八年级数学上学期期末考试试题 新人教版_6

合集下载

人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下列四个图案中,是轴对称图形的是()A .B .C .D .2.如果线段a ,b ,c 能组成三角形,那么它们的长度比可能是()A .1∶2∶4B .2∶3∶4C .3∶4∶7D .1∶3∶43.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 4.下列运算中,正确的是()A .22a a a ⋅=B .224()a a =C .236a a a ⋅=D .2323()a b a b =⋅5.如图,点P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,垂足为D ,若PD =2,则点P 到边OB 的距离是()A .4B C .2D .16.若分式13x +有意义,则x 的取值范围是()A .x >3B .x <3C .x ≠-3D .x =37.如图,在△ABC 中,∠A =80°,∠C =60°,则外角∠ABD 的度数是()A .100°B .120°C .140°D .160°8.下列各式是完全平方式的是()A .214x x -+B .21x +C .22x xy y -+D .221a a +-9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④B.②③④C.①③④D.①②③二、填空题11.点()2,1M-关于y轴的对称点的坐标为______.12.如果多边形的每个内角都等于150︒,则它的边数为______.13.如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是_____cm.14.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=_____.15.已知13aa+=,则221+=aa_____________________;16.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.三、解答题17.解方程:21133xx x-=---.18.先化简,再求值:(3x+2)(3x﹣2)﹣10x(x﹣1)+(x﹣1)2,其中x=﹣1.19.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.21.甲、乙两工程队共同完成一项工程,乙队先单独做1天后,再由甲、乙两队合作2天就完成了全部工程,已知甲队单独完成这项工程所需的天数是乙队单独完成工程所需天数的2倍,则甲、乙两工程队单独完成工程各需多少天?22.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.23.如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.24.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?25.如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.(1)若点Q与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?参考答案1.C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各项进行判断找出不是轴对称图形即可.【详解】A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选:C .【点睛】考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析求解.【详解】A 、1+2<4,不能组成三角形;B 、2+3>4,能组成三角形;C 、3+4=7,不能够组成三角形;D 、1+3=4,不能组成三角形.故选B .【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.C【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法4.B【解析】【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A 选项:23a a a ⋅=,故是错误的;B选项:()224a a=,故是正确的;C选项:235a a a⋅=,故是错误的;D选项:()3243=⋅,故是错误的;a b a b故选:B.【点睛】考查了同底数幂乘法和幂的乘方,解题关键是运用了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.5.C【分析】根据角平分线的性质解答.【详解】解:如图,作PE⊥OB于E,∵点P是∠AOB的角平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2,故选C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.C【解析】【分析】考查分式有意义的条件:分母≠0,即x+3≠0,解得x的取值范围.【详解】∵x+3≠0,∴x≠-3.故选:C.考查的是分式有意义的条件:当分母不为0时,分式有意义.7.C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,∠ABD=∠A+∠C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8.A【解析】【分析】根据完全平方式(a2+2ab+b2和a2-2ab+b2)进行判断.【详解】A、是完全平方式,故本选项正确;B、不是完全平方式,故本选项错误;C、不是完全平方式,故本选项错误;D、不是完全平方式,故本选项错误;故选:A.【点睛】考查了对完全平方式的应用,主要考查学生的判断能力.9.D【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),故①正确,∴AD=BE,故②正确;∵△ADC≌△BEC,∴∠ADC=∠BEC,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形,故④正确;故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.11.()2,1【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.12.12【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n =360°÷30°=12.故答案为12.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.13.7【解析】【分析】根据△ABC ≌△DCB 可证明△AOB ≌△DOC ,从而根据已知线段即可求出OC 的长.