选修4-4《坐标系与参数方程》复习讲义
高中数学选修4—4(坐标系与参数方程)知识点总结76658
坐标系与参数方程 知识点1.平面直角坐标系中的坐标伸缩变换设点P (x ,y)是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩的作用下,点P(x ,y )对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2。
极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可。
但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ。
有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ。
一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R )。
和直角坐标不同,平面内一个点的极坐标有无数种表示。
如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3。
极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y 极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩222tan (0)x y yx xρθ=+=≠ 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角。
(完整版)高中数学选修4—4(坐标系与参数方程)知识点总结
e 44
th
(
,
2
)或(或 (,-
2 ))
44
44
, 5
等多种形式,其中,只有
(
,
)
的极坐标满足方程
.
44
44
in 二、参数方程
gs 1.参数方程的概念
thin x f (t)
ll 一般地,在平面直角坐标系中,如果曲线上任意一点的坐标
x,
y
都是某个变数
t
的函数
y
g
(t
)
①,并且对于
t
a 的曲线的参数方程的形式也不同。
ing 3.圆的参数
ir be 如图所示,设圆O 的半径为 r
,点 M
从初始位置
M0
出发,按逆时针方向在圆 O 上作匀速圆周运动,设
M
(x,
y)
x ,则
y
r cos r sin
(为参数)
。
the 这就是圆心在原点 O ,半径为 r 的圆的参数方程,其中 的几何意义是 OM0 转过的角度。
bein (1)极坐标系如图所示,在平面内取一个定点 O ,叫做极点,自极点 O 引一条射线 Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正 eir 方向(通常取逆时针方向),这样就建立了一个极坐标系. th 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系, in 而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. ings (2)极坐标:设 M 是平面内一点,极点 O 与点 M 的距离|OM|叫做点 M 的极径,记为 ;以极轴 Ox 为始边,射线 OM 为终边的角 xOM 叫做点 M 的极角,记 th 为 .有序数对 (, ) 叫做点 M 的极坐标,记作 M (, ) .
选修4-4《坐标系与参数方程》复习讲义.doc
选修4-4《坐标系与参数方程》复习讲义一、广东高考考试大纲说明的具体要求:1.坐标系:①理解坐标系的作用.②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况•③能在极坐标系中用极坐标表示点的位置,能进行极坐标和直角坐标的互化.④能在极坐标系中给岀简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.2・参数方程:①了解参数方程,了解参数的意义.②能选择适当的参数写出直线、圆和圆锥曲线的参数方程.二、基础知识梳理:1.伸缩变换:设点P(x,y)是平面直角坐标系中的任意一点,在变换____________________ 的作用下,点P(x,y)对应到点P'(x;y°,称。
为平面直角坐标系中的_______________________ ,简称____________ O2.极坐标系的概念:在平面内取一个定点0,叫做__________ ;自极点0引一条射线Ox叫做_______ ;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆吋针方向),这样就建立了一个___________ 。
3•点M的极坐标:设M是平面内一点,极点0与点M的距离|0M|叫做点M的 ________ ,记为____ ;以极轴Ox为始边,射线0M为终边的ZXOM叫做点M的________ ,记为有序数对(°,&)叫做______________ ,记为______ • 极坐标_______ 与___________ 表示同一个点。
极点0的坐标为___________ ・4•若/?<0,则->0,规定点(-°,0)与点(00)关于极点对称,即(-°,0)与(°,龙+ &)表示同一点。
女n果规定p〉0,05&52龙,那么除极点外,平面内的点可用唯一的极坐标(p,&)表示;同时,极坐标(p,&)表示的点也是唯一确定的。
选修4-4坐标系与参数方程-知识点总结
坐标系与参数方程 知识点(一)坐标系1.平面直角坐标系中的坐标伸缩变换设点(,)P x y 是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩g g 的作用下,点(,)P x y 对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y 极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩222tan (0)x y yx x ρθ⎧=+⎪⎨=≠⎪⎩在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角.4.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ=≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ=≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或(2)(0)(0)θαρθπαρ=≥=+≥和过点(,0)a ,与极轴垂直的直线cos ()22a ππρθθ=-<<过点(,)2a π,与极轴平行的直线sin (0)a ρθθπ=<<注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=. 5.圆与直线一般极坐标方程(1)圆的极坐标方程若圆的圆心为 00(,)M ρθ,半径为r ,求圆的极坐标方程。
高中数学选修4—4(坐标系与参数方程)知识点总结
坐标系与参数方程 知识点1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩的作用下,点P(x,y)对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标:设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0,θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.》如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的. 3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y 极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩,222tan (0)x y yx xρθ=+=≠在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角.4.常见曲线的极坐标方程 曲线图形极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆(2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或 (2)(0)(0)θαρθπαρ=≥=+≥和过点(,0)a ,与极轴!cos ()22a ππρθθ=-<<垂直的直线过点(,)2a π,与极轴平行的直线sin (0)a ρθθπ=<<注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=.二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.?2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方程,求出另一个变数与参数的关系()y g t =,那么()()x f t y g t =⎧⎨=⎩就是曲线的参数方程,在参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
高中数学选修4-4知识点(坐标系与参数方程)
这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引 入参数,也可把普通方程化为参数方程. 2.圆的参数方程
1.圆心在坐标原点,半径为 r 的圆的参数方程 如图圆 O 与 x 轴正半轴交点 M0(r,0).
α α (t
为参数)
称为直线参数方程的标准形式,此时的参数 t 有明确的几何意义.
