高中数学 1.4.1正弦、余弦函数的图象(2)教案 新人教B版必修4
人教a版必修4学案:1.4.1正弦函数、余弦函数的图象(含答案)
1.4.1 正弦函数、余弦函数的图象自主学习知识梳理1.正弦曲线、余弦曲线 (1)定义:正弦函数y =sin x (x ∈R )和余弦函数y =cos x (x ∈R )的图象分别叫做__________曲线和________曲线.(2)图象:如图所示.2.“五点法”画图 步骤: (1)列表:x 0 π2 π 3π2 2π sin x 0 1 0 -1 0 cos x1-11(2)描点:画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是________________________;画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是__________________________________.(3)用光滑曲线顺次连接这五个点,得到正、余弦曲线的简图. 3.正、余弦曲线的联系依据诱导公式cos x =sin ⎝⎛⎭⎫x +π2,要得到y =cos x 的图象,只需把y =sin x 的图象向______平移π2个单位长度即可.自主探究已知0≤x ≤2π,结合正、余弦曲线试探究sin x 与cos x 的大小关系.对点讲练知识点一 利用“五点法”作正、余弦函数的图象例1 利用“五点法”画函数y =-sin x +1(0≤x ≤2π)的简图.回顾归纳作正弦、余弦曲线要理解几何法作图,掌握五点法作图.“五点”即y=sin x或y=cos x的图象在一个最小正周期内的最高点、最低点和与x轴的交点.“五点法”是作简图的常用方法.变式训练1利用“五点法”画函数y=-1-cos x,x∈[0,2π]的简图.知识点二利用三角函数图象求定义域例2求函数f(x)=lg sin x+16-x2的定义域.回顾归纳一些三角函数的定义域可以借助函数图象直观地观察得到,同时要注意区间端点的取舍.变式训练2求函数f(x)=cos x+lg(8x-x2)的定义域.知识点三利用三角函数的图象判断方程解的个数例3在同一坐标系中,作函数y=sin x和y=lg x的图象,根据图象判断出方程sin x =lg x的解的个数.回顾归纳三角函数的图象是研究函数的重要工具,通过图象可较简便的解决问题,这正是数形结合思想方法的应用.变式训练3求方程x2=cos x的实数解的个数.1.正、余弦曲线在研究正、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础.2.五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一.课时作业一、选择题1.函数y =sin x (x ∈R )图象的一条对称轴是( ) A .x 轴 B .y 轴C .直线y =xD .直线x =π22.函数y =-cos x 的图象与余弦函数y =cos x 的图象( ) A .只关于x 轴对称 B .关于原点对称 C .关于原点、x 轴对称 D .关于原点、坐标轴对称 3.如果x ∈[0,2π],则函数y =sin x +-cos x 的定义域为( )A .[0,π] B.⎣⎡⎦⎤π2,3π2C.⎣⎡⎦⎤π2,πD.⎣⎡⎦⎤3π2,2π 4.在(0,2π)内使sin x >|cos x |的x 的取值范围是( ) A.⎝⎛⎭⎫π4,3π4 B.⎝⎛⎦⎤π4,π2∪⎝⎛⎦⎤5π4,3π2 C.⎝⎛⎭⎫π4,π2 D.⎝⎛⎭⎫5π4,7π4 5.已知函数y =2sin x ⎝⎛⎭⎫π2≤x ≤5π2的图象与直线y =2围成一个封闭的平面图形,那么此封闭图形的面积( )A .4B .8C .4πD .2π二、填空题6.函数y =cos x1+sin x的定义域为____________.7.函数y =2cos x +1的定义域是______________.8.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为________.三、解答题9.利用“五点法”作出下列函数的简图:(1)y =-sin x (0≤x ≤2π);(2)y =1+cos x (0≤x ≤2π).10.分别作出下列函数的图象.(1)y =|sin x |,x ∈R ;(2)y =sin|x |,x ∈R .§1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象答案知识梳理1.(1)正弦 余弦2.(2)(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0) (0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1) 3.左 自主探究解 正、余弦曲线如图所示.由图象可知①当x =π4或x =5π4时,sin x =cos x ,②当π4<x <5π4时,sin x >cos x .③当0≤x <π4或5π4<x ≤2π时,sin x <cos x .对点讲练例1 解 利用“五点法”作图 取值列表:x 0 π2π3π2 2π sin x 0 1 0 -1 0 1-sin x 1 0 121变式训练1 x0 π2 π 3π2 2π cos x 1 0 -1 0 1 -1-cos x-2-1-1-2例2 解 由题意,x 满足不等式组⎩⎨⎧sin x >016-x 2≥0, 即⎩⎨⎧-4≤x ≤4sin x >0,作出y =sin x 的图象,如图所示.结合图象可得:x ∈[-4,-π)∪(0,π).变式训练2 解 由⎩⎪⎨⎪⎧8x -x 2>0cos x ≥0,得⎩⎨⎧0<x <8cos x ≥0.画出y =cos x ,x ∈[0,3π]的图象,如图所示.结合图象可得:x ∈⎝⎛⎦⎤0,π2∪⎣⎡3π2,5π2.例3 解 建立坐标系xOy ,先用五点法画出函数y =sin x ,x ∈[0,2π]的图象,再依次向左、右连续平移2π个单位,得到y =sin x 的图象.描出点⎝⎛⎭⎫1101,(1,0),(10,1)并用光滑曲线连接得到y =lg x 的图象,如图所示.由图象可知方程sin x =lg x 的解有3个.变式训练3 解 作函数y =cos x 与y =x 2的图象,如图所示, 由图象,可知原方程有两个实数解.课时作业 1.D2.C [结合图象易知.]3.C [∵sin x ≥0且-cos x ≥0,∴x ∈⎣⎡⎦⎤π2π.] 4.A[∵sin x >|cos x |,∴sin x >0,∴x ∈(0,π),在同一坐标系中画出y =sin x ,x ∈(0,π)与y =|cos x |,x ∈(0,π)的图象,观察图象易得x ∈⎝⎛⎭⎫π4,3π4.]5.C [数形结合,如图所示.y =2sin x ,x ∈⎣⎡⎦⎤π2,5π2的图象与直线y =2围成的封闭平面图形面积相当于由x =π2,x =5π2, y =0,y =2围成的矩形面积,即S =⎝⎛⎭⎫5π2-π2×2=4π.]6.⎝⎛⎦⎤-π22k π,π2+2k π (k ∈Z ) 解析 x 应满足:⎩⎪⎨⎪⎧1+sin x ≠0⇒sin x ≠-1,cos x ≥0,综合正、余弦函数图象可知:-π2+2k π<x ≤π2+2k π. 7.⎣⎡⎦⎤2k π-2π3,2k π+2π3 ,(k ∈Z ) 解析 由2cos x +1≥0,得cos x ≥-12,∴2k π-2π3x ≤2k π+2π3,k ∈Z .8.⎣⎡⎦⎤π4,5π4 解析 由题意知sin x -cos x ≥0,即cos x ≤sin x ,在同一坐标系画出y =sin x ,x ∈[0,2π] 与y =cos x ,x ∈[0,2π]的图象,如图所示:观察图象得:π4≤x ≤5π4.9.解 利用“五点法”作图. (1)列表:(2)列表:10.解 (1)y =|sin x |=⎩⎪⎨⎪⎧sin x (2k π≤x ≤2k π+π)-sin x (2k π+π<x ≤2k π+2π)(k ∈Z ).其图象如图所示,(2)y =sin|x |=⎩⎪⎨⎪⎧sin x (x ≥0)-sin x (x <0),其图象如图所示,。
高中数学人教新课标必修四B版教案高中数学必修4全部教案
人教B版数学必修4 第一章基本初等函数(Ⅱ)教学设计一、教材分析1、本单元教学内容的范围1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角本章知识结构如下:2、本单元教学内容在模块内容体系中的地位和作用(1)三角函数是一类十分重要的初等函数,它与本模块第三章“三角恒等变换”构成了高中“三角”知识的主体,是中学数学的重要内容之一,也是学习后继内容和高等数学的基础。
(2)三角函数是数学中重要的数学模型之一,是研究度量几何的基础,又是研究自然界周期变化规律最强有力的数学工具。