【详解】∵△ABC ≌△DCB ,∴AB=DC ,∠A=∠D ,又∵∠AOB=∠DOC (对顶角相等),∴△AOB ≌△DOC ,∴OC=BO=BD-DO=AC-DO=7.故答案是:7.【点睛】考查了全等三角形的性质解题的关键是注意掌握全等三角形的对应边相等,注意对应关系.14.15°.【分析】先根据线段垂直平分线的性质得出DA=DB ,∠AED=∠BED=90︒,即可得出∠A=∠ABD ,∠BDE =∠ADE ,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD ,∠ABC 的度数,即可求出∠DBC 的度数.【详解】∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴DA=DB ,∠AED=∠BED=90︒,∴∠A=∠ABD ,∠BDE =∠ADE ,∵∠ADE =40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB =AC ,∴∠ABC=150652︒-︒=︒,∴∠DBC =∠ABC-∠ABD=15︒.故答案为15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.15.7【分析】把已知条件平方,然后求出所要求式子的值.【详解】∵13a a +=,∴219a a ⎛⎫+= ⎪⎝⎭,∴2212+a a +=9,∴221+=a a =7.故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.16.240°【详解】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.17.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21133x x x -=---2-x=x-3-1-2x=-3-1-2x=3当x=3时,x-3=0,所以原分式方程无解.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.8x -3,-11【解析】【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【详解】原式=9x 2-4-10x 2+10x+x 2+1-2x=8x-3当x=-1时,原式=-8-3=-11.【点睛】考查了整式的混合运算,平方差公式,以及完全平方公式,熟练掌握运算法则是解本题的关键.19.见解析【分析】先作CD的垂直平分线和∠AOB的平分线,它们的交点为P点,则根据线段垂直平分线的性质和角平分线的性质得到PC=PD,且P到∠AOB两边的距离相等.【详解】解:如图,点P为所作.【点睛】本复考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.50°【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【详解】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.【点睛】此题主要考查了平行线的性质,邻补角的定义,三角形内角和定理,求出∠CBD=70°是解本题的关键.21.甲需8天,乙需4天【解析】【分析】根据乙队先单独做1天后,再由两队合作2天就完成了全部工程则等量关系为:乙一天的工作量+甲乙合作2天的工作量=1,再设未知数列方程,解方程即可.【详解】设乙队单独完成所需天数x天,则甲队单独完成需2x天,1112(1++=2x x x解得:x=4,当x=4时,分式方程有意义,所以x=4是分式方程的解,所以甲、乙两队单独完成工程各需8天和4天.答:甲、乙两队单独完成工程各需8天和4天.【点睛】考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.证明见解析【详解】试题分析:首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.试题解析:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD.∴∠ABC=∠CBD+∠D.∵AD∥BC,∴∠CBD=∠D.∴∠ABC=2∠D.又∵∠C=∠ABC,∴∠C=2∠D.23.(1)见解析;(2)6【分析】(1)根据DB ⊥BC ,CF ⊥AE ,得出∠D =∠AEC ,再结合∠DBC =∠ECA =90°,且BC =CA ,证明△DBC ≌△ECA ,即可得证;(2)由(1)可得△DBC ≌△ECA ,可得CE=BD ,根据BC=AC=12cm AE 是BC 的中线,即可得出12CE BC =,即可得出答案.【详解】证明:(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,在△DBC 和△ECA 中90D AEC DBC ECA BC AC ∠∠∠∠⎪⎩︒⎧⎪⎨====,∴△DBC ≌△ECA (AAS ).∴AE =CD ;(2)由(1)可得△DBC ≌△ECA∴CE=BD ,∵BC=AC=12cm AE 是BC 的中线,∴162CE BC cm ==,∴BD=6cm .【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明△DBC ≌△ECA 解题关键.24.(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+ ,解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.25.(1)全等;(2)当点Q 的运动速度为54厘米/秒时,能够使△BPD 与△CQP 全等.【分析】(1)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等;(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度.【详解】(1)因为t =3秒,所以BP =CQ =1×3=3(厘米),因为AB =10厘米,点D 为AB 的中点,所以BD =5厘米.又因为PC =BC BP -,BC =8厘米,所以PC =835-=(厘米),所以PC =BD .因为AB =AC ,所以∠B=∠C,所以△BPD≌△CQP(SAS).(2)因为P v≠Q v,所以BP≠CQ,当△BPD≌△CPQ时,因为∠B=∠C,AB=10厘米,BC=8厘米,所以BP=PC=4厘米,CQ=BD=5厘米,所以点P,点Q运动的时间为4秒,所以54Qv 厘米/秒,即当点Q的运动速度为54厘米/秒时,能够使△BPD与△CQP全等.【点睛】考查了全等三角形的判定,等腰三角形的性质.解题时,主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。

人教版八年级上册数学期末考试试题含答案

人教版八年级上册数学期末考试试题含答案

