM glutamine (supplemented DMEM). The murine monocyte/macrophage cell line, RAW 264.7, was maintained in the supple-mented DMEM. All experiments were performed in supple-mented DMEM.Cell Viability Assays. The extent of cell death was measured using either crystal violet or propidium iodide (PI; Sigma-Aldrich)permeability analysis. The crystal violet uptake assays were per-formed in a 96-well plate as described previously (34). PI staining was assessed after incubation of the cells with 2 ␮ g/ml PI, fol-lowed by FACS ® analysis. The extent of cell death was analyzed using either a dot plot or a histogram against the PI fluorescence. Total Cell Lysate Preparation, Western Blot Analysis, and Electro-phoretic Mobility Shift Assay (EMSA). Extraction of total cell ly-sate and Western blot analysis for MEF2s were performed as de-scribed previously (15). Antibody for MEF2A was purchased from Santa Cruz Biotechnology, Inc. and antibodies for MEF2C and MEF2D were raised in rabbit against their specific peptides.For EMSA, nuclear extracts of RAW 264.7 cells were incubated with a double-stranded, 32 P-labeled oligonucleotide containing an MEF2 binding site as a probe (35).Plasmids. The wild-type and mutant pG L2-TR3/Nur77( Ϫ 93 to ϩ 17) reporter genes were provided by X. Liu (Danish Cancer Society, Copenhagen, Denmark). Reporter genes for wild-type and mutant MEF2-response Nur77 promoter ( Ϫ 307 to Ϫ 242; provided by J. Liu [Center for Cancer Research, Massa-chusetts Institute of Technology, Cambridge, MA]) reporters were constructed by cutting wild-type TR3/Nur77 ( Ϫ 93 to ϩ 17) reporter gene with KpnI and MluI, and inserting the pro-moter sequences into KpnI site. The dominant active form of TR3/Nur77 mutant (lacking the DNA binding domain) plasmid was provided by X-K. Zhang (Burnham Institute, La Jolla, CA). Transfection of Plasmids and Reporter Gene Analysis. Raw 264.7 cells were transiently transfected by electrophoration (300 V,950 ␮ F). After electrophoration, cells were washed and plated in 6-well plates and stabilized for 12–16 h in supplemented DMEM before starting treatments. Luciferase was extracted according to the manufacturer’s instructions (Promega) and activity was deter-mined by a bioluminescent assay. Activities in individual samples were normalized on the basis of protein content.RT-PCR and Real-time PCR. Total RNA from RAW 246.7 cells was prepared as per the manufacturer’s instructions (RNeasy Mini kit; QIAG EN). RT-PCR was performed using 0.5 ␮ g of total RNA as a template to detect the expression of Nur77, Nurr1, and Nor1, using One-step RT-PCR kit (QIAG EN). The primers used were as follows: for Nur77,5 Ј -CTCTCCGAACCGTGACACTT-3 Ј (5 Ј -primer) and 5 Ј -GGAAGGAGAGCGGAAGAGAT-3 Ј (3 Ј -primer); for Nurr1,5 Ј -CAGCACAGGCTACGACGTCAA-3 Ј (5 Ј -primer) and5 Ј -AGCCCTCACAAGTGCGAACAC-3 Ј (3 Ј -primer); and for Nor1, 5 Ј -GAGAGGTCGTCTGCCTTCCAA-3 Ј (5 Ј -primer)and 5 Ј -GTCCCTTCCTCTGGTGGTCCT-3 Ј (3 Ј -primer). For the quantitative PCR analysis, 0.5 ␮ g of total RNA from RAW 246.7 cells was used to prepare cDNA using Omniscript RT kit (QIAGEN) with oligo(dT 12 ) as a primer, which was quantified by real-time PCR using SYBR green PCR master mix kit (Applied Biosystems). The primers used for Nur77, Nurr1, Nor1, and MEF2s were as follows: for Nur77, 5 Ј -CTCGCCATCTAC-ACCCAACT-3 Ј (5 Ј primer) and 5 Ј -AGCCTTAGGCAA-CTGCTCTG-3 Ј (3 Ј primer); for Nurr1, 5 Ј -CATGGACCT-CACCAACACTG-3 Ј (5 Ј primer) and 5 Ј -ACAGGGGC-ATTTGGTACAAG-3 Ј (3 Ј primer); for Nor1, 5 Ј -TCAGC-CTTTTTGGAGCTGTT-3 Ј (5 Ј -primer) and 5 Ј -TGAAGTC-GATGCAGGACAAG-3 Ј (3 Ј primer); for MEF2A primers,5 Ј -TTGAGCACTACAGACCTCACG-3 Ј (5 Ј primer) and 5 Ј -TGCACCAGTATTTCCAATCAA-3 Ј (3 Ј primer); for MEF2C primer, 5 Ј -GGATGAGCGTAACAGACAGGT-3 Ј (5 Ј primer)and 5 Ј -ATCAGTGCAATCTCACAGTCG-3 Ј (3 Ј primer); and for MEF2D primer, 5 Ј -GAGAAGATGGGGAGGAAAAAG-3 Ј(5Ј primer) and 5Ј-GCCTTCTTCATCAGTCCAAAC-3Ј(3Ј primer).ResultsPan-caspase Inhibitor, zVAD, Promotes Cell Death of Acti-vated Macrophages.We demonstrated previously that co-stimulation of macrophages with LPS and pan-caspase in-hibitor zVAD results in cell death (15). Because this cell death occurs quickly and is a direct result of LPS ϩ zVAD treatment, we believe this system can be used to study the mechanism of macrophage death. To further characterize this system, we first examined whether zVAD promoted activated macrophage death in vivo. Macrophages activated in septic models were used in our experiments. Sepsis was induced in mice with CLP, as described in Materials and Methods. 