新课标人教A版高中数学全部知识点归纳总结
新课标人教a版高中数学全部知识点
新课标人教a版高中数学全部知识点新课标人教A版高中数学涵盖了丰富的知识点,旨在培养学生的数学思维和解决问题的能力。
以下是该版本高中数学的全部知识点概述:1. 集合论- 集合的概念和表示- 集合的运算(交集、并集、补集、差集)- 子集和幂集- 集合恒等式和代数运算2. 函数- 函数的定义和性质- 函数的表示方法(解析式、图象、列表)- 函数的单调性、奇偶性和周期性- 反函数和复合函数- 基本初等函数(幂函数、指数函数、对数函数、三角函数)3. 三角学- 三角函数的定义- 三角函数的图象和性质- 三角恒等式- 解三角形- 三角函数的反函数4. 向量- 向量的基本概念- 向量的运算(加法、减法、数乘、点积、叉积)- 向量的坐标表示- 向量在几何和物理中的应用5. 几何- 平面几何(直线、圆、椭圆、双曲线、抛物线) - 空间几何(立体几何、向量空间)- 几何证明方法- 几何变换(平移、旋转、缩放)6. 概率与统计- 随机事件和概率- 概率的计算- 随机变量及其分布- 统计数据的收集、整理和分析- 统计图表和统计量7. 数列与级数- 数列的概念和性质- 等差数列和等比数列- 数列的求和- 无穷级数的概念和性质8. 微积分- 极限的概念和性质- 导数的概念和运算- 微分的应用- 积分的概念和运算- 积分的应用9. 线性代数- 矩阵的概念和运算- 行列式的概念和性质- 线性方程组的解法- 向量空间和线性变换10. 算法与逻辑- 算法的基本概念- 逻辑运算和逻辑推理- 算法的实现和优化这些知识点构成了高中数学的基础框架,通过系统学习,学生可以掌握数学的基本概念、原理和方法,为进一步的学习和研究打下坚实的基础。
新课标人教A版高一数学必修1知识点总结
高中数学必修1知识点第一章集合与函数概念1.1集合1.1.1集合的含义与表示1、集合的含义2、集合中元素的三个特性:⑴确定性⑵互异性⑶无序性3、集合的表示列举法描述法4、常用数集及其记法:整数集Z有理数集Q实数集R 非负整数集(即自然数集)N 正整数集N*或N+5、属于(∈)6、集合的分类⑴有限集⑵无限集⑶空集(Φ): 不含任何元素的集合1、子集(包含关系)反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊈B(或B⊉A)⑴A与B是同一集合(相等关系)⑵A是B的一部分(真子集)⑶空集是任何集合的子集,空集是任何非空集合的真子集Venn图A B2、集合A(A为非空集合)中有n个元素,则A的子集个数为2n,A的真子集个数为2n-1。
3、注意⑴任何一个集合是它本身的子集A⊆A⑵如果 A⊆B,B⊆C,那么A⊆C⑶如果A⊆B同时 B⊇A那么A=B1、并集A∪B (A∪A = A,A∪φ= A , A∪B = B∪A)A B2、交集A∩B (A∩A = A,A∩φ= φ, A∩B = B∩A)A B3、全集U4、补集5、性质⑴C U(C U A)=A ⑵(C U A)∩A=Φ⑶(C U A)∪A=U ⑷(C U A)∩(C U B)=C U(A∪B) ⑸(C U A)∪(C U B)=C U(A∩B)1.2.1函数的概念1、函数的概念(构成函数的三要素:定义域、对应关系和值域)⑴多对一自变量A(定义域)函数值B(值域)a db ec⑵一对一a db ec f2、定义域3、值域4、区间5、注意⑴没有指明函数y=f(x)的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合。
函数的定义域、值域要写成集合或区间的形式)⑵相同函数的判断方法:①定义域一致②表达式相同 (两点必须同时具备)⑶函数值域中的每一个数都有定义域中的一个或多个自变量与其对应(没有剩余)本节重难点1、求定义域(1)分母不为零(2)偶次根式的被开方数非负(3)对数函数真数部分大于0(4)指数、对数函数的底数大于0且不等于1 (5)y=tanx中x≠kπ+π/2(y=cotx中x≠kπ)(6)X0=1,x≠02、求值域(先考虑其定义域)1.2.2函数的表示法1、解析法2、图象法(列表—描点—连线)(1)函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等判断一个图形是否是函数图象的依据:作垂直于x轴的直线与曲线至多有一个交点。
新课标人教A版高中数学知识点总结
高中数学必修1知识点总结第一章集合与函数概念【1.1.1】集合的含义与表示1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,N*或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.+(3)集合与元素间的关系对象a与集合M的关系是a e M,或者a电M,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合③描述法:{x|x具有的性质},其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集•②含有无限个元素的集合叫做无限集•③不含有任何元素的集合叫做空集(0).【1.1.2】集合间的基本关系(7)已知集合A有>个元素,则它有n个子集,它有n一个真子集,它有个非空子集,它有非空真子集.【1.1.3】集合的基本运算8)交集、并集、补集交集AQB{x I x e A,且x e B}(1)AA=A⑵An0=0⑶AnB匸AAQB u B并集AUB{x I x e A,或x e B}补集{x I x e U,且x电A}(1)AUA=A(2)AU0=A(3)AUB-AAUB-Bi An(C A)=02Au(c A)=UU U(AA B)=(C A)U(B)UUU【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集I x I<a(a〉0){x I一a<x<a}I x I>a(a〉0)x I x<-a或x>a}I ax+b l<c,I ax+b I>c(c〉0)把ax+b看成一个整体,化成丨x I<a,I x I>a(a〉0)型不等式来求解(2)一元二次不等式的解法判别式A=b2一4acA>0A=0A<0二次函数y=ax2+bx+c(a〉0)的图象\\//I\11V1111I tIV °卜\yO一元二次方程ax2+bx+c=0(a〉0)的根x=-1,2(其匸bx=x=—122a无实根1±Jb2一4ac2ahx<x)112ax2+bx+c〉0(a〉0)的解集{x I x<x或x〉x}「b、{x I x丰一——}2aRax2+bx+c<0(a〉0)的解集{x I x<x<x}1200〖1.2〗函数及其表示1.2.1】函数的概念1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作/:A T B.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.2)区间的概念及表示法①设a,b是两个实数,且a<b,满足a§x§b的实数x的集合叫做闭区间,记做[a,b];满足a<x<b的实数x的集合叫做开区间,记做(a,b);满足a§x<b,或a<x§b的实数x的集合叫做半开半闭区间,分别记做[a,b),(a,b];满足x>a,x>a,x§b,x<b的实数x的集合分别记做[a,),(a,),(—g,b],(—g,b).注意:对于集合{兀1a<x<b}与区间(a,b),前者a可以大于或等于b,而后者必须a<b.3)求函数的定义域时,一般遵循以下原则:①f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤y=tan x中,x丰k兀+—(k G Z).2⑥零(负)指数幕的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数/[g(x)]的定义域应由不等式a§g(x)§b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数y二f(x)可以化成一个系数含有y的关于x的二次方程a(y)x2+b(y)x+c(y)二0,则在a(y)丰0时,由于x,y为实数,故必须有'二b2(y)-4a(y)-c(y)>°,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.6)映射的概念①设A、B是两个集合,如果按照某种对应法则/,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则/)叫做集合A到B的映射,记作f:A T B.②给定一个集合A到集合B的映射,且aG A,bG B•如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值X 、x ,当x<x 时,都12•1••2有f(x)〉f(x),那么就说•••12•f(x)在这个区间上是减函数•yo(1)利用定义y=f(x)(2)利用已知函数的 f(x )N. 单调性1f (X )(3)利用函数图象(在f(x)某个区间图 xx x象下降为减)12(4)利用复合函数(2)打““”函数f (x )-x+x (a >0)的图象与性质(3) /(x )分别在(一a 厂、2]、W'a ,+8)上为增函数,分别在S ,°)、(0,2]上为减函数.q 石£最大(小)值定义V -24a\② 在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数y 二f [g (x )],令u 二g (x ),若y 二f (u )为增,u 二g (x )为增,则y 二f [g (x )]为增;若y 二f (u )为减,u 二g (x )为减,则y 二f [g (x )]为增;若y 二f (u )为增,u 二g (x )为减,则y 二f [g (x )]为减;若y 二f (u )为减,u 二g (x )为增,则y 二f [g (x )]为减. ①一般地,设函数y 二f (x )的定义域为1,如果存在实数M满足:(1)对于任意的x e 1f (x )<M ;(2)存在x 0e1,使得f (x 0)-M•那么,我们称M是函数/(x )记作f (x )二M .max②一般地,设函数y 二f (x )的定义域为I ,如果存在实数m 满足:(1)对于任意的x e 1,都有f (x )=m ;(2) 存在x 0e1,使得f (x 0)-m .那么,我们称m 是函数/(x )的最小值,记作f (x )-m .00max【1.3.2】奇偶性(4)函数的奇偶性 ①定义及判定方法函数的性质定义图象 判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个X ,都有f(—x)=—f(x),那么函数f(x)叫做奇函数.-a-(a,f (aj)KT .(1) 利用定义(要先判断定义域是否关于原点对称)(2) 利用图象(图象关于原点对称)jy(-a.0K/(j)-xi-—(d>0),都有如果对于函数f (x)定义域内(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y轴对称)h、°左移h个单位>y=f(x+h)y=f(x)m>y=f(x)+k ②伸缩变换y=f(x)°<吧1申>y=f(①x)®>i,缩y=f(x)°申申申>y=Af(x)A>1,伸③对称变换y=f(x)原点>y=-f(-x)y=f(x)直线y=<>y=f-1(x)去掉申轴左边图象保留y轴右边图象,并作其关于y轴对称图象>y=f(I x l)y=f(x)<保留x轴上方图象<将x 轴下方图象翻折上去②若函数f(x)为奇函数,且在x=0处有定义,则f(°)-°.③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幕函数、三角函数等各种基本初等函数的图象.①平移变换(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具•要重视数形结合解题的思想方法.第二章基本初等函数(I)〖2.1〗指数函数【2.1.1】指数与指数幕的运算(1)根式的概念①如果x n=a,aGR,xGR,n>1,且nGN,那么x叫做a的n次方根.当n是奇数时,a的n次方根用+③根式的性质:(na)n=a;当n为奇数时,n an=a;当n为偶数时,(a>0)(a<0)符号n'a表示;当n是偶数时,正数a的正的n次方根用符号na表示,负的n次方根用符号一n a表示;0的n次方根是0;负数a 没有n次方根.②式子na叫做根式,这里n叫做根指数,a叫做被开方数.当n为奇数时,a为任意实数;当n为偶数时,a、0.2)分数指数幂的概念m①正数的正分数指数幕的意义是:a n二nam(a>0,n e N,且n>1).0的正分数指数幕等于o.+m1m f1②正数的负分数指数幕的意义是:a一n=(一)n=n:(—)m(a>0,n e N,且n>1).0的负分数指数幕没a¥a+有意义.注意口诀:底数取倒数,指数取相反数.3)分数指数幂的运算性质①a r-a s=a r+s(a>0,r,s e R)②(a r)s=a r(a>0,r,s e R)③(ab)r=a r b r(a>0,b>0,r e R)【2.1.2】指数函数及其性质4)指数函数函数名称指数函数定义函数y-a x(a>0j i a丰1)叫做指数函数a>10<a<1V八y-ax/\y-a x y图象丿\y-1(0,1)(0,1)—”鼻,O x0x定义域R值域(0,+如过定点图象过定点(0,1),即当x=0时,y二1.奇偶性非奇非偶单调性在R上是增函数在R上是减函数①加法:log M +log N 二log(MN )aaa③数乘:n log M =log M n (n e R )aa②减法:lo g M -lo g N 二lo gaaa N④a lo g a N =Nn⑤log M n=logM(b 丰0,n e R )ab a〖2.2〗对数函数【2.2.1】对数与对数运算1)对数的定义①若a x 二N (a >0,且a 丰1),则x 叫做以a 为底N 的对数,记作x 二log N ,其中a 叫做底数,N 叫做真数.a② 负数和零没有对数. ③ 对数式与指数式的互化:x=lo g N o ax =N (a >0,a丰1,N >0).a2)几个重要的对数恒等式log1=0,log a =1,log a b =b .aa a3)常用对数与自然对数常用对数:l g N ,即lo g N ;自然对数:l nN ,即lo g N (其中e =2.71828...).10e(4)对数的运算性质如果a >°,a丰1,M >0,N >0,那么log N⑥换底公式:log N —b (b >0,且b丰1)a log ab2.2.2】对数函数及其性质设函数y二f(x)的定义域为A,值域为C,从式子y二f(x)中解出x,得式子x(y).如果对于y在C中的任何一个值,通过式子x=(y),x在A中都有唯一确定的值和它对应,那么式子x=(y)表示x是y的函数,函数X=9(y)叫做函数y=f(x)的反函数,记作X=f T(y),习惯上改写成y=f T(X).(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式y=f(x)中反解出x=f T(y);③将x=f-1(y)改写成y=f-1(x),并注明反函数的定义域.8)反函数的性质①原函数y=f(x)与反函数y=f-1(x)的图象关于直线y=x对称.②函数y=f(x)的定义域、值域分别是其反函数y=f-1(x)的值域、定义域.③若P a b)在原函数y=f(x)的图象上,则P'(b,a)在反函数y=f-1(x)的图象上.④一般地,函数y=f(x)要有反函数则它必须为单调函数.〖2.3〗幂函数1)幂函数的定义一般地,函数y二x a叫做幕函数,其中x为自变量,a是常数.关于y轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限②过定点:所有的幕函数在(°,+8)都有定义,并且图象都通过点(i,i).③单调性:如果0,则幕函数的图象过原点,并且在[°,+8)上为增函数•如果0,则幕函数的图象在(°,+8)上为减函数,在第一象限内,图象无限接近x轴与y轴.④奇偶性:当a为奇数时,幕函数为奇函数,当a为偶数时,幕函数为偶函数.当a=-(其中p,q互质,p和q GZ),p若p为奇数q为奇数时,则y=x p是奇函数,若p为奇数q为偶数时,则y=x p是偶函数,若p为偶数q为奇数时, ■q则y=XP是非奇非偶函数.⑤图象特征:幕函数y二x a,xG(°,+8),当a>1时,若°<x<1,其图象在直线y=x下方,若x>1,其图象在直线y=x上方,当a<1时,若°<x<1,其图象在直线y=x上方,若x>1,其图象在直线y=x下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:f(x)二ax2+bx+c(a丰°)②顶点式:f(x)二a(x-h)2+k(a丰°)③两根式: f(x)二a(x—x1)(x—x2)(a丰°)(2)求二次函数解析式的方法b 需,顶点坐标是②当a >0时,抛物线开口向上, 函数在Z ,-冷上递减’在[--2a ,+Q 上递增’当x 一2a 时' 2a 4a M (x ,0)M (x ,0),MM 曰x -x I 二I a I ① 已知三个点坐标时,宜用一般式.② 已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③ 若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求f (x )更方便.3)二次函数图象的性质 ①二次函数/(x )二ax 2+bx +c (a 丰0)的图象是一条抛物线,对称轴方程为x 二一b4ac -b 22a'4a4ac -b 2bb 、min (X )=石;当。
新教材 人教A版高中数学必修第二册全册各章节知识点考点汇总及解题规律方法提炼