(3)三角函数作为描述周期现象的重要数学模型,与其它学科如天文学、物理学等联系非常紧密。
因此三角函数的学习可以培养学生的数学应用能力。
(4)三角函数的基础知识,主要是平面几何中的相似形和圆。
研究三角函数的方法,主要是在必修1中建立的研究初等函数的方法。
因此,通过对三角函数的学习,可以初步地把“数”与“形”联系起来。
(5)通过对三角函数的学习,不仅能使学生获得新的知识和技能,而且可以培养学生的辨证唯物主义观点,提高分析问题和解决问题的能力。
3、本单元教学内容总体教学目标 (1)任意角的概念、弧度制了解任意角的概念.了解弧度制的概念,能进行弧度与角度的互化. (2)任意角的三角函数理解任意角的正弦、余弦、正切的定义;了解任意角的余切、正割、余割的定义;并会利用单位圆中的有向线段表示正弦、余弦和正切,并理解其原理。
理解同角三角函数的基本关系式: 22sin cos 1x x +=,sin tan cos xx x=;借助单位圆的直观性探索正弦、余弦、正切的诱导公式,能进行同角三角函数之间的变换,会求任意角的三角函数值,并记住某些特殊角的三角函数值。
高中数学必修四正弦函数、余弦函数的图象教案
1.4.1正弦函数、余弦函数的图像与性质【教学分析】1.学习过指数函数和对数函数;2.学习过周期函数的定义;3.学习过正弦函数、余弦函数上的图像。
【教学目标】一、知识目标:1.正弦函数的性质;2.余弦函数的性质;二、能力目标:1.能够利用函数图像研究正弦函数、余弦函数的性质;2.会求简单函数的单调区间;三、德育目标:渗透数形结合思想和类比学习的方法。
【教学重点】正弦函数、余弦函数的性质【教学难点】正弦函数、余弦函数的性质的理解与简单应用【教学方法】通过引导学生观察正弦函数、余弦函数的图像,从而发现正弦函数、余弦函数的性质,加深对性质的理解。
(启发诱导式)【教学过程】一、复习导入1.我们是从哪个角度入手来研究指数函数和对数函数的?2.正弦、余弦函数的图像在上是什么样的?二、讲授新课[]π2,0[]π2,01.正弦函数的图像和性质(由教师讲解)通过展示出正弦函数在内的图像,利用函数图像探究函数的性质:(1)定义域:正弦函数的定义域是实数集R(2)值域从图像上可以看到正弦曲线在这个范围内,所以正弦函数的值域是(3)单调性结合正弦函数的周期性和函数图像,研究函数单调性,即:(4)最值观察正弦函数图像,可以容易发现正弦函数的图像与虚线的交点,都是函数的最值点,可以得出结论:(5)奇偶性正弦函数的图像关于原点对称,所以正弦函数的奇函数。
(6)周期性正弦函数的图像呈周期性变化,函数最小正周期为2。
2.余弦函数的图像和性质(由学生分组讨论,得出结论)通过展示出余弦函数的图像,由学生类比正弦函数的图像及性质进行讨论,探究余弦函数的性质:(1)定义域:余弦函数的定义域是实数集R(2)值域从图像上可以看到余弦曲线在这个范围内,所以余弦函数的值域是(3)单调性结合余弦函数的周期性和函数图像,研究函数单调性,即:(4)最值观察余弦函数图像,可以容易发现余弦函数的图像与虚线的交点,都是函数的最值点,可以得出结论:[]ππ2,2-[]1,1-[]1,1-π[]1,1-[]1,1-上是增函数;在)(22,22Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ上是减函数;在)(232,22Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ1,22max =∈+=y Z k k x 时,当ππ1,22min -=∈-=y Z k k x 时,当ππ[]上是增函数;在)(2,2Z k k k ∈-πππ[]上是减函数;在)(2,2Z k k k ∈+πππ1,2max =∈=y Z k k x 时,当π1,2min -=∈+=y Z k k x 时,当ππ(5)奇偶性余弦函数的图像关于y 轴对称,所以余弦函数的偶函数。
【数学】1.5《正弦、余弦函数的图像和性质(二)》课件(北师大版必修4)
利用定义确定周期时,
f ( x T ) f ( x)
是对 x 而言,即是 x 的改变量
函数 y A sin(x ), x R 及 函数 y A cos(x ), x R (其中A, , 为常数,且A 0, 0) 2 的周期为T
3、一般地,如果 是函数
T (T 0)
y f ( x) 的周期,那么
kT (k N )
也是函数的周期.
例2
画出函数
y sin x
与 y cos x 的图象,说出它们的周期
y
1
y=|sinx|
2
2
3 2
2
O -1
3 2
2
x
y=sinx
P 63--- 5,6
3 4 5 6
o
-1
2
x
y=sinx 最值:
当且仅当
时取最大值1
x 2k , k Z 2
当且仅当
x 2k , k Z 2
时取最小值-1
y=cosx 最值:
当且仅当
x 2k , k Z
x 2k , k Z
时取最大值1
当且仅当
都是正弦(余弦)函数的的周期
对于周期函数f(x),如果在它 所有周期中存在一个最小的正 数,则这个最小正数就叫做函 数f(x)的最小正周期。
2π是正弦(余弦)函数的 最小正周期
例1 求下列函数的周期
(1) ( 2) ( 3)
y 3 cos x ,
xR
y sin 2 x , xR 1 y 2 sin( x ), x R 2 6
38581_《余弦函数、正切函数的图像与性质》教案1 新人教B版必修4
1.3.2余弦函数、正切函数的图像与性质(第一课时)余弦函数的图象及性质一、教学目标1.知识目标(1)学会利用平移变换的方法和五点作图法作出余弦函数的图象;(2)根据余弦函数图象的特征,结合正弦函数的性质学习余弦函数的性质:定义域、值域、单调性、奇偶性、周期性等。
2、能力目标(1)让学生进一步学会作图;(2)引导学生利用类比的思想分析同类函数的图象与性质;(3)培养学生独立研究问题,提炼性质的能力。
3、情感目标(1)渗透数形结合的数学思想;(2)培养学生静与动的辨证思想;(3)培养学生欣赏数学美的素质。
二、教学重、难点重点:本节内容旨在利用正弦函数的特征来学习余弦函数的图象、性质,引导学生学会应用旧知解决新问题。
难点:从正弦函数到余弦函数的变换;学生自主探究余弦函数性质。
三、教学方法结合本节内容的特征,主要采用启发诱导式教学方式,让学生自主地去探求知识。
适当借助多媒体等教学辅助手段。
四、教学过程教学环节教学内容师生互动设计意图复习引入1、正弦函数的图象——解决的方法:用单位圆中的正弦线(几何画法)。
2、“五点描图法”作图。
3、)2sin(cosπ+=xx1、教师提问,学生回答;2、学生在草稿纸上推理。
1、引导学生复习巩固“五点描图法”作图;2、回顾诱导公式;3、回顾平移。
概念形成1、利用五点描图法画出]2,0[),2sin(ππ∈+=xxy的图象。
2、图象向两边延伸于是得到余弦函数的图象。
余弦函数xy cos=的图象叫做余弦曲线。
通过观察图象,我们不难发现,起着关键作用的点是五个点:(0,1),(2π,0)、(π,-1),(23π,0),(2π,1).3、类比正弦函数的性质及余弦函数的图象,得余弦函数图象的性质:(1)定义域:y=cos x的定义域为R(2)值域:①引导回忆单位圆中的三角函数线,结论:|cos x|≤1(有界性)再看正弦函数线(图象)验证上述结论:值域为[-1,1]②对于y=cos x当且仅当x=2k?k?Z时y ma x=1当且仅当x=2k?+?k?Z时y min=-1③观察R上的y=cos x的图象可知当2k?-2π<x<2k?+2π(k?Z)时y=cos x>0当2k?+2π<x<2k?+23π(k?Z)时y=cos x<0(3).周期性:(观察图象)①余弦函数的图象是有规律不断重复出现的;②规律是:每隔2?重复出现一次(或者说每隔2k?,k?Z重复出现)③这个规律由诱导公式cos(2k?+x)=cos x也可以说明余弦函数的最小正周期是T=2π.(4).奇偶性由诱导公式:cos(-x)=cos x得余弦函数是偶函数。
最新人教版高中数学必修4第一章《余弦函数、正切函数的图象与性质》(第2课时)