人教版八年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.下列条件中,不能判定△ABC 是等腰三角形的是()A .a=3,b=3,c=4B .a ︰b ︰c=2︰3︰4C .∠B=50°,∠C=80°D .∠A ︰∠B ︰∠C=1︰1︰23.叶绿体是植物进行光合作用的场所,叶绿体DNA 最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为()A .0.5×10﹣4B .5×10﹣4C .5×10﹣5D .50×10﹣34.一个正多边形每个外角都是30°,则这个多边形边数为()A .10B .11C .12D .135.如图,Rt △ABC 中,∠ACB =90°,∠A =55°,将其折叠,使点A 落在边CB 上A '处,折痕为CD ,则A DB '∠=()A .40°B .30°C .20°D .10°6.如图,AC 与BD 相交于点O ,∠D=∠C ,添加下列哪个条件后,仍不能使△ADO ≌△BCO 的是()A .AD=BCB .AC=BDC .OD=OCD .∠ABD=∠BAC 7.若关于x 的方程1044m x x x--=--无解,则m 的值是()A .2-B .2C .3-D .38.己知13x x +=,则221x x +的值为()A .6B .7C .9D .119.若3a b +=,则226a b b -+的值为()A .3B .6C .9D .1210.某小区有一块边长为a 的正方形场地,规划修建两条宽为b 的绿化带.方案一如图甲所示,绿化带面积为S 甲:方案二如图乙所示,绿化带面积为S 乙.设()0S k a b S =>>甲乙,下列选项中正确的是()A .102k <<B .322k <<C .312k <<D .112k <<二、填空题11.若2211392781n n ++⨯÷=,则n =____.12.若294x kx ++是一个完全平方式,则k 的值为_____.13.如图所示,'BDC 是将长方形纸牌ABCD 沿着BD 折叠得到的,图中(包括实线、虚线在内)共有全等三角形______对.14.如图,在Rt ABC △中.AC BC ⊥,若5AC =,12BC =,13AB =,将Rt ABC △折叠,使得点C 恰好落在AB 边上的点E 处,折痕为AD ,点P 为AD 上一动点,则PEB △的周长最小值为.15.观察下列各式:2(1)(1)1x x x -+=-;()23(1)11x x x x -++=-;()324(1)11x x x x x -+++=-;……(1)()432(1)1x x x x x -++++=___;(2)根据规律可得:()1(1)1n x x x --+++= _____(其中n 为正整数);(3)计算:()5049482(31)333331-++++++ ;三、解答题16.因式分解:(1)4232a -(2)()()43a b a b ab-++17.解方程:312(2)x x x x -=--18.已知a +b =2,求(11a b+)•2()4ab a b ab -+的值.19.作图题:(不要求写作法)如图,△ABC 在平面直角坐标系中,其中,点A ,B ,C 的坐标分别为A (﹣2,1),B (﹣4,5),C (﹣5,2).(1)作△ABC 关于y 轴对称的△A 1B 1C 1,其中,点A 、B 、C 的对应点分别为A 1、B 1、C 1;(2)写出点A 1、B 1、C 1的坐标.20.如图,△ABC和△DBE均为等腰直角三角形,且点B为直角顶点.求证:AD=EC.21.列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”,是我们必须世代传承的文化根脉、文化基因.为传承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵60元,用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍,求每套《水浒传》连环画的价格.22.如图1,将一个长为4a,宽为2b的长方形,沿图中虚线均分成4个长方形,然后按图2形状拼成一个正方形.(1)图2中阴影部分的边长是(用含a、b的式子表示);(2)若2a+b=7,且ab=3,求图2中阴影部分的面积;(3)观察图2,用等式表示出(2a﹣b)2,ab,(2a+b)2的数量关系是.23.(1)如图1,()0,A a ,(),0B b .若a ,b 满足2222440a b ab a ++-+=,求A 、B 的坐标.(2)在(1)的条件下,点C 为线段AB 上的一点,AE OC ⊥,BF OC ⊥,垂足分别为E 、F 、若AE m =,BF n =,1m n -=,求线段EF 的长.(3)如图2,()0,A a ,(),0B b ,点P 为ABO 的角平分线的交点,若a ,b 满足0a b +=,PN PA ⊥交x 轴于N ,延长OP 交AB 于M ,直接写出AB 、ON 、PM 之间的数量关系(不需要写出证明过程).参考答案1.D【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据等腰三角形的判定和性质进行判断.【详解】因为a=3,b=4,c=3,所以a=c,所以△ABC是等腰三角形,故A正确;因为a:b:c=2:3:4,所以a≠b≠c,所以△ABC不是等腰三角形,所以B错误;因为∠B=50°,∠C=80°,所以∠A=50°,所以∠A=∠B,所以△ABC是等腰三角形,所以C正确;因为∠A:∠B:∠C=1:1:2,所以∠A=∠B,所以△ABC是等腰三角形,所以D正确.故选B.【点睛】本题考查等腰三角形的判定,熟练掌握等腰三角形的判定与性质是关键.3.C【详解】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.00005=5510-⨯,故选C.4.C【详解】根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.解答:360°÷30°=12.故选C.“点睛”本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.5.C【分析】根据Rt △ABC 中,∠ACB=90°,∠A=55°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,可以得到∠B 的度数,得到∠A 与∠CA′D 的关系,从而可以得到∠A′DB 的度数.【详解】解:在Rt ABC 中,90ACB ∠=︒,55A ∠=︒,∴180905535B ∠=︒-︒-︒=︒,由折叠可得55CA D A ∠'=∠=︒,又∵CA D ∠'为A BD '△的外角,∴CA D B A DB ∠'=∠+∠',则553520A DB ∠'=︒-︒=︒.故选C .【点睛】本题考查翻折变换,解题的关键是明确题意,知道翻折后的对应角相等,利用数形结合的思想解答问题.6.B【分析】根据全等三角形的判定方法逐项进行判断即可.