10 mg/kg body weight zVAD or control vehicle (DMSO) was injected peritoneally in CLP and sham mice.Sepsis induced by CLP was verified by the presence of bac-teria in the blood by counting the bacterial colony forma-tion in blood cultures. Peritoneal macrophages were har-vested 26–30 h after CLP or sham surgery. FACS ® analysis was used to identify macrophages (CD11b ϩ, F4/80ϩ, and CD11c Ϫ) in the peritoneal isolates and to analyze the level of cell death in these macrophages. Because apoptotic cells are cleared quickly in vivo, we needed to measure early markers of cell death to detect the apoptotic cells. Translo-cation of phosphatidylserine from the inner to the outer layer of the plasma membrane is an early event in apoptosis;therefore, we used annexin V staining of the cell surface phosphatidylserine to identify the macrophages that under-went apoptotic cell death. In sham-operated mice, ف1% of the peritoneal macrophages were annexin V–positive (Fig.1 A). Administration of zVAD had no effect on the viabil-ity of the macrophages in these mice. Similarly, there were ف1% apoptotic macrophages isolated from CLP mice.However, zVAD significantly increased annexin V–posi-tive cells to ف15% in CLP mice. Therefore, zVAD-enhanced macrophage cell death in sepsis could contributeon April 8, 2008 Downloaded fromT h e J o u r n a l o f E x p e r i m e n t a l M e d i c i n e1444Nur77 in Caspase-independent Macrophage Cell Deathto the improved survival observed in zVAD-treated septic mice (18).We showed previously that zVAD promotes cell death in LPS or lipoprotein-activated macrophages, but did not promote cell death in flagellin- or CpG oligonucleotide–treated macrophages (15). Because LPS and PG activate macrophages via TLRs 4 and 2, respectively, we examined whether TLR2 and TLR4 were required for macrophage death in our system. Peritoneal macrophages were isolated from wild-type, TLR2Ϫ/Ϫ, and TLR4Ϫ/Ϫ mice, and chal-lenged with LPS or PG in the presence or absence of zVAD. As expected, LPS and PG stimulation led to macro-phage death in the presence of zVAD (Fig. 1 B). TLR2Ϫ/Ϫmacrophages were resistant to PG ϩ zVAD, but not LPS ϩ zVAD–induced cell death, and TLR4Ϫ/Ϫ macro-phages were resistant to LPS ϩ zVAD, but not PG ϩzVAD–induced cell death. Thus, TLR2- or TLR4-medi-ated signaling is required for zVAD-induced cell death in the presence of their respective ligands. zVAD did not pro-mote death of flagellin (a TLR5 ligand)- or CpG oligonu-cleotide (a TLR9 ligand)–treated macrophages from the wild-type, TLR2Ϫ/Ϫ, or TLR4Ϫ/Ϫ mice (unpublished data).In summary, zVAD, together with signaling initiated from TLR2 or TLR4, can lead to macrophage cell death.The murine macrophage cell line, RAW 264.7, has many of the features of peritoneal macrophages, including LPS responsiveness and cytokine production. LPS, PG ,flagellin, and CpG exerted the same profile of killing effects on RAW 264.7 cells as on peritoneal macrophages in the presence of zVAD (Fig. 1 C). Thus, RAW 264.7 cells were used to study the mechanisms of zVAD-promoted cell death in activated macrophages.Induction of Nur77 Expression Correlated to the LPS ϩzVAD-induced Macrophage Cell Death.Cell death can be mediated by different mechanisms, including induction of death genes, whose products, in turn, lead to cell death.Because zVAD-promoted macrophage death is not medi-ated by the classic caspase pathways, we asked whether there is death gene induction during the stimulation of RAW 264.7 cells with LPS ϩ zVAD, but not with LPS or zVAD alone. We