第二课时 正切函数的图象与性质⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π2+k π,k ∈Z实数集Rπ 后加以应用,例如,y =|sin x |的周期是y =sin x 的周期的一半,而y =|tan x |与y =tan x 的周期却相同,均为π.【自主测试1】函数f (x )=tan ⎝⎛⎭⎪⎫x +π4的单调增区间为( )A .⎝⎛⎭⎪⎫k π-π2,k π+π2,k ∈Z B .(k π,(k +1)π),k ∈ZC .⎝⎛⎭⎪⎫k π-3π4,k π+π4,k ∈Z D .⎝⎛⎭⎪⎫k π-π4,k π+3π4,k ∈Z 解析:令k π-π2<x +π4<k π+π2(k ∈Z ),解得函数f (x )的单调增区间为k π-3π4<x <k π+π4(k ∈Z ).答案:C【自主测试2】函数y =11+tan x的定义域是__________.解析:要使函数y =11+tan x 有意义,则有⎩⎪⎨⎪⎧1+tan x ≠0,x ≠k π+π2 k ∈Z ,即x ≠k π-π4,且x ≠k π+π2(k ∈Z ).故函数y =11+tan x的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ∈R ,且x ≠k π-π4,且x ≠k π+π2,k ∈Z .答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ∈R ,且x ≠k π-π4,且x ≠k π+π2,k ∈Z1.正切函数与正弦函数、余弦函数的比较剖析:正切函数y =tan x ,x ≠k π+π2,k ∈Z ,其定义域不是R ,又正切函数与正弦函数、余弦函数对应法则不同,因此一些性质与正弦函数、余弦函数的性质有了较大的差别.如正弦函数、余弦函数是有界函数,而正切函数不是有界函数;正弦函数、余弦函数是连续函数,反映在图象上是连续无间断点,而正切函数在R 上不连续,它有无数条渐近线x =k π+π2,k ∈Z ,图象被这些渐近线分隔开来;正弦函数、余弦函数既有单调增区间又有单调减区间,而正切函数在每一个区间⎝⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上都是增函数.它们也存在大量的共性:如均为周期函数,且对y =A tan(ωx +φ)(ω>0)而言,T =πω,y =tan x 是奇函数,它的图象既可以类似地用正切线的几何方法作图,又可以用类似于“五点法”的“三点两线法”作简图,这里三个点为(k π,0),⎝ ⎛⎭⎪⎫k π+π4,1,⎝ ⎛⎭⎪⎫k π-π4,-1,两线为直线x =k π+π2(k ∈Z ),直线x =k π-π2(k ∈Z ),作出这三个点和这两条渐近线,便可得到y =tan x 在一个周期上的简图.正弦函数、余弦函数与正切函数都是中心对称图形(注意正弦、余弦函数同时也是轴对称图形).2.教材中的“思考与讨论”正切函数在整个定义域内都是增函数吗?剖析:正切函数在整个定义域内不是增函数,可取特殊值来说明.例如取x 1=π4,x 2=2π3,显然x 1<x 2,但y 1=tan π4=1,y 2=tan 2π3=-3,y 1>y 2,不符合增函数的定义.题型一 求函数的定义域【例题1】求函数y =tan x +1+lg(1-tan x )的定义域.解:由题意得⎩⎪⎨⎪⎧tan x +1≥0,1-tan x >0,即-1≤tan x <1.在⎝ ⎛⎭⎪⎫-π2,π2内,满足上述不等式的x 的取值范围是⎣⎢⎡⎭⎪⎫-π4,π4.又因为y =tan x 的周期为π,所以所求x 的范围是⎣⎢⎡⎭⎪⎫k π-π4,k π+π4(k ∈Z ),即此函数的定义域为⎣⎢⎡⎭⎪⎫k π-π4,k π+π4(k ∈Z ). 反思求三角函数式的定义域,可转化为解三角函数的不等式,利用三角函数的图象直观地求得解集.题型二 求函数的值域或最值【例题2】(1)求y =tan 2x +4tan x -1的值域;(2)若x ∈⎣⎢⎡⎦⎥⎤π6,π3,y =k +tan ⎝ ⎛⎭⎪⎫π3-2x 的值总不大于零,求实数k 的取值范围. 分析:(1)设t =tan x ,则转化为关于t 的二次函数求最值.(2)由y ≤0得k ≤-tan ⎝ ⎛⎭⎪⎫π3-2x ,因此,只要求出tan ⎝ ⎛⎭⎪⎫π3-2x 的范围即可. 解:(1)设t =tan x ,则y =t 2+4t -1=(t +2)2-5≥-5,故y =tan 2x +4tan x -1的值域为[-5,+∞).(2)由y =k +tan ⎝ ⎛⎭⎪⎫π3-2x ≤0, 得k ≤-tan ⎝ ⎛⎭⎪⎫π3-2x =tan ⎝⎛⎭⎪⎫2x -π3. ∵x ∈⎣⎢⎡⎦⎥⎤π6,π3,∴2x -π3∈⎣⎢⎡⎦⎥⎤0,π3.由正切函数的单调性得0≤tan ⎝⎛⎭⎪⎫2x -π3≤ 3. 故要使k ≤tan ⎝⎛⎭⎪⎫2x -π3恒成立,只要k ≤0. 即实数k 的取值范围为(-∞,0].反思(1)与二次函数有关的三角函数问题,常常使用“换元法”. (2)解决恒成立问题常常使用“分离常数法”. 题型三 利用函数图象研究性质 【例题3】画出函数y =|tan x |的图象,并根据图象判断其奇偶性、单调区间、周期性. 分析:解决本题的关键是画出y =|tan x |的图象,由函数图象研究其性质. 解:y =|tan x |的图象如下图所示.由图可得,函数y =|tan x |是偶函数,单调递增区间为⎣⎢⎡⎭⎪⎫k π,π2+k π(k ∈Z ), 单调递减区间为⎝ ⎛⎦⎥⎤-π2+k π,k π(k ∈Z ),周期为π. 反思(1)作函数y =|f (x )|的图象一般利用图象变换方法,具体步骤是: ①保留函数y =f (x )图象在x 轴上方的部分;②将函数y =f (x )图象在x 轴下方的部分沿x 轴向上翻折.(2)若函数为周期函数,可先研究其一个周期上的图象,再利用周期性,扩展到定义域上即可.题型四 易错辨析【例题4】若A ={x |tan x >0},B ={x |tan x +3tan 2x +23tan x -3≥0},试求A ∩B.错解:由tan x +3tan 2x +23tan x -3≥0,得⎩⎨⎧tan x ≥0,3tan 2x +23tan x -3≥0,即⎩⎨⎧tan x ≥0, 3tan x -3 tan x +3 ≥0,解得⎩⎪⎨⎪⎧tan x ≥0,tan x ≥33或tan x ≤- 3.所以tan x ≥33.所以B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪tan x ≥33. 所以A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪tan x ≥33. 由tan x ≥33,解得x ≥k π+π6,k ∈Z . 所以A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≥k π+π6,k ∈Z. 错因分析:误认为正切函数是R 上的增函数,而忽视了其周期性及定义域等性质,正切函数应该是在每一个开区间⎝⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上是增函数. 正解:因为tan x +3tan 2x +23tan x -3≥0,所以⎩⎨⎧tan x ≥0,3tan 2x +23tan x -3≥0,解得tan x ≥33.所以B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪ tan x ≥33.故A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪tan x ≥33.而正切函数在每一个开区间⎝⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )上是增函数, 所以tan x ≥33的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪k π+π6≤x <k π+π2,k ∈Z . 故A ∩B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪k π+π6≤x <k π+π2,k ∈Z.1.函数y =tan ⎝⎛⎭⎪⎫x +π4的定义域是( )A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-π4 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4C .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π-π4,k ∈ZD .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π4,k ∈Z答案:D2.下列函数中,以π为周期且在区间⎝⎛⎭⎪⎫0,π2上为增函数的是( )A .y =sin x2B .y =sin xC .y =-tan xD .y =-cos 2x 答案:D3.直线y =a (a 为常数)与正切曲线y =tan ωx (ω是常数且ω>0)相交,则相邻两交点间的距离是( )A .πB .2πωC .πω D .与a 的值有关 答案:C4.函数y =tan x ,x ∈⎣⎢⎡⎦⎥⎤0,π4的值域是__________.答案:[0,1]5.函数y =tan ⎝ ⎛⎭⎪⎫x 2+π3的单调增区间是__________. 解析:由题意得k π-π2<x 2+π3<k π+π2,k ∈Z ,解得2k π-5π3<x <2k π+π3,k ∈Z .答案:⎝⎛⎭⎪⎫2k π-5π3,2k π+π3,k ∈Z 6.不等式tan x ≥3的解集为__________.解析:如图所示.由图可知x ∈⎣⎢⎡⎭⎪⎫k π+π3,k π+π2(k ∈Z ). 答案:⎣⎢⎡⎭⎪⎫k π+π3,k π+π2(k ∈Z ) 7.若y =tan(2x +θ)的图象的一个对称中心为⎝ ⎛⎭⎪⎫π3,0,且-π2<θ<π2,求θ的值.解:∵y =tan α的对称中心为⎝⎛⎭⎪⎫k π2,0(k ∈Z ),∴2x +θ=k π2(k ∈Z ),代入x =π3得θ=k π2-2π3(k ∈Z ).又∵-π2<θ<π2,∴当k =1时,θ=-π6;当k =2时,θ=π3,∴θ=-π6或π3.。