【详解】由题意可知,在△ADO 和△BCO 中,已经有:∠D=∠C ,∠AOD=∠BOC ,结合各选项中添加的条件可知:A 选项中,当添加AD=BC 后,结合已有条件,可由“AAS”证得△ADO ≌△BCO ;B 选项中,当添加AC=BD 后,结合已有条件,不能证明△ADO ≌△BCO ;C 选项中,当添加OD=OC 后,结合已有条件,可由“ASA”证得△ADO ≌△BCO ;D 选项中,当添加∠ABD=∠BAC 后,结合已有条件,可先证得△ABD ≌△BAC ,从而得到AD=BC ,再由“AAS”可证得△ADO ≌△BCO ;故选B.7.D【分析】根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0,∵方程1044mxx x --=--无解,∴x =4是方程的增根,∴m =3.故选:D .【点睛】本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根.8.B【分析】利用完全平方公式将13x x +=两边平方,即可得出221x x +的值.【详解】解:∵13x x +=,∴219x x ⎛⎫+= ⎪⎝⎭,∴221++2=9x x ,∴221=7+x x ;故选:B .【点睛】本题考查了完全平方公式,熟练掌握公式的特征是解题的关键.9.C【详解】∵a+b=3,∴a 2-b 2+6b=(a+b)(a-b)+6b=3(a-b)+6b=3a-3b+6b=3a+3b=3(a+b)=9,故选C.10.D【分析】由题意可求S 甲=2ab-b 2,S 乙=2ab ,代入可求k 的取值范围.【详解】∵S 甲=2ab-b 2,S 乙=2ab .∴22122S ab b bk S ab a-===-乙甲∵a >b >0∴12<k <1故选D .【点睛】本题考查了正方形的性质,能用代数式正确表示阴影部分面积是本题的关键.11.3【分析】根据幂的乘方把算式中的各底数变成同底数,然后按同底数幂运算法则,列方程即可.【详解】解:2211392781n n ++⨯÷=22213143(3)(3)3n n ++⨯÷=,2423343333n n ++⨯÷=,242(33)433n n ++-+=,1433n +=,14n +=,3n =.故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方,根据题意,把底数变成相同是解题关键.12.3±.【分析】根据完全平方公式,分和的完全平方公式和差的完全平方公式两种情形求解即可.【详解】∵294x kx ++=223()2x kx ++,∴kx=322x ±⨯⨯,∴k=3±,故应该填3±.【点睛】本题考查了完全平方公式的应用,熟记完全平方公式并能进行灵活公式变形是解题的关键.13.4【分析】共有四对,分别是△ABD ≌△CDB ,△ABD ≌△C'DB ,△DCB ≌△C'DB ,△AOB ≌△C'OD.【详解】∵四边形ABCD 是长方形,∴∠A=∠C=90°,AB=CD ,AD=BC ,∴△ABD ≌△CDB (HL),∵△BDC 是将长方形纸牌ABCD 沿着BD 折叠得到的,∴BC'=AD ,BD=BD ,∠C'=∠A ,∴△ABD ≌△C'DB (HL),同理△DCB ≌△C'DB ,∵∠A=∠C',∠AOB=∠C'OD ,AB=C'D ,∴△AOB ≌△C'OD (AAS),所以共有四对全等三角形.故答案为4.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、SSA 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.20.【分析】根据ADE ∆由ACD ∆沿AD 对称,得到AE AC =,进而表示出PB PE PB PC BC +=+³,最后求PEB ∆周长即可.【详解】ADE ∆由ACD ∆沿AD 对称得到,则E 与C 关于直线AD 对称,5AE AC ==,∴1358BE AB AE =-=-=,如图,连接PC ,由题意得PC PE =,∴12PB PE PB PC BC +=+³=,当P 在BC 边上,即D 点时取得最小值12,∴PEB ∆周长为PE PB BE ++,最小值为12820+=.故答案为:20.【点睛】本题考查了三角形折叠问题,正确读懂题意是解本题的关键.15.(1)51x -;(2)1n x -;(3)5131-.【分析】(1)第二个括号里最高次数4,根据观察可知结论中次数为4+1=5;(2)第二个括号里最高次数n-1,根据观察可知结论中次数为n-1+1=n ;(3)用3代替等式中的x ,次数根据观察规律确定即可.【详解】(1)根据观察,发现结论是个二项式,且常数项为-1,另一项底数是x ,指数比第二个括号里多项式的最高次数多1,∵()4321x x x x ++++的最高次数是4,∴()432(1)1x x x x x -++++=51x -,故应该填51x -;(2)∵()11n x x -+++ 的最高次数是n-1,∴()1(1)1n x x x --+++= 1n x -,故应该填1n x -;(3)由(2)知:()1(1)11n n x xx x --+++=- ,令3x =,51n =,得:()504948251(31)33333131-++++++=- ,故应该填5131-.【点睛】本题考查了整式变化中的规律探索,解答时,抓住变化中变化项,不变项,变化的位置,变化的规律是解题的关键.16.(1)()224(2)(2)a a a ++-;(2)()()22a b a b +-【分析】(1)先提公因式,再利用平方差公式分解因式即可;(2)先按照多项式乘以多项式的法则计算:()()4a b a b -+,合并同类项后再利用平方差公式分解因式即可得到答案.【详解】解:(1)()44232216a a -=-()()22244a a =+-()224(2)(2)a a a =++-(2)22(4)()34a b a b ab a b -++=-()()22a b a b =+-【点睛】本题考查的因式分解,整式的乘法运算,掌握提公因式与公式法分解因式是解题的关键.17.32x =【分析】按照解分式方程的步骤先去分母,再解整式方程,最后检验即可.【详解】解:方程两边乘()2x x -,得()223x x x --=.解得32x =,检验:当32x =时,()20x x -≠.∴原分式方程的解为32x =.【点睛】本题考查了分式方程的解法,熟练掌握分式方程解题步骤是解题关键,注意:解分式方程一定要检验.18.12【分析】首先把该分式进行化简,把括号里面的分式进行通分,然后把括号外面的分母由完全平方差和完全平方和的互化公式22()4()a b ab a b -+=+,可把分母化成2()a b +,最后进行相同因式的约分得到化简结果,再把2a b +=整体代入求值.【详解】解:原式=21()a b ab ab a b a b +⋅=++()当2a b +=时原式=112a b =+【点睛】本题考查了分式的化简求值,化简过程需要用到通分约分,通分时要找准最简公分母,约分时先把分子分母因式分解,得到各个因式乘积的形式,再找相同的因式进行约分得到最简分式.代入求值时,要有整体代入的思维.19.(1)作图见解析;(2)点A 1、B 1、C 1的坐标分别为(2,1),(4,5),(5,2).(1)根据轴对称的性质作图.(2)根据轴对称的性质定出坐标.【详解】解:(1)如图所示,△A 1B 1C 1即为所求;(2)点A 1、B 1、C 1的坐标分别为(2,1),(4,5),(5,2).20.见解析.