analyzed mRNA and protein levels of several genes (e.g., Nur77, p53, Rb, Bad, and Bax), whose inductions are known to promote cell death. Of these, only Nur77 was strongly induced in LPS ϩ zVAD–treated RAW 264.7 cells (Fig. 2, A and B). Fig. 2 A shows an RT-PCR product of Nur77 that was detected in cells treated with LPS ϩ zVAD, but not in cells treated only with LPS or zVAD. By using real-time PCR, we found the level of Nur77 mRNA in LPS ϩ zVAD–treated cells is ف30–40-fold higher than in the control, or LPS- or zVAD-treated cells (Fig. 2 B). We compared the time courses of Nur77induction (Fig. 2 B) and cell death (Fig. 2 C) after LPS ϩzVAD treatment, and found that Nur77 induction is a pre-lude to cell death, suggesting that Nur77 could be a trigger of cell death.Nur77 as a Causative Factor in the LPS ϩ zVAD-induced Macrophage Cell Death.To investigate if Nur77 contrib-utes to cell death in LPS ϩ zVAD–treated RAW 264.7cells, we first examined whether Nur77 can cause death of RAW 264.7 cells. It was reported that a Nur77 mu-tant, lacking DNA binding domain (Nur77-DA), does not localize in the nucleus as the wild-type Nur77 does and can directly target mitochondria to trigger cell death (31). Expression of the GFP–Nur77-DA fusion protein in LNCaP cells was reported to cause death of ف35% cells (31). Expression of this putative dominant active mutant in RAW 264.7 cells led to ف25% cell death, and cell death was not inhibited by zVAD (Fig. 2 D). This finding indicates that Nur77 promotes caspase-independent cell death in RAW 264.7 cells. Because zVAD has no effect on Nur77-mediated cell death, Nur77 could be locateddownstream of zVAD.Figure 1.Induction of cell death by the pan-caspase inhibitor zVAD in septic and LPS-acti-vated macrophages. (A) CLP or sham-operated ND4 mice were treated with zVAD or its vehi-cle (DMSO) for 26–30 h. Macrophages in peri-toneal isolates were gated by CD11b ϩ, F4/80ϩ,and CD11c Ϫ using flow cytometry, and the cell death of macrophages was determined by an-nexin V staining. (B) Peritoneal macrophages of wild-type, TLR2Ϫ/Ϫ, or TLR4Ϫ/Ϫ mice and (C) RAW264.7 cells were treated for 12 h with 10 ng/ml LPS, 10 ␮g/ml PG, 10 ␮g/ml flagel-lin, or 10 ␮g/ml CpG oligonucleotide together with or without 50 ␮M zVAD as indicated.The extent of cell death was measured by crys-tal violet uptake of live cells as described in Ma-terials and Methods. Results represent the means Ϯ SE (n ϭ 3–4).on April 8, 2008 Downloaded fromT h e J o u r n a l o f E x p e r i m e n t a l M e d i c i n e1445Kim et al.A role for Nur77 in negative selection of T cells has been demonstrated using dominant mutant transgenic mice (27).The Nur77 knockout mouse has been generated, but T cell apoptosis remains normal (36). This is probably due to Nur77 family members compensating for the loss of Nur77(37). To determine whether Nur77 is required for LPS ϩzVAD–induced macrophage death, we isolated peritoneal macrophages from wild-type and Nur77Ϫ/Ϫ mice, and tested their sensitivity to LPS ϩ zVAD–induced cell death.Unlike the situation with T cells, macrophage death was influenced by Nur77 deletion. As shown in Fig. 2 E,LPS ϩ zVAD–induced cell death of Nur77Ϫ/Ϫ macro-phages was significantly less than that of wild-type macro-phages. About sixfold increase in survival rate was found in Nur77Ϫ/Ϫ macrophages in comparison with wild-type macrophages (Fig. 2 F). We suspect that the functional re-dundancy of Nur77 family members may also affect mac-rophage death because Nur77 deletion did not completely prevent LPS ϩ zVAD–induced cell death. These data dem-onstrate that Nur77 is involved in LPS ϩ zVAD–induced cell death of macrophages.Expression of Other Nur77 Family Members in LPS ϩzVAD–treated Macrophages.Because a functional redun-dancy of Nur77 family members has been suggested (37),we investigated whether other Nur77 family members are also induced by LPS ϩ zVAD in peritoneal macrophages.The proteins that exhibit a close structural relationship to the orphan nuclear receptor, Nur77, are Nurr1 and Nor1(38). Nur77, Nurr1, and