人教版高中数学必修四1.4.1《正弦函数、余弦函数的图像》教学设计
⼈教版⾼中数学必修四1.4.1《正弦函数、余弦函数的图像》教学设计正、余弦函数图象的教案⼀、教学内容与任务分析本节课是《普通⾼中课程标准实验教科书》⼈民教育出版社A版必修四第⼀章第四节1.4.1正弦函数、余弦函数的图象。
本节课的教学是以任意⾓的三⾓函数、三⾓函数的诱导公式、三⾓函数线等相关知识为基础展开学习的,是学习正弦型函数 y=Asin (ωx+φ)+B和余弦型函数y=Acos (ωx+φ)+B图象的前提和基础,为学⽣运⽤数形结合思想研究正、余弦函数的性质打下坚实的基础。
⼆、学⽣情况分析学⽣已经学习了任意三⾓函数的定义、三⾓函数的诱导公式、三⾓函数线,并且学习⽤“三⾓函数线”解决本可以⽤“三⾓函数图像”解决的⼀些实际问题,毕竟⽅法相对复杂,⽽正余弦函数图像的学习将为解决这类问题提供更加便捷、合理、有效的办法。
同时,学⽣对三⾓函数图像的形状、产⽣原因、变换、实际应⽤都不清楚,本课的学习也将有助于帮助学⽣对此有初步的了解,为后⾯学习三⾓函数的性质提供保障。
三、教学重难点教学重点:正弦余弦函数图象的“五点作图”法及其正弦曲线、余弦曲线的基本特征。
教学难点:正弦余弦函数图象的三种画法:⼏何画法、五点作图、图像变换,及两种曲线的基本特点。
教学⽬标1.知识与能⼒⽬标了解⽤正弦线画正弦函数的图象,理解⽤平移法作余弦函数的图象。
掌握正弦函数、余弦函数的图象及特征;利⽤图象变换作图的⽅法,体会图象间的联系;掌握“五点法”画正弦函数、余弦函数的简图。
2.情感与价值⽬标养成寻找、观察数学知识之间的内在联系的意识;激发数学的学习兴趣;体会数学的应⽤价值。
四、教学过程⼀、复习引⼊遇到⼀个新的函数,我们很容易想到的就是画函数图象,那怎么画正弦函数、余弦函数的图象呢?我们先来做⼀个简弦运动的实验,这就是某个简弦函数的图象,通过实验是不是对正弦函数余弦函数的图象有了直观印象呢【设计意图】通过动⼿实验,体会数学与其他的联系,激发学习兴趣。
(优秀经典)1.4三角函数的图象与性质1.4.1正弦函数、余弦函数的图象课件新人教A版必修4
3.正弦曲线、余弦曲线 (1)定义:正弦函数y=sinx,x∈R和余弦函数y=cosx,x∈R的图象分别叫 做_正__弦_____曲线和余__弦______曲线. (2)图象:如图所示.
[解析] (1)列表
x
0
π 2
π
3 2π
2π
sinx
0
1
0
-1
0
sinx-1
-1
0
-1
-2
-1
描点,连线,如图
(2)列表:
x
0
π 2
π
3 2π
2π
cosx
1
0
-1
0
1
2+cosx
3
2
1
2
3
描点连线,如图
『规律总结』 用“五点法”画函数 y=Asinx+b(A≠0)或 y=Acosx+b(A≠0)
[解析] (1)首先用五点法作出函数y=cosx,x∈[0,2π]的图象,再作出y= cosx关于x轴对称的图象,最后将图象向上平移1个单位.如图(1)所示.
(2)首先用五点法作出函数y=sinx,x∈[0,4π]的图象,再将x轴下方的部分 对称到x轴的上方.如图(2)所示.
『规律总结』 函数的图象变换除了平移变换外,还有对称变换.如本 例.一般地,函数f(x)的图象与f(-x)的图象关于y轴对称;-f(x)的图象与f(x)的 图象关于x轴对称;-f(-x)的图象与f(x)的图象关于原点对称;f(|x|)的图象关于 y轴对称.
高中数学 (1.4.1 正弦函数、余弦函数的图象)教案 新人教A版必修4最新修正版
1.4 三角函数的图象与性质1.4.1 正弦函数、余弦函数的图象整体设计教学分析研究函数的性质常常以图象直观为基础,这点学生已经有些经验,通过观察函数的图象,从图象的特征获得函数的性质是一个基本方法,这也是数形结合思想的应用.正弦函数、余弦函数的教学也是如此.先研究它们的图象,在此基础上再利用图象来研究它们的性质.显然,加强数形结合是深入研究函数性质的基本要求.由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此,教科书把对周期性的研究放在了首位.另外,教科书通过“旁白”,指出研究三角函数性质“就是要研究这类函数具有的共同特点”,这是对数学思考方向的一种引导.由于正弦线、余弦线已经从“形”的角度描述了三角函数,因此利用单位圆中的三角函数线画正弦函数图象是一个自然的想法.当然,我们还可以通过三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.三维目标1.通过实验演示,让学生经历图象画法的过程及方法,通过对图象的感知,形成正弦曲线的初步认识,进而探索正弦曲线准确的作法,养成善于发现、善于探究的良好习惯.学会遇到新问题时善于调动所学过的知识,较好地运用新旧知识之间的联系,提高分析问题、解决问题的能力.2.通过本节学习,理解正弦函数、余弦函数图象的画法.借助图象变换,了解函数之间的内在联系.通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象.3.通过本节的学习,让学生体会数学中的图形美,体验善于动手操作、合作探究的学习方法带来的成功愉悦.渗透由抽象到具体的思想,加深数形结合思想的认识,理解动与静的辩证关系,树立科学的辩证唯物主义观.重点难点教学重点:正弦函数、余弦函数的图象.教学难点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系.课时安排1课时教学过程导入新课思路 1.(复习导入)遇到一个新的函数,非常自然的是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然的想知道y=sinx与y=cosx的图象是怎样的呢?回忆我们在必修1中学过的指数函数、对数函数的图象是什么?是如何画出它们图象的(列表描点法:列表、描点、连线)?进而引导学生通过取值,画出当x∈[0,2π]时,y=sinx的图象.思路 2.(情境导入)请学生动手做一做章头图表示的“简谐运动”实验.教师指导学生将塑料瓶底部扎一个小孔做成一个漏斗,再挂在架子上,就做成了一个简易单摆.在漏斗下方放一块纸板,板的中间画一条直线作为坐标系的横轴.把漏斗灌上沙并拉离平衡位置,放手使它摆动,同时匀速拉动纸板,这样就可在纸板上得到一条曲线,它就是简谐运动的图象.物理中把简谐运动的图象叫做“正弦曲线”或“余弦曲线”.它表示了漏斗对平衡位置的位移s(纵坐标)随时间t(横坐标)变化的情况.有了上述实验,你对正弦函数、余弦函数的图象是否有了一个直观的印象?画函数的图象,最基本的方法是我们以前熟知的列表描点法,但不够精确.下面我们利用正弦线画出比较精确的正弦函数图象.推进新课新知探究提出问题问题①:作正弦函数图象的各点的纵坐标都是查三角函数表得到的数值,由于对一般角的三角函数值都是近似值,不易描出对应点的精确位置.我们如何得到任意角的三角函数值并用线段长(或用有向线段数值)表示x 角的三角函数值?怎样得到函数图象上点的两个坐标的准确数据呢?简单地说,就是如何得到y=sinx,x∈[0,2π]的精确图象呢?问题②:如何得到y=sinx,x∈R 时的图象?活动:教师先让学生阅读教材、思考讨论,对于程度较弱的学生,教师指导他们查阅课本上的正弦线.此处的难点在于为什么要用正弦线来作正弦函数的图象,怎样在x 轴上标横坐标?为什么将单位圆分成12份?学生思考探索仍不得要领时,教师可进行适时的点拨.只要解决了y=si nx,x∈[0,2π]的图象,就很容易得到y=sinx,x∈R 时的图象了.对问题①,第一步,可以想象把单位圆圆周剪开并12等分,再把x 轴上从0到2π这一段分成12等份.由于单位圆周长是2π,这样就解决了横坐标问题.过⊙O 1上的各分点作x 轴的垂线,就可以得到对应于0、6π、4π、3π、2π、…、2π等角的正弦线,这样就解决了纵坐标问题(相当于“列表”).