人教A 版必修第二册全册知识点汇总第六章 平面向量及其应用 (1)6.1 平面向量的概念 ...................................................................................................... 1 6.2 平面向量的运算 ........................................................................................................ 5 6.3 平面向量基本定理及坐标表示 .............................................................................. 22 6.4.平面向量的应用 ....................................................................................................... 37 第七章 复数 (51)7.1 复数的概念 .............................................................................................................. 51 7.2复数的四则运算 ....................................................................................................... 58 7.3* 复数的三角表示 .................................................................................................. 64 第八章 立体几何初步 .. (69)8.1 基本立体图形 ........................................................................................................ 69 8.2 立体图形的直观图 ................................................................................................ 80 8.3 简单几何体的表面积与体积 .................................................................................. 83 8.4 空间点、直线、平面之间的位置关系 .................................................................. 93 8.5 空间直线、平面的平行 ........................................................................................ 104 8.6 空间直线、平面的垂直 ........................................................................................ 114 第九章 统计 . (132)9.1 随机抽样 .............................................................................................................. 132 9.2 用样本估计总体 .................................................................................................. 138 9.3 统计案例 公司员工的肥胖情况调查分析 ...................................................... 145 第十章 概率 . (150)10.1 随机事件与概率 .................................................................................................. 150 10.2 事件的相互独立性 ............................................................................................ 161 10.3 频率与概率 .. (165)第六章 平面向量及其应用6.1 平面向量的概念1.向量的概念及表示(1)概念:既有大小又有方向的量. (2)有向线段①定义:具有方向的线段. ②三个要素:起点、方向、长度.③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB→.④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|. (3)向量的表示■名师点拨(1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素. (2)用有向线段表示向量时,要注意AB →的方向是由点A 指向点B ,点A 是向量的起点,点B 是向量的终点.2.向量的有关概念(1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB →|.(2)零向量:长度为0的向量,记作0.(3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系(1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b .规定:零向量与任意向量平行,即对任意向量a ,都有0∥a .(2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b .■名师点拨(1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同.典型应用1 向量的相关概念给出下列命题:①若AB →=DC →,则A ,B ,C ,D 四点是平行四边形的四个顶点; ②在▱ABCD 中,一定有AB →=DC →;③若a =b ,b =c ,则a =c .其中所有正确命题的序号为________.【解析】 AB→=DC →,A ,B ,C ,D 四点可能在同一条直线上,故①不正确;在▱ABCD 中,|AB→|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,故②正确;a=b ,则|a |=|b |,且a 与b 的方向相同;b =c ,则|b |=|c |,且b 与c 的方向相同,则a 与c 长度相等且方向相同,故a =c ,故③正确.【答案】 ②③(1)判断一个量是否为向量的两个关键条件 ①有大小;②有方向.两个条件缺一不可. (2)理解零向量和单位向量应注意的问题①零向量的方向是任意的,所有的零向量都相等; ②单位向量不一定相等,易忽略向量的方向. 典型应用2 向量的表示在如图所示的坐标纸上(每个小方格的边长为1),用直尺和圆规画出下列向量:(1)OA→,使|OA →|=42,点A 在点O 北偏东45°方向上; (2)AB→,使|AB →|=4,点B 在点A 正东方向上; (3)BC→,使|BC →|=6,点C 在点B 北偏东30°方向上. 【解】 (1)由于点A 在点O 北偏东45°方向上,所以在坐标纸上点A 距点O 的横向小方格数与纵向小方格数相等.又|OA →|=42,小方格的边长为1,所以点A 距点O 的横向小方格数与纵向小方格数都为4,于是点A 的位置可以确定,画出向量OA→,如图所示.(2)由于点B 在点A 正东方向上,且|AB→|=4,所以在坐标纸上点B 距点A 的横向小方格数为4,纵向小方格数为0,于是点B 的位置可以确定,画出向量AB →,如图所示.(3)由于点C 在点B 北偏东30°方向上,且|BC→|=6,依据勾股定理可得,在坐标纸上点C 距点B 的横向小方格数为3,纵向小方格数为33≈5.2,于是点C 的位置可以确定,画出向量BC→,如图所示.用有向线段表示向量的步骤典型应用3共线向量与相等向量如图所示,O 是正六边形ABCDEF 的中心,且OA→=a ,OB →=b ,在每两点所确定的向量中.(1)与a 的长度相等、方向相反的向量有哪些?(2)与a 共线的向量有哪些?【解】 (1)与a 的长度相等、方向相反的向量有OD→,BC →,AO →,FE →.(2)与a 共线的向量有EF→,BC →,OD →,FE →,CB →,DO →,AO →,DA →,AD →.1.[变条件、变问法]本例中若OC →=c ,其他条件不变,试分别写出与a ,b ,c 相等的向量.解:与a 相等的向量有EF →,DO →,CB →;与b 相等的向量有DC →,EO →,F A →;与c 相等的向量有FO→,ED →,AB →. 2.[变问法]本例条件不变,与AD→共线的向量有哪些?解:与AD →共线的向量有EF →,BC →,OD →,FE →,CB →,DO →,AO →,DA →,OA →.共线向量与相等向量的判断(1)如果两个向量所在的直线平行或重合,那么这两个向量是共线向量. (2)共线向量不一定是相等向量,但相等向量一定是共线向量.(3)非零向量的共线具有传递性,即向量a ,b ,c 为非零向量,若a ∥b ,b ∥c ,则可推出a ∥c .[注意] 对于共线向量所在直线的位置关系的判断,要注意直线平行或重合两种情况.6.2 平面向量的运算6.2.1 向量的加法运算1.向量加法的定义及运算法则(1)两个法则的使用条件不同.三角形法则适用于任意两个非零向量求和,平行四边形法则只适用于两个不共线的向量求和.(2)在使用三角形法则时,应注意“首尾连接”;在使用平行四边形法则时应注意范围的限制及和向量与两向量起点相同.(3)位移的合成可以看作向量加法三角形法则的物理模型.力的合成可以看作向量加法平行四边形法则的物理模型.2.|a+b|,|a|,|b|之间的关系一般地,|a+b|≤|a|+|b|,当且仅当a,b方向相同时等号成立.3.向量加法的运算律典型应用1平面向量的加法及其几何意义如图,已知向量a ,b ,c ,求作和向量a +b +c .【解】 法一:可先作a +c ,再作(a +c )+b ,即a +b +c .如图,首先在平面内任取一点O ,作向量OA →=a ,接着作向量AB →=c ,则得向量OB→=a +c ,然后作向量BC →=b ,则向量OC→=a +b +c 为所求.法二:三个向量不共线,用平行四边形法则来作.如图,(1)在平面内任取一点O ,作OA→=a ,OB →=b ;(2)作平行四边形AOBC ,则OC →=a +b ;(3)再作向量OD→=c ;(4)作平行四边形CODE ,则OE→=OC →+c =a +b +c .OE →即为所求.(1)应用三角形法则求向量和的基本步骤①平移向量使之“首尾相接”,即第一个向量的终点与第二个向量的起点重合;②以第一个向量的起点为起点,并以第二个向量的终点为终点的向量,即为两个向量的和.(2)应用平行四边形法则求向量和的基本步骤 ①平移两个不共线的向量使之共起点;②以这两个已知向量为邻边作平行四边形;③平行四边形中,与两向量共起点的对角线表示的向量为两个向量的和. 典型应用2平面向量的加法运算化简: (1)BC→+AB →; (2)DB→+CD →+BC →; (3)AB →+DF →+CD →+BC →+F A →.【解】 (1)BC →+AB →=AB →+BC →=AC →. (2)DB→+CD →+BC → =BC→+CD →+DB → =(BC→+CD →)+DB → =BD→+DB →=0. (3)AB →+DF →+CD →+BC →+F A → =AB →+BC →+CD →+DF →+F A → =AC →+CD →+DF →+F A → =AD →+DF →+F A →=AF →+F A →=0.向量加法运算中化简的两种方法(1)代数法:借助向量加法的交换律和结合律,将向量转化为“首尾相接”,向量的和即为第一个向量的起点指向最后一个向量终点的向量.(2)几何法:通过作图,根据三角形法则或平行四边形法则化简. 典型应用3向量加法的实际应用某人在静水中游泳,速度为43千米/小时,他在水流速度为4千米/小时的河中游泳.若他垂直游向河对岸,则他实际沿什么方向前进?实际前进的速度大小为多少?【解】 如图,设此人游泳的速度为OB →,水流的速度为OA →,以OA→,OB →为邻边作▱OACB ,则此人的实际速度为OA →+OB →=OC →. 由勾股定理知|OC→|=8,且在Rt △ACO 中,∠COA =60°,故此人沿与河岸成60°的夹角顺着水流的方向前进,速度大小为8千米/小时.应用向量解决平面几何和物理学问题的基本步骤(1)表示:用向量表示有关量,将所要解答的问题转化为向量问题. (2)运算:应用向量加法的平行四边形法则和三角形法则,将相关向量进行运算,解答向量问题.(3)还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.6.2.2 向量的减法运算1.相反向量(1)定义:与a 长度相等,方向相反的向量,叫做a 的相反向差,记作-a ,并且规定,零向量的相反向量仍是零向量.(2)结论①-(-a )=a ,a +(-a )=(-a )+a =0;②如果a 与b 互为相反向量,那么a =-b ,b =-a ,a +b =0. ■名师点拨相反向量与相等向量一样,从“长度”和“方向”两方面进行定义,相反向量必为平行向量.2.向量的减法(1)向量a 加上b 的相反向量,叫做a 与b 的差,即a -b =a +(-b ).求两个向量差的运算叫做向量的减法.(2)作法:在平面内任取一点O ,作OA →=a ,OB →=b ,则向量BA →=a -b ,如图所示.(3)几何意义:a -b 可以表示为从向量b 的终点指向向量a 的终点的向量. ■名师点拨(1)减去一个向量相当于加上这个向量的相反向量.(2)在用三角形法则作向量减法时,只要记住“连接向量终点,箭头指向被减向量”即可.(3)对于任意两个向量a ,b ,都有||a |-|b ||≤|a +b |≤|a |+|b |. 典型应用1 向量的减法运算化简下列各式: (1)(AB→+MB →)+(-OB →-MO →); (2)AB→-AD →-DC →. 【解】 (1)法一:原式=AB →+MB →+BO →+OM →=(AB →+BO →)+(OM →+MB →)=AO →+OB→=AB →. 法二:原式=AB→+MB →+BO →+OM →=AB →+(MB →+BO →)+OM →=AB →+MO →+OM →=AB →+0 =AB→. (2)法一:原式=DB→-DC →=CB →.法二:原式=AB→-(AD →+DC →)=AB →-AC →=CB →.向量减法运算的常用方法典型应用2向量的减法及其几何意义如图,已知向量a ,b ,c 不共线,求作向量a +b -c . 【解】 法一:如图①,在平面内任取一点O ,作OA →=a ,OB →=b ,OC→=c ,连接BC , 则CB→=b -c . 过点A 作AD 綊BC ,连接OD , 则AD→=b -c , 所以OD→=OA →+AD →=a +b -c . 法二:如图②,在平面内任取一点O ,作OA →=a ,AB →=b ,连接OB ,则OB →=a +b ,再作OC →=c ,连接CB ,则CB→=a +b -c . 法三:如图③,在平面内任取一点O , 作OA→=a ,AB →=b ,连接OB , 则OB→=a +b ,再作CB →=c ,连接OC , 则OC→=a +b -c .求作两个向量的差向量的两种思路(1)可以转化为向量的加法来进行,如a -b ,可以先作-b ,然后作a +(-b )即可.(2)可以直接用向量减法的三角形法则,即把两向量的起点重合,则差向量为连接两个向量的终点,指向被减向量的终点的向量.典型应用3用已知向量表示其他向量如图所示,四边形ACDE 是平行四边形,点B 是该平行四边形外一点,且AB→=a ,AC →=b ,AE →=c ,试用向量a ,b ,c 表示向量CD →,BC →,BD →.【解】 因为四边形ACDE 是平行四边形, 所以CD→=AE →=c ,BC →=AC →-AB →=b -a , 故BD→=BC →+CD →=b -a +c .用已知向量表示其他向量的三个关注点(1)搞清楚图形中的相等向量、相反向量、共线向量以及构成三角形的三个向量之间的关系,确定已知向量与被表示向量的转化渠道.(2)注意综合应用向量加法、减法的几何意义以及向量加法的结合律、交换律来分析解决问题.(3)注意在封闭图形中利用向量加法的多边形法则. 例如,在四边形ABCD 中,AB →+BC →+CD →+DA →=0.6.2.3 向量的数乘运算1.向量的数乘的定义一般地,规定实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,它的长度与方向规定如下:(1)|λa |=|λ||a |.(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0.■名师点拨λ是实数,a 是向量,它们的积λa 仍然是向量.实数与向量可以相乘,但是不能相加减,如λ+a ,λ-a 均没有意义.2.向量数乘的运算律 设λ,μ为实数,那么: (1)λ(μa )=(λμ)a . (2)(λ+μ)a =λa +μa . (3)λ(a +b )=λa +λb .3.向量的线性运算及向量共线定理(1)向量的加、减、数乘运算统称为向量的线性运算.对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .(2)向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa . ■名师点拨若将定理中的条件a ≠0去掉,即当a =0时,显然a 与b 共线. (1)若b ≠0,则不存在实数λ,使b =λa . (2)若b =0,则对任意实数λ,都有b =λa . 典型应用1 向量的线性运算(1)计算:①4(a +b )-3(a -b )-8a ; ②(5a -4b +c )-2(3a -2b +c ); ③23⎣⎢⎡⎦⎥⎤(4a -3b )+13b -14(6a -7b ).(2)设向量a =3i +2j ,b =2i -j ,求⎝ ⎛⎭⎪⎫13a -b -⎝ ⎛⎭⎪⎫a -23b +(2b -a ). 【解】 (1)①原式=4a +4b -3a +3b -8a =-7a +7b .②原式=5a -4b +c -6a +4b -2c =-a -c .③原式=23⎝ ⎛⎭⎪⎫4a -3b +13b -32a +74b=23⎝ ⎛⎭⎪⎫52a -1112b=53a -1118b .(2)原式=13a -b -a +23b +2b -a =⎝ ⎛⎭⎪⎫13-1-1a +⎝ ⎛⎭⎪⎫-1+23+2b =-53a +53b =-53(3i +2j )+53(2i -j ) =⎝ ⎛⎭⎪⎫-5+103i +⎝ ⎛⎭⎪⎫-103-53j =-53i -5j .向量线性运算的基本方法(1)类比方法:向量的数乘运算可类似于代数多项式的运算.例如,实数运算中的去括号、移项、合并同类项、提取公因式等变形手段在数与向量的乘积中同样适用,但是在这里的“同类项”“公因式”指向量,实数看作是向量的系数.(2)方程方法:向量也可以通过列方程来解,把所求向量当作未知数,利用代数方程的方法求解,同时在运算过程中要多注意观察,恰当运用运算律,简化运算.典型应用2向量共线定理及其应用已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.【解】 (1)证明:因为AB →=e 1+e 2,BD →=BC →+CD →=2e 1+8e 2+3e 1-3e 2=5(e 1+e 2)=5AB→. 所以AB→,BD →共线,且有公共点B , 所以A 、B 、D 三点共线.(2)因为k e 1+e 2与e 1+k e 2共线,所以存在实数λ,使k e 1+e 2=λ(e 1+k e 2), 则(k -λ)e 1=(λk -1)e 2,由于e 1与e 2不共线,只能有⎩⎨⎧k -λ=0,λk -1=0,所以k =±1.向量共线定理的应用(1)若b =λa (a ≠0),且b 与a 所在的直线无公共点,则这两条直线平行. (2)若b =λa (a ≠0),且b 与a 所在的直线有公共点,则这两条直线重合.例如,若AB→=λAC →,则AB →与AC →共线,又AB →与AC →有公共点A ,从而A ,B ,C 三点共线,这是证明三点共线的重要方法.典型应用3用已知向量表示其他向量如图,ABCD 是一个梯形,AB→∥CD →且|AB →|=2|CD →|,M ,N 分别是DC ,AB 的中点,已知AB →=e 1,AD →=e 2,试用e 1,e 2表示下列向量.(1)AC→=________; (2)MN→=________. 【解析】 因为AB →∥CD →,|AB →|=2|CD →|,所以AB→=2DC →,DC →=12AB →. (1)AC →=AD →+DC →=e 2+12e 1. (2)MN→=MD →+DA →+AN → =-12DC →-AD →+12AB → =-14e 1-e 2+12e 1=14e 1-e 2.【答案】 (1)e 2+12e 1 (2)14e 1-e 2[变条件]在本例中,若条件改为BC →=e 1,AD →=e 2,试用e 1,e 2表示向量MN →.解:因为MN→=MD →+DA →+AN →, MN→=MC →+CB →+BN →, 所以2MN→=(MD →+MC →)+DA →+CB →+(AN →+BN →).又因为M ,N 分别是DC ,AB 的中点, 所以MD→+MC →=0,AN →+BN →=0. 所以2MN→=DA →+CB →,所以MN→=12(-AD →-BC →)=-12e 2-12e 1.用已知向量表示其他向量的两种方法(1)直接法(2)方程法当直接表示比较困难时,可以首先利用三角形法则和平行四边形法则建立关于所求向量和已知向量的等量关系,然后解关于所求向量的方程.6.2.4 向量的数量积1.