一般地,过点 M0(x0,y0),斜率 k=ba(a,b 为常数)的直线,参数方程为xy= =xy00+ +abtt(t 为参
数),称为直线参数方程的一般形式,此时的参数 t 不具有标准式中参数的几何意义. 四 渐开线与摆线(了解)
x=rsin φcos θ (2)空间点 P 的直角坐标(x,y,z)与球坐标(r,φ,θ)之间的变换公式为y=rsin φsin θ .
z=rcos φ
第二讲:
第4页
一 曲线的参数方程
1.参数方程的概念 1.参数方程的概念
(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标 x,y 都是某个变
2.参数方程与普通方程的区别与联系 (1)区别:普通方程 F(x,y)=0,直接给出了曲线上点的坐标 x,y 之间的关系,它含有
x,y 两个变量;参数方程xy= =fg((tt))(t 为参数)间接给出了曲线上点的坐标 x,y 之间的关系,
它含有三个变量 t,x,y,其中 x 和 y 都是参数 t 的函数. (2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一
就可得到普通方程. (3)普通方程化参数方程,首先确定变数 x,y 中的一个与参数 t 的关系,例如 x=f(t),
高中数学选修4—4(坐标系与参数方程)知识点总结
坐标系与参数方程 知识点1.平面直角坐标系中的坐标伸缩变换设点P (x ,y)是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩的作用下,点P (x,y)对应到点(,)P x y ''',称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点,叫做极点,自极点引一条射线,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。
注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标:设M 是平面内一点,极点与点M 的距离|OM |叫做点M 的极径,记为;以极轴为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为。
有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ。
一般地,不作特殊说明时,我们认为0,ρ≥可取任意实数.特别地,当点在极点时,它的极坐标为(0,)(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示。
如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点直角坐标(,)x y 极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩222tan (0)x y yx xρθ=+=≠ 在一般情况下,由tan θ确定角时,可根据点所在的象限最小正角。
选修4-4坐标系与参数方程_知识点总结
选修4-4坐标系与参数方程_知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN坐标系与参数方程 知识点(一)坐标系1.平面直角坐标系中的坐标伸缩变换设点(,)P x y 是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩的作用下,点(,)P x y 对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数.特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩ 222tan (0)x y yx x ρθ⎧=+⎪⎨=≠⎪⎩在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程 曲线图形极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ=≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ=≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或 (2)(0)(0)θαρθπαρ=≥=+≥和过点(,0)a ,与极轴垂直的直线cos ()22a ππρθθ=-<<过点(,)2a π,与极轴平行的直线sin (0)a ρθθπ=<<注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=. 5.圆与直线一般极坐标方程 (1)圆的极坐标方程若圆的圆心为 00(,)M ρθ,半径为r ,求圆的极坐标方程。
选修4-4坐标系与参数方程高考复习讲义
选修4-4坐标系与参数方程高考复习讲义第一节 坐标系 基本知识点:1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0),y ′=μ·y ,(μ>0)的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系与极坐标(1)极坐标系:如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记为M (ρ,θ). 不做特殊说明时,我们认为ρ≥0,θ可取任意实数.3.极坐标与直角坐标的互化设M 是坐标系平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如下表: 点M 直角坐标(x ,y ) 极坐标(ρ,θ)互化公式 ⎩⎪⎨⎪⎧ x =ρcos θy =ρsin θ ⎩⎨⎧ ρ2=x 2+y 2tan θ=y x (x ≠0)4.常见曲线的极坐标方程必考知识点:1.在将直角坐标化为极坐标求极角θ时,易忽视判断点所在的象限(即角θ的终边的位置).2.在极坐标系下,点的极坐标不惟一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2k π),(-ρ,π+θ+2k π)(k ∈Z )表示同一点的坐标.[试一试]:1.点P 的直角坐标为(1,-3),则点P 的极坐标为________. 曲线图形 极坐标方程 圆心在极点,半径为r 的圆ρ=r (0≤θ<2π) 圆心为(r,0),半径为r 的圆ρ=2r cos_θ⎝ ⎛⎭⎪⎫-π2≤θ≤π2 圆心为⎝ ⎛⎭⎪⎫r ,π2,半径为r 的圆 ρ=2r sin_θ(0≤θ<π) 过极点,倾斜角为α的直线 (1)θ=α(ρ∈R )或θ=π+α(ρ∈R )(2)θ=α(ρ≥0)和θ=π+α(ρ≥0)过点(a,0),与极轴垂直的直线 ρcos_θ=a ⎝ ⎛⎭⎪⎫-π2<θ<π2 过点⎝ ⎛⎭⎪⎫a ,π2,与极轴平行的直线 ρsin_θ=a (0<θ<π)2.极坐标方程ρ=sin θ+2cos θ能表示的曲线的直角坐标方程为________.1.确定极坐标方程的四要素极点、极轴、长度单位、角度单位及其正方向,四者缺一不可.2.直角坐标(x ,y )化为极坐标(ρ,θ)的步骤(1)运用ρ=x 2+y 2,tan θ=y x (x ≠0)(2)在[0,2π)内由tan θ=y x (x ≠0)求θ时,由直角坐标的符号特征判断点所在的象限.