【分析】证明△ABD ≌△CBE 即可得出AD =CE.【详解】证明:∵△ABC 和△DBE 均为等腰直角三角形∴AB =BC ,BD =BE ,∠ABC =∠DBE =90°∴∠ABC ﹣∠DBC =∠DBE ﹣∠DBC即∠ABD =∠CBE在△ABD 与△CBE 中,BD BE ABD CBE AB BC =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CBE (SAS )∴AD =CE .【点睛】本题考查全等三角形,解题的关键是熟练运用全等三角形的性质与判定,本题属于基础题型.21.每套《水浒传》连环画的价格为120元设每套《水浒传》连环画的价格为x元,则每套《三国演义》连环画的价格为(x+60)元,根据等量关系“用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍”列方程进行求解即可得.【详解】设每套《水浒传》连环画的价格为x元,则每套《三国演义》连环画的价格为()60x+元,由题意,得480036002·60 x x=+,解得120x=,经检验,120x=是原方程的解,且符合题意,答:每套《水浒传》连环画的价格为120元.【点睛】本题考查了分式方程的应用,找到题中的等量关系是解题的关键,注意解完方程后要进行检验.22.(1)2a-b;(2)25;(3)(2a+b)2﹣(2a﹣b)2=8ab.【分析】(1)观察由已知图形,得到四个小长方形的长为2a,宽为b,那么图2中的空白部分的正方形的边长是小长方形的长减去小长方形的宽.(2)通过观察图形,大正方形的边长为小长方形的长和宽的和.图2中空白部分的正方形的面积为大正方形的面积减去四个小长方形的面积.(3)通过观察图形知:(2a+b)2,(2a-b)2,8ab.分别表示的是大正方形、空白部分的正方形及小长方形的面积.【详解】(1)图2的阴影部分的边长是2a﹣b.故答案为2a﹣b;(2)由图2可知,阴影部分的面积=大正方形的面积﹣4个小长方形的面积.∵大正方形的边长=2a+b=7,∴大正方形的面积=(2a+b)2=49.又∵4个小长方形的面积之和=大长方形的面积=4a×2b=8ab=8×3=24,∴阴影部分的面积=(2a﹣b)2=49﹣24=25;(3)由图2可以看出,大正方形面积=阴影部分的正方形的面积+四个小长方形的面积,即:(2a+b )2﹣(2a ﹣b )2=8ab .故答案为(2a+b )2﹣(2a ﹣b )2=8ab .【点睛】此题考查了学生观察、分析图形解答问题的综合能力,以及对列代数式、代数式求值的理解与掌握.关键是通过观察图形找出各图形之间的关系.23.(1)()0,2A ,()2,0B -;(2)1;(3)2()AB ON PM =+【分析】(1)分组配方为22()(2)0a b a ++-=,由非负数性质可求2a =,2b =-即可;(2)AE OC ⊥,BF OC ⊥,∠AOB=90°,可得∠EAO=∠FOB ,可证(AAS)AOE OBF ∆∆≌由性质得AE OF =,OE BF =可求1EF m n =-=即可;(3)在MA 上截取MD=MP ,过P 作PG ⊥OA 于G ,OA 与PN 的交点为H ,由0a b +=得OA=OB ,∠AOB=90º由点P 为ABO 的角平分线的交点,可推出AB=2AM ,由角平分线性质PM=PG ,由等腰直角三角形PM ,,通过角度计算∠ADP=∠PON ,可证△PDA ≌△PON 由性质得AD=ON ,可得MA =MP+ON 即可.【详解】(1)解:∵2222440a b ab a ++-+=,∴22()(2)0a b a ++-=,∵22()(2)00a b a +-≥≥,,∴0a b +=,20a -=,∴2a =,2b =-,即()0,2A ,()2,0B -;(2)解:∵AE OC ⊥,BF OC ⊥,∠AOB=90°,∴∠OAE+∠EOA=90º,∠AOE+∠FOB=90º,∴∠EAO=∠FOB ,在△AOE 和△OBF 中,∠EAO=∠FOB ,∠AEO=∠F ,OA=OB ,∴(AAS)AOE OBF ∆∆≌,故AE OF =,OE BF =,于是,1EF OF OE AE BF m n =-=-=-=;(3)在MA 上截取MD=MP ,过P 作PG ⊥OA 于G ,OA 与PN 的交点为H ,∵0a b +=,∴OA=OB ,∠AOB=90º,∴∠ABO=∠BAO=45º,∵点P 为ABO 的角平分线的交点,∴OM ⊥AB ,∠POA=∠POB=45º,∠MAP=∠PAO=22.5º,∴AB=2AM ,由PM ⊥AB ,PG ⊥OA ,AP 平分∠BAO ,∴PM=PG ,由MD=MP ,∠MDP=45º,∴PM ,∴∠ADP=180°-∠MDP=180°-45º=135°,由∠POA=45º,PG ⊥OA ,∴PG=OG ,∴PG=PD ,∴∠PON=∠POA+∠AON=135°,∴∠ADP=∠PON ,∵PN PA ⊥,OA ⊥ON ,∴∠PAH+∠PHA=90°,∠HNO+∠OHN ,∵∠AHP=∠OHN ,∴∠PAH=∠PNO ,∵∠MAP=∠PAO ,∴∠ONP=∠DAP ,∴△PDA ≌△PON ,∴AD=ON ,∴MA=MD+DA=MP+ON ,∴2()AB ON PM =+..【点睛】本题考查配方法,三角形全等的判定与性质,等腰直角三角形的判定与性质,勾股定理,掌握配方法,三角形全等的判定与性质,等腰直角三角形的判定与性质,勾股定理的应用,关键是引辅助线构出准确图形是解题关键.。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题(本试卷共三大题,23小题,共4页;满分120分,考试时间120分钟)一、.填空题(共6小题,每小题3分,共18分)1.因式分解:2x 2﹣2=2.一个多边形的内角和等于它外角和的7倍,则这个多边形的边数为.3.已知3x =5,9y =8,则3x ﹣2y =.4.二次三项式4x 2﹣(k ﹣3)x+9是完全平方式,则k 的值是.5.如图所示,在△ABC 中,BAC ∠=90°,ACB ∠=30°,AD BC⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果2AP =,则AC的长为.6.在平面直角坐标系xOy 中,已知点A (2,3),在坐标轴上找一点P ,使得△AOP 是等腰三角形,则这样的点P 共有个.二选择题:(本大题满分32分,共8小题,每题4分)7.数字0.0000036用科学记数法表示为()A .3.6×10﹣5B .3.6×10﹣6C .36×10﹣6D .0.36×10﹣58.甲骨文是中国的一种古代文字,又称“契文”、“甲骨卜辞”、“殷墟文字”或“龟甲兽骨文”,是汉字的早期形式,是现存中国王朝时期最古老的一种成熟文字,如图为甲骨文对照表中的部分内容,其中可以抽象为轴对称图形的甲骨文对应的汉字是()A .方B .雷C .罗D .安9.下列运算正确的是()A .326x x x =÷B .x x2121=-C .6234)2(x x =-D .63222a a a -=-10.关于x 的分式方程11--x m =2的解为正数,则m 的取值范围是()A .m >﹣1B .m≠1C .m >1且m≠﹣1D .m >﹣1且m≠111.已知a+b=﹣5,ab=﹣4,则a 2﹣ab+b 2=()A .29B .37C .21D .3312.如图,已知射线OM ,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,那么∠AOB的度数是()A .90°B .60°C .45°D .30°13.如图,MN 是等边三角形ABC 的一条对称轴,D 为AC 的中点,点P 是直线MN 上的一个动点,当PC+PD 最小时,∠PCD 的度数是()A .30°B .15°C .20°D .35°14.如图,在△ABC 中,AB =AC ,∠BAC =90∘,直角∠EPF 的顶点P 是BC 的中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,连接EF 交AP 于点G ,给出以下五个结论:①∠B =∠C =45∘;②AE =CF ,③AP =EF ,④△EPF 是等腰直角三角形,⑤四边形AEPF 的面积是△ABC 面积的一半。