第二步,把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合,这就得到了函数对(x,y)(相当于“描点”).第三步,再把这些正弦线的终点用平滑曲线连接起来,我们就得到函数y=sinx 在[0,2π]上的一段光滑曲线(相当于“连线”).如图1所示(这一过程用课件演示,让学生仔细观察怎样平移和连线过程.然后让学生动手作图,形成对正弦函数图象的感知).这是本节的难点,教师要和学生共同探讨.图1对问题②,因为终边相同的角有相同的三角函数值,所以函数y=sinx 在x∈[2k π,2(k+1)π],k∈Z 且k≠0上的图象与函数y=sinx 在x∈[0,2π]上的图象的形状完全一致,只是位置不同.于是我们只要将函数y=sinx,x∈[0,2π]的图象向左、右平行移动(每次2π个单位长度),就可以得到正弦函数y=sinx,x∈R 的图象.(这一过程用课件处理,让同学们仔细观察整个图的形成过程,感知周期性)图2讨论结果:①利用正弦线,通过等分单位圆及平移即可得到y=sinx,x∈[0,2π]的图象. ②左、右平移,每次2π个长度单位即可.提出问题如何画出余弦函数y=cosx,x∈R 的图象?你能从正弦函数与余弦函数的关系出发,利用正弦函数图象得到余弦函数图象吗?活动:如果再用余弦线作余弦函数的图象那太麻烦了,根据已学的知识,教师引导学生观察诱导公式,思考探究两个函数之间的关系,通过怎样的坐标变换可得到余弦函数图象?让学生从函数解析式之间的关系思考,进而学习通过图象变换画余弦函数图象的方法.让学生动手做一做,体会正弦函数图象与余弦函数图象的异同,感知两个函数的整体形状,为下一步学习正弦函数、余弦函数的性质打下基础.讨论结果:把正弦函数y=sinx,x∈R 的图象向左平移2π个单位长度即可得到余弦函数图象.如图3.图3正弦函数y=sinx,x∈R 的图象和余弦函数y=cosx,x∈R 的图象分别叫做正弦曲线和余弦曲线点.提出问题问题①:以上方法作图,虽然精确,但不太实用,自然我们想寻求快捷地画出正弦函数图象的方法.你认为哪些点是关键性的点?问题②:你能确定余弦函数图象的关键点,并作出它在[0,2π]上的图象吗?活动:对问题①,教师可引导学生从图象的整体入手观察正弦函数的图象,发现在[0,2π]上有五个点起关键作用,只要描出这五个点后,函数y=sinx 在[0,2π]上的图象的形状就基本上确定了.这五点如下: (0,0),(2π,1),(π,0),(23π,-1),(2π,0). 因此,在精确度要求不太高时,我们常常先找出这五个关键点,然后用光滑的曲线将它们连接起来,就可快速得到函数的简图.这种近似的“五点(画图)法”是非常实用的,要求熟练掌握.对问题②,引导学生通过类比,很容易确定在[0,2π]上起关键作用的五个点,并指导学生通过描这五个点作出在[0,2π]上的图象.讨论结果:①略.②关键点也有五个,它们是:(0,1),(2π,0),(π,-1),(23π,0),(2π,1). 应用示例思路1例1 画出下列函数的简图(1)y=1+sinx,x∈[0,2π];(2)y=-cosx,x∈[0,2π].活动:本例的目的是让学生在教师的指导下会用“五点法”画图,并通过独立完成课后练习1领悟画正弦、余弦函数图象的要领,最终达到熟练掌握.从实际教学来看,“五点法”画图易学却难掌握,学生需练好扎实的基本功.可先让学生按“列表、描点、连线”三步来完成.对学生出现的种种失误,教师不要着急,在学生操作中指导一一纠正,这对以后学习大有好处. 解:(1)按五个关键点列表: x0 2π π 23π 2π sinx0 1 0 -1 0 1+sinx 1 2 1 0 1 描点并将它们用光滑的曲线连接起来(图4).图4(2)按五个关键点列表: x0 2π π 23π 2π cosx1 0 -1 0 1 -cosx -1 0 1 0 -1 描点并将它们用光滑的曲线连接起来(图5).图5点评:“五点法”是画正弦函数、余弦函数简图的基本方法,本例是最简单的变化.本例的目的是让学生熟悉“五点法”.如果是多媒体教学,要突破课件教学的互动性,多留给学生一些动手操作的时间,或者增加图象纠错的环节,效果将会令人满意,切不可教师画图学生看.完成本例后,让学生阅读本例下面的“思考”,并回答如何通过图象变换得出要画的图象,让学生从另一个角度熟悉函数作图的方法.变式训练2007山东临沂一摸统考17(1)在给定的直角坐标系如图6中,作出函数f(x)=2cos(2x+4π)在区间[0,π]上的图象. 解:列表取点如下: x 0 8π 83π 85π 87π π42π+x 4π 2π π 23π 2π 49π f(x)1 0 2- 02 1 描点连线作出函数f(x)=2cos(2x+4π)在区间[0,π]上的图象如图7所示.图6 图7思路2例1 画出函数y=|sinx|,x∈R 的简图.活动:教师引导学生观察探究y=sinx 的图象并思考|sinx |的意义,发现只要将其x 轴下方的图象翻上去即可.进一步探究发现,只要画出y=|sinx|,x∈[0,π]的图象,然后左、右平移(每次π个单位)就可以得到y=|sinx|,x∈R 的图象.让学生尝试寻找在[0,π]上哪些点起关键作用,易看出起关键作用的点有三个:(0,0),(2π,1),(π,0).然后列表、描点、连线,让学生自己独立操作完成,对其失误的地方再予以一一纠正.解:按三个关键点列表:x0 2π π sinx0 1 0 y=|sinx | 0 1 0描点并将它们用光滑的曲线连接起来(图8).图8点评:通过本例,让学生更深刻地理解正弦曲线及“五点法”画图的要义,并进一步从图象变换的角度认识函数之间的关系,也为下一步将要学习的周期打下伏笔.变式训练1.方程sinx=10x 的根的个数为( ) A.7 B.8 C.9 D.10解:这是一个超越方程,无法直接求解,可引导学生考虑数形结合的思想方法,将其转化为函数y=10x 的图象与y=sinx 的图象的交点个数问题,借助图形直观求解.解好本题的关键是正确地画出正弦函数的图象.如图9,从图中可看出,两个图象有7个交点.图9答案:A2.用五点法作函数y=2sin2x 的图象时,首先应描出的五点横坐标可以是( ) A.0,2π,23π,2π B.0,4π,2π,43π,π C.0,π,2π,3π,4π D.0,6π,3π,2π,32π 答案:B知能训练课本本节练习解答:1.可以用单位圆中的三角函数线作出它们的图象,也可以用“五点法”作出它们的图象,还可以用图形计算器或计算机直接作出它们的图象.两条曲线形状相同,位置不同,例如函数y=sinx,x∈[0,2π]的图象,可以通过将函数y=cosx,x∈[2π,23π]的图象向右平行移动2π个单位长度而得到(图10).图10点评:在同一个直角坐标系中画出两个函数图象,利于对它们进行对比,可以加强正弦函数与余弦函数的联系.通过多种方法画图,渗透数形结合思想,强化学生对数学概念本质的认识.2.两个函数的图象相同.点评:先用“五点法”画出余弦函数的图象,再通过对比函数解析式发现另一函数的图象的变化规律,最后变换余弦曲线得到另一函数的图象(图11).图11课堂小结以提问的方式,先由学生反思学习内容并回答,教师再作补充完善.1.怎样利用“周而复始”的特点,把区间[0,2π]上的图象扩展到整个定义域的?2.如何利用图象变换从正弦曲线得到余弦曲线?这节课学习了正弦函数、余弦函数图象的画法.除了它们共同的代数描点法、几何描点法之外,余弦函数图象还可由平移交换法得到.“五点法”作图是比较方便、实用的方法,应熟练掌握.数形结合思想、运动变化观点都是学习本课内容的重要思想方法.作业1.课本习题1.4 A组1.2.预习下一节:正弦函数、余弦函数的性质.设计感想1.本节课操作性强,学生活动量较大.新课从实验演示入手,形成图象的感知后,升级问题,探索正弦曲线准确的作法,形成理性认识.问题设置层层深入,引导学生发现问题,解决问题,并对方法进行归纳总结,体现了新课标“以学生为主体,教师为主导”的课堂教学理念.如用多媒体课件,则可生动地表现出函数图象的变化过程,更好地突破难点.2.本节课所画的图象较多,能迅速准确地画出函数图象对初学者来说是一个较高的要求,重在学生动手操作,不要怕学生出错.通过画图可以培养学生的动手能力、模仿能力.开始时要慢些,尤其是“五点法”,每个点都要能准确地找到,然后迅速画出图象.3.本小节设置的“探究”“思考”较多,还提供了“探究与发现”“信息技术应用”等拓展性栏目.教学时,应留给学生一定的时间思考、探究这些问题.。
高中数学 第一章《三角函数》正弦、余弦函数的周期性教案 新人教版必修4-新人教版高一必修4数学教案