[练一练]:1.在极坐标系中,圆心在(2,π)且过极点的圆的方程为________.2.已知直线的极坐标方程为ρsin (θ+π4)=22,则极点到该直线的距离是________.考点一:平面直角坐标系中的伸缩变换1.设平面上的伸缩变换的坐标表达式为⎩⎨⎧x ′=12x ,y ′=3y ,则在这一坐标变换下正弦曲线y =sin x 的方程变为________.2.函数y =sin(2x +π4)经伸缩变换⎩⎨⎧x ′=2x ,y ′=12y 后的解析式为________.3.双曲线C :x 2-y 264=1经过φ:⎩⎨⎧x ′=3x ,2y ′=y 变换后所得曲线C ′的焦点坐标为________.[类题通法]:平面图形的伸缩变换可以用坐标伸缩变换来表示.在伸缩变换⎩⎪⎨⎪⎧x ′=λ·x ,(λ>0)y ′=μ·y ,(μ>0)下,直线仍然变成直线,抛物线仍然变成抛物线,双曲线仍然变成双曲线,圆可以变成椭圆,椭圆也可以变成圆.考点二:极坐标与直角坐标的互化[典例]1: (2013·石家庄模拟)在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为3ρ2=12ρcos θ-10(ρ>0).(1)求曲线C 1的直角坐标方程;(2)曲线C 2的方程为x 216+y 24=1,设P ,Q 分别为曲线C 1与曲线C 2上的任意一点,求|PQ |的最小值.[类题通法]:直角坐标方程与极坐标方程的互化,关键掌握好互化公式,研究极坐标系下图形的性质可转化直角坐标系的情境进行.[针对训练]:(2013·安徽模拟)在极坐标系中,直线ρcos θ-ρsin θ+1=0与圆ρ=2sin θ的位置关系是________.考点三:极坐标方程及应用[典例]2 (2013·郑州模拟)已知在直角坐标系xOy 中,曲线C的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 的方程为ρsin(θ+π4)=2 2.(1)求曲线C 在极坐标系中的方程;(2)求直线l 被曲线C 截得的弦长.变式:在本例(1)的条件下,求曲线C 与曲线C 1:ρcos θ=3(ρ≥0,0≤θ<π2)交点的极坐标.[类题通法]:求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点;(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式;(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.[针对训练]:(2013·荆州模拟)在极坐标系中,过圆ρ=6cos θ的圆心,且垂直于极轴的直线的极坐标方程为________.第二节 参数方程必考知识点:1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么,⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程. 2.常见曲线的参数方程和普通方程 点的轨迹普通方程 参数方程 直线 y -y 0=tan α(x -x 0) ⎩⎨⎧x =x 0+t cos αy =y 0+t sin α (t 为参数)易错点:1.不明确直线的参数方程中的几何意义导致错误,对于直线参数方程⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α.(t 为参数) 注意:t 是参数,α则是直线的倾斜角.2.参数方程与普通方程互化时,易忽视互化前后的等价性.[练一练]:1.若直线的参数方程为⎩⎨⎧x =1+2t ,y =2-3t (t 为参数),则直线的斜率为________.A.23 B .-23 C.32 D .-322.参数方程为⎩⎪⎨⎪⎧x =3t 2+2y =t 2-1(0≤t ≤5)的曲线为__________(填“线段”、“双曲线”、“圆弧”或“射线”).1.化参数方程为普通方程的方法消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法. 圆x 2+y 2=r 2 ⎩⎨⎧ x =r cos θy =r sin θ(θ为参数) 椭圆 x 2a 2+y 2b 2=1(a >b >0) ⎩⎨⎧ x =a cos φy =b sin φ(φ为参数)2.利用直线参数方程中参数的几何意义求解问题的方法 经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:(1)t 0=t 1+t 22; (2)|PM |=|t 0|=t 1+t 22;(3)|AB |=|t 2-t 1|;(4)|P A |·|PB |=|t 1·t 2|.[练一练]:1.已知P 1,P 2是直线⎩⎨⎧ x =1+12t ,y =-2+32t (t 为参数)上的两点,它们所对应的参数分别为t 1,t 2,则线段P 1P 2的中点到点P (1,-2)的距离是________.2.已知直线⎩⎨⎧ x =2-12t ,y =-1+12t (t 为参数)与圆x 2+y 2=4相交于B ,C 两点,则|BC |的值为________.考点一:参数方程与普通方程的互化1.曲线⎩⎨⎧ x =23cos θy =32sin θ(θ为参数)中两焦点间的距离是________. 2.(2014·西安质检)若直线3x +4y +m =0与圆⎩⎨⎧x =1+cos θ,y =-2+sin θ(θ为参数)相切,则实数m 的值是________.3.(2014·武汉调研)在直角坐标系xOy 中,以原点O 为极点,x轴的正半轴为极轴建立极坐标系.已知直线⎩⎨⎧x =-t ,y =3t (t 为参数,t ∈R )与曲线C 1:ρ=4sin θ异于点O 的交点为A ,与曲线C 2:ρ=2sin θ异于点O 的交点为B ,则|AB |=________.[类题通法]:参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的另一种表示形式,参数方程化为普通方程关键在于消参,消参时要注意参变量的范围.考点二:参数方程的应用[典例]1:(2013·郑州模拟)已知直线C 1:⎩⎨⎧ x =1+t cos α,y =t sin α(t 为参数),曲线C 2:⎩⎨⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点,当α变化时,求点P 轨迹的参数方程,并指出它是什么曲线.变式:在本例(1)条件下,若直线C 1:⎩⎨⎧ x =1+t cos αy =t sin α,(t 为参数),与直线C 2⎩⎨⎧x =s ,y =1-as (s 为参数)垂直,求a . [类题通法]:1.解决直线与圆的参数方程的应用问题时一般是先化为普通方程再根据直线与圆的位置关系来解决问题.2.对于形如⎩⎨⎧x =x 0+at ,y =y 0+bt (t 为参数) 当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.[针对训练]:(2013·新课标卷Ⅱ)已知动点P ,Q 在曲线C :⎩⎪⎨⎪⎧x =2cos t ,y =2sin t (t 为参数)上,对应参数分别为t =α与t =2α为(0<α<2π),M 为PQ 的中点.