两向量的夹角(1)定义:已知两个非零向量a ,b ,O 是平面上的任意一点,作OA →=a ,OB →=b ,则∠AOB =θ(0≤θ≤π)叫做向量a 与b 的夹角.(2)特例:①当θ=0时,向量a 与b 同向;②当θ=π2时,向量a 与b 垂直,记作a ⊥b ; ③当θ=π时,向量a 与b 反向. ■名师点拨按照向量夹角的定义,只有两个向量的起点重合时所对应的角才是两向量的夹角,如图所示,∠BAC 不是向量CA →与AB →的夹角.作AD→=CA →,则∠BAD 才是向量CA →与AB →的夹角.2.向量的数量积已知两个非零向量a 与b ,它们的夹角为θ,把数量|a ||b |cos__θ叫做向量a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos__θ.规定零向量与任一向量的数量积为0. ■名师点拨(1)两向量的数量积,其结果是数量,而不是向量,它的值等于两向量的模与两向量夹角余弦值的乘积,其符号由夹角的余弦值来决定.(2)两个向量的数量积记作a ·b ,千万不能写成a ×b 的形式. 3.投影向量如图(1),设a ,b 是两个非零向量,AB→=a ,CD →=b ,我们考虑如下变换:过AB →的起点A 和终点B ,分别作CD →所在直线的垂线,垂足分别为A 1,B 1,得到A 1B 1→,我们称上述变换为向量a 向向量b 投影(project),A 1B 1→叫做向量a 在向量b 上的投影向量.如图(2),在平面内任取一点O ,作OM→=a ,ON →=b ,过点M作直线ON 的垂线,垂足为M 1,则OM 1→就是向量a 在向量b 上的投影向量.(2)若与b 方向相同的单位向量为e ,a 与b 的夹角为θ,则OM 1→=|a |cos θ e .■名师点拨当θ=0时,OM 1→=|a |e ;当θ=π2时,OM 1→=0;当θ∈⎣⎢⎡⎭⎪⎫0,π2时,OM 1→与b方向相同;当θ∈⎝ ⎛⎦⎥⎤π2,π时,OM 1→与b 方向相反;当θ=π时,OM 1→=-|a |e .4.向量数量积的性质设a ,b 是非零向量,它们的夹角是θ,e 是与b 方向相同的单位向量,则 (1)a ·e =e ·a =|a |cos θ. (2)a ⊥b ⇔a·b =0.(3)当a 与b 同向时,a·b =|a ||b |;当a 与b 反向时,a·b =-|a ||b |.特别地,a·a =|a |2或|a |=a·a . (4)|a·b |≤|a ||b |. ■名师点拨对于性质(2),可以用来解决有关垂直的问题,即若要证明某两个非零向量垂直,只需判定它们的数量积为0即可;若两个非零向量的数量积为0,则它们互相垂直.5.向量数量积的运算律 (1)a·b =b·a (交换律).(2)(λa )·b =λ(a·b )=a ·(λb )(结合律). (3)(a +b )·c =a·c +b·c (分配律). ■名师点拨(1)向量的数量积不满足消去律;若a ,b ,c 均为非零向量,且a·c =b·c ,但得不到a =b .(2)(a·b )·c ≠a·(b·c ),因为a·b ,b·c 是数量积,是实数,不是向量,所以(a·b )·c 与向量c 共线,a·(b·c )与向量a 共线,因此,(a·b )·c =a·(b·c )在一般情况下不成立.(3)(a ±b )2=a 2±2a ·b +b 2. 典型应用1平面向量的数量积运算(1)已知|a |=6,|b |=4,a 与b 的夹角为60°,求(a +2b )·(a +3b ).(2)如图,在▱ABCD 中,|AB →|=4,|AD →|=3,∠DAB =60°,求:①AD→·BC →;②AB →·DA →.【解】 (1)(a +2b )·(a +3b ) =a·a +5a·b +6b·b =|a |2+5a·b +6|b |2=|a |2+5|a ||b |cos 60°+6|b |2=62+5×6×4×cos 60°+6×42=192. (2)①因为AD→∥BC →,且方向相同,所以AD→与BC →的夹角是0°, 所以AD→·BC →=|AD →||BC →|·cos 0°=3×3×1=9. ②因为AB→与AD →的夹角为60°,所以AB→与DA →的夹角为120°, 所以AB→·DA →=|AB →||DA →|·cos 120° =4×3×⎝ ⎛⎭⎪⎫-12=-6.[变问法]若本例(2)的条件不变,求AC →·BD →.解:因为AC→=AB →+AD →,BD →=AD →-AB →,所以AC→·BD →=(AB →+AD →)·(AD →-AB →) =AD→2-AB →2=9-16=-7.向量数量积的求法(1)求两个向量的数量积,首先确定两个向量的模及向量的夹角,其中准确求出两向量的夹角是求数量积的关键.(2)根据数量积的运算律,向量的加、减与数量积的混合运算类似于多项式的乘法运算.典型应用2 向量模的有关计算(1)已知平面向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a +2b |=( )A.3B.23 C.4 D.12(2)向量a,b满足|a|=1,|a-b|=32,a与b的夹角为60°,则|b|=()A.13 B.12C.15 D.14【解析】(1)|a+2b|=(a+2b)2=a2+4a·b+4b2=|a|2+4|a||b|cos 60°+4|b|2=4+4×2×1×12+4=2 3.(2)由题意得|a-b|2=|a|2+|b|2-2|a||b|·cos 60°=34,即1+|b|2-|b|=34,解得|b|=12.【答案】(1)B(2)B求向量的模的常见思路及方法(1)求模问题一般转化为求模的平方,与向量数量积联系,并灵活应用a2=|a|2,勿忘记开方.(2)a·a=a2=|a|2或|a|=a2,可以实现实数运算与向量运算的相互转化.典型应用3向量的夹角与垂直命题角度一:求两向量的夹角(1)已知|a|=6,|b|=4,(a+2b)·(a-3b)=-72,则a与b的夹角为________;(2)(2019·高考全国卷Ⅰ改编)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为______.【解析】(1)设a与b的夹角为θ,(a+2b)·(a-3b)=a·a-3a·b+2b·a-6b·b =|a|2-a·b-6|b|2=|a|2-|a||b|cos θ-6|b|2=62-6×4×cos θ-6×42=-72, 所以24cos θ=36+72-96=12, 所以cos θ=12.又因为θ∈[]0,π,所以θ=π3.(2)设a 与b 的夹角为θ,由(a -b )⊥b ,得(a -b )·b =0,所以a ·b =b 2,所以cos θ=b 2|a ||b |.又因为|a |=2|b |,所以cos θ=|b |22|b |2=12.又因为θ∈[0,π],所以θ=π3. 【答案】 (1)π3 (2)π3 命题角度二:证明两向量垂直已知a ,b 是非零向量,当a +t b (t ∈R )的模取最小值时,求证:b ⊥(a+t b ).【证明】 因为|a +t b |=(a +t b )2=a 2+t 2b 2+2t a ·b =|b |2t 2+2a ·b t +|a |2,所以当t =-2a ·b 2|b |2=-a·b|b |2时,|a +t b |有最小值. 此时b ·(a +t b )=b·a +t b 2=a·b +⎝ ⎛⎭⎪⎫-a·b |b |2·|b |2=a·b -a·b =0.所以b ⊥(a +t b ). 命题角度三:利用夹角和垂直求参数(1)已知a ⊥b ,|a |=2,|b |=3且向量3a +2b 与k a -b 互相垂直,则k的值为( )A .-32 B .32 C .±32D .1(2)已知a ,b ,c 为单位向量,且满足3a +λb +7c =0,a 与b 的夹角为π3,则实数λ=________.【解析】(1)因为3a+2b与k a-b互相垂直,所以(3a+2b)·(k a-b)=0,所以3k a2+(2k-3)a·b-2b2=0.因为a⊥b,所以a·b=0,又|a|=2,|b|=3,所以12k-18=0,k=3 2.(2)由3a+λb+7c=0,可得7c=-(3a+λb),即49c2=9a2+λ2b2+6λa·b,而a,b,c为单位向量,则a2=b2=c2=1,则49=9+λ2+6λcos π3,即λ2+3λ-40=0,解得λ=-8或λ=5.【答案】(1)B(2)-8或5求向量a与b夹角的思路(1)求向量a与b夹角的关键是计算a·b及|a||b|,在此基础上结合数量积的定义或性质计算cos θ=a·b|a||b|,最后借助θ∈[0,π],求出θ的值.(2)在个别含有|a|,|b|与a·b的等量关系中,常利用消元思想计算cos θ的值.6.3 平面向量基本定理及坐标表示6.3.1平面向量基本定理平面向量基本定理(1)e 1,e 2是同一平面内的两个不共线的向量,{e 1,e 2}的选取不唯一,即一个平面可以有多个基底.(2)基底{e 1,e 2}确定后,实数λ1,λ2是唯一确定的. 典型应用1平面向量基本定理的理解设e 1,e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中,不能作为平面内所有向量的一组基底的是________(写出满足条件的序号).【解析】 ①设e 1+e 2=λe 1,则⎩⎨⎧λ=1,1=0,无解,所以e 1+e 2与e 1不共线,即e 1与e 1+e 2能作为一组基底. ②设e 1-2e 2=λ(e 2-2e 1),则(1+2λ)e 1-(2+λ)e 2=0,则⎩⎨⎧1+2λ=0,2+λ=0,无解,所以e 1-2e 2与e 2-2e 1不共线,即e 1-2e 2与e 2-2e 1能作为一组基底.③因为e 1-2e 2=-12(4e 2-2e 1), 所以e 1-2e 2与4e 2-2e 1共线,即e 1-2e 2与4e 2-2e 1不能作为一组基底.④设e 1+e 2=λ(e 1-e 2),则(1-λ)e 1+(1+λ)e 2=0,则⎩⎨⎧1-λ=0,1+λ=0,无解,所以e 1+e 2与e 1-e 2不共线,即e 1+e 2与e 1-e 2能作为一组基底.【答案】 ③对基底的理解(1)两个向量能否作为一个基底,关键是看这两个向量是否共线.若共线,则不能作基底,反之,则可作基底.(2)一个平面的基底一旦确定,那么平面上任意一个向量都可以用这个基底唯一线性表示出来.设向量a 与b 是平面内两个不共线的向量,若x 1a +y 1b =x 2a +y 2b ,则⎩⎨⎧x 1=x 2,y 1=y 2.[提醒] 一个平面的基底不是唯一的,同一个向量用不同的基底表示,表达式不一样.典型应用2用基底表示平面向量如图所示,在▱ABCD 中,点E ,F 分别为BC ,DC 边上的中点,DE与BF 交于点G ,若AB→=a ,AD →=b ,试用基底{a ,b }表示向量DE →,BF →.【解】 DE →=DA →+AB →+BE →=-AD→+AB →+12BC → =-AD→+AB →+12AD →=a -12b . BF→=BA →+AD →+DF →=-AB→+AD →+12AB →=b -12a .1.[变问法]本例条件不变,试用基底{a ,b }表示AG →.解:由平面几何知识知BG =23BF , 故AG→=AB →+BG →=AB →+23BF → =a +23⎝ ⎛⎭⎪⎫b -12a=a +23b -13a =23a +23b .2.[变条件]若将本例中的向量“AB →,AD →”换为“CE →,CF →”,即若CE →=a ,CF →=b ,试用基底{a ,b }表示向量DE→,BF →. 解:DE→=DC →+CE →=2FC →+CE →=-2CF →+CE →=-2b +a . BF→=BC →+CF →=2EC →+CF → =-2CE→+CF →=-2a +b .用基底表示向量的两种方法(1)运用向量的线性运算法则对待求向量不断进行转化,直至用基底表示为止.(2)通过列向量方程或方程组的形式,利用基底表示向量的唯一性求解. 典型应用3平面向量基本定理的应用如图,在△ABC 中,点M 是BC 的中点,点N 在AC 上,且AN =2NC ,AM 与BN 相交于点P ,求AP ∶PM 与BP ∶PN .【解】 设BM →=e 1,CN →=e 2, 则AM →=AC →+CM →=-3e 2-e 1,BN →=BC →+CN →=2e 1+e 2. 因为A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ使得AP →=λAM →=-λe 1-3λe 2, BP →=μBN →=2μe 1+μe 2. 故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(3λ+μ)e 2. 而BA →=BC →+CA →=2e 1+3e 2,由平面向量基本定理, 得⎩⎨⎧λ+2μ=2,3λ+μ=3,解得⎩⎪⎨μ=35.所以AP →=45AM →,BP →=35BN →,所以AP ∶PM =4∶1,BP ∶PN =3∶2.1.[变问法]在本例条件下,若CM→=a ,CN →=b ,试用a ,b 表示CP →.解:由本例解析知BP ∶PN =3∶2,则NP →=25NB →, CP→=CN →+NP →=CN →+25NB →=b +25(CB →-CN →) =b +45a -25b =35b +45a .2.[变条件]若本例中的点N 为AC 的中点,其他条件不变,求AP ∶PM 与BP ∶PN .解:如图,设BM →=e 1,CN →=e 2,则AM →=AC →+CM →=-2e 2-e 1,BN →=BC →+CN →=2e 1+e 2. 因为A ,P ,M 和B ,P ,N 分别共线,所以存在实数λ,μ使得AP →=λAM →=-λe 1-2λe 2, BP →=μBN →=2μe 1+μe 2. 故BA →=BP →+P A →=BP →-AP →=(λ+2μ)e 1+(2λ+μ)e 2. 而BA →=BC →+CA →=2e 1+2e 2,由平面向量基本定理, 得⎩⎨⎧λ+2μ=2,2λ+μ=2,解得⎩⎪⎨μ=23.所以AP →=23AM →,BP →=23BN →, 所以AP ∶PM =2,BP ∶PN =2.若直接利用基底表示向量比较困难,可设出目标向量并建立其与基底之间满足的二元关系式,然后利用已知条件及相关结论,从不同方向和角度表示出目标向量(一般需建立两个不同的向量表达式),再根据待定系数法确定系数,建立方程或方程组,解方程或方程组即得.6.3.2 平面向量的正交分解及坐标表示 6.3.3 平面向量加、减运算的坐标表示 6.3.4 平面向量数乘运算的坐标表示第1课时 平面向量的分解及加、减、数乘运算的坐标表示1.平面向量坐标的相关概念■名师点拨(1)平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e 1和e 2互相垂直.(2)由向量坐标的定义知,两向量相等的充要条件是它们的横、纵坐标对应相等,即a =b ⇔x 1=x 2且y 1=y 2,其中a =(x 1,y 1),b =(x 2,y 2).2.平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),λ∈R ,则 ①a +b =(x 1+x 2,y 1+y 2); ②a -b =(x 1-x 2,y 1-y 2); ③λa =(λx 1,λy 1).(2)一个向量的坐标等于表示此向量的有向线段的终点坐标减去起点坐标. ■名师点拨(1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关. (2)已知向量AB →的起点A (x 1,y 1),终点B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1). 典型应用1平面向量的坐标表示已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°,(1)求向量OA→的坐标;(2)若B (3,-1),求BA→的坐标.【解】 (1)设点A (x ,y ),则x =|OA →|cos 60°=43cos 60°=23,y =|OA →|sin60°=43sin 60°=6,即A (23,6),所以OA→=(23,6). (2)BA→=(23,6)-(3,-1)=(3,7).求点和向量坐标的常用方法(1)求一个点的坐标,可以转化为求该点相对于坐标原点的位置的坐标. (2)求一个向量的坐标时,可以首先求出这个向量的始点坐标和终点坐标,再运用终点坐标减去始点坐标得到该向量的坐标.典型应用2平面向量的坐标运算(1)已知向量a =(5,2),b =(-4,-3),若c 满足3a -2b +c =0,则c =( )A .(-23,-12)B .(23,12)C .(7,0)D .(-7,0)(2)已知A (-2,4),B (3,-1),C (-3,-4),且CM →=3 CA →,CN →=2 CB →,求点M ,N 的坐标.【解】 (1)选A.因为a =(5,2),b =(-4,-3),且c 满足3a -2b +c =0,所以c =2b -3a =2(-4,-3)-3(5,2)=(-8-15,-6-6)=(-23,-12).(2)法一:因为A (-2,4),B (3,-1),C (-3,-4), 所以CA→=(-2,4)-(-3,-4)=(1,8), CB→=(3,-1)-(-3,-4)=(6,3). 因为CM→=3 CA →,CN →=2 CB →, 所以CM→=3(1,8)=(3,24),CN →=2(6,3)=(12,6). 设M (x 1,y 1),N (x 2,y 2),所以CM →=(x 1+3,y 1+4)=(3,24), CN →=(x 2+3,y 2+4)=(12,6), 所以⎩⎨⎧x 1+3=3,y 1+4=24,⎩⎨⎧x 2+3=12,y 2+4=6.解得⎩⎨⎧x 1=0,y 1=20,⎩⎨⎧x 2=9,y 2=2. 所以M (0,20),N (9,2).法二:设O 为坐标原点,则由CM→=3 CA →,CN →=2 CB →, 可得OM→-OC →=3(OA →-OC →),ON →-OC →=2(OB →-OC →), 所以OM→=3 OA →-2 OC →,ON →=2 OB →-OC →. 所以OM→=3(-2,4)-2(-3,-4)=(0,20), ON→=2(3,-1)-(-3,-4)=(9,2). 所以M (0,20),N (9,2).平面向量坐标(线性)运算的方法(1)若已知向量的坐标,则直接应用两个向量和、差及向量数乘的运算法则进行.(2)若已知有向线段两端点的坐标,则必须先求出向量的坐标,然后再进行向量的坐标运算.(3)向量的线性坐标运算可类比数的运算进行. 典型应用3向量坐标运算的综合应用已知点O (0,0),A (1,2),B (4,5),及OP→=OA →+tAB →.(1)t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第二象限? (2)四边形OABP 能为平行四边形吗?若能,求出t 的值;若不能,请说明理由.【解】 (1)OP →=OA →+tAB →=(1,2)+t (3,3)=(1+3t ,2+3t ).若点P 在x 轴上,则2+3t =0,所以t =-23. 若点P 在y 轴上,则1+3t =0,所以t =-13. 若点P 在第二象限,则⎩⎨⎧1+3t <0,2+3t >0,所以-23<t <-13.(2)OA→=(1,2),PB →=(3-3t ,3-3t ).若四边形OABP 为平行四边形, 则OA →=PB →,所以⎩⎨⎧3-3t =1,3-3t =2,该方程组无解.故四边形OABP 不能为平行四边形.[变问法]若保持本例条件不变,问t 为何值时,B 为线段AP 的中点? 解:由OP→=OA →+tAB →,得AP →=tAB →.所以当t =2时,AP→=2AB →,B 为线段AP 的中点.向量中含参数问题的求解策略(1)向量的坐标含有两个量:横坐标和纵坐标,如果纵坐标或横坐标是一个变量,则表示向量的点的坐标的位置会随之改变.