Nor1 are not expressed, or are ex-pressed at very low levels, in resting macrophages becauseRT-PCR did not detect their mRNA (Fig. 3). As in the case of Nur77, Nurr1 mRNA was induced in the mac-rophages treated with LPS ϩ zVAD, but not in the mac-rophages treated with LPS or zVAD alone (Fig. 3, A and B). Nor1 is different from Nur77 and Nurr1 in that LPS alone is sufficient for its mRNA induction (Fig. 3 C).Real-time PCR analysis reveals that Nur77 and Nurr1mRNA were increased ف75-fold and ف60-fold, respec-tively, after treatment with LPS ϩ zVAD (Fig. 3, A and B,right). Nor1 mRNA was induced ف50-fold by either LPS alone or LPS ϩ zVAD (Fig. 3 C, right). These results indi-cate that Nurr1 expression also correlates with macrophage death induced by LPS ϩ zVAD.The Role of zVAD in Nur77 Induction Is to Prevent Degra-dation of MEF2 Transcription Factors Whose Activity Is Re-quired for Nur77 Expression.To further investigate the mechanisms underlying LPS ϩ zVAD–induced Nur77 ex-pression, we first tried to identify the zVAD-mediated changes that contributed to Nur77 induction. Because zVAD is a pan-caspase inhibitor, one possible role of zVAD in Nur77 induction is to prevent cleavage of the protein(s)required for Nur77 induction. Caspases can cleave a num-ber of proteins including MEF2 transcription factors (39,40). MEF2 activity has been well-documented as being re-quired for the expression of Nur77 proteins in T cells (41,42). Therefore, we tested whether zVAD has any effect on MEF2 activity in RAW 264.7 cells. As shown in Fig. 4 A,treatment with zVAD or zVAD ϩ LPS, but not LPS,quickly increased MEF2 activity, which was measured by EMSA using a 32P-labeled double-stranded probe contain-Figure 2.Induction of Nur77 mRNA and its involvement in cell death in LPS ϩ zVAD–treated RAW 264.7cells. RAW 264.7 cells were treated with 10 ng/ml LPS, 50 ␮M zVAD, or both for 9 h or indicated time periods.(A) Total mRNA extraction and RT-PCR of Nur77 mRNA were per-formed as described in Materials and Methods. An expected 1,494-bp band was detected only in LPS ϩ zVAD–treated cells. (B) Real-time RT-PCRs of Nur77 mRNA were performed as described in Materials and Methods.The results show a means Ϯ SE (n ϭ 4).(C) PI-permeable cells were separated by FACS ® and the percentage of PI-positive (dead) cells was plotted for dif-ferent times. The results shown are the means Ϯ SE (n ϭ 3). (D) RAW 264.7cells were electrophoretically transfected with vector control or expression vector of a putative Nur77-dominant active (Nur77-DA) mutant together with a GFP expression vector. Cells were har-vested 48 h after transfection. GFP ex-pression was used to identify the trans-fected cells using FACS ®, and cell death in transfected cells was analyzed by PI staining using FACS ®. Results show the means Ϯ SE (n ϭ 3). (E)Peritoneal macrophages from Nur77ϩ/ϩ and Nur77Ϫ/Ϫ mice were treated with 50 ␮M zVAD, 10 ng/ml LPS, or both for 12 h. The cells were examined under microscope and photomicrographs of two experiments are shown. (F) The extent of cell death of Nur77ϩ/ϩ or Nur77Ϫ/Ϫ macrophages induced by zVAD ϩ LPS was measured using crystal violet uptake by living cells. The results show the means Ϯ SE (n ϭ 3).on April 8, 2008 Downloaded fromT h e J o u r n a l o f E x p e r i m e n t a l M e d i c i n e1446Nur77 in Caspase-independent Macrophage Cell Deathing the consensus sequence of the MEF2 site. Thus, zVAD has an effect on MEF2 transcription factors. There are four members of the MEF2 family. We used real-time PCR to measure the mRNA of MEF2A, MEF2B, MEF2C, and MEF2D before and after zVAD treatment, showing that there is no detectable increase in mRNA levels of these MEF2 transcription factors (Fig. 4 B). MEF2B mRNA was barely detectable and is not depicted. We also examined samples treated with LPS ϩ zVAD and obtained the same result (unpublished data). These data indicate that zVAD does not affect transcription or the mRNA stability of MEF2 transcription factors. We examined protein levels of the MEF2 transcription