正弦、余弦函数的周期性教案一、教材分析:《正弦、余弦函数的周期性》是普通高中课程标准实验教科书必修四第一章第四节第二节课,其主要内容是周期函数的概念及正弦、余弦函数的周期性.本节课是学生学习了诱导公式和正弦、余弦函数的图象之后,对三角函数知识的又一深入探讨.正弦、余弦函数的周期性是三角函数的一个重要性质,是研究三角函数其它性质的基础,是函数性质的重要补充.通过本课的学习不仅能进一步培养学生的数形结合能力、推理论证能力、分析问题和解决问题的能力,而且能使学生把这些认识迁移到后续的知识学习中去,为以后研究三角函数的其它性质打下基础.所以本课既是前期知识的发展,又是后续有关知识研究的前驱,起着承前启后的作用.二、教学目标:学情分析:学生在知识上已经掌握了诱导公式、正弦、余弦函数图象及五点作图的方法;在能力上已经具备了一定的形象思维与抽象思维能力;在思想方法上已经具有一定的数形结合、类比、特殊到一般等数学思想.本课的教学目标:(一)知识与技能1.理解周期函数的概念及正弦、余弦函数的周期性.2.会求一些简单三角函数的周期.(二)过程与方法从学生生活实际的周期现象出发,提供丰富的实际背景,通过对实际背景的分析与y=sin x图形的比较、概括抽象出周期函数的概念.运用数形结合方法研究正弦函数y=sin x 的周期性,通过类比研究余弦函数y=cosx的周期性.(三)情感、态度与价值观让学生体会数学来源于生活,体会从感性到理性的思维过程,体会数形结合思想;让学生亲身经历数学研究的过程,享受成功的喜悦,感受数学的魅力.三、教学重点:周期函数的定义和正弦、余弦函数的周期性.四、教学难点:周期函数定义及运用定义求函数的周期.五、教学准备:三角板、多媒体课件六、教学流程:求下列函数的周期: (1)3sin4x y =,x R ∈;(2)sin()10y x π=+,x R ∈;(3)cos(2)3y x π=+,x R ∈(4)1sin()24y x π=-,x R ∈ 课外思考:1. 求函数()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+(其中,,A ωϕ为常数,且0,0A ω≠>)的周期.2.求下列函数的周期:(1)|sin |x y =,x R ∈;(2)|2cos |x y =,x R ∈ 附:板书设计附:1.本节课预计学生建构周期函数概念时有困难,特别是“正弦函数图象的周而复始变化实际上是函数值的周而复始变化” 的本质学生理解有一定困难.为了突破这个难点,借助了几何画板来帮助学生从形象思维过渡到抽象思维.2.预计部分学生对周期函数定义的自变量的任意性的理解有困难,为了突破这个难点,设计了三道判断题让学生分组讨论交流,通过学生思维碰撞来体会数学概念的严谨,通过学生互动建构自己对周期函数概念的认识.3.预计部分学生运用周期函数定义求函数周期有一定困难,为了解决这个困难,在设计中,例1第1问由师生共同完成,完成后小结解题的思路方法.再由学生完成第2问和第3问,再由师生共同点评.教案设计说明 《正弦、余弦函数的周期性》是普通高中课程标准实验教科书必修四第一章第四节第二节课,其主要内容是周期函数的概念及正弦、余弦函数的周期性.正弦、余弦函数的周期性是三角函数的一个重要性质,是研究三角函数其它性质的基础,是函数性质的重要补充.本课的重点为周期函数的定义和正弦、余弦函数的周期性,难点为周期函数定义及运用定义求函数的周期.本课的教学设计分为六个部分,包括:教材分析,目标分析(含学情分析),教学重难点,教学准备,教学流程,教学过程.设计反映了由学生熟悉的生活的周期现象出发,通过概括、抽象,并结合正弦函数的图象引导学生感受周期函数概念的形成过程,这是设计的数学本质基础;设计中结合本班学生的学习的实际情况,从而确定了教学活动的环节.以这些分析为基础从而确定教学目标,而过程设计则针对目标从九个环节进行具体的设计.教学过程设计自始至终贯穿数形结合思想.下面从如下几个方面进行详细说明.一、教学内容的数学本质及教学目标定位本节课主要内容是周期函数的概念及正弦、余弦函数的周期性.通过对正弦函数图象“周而复始”的变化规律特征的感知,使学生建立比较牢固的理解周期性的认知基础,然后再引导学生了解用代数表达式刻画图象“周而复始”的变化规律.本节课要探究的周期函数的概念的数学本质是从形和数两个方面去刻画“周而复始”的变化规律.学生在知识上已经学习了函数概念与基本初等函数等知识,已经掌握了三角函数图象的画法及五点法作图;在能力上已经具备了一定的形象思维与抽象思维能力;在思想方法上已经接触过数形结合、类比、特殊到一般等数学思想.另外,我还对我班学生的具体情况做了如下分析:我班学生基础知识比较扎实、思维较活跃,学生层次差异不大,能够很好的掌握教材上的内容,能较好地做到数形结合,善于发现问题,深入研究问题,但是部分学生处理抽象问题的能力还有待进一步提高.于是,结合以上的学情分析,我从“知识与技能”、“过程与方法”和“情感态度与价值观”设定目标.其中知识与技能目标为:理解周期函数的概念及正弦、余弦函数的周期性,会求一些简单三角函数的周期.过程与方法则是:从学生实际中的周期现象出发,提供丰富的实际背景,通过对实际背景的分析与y=sin x图形的比较、概括抽象出周期函数的概念. 运用数形结合方法研究正弦函数y=sin x的周期性,通过类比研究余弦函数y=cosx的周期性.并且在过程中渗透了本课的情感态度目标:让学生体会数学来源于生活,体会从感性到理性的思维过程,体会数形结合思想;让学生亲身经历数学研究的过程,享受成功的喜悦,感受数学的魅力.以上是对教学目标定位的说明.二、教学流程入探讨.正弦、余弦函数的周期性是三角函数的一个重要性质,是研究三角函数其它性质的基础,是函数性质的重要补充.通过本课的学习不仅能进一步培养学生的数形结合能力,分析问题和解决问题的能力,而且能使学生把这些认识迁移到后续的知识学习中去,为以后研究三角函数的其它性质打下基础.正弦函数、余弦函数的周期性,与后面高中物理研究的《单摆运动》、《简谐运动》、《机械波》等知识有着密切相关的联系.在数学和其它领域(物理学、生物学、医学等)中具有重要的作用,所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁.四、教学诊断分析1.学习正弦、余弦函数的周期性时,用图象法求周期学生容易理解;建构周期函数概念时学生有困难,特别是“正弦函数图象的周而复始的变化实际上是函数值的周而复始的变化”的本质学生感到有一定困难. 我首先让学生回顾如何利用正弦线画正弦函数y=sin x图象(动画演示),通过动画演示,让学生感知正弦函数图象“周而复始”的变化规律,再引导学生用代数表达式刻画图象“周而复始”的变化规律.2.部分学生对周期函数定义中的任意性理解容易出现错误,需要在教学中反复强调.3.本节课充分利用了多媒体技术的强大功能,把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意投入到现实的、探索性的教学活动中去.五、教法特点及预期效果分析结合教学目标以及学生的实际情况,我采用了启发引导与小组合作交流相结合的教学方式,而在知识构建过程中,在教师引导下,使学生经历了直观感知、观察发现、抽象概括等思维活动,提高数学思维能力;注重信息技术与数学课程的整合,提倡利用信息技术呈现以往教学中难以呈现的课程内容,鼓励学生运用信息技术进行探索和发现.本节课遵循学生的认知规律,通过典型具体例子的分析和学生自主地观察、探索活动,使学生理解周期概念的形成过程,体会蕴含在其中的数形结合的思想方法,把数学的学术形态通过适当的方式转化为学生易于接受的教育形态,教学内容利用生活中的问题和课本上已有的知识创设情境,使教学内容不仅贴近生活,并且来源于旧知识,设计内容一环扣一环,使学生对周期函数的概念理解和应用步步深入.在教学方法上运用多种方法,如观察、分析、归纳、讨论;在知识的学习过程中,重视知识的形成过程和概括过程.在解决问题中,引导学生分析、归纳方法,注意优化学生的思维品质;在教学手段上采用多媒体和黑板重点板书结合的教学方法.通过本节课学习,我力求达到:1 、形成学生主动参与,自主探究,合作交流的课堂气氛.2、学生进一步了解数学来源于生活,理解周期函数和周期的定义.3、让学生体会从感性到理性的思维过程,体会数形结合思想,让学生领悟问题探究的学习方法.由于本课内容不多,难度不大,相信大多数学生都能掌握本课知识,实现预期的目标.。
人教版高中数学必修四:1.4.1正弦函数、余弦函数的图象 教案
【例1】画出下列函数的简图
师生共同用“五点法”画出图象,总结图象的画法
通过例题检验学生对五点画图法的掌握情况,巩固画法步骤。
【例2】求函数 的定义域
教师讲解如何解三角不等式
通过解三角不等式体会数形结合思想的应用
达标检测
1.用“五点法”作函数 的图象时,首先应描出的五个点的横坐标是()
A. B.
课 题
1.4.1正弦函数、余弦函数的图象
课 型
新授课
授 课 人
授课班级
授课时间
学习目标
知识与技能
1.了解用正弦线画正弦函数的图象,理解用平移法作余弦函数的图象;
2.掌握正弦函数、余弦函数的图象及特征;
3.掌握利用图象变换作图的方法,体会图象间的联系;
4.掌握“五点法”画正弦函数、余弦函数的简图.