(1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.考点三:极坐标、参数方程的综合应用[典例]2: (2013·福建高考)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=a ,且点A 在直线l 上. (1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系. [类题通法]:涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.[针对训练]:(2013·石家庄质检)已知P 为半圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M在射线OP 上,线段OM 与半圆C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标;(2)求直线AM 的参数方程.选修4-4坐标系与参数方程专题训练1.[2014·天津卷] 在以O 为极点的极坐标系中,圆ρ=4sin θ和直线ρsin θ=a 相交于A ,B 两点.若△AOB 是等边三角形,则a 的值为________.2.[2014·安徽卷] 以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是⎩⎪⎨⎪⎧x =t +1,y =t -3(t 为参数),圆C 的极坐标方程是ρ=4cos θ,则直线l 被圆C 截得的弦长为( ) A.14 B .214 C. 2 D .2 23.[2014·北京卷] 曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( ) A .在直线y =2x 上 B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上4. [2014·福建卷] (Ⅱ)选修4-4:坐标系与参数方程已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t(t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程; (2)若直线l 与圆C 有公共点,求实数a 的取值范围.5.[2014·广东卷] (坐标系与参数方程选做题)在极坐标系中,曲线C 1和C 2的方程分别为ρsin 2θ=cos θ和ρsin θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1和C 2交点的直角坐标为________.6.[2014·湖北卷] (选修4-4:坐标系与参数方程)已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =t ,y =3t 3(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,则C 1与C 2交点的直角坐标为________.7.[2014·湖南卷] 在平面直角坐标系中,倾斜角为π4的直线l 与曲线C :⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α(α为参数)交于A ,B 两点,且|AB |=2.以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则直线l 的极坐标方程是________.8.[2014·江西卷] (2)(坐标系与参数方程选做题)若以直角坐标系的原点为极点,x 轴的非负半轴为极轴建立极坐标系,则线段y =1-x (0≤x ≤1)的极坐标方程为( )A .ρ=1cos θ+sin θ,0≤θ≤π2B .ρ=1cos θ+sin θ,0≤θ≤π4 C .ρ=cos θ+sin θ,0≤θ≤π2 D .ρ=cos θ+sin θ,0≤θ≤π49.[2014·辽宁卷] 选修4-4:坐标系与参数方程将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程; (2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.10.[2014·新课标全国卷Ⅰ] 选修4-4:坐标系与参数方程已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.11.[2014·新课标全国卷Ⅱ] 选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎡⎦⎤0,π2. (1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.12.[2014·陕西卷] C .(坐标系与参数方程选做题)在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1的距离是________. 13.[2014·浙江卷] (1)在极坐标系Ox 中,设集合A ={(ρ,θ)|0≤θ≤π4,0≤ρ≤cos θ},求集合A 所表示区域的面积;(2)在直角坐标系xOy 中,直线l :⎩⎨⎧x =-4+t cos π4,y =t sin π4(t 为参数), 曲线C :⎩⎪⎨⎪⎧x =a cos θ,y =2sin θ(θ为参数),其中a >0. 若曲线C 上所有点均在直线l 的右下方,求a 的取值范围.14.[2014·重庆卷] 已知直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =3+t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρsin 2θ-4cos θ=0(ρ≥0,0≤θ<2π),则直线l 与曲线C 的公共点的极径ρ=________.2015年高考预测题1.[2014·长沙模拟] 已知点P 所在曲线的极坐标方程为ρ=2cosθ,点Q 所在曲线的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =4+2t (t 为参数),则|PQ |的最小值是( ) A .2 B.4 55+1 C .1 D.4 55-12.[2014·株洲模拟] 在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =3sin α(α为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴的正半轴为极轴)中,直线C 2的方程为ρ(cos θ-sin θ)+1=0,则曲线C 1与C 2的交点的个数为________.3.[2014·湖南长郡中学月考] 在极坐标系中,圆C 1的方程为ρ=4 2cos ⎝⎛⎭⎪⎫θ-π4,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,已知圆C 2的参数方程为⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(a >0,θ为参数).若圆C 1与圆C 2外切,则实数a =____________.4.