人教版数学八年级上册期末考试试卷及答案

人教版数学八年级上册期末考试试卷及答案

人教版数学八年级上册期末考试试题一、(在下列各题的四个选项中,只有一项是符合题意的.每小题3分,共36分)1.下列图形中不是轴对称图形的是()A.B.C.D.2.在代数式中,字母x的取值范围是()A.x>1B.x≥1C.x<1D.x 3.下列运算中,结果正确的是()A.(a+b)2=a2+b2B.C.(a﹣1)(a+1)=a2﹣1D.a6÷a2=a34.已知三角形两边长分别为4和8,则该三角形第三边的长可能是()A.4B.5C.12D.13 5.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形6.若分式的值为0,则x的值为()A.2或﹣1B.0C.2D.﹣1 7.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.斜边及一条直角边对应相等8.如图,已知AB=AC,AD是△ABC的高,下列结论不一定正确的是()A.∠B=60°B.∠B=∠C C.∠BAD=∠CAD D.BD=CD 9.如果代数式x2+mx+36是一个完全平方式,那么m的值为()A.6B.﹣12C.±12D.±610.如图,△ABC中,边AB的垂直平分线与AC交于点D,与AB交于点E,已知AC=6,BC=4,则△BCD的周长是()A.7B.8C.9D.1011.已知∠ABC=∠DEF,AB=DE,添加以下条件,不能判定△ABC≌△DEF的是()A.∠A=∠D B.∠ACB=∠DFE C.AC=DF D.BE=CF 12.已知x=+2,则代数式x2﹣x﹣2的值为()A.9B.9C.5D.5二、填空题(本大题共6个小题,每小题3分,共18分)13.分解因式:a2﹣4=.14.化简:=.15.如图,已知∠ACP=115°,∠B=65°,则∠A=.16.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=8cm,则BC=cm.17.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于MN长为半径画弧,两弧交于点O,作射线AO,交BC于点E.已知CB=8,BE=5,则点E到AB的距离为.18.如图,∠A=∠B=90°,AB=100,E,F分别为线段AB和射线BD上的一点,若点E 从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为2:3,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为.三、(本大题共8个小题,解答应写出必要的文字说明、证明过程或验算步骤.)19.(6分)计算:+()﹣1﹣|1﹣|+(1901﹣)0.20.(6分)先化简,再求值:(x+y)(x﹣y)﹣x(x+2y)+3xy,其中x=1,y=3.21.(8分)如图,已知△ABC的三个顶点在格点上,网格上最小的正方形的边长为1.(1)点A关于x轴的对称点坐标为,点B关于y轴的对称点坐标为.(2)作出与△ABC关于x轴对称的图形△A1B1C1.(3)求△ABC的面积.22.(8分)解分式方程.(1)=;(2)=.23.(9分)如图,已知点D、E是△ABC内两点,且∠BAE=∠CAD,AB=AC,AD=AE.(1)求证:△ABD≌△ACE.(2)延长BD、CE交于点F,若∠BAC=86°,∠ABD=20°,求∠BFC的度数.24.(9分)某中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?25.(10分)在平面直角坐标系中,已知A(x,y),且满足x2+6x+y2﹣6y+18=0,过点A 作AB⊥y轴,垂足为B.(1)求A点坐标;(2)如图1,若分别以AB、AO为边作等边△ABC和等边△AOD,试判定线段AC和CD的数量关系和位置关系,并说明理由;(3)如图2,若在x轴正半轴上取一点M,连接BM并延长至N,以BN为直角边作等腰Rt△BNE,∠BNE=90°,过点A作AF∥y轴交BE于点F,连接MF,设OM=a,MF=b,AF=c,试证明:=.26.(10分)对于平面直角坐标系xOy中的线段AB和点M,给出定义:若M满足:MA =MB,则称M是线段AB的“富强点”,其中,当0°<∠AMB<60°,称M为线段AB的“民主点”;当60°≤∠AMB≤180°时,则称M为“文明点”.(1)如图1,点A,B的坐标分别为(0,2),(2,0),则在坐标M1(0,0),M2(2,3),M3(4,4)中,是线段AB的“富强点”为:;是线段AB的“文明点”为.(2)如图2,点A的坐标为(﹣3,0),AB=2,且∠OAB=30°.若M为线段AB 的“民主点”,直接写出M的横坐标m的取值范围;(3)在(2)的条件下,点P为y轴上的动点(不与B重合且BP≠AB),若T为AB的“富强点”,当线段TB和TP的和最小时,求T的坐标,以及此时T关于直线AB的对称点S 的坐标.参考答案与试题解析一、(在下列各题的四个选项中,只有一项是符合题意的.每小题3分,共36分)1.下列图形中不是轴对称图形的是()A.B.C.D.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不合题意;故选:C.2.在代数式中,字母x的取值范围是()A.x>1B.x≥1C.x<1D.x【解答】解:由题意得,x﹣1≥0,解得x≥1,故选:B.3.下列运算中,结果正确的是()A.(a+b)2=a2+b2B.C.(a﹣1)(a+1)=a2﹣1D.a6÷a2=a3【解答】解:A、(a+b)2=a2+2ab+b2,故此选项错误;B、+,故此选项错误;C、(a﹣1)(a+1)=a2﹣1,故此选项正确;D、a6÷a2=a4,故此选项错误;故选:C.4.已知三角形两边长分别为4和8,则该三角形第三边的长可能是()A.4B.5C.12D.13【解答】解:设第三边的长为x,∵三角形两边的长分别是4和8,∴8﹣4<x<8+4,即4<x<12,只有5有可能,故选:B.5.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:B.6.