(2)解答这类由参数决定点的位置的题目,关键是列出满足条件的含参数的方程(组),解这个方程(组),就能达到解题的目的.第2课时 两向量共线的充要条件及应用两向量共线的充要条件设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b (b ≠0)共线的充要条件是x 1y 2-x 2y 1=0.■名师点拨(1)两个向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例.(2)当a ≠0,b =0时,a ∥b ,此时x 1y 2-x 2y 1=0也成立,即对任意向量a ,b 都有x 1y 2-x 2y 1=0⇔a ∥b .典型应用1 向量共线的判定(1)已知向量a =(1,-2),b =(3,4).若(3a -b )∥(a +k b ),则k =________.(2)已知A (-1,-1),B (1,3),C (2,5),判断AB →与AC →是否共线?如果共线,它们的方向相同还是相反?【解】 (1)3a -b =(0,-10),a +k b =(1+3k ,-2+4k ), 因为(3a -b )∥(a +k b ),所以0-(-10-30k )=0, 所以k =-13.故填-13.(2)因为AB→=(1-(-1),3-(-1))=(2,4),AC→=(2-(-1),5-(-1))=(3,6), 因为2×6-3×4=0,所以AB→∥AC →,所以AB →与AC →共线. 又AB→=23AC →,所以AB →与AC →的方向相同.[变问法]若本例(1)条件不变,判断向量(3a -b )与(a +k b )是反向还是同向? 解:由向量(3a -b )与(a +k b )共线,得k =-13, 所以3a -b =(3,-6)-(3,4)=(0,-10), a +k b =a -13b =(1,-2)-13(3,4)=⎝ ⎛⎭⎪⎫0,-103=13(0,-10), 所以向量(3a -b )与(a +k b )同向.向量共线的判定方法典型应用2 三点共线问题(1)已知OA→=(3,4),OB →=(7,12),OC →=(9,16),求证:点A ,B ,C 共线;(2)设向量OA →=(k ,12),OB →=(4,5),OC →=(10,k ),求当k 为何值时,A ,B ,C 三点共线.【解】 (1)证明:由题意知AB→=OB →-OA →=(4,8),AC →=OC →-OA →=(6,12),所以AC →=32AB →, 即AB→与AC →共线. 又因为AB→与AC →有公共点A ,所以点A ,B ,C 共线.(2)法一:因为A ,B ,C 三点共线,即AB →与AC →共线,所以存在实数λ(λ∈R ),使得AB→=λAC →.因为AB→=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12), 所以(4-k ,-7)=λ(10-k ,k -12), 即⎩⎨⎧4-k =λ(10-k ),-7=λ(k -12),解得k =-2或k =11. 所以当k =-2或k =11时,A ,B ,C 三点共线. 法二:由已知得AB→与AC →共线,因为AB→=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(10-k ,k -12),。
高中数学人教A版必修第一册知识点总结
高中数学人教A版必修第一册知识点总结本册教材是高中数学人教版A版(2024)的必修第一册,总共包括了四个单元:集合与常用逻辑、函数与方程、数列与数学归纳法、几何与向量。
接下来将对这四个单元的知识点进行总结。
一.集合与常用逻辑1.集合与元素-集合的表示方法:列举法、描述法、条件法-集合之间的关系:相等、含于、相交、并集、交集、互补集2.集合的运算-并集、交集、差集、补集-嵌套集合的化简-运算律:交换律、结合律、分配律3.常用逻辑关系-全称量词、存在量词-逻辑运算:与、或、非-条件命题、充分条件、必要条件4.命题及命题的逻辑运算-命题的分类:命题主体、命题联结词、命题陈述、命题基础-命题的逻辑运算:否定、合取、析取、蕴含、等价二.函数与方程1.函数的概念-自变量、因变量、函数值-射影函数、指示函数2.函数的表示方法-函数的解析式-函数的图像3.函数的性质-定义域、值域、对应法则、单调性、奇偶性、周期性-奇函数、偶函数-反函数4.一次函数-一次函数的解析式及图像-平移变换、伸缩变换5.二次函数-二次函数的解析式及图像-平移变换、伸缩变换-最值、对称轴、零点及判别式三.数列与数学归纳法1.数列的概念-有限数列、无限数列、数列的一般表示2.等差数列-等差数列的概念及公式-等差数列前n项和公式-通项公式的推导3.等比数列-等比数列的概念及公比-等比数列前n项和公式-通项公式及其推导4.递推数列-递推数列的概念及表示-递推公式5.数学归纳法-数学归纳法三个步骤:证明基础、证明步骤、加强归纳前提四.几何与向量1.向量的概念-向量的定义、表示方法、相等与运算-向量的数量表示-零向量、单位向量2.向量的线性运算-加法、减法、数乘-加减法运算律、数乘运算律3.向量的坐标表示-坐标运算、线性变换4.向量的数量积-向量的点乘、模长及其性质-向量的夹角及性质5.平面向量的应用-共线向量、垂直向量、平行向量-向量在直角坐标系中的投影-多边形面积与向量运算-向量与几何问题的应用以上是《高中数学人教A版(2024)必修第一册》的知识点总结。
2023年新教材高中人教A版数学必修第一册知识点(8页)全文
新教材高一数学必修第—册知识点第一章 集合与常用逻辑用语1元素:研究的对象统称为元素,用小写拉丁字母表示,元素三大性质:互异性,确定性,无 ,,,c b a 序性.2集合:一些元素组成的总体叫做集合,简称集,用大写拉丁字母表示. ,,,C B A 3集合相等:两个集合的元素一样,记作.B A ,B A =4元素与集合的关系:①属于:;②不属于:.A a ∈A a ∉5常用的数集及其记法:自然数集;正整数集;整数集;有理数集;实数集.N +N N 或*Z Q R 6集合的表示方法:①列举法:把集合中的全部元素一一列举出来,并用花括号括起来表示集合的方法;②描述法:把集合中全部具有共同特征的元素所组成的集合表示为的方法; )(x P x })(|{x P A x ∈③图示法(图):用平面上封闭曲线的内部代表集合的方法.Venn 7集合间的根本关系:子集:对于两个集合,如果集合中任意一个元素都是集合中的元素,就B A ,A B 称集合为集合的子集,记作,读作包含于;真子集:如果,但存在元素,且A A A B B A ⊆B x ∈A x ∉,就称集合是集合的真子集,记作,读作真包含于.A B A B A B 8空集:不含任何元素的集合,用表示,空集的性质,空集是任何集合的子集,是任何集合的真子∅集.9集合的根本运算:并集;交集; },|{B x A x x B A ∈∈=或 },|{B x A x x B A ∈∈=且 补集(为全集,全集是含有所研究问题中涉及的全部元素). },|{A x U x x A C U ∉∈=且U 运算性质:;;;;B A B B A ⊆⇔= B A A B A ⊆⇔= A A =∅ ∅=∅ A ,.∅==∅=U C U C A A C C U U U U ,,)()()()(),()()(B A C B C A C B A C B C A C U U U U U U ==10充分条件与必要条件:一般地,“假设p ,则q 〞为真命题,p 可以推出q ,记作,称p 是q 的q p ⇒充分条件,q 是p 的必要条件;p 是q 的条件的四种类型:假设,则p 是q 的充分不必要q q p ,⇒p 条件;假设,则p 是q 的必要充分不条件;假设,则p 是q 的充要条件;p p q ,⇒q q p ⇔假设,,则p 是q 的既不充分也不必要条件. pq q p 11全称量词及全称量词命题:短语“全部的〞,“任意一个〞在逻辑中叫做全称量词,并用符号表∀示,含有全称量词的命题成为全称量词命题.12存在量词及存在量词命题:短语“存在一个〞,“至少有一个〞在逻辑中叫做存在量词,并用符号∃表示,含有存在量词的命题成为存在量词命题.13全称量词命题与存在量词命题的否认:全称量词命题的否认是存在量词命题;存在量词命题的否认是全称量词命题.第二章一元二次函数、方程不等式1不等式的性质不等式的性质: ①对称性;②传递性;③可加性a b b a >⇔<,a b b c a c >>⇒>;④可乘性,;a b a c b c >⇒+>+,0a b c ac bc >>⇒>,0a b c ac bc ><⇒<⑤同向可加性;⑥同向可乘性; ,a b c d a c b d >>⇒+>+0,0a b c d ac bd >>>>⇒>⑦可乘方性;()0,1n n a b a b n n >>⇒>∈N >⑧可开方性.⑨可倒数性. )0,1a b n n >>⇒>∈N >ba b a 110<⇒>>2重要不等式:假设,则,当且仅当时等号成立.R b a ∈,ab b a 222≥+b a =3根本不等式:假设,,则,即,当且仅当时等号成立. 0a >0b >a b +≥2a b+≥b a =4不等式链:假设,,则,当且仅当时等号成立;一正0a >0b >ba ab b a b a 1122222+≥≥+≥+b a =二定三相等.5一元二次不等式:只含有一个未知数,并且未知数的最gao 次数是的不等式. 26第三章 函数的概念与性质1函数的概念:一般地,设是非空的实数集,如果对于集合中的任意一个数x ,按照某种确定的B A ,A 对应关系,在集合中都有唯—确定的数y 与它对应,那么就称为从集合到集合的一f B B A f →:A B 个函数,记作,其中,x 叫做自变量,x 的取值范围叫做函数的定义域,与x 的值相对A x x f y ∈=),(A 应的y 值叫做函数值,函数值的集合叫做函数的值域,值域是集合的子集. }|)({A x x f ∈B 2函数的三要素:定义域、对应关系、值域. 求函数定义域的原则:(1)假设为整式,则其定义域是;()f x R (2)假设为分式,则其定义域是使分母不为0的实数集合;()f x (3)假设是二次根式(偶次根式),则其定义域是使根号内的式子不小于0的实数集合; ()f x (4)假设,则其定义域是; ()0f x x =}{0x x ≠(5)假设,则其定义域是;()()0,1x f x a a a =>≠R (6)假设,则其定义域是; ()()log 0,1a f x x a a =>≠}{0x x >(7)假设,则其定义域是;x x f tan )(=},2|{Z k k x x ∈+≠ππ求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数. 6函数的单调性:(1)单调递增:设任意(,I 是的定义域),当时,有.特别的,当D x x ∈21,I D ⊆()f x 12x x <12()()f x f x <函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意(,I 是的定义域),当时,有.特别的,当D x x ∈21,I D ⊆()f x 12x x <12()()f x f x >函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间. 8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数的定义域为,如果存在实数满足:,都有)(x f y =I M I x ∈∀;使得,那么称是函数的最大(小)值. ))(()(M x f M x f ≥≤I x ∈∃0M x f =)(0M10函数的奇偶性:偶函数:一般地,设函数的定义域为,如果,都有,且,那么函)(x f y =I I x ∈∀I x ∈-)()(x f x f =-数叫做偶函数;偶函数的图象关于y 轴对称;偶函数满足;)(x f y =|)(|)()(x f x f x f ==-奇函数:一般地,设函数的定义域为,如果,都有,且,那么)(x f y =I I x ∈∀I x ∈-)()(x f x f -=-函数叫做奇函数;奇函数的图象关于原点对称;假设奇函数的定义域中有零,则其函数图象必过原点,即)(x f y =.(0)0f =11幂函数:一般地,函数叫做幂函数,其中是自变量,是常数. αx y =x α12幂函数的性质:()f x x α=①全部的幂函数在都有定义,并且图象都通过点;()0,+∞()1,1②如果,则幂函数的图象过原点,并且在区间上是增函数;0α>[)0,+∞③如果,则幂函数的图象在区间上是减函数,在第—象限内,当从右边趋向于原点时,0α<()0,+∞x 图象在轴右方无限地逼近轴,当趋向于时,图象在轴上方无限地逼近轴; y y x +∞x x ④在直线的右侧,幂函数图象“指大图高〞; 1=x ⑤幂函数图象不出现于第四象限. 第四章 指数函数与对数函数1n 次方根与分数指数幂、指数幂运算性质(1)假设,则;; n x a =))n x n=⎪⎩为奇数为偶数()()a n a n ⎧⎪=⎨⎪⎩为奇数为偶数(3);(4);na =*0,,,1)m na a m n N n =>∈>且(5);*0,,1)m naa m n N n -=>∈>,且(6)的正分数指数幂为,的负分数指数幂没有意义.000(7);()0,,r s r sa a a a r s R +⋅=>∈(8);()()0,,r s rsa a a r s R =>∈(9).()()0,0,,rrrab a b a b r s R =⋅>>∈2对数、对数运算性质(1);(2); ()log 0,1xa a N x N a a =⇔=>≠()log 100,1a a a =>≠(3);(4);;()log 10,1a a a a =>≠()log 0,1a Na N a a =>≠(5);()log 0,1m a a m a a =>≠(6);()log ()log log 0,1,0,0a a a MN M N a a =+>≠M >N >(7); ()log log log 0,1,0,0aa a MM N a a N=->≠M >N >(8);()log log 0,1,0n a a M n M a a =⋅>≠M >(9)换底公式; ()log log 0,1,0,0,1log c a c bb a a bc c a=>≠>>≠(10); ()log log 0,1,,*m na a nb b a a n m N m =>≠∈(11);()1log log 0,1,0,aa M a a M n R n=>≠>∈(12). ()log log log 10,1,0,1,0,1a b c b c a a a b b c c ⋅⋅=>≠>≠>≠3指数函数及其性质:)1,0(≠>=a a a y x 且①定义域为; ②值域为;③过定点;(),-∞+∞()0,+∞()0,1④单调性:当时,函数在上是增函数;当时,函数在上是减函数; 1a >()f x R 01a <<()f x R ⑤在y 轴右侧,指数函数的图象“底大图高〞. 4对数函数及其性质:)1,0(log ≠>=a a x y a 且①定义域为;②值域为;③过定点;()0,+∞(),-∞+∞()1,0④单调性:当时,函数在上是增函数;当时,函数在上是减函1a >()f x ()0,+∞01a <<()f x ()0,+∞数;⑤在直线的右侧,对数函数的图象“底大图低〞.1=x 5指数函数与对数函数互为反函数,它们的图象关于直线对称. x a y =)1,0(log ≠>=a a x y a 且x y =6不同函数增长的差异:线性函数模型的增长特点是直线上升,其增长速度不变;指数)0(>+=k b kx y 函数模型的增长特点是随着自变量的增大,函数值增大的速度越来越快,呈“指数爆炸〞状)1(>=a a y x 态;对数函数模型的增长特点是随着自变量的增大,函数值增大速度越来越慢,即增长)1(log >=a x y a 速度平缓;幂函数模型的增长速度介于指数函数和对数函数之间.)0(>=n x y n 7函数的零点:在函数的定义域内,使得的实数叫做函数的零点.)(x f y =0)(=x f x 8零点存在性定理:如果函数在区间上的图象是连续不断的一条曲线,且有,()f x [],a b ()()0f a f b ⋅<那么函数在区间内至少有一个零点,即存在,使得,这个也就是方程()y f x =(),a b (),c a b ∈()0f c =c 的根.()0f x =9二分法:对于区间上图象连续不断且的函数,通过不断把它的零点所在],[b a ()()0f a f b ⋅<)(x f y =区间一分为二,使得区间的两个端点逐渐逼近零点,进而得到零点近似值的方法.10给定准确度,用二分法求函数零点近似值的步骤: ε)(x f y =0x ⑴确定零点的初始区间,验证; 0x [],a b ()()0f a f b ⋅<⑵求区间的中点;[],a b c ⑶计算,并进一步确定零点所在的区间; )(c f ①假设,则就是函数的零点;0)(=c f c ②假设(此时),则令; 0)()(<c f a f ),(0c a x ∈c b =③假设(此时),则令;0)()(<b f c f ),(0b c x ∈c a =⑷推断是否到达准确度:假设,则得到零点的近似值(或);否则重复上面的⑵至⑷. εa b ε-<a b 第五章 三角函数1任意角的分类:按终边的旋转方向分: ⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2象限角:角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第αx α几象限角.第—象限角的集合为;{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为;{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为; {}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z角的终边不在任何一个象限,就称这个角不属于任何一个象限 α终边在轴非负半轴的角的集合; x },2|{Z k k ∈=παα终边在轴非正半轴的角的集合; x },2|{Z k k ∈+=ππαα终边在轴非负半轴的角的集合;y },22|{Z k k ∈+=ππαα终边在轴非正半轴的角的集合;y },22|{Z k k ∈+-=ππαα终边在轴的角的集合;x },|{Z k k ∈=παα终边在轴的角的集合;y },2|{Z k k ∈+=ππαα终边在坐标轴的角的集合; },2|{Z k k ∈=παα2终边相同的角:与角终边相同的角的集合为.α{}360,k k ββα=⋅+∈Z 3弧度制:长度等于半径长的弧所对的圆心角叫做弧度.14角度与弧度互化公式:,,.2360π=1180π=180157.3π⎛⎫=≈ ⎪⎝⎭5扇形公式:半径为的圆的圆心角所对弧的长为,则角的弧度数的绝对值是.假设扇形r αl αlrα=的圆心角为,半径为,弧长为,周长为,面积为,则,,()αα为弧度制r l C S l r α=2C r l =+.21122S lr r α==6三角函数的概念:设是一个任意大小的角,的终边上任意一点P 的坐标是,它与原点的距αα(),x y离是,则,,. ()0r r =>sin y r α=cos x r α=()tan 0yx xα=≠7三角函数的符号:一全正二正弦三正切四余弦. 8记忆特别角的三角函数值:α 15 30 45 60 75 90 120 135 150180 270 360 α 12π 6π 4π 3π 125π 2π 32π 43π 65π π 23ππ2 αsin 426- 21 22 23 426+ 1 23 22 210 1-0 αcos 426+ 23 22 21 426-0 21- 22- 23-1-01 αtan 32- 1 3 32+不存在 3- 1- 33-0 不存在9同角三角函数的根本关系:,;()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=- .()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫==⎪⎝⎭10诱导公式口诀:奇变偶不变,符号看象限.,,.