过程与方法
C. D.
2.点 在函数 的图象上,则 等于()
A.0 B.1 C.-1D.2
3.函数 与函数 的图象()
A.关于直线 对称B.关于原点对称
C.关于 轴对称D.关于 轴对称
4.用“五点法”画出 的简图
学生独立完成,教师进行适当的点评
对于解题方法学生可能比较重视,但对于解题思想,学生也许并不在意,教师应进行适当的引导
思考3:你能从正弦函数与余弦函数的关系出发,利用正弦函数的图象得到余弦函数的图象吗?
思考4:在函数 的图象上,起关键作用的点有哪些?
学生讨论交流解决思考问题
教师总结“五点法”和正弦函数的图象与余弦函数的图象之间的关系,引出“平移法”
通过正弦函数与余弦函数的相互关系,在类比的过程中画出余弦函数的图象,体会数学知识间的联系,以及类比的数学思想。
人教版高中数学必修四 1.4.1《正弦函数、余弦函数的图像》教学设计
教学设计Ⅰ、新课引入情境是学习的要素之一,通过实验,让学生对正弦函数或余弦函数的图象有一个直观的印象,集中学生的注意力。
实验演示:“单摆漏斗的沙的轨迹” (沙摆实验)想一想:1、该曲线是什么曲线? 2、有办法画出该曲线的图象吗? 设计意图:让学生先明确这节课的重点,并且对图像有个大体的了解。
Ⅱ、概念建构引导自学,感知认识 师生互动,理解知识如此设计有利于培养学生良好的学习习惯,,提高其独立分析和解决问题的能力,变“学会”为“会学”。
充分保障学生的主体地位。
(二)新课讲解1、课件演示:“正弦函数图象的几何作图法”第一步:探究选取哪些点?在直角坐标系的x 轴上任取一点1O ,以1O 为圆心作单位圆,从这个圆与x 轴的交点A 起把圆分成n(这里n=12)等份.把x 轴上从0到2π这一段分成n(这里n=12)等份.(预备:取自变量x 值—弧度制下角与实数的对应). 第二步:探究怎么精确找到(3π,sin 3π)? 在单位圆中画出对应于角6,0π,3π,2π,…,2π的正弦线正弦线(等价于“列表” ).把角x 的正弦线向右平行移动,使得正弦线的起点与x 轴上相应的点x 重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点”).第三步:连线.(先让学生自己作图,教师展示几个学生作图的情况,指出作图应该注意的问题)用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx,x∈[0,2π]的图象.设计意图:让学生体验小组合作的乐趣,并且体会知识产生的过程,锻炼探究问题的、解决问题的能力和小组合作的能力。
问题一:1、怎么得到x∈[2π,4π]的图象?2、如何做出R上的图象?探究:怎么画出余弦函数的图象?引导学生用图象变换的方法来画图问题二:1、函数,的图象中起着关键作用的点是哪些点?2、几何作图法虽然比较精确,但是不太实用,如何快捷地画出正弦函数的图象呢?关键点:教师板书五点作图,并且列表、描点,让学生明确正确的作图方法。
人教版高中数学必修四《正弦函数、余弦函数的图象》教案设计
人教版高中数学必修四《正弦函数、余弦函数的图象》教案设计学情分析:本节课是在学生已经学习了任意角三角函数的定义、三角函数线、三角函数的诱导公式等知识的基础上进行学习的,主要是对正弦函数和余弦函数的图象进行系统的研究。
这节课主要介绍几何画法,也就是利用正弦线作出正弦曲线,这是全新的作图方法。
学生刚学习过三角函数线,这就为用几何法作图提供了基础,能不能正确应用来作图,还需要老师做进一步指导。
导入语:轻音乐引入,展示声音的函数;声音中包含着正弦函数,音乐是美的,数学也是美的。
观察声音的函数,思考如何绘制正弦函数的图象。
学习目标:1、利用单位圆中的正弦线作出正弦函数[]sin ,0,2y x x π=∈的图象,明确图象的形状;2、通过诱导公式cos sin()2x x π=+,做出cos ,y x x R =∈的图象; 3、会用“五点法”作出正弦函数、余弦函数的简图,并能利用图象解决一些相关问题。
教学重点及难点:1、正弦函数、余弦函数的图象;2.五点法绘制正弦函数的简图;2、将单位圆中的正弦线通过平移转化为正弦函数图象上的点,并画出正弦函数的图象。
教学辅助:多媒体、投影仪学法指导:本节课我将从以下两个方面对学生进行学法指导:1.经验尝试学习:数学是一门基础学科,数学的概念、性质、方法、思想抽象严谨,因此在学习过程中引导学生借鉴已有知识和经验,通过观察、分析、尝试发现新的知识方法,这有利于培养学生的数学情感,提高学生的学习兴趣,更有助于学生对知识的理解和掌握。
2.协作交流学习:引导学生认真观察“正弦函数的几何作图法”教学课件的演示,指导学生进行分组协商、讨论,使原来相互矛盾的意见、模糊不清的知识逐渐变得明朗、一致,使问题顺利解决.促进学生知识体系的建构和数学思想方法的形成,注意面向全体学生,培养学生勇于探索、勤于思考的精神,提高学生合作学习和数学交流的能力。
教学过程:复习回顾:1、三角函数线的定义;2、在(图1)的单位圆上做出角3πα=,并作出α的正弦线;3、在(图1)的坐标系中利用三角函数线做出点,sin .33ππ⎛⎫ ⎪⎝⎭; 4、正弦函数、余弦函数的定义;5、学过哪些绘制函数图象的方法?尝试作出正弦函数,余弦函数的图象。
高中数学 第一章 三角函数 1.4.1 正弦函数与余弦函数的图象教案 新人教A版必修4(2021年
高中数学第一章三角函数1.4.1 正弦函数与余弦函数的图象教案新人教A 版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数1.4.1 正弦函数与余弦函数的图象教案新人教A版必修4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数1.4.1 正弦函数与余弦函数的图象教案新人教A版必修4的全部内容。
§1。
4。
1正弦函数,余弦函数的图象【教材分析】《正弦函数,余弦函数的图象》是高中新教材人教A版必修四的内容,作为函数,它是已学过的一次函数、二次函数、指数函数与对数函数的后继内容,是在已有三角函数线知识的基础上,来研究正余弦函数的图象与性质的,它是学习三角函数图象与性质的入门课,是今后研究余弦函数、正切函数的图象与性质、正弦型函数的图象的知识基础和方法准备。
因此,本节的学习在全章中乃至整个函数的学习中具有极其重要的地位与作用。
本节共分两个课时,本课为第一课时,主要是利用正弦线画出的图象,考察图象的特点,用“五点作图法”画简图,并掌握与正弦函数有关的简单的图象平移变换和对称变换;再利用图象研究正余弦函数的部分性质(定义域、值域等)【教学目标】1。
学会用单位圆中的正弦线画出正余弦函数的图象,通过对正弦线的复习,来发现几何作图与描点作图之间的本质区别,以培养运用已有数学知识解决新问题的能力。
2. 掌握正余弦函数图象的“五点作图法”;3。
渗透由抽象到具体的思想,使学生理解动与静的辩证关系,培养辩证唯物主义观点。
【教学重点难点】教学重点:“五点法"画长度为一个周期的闭区间上的正弦函数图象教学难点:运用几何法画正弦函数图象。
高中数学1.4.1正弦、余弦函数的图象2教案新人教B版必修4
正弦、余弦函数的图象(2)1、教学目标:2、使学生学会用"五点(画图)法"作正弦函数、余弦函数的图象。
3、通过组织学生观察、猜想、验证与归纳,培育学生的数学能力。
4、通过营造开放的课堂教学气氛,培育学生踊跃探索、勇于创新的精神。
5、教学重点和难点:6、重点:用"五点(画图)法"作正弦函数、余弦函数的图象。
7、难点:肯定五个关键点。
8、教学进程:9、思考探讨10、温习(1)关于作函数,x∈〔0,2π〕的图象,你学过哪几种方式?(2)观察咱们上一节课用几何法作出的函数y=sinx,x∈〔0,2π〕的图象,你发现有哪几个点在肯定图象的形状起着关键作用?为何?(用几何画板显示通过平移正弦线作正弦函数图像的进程)2、"五点(画图)法"在精准度要求不高时,先作出函数y=sinx的五个关键点,再用光滑的曲线将它们按序连结起来,就取得函数的简图。
这种作图法叫做"五点(画图)法"。
(1)、请你用"五点(画图)法" 作函数y=sinx,x∈〔0,2π〕的图象。
解:按五个关键点列表:描点、连线,画出简图。
(用几何画板画出Y=sinx的图像,显示动画)(2)、试用"五点(画图)法"作函数y=cosx, x∈〔0,2π〕的图象。
解:按五个关键点列表:描点、连线,画出简图。