[2014·衡阳模拟] 已知曲线C 的极坐标方程为ρ=4cos θ.若以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,则曲线C 的参数方程为________.5.[2014·湖南雅礼中学月考] 已知极坐标系下曲线ρ=4sin θ表示圆,则点A ⎝⎛⎭⎪⎫4,π6到圆心的距离为____________. 6.[2014·湖南十三校联考] 以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的参数方程为⎩⎨⎧x =t ,y =t -a(t 为参数),圆C 的极坐标方程为ρ=2cos θ,若直线l 经过圆C 的圆心,则常数a 的值为________.7.[2014·湖南师大附中月考] 在极坐标系中,已知点A 的极坐标为(2,π),直线l 的极坐标方程为ρsin θ+π4=2,则点A 到直线l的距离是____________.第一节 坐标系参考答案1.⎝⎛⎭⎪⎫2,-π3 2.x 2+y 2-2x -y =0 练习1:解析:如图,O 为极点,OB 为直径,A (ρ,θ),则∠ABO =θ-90°,OB =22=ρsin (θ-90°),化简得ρ=-22cos θ. 2.22 考点一:1.y ′=3sin 2x ′ 2.y ′=12sin(x ′+π4)3.x 29-y 216=1为曲线C ′的方程,焦点F 1(-5,0),F 2(5,0)为所求.考点二:例:1.(1)曲线C 1的方程 (x -2)2+y 2=23. (2) |QC 1|min =263,所以|PQ |min =63. 练习:相交例2:[解] (1)由已知得,曲线C 的普通方程为(x -2)2+y 2=4, 即x 2+y 2-4x =0,化为极坐标方程是ρ=4cos θ.(2)由题意知,直线l 的直角坐标方程为x +y -4=0,由⎩⎪⎨⎪⎧x 2+y 2-4x =0,x +y =4,得直线l 与曲线C 的交点坐标为(2,2),(4,0),所以所求弦长为2 2. 变式:由曲线C ,C 1极坐标方程联立⎩⎨⎧ ρcos θ=3,ρ=4cos θ,∴cos 2θ=34,cos θ=±32,又ρ≥0,θ∈[0,π2).∴cos θ=32,θ=π6,ρ=23,故交点极坐标为⎝ ⎛⎭⎪⎫23,π6. 训练: ρ=6cos θ在直角坐标系中表示圆心为(3,0),半径为3的圆.过圆心且垂直于x 轴的直线方程为x =3,其在极坐标系下的方程为ρcos θ=3.第二节 参数方程与极坐标参考答案练习1.D 2.线段 练习1:由t 的几何意义可知,线段P 1P 2的中点对应的参数为t 1+t 22,P 对应的参数为t =0,∴线段P 1P 2的中点到点P 的距离为|t 1+t 2|2. 2.14 考点一:1.26 2.0或103.3 例1:(1) (1,0),⎝⎛⎭⎫12,-32. (2)依题意,C 1的普通方程为x sin α-y cos α-sin α=0,则A 点的坐标为(sin 2α,-sin αcos α), 故当α变化时,P 点轨迹的参数方程为⎩⎨⎧ x =12sin 2α,y =-12sin αcos α(α为参数),∴点P 轨迹的普通方程为(x -14)2+y 2=116.故点P 的轨迹是圆心为(14,0),半径为14的圆.变式:由(1)知C 1的普通方程为y =3(x -1),C 2的普通方程为y=1-ax ,由两线垂直得-a ×3=-1,故a =33.训练:(1)依题意有P (2cos α,2sin α),Q (2cos 2α,2sin 2α), 因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π). (2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π时,d =0,故M 的轨迹过坐标原点.例2:(1)由点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝ ⎛⎭⎪⎫θ-π4=a 上, 可得a = 2.所以直线l 的方程可化为ρcos θ+ρsin θ=2,从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1,所以圆C 的圆心为(1,0),半径r =1,因为圆心C 到直线l 的距离d =12=22<1,所以直线l 与圆C 相交. 训练:(1)由已知,点M 的极角为π3,且|OM |=π3,故点M 的极坐标为(π3,π3).(2)由(1)可得点M 的直角坐标为(π6,3π6),A (1,0),故直线AM 的参数方程为⎩⎨⎧ x =1+(π6-1)t ,y =3π6t (t 为参数)2014年高考坐标系与参数方程参考答案1.3 [解析] 将ρ=4sin θ与ρsin θ=a 转化为直角坐标方程分别为x 2+(y -2)2=4与y =a .联立⎩⎪⎨⎪⎧y =a ,x 2+(y -2)2=4,得x 2=-a 2+4a ,且0<a <4. ∵△AOB 为等边三角形,∴a 2=3(-a 2+4a ),解得a =3或a =0(舍).2.D [解析] 直线l 的普通方程为y =x -4,圆C 的直角坐标方程是(x -2)2+y 2=4,圆心(2,0)到直线l 的距离d =|2-0-4|2=2,所以直线l 被圆C 截得的弦长为222-(2)2=2 2.3.B [解析] 曲线方程消参化为(x +1)2+(y -2)2=1,其对称中心点为(-1,2),验证知其在直线y =-2x 上.4. (Ⅱ)解:(1)直线l 的普通方程为2x -y -2a =0,圆C 的普通方程为x 2+y 2=16.(2)因为直线l 与圆C 有公共点,故圆C 的圆心到直线l 的距离d =≤4,解得-25≤a ≤2 5.5.(1,1) [解析] 本题主要考查将极坐标方程化为直角坐标方程的方法.将曲线C 1的方程ρsin 2θ=cos θ 化为直角坐标方程为y 2=x ,将曲线C 2的方程ρsin θ=1化为直角坐标方程为y =1.由⎩⎪⎨⎪⎧y 2=x ,y =1,解得⎩⎪⎨⎪⎧x =1,y =1.故曲线C 1和C 2交点的直角坐标为(1,1). 6.()3,1 [解析] 由⎩⎨⎧x =t ,y =3t 3,消去t 得y =33x (x ≥0),即曲线C 1的普通方程是y =33x (x ≥0);由ρ=2,得ρ2=4,得x 2+y 2=4,即曲线C 2的直角坐标方程是x 2+y 2=4.联立⎩⎨⎧y =33x (x ≥0),x 2+y 2=4,解得⎩⎪⎨⎪⎧x =3,y =1.故曲线C 1与C 2的交点坐标为()3,1. 7.ρcos θ-ρsin θ=1 [解析] 依题意可设直线l :y =x +b ,曲线C :⎩⎪⎨⎪⎧x =2+cos α,y =1+sin α的普通方程为(x -2)2+(y -1)2=1.由|AB |=2可知圆心(2,1)在直线l :y =x +b 上,即l :y =x -1,所以l 的极坐标方程是ρcos θ-ρsin θ-1=0.8.(2)A [解析] 依题意,方程y =1-x 的极坐标方程为ρ(cos θ+sin θ)=1,整理得ρ=1cos θ+sin θ.因为0≤x ≤1,所以 0≤y ≤1,结合图形可知,0≤θ≤π2.9.解:(1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1,由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的方程为x 2+y 24=1. 