()()1sin 2sin k παα+=()cos 2cos k παα+=()()tan 2tan k k παα+=∈Z ,,. ()()2sin sin παα+=-()cos cos παα+=-()tan tan παα+=,,.()()3sin sin αα-=-()cos cos αα-=()tan tan αα-=-,,. ()()4sin sin παα-=()cos cos παα-=-()tan tan παα-=-,.,. ()5sin cos 2παα⎛⎫-=⎪⎝⎭cos sin 2παα⎛⎫-= ⎪⎝⎭()6sin cos 2παα⎛⎫+= ⎪⎝⎭cos sin 2παα⎛⎫+=- ⎪⎝⎭11三角函数的图象与性质:sin y x = cos y x =tan y x =图象定义域RR,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R 函数性质12两角和差的正弦、余弦、正切公式:(1);(2); ()cos cos cos sin sin αβαβαβ-=+()cos cos cos sin sin αβαβαβ+=-(3);(4);()sin sin cos cos sin αβαβαβ-=-()sin sin cos cos sin αβαβαβ+=+(5);()tan tan tan 1tan tan αβαβαβ--=+()()tan tan tan 1tan tan αβαβαβ-=-+(6). ()tan tan tan 1tan tan αβαβαβ++=-()()tan tan tan 1tan tan αβαβαβ+=+-13二倍角公式:(1);(2);sin 22sin cos ααα=2222cos 2cos sin 2cos 112sin ααααα=-=-=-(,);(3);2cos 21cos 2αα+=21cos 2sin 2αα-=22tan tan 21tan ααα=-14半角公式:(1);(2);(3);(4)2cos 12sin αα-±=2cos 12cos αα+±=αααcos 1cos 12tan +-±=αααααcos 1sin sin cos 12tan +=-=15辅助角公式:.的终边上在角点其中ϕϕϕ),(,tan ),sin(cos sin 22b a abx b a x b x a =±+=±16函数的图象与性质:b x A y ++=)sin(ϕω图象变换:先平移后伸缩:函数的图象上全部点向左(右)平移个单位长度,得到函数sin y x =ϕ的图象;再将函数的图象上全部点的横坐标伸长(缩短)到原来的倍(纵坐()sin y x ϕ=+()sin y x ϕ=+1ω标不变),得到函数的图象;再将函数的图象上全部点的纵坐标伸长(缩()sin y x ωϕ=+()sin y x ωϕ=+短)到原来的倍(横坐标不变),得到函数的图象. A ()sin y x ωϕ=A +先伸缩后平移:函数的图象上全部点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函sin y x =1ω最值当时,22x k ππ=+()k ∈Z ;当max1y =22x k ππ=-时,.()k ∈Z min 1y =-当时,()2x k k π=∈Z ;当max 1y =2x k ππ=+时,.()k ∈Z min 1y =-既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数奇函数单调性在 2,222k k ππππ⎡⎤-+⎢⎥⎣⎦上是增函数;在()k ∈Z 32,222k k ππππ⎡⎤++⎢⎥⎣⎦上是减函数.()k ∈Z 在上是[]()2,2k k k πππ-∈Z 增函数;在[]2,2k k πππ+上是减函数.()k ∈Z 在,22k k ππππ⎛⎫-+ ⎪⎝⎭上是增函数.()k ∈Z 对称性对称中心()(),0k k π∈Z 对称轴()2x k k ππ=+∈Z 对称中心 (),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z 对称中心 (),02k k π⎛⎫∈Z⎪⎝⎭无对称轴数的图象;再将函数的图象上全部点向左(右)平移个单位长度,得到函数sin y x ω=sin y x ω=ϕω的图象;再将函数的图象上全部点的纵坐标伸长(缩短)到原来的倍(横()sin y x ωϕ=+()sin y x ωϕ=+A 坐标不变),得到函数的图象. ()sin y x ωϕ=A +五点法画图函数的性质:()()sin 0,0y x ωϕω=A +A >>①定义域为R ;②值域为;③单调性:依据函数的单调区间求函数的单调区间; ],[A A -x y sin =④奇偶性:当时,函数是奇函数;当时,函数Z k k ∈=,πϕ()sin y x ωϕ=A +Z k k ∈+=,2ππϕ是偶函数;⑤周期:;⑥对称性:依据函数的对称性研究函数的对称()sin y x ωϕ=A +ωπ2=T x y sin =性12π17函数的应用B x A y ++=)sin(ϕω①振幅:A ;②周期:;③频率:;④相位:;⑤初相:.2πωT =12f ωπ==T x ωϕ+ϕ⑥最值:函数,当时,取得最小值为 ;当时,取得最大值为B x A y ++=)sin(ϕω1x x =min y 2x x =maxy ,则,,.()max min 12y y A =-()max min 12y y B =+()21122x x x x T=-<。
高中数学新教材人教A版全部知识详解归纳
7.不等式|2x+1|-2|x-1|>0的解集为
.
10.解不等式|2x-4|-|3x+9|<1.
预备专题二
常用公式
1.平方差公式:(a+b)(a-b)=a2-b2.
2.完全平方公式:(ab)2=a22ab+b2.
3.立方和公式:(a+b)(a2-ab+b2)=a3+b3.
例2.已知:x+y=1,求x3+y3+3xy的值.
例3.已知:x2-3x+1=0,求x3+1的值.
x
2
例4.设x=
2-
2
,y=
2+
,求:x3+y3的值.
冲关训练二
1.计算(a2)3+a2·a3-a2÷a-3的结果为()8.先化简,再求值:(x+y)2-(x+y)(x-y)-2y2,
A.2a5-aB.2a5-1
例2.解方程:2x13.
二、|x|<a与|x|>a(a>0)型绝对值பைடு நூலகம்等式的几何意义及其解法
(1) |x|≤a(a>0)的几何意义是以点a和-a为端点的线段,|x|≤a⇔-a≤x≤a;即解集是[-a,a].
(2) |x|>a(a>0)的几何意义是数轴除去以点a和-a为端点的线段后剩下的两条射线,|x|>a⇔x<-a或x>a;即解集是(-∞,-a)∪(a,+∞).
8.解不等式|x-x2-2|>x2-3x-4.
9.(高考江苏卷)解不等式x+|2x+3|≥2.
11
A.3,+∞B.3,1
1
C.[1,+∞)D.3,1∪(1,+∞)
4.不等式|x+3|-|x-3|>3的解集是()
33
A.x>
B.
<x≤3
x2x2
C.{x|x≥3}D.{x|-3<x≤0}5.不等式|x-2|≤|x|的解集是.
人教A版新课标高中数学必修选修全部知识点归纳总结(精华版)
导数及其应用。 选修 1—2:统计案例、推理与证明、数系的扩
充与复数、框图 系列 2:由 3 个模块组成。 选修 2—1:常用逻辑用语、圆锥曲线与方程、
空间向量与立体几何。 选修 2—2:导数及其应用,推理与证明、数系
的扩充与复数 选修 2—3:计数原理、随机变量及其分布列,
统计案例。 系列 3:由 6 个专题组成。 选修 3—1:数学史选讲。 选修 3—2:信息安全与密码。 选修 3—3:球面上的几何。 选修 3—4:对称与群。 选修 3—5:欧拉公式与闭曲面分类。 选修 3—6:三等分角与数域扩充。 系列 4:由 10 个专题组成。 选修 4—1:几何证明选讲。 选修 4—2:矩阵与变换。
偶函数.偶函数图象关于 y 轴对称.
2、 一般地,如果对于函数 f x 的定义域内任意一个
x ,都有 f x f x,那么就称函数 f x 为
奇函数.奇函数图象关于原点对称. 知识链接:函数与导数
4、 如果集合 A 中含有 n 个元素,则集合 A 有 2n 个子 1、函数 y f (x) 在点 x0 处的导数的几何意义:
和、差、倍、半公式、求值、化 简、证明、三角函数的图象与性 质、三角函数的应用 ⑸平面向量:有关概念与初等运算、坐标运算、 数量积及其应用 ⑹不等式:概念与性质、均值不等式、不等式 的证明、不等式的解法、绝对值不 等式、不等式的应用 ⑺直线和圆的方程:直线的方程、两直线的位
置关系、线性规划、圆、 直线与圆的位置关系 ⑻圆锥曲线方程:椭圆、双曲线、抛物线、直 线与圆锥曲线的位置关系、 轨迹问题、圆锥曲线的应用 ⑼直线、平面、简单几何体:空间直线、直线 与平面、平面与平面、棱柱、 棱锥、球、空间向量 ⑽排列、组合和概率:排布列、期望、方差、 抽样、正态分布 ⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算
高中数学新教材人教A版(2019)必修第一册知识点与公式大全
高中数学新教材人教(2019)版必修第一册知识点与公式大全第一章 集合与常用逻辑用语 1.1集合的概念及其表示1 集合的含义及表示*⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪∈∉⎨⎪⎧⎪⎨⎪⎩⎪⎪⎩确定性集合中元素的特征 互异性无序性 集合与元素的关系 : 列举法 集合的表示 描述法常见的数集 N N Z Q R2,,A B B A A B A B A A A A B A B A B οοφ≠⊆⊆=⎧⊆⊆⊆⎪⎪⎨⎪⎪⊆≠⊂⎩1定义:A=B2若且则子集: , 集合相等: 集合间的基本关系真子集: 若且 则 空集φ的特殊性: 空集是任何集合的子集,任何非空集合的真子集*结论 含有n 个元素的集合,其子集的个数为2n ,真子集的个数为21n -3集合的基本运算{}{}{}|||U A B x x A x B A B x x A x B C A x x U x A ⎧⋃=∈∈⎪⋂=∈∈⎨⎪=∈∉⎩并集:或 交集:且 补集:且在集合运算中常借助于数轴和文氏图(*注意端点值的取舍) *结论 (1)A A A ⋃= A A A ⋂=, A A φ⋃= A φφ⋂= (2)A B B A B ⋃=⊆若则 A B A A B ⋂=⊆若则4.充分条件、必要条件与充要条件的概念(1)充分条件:若p q ⇒,则p 是q 充分条件. (2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件.注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 5.全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).(4)全称量词命题“()x p M x ,∈∀”的否定是存在量词命题“()x p M x ⌝∈∃,” (5)存在量词命题“()x p M x ,∈∃”的否定是全称量词命题“()x p M x ⌝∈∀,”第二章 一元二次函数、方程、不等式 1.一元二次不等式的概念及形式(1).概念:把只含有一个未知数,并且知数的最高次数是2的不等式,称为一元二次不等式. (2).形式:①ax 2+bx +c >0(a ≠0); ②ax 2+bx +c ≥0(a ≠0); ③ax 2+bx +c <0(a ≠0); ④ax 2+bx +c ≤0(a ≠0).2.三个“二次”之间的关系:3.分式不等式的解法定义:分母中含有未知数,且分子、分母都是关于x 的多项式的不等式称为分式不等式. 解法:等价转化法解分式不等式 f (x )g (x )>0⇔f (x )g (x )>0,f (x )g (x )<0⇔f (x )·g (x )<0. 4.基本不等式(或)均值不等式:ab ba ≥+2基本不等式的变形与拓展1.(1)若R b a ∈,,则ab b a 222≥+;(2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”).2.(1)若00a ,b >>,则ab ba ≥+2;(2)若00a ,b >>,则ab b a 2≥+(当且仅当b a =取“=”); (3)若00a ,b >>,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”). 3.若0x >,则12x x +≥(当且仅当1x =时取“=”);若0x <,则12x x+≤-(当且仅当1x =-时取“=”);若0x ≠,则12xx+≥,即12x x +≥或12x x +≤-(当且仅当b a =时取“=”).4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”);若0ab ≠,则2a b b a +≥,即2a bb a +≥或2a bb a+≤-(当且仅当b a =时取“=”). 5.一个重要的不等式链:2112a b a b+≤≤≤+.第三章函数的概念与性质3.1函数与映射的相关概念注意:判断一个对应关系是否是函数关系,就看这个对应关系是否满足函数定义中“定义域内的任意一个自变量的值都有唯一确定的函数值”这个核心点. (2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域. (3)构成函数的三要素:函数的三要素为定义域、值域、对应关系.(4)函数的表示方法函数的表示方法有三种:解析法、列表法、图象法. 解析法:一般情况下,必须注明函数的定义域;列表法:选取的自变量要有代表性,应能反映定义域的特征; 图象法:注意定义域对图象的影响. 3.2函数的三要素(1).函数的定义域函数的定义域是使函数解析式有意义的自变量的取值范围,常见基本初等函数定义域的要求为:(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R.(4)y=x0的定义域是{x|x≠0}.(2).函数的解析式(1)函数的解析式是表示函数的一种方式,对于不是y=f(x)的形式,可根据题目的条件转化为该形式.(2)求函数的解析式时,一定要注意函数定义域的变化,特别是利用换元法(或配凑法)求出的解析式,不注明定义域往往导致错误.(3).函数的值域函数的值域就是函数值构成的集合,熟练掌握以下四种常见初等函数的值域:(1)一次函数y=kx+b(k为常数且k≠0)的值域为R.(2)反比例函数kyx=(k为常数且k≠0)的值域为(−∞,0)∪(0,+∞).(3)二次函数y=ax2+bx+c(a,b,c为常数且a≠0),当a>0时,二次函数的值域为24[,)4ac ba-+∞;当a<0时,二次函数的值域为24(,]4ac ba--∞.求二次函数的值域时,应掌握配方法:2 224()24b ac b y ax bx c a xa a-=++=++.3.3分段函数分段函数的概念若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,则这种函数称为分段函数.分段函数虽由几个部分组成,但它表示的是一个函数.3.4函数基本性质1函数的单调性(1)定义:设[]2121,,xxbaxx≠∈⋅那么:1212,()()x x f x f x<<⇔[]1212()()()0x x f x f x-->⇔0)()(2121>--xxxfxf[]b axf,)(在⇔上增函数;1212,()()x x f x f x<>⇔[]1212()()()0x x f x f x--<⇔0)()(2121<--xxxfxf[]baxf,)(在⇔上减函数.(2)判定方法:1ο定义法(证明题) 2ο图像法3ο复合法(3)定义法:用定义来证明函数单调性的一般性步骤:1ο设值:任取12,x x为该区间内的任意两个值,且12x x<2ο做差,变形,比较大小:做差12()()f x f x-,并利用通分,因式分解,配方,有理化等方法变形比较12(),()f x f x大小3ο下结论(说函数单调性必须在其单调区间上)(4)常见函数利用图像直接判断单调性:一次函数,二次函数,反比例函数,指对数函数,幂函数,对勾函数(5)复合法:针对复合函数采用同增异减原则(6)单调性中结论:在同一个单调区间内:增+增=增:增—减=增:减+减=减:减—增=增若函数)(xf在区间[]ba,为增函数,则—)(xf,)(1xf在[]ba,为减函数(7)单调性的应用:①求值域;②解不等式;③求参数范围;④比较大小.特别提醒:求单调区间时,一是勿忘定义域,二是在多个单调区间之间不一定能添加符号“”和“或”只能用“和”;三是单调区间应该用区间表示,不能用集合或不等式表示.2 函数的奇偶性(1)定义:若()f x定义域关于原点对称1ο若对于任取x的,均有()()f x f x-=则()f x为偶函数2ο若对于任取x的,均有()()f x f x-=-则()f x为奇函数((3)判定方法:1ο定义法(证明题)2ο图像法3ο口诀法(4)定义法: 证明函数奇偶性步骤:1ο求出函数的定义域观察其是否关于原点对称(前提性必备条件)2ο由出发()f x-,寻找其与()f x之间的关系3ο下结论(若()()f x f x-=则()f x为偶函数,若()()f x f x-=-则()f x为奇函数函数)口诀法:奇函数+奇函数=奇函数:偶函数+偶函数=偶函数奇函数⨯奇函数=偶函数:奇函数⨯偶函数=奇函数:偶函数⨯偶函数=偶函数具有奇偶性的函数的定义域的特征:定义域必须关于原点对称!为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称。
高中数学人教A版(2019)必修第一册知识点总结