若分式的值为0,则x的值为()A.2或﹣1B.0C.2D.﹣1【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得:x﹣2=0且x+1≠0,解得x=2.故选:C.7.使两个直角三角形全等的条件是()A.一个锐角对应相等B.两个锐角对应相等C.一条边对应相等D.斜边及一条直角边对应相等【解答】解:A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故本选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故本选项错误;C、一条边对应相等,再加一组直角相等才能得出两三角形全等,故本选项错误;D、当两个直角三角形的两直角边对应相等时,由ASA可以判定它们全等;当一直角边与一斜边对应相等时,由HL判定它们全等,故本选项正确;故选:D.8.如图,已知AB=AC,AD是△ABC的高,下列结论不一定正确的是()A.∠B=60°B.∠B=∠C C.∠BAD=∠CAD D.BD=CD【解答】解:∵AB=AC,∴∠B=∠C,∵AD是△ABC的高,∴AD平分∠BAC,BC=2BD=2CD,∴∠BAD=∠CAD,BD=CD,∴B、C、D都是正确的,故选:A.9.如果代数式x2+mx+36是一个完全平方式,那么m的值为()A.6B.﹣12C.±12D.±6【解答】解:∵x2+mx+36是一个完全平方式,∴x2+mx+36=(x±6)2,∴m=±12,故选:C.10.如图,△ABC中,边AB的垂直平分线与AC交于点D,与AB交于点E,已知AC=6,BC=4,则△BCD的周长是()A.7B.8C.9D.10【分析】根据线段垂直平分线的性质得到DA=DB,根据三角形的周长公式计算,得到答案.【解答】解:∵DE是边AB的垂直平分线,∴DA=DB,∴△BCD的周长=BC+CD+BD=BC+CD+DA=BC+AC=10,故选:D.11.已知∠ABC=∠DEF,AB=DE,添加以下条件,不能判定△ABC≌△DEF的是()A.∠A=∠D B.∠ACB=∠DFE C.AC=DF D.BE=CF【分析】根据全等三角形的判定方法一一判断即可.【解答】解:A、根据ASA,可以推出△ABC≌△DEF,本选项不符合题意.B、根据AAS,可以推出△ABC≌△DEF,本选项不符合题意.C、SSA,不能判定三角形全等,本选项符合题意.D、根据SAS,可以推出△ABC≌△DEF,本选项不符合题意.故选:C.12.已知x=+2,则代数式x2﹣x﹣2的值为()A.9B.9C.5D.5【分析】把已知条件变形得到x﹣2=,两边平方得到x2=4x+1,利用降次的方法得到原式=3x﹣1,然后把x的值代入计算即可.【解答】解:∵x=+2,∴x﹣2=,∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x=+2时,原式=3(+2)﹣1=3+5.故选:D.二、填空题(本大题共6个小题,每小题3分,共18分)13.分解因式:a2﹣4=(a+2)(a﹣2).【分析】有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【解答】解:a2﹣4=(a+2)(a﹣2).14.化简:=x.【分析】根据同分母的分式相加减法的法则,求出算式的值是多少即可.【解答】解:===x.故答案为:x.15.如图,已知∠ACP=115°,∠B=65°,则∠A=50°.【分析】根据三角形中一个外角等于与它不相邻的两个内角和求解.【解答】解:∵∠ACP=115°,∠B=65°,∴∠A=∠ACP﹣∠B=115°﹣65°=50°.故答案为:50°.16.如图,Rt△ABC中,∠C=90°,∠A=30°,AB=8cm,则BC=4cm.【分析】根据含30度角的直角三角形的性质直接求解即可.【解答】解:根据含30度角的直角三角形的性质可知:BC=AB=4cm.故答案为:4.17.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于MN长为半径画弧,两弧交于点O,作射线AO,交BC于点E.已知CB=8,BE=5,则点E到AB的距离为3.【分析】根据作图过程可得AE平分∠CAB,根据角平分线的性质即可得结论.【解答】解:根据作图过程可知:AE平分∠CAB,∵CB=8,BE=5,∴CE=BC﹣BE=8﹣5=3,∵∠C=90°,∴EC⊥AC,∴点E到AB的距离为3.故答案为:3.18.如图,∠A=∠B=90°,AB=100,E,F分别为线段AB和射线BD上的一点,若点E 从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为2:3,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为40或75.【分析】设BE=2t,则BF=3t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG.【解答】解:设BE=2t,则BF=3t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,∴3t=100﹣2t,解得:t=20,∴AG=BE=2t=2×20=40;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴2t=100﹣2t,解得:t=25,∴AG=BF=3t=3×25=75,综上所述,AG=40或AG=75.故答案为:40或75.三、(本大题共8个小题,解答应写出必要的文字说明、证明过程或验算步骤.)19.(6分)计算:+()﹣1﹣|1﹣|+(1901﹣)0.【分析】根据二次根式的除法法则、负整数指数幂、绝对值的意义和零指数幂的意义计算.【解答】解:原式=+4+(1﹣)+1=+4+1﹣+1=6.20.(6分)先化简,再求值:(x+y)(x﹣y)﹣x(x+2y)+3xy,其中x=1,y=3.【分析】直接利用整式的混合运算法则化简,进而代入已知数据得出答案.【解答】解:原式=x2﹣y2﹣x2﹣2xy+3xy=﹣y2+xy,当x=1,y=3时,原式=﹣32+1×3=﹣9+3=﹣6.21.(8分)如图,已知△ABC的三个顶点在格点上,网格上最小的正方形的边长为1.(1)点A关于x轴的对称点坐标为(﹣2,﹣3),点B关于y轴的对称点坐标为(3,2).(2)作出与△ABC关于x轴对称的图形△A1B1C1.(3)求△ABC的面积.【分析】(1)根据轴对称的性质解决问题即可.(2)分别作出A,B,C的对应点A1,B1,C1即可.(3)利用分割法求三角形面积即可.【解答】解:(1)点A关于x轴的对称点坐标为(﹣2,﹣3),点B关于y轴的对称点坐标为(3,2)故答案为:(﹣2,﹣3),(3,2).(2)如图,△A1B1C1即为所求作.=4﹣×1×2﹣×1×1﹣×12=1.5.(3)S△ABC22.(8分)解分式方程.(1)=;(2)=.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3(x+1)=4x,解得:x=3,检验:当x=3时,2x(x+1)≠0,所以x=3是原分式方程的解;(2)去分母得:x﹣1+2(x+1)=4,解得:x=1,检验:当x=1时,(x+1)(x﹣1)=0,因此x=1是增根,所以原分式方程无解.23.