故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数). (2)由⎩⎨⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线的斜率k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12, 化为极坐标方程,并整理得 2ρcos θ-4ρsin θ=-3,即ρ=34sin θ-2cos θ. 10.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离d =55|4cos θ+3sin θ-6|,则|P A |=d sin 30°=255|5sin(θ+α)-6|, 其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255. 当sin(θ+α)=1时,|P A |取得最小值,最小值为255.11.解:(1)C 的普通方程为(x -1)2+y 2=1(0≤y ≤1).可得C 的参数方程为 ⎩⎪⎨⎪⎧x =1+cos t ,y =sin t ,(t 为参数,0≤t ≤π). (2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32. 12.C .1 [解析] C .点⎝⎛⎭⎪⎫2,π6的极坐标可化为x =ρcos θ=2cos π6=3,y =ρsin θ=2sin π6=1,即点⎝⎛⎭⎪⎫2,π6在平面直角坐标系中的坐标为(3,1).直线ρsin ⎝⎛⎭⎪⎫θ-π6=ρsin θcos π6-ρcos θsin π6=1,即该直线在直角坐标系中的方程为x -3y +2=0,由点到直线的距离公式得所求距离为d =|3-3+2|12+(-3)2=1.13.解:(1)在ρ=cos θ两边同乘ρ,得ρ2=ρcos θ.化成直角坐标方程,得x 2+y 2=x ,即⎝ ⎛⎭⎪⎫x -122+y 2=14.所以集合A 所表示的区域为:由射线y =x (x ≥0),y =0(x ≥0),圆⎝ ⎛⎭⎪⎫x -122+y 2=14所围成的区域,如图所示的阴影部分,所求面积为π16+18.(2)由题意知,直线l 的普通方程为x -y +4=0.因为曲线C 上所有点均在直线l 的右下方,故对θ∈R ,有a cos θ-2sin θ+4>0恒成立,即a 2+4cos(θ+φ)>-4⎝⎛⎭⎪⎫其中tan φ=2a 恒成立,所以a 2+4<4.又a >0,得0<a <2 3.14. 5 [解析] 由题意,得直线l 的普通方程为x -y +1=0,曲线C 的平面直角坐标方程为y 2=4x ,联立直线l 与曲线C 的方程,解得⎩⎪⎨⎪⎧x =1,y =2,所以直线l 与曲线C 的公共点的极径ρ=(1-0)2+(2-0)2= 5.1.D 2.2 [解析] 由题意,曲线C 1的参数方程⎩⎪⎨⎪⎧x =2cos α,y =3sin α(α为参数)可化为一般方程x 24+y 23=1,直线C 2的极坐标方程ρ·(cos θ-sin θ)+1=0可化为普通方程x -y +1=0.联立两个方程,消去y可得x 24+(x +1)23=1,即7x 2+8x -8=0.因为Δ=82+4×7×8>0,所以直线与椭圆相交,且有两个交点.3.2 [解析] 依题意,ρ=4 2cos θ-π4=4cos θ+4sin θ,化成普通方程为x 2+y 2=4x +4y ,即(x -2)2+(y -2)2=8,即该圆的圆心为C 1(2,2),半径r 1=2 2.将⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(a >0,θ为参数)化成普通方程为(x +1)2+(y +1)2=a 2,即圆心为C 2(-1,-1),半径r 2=a .由丙点间两圆外切可得|C 1C 2|=3 2=2 2+a ,所以a = 2.4.⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数) [解析] 由曲线C 的极坐标方程为ρ=4cos θ,可得其普通方程为x 2+y 2=4x ,即(x -2)2+y 2=4,所以曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数). 5.2 3 [解析] 将曲线ρ=4sin θ化成普通方程为x 2+y 2=4y ,则该圆的圆心为(0,2),而点A ⎝ ⎛⎭⎪⎫4,π6的直角坐标为(2 3,2),由两点间距离公式可得d =(2 3)2+(2-2)2=2 3.6.1 [解析] 将直线l 的参数方程⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)化为普通方程为y =x -a ,将圆C 的极坐标方程ρ=2cos θ化为普通方程为x 2+y 2=2x ,则圆心为(1,0),代入直线y =x -a 可得a =1. 7.2 2 [解析] 由题意,直线l 的极坐标方程为ρsin θcos π4+cos θsin π4=2,即ρsin θ+ρcos θ=2,则直线l 的直角坐标方程为x +y -2=0.又点A 的直角坐标为(-2,0),所以点A 到直线l的距离d =|-2-2|2=2 2.。
高考数学(北师大版)一轮复习讲义:选修4-4坐标系与参数方程(共46张)讲课文档
(5)抛物线 y2=2px(p>0)的参数方程为xy==22pptt2 (t 为参数). (6)圆的渐开线的参数方程为xy==rrscionsθθ-+θθcsoinsθθ (θ 为参数). (7)平摆线的参数方程为xy==rr1θ--csoinsθθ (θ 为参数).
第十六页,共46页。
第十二页,共46页。
(2)圆的参数方程 圆(x-x0)2+(y-y0)2=r2 的参数方程为
xy==yx00++rrscionsθθ (θ 为参数 0≤θ≤2π).
(3)椭圆的参数方程
①椭圆ax22+yb22=1(a>b>0)的参数方程为xy==bascionsθθ (θ 为参数
0≤θ≤2π);
②
第二十五页,共46页。
题型四 参数方程与普通方程的互化 例 4.将参数方程xy==s2i+n2θsin2θ (θ 为参数)化为普通方程.
解析 将 sin2θ=y 代入 x=2+sin2θ 得 x=2+y,即 x-y-2=0. ∵sin2θ∈[0,1], ∴x∈[2,3],y∈[0,1], ∴普通方程为 x-y-2=0,x∈[2,3].
第二十八页,共46页。
解析
(1)直线 l 的参数方程为x=1+2t
y=2+
3 2t
(t 为参数).
(2)将xy==21++2t23t
代入 x2+y2=9,
得:t2+(1+2 3)t-4=0,
∴t1t2=-4. 由参数 t 的几何意义得直线 l 和圆 x2+y2=9 的两个交点到点 A
第九页,共46页。
5.圆锥曲线的极坐标方程 设定点 F 到定直线 l 的距离为 p,e 为离心率,则 圆锥曲线的极坐标方程是 ρ=1-eepcosθ. 当 0<e<1 时,方程 ρ=1-eepcosθ表示椭圆; 当 e=1 时,方程 ρ=1-pcosθ表示抛物线; 当 e>1 时,方程 ρ=1-eepcosθ表示双曲线,其中 ρ∈R.