factors and found that MEF2A,MEF2C, and MEF2D proteins were dramatically increased in zVAD or LPS ϩ zVAD, but not in samples treated with LPS alone (Fig. 4 C). This indicates that zVAD itself can increase MEF2A, MEF2C, and MEF2D proteins. The in-duction of the MEF2 proteins occurred quickly and reached their maximum within 45 min (Fig. 4 C). MEF2Bwas not detected in RAW 264.7 cells (unpublished data).zVAD was able to significantly increase the MEF2 isoforms at concentrations as low as 25 ␮M, but maximally between 50 and 100 ␮M (Fig. 4 D).We next explored the mechanism by which zVAD in-duces MEF2 protein. Because there is no change at the mRNA level, the increased protein level should be medi-ated by increased protein translation or increased protein stability. We treated RAW 264.7 cells with a protein syn-thesis inhibitor, 10 ␮M cyclohexamide, together with or without zVAD. As shown in Fig. 5 A, MEF2A, MEF2C,and MEF2D proteins were reduced after protein synthesis was blocked. However, protein levels were maintained when zVAD was included, suggesting that zVAD stabilizes the MEF2 proteins. Caspases have been shown to cleave many proteins (1). It seems that zVAD inhibits caspase ac-tivity to prevent the degradation of MEF2 proteins. This possibility is also suggested in recent reports that MEF2C and MEF2D can be cleaved by caspases, but their subse-quent degradation was not reported (40). We used a large amount of cell lysate from resting RAW 264.7 cells and found trace amounts of a short fragment of MEF2A, re-ferred to as MEF2A(f) (Fig. 5 B). The cleavage is most likely mediated by a caspaselike protease since zVAD treat-ment inhibited the appearance of this fragment. To con-firm that cleavage of MEF2A occurs in macrophages, we used peritoneal macrophages to repeat this experiment. As shown in Fig. 5 C, MEF2A is cleaved in the absence of zVAD, but this cleavage is prevented when zVAD is present. Thus, the MEF2 proteins are constitutively ex-pressed and quickly degraded in resting macrophages, the degradation is initiated by a caspaselike protease, and zVAD inhibits caspase activity and prevents degradation of MEF2 proteins.Two MEF2 binding sites were identified in sequences between Ϫ307 and Ϫ242 in the Nur77 promoter (Fig. 6A). To demonstrate that MEF2 activity is indeed required for Nur77 expression in RAW 264.7 cells, we used lu-ciferase reporters. One luciferase reporter is driven by a portion of the Nur77 promoter, which contains MEF2sites, and another is an identical reporter except that the MEF2 sites have been mutated. The structure of the re-porter constructs is shown in Fig. 6 A. RAW 264.7 cells were transfected with the wild-type or mutated reporter plasmid, and then stimulated with zVAD, LPS, or LPS ϩzVAD. Neither reporter was affected by zVAD treatment (Fig. 6 B). LPS stimulation induced approximately fivefold increase of the expression of both reporters. LPS alone did not induce endogenous Nur77 expression, but induced the Nur77 promoter driven reporter. This phenomenon is of-ten seen. One possible interpretation is that the chromatin structure influences endogenous gene expression that can-not be mimicked in transiently transfected reporter genes.Nevertheless, LPS stimulation alone did not discriminate mutated MEF2 sites from the wild type. Similar to the en-dogenous gene, expression of the Nur77 reporter gene was significantly induced in cells costimulated with LPS andzVAD. An important finding is that mutation of MEF2Figure 3.mRNA level of Nur77 family members in peritoneal mac-rophages before and after stimulation with LPS, zVAD, or LPS ϩzVAD. (A–C) Peritoneal macrophages were treated with 10 ng/ml LPS,50 ␮M zVAD, or both for 2 h. Total RNA extraction and RT-PCR were performed as described in Materials and Methods. The expected 1,494-, 647-, and 611-bp cDNA bands amplified from Nur77, Nurr1,and Nor1 mRNA, respectively, were detected. Real-time RT-PCRs were performed. The results are shown in right panels with the means ϮSE (n ϭ 3).on April 8, 2008 Downloaded from。

相关文档
最新文档