高中数学新教材必修第一册知识点总结第一章集合与常用逻辑用语1.1集合的概念1.集合的描述:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合,简称为集.2.集合的三个特性:(1)描述性:“集合”是一个原始的不加定义的概念,它同平面几何中的“点”、“线”、“面”等概念一样,都只是描述性地说明.(2)整体性:集合是一个整体,暗含“所有”、“全部”、“全体”的含义,因此一些对象一旦组成了集合,这个集合就是这些对象的总体.(3)广泛性:组成集合的对象可以是数、点、图形、多项式、方程,也可以是人或物等.3.集合中元素的三个特性:(1)确定性:对于给定的集合,它的元素必须是确定的.即按照明确的判断标准(不能是模棱两可的)判断给定的元素,或者在这个集合里,或者不在这个集合里,二者必居其一.@简单高中生(2)互异性:一个给定的集合中的元素是互不相同的.也就是说集合中的元素是不能重复出现的.(3)无序性:集合中的元素排列无先后顺序,任意调换集合中的元素位置,集合不变.4.集合的符号表示通常用大写的字母A,B,C,…表示集合,用小写的字母a,b,c表示集合中的元素.5.集合的相等当两个集合的元素是一样时,就说这两个集合相等.集合A与集合B相等记作=.A B6.元素与集合之间的关系∈,读作a属(1)属于:如果a是集合A中的元素,就说a属于集合A,记作a A于A.(2)不属于:如果a 不是集合A 中的元素,就说a 不属于集合A ,记作a A ∉,读作a 不属于A .7.集合的分类(1)有限集:含有有限个元素的集合叫做有限集.如方程21x =的实数根组成的集合.(2)无限集:含有无限个元素的集合叫做无限集.如不等式10x ->的解组成的集合.8.常用数集及其记法(1)正整数集:全体正整数组成的集合叫做正整数集,记作*N 或N +.(2)自然数集:全体非负整数组成的集合叫做自然数集,记作N .(3)整数集:全体整数组成的集合叫做整数集,记作Z .(4)有理数集:全体有理数组成的集合叫做有理数集,记作Q .(5)实数集:全体实数组成的集合叫做实数集,记作R .9.集合表示的方法(1)自然语言:用文字叙述的形式描述集合的方法.如所有正方形组成的集合,所有实数组成的集合.例如,三角形的集合.@简单高中生(2)列举法:把集合的元素一一列举出来表示集合的方法叫做列举法.其格式是把集合的元素一一列举出来并用逗号隔开,然后用花括号括起来.例如,我们可以吧“地球上的四大洋”组成的集合表示为{太平洋,大西洋,印度洋,北冰洋},把“方程(1)(2)0x x -+=的所有实数根”组成的集合表示为{1,2}-.(3)描述法:通过描述集合所含元素的共同特征表示集合的方法叫做描述法.一般格式为{()}x p x ,其中x 是集合中的元素代表,()p x 则表示集合中的元素所具有的共同特征.例如,不等式73x -<的解集可以表示为{73}{10}x R x x R x ∈-<=∈<.1.2集合间的基本关系1.子集一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,我们就说这两个集合有包含关系,称集合A 为集合B 的子集,记为A B Í或(B A Ê)读作集合A 包含于集合B (或集合B 包含集合A ).集合A 是集合B 的子集可用Venn 图表示如下:或关于子集有下面的两个性质:(1)反身性:A A ⊆;(2)传递性:如果A B ⊆,且B C ⊆,那么A C ⊆.2.真子集如果集合A B ⊆,但存在元素x B ∈,且x A ∉,我们称集合A是集合B 的真子集,记为@简单高中生A B ⊂≠(或B A ⊃≠),读作集合A 真包含于集合B (或集合B 真包含集合A ).集合A 是集合B 的真子集可用Venn 图表示如右.3.集合的相等如果集合A B ⊆,且B A ⊆,此时集合A 与集合B 的元素是一样的,我们就称集合A 与集合B 相等,记为A B =.集合A 与集合B 相等可用Venn 图表示如右.4.空集我们把不含任何元素的集合叫做空集,记为∅.我们规定空集是任何一个集合的子集,空集是任何一个非空集合的真子集,即(1)A ∅⊆(A 是任意一个集合);(2)A ⊂∅≠(A ≠∅).1.3集合的运算1.并集自然语言:一般地,由所有属于集合A 或属于集合B 的元素组成的集合,称为集合A 与B 的并集,记作A B ⋃(读作“A 并B ”).@简单高中生符号语言:{,}A B x x A x B ⋃=∈∈或.图形语言:理解:x A ∈或x B ∈包括三种情况:x A ∈且x B ∉;x B ∈且x A ∉;x A ∈且x B ∈.并集的性质:(1)A B B A ⋃=⋃;(2)A A A ⋃=;(3)A A ⋃∅=;(4)()()A B C A B C ⋃⋃=⋃⋃;(5)A A B ⊆⋃,B A B ⊆⋃;(6)A B B A B ⋃=⇔⊆.2.交集自然语言:一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集,记作A B ⋂(读作“A 交B ”).符号语言:{,}A B x x A x B ⋂=∈∈且.图形语言:理解:当A 与B 没有公共元素时,不能说A 与B 没有交集,只能说A 与B 的交集是∅.@简单高中生交集的性质:(1)A B B A ⋂=⋂;(2)A A A ⋂=;(3)A ⋂∅=∅;(4)()()A B C A B C ⋂⋂=⋂⋂;(5)A B A ⋂⊆,A B B ⋂⊆;(6)A B A A B ⋂=⇔⊆.3.补集(1)全集的概念:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U .(2)补集的概念自然语言:对于一个集合A ,由属于全集U 且不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,记为U A ð.符号语言:{,}U A x x U x A =∈∉且ð图形语言:补集的性质(1)()U A A ⋂=∅ð;(2)()U A A U ⋃=ð;(3)()()()U U U A B A B ⋃=⋂痧;(4)()()()U U UA B A B ⋂=⋃痧.1.4充分条件与必要条件1.充分条件与必要条件一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可推出q ,记作@简单高中生p q ⇒,并且说p 是q 的充分条件,q 是p 的必要条件.在生活中,q 是p 成立的必要条件也可以说成是:q ⌝⇒p ⌝(q ⌝表示q 不成立),其实,这与p q ⇒是等价的.但是,在数学中,我们宁愿采用第一种说法.如果“若p ,则q ”为假命题,那么由p 推不出q ,记作/p q ⇒.此时,我们就说p不是q的充分条件,q不是p的必要条件.2.充要条件如果“若p,则q”和它的逆命题“若q则p”均是真命题,即既有p q⇒,又有q p⇒就记作⇔.p q此时,我们就说p是q的充分必要条件,简称为充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果p q⇔,那么p与q互为充要条件.@简单高中生“p是q的充要条件”,也说成“p等价于q”或“q当且仅当p”等.1.5全称量词与存在量词1.全称量词与存在量词(1)全称量词短语“所有的”,“任意一个”在逻辑中通常叫做全称量词,并用符号“"”表示.常见的全称量词还有“一切”,“每一个”,“任给”,“所有的”等.含有全称量词的命题,叫做全称量词命题.p x成立”可用符号简记为全称量词命题“对M中的任意一个x,有()p x,"Î,()x Mp x成立”.读作“对任意x属于M,有()(2)存在量词短语“存在一个”,“至少有一个”在逻辑中通常叫做存在量词,并用符号“$”表示.常见的存在量词还有“有些”,“有一个”,“对某个”,“有的”等.含有存在量词的命题,叫做存在量词命题.p x成立”可用符号简记为存在量词命题“存在M中的元素x,使()p x,x M∃∈,()p x成立”.读作“存在M中的元素x,使()2.全称量词命题和存在量词命题的否定(1)全称量词命题的否定全称量词命题:x M "Î,()p x ,它的否定:x M ∃∈,()p x ⌝.全称量词命题的否定是存在量词命题.(2)存在量词命题的否定存在量词命题:x M ∃∈,()p x ,它的否定:x M "Î,()p x ⌝.存在量词命题的否定是全称量词命题.@简单高中生第二章一元二次函数、方程和不等式2.1等式性质与不等式性质1.比较原理0a b a b >⇔->;0a b a b =⇔-=;0a b a b <⇔-<.2.等式的基本性质性质1如果a b =,那么b a =;性质2如果a b =,b c =,那么a c =;性质3如果a b =,那么a c b c ±=±;性质4如果a b =,那么ac bc =;性质5如果a b =,0c ≠,那么a b c c=.3.不等式的基本性质性质1如果a b >,那么b a <;如果b a <,那么a b >.即a b b a>⇔<性质2如果a b >,b c >,那么a c >.即a b >,b c >a c ⇒>.性质3如果a b >,那么a c b c +=+.由性质3可得,()()a b c a b b c b a c b +>⇒++->+-⇒>-.这表明,不等式中任何一项可以改变符号后移到不等号的另一边.性质4如果a b >,0c >,那么ac bc >;如果a b >,0c <,那么ac bc <.性质5如果a b >,c d >,那么a c b d +>+.性质6如果0a b >>,0c d >>,那么ac bd >.性质7如果0a b >>,那么n n a b >(n N ∈,2n ≥).2.2基本不等式1.重要不等式,a b R ∀∈,有222a b ab +≥,当且仅当a b =时,等号成立.2.基本不等式如果0a >,0b >,则2a b +≤,当且仅当a b =时,等号成立.@简单高中生2a b +叫做正数a ,b 的算术平均数叫做正数a ,b 的几何平均数.基本不等式表明:两个正数的算术平均数不小于它们的几何平均数.3.与基本不等式相关的不等式(1)当,a b R ∈时,有22a b ab +⎛⎫≤ ⎪⎝⎭,当且仅当a b =时,等号成立.(2)当0a >,0b >时,有211a b ≤+当且仅当a b =时,等号成立.(3)当,a b R ∈时,有22222a b a b ++⎛⎫≤ ⎪⎝⎭,当且仅当a b =时,等号成立.4.利用基本不等式求最值已知0x >,0y >,那么@简单高中生(1)如果积xy 等于定值P ,那么当x y =时,和x y +有最小值(2)如果和x y +等于定值S ,那么当x y =时,积xy 有最大值214S .2.3二次函数与一元二次方程、不等式1.一元二次不等式只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.2.二次函数与一元二次方程、不等式的解的对应关系(0)a >0>∆0=∆0<∆二次函数cbx ax y ++=2(0>a )的图象一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x <有两相等实根ab x x 221-==无实根的解集)0(02>>++ac bx ax {}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax {}21x x xx <<∅∅第三章函数的概念与性质3.1函数的概念及其表示1.函数的概念设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的的数y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作()y f x =,x A ∈.其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{|(})f x x A ∈叫做函数的值域,显然,值域是集合B 的子集.@简单高中生2.区间:设a ,b 是两个实数,而且a b <,我们规定:(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为[,]a b ;(2)满足不等式a x b <<的实数x 的集合叫做开区间,表示为(,)a b ;(3)满足不等式a x b ≤<或a x b <≤的实数x 的集合叫做半开半闭区间,分别表示为:[,)a b ,(,]a b .这里的实数a ,b 都叫做相应区间的端点.这些区间的几何表示如下表所示.定义名称符号数轴表示{}x a x b ≤≤闭区间[,]a b {}x a x b <<开区间(,)a b{}x a x b ≤<半开半闭区间[,)a b{}x a x b <≤半开半闭区间(,]a b (4)实数集R 可以表示为(,)-∞+∞,“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.满足x a ≥,x a >,x b ≤,x b <的实数x 的集合,用区间分别表示为[,)a +∞,(,)a +∞(,]b -∞,(,)b -∞.这些区间的几何表示如下表所示.定义符号数轴表示{}x x -∞<<+∞(,)-∞+∞{}x x a ≥[,)a +∞{}x x a >(,)a +∞{}x x b ≤(,]b -∞{}x x b <(,)b -∞注意:@简单高中生(1)“∞”是一个趋向符号,表示无限接近,却永远达不到,不是一个数.(2)以“-∞”或“+∞”为区间的一端时,这一端点必须用小括号.3.函数的三要素(1)定义域;(2)对应关系;(3)值域.值域随定义域和对应关系的确定而确定.4.函数的相等如果两个函数的定义域和对应关系分别相同,那么就说这两个函数是同一个函数.5.函数的表示方法(1)解析法用数学表达式表示两个变量之间的对应关系的方法叫做解析法.解析法是表示函数的一种重要的方法,这种表示法从“数”的方面简明、全面地概括了变量之间的数量关系.(2)图象法用图象表示两个变量之间的对应关系的方法叫做图象法.图象法直观地表示了函数值随自变量值改变的变化趋势,从“形”的方面刻画了变量之间的数量关系.说明:将自变量的一个值0x 作为横坐标,相应的函数值0()f x 作为纵坐标,就得到坐标平面上的一个点00(,())x f x .当自变量取遍函数的定义域A 中的每一个值时,就得到一系列这样的点,所有这些点组成的图形就是函数()y f x =的图象.函数()y f x =的图象在x 轴上的射影构成的集合就是函数的定义域,在y 轴上的射影构成的集合就是函数的值域.@简单高中生函数的图象既可以是连续的曲线,也可以是直线、折线、离散的点,等等.(3)列表法通过列表来表示两个变量之间的对应关系的方法叫做列表法.例如,初中学习过的平方表、立方表都是表示函数关系的.6.分段函数(1)分段函数的概念有些函数在其定义域内,对于自变量x 的不同取值区间,有着不同的对应关系,这样的函数称为分段函数.如(1),0,(),0x x f x x x x -<⎧==⎨≥⎩,(2)22,0,(),0x x f x x x ⎧≤⎪=⎨->⎪⎩.说明:①分段函数是一个函数,而不是几个函数.处理分段函数问题时,要先确定自变量的取值在哪个区间,从而选取相应的对应关系.②分段函数在书写时用大括号把各段函数合并写成一个函数的形式.并且必须指明各段函数自变量的取值范围.③分段函数的定义域是自变量所有取值区间的并集,分段函数的定义域只能写成一个集合的形式,不能分开写成几个集合的形式.④分段函数的值域是各段函数在对应自变量的取值范围内值域的并集.(2)分段函数的图象分段函数有几段,它的图象就由几条曲线组成.在同一坐标系中,根据每段的定义区间和表达式依次画出图象,要注意每段图象的端点是空心点还是实心点,组合到一起就得到整个分段函数的图象.@简单高中生3.2函数的基本性质函数的性质是指在函数变化过程中的不变性和规律性.1.单调性与最大(小)值(1)增函数设函数()f x 的定义域为I ,区间D ⊆I .如果∀1x ,2x D ∈,当12x x <时,都有12()()f x f x <,那么就称函数()f x 在区间D 上单调递增.特别地,当函数()f x 在它的定义域上单调递增时,我们就称它是增函数.(2)减函数设函数()f x 的定义域为I ,区间D ⊆I.如果∀1x ,2x D ∈,当12x x <时,都有12()()f x f x >,那么就称函数()f x 在区间D 上单调递增.特别地,当函数()f x 在它的定义域上单调递减时,我们就称它是减函数.(3)单调性、单调区间、单调函数如果函数()y f x =在区间D 上单调递增或单调递减,那么就说函数()y f x =在区间D 上具有(严格的)单调性,区间D 叫做()y f x =的单调区间.如果函数在某个区间上具有单调性,那么就称此函数在这个区间上是单调函数.(4)证明函数()f x 在区间D 上单调递增或单调递减,基本步骤如下:①设值:设12,x x D ∈,且12x x <;②作差:12()()f x f x -;③变形:对12()()f x f x -变形,一般是通分,分解因式,配方等.这一步是核心,要注意变形到底;@简单高中生④判断符号,得出函数的单调性.(5)函数的最大值与最小值①最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么我们称M 是函数()y f x =的最大值.②最小值:设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么我们称m 是函数()y f x =的最小值.2.奇偶性(1)偶函数设函数()f x 的定义域为I ,如果x I ∀∈,都有x I -∈,且()()f x f x -=,那么函数()f x 就叫做偶函数.关于偶函数有下面的结论:①偶函数的定义域一定关于原点对称.也就是说定义域关于原点对称是函数为偶函数的一个必要条件;②偶函数的图象关于y 轴对称.反之也成立;③偶函数在关于原点对称的两个区间上的增减性相反.(2)奇函数设函数()f x 的定义域为I ,如果x I ∀∈,都有x I -∈,且()()f x f x -=-,那么函数()f x 就叫做奇函数.关于奇函数有下面的结论:①奇函数的定义域一定关于原点对称.也就是说定义域关于原点对称是函数为奇函数的一个必要条件;@简单高中生②奇函数的图象关于坐标原点对称.反之也成立;③如果奇函数当0x =时有意义,那么(0)0f =.即当0x =有意义时,奇函数的图象过坐标原点;④奇函数在关于原点对称的两个区间上的增减性相同.3.3幂函数1.幂函数的概念一般地,形如y x α=(R α∈,α为常数)的函数称为幂函数.对于幂函数,我们只研究1α=,2,3,12,1-时的图象与性质.2.五个幂函数的图象和性质x y =2x y =3x y =21xy =1-=x y 定义域RRR[0,+)∞(,0)(0,+)-∞⋃∞值域R[0,+)∞R[0,+)∞(,0)(0,+)-∞⋃∞奇偶性奇函数偶函数奇函数非奇非偶奇函数单调性增函数在(,0]-∞上递减在[0,+)∞上递增增函数增函数在(,0-∞),0,+)∞(上递减定点(1,1)3.4函数的应用(一)略.第四章指数函数与对数函数4.1指数1.n 次方根与分数指数幂(1)方根如果n xa =,那么x 叫做a 的n 次方根,其中1n >,且*n N ∈.①当n 是奇数时,正数的n 次方根是正数,负数的n 方根是负数.这时,a 的n 方表示.@简单高中生②当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.这时,正数a 的正的n 表示,负的n 次方根用符号正的n 次方根与负的n 次方根可以合并写成0a >).负数没有偶次方根.0的任何次方根都是0=.叫做根式,这里n 叫做根指数,a 叫做被开方数.关于根式有下面两个等式:n a =;,,a na n⎧⎪=⎨⎪⎩为奇数为偶数..2.分数指数幂(1)正分数指数幂mna=0a>,m,*n N∈,1n>).0的正分数指数幂等于0.(2)负分数指数幂1mnmnaa-=0a>,m,*n N∈,1n>).0的负分数指数幂没有意义.(3)有理数指数幂的运算性质①r s r sa a a+=(0a>,r,s Q∈);②()r s rsa a=(0a>,r,s Q∈);③()r r rab a b=(0a>,0b>,r Q∈).3.无理数指数幂及其运算性质(1)无理数指数幂的概念当x是无理数时,x a是无理数指数幂.我们可以通过有理数指数幂来认识无理数指数幂.当x的不足近似值m和过剩近似值n逐渐逼近x时,m a和n a都趋向于同一个数,这个数就是x a.所以无理数指数幂x a(0a>,x是无理数)是一个确定的数.@简单高中生(2)实数指数幂的运算性质整数指数幂的运算性质也适用于实数指数幂,即对于任意实数r,s,均有下面的运算性质.①r s r sa a a+=(0a>,r,s R∈);②()r s rsa a=(0a>,r,s R∈);③()r r rab a b=(0a>,0b>,r R∈).4.2指数函数1.指数函数的概念函数x y a =(0a >,且1a ≠)叫做指数函数,其中指数x 是自变量,定义域是R .2.指数函数的图象和性质一般地,指数函数x y a =(0a >,且1a ≠)的图象和性质如下表所示:01a <<1a >图象定义域R值域(0,)+∞性质(1)过定点(0,1),即0x =时,1y =(2)在R 上是减函数(2)在R 上是增函数4.3对数1.对数的概念一般地,如果x a N =(0,1)a a >≠,那么数x 叫做以a 为底N 的对数,记作N x a log =.其中a 叫做对数的底数,N 叫做真数.@简单高中生当0a >,且1a ≠时,log N x a a N x =⇔=.2.两个重要的对数(1)常用对数:以10为底的对数叫做常用对数,并把10log N 记为lg N .(2)自然对数:以e (e 是无理数, 2.71828e =…)为底的对数叫做自然对数,并把log e N 记作ln N .3.关于对数的几个结论(1)负数和0没有对数;(2)log 10a =;(3)log 1a a =.4.对数的运算如果0a >,且1a ≠,0M >,0N >,那么(1)log ()log log a a a MN M N =+;(2)log log log a a a M M N N =-;(3)log log n a a M n M =(n R ∈).5.换底公式log log log c a c bb a=(0a >,且1a ≠,0b >,0c >,1c ≠).4.4对数函数1.对数函数的概念一般地,函数log a y x =(0a >,且1a ≠)叫做对数函数,其中x 是自变量,定义域是(0,)+∞.@简单高中生2.对数函数的图象和性质01a <<1a >图象定义域(0,)+∞值域R3.