1.510.5-0.5 -1123456Oπ2π32π2πf x() = cos x()一、自主学习例1.画出下列函数的简图:(1) y=1+sinx ,x∈〔0,2π〕(2)y=-cosx ,x∈〔0,2π〕解:(1)按五个关键点列表:描点、连线,画出简图。
(2)按五个关键点列表:描点、连线,画出简图。
二、合作学习●探讨1如何利用y=sinx,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来取得(1)y=1+sinx ,x∈〔0,2π〕的图象;(2)y=sin(x- π/3)的图象?小结:函数值加减,图像上下移动;自变量加减,图像左右移动。
高中数学导高中数学学案1:1.4.1 正弦函数、余弦函数的图象
必修四 第一章 三角函数1.4.1 正弦函数、余弦函数的图象【自学目标】(1)学会用五点法作正弦函数、余弦函数图象,培养学生观察能力; (2)正弦函数与余弦函数图象之间的关系,提高学生分析问题能力; (3)培养观察能力和计算技能. 【教学重难点】(1)教学重点:五点法作正弦函数、余弦函数图象 (2)教学难点:五点法作正弦函数、余弦函数图象 【知识要点】.①“五点法”作简图:观察y =Sin x ,x ∈【0,2π】的图象,在作图连线过程中起关键作用的是哪几个点? 能否利用这些点作出正弦函数的简图?关键五点:(0,0)、(2π,1)、(π,0)、(32π ,-1)、(2π,0)。
事实上,只要指出这五个点,y=Sinx ,x ∈【0,2π】的图象形状就基本定位了。
因此在精确度要求不高时,我们就常先找出这五个关键点,然后用光滑的曲线将它们连结起来,就得到函数的简图,这种作图的方法称为“五点法”作图。
注: 五个关键点中,重点应突出点的横坐标,纵坐标即相应函数值;画简图时应掌握曲线的形状及弯曲的“方向”。
【预习自测】例1.已知函数22()cos 2sin cos sin f x x x x x =--。
(1)在给定的坐标系中,作出函数()f x 在区间[]0,π上的图象 (2)求函数()f x 在区间[,0]2π-上的最大值和最小值。
变式:(2008执信A )已知函数y=2sin (2)3x π+,(1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象; (3)说明y=2sin (2)3x π+的图象可由y=sinx 的图象经过怎样的变换而得到.【课内练习】 2.将函数sin(2)3y x π=-的图象先向左平移6π,然后将所得图象上所有点的横坐标变为原来的2倍(纵坐标不变),则所得到的图象对应的函数解析式为( ). A .cos y x =- B .sin 4y x =C .sin()6y x π=-D .sin y x =变式:我们知道,函数sin 2y x =的图象经过适当变换可以得到cos2y x =的图象,则这种变换可以是A .沿x 轴向右平移4π个单位 B .沿x 轴向左平移4π个单位 C .沿x 轴向左平移2π个单位D .沿x 轴向右平移2π个单位【归纳反思】【巩固提高】如图为y=Asin(x+)的图象的一段,求其解析式.变式:函数y=Asin(x+)(>0,||<,x ∈R )的部分图象如图,则函数表达式为( ) A. y=-4sin ()84x ππ-B. y=-4sin ()84x ππ+C. y=4sin ()84x ππ-D. y=4sin ()84x ππ+ωϕωϕωϕ2π答案:【预习自测】例1.解:(1)略 (2)当2x+4π=34π-,即x=-2π时,()f x 有最小值,()f x min =-1,当2x+4π=0,即x=8π-时,()f x 有最大值,()f x max变式:解 (1)y=2sin (2)3x π+的振幅A=2,周期T==π,初相=3π. (2)略(3)方法一 把y=sinx 的图象上所有的点向左平移3π个单位,得到y=sin ()3x π+的图象,再把y=sin ()3x π+的图象上的点的横坐标缩短到原来的倍(纵坐标不变),得到y=sin (2)3x π+的图象,最后把y=sin (2)3x π+上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y=2sin (2)3x π+的图象.方法二 将y=sinx 的图象上每一点的横坐标x 缩短为原来的倍,纵坐标不变,得到y=sin2x 的图象;再将y=sin2x 的图象向左平移个单位; 得到y =sin2()6x π+=sin (2)3x π+的图象;再将y=sin (2)3x π+的图象上每一点的横坐标保持不变,纵坐标伸长为原来的2倍,得到y=2sin (2)3x π+的图象.课内练习: 解:D .变式:解析:cos2sin(2)sin 2()24y x x x ππ==+=+选B巩固提高:解 : y=-sin (2)3x π+.ϕ21216π3变式:答案 B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4.1正弦、余弦函数的图象(2)
1、教学目标:
2、使学生学会用"五点(画图)法"作正弦函数、余弦函数的图象。
3、通过组织学生观察、猜想、验证与归纳,培养学生的数学能力。
4、通过营造开放的课堂教学氛围,培养学生积极探索、勇于创新的精神。
5、教学重点和难点:
6、重点:用"五点(画图)法"作正弦函数、余弦函数的图象。
7、难点:确定五个关键点。
8、教学过程:
9、思考探究
10、复习
(1)关于作函数,x∈〔0,2π〕的图象,你学过哪几种方法?
(2)观察我们上一节课用几何法作出的函数y=sinx,x∈〔0,2π〕的图象,你发现有哪几个点在确定图象的形状起着关键作用?为什么?
(用几何画板显示通过平移正弦线作正弦函数图像的过程)
2、"五点(画图)法"
在精确度要求不高时,先作出函数y=sinx的五个关键点,再用平滑的曲线将它们顺次连结起来,就得到函数的简图。
这种作图法叫做"五点(画图)法"。
(1)、请你用"五点(画图)法" 作函数y=sinx,x∈〔0,2π〕的图象。
描点、连线,画出简图。
(用几何画板画出Y=sinx的图像,显示动画)
(2)、试用"五点(画图)法"作函数y=cosx, x∈〔0,2π〕的图象。
解:按五个关键点列表:
描点、连线,画出简图。
1.5
1
0.5
-0.5-1
1
234
56
O
π2
π
32
π2π
f x () = cos x ()
一、 自主学习
例1. 画出下列函数的简图:
(1) y =1+sinx ,x∈〔0,2π〕 (2) y=-cosx ,x∈〔0,2π
〕 解:(1) 按五个关键点列表:
描点、连线,画出简图。
(2)按五个关键点列表:
描点、连线,画出简图。
二、合作学习
●探究1
如何利用y=sinx,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到(1)y=1+sinx ,x∈〔0,2π〕的图象;(2)y=sin(x- π/3)的图象?
小结:函数值加减,图像上下移动;自变量加减,图像左右移动。
●探究2
如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=-cosx ,x∈〔0,2π〕的图象?
小结:这两个图像关于X轴对称。
●探究3
如何利用y=cos x,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y=2-cosx ,x∈〔0,2π〕的图象?
小结:先作 y=cos x图象关于x轴对称的图形,得到 y=-cosx的图象,
再将y=-cosx的图象向上平移2个单位,得到 y=2-cosx 的图象。
●探究4
不用作图,你能判断函数y=sin( x - 3π/2 )和y=cosx的图象有何关系吗?请在同一坐标系中画出它们的简图,以验证你的猜想。
小结:sin( x - 3π/2 )= sin[( x - 3π/2 ) +2 π] =sin(x+π/2)=cosx
这两个函数相等,图象重合。
三、归纳小结
1、五点(画图)法
(1)作法先作出五个关键点,再用平滑的曲线将它们顺次连结起来。
(2)用途只有在精确度要求不高时,才能使用"五点法"作图。
(3)关键点
横坐标:0 π/2 π 3π/2 2π
2、图形变换
平移、翻转等
四、布置作业
P53:A组1 P54:B组1。