选修4-4《坐标系及参数方程》复习讲义
选修4-4《坐标系与参数方程》复习讲义广东高考考试大纲说明的具体要求:1.坐标系:① 理解坐标系的作用. ② 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况. ③ 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④ 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2.参数方程: ① 了解参数方程,了解参数的意义.② 能选择适当的参数写出直线、圆和圆锥曲线的参数方程.(一)基础知识梳理:1.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。
2.点M 的极坐标:设M 是平面内一点,极点O与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的∠XOM 叫做点M 的极角,记为θ。
有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ. 极坐标),(θρ与)Z k )(2k ,(∈+πθρ表示同一个点。
极点O 的坐标为)R )(,0(∈θθ. 3.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。
如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。
4.极坐标与直角坐标的互化:5。
圆的极坐标方程:在极坐标系中,以极点为圆心,r 为半径的圆的极坐标方程是 r =ρ;在极坐标系中,以 )0,a (C (a>0)为圆心, a 为半径的圆的极坐标方程是 θρ2acos =; 在极坐标系中,以 )2,a (C π(a>0)为圆心,a 为半径的圆的极坐标方程是 θρ2asin =;6.在极坐标系中,)0(≥=ραθ表示以极点为起点的一条射线;)R (∈=ραθ表示过极点的一条直线.在极坐标系中,过点)0a )(0,a (A >,且垂直于极轴的直线l 的极坐标方程是a cos =θρ. 7.参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数⎩⎨⎧==),t (g y ),t (f x 并且对于t 的每一个允许值,由这个方程所确定的点M(x,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x,y 的变数t 叫做参变数,简称参数。
高中数学选修4—4(坐标系与参数方程)知识点复习总结
坐标系与参数方程 知识点1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩的作用下,点P(x,y)对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:在一般情况下,由tan 确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=.二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方程,求出另一个变数与参数的关系()y g t =,那么()()x f t y g t =⎧⎨=⎩就是曲线的参数方程,在参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
高中数学选修4—4(坐标系与参数方程)知识点总结
坐标系与参数方程 知识点1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)x x y yλλϕμμ'=>⎧⎨'=>⎩的作用下,点P(x,y)对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标:设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=.二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方程,求出另一个变数与参数的关系()y g t =,那么()()x f t y g t =⎧⎨=⎩就是曲线的参数方程,在参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
高中数学选修4—4(坐标系与参数方程)知识点总结
坐标系与参数方程知识点1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)x xy y的作用下,点P(x,y)对应到点(,)P x y,称为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念(1)极坐标系如图所示,在平面内取一个定点O,叫做极点,自极点O引一条射线Ox,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为.有序数对(,)叫做点M的极坐标,记作(,)M.一般地,不作特殊说明时,我们认为0,可取任意实数.特别地,当点M在极点时,它的极坐标为(0,)(∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02,那么除极点外,平面内的点可用唯一的极坐标(,)表示;同时,极坐标(,)表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M是坐标平面内任意一点,它的直角坐标是(,)x y,极坐标是(,)(0),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y极坐标(,)互化公式cossinxy222tan(0)x yyxx在一般情况下,由tan确定角时,可根据点M所在的象限最小正角.4.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r的圆(02) r圆心为(,0)r,半径为r的圆2cos()22 r圆心为(,)2r,半径为r的圆2sin(0) r过极点,倾斜角为的直线(1)()()R R 或(2)(0)(0)和过点(,0)a ,与极轴垂直的直线cos()22a 过点(,)2a ,与极轴平行的直线sin(0)a 注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,点(,)44M 可以表示为5(,2)(,2),444444或或(-)等多种形式,其中,只有(,)44的极坐标满足方程.二、参数方程1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t yg t ①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t ,把它代入普通方程,求出另一个变数与参数的关系()y g t ,那么()()x f t yg t 就是曲线的参数方程,在参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选修4-4《坐标系与参数方程》复习讲义广东高考考试大纲说明的具体要求:1.坐标系:① 理解坐标系的作用. ② 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况. ③ 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④ 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2.参数方程: ① 了解参数方程,了解参数的意义.② 能选择适当的参数写出直线、圆和圆锥曲线的参数方程.(一)基础知识梳理:1.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。