反函数指数函数x y a =(0a >,且1a ≠)与对数函数log a y x =(0a >,且1a ≠)互为反函数,它们的定义域与值域正好互换.互为反函数的两个函数的图象关于直线y x =对称.4.不同函数增长的差异对于对数函数log a y x =(1a >)、一次函数y kx =(0k >)、指数函数x y b =(1b >)来说,尽管它们在(0,)+∞上都是增函数,但是随着x 的增大,它们增长的速度是不相同的.其中对数函数log a y x =(1a >)的增长速度越来越慢;一次函数y kx =(0k >)增长的速度始终不变;指数函数x y b =(1b >)增长的速度越来越快.总之来说,不管a (1a >),k (0k >),b (1b >)的大小关系如何,x y b =(1b >)的增长速度最终都会大大超过y kx =(0k >)的增长速度;y kx =(0k >)的增长速度最终都会大大超过log a y x =(1a >)的增长速度.因此,总会存在一个0x ,当0x x >时,恒有log x a b kx x >>.4.5函数的应用(二)1.函数的零点与方程的解(1)函数零点的概念对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点.函数()y f x =的零点就是方程()0f x =的实数解,也是函数()y f x =的图象与x 轴的公共点的横坐标.所以@简单高中生方程()0f x =有实数解⇔函数()y f x =有零点性质(1)过定点(1,0),即当1x =时,0y =.(2)增函数(2)减函数⇔函数()y f x =的图象与x 轴有公共点.(2)函数零点存在定理如果函数()y f x =在区间[,]a b 上的图象是一条连续不断的曲线,且有()()0f a f b <,那么,函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的解.2.用二分法求方程的近似解对于在区间[,]a b 上图象连续不断且()()0f a f b <的函数()y f x =,通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.@简单高中生给定精确度ε,用二分法求函数()y f x =零点0x 的近似值的一般步骤如下:(1)确定零点0x 的初始区间[,]a b ,验证()()0f a f b <.(2)求区间(,)a b 的中点c .(3)计算()f c ,并进一步确定零点所在的区间:①若()0f c =(此时0x c =),则c 就是函数的零点;②若()()0f a f c <(此时0(,)x a c ∈),则令b c =;③若()()0f c f b <(此时0(,)x c b ∈),则令a c =.(4)判断是否达到精确度ε:若a b ε-<,则得到零点的近似值a (或b );否则重复步骤(2)~(4).由函数零点与相应方程解的关系,我们可以用二分法来求方程的近似解.3.函数模型的应用用函数建立数学模型解决实际问题的基本过程如下:这一过程包括分析和理解实际问题的增长情况(是“对数增长”“直线上升”还是“指数爆炸”);根据增长情况选择函数类型构建数学模型,将实际问题化归为数学问题;通过运算、推理、求解函数模型;用得到的函数模型描述实际问题的变化规律,解决有关问题.在这一过程中,往往需要利用信息技术帮助画图、运算等.第五章三角函数5.1任意角和弧度制1.任意角(1)角的概念角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.射线的端点叫做角的顶点,射线在起始位置和终止位置分别叫做角的始边和终边.(2)正角、负角、零角按逆时针方向旋转所成的角叫正角;按顺时针方向旋转所成的角叫负角;一条射线没有作任何旋转而形成的角叫零角.这样,我们就把角的概念推广到了任意角.(3)象限角当角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边落在坐标轴上,这时这个角不属于任何象限.@简单高中生(4)终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合{}|360,S k k Z ββα==+⋅︒∈即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.终边相同的角不一定相等,但相等的角,终边一定相同;终边相同的角有无数多个,它们相差360︒的整数倍;象限角的表示:第一象限角的集合{}|36090360,k k k Z αα⋅︒<<︒+⋅︒∈第二象限角的集合{}|90360180360,k k k Z αα︒+⋅︒<<︒+⋅︒∈第三象限角的集合{}|180360270360,k k k Z αα︒+⋅︒<<︒+⋅︒∈第四象限角的集合{}|270360360360,k k k Z αα︒+⋅︒<<︒+⋅︒∈终边落在坐标轴上的角在以后的学习中很重要,它们的表示如下表.位置表示终边在x 轴非负半轴{360,}k k Z αα=⋅︒∈终边在x 轴非正半轴{180+360,}k k Z αα=︒⋅︒∈终边在x 轴{180,}k k Z αα=⋅︒∈终边在y 轴非负半轴{90+360,}k k Z αα=︒⋅︒∈终边在y 轴非正半轴{270+360,}k k Z αα=︒⋅︒∈终边在y 轴{90180,}k k Z αα=︒+⋅︒∈终边在坐标轴{90,}k k Z αα=⋅︒∈2.弧度制(1)弧度的概念长度等于半径长的圆弧所对的圆心角叫做1弧度的角.@简单高中生在半径为r 的圆中,弧长为l 的弧所对的圆心角为αrad ,那么l rα=.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0.(2)弧度与角度的换算(3)关于扇形的几个公式设扇形的圆心角为α(rad ),半径为R ,弧长为l ,则有①l R α=;②212S R α=;③12S lR =.5.2三角函数的概念1.三角函数的概念(1)三角函数的定义一般地,任意给定一个角R α∈,它的终边OP 与单位圆相交于点(,)P x y .把点P 的纵坐标y 叫做α的正弦函数,记作sin α,即@简单高中生sin y α=;把点P 的横坐标x 叫做α的余弦函数,记作cos α,即cos x α=;把点P 的纵坐标与横坐标的比值yx叫做α的正切函数,记作tan α,即tan yxα=(0x ≠).正弦函数、余弦函数和正切函数统称为三角函数,通常将它们记为:正弦函数sin y α=,x R ∈;余弦函数cos y α=,x R ∈;正切函数tan y α=,2x k ππ≠+(k Z ∈).设α是一个任意角,它的终边上任意一点P (不与原点重合)的坐标为(,)x y ,点P 与原点的距离为r =.可以证明:sin y r α=;cos xr α=;tan y xα=.(2)几个特殊角的三角函数值0,2π,π,32π的三角函数值如下表所示:α函数2ππ32πsin α0101-cos α101-0tan α不存在0不存在(3)三角函数值的符号(4)诱导公式(一)终边相同的角的同一三角函数值相等.@简单高中生sin(2)sin k απα+⋅=,cos(2)cos k απα+⋅=,tan(2)tan k απα+⋅=,其中k Z ∈.2.同角三角函数间的基本关系(1)平方关系22sin cos 1αα+=.(2)商数关系sin tan cos ααα=.作用:(1)已知α的某一个三角函数值,求其余的两个三角函数值;(2)化简三角函数式;@简单高中生(3)证明三角函数恒等式.5.3诱导公式1.公式二sin()sin παα+=-,cos()cos παα+=-,tan()tan παα+=.2.公式三sin()sin αα-=-,cos()cos αα-=,tan()tan αα-=-.3.公式四sin()sin παα-=,cos()cos παα-=-,tan()tan παα-=-.小结:(1)2k απ+⋅(k Z ∈),πα+,α-,πα-的三角函数,等于α的同名函数,前面加上把α看成锐角时原三角函数值的符号.(2)利用公式一∼公式四,可以把任意角的三角函数转化为锐角三角函数,一般可按下面步骤进行:4.公式五sin()cos 2παα-=,cos()sin 2παα-=.5.公式六sin()cos 2παα+=,cos()sin 2παα+=-.小结:2πα-,2πα+的正弦(余弦),等于α的余弦(正弦),前面加上把α看成锐角时原三角函数值的符号.5.4三角函数的图象与性质1.正弦函数、余弦函数的图象(1)正弦函数sin y x =的图象.①画点00(,sin )T x x @简单高中生在直角坐标系中画出以原点O 为圆心的单位圆,O 与x 轴正半轴的交点为(1,0)A .在单位圆上,将点A 绕着点O 旋转0x 弧度至点B ,根据正弦函数的定义,点B 的纵坐标00sin y x =.由此,以0x 为横坐标,0y 为纵坐标画点,即得到函数图象上的点00(,sin )T x x .。
人教A版高中数学核心知识点梳理(必修1、2)
高一上学期知识点梳理第一章、集合与函数概念§1.1.1、集合1、集合三要素:确定性、互异性、无序性。
2、常见集合:正整数集合:*N 或+N ; 整数集合:Z 有理数集合:Q ; 实数集合:R . §1.1.2、集合间的基本关系1、一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A是集合B 的子集。
记作B A ⊆.2、如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B.3、把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.空集是任何非空集合的真子集.4、如果集合A 中含有n 个元素,集合A 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n–1个;非空的真子集有2n –2个. §1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A .{|,}A B x x A x B =∈∈或2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A .{|,}A B x x A x B =∈∈且 3、全集、补集:{|,}UC A x x U x U =∈∉且 4、A B A A B B =⇔=⇔⊆A B (讨论) §1.2.1、函数的概念1、一个函数的构成要素为:定义域、对应关系、值域.2、如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. 3、求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1;(5)如果函数是由一些基本函数通过四则运算结合而成的,那么它的定义域是使各部分都有意义的x 的值组成的集合;(6)指数为零底不可以等于零;(7)实际问题中的函数的定义域还要保证实际问题有意义 §1.2.2、函数的表示法 解析法、图象法、列表法. 求解析式的方法:1. 换元法2.配凑法3.待定系数法4.方程组法如果已知函数解析式的构造时,可用待定系数法;已知复合函数f [g (x )]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)。
高中数学知识点总结(精华版)
高中数学必修+选修知识点归纳新课标人教A版一、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个集合相等。
3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法.§1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B. 3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集.4、 如果集合A 中含有n 个元素,则集合A 有n2个子集,21n-个真子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A . 2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.§1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法:(1)定义法:设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数;],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.步骤:取值—作差—变形—定号—判断 格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…(2)导数法:设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数. §1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 知识链接:函数与导数1、函数)(x f y =在点0x 处的导数的几何意义: 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.2、几种常见函数的导数①'C 0=;②1')(-=n n nxx ;③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a xx ln )('=; ⑥xx e e =')(;⑦a x x a ln 1)(log '=;⑧xx 1)(ln '=3、导数的运算法则 (1)'()u v u v ±=±.(2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v-=≠. 4、复合函数求导法则复合函数(())y f g x =的导数和函数(),()y f u u g x ==的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.解题步骤:分层—层层求导—作积还原. 5、函数的极值 (1)极值定义:极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值;极值是在0x 附近所有的点,都有)(x f >)(0x f ,则)(0x f 是函数)(x f 的极小值. (2)判别方法:①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 6、求函数的最值(1)求()y f x =在(,)a b 内的极值(极大或者极小值)(2)将()y f x =的各极值点与(),()f a f b 比较,其中最大的一个为最大值,最小的一个为极小值。
人教版高中数学知识点总结:新课标人教A版高中数学必修3知识点总结
高中数学必修 3知识点总结第一章算法初步1.1.1算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成 .2. 算法的特点 :(1有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的 .(2确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可 .(3顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题 .(4不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法 .(5普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决 .1.1.2程序框图1、程序框图基本概念:(一程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二构成程序框的图形符号及其作用1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
新课标人教A版高中数学必修1知识点总结
高中数学必修1知识点总结第一章集合与函数概念【】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,N*或N+表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.(3)集合与元素间的关系对象a与集合M的关系是a M∈,或者a M∉,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x具有的性质},其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【】集合的基本运算 (8)交集、并集、补集x B ∈∅=∅B A ⊆ B B ⊆x B ∈A A =A ∅=B A ⊇ B B ⊇补集UA{|,}x x U x A ∈∉且1()U A A =∅ 2()U A A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式 解集||(0)x a a <> {|}x a x a -<<||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式0∆> 0∆= 0∆<()()()UU U A B A B =()()()UU U A B A B =24b ac∆=-二次函数2(0)y ax bx c a=++>的图象O一元二次方程20(0) ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0) ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R20(0) ax bx c a++<>的解集12{|}x x x x<<∅∅〖〗函数及其表示【】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数()f x和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a xb <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2++=,则在()0a y xb y xc y()()()0a y≠时,由于,x y为实数,故必须有2()4()()0∆=-⋅≥,从而确定函数的值域或最值.b y a yc y④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B 以及A到B的对应法则f)叫做集合A到B的映射,记作:f A B→.②给定一个集合A到集合B的映射,且,∈∈.如果元素a和元素b对应,a Ab B那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖〗函数的基本性质【】单调性与最大(小)值(1)函数的单调性①定义及判定方法如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x.1.< .x.2.时,都有f(x...1.)>f(x.....2.).,那么就说f(x)在这个区间上是减函数....y=f(X)yxo x x2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x=,令()u g x=,若()y f u=为增,()u g x=为增,则[()]y f g x=为增;若()y f u=为减,()u g x=为减,则[()]y f g x=为增;若()y f u=为增,()u g x=为减,则[()]y f g x=为减;若()y f u=[()]y f g x=为减.(2)打“√”函数()(0)af x x ax=+>的图象与性质()f x分别在(,]a-∞、,)a+∞]a上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【】奇偶性(4)函数的奇偶性①定义及判定方法函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数. 〖补充知识〗函数的图象 (1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ) 〖〗指数函数【】指数与指数幂的运算 (1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n 是偶数时,正数a 的正的n 次方根用n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ 【】指数函数及其性质(4)指数函数〖〗对数函数 【】对数与对数运算(1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a M M N N-=③数乘:log log ()n a a n M M n R =∈ ④logaNa N =⑤log log (0,)bn a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=. (7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qp y x =是奇函数,若p 为奇数q 为偶数时,则q p y x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x1<k <x 2 ⇔ af (k )<0④k1<x1≤x2<k2⇔⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2⇔f(k1)f(k2)<0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合⑥k1<x1<k2≤p1<x2<p2⇔此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a=++≠在闭区间[,]p q上的最值设()f x在区间[,]p q上的最大值为M,最小值为m,令01() 2x p q=+.(Ⅰ)当0a>时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q =b a()M f p = 0<时)2a ()f p ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.x 0x 0x第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