2.点M 的极坐标:设M 是平面内一点,极点O与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的∠XOM 叫做点M 的极角,记为θ。
有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ. 极坐标),(θρ与)Z k )(2k ,(∈+πθρ表示同一个点。
极点O 的坐标为)R )(,0(∈θθ. 3.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。
如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。
4.极坐标与直角坐标的互化:5。
圆的极坐标方程:在极坐标系中,以极点为圆心,r 为半径的圆的极坐标方程是 r =ρ;在极坐标系中,以 )0,a (C (a>0)为圆心, a 为半径的圆的极坐标方程是 θρ2acos=; 在极坐标系中,以 )2,a (C π(a>0)为圆心,a 为半径的圆的极坐标方程是 θρ2asin =;6.在极坐标系中,)0(≥=ραθ表示以极点为起点的一条射线;)R (∈=ραθ表示过极点的一条直线. 在极坐标系中,过点)0a )(0,a (A >,且垂直于极轴的直线l 的极坐标方程是a cos =θρ. 7.参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数⎩⎨⎧==),t (g y ),t (f x 并且对于t 的每一个允许值,由这个方程所确定的点M(x,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x,y 的变数t 叫做参变数,简称参数。
相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。
8.圆222r )b y ()a x (=-+-的参数方程可表示为)(.rsin b y ,rcos a x 为参数θθθ⎩⎨⎧+=+=.椭圆1b y a x 2222=+(a>b>0)的参数方程可表示为)(.bsin y ,acos x 为参数ϕϕϕ⎩⎨⎧==. 抛物线2px y 2=的参数方程可表示为)t (.2pt y ,2pt x 2为参数⎩⎨⎧==.经过点)y ,x (M o o O ,倾斜角为α的直线l 的参数方程可表示为⎩⎨⎧+=+=.tsin y y ,tcos x x o o αα(t 为参数)。
9.在建立曲线的参数方程时,要注明参数及参数的取值范围。
在参数方程与普通方程的互化中, 必须使x,y 的取值范围保持一致.(二)典型例题分析:例1.(2007深圳一模文)在极坐标系中,过圆4cos =ρθ的圆心,且垂直于极轴的直线的极坐标方程为 .例2. (2008韶关调研理) 设M、N分别是曲线2sin 0ρθ+=和s ()4in πρθ+=上的动点, 则M、N的最小距离是例3. (2008佛山一模文、理)在直角坐标系中圆C 的参数方程为⎩⎨⎧+==θθsin 22cos 2y x (θ为参数),则圆C 的普通方程为_____ _____,以原点O 为极点,以x 轴正半轴为 极轴建立极坐标系,则圆C 的圆心极坐标为______________.例4.(2007海南、宁夏文、理) ⊙O 1和⊙O 2的极坐标方程分别为4cos 4sin ρθρθ==-,.(Ⅰ)把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程;(Ⅱ)求经过⊙O1,⊙O2交点的直线的直角坐标方程.例5.(2008江苏)在平面直角坐标系xOy 中,点()P x y ,是椭圆2213x y +=上的一个动点,求S x y =+的最大值.(三)基础训练:1.(2008重庆文)曲线C :cos 1.sin 1x y θθ=-⎧⎨=+⎩(θ为参数)的普通方程为 ( )(A)(x -1)2+(y +1)2=1(B) (x +1)2+(y +1)2=1(C) (x +1)2+(y -1)2=1(D) (x -1)2+(y -1)2=12.(2002全国理)点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为( )(A )0 (B )1 (C )2 (D )2A.ρθ=22cosB.ρθ=-22cosC.ρθ=22sinD.ρθ=-22sin4.(2001广东)极坐标方程ρ2cos2θ=1所表示的曲线是( ) A .两条相交直线 B .圆 C .椭圆 D .双曲线 5.(2005福建理)设b a b a b a +=+∈则,62,,22R 的最小值是 ( )A .22-B .335- C .-3 D .27-6.( 2007广东文)在极坐标系中,直线l 的方程为ρsin θ=3,则点(2,6π)到直线l 的距离为 .7. (2007广东理)在平面直角坐标系xOy 中,直线l 的参数方程为)(33R t ty t x ∈⎩⎨⎧-=+=参数,圆C的参数方程为[])20(2sin 2cos 2πθθθ,参数∈⎩⎨⎧+==y x ,则圆C 的圆心坐标为 ,圆心到直线l 的距离为 .8.(2008广东文、理)已知曲线21,C C 的极坐标方程分别为θρθρcos 4,3cos ==(20,0πθρ<≤≥),则曲线1C 与2C 交点的极坐标为__ ___.9.(2008福建理)若直线3x+4y+m=0与圆⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)没有公共点,则实数m 的取值范围是 .10.(2007深圳一模理)在极坐标系中,已知点A (1,43π)和B )4,2(π,则A 、B 两点间 的距离是 .11.(2008深圳调研文)在极坐标系中,直线π3θ=(ρ∈R )与圆4cos ρθ=+θ 交于A 、B 两点,则AB = .12.(2007汕头二模理)在极坐标系中,圆ρ=cos θ与直线ρcos θ=1的位置关系是 .13.(2007广州一模文、理)在极坐标系中,圆2ρ=上的点到直线()6sin 3cos =+θθρ的距离的最小值是 ___ __ .14.(2008广州一模文、理)在极坐标系中,过点4π⎛⎫⎪⎝⎭作圆4sin ρθ=的切线,则切线的 极坐标方程是 .15.(2008揭阳一模文、理) 在极坐标系中,已知直线过点(1,0),且其向上的方向与极轴的正方向所成的最小正角为3π,则直线的极坐标方程为_________________________.16. (2008广州二模文、理)已知圆C 的参数方程为⎩⎨⎧=+=θθsin ,1cos y x (θ为参数), 则点()4,4P 与圆C 上的点的最远距离是 .17.(2008中山一模理)参数方程⎩⎨⎧-==αα2cos 2cos 2y x (α是参数)表示的曲线的普通方程是___________.18.双曲线)t (.t 1t y ,t1t x 为参数⎪⎪⎩⎪⎪⎨⎧-=+=的离心率是____________.选修4-4《坐标系与参数方程》复习讲义参考答案(二)典型例题分析:例1.2cos =θρ. 例2. 例3.22(2)4x y +-=, )2,2(π.例4.解:(Ⅰ)⊙O 1和⊙O 2的直角坐标方程分别为4)2(22=+-y x 和4)2(22=++y x ;(Ⅱ)经过⊙O 1,⊙O 2交点的直线的直角坐标方程是x+y=0例5.解: 因椭圆2213x y +=的参数方程为 (sin x y φφφ⎧=⎪⎨=⎪⎩为参数)故可设动点P 的坐标为,sin φφ),其中02φπ≤<.因此1sin 2(sin )2sin()223S x y πφφφφφ=+=+=+=+ 所以。
当6πφ=是,S 取最大值2(三)基础训练:1.C . 2.B. 3. B. 4. D . 5.C . 6. 2 . 7. (0,2) ,22 . 8. ⎪⎭⎫⎝⎛6,32π . 9.(,0)(10,)-∞⋃+∞. 10.5. 11. 8 . 12. 相切 . 13. __ 1 _ . 14.cos 2ρθ=.15.sin()3πρθ-=. 16. 6 . 17.322+-=x y (2||≤x ). 18.2.。