【知识点总结】高中数学人教A版必修第一册知识点总结
高中数学新教材人教A版必修第一册知识点总结专题01 集合与常用的逻辑用语 (3)知识点一集合的概念 (3)知识点二集合间的关系 (4)知识点三集合的基本运算 (5)知识点四充分条件与必要条件 (5)知识点五全称量词与存在量词 (6)专题02 一元二次方程、函数与不等式 (7)知识点一不等式的性质 (7)知识点二基本不等式 (7)知识点三二次函数与一元二次方程、不等式 (8)专题03 函数的概念与性质 (9)知识点一函数的概念与分段函数 (9)知识点二函数的三要素 (10)知识点三函数的单调性 (12)知识点四函数的奇偶性 (14)知识点六幂函数 (16)专题04指数函数与对数函数的概念、简单性质 (17)知识点一指数运算、对数运算与幂运算 (17)知识点二指数函数与对数函数的概念及图像 (18)知识点三比较大小(常与0、1、-1作比较) (18)知识点四函数的零点 (19)专题05 指数型与对数型复合函数的性质 (20)知识点一复合函数简单的单调性与奇偶性问题 (20)知识点二复合函数的单调性 (20)知识点三复合函数的最大值与最小值 (21)知识点四最值问题(含有参数) (22)知识点五恒成立问题 (22)专题06 三角函数的图像与性质 (23)知识点一任意角和弧度制 (23)知识点二常用的角的集合表示方法 (23)知识点三弧度与弧度制 (24)知识点四三角函数定义 (25)知识点五三角函数在各象限的符号 (26)知识点六特殊角的三角函数值: (26)知识点七同角三角函数的关系与诱导公式 (26)知识点八两角和与差公式的基本应用 (27)知识点九辅助角公式 (27)知识点十二倍角公式 (27)知识点十一降幂公式 (27)知识点十二基本三角函数的图像与性质(正弦、余弦与正切) (28)知识点十三函数y=Asin(ωx+φ)的图像 (29)知识点十四三角函数的实际应用 (30)专题07 三角函数的综合运用 (30)专题01 集合与常用的逻辑用语知识点一集合的概念1.集合的有关概念(1)集合的描述:我们把研究对象称为元素,把一些元素组成的总体叫做集合.元素通常用小写字母a,b,c,⋯表示,集合通常用大写字母A,B,C,⋯表示.(2)集合元素的特性:确定性:集合中的元素是确定的,即给定一个元素可以判断该元素在或者不在该集合中。
人教版A版高中数学知识点总结
人教版A版高中数学知识点总结高中数学是学生在中学阶段学习的一门重要学科,它不仅培养学生的逻辑思维能力,还是大学及未来职业生涯中不可或缺的基础工具。
人教版A版高中数学教材以其系统性和严谨性,成为众多学校的首选教材。
本文将对该教材中的知识点进行总结,以帮助学生更好地复习和掌握。
函数与导数函数是高中数学的核心概念之一,它描述了两组数之间的一种特定关系。
在人教版A版高中数学教材中,函数的概念、性质、运算以及函数图像的绘制都是基础且重要的内容。
此外,导数作为函数的一个重要衍生概念,它描述了函数在某一点处的切线斜率,是微积分的基础。
学生需要理解导数的物理意义和几何意义,掌握求导法则,并能够应用导数解决实际问题。
三角函数三角函数包括正弦、余弦、正切等,它们在解决与角度和三角形相关的问题中扮演着重要角色。
教材中详细介绍了三角函数的定义、性质、图像以及如何利用三角函数解决实际问题。
特别是在解决平面几何问题和解析几何问题时,三角函数是一个不可或缺的工具。
数列与数学归纳法数列是按照一定顺序排列的一列数,它在数学分析、组合数学以及离散数学中都有广泛的应用。
教材中不仅介绍了等差数列和等比数列的性质和求和公式,还涉及了无穷数列和级数的基本概念。
数学归纳法作为一种证明方法,对于证明与自然数相关的命题尤为重要,学生需要掌握其基本步骤和应用技巧。
解析几何解析几何是研究图形的几何性质和代数表示的学科。
在人教版A版高中数学教材中,涵盖了直线、圆、椭圆、双曲线和抛物线等基本图形的方程和性质。
学生需要理解这些图形的代数形式,能够根据给定条件求解几何问题,以及掌握利用坐标变换研究图形的几何变换。
概率与统计概率与统计是研究随机现象的数学理论,它在科学研究和日常生活中都有着广泛的应用。
教材中介绍了概率的基本概念、计算方法以及常见的概率分布,如二项分布和正态分布。
统计部分则包括了数据的收集、整理、分析和解释,以及统计图表的绘制和解读。
数学思维与方法数学思维是指在解决数学问题时所采用的思考方式和策略,它对于培养学生的创新能力和解决问题的能力至关重要。
人教A版高中数学必修1知识点总结
人教A版高中数学必修1知识点总结
高中数学必修1主要涵盖了数与式、函数与方程、平面几何等内容。
下面我将对这些知识点进行总结:
一、数与式
1.整式与分式:整式包括常数项、一次项、二次项等;分式包括真分式、假分式等。
2.代数式的运算:包括加法、减法、乘法、除法的运算法则;指数与
乘方的运算法则。
3.类指数:零次指数、分数指数、负整数指数的运算规则;类指数函
数图象。
4.分式的运算:分式的加减乘除法运算法则;负指数律。
二、函数与方程
1.函数:函数的概念与性质;函数的图象、定义域与值域。
2.函数的表示法:函数的自变量与因变量;函数的映射关系与解析式。
3.线性函数:线性函数的性质与图象;线性函数的应用。
4.幂函数:幂函数的概念与性质;幂函数的图象。
5.函数的运算:函数的和、差、积、商的性质;复合函数的性质与解法。
6.一元一次方程:一元一次方程的定义与定解;一元一次方程的解法。
7.一元二次方程:一元二次方程的定义与定解;一元二次方程的解法。
8.二元一次方程:二元一次方程的解法;二元一次方程表示的直线。
三、平面几何
1.平面几何基础:点、直线、线段、角、面的定义;一次、二次、三次等距变换的性质。
2.平面图形:多边形的种类与性质;正多边形的性质;圆的性质与常见公式。
3.相似三角形:相似三角形的判定与性质;相似三角形的性质。
4.三角形:三角形的内角和定理与外角和定理;直角三角形的勾股定理与勾股数。
5.圆与圆的位置关系:切线的概念与性质;公切线与内切圆、外切圆的关系。
人教A版数学必修一知识点
人教A版数学必修一知识点
数学必修一可以说是学生初次接触高中数学知识的一门课程,内容相对较为基础。
下面是一些数学必修一的重点知识点:
一、二次函数及其图像
1.二次函数的定义及性质:二次函数的一般形式、顶点、对称轴、最值、图像等;
2.二次函数的图像变换:平移、伸缩、翻转;
3.二次函数的解析式推导与图像综合分析;
4.二次函数的应用:最大值、最小值、模型的建立与解决。
二、三角函数及其图像
1.角度与弧度制之间的转换;
2.正弦函数、余弦函数的图像、特性及应用;
3.正切函数、余切函数的图像、特性及应用;
4.三角函数的复合函数及其图像;
5.三角函数的图像变换:平移、伸缩、翻转等。
三、数列与数列极限
1.等差数列的通项公式、前n项和公式;
2.求等差数列的通项公式及前n项和公式;
3.等比数列的通项公式、前n项和公式;
4.求等比数列的通项公式及前n项和公式;
5.数列极限及其性质。
四、数列的应用与递推关系
1.数列的表示方式:通项公式、递推关系式;
2.几何数列、斐波那契数列及其应用;
3.数列的模型建立:等差、等比、递推等;
4.递归数列及其应用。
五、三角函数的应用
1.角度的计算:全角、半角的计算,角度的加减;
2.三角函数的性质及推导;
3.三角函数的应用:平面角、立体角、变速运动等。
六、概率与统计
1.事件及其运算:事件的包含、互斥、对立等;
2.概率及其性质:基本事件、复合事件的计算;
3.试验与事件模型的建立:样本空间、随机事件、概率等;
4.随机变量及其概率分布;
5.统计与数据分析:频数分布表、频数分布图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三第一轮复习资料(注意保密)引言1.课程内容:必修课程由5个模块组成:必修1:集合、函数概念与基本初等函数(指、对、幂函数)必修2:立体几何初步、平面解析几何初步。
必修3:算法初步、统计、概率。
必修4:基本初等函数(三角函数)、平面向量、三角恒等变换。
必修5:解三角形、数列、不等式。
以上是每一个高中学生所必须学习的。
上述内容覆盖了高中阶段传统的数学基础知识和基本技能的主要部分,其中包括集合、函数、数列、不等式、解三角形、立体几何初步、平面解析几何初步等。
不同的是在保证打好基础的同时,进一步强调了这些知识的发生、发展过程和实际应用,而不在技巧与难度上做过高的要求。
此外,基础内容还增加了向量、算法、概率、统计等内容。
选修课程有4个系列:系列1:由2个模块组成。
选修1—1:常用逻辑用语、圆锥曲线与方程、导数及其应用。
选修1—2:统计案例、推理与证明、数系的扩充与复数、框图系列2:由3个模块组成。
选修2—1:常用逻辑用语、圆锥曲线与方程、空间向量与立体几何。
选修2—2:导数及其应用,推理与证明、数系的扩充与复数选修2—3:计数原理、随机变量及其分布列,统计案例。
系列3:由6个专题组成。
选修3—1:数学史选讲。
选修3—2:信息安全与密码。
选修3—3:球面上的几何。
选修3—4:对称与群。
选修3—5:欧拉公式与闭曲面分类。
选修3—6:三等分角与数域扩充。
选修4—1:几何证明选讲。
选修4—2:矩阵与变换。
选修4—3:数列与差分。
选修4—4:坐标系与参数方程。
选修4—5:不等式选讲。
选修4—6:初等数论初步。
选修4—7:优选法与试验设计初步。
选修4—8:统筹法与图论初步。
选修4—9:风险与决策。
选修4—10:开关电路与布尔代数。
2.重难点及考点:重点:函数,数列,三角函数,平面向量,圆锥曲线,立体几何,导数难点:函数、圆锥曲线高考相关考点:⑴集合与简易逻辑:集合的概念与运算、简易逻辑、充要条件⑵函数:映射与函数、函数解析式与定义域、值域与最值、反函数、三大性质、函数图象、指数与指数函数、对数与对数函数、函数的应用⑶数列:数列的有关概念、等差数列、等比数列、数列求和、数列的应用⑷三角函数:有关概念、同角关系与诱导公式、和、差、倍、半公式、求值、化简、证明、三角函数的图象与性质、三角函数的应用⑸平面向量:有关概念与初等运算、坐标运算、数量积及其应用⑹不等式:概念与性质、均值不等式、不等式的证明、不等式的解法、绝对值不等式、不等式的应用⑺直线和圆的方程:直线的方程、两直线的位置关系、线性规划、圆、直线与圆的位置关系⑻圆锥曲线方程:椭圆、双曲线、抛物线、直线与圆锥曲线的位置关系、轨迹问题、圆锥曲线的应用⑼直线、平面、简单几何体:空间直线、直线与平面、平面与平面、棱柱、棱锥、球、空间向量⑽排列、组合和概率:排列、组合应用题、二⑾概率与统计:概率、分布列、期望、方差、抽样、正态分布⑿导数:导数的概念、求导、导数的应用 ⒀复数:复数的概念与运算 必修1数学知识点第一章:集合与函数概念 §1.1.1、集合1、 把研究的对象统称为元素,把一些元素组成的总体叫做集合。
集合三要素:确定性、互异性、无序性。
2、 只要构成两个集合的元素是一样的,就称这两个集合相等。
3、 常见集合:正整数集合:*N 或+N ,整数集合:Z ,有理数集合:Q ,实数集合:R .4、集合的表示方法:列举法、描述法. §1.1.2、集合间的基本关系1、 一般地,对于两个集合A 、B ,如果集合A 中任意一个元素都是集合B 中的元素,则称集合A 是集合B 的子集。
记作B A ⊆.2、 如果集合B A ⊆,但存在元素B x ∈,且A x ∉,则称集合A 是集合B 的真子集.记作:A B. 3、 把不含任何元素的集合叫做空集.记作:∅.并规定:空集合是任何集合的子集. 4、 如果集合A 中含有n 个元素,则集合A 有n2个子集,21n-个真子集.§1.1.3、集合间的基本运算1、 一般地,由所有属于集合A 或集合B 的元素组成的集合,称为集合A 与B 的并集.记作:B A . 2、 一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集.记作:B A . 3、全集、补集?{|,}U C A x x U x U =∈∉且 §1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. §1.3.1、单调性与最大(小)值 1、注意函数单调性的证明方法:(1)定义法:设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.步骤:取值—作差—变形—定号—判断 格式:解:设[]b a x x ,,21∈且21x x <,则:()()21x f x f -=…(2)导数法:设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数. §1.3.2、奇偶性1、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-,那么就称函数()x f 为偶函数.偶函数图象关于y 轴对称.2、 一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f -=-,那么就称函数()x f 为奇函数.奇函数图象关于原点对称. 知识链接:函数与导数1、函数)(x f y =在点0x 处的导数的几何意义: 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 2、几种常见函数的导数①'C 0=;②1')(-=n n nxx ;③x x cos )(sin '=; ④x x sin )(cos '-=;⑤a a a xx ln )('=; ⑥xx e e =')(;⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 3、导数的运算法则 (1)'v . (2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v-=≠. 4、复合函数求导法则复合函数(())y f g x =的导数和函数(),()y f u u g x ==的导数间的关系为x u x y y u '''=⋅,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.解题步骤:分层—层层求导—作积还原. 5、函数的极值 (1)极值定义:极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值;极值是在0x 附近所有的点,都有)(x f >)(0x f ,则)(0x f 是函数)(x f 的极小值. (2)判别方法:①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 6、求函数的最值(1)求()y f x =在(,)a b 内的极值(极大或者极小值)(2)将()y f x =的各极值点与(),()f a f b 比较,其中最大的一个为最大值,最小的一个为极小值。
注:极值是在局部对函数值进行比较(局部性质);最值是在整体区间上对函数值进行比较(整体性质)。
第二章:基本初等函数(Ⅰ) §2.1.1、指数与指数幂的运算1、 一般地,如果a x n=,那么x 叫做a 的n 次方根。
其中+∈>N n n ,1. 2、 当n 为奇数时,a a n n =;当n 为偶数时,a a n n=. 3、 我们规定: ⑴m nmna a=()1,,,0*>∈>m Nn m a ;⑵()01>=-n aan n; 4、 运算性质: ⑴()Q s r a aa a sr sr∈>=+,,0;⑵()()Q s r a a a rs sr∈>=,,0;⑶()()Q r b a b a ab rr r∈>>=,0,0.§2.1.2、指数函数及其性质 1、记住图象:()1,0≠>=a a a y x2、性质:§2.2.1、对数与对数运算1、指数与对数互化式:log xa a N x N =⇔=;2、对数恒等式:log a NaN =.3、基本性质:01log =a ,1log =a a .4、运算性质:当0,0,1,0>>≠>N M a a 时: ⑴()N M MN a a a log log log +=; ⑵N M N M a a a log log log -=⎪⎭⎫⎝⎛; ⑶M n M a na log log =.5、换底公式:abb c c a log log log =()0,1,0,1,0>≠>≠>b c c a a .6、重要公式:log log n m a a mb b n= 7、倒数关系:ab b a log 1log =()1,0,1,0≠>≠>b b a a .§2..2.2、对数函数及其性质1、记住图象:()1,0log ≠>=a a x y a2、性质: §2.3、幂函数1、几种幂函数的图象:第三章:函数的应用§3.1.1、方程的根与函数的零点 1、方程()0=x f 有实根⇔函数()x f y =的图象与x 轴有交点 ⇔函数()x f y =有零点.2、 零点存在性定理:如果函数()x f y =在区间[]b a , 上的图象是连续不断的一条曲线,并且有()()0<⋅b f a f ,那么函数(x f y =在区间()b a ,内有零点,即存在()b a c ,∈,使得()0=c f ,这个c 也就是方程()0=x f 的根. §3.1.2、用二分法求方程的近似解 1、掌握二分法.§3.2.1、几类不同增长的函数模型 §3.2.2、函数模型的应用举例1、解决问题的常规方法:先画散点图,再用适当的函数拟合,最后检验.必修2数学知识点第一章:空间几何体1、空间几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。