(9分)如图,已知点D、E是△ABC内两点,且∠BAE=∠CAD,AB=AC,AD=AE.(1)求证:△ABD≌△ACE.(2)延长BD、CE交于点F,若∠BAC=86°,∠ABD=20°,求∠BFC的度数.【分析】(1)由SAS证明△ABD≌△ACE即可;(2)先由全等三角形的性质得∠ACE=∠ABD=20°,再由等腰三角形的性质和三角形内角和定理得∠ABC=∠ACB=47°,则∠FBC=∠FCB=27°,即可得出答案.【解答】(1)证明:∵∠BAE=∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD=20°,∵AB=AC,∴∠ABC=∠ACB=(180°﹣86°)=47°,∴∠FBC=∠FCB=47°﹣20°=27°,∴∠BFC=180°﹣27°﹣27°=126°.24.(9分)明德中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?【分析】(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据“购买两种电脑的总费用不超过34万元,且购进乙种电脑的数量不少于甲种电脑数量的1.5倍”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各购买方案.【解答】解:(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意得:=,解得:x=0.3,经检验,x=0.3是原分式方程的解,且符合题意,∴x+0.2=0.3+0.2=0.5.答:每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元.(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意得:,解得:48≤m≤50.又∵m为整数,∴m可以取48,49,50.∴学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.25.(10分)在平面直角坐标系中,已知A(x,y),且满足x2+6x+y2﹣6y+18=0,过点A作AB⊥y轴,垂足为B.(1)求A点坐标;(2)如图1,若分别以AB、AO为边作等边△ABC和等边△AOD,试判定线段AC和CD的数量关系和位置关系,并说明理由;(3)如图2,若在x轴正半轴上取一点M,连接BM并延长至N,以BN为直角边作等腰Rt△BNE,∠BNE=90°,过点A作AF∥y轴交BE于点F,连接MF,设OM=a,MF=b,AF=c,试证明:=.【分析】(1)由非负数的性质可求出x=﹣3,y=3,则可得出答案;(2)由等边三角形的性质得出AB=AC,AO=AD,∠DAO=∠CAB=60°,证明△DAC≌△OAB(SAS),由全等三角形的性质可得出CD=OB,∠ACD=∠ABO=90°,则可得出结论;(3)在AF上取一点P,使得AP=OM=a,连接BP,证明△BAP≌△BOM(SAS),由全等三角形的性质得出∠ABP=∠OBM,BP=BM,证明△FBP≌△FMB(SAS),由全等三角形的性质得出FP=FM=b,则得出c=a+b,结论得证.【解答】解:(1)∵x2+6x+y2﹣6y+18=0,∴(x+3)2+(y﹣3)2=0,∴x+3=0,y﹣3=0,∴x=﹣3,y=3,∴点A的坐标为(﹣3,3);(2)CD=AC,CD⊥AC.理由如下:∵△ABC和△AOD为等边三角形,∴AB=AC,AO=AD,∠DAO=∠CAB=60°,∴∠DAO﹣∠CAO=∠CAB﹣∠CAO,∴∠DAC=∠OAB,∴△DAC≌△OAB(SAS),∴CD=OB,∠ACD=∠ABO=90°,由(1)可知BO=AB=3,又∵AB=AC,∴CD=OB=AB=AC,且CD⊥AC,(3)证明:在AF上取一点P,使得AP=OM=a,连接BP,∵AB=BO,AP=OM,∠PAB=∠MOB=90°,∴△BAP≌△BOM(SAS),∴∠ABP=∠OBM,BP=BM,∵∠ABP+∠PBO=90°,∴∠OBM+∠PBO=90°,又∵△BEN为等腰直角三角形,∴∠FBN=45°,∴∠PBF=90°﹣45°=45°=∠FBN,又∵BF=BF,∴△FBP≌△FMB(SAS),∴FP=FM=b,∴AF=FP+AP,即c=a+b.∴.26.(10分)对于平面直角坐标系xOy中的线段AB和点M,给出定义:若M满足:MA =MB,则称M是线段AB的“富强点”,其中,当0°<∠AMB<60°,称M为线段AB 的“民主点”;当60°≤∠AMB≤180°时,则称M为“文明点”.(1)如图1,点A,B的坐标分别为(0,2),(2,0),则在坐标M1(0,0),M2(2,3),M3(4,4)中,是线段AB的“富强点”为:M1,M3;是线段AB的“文明点”为M1.(2)如图2,点A的坐标为(﹣3,0),AB=2,且∠OAB=30°.若M为线段AB 的“民主点”,直接写出M的横坐标m的取值范围;(3)在(2)的条件下,点P为y轴上的动点(不与B重合且BP≠AB),若T为AB的“富强点”,当线段TB和TP的和最小时,求T的坐标,以及此时T关于直线AB的对称点S 的坐标.【分析】(1)根据“富强点”,“文明点”的定义判断即可.(2)过线段AB的中点C作线段AB的垂直平分线l,交y轴于点F,过A作AE⊥x轴交直线l于点E,连接BE,AF.求出点E,F的坐标,根据“民主点”的定义解决问题即可.(3)如图,作线段AB的垂直平分线l,则T在直线l上运动,由题意TB+TP=TA+TP≥AP′,(点到直线所有连线中,垂直段最短),此时,直线l与x轴的交点T′为所求的坐标,再根据对称性,求出S的坐标即可.【解答】解:(1)如图中,,根据定义可知:线段AB“富强点”为M1,M3,线段AB的“文明点”为M1.故答案为:M1,M3;M1.(2)过线段AB的中点C作线段AB的垂直平分线l,交y轴于点F,过A作AE⊥x轴交直线l于点E,连接BE,AF.∵∠OAB=30°,∠AOB=90°,∴∠ABO=60°,又∵EA=EB,∴△ABE是等边三角形,同理可证△ABF也是等边三角形,∴∠AEB=∠AFB=60°,由图可知,E的横坐标为﹣3,F的横坐标为0,当M在点E上方,或M在点F的下方时,满足:0°<∠AMB<60°,∴M的横坐标m的取值范围为:m>0或m<﹣3.(3)如图,作线段AB的垂直平分线l,则T在直线l上运动,∵T为线段AB的“富强点”,∴TA=TB,∴TB+TP=TA+TP≥AP′,(点到直线所有连线中,垂直段最短),此时,直线l与x轴的交点T′为所求的坐标.在Rt△ACT′中,∠CAT′=30°,AC=,∴AT′==2,∴OT′=OA﹣AT′=1,∴T′(﹣1,0),在Rt△ABO中,∠OAB=30°,∴OB=AB=,作T′个关于直线AB的对称点S,过点S作SM⊥OA于M,根据对称性,∠SAB=∠OAB =30°,∴∠SAT′=60°,∵∠AT′S=60°,∴△SAT′是等边三角形,∵SM⊥AT′,∴AM=T′M=1,∴SM==,∴所求T′关于直线AB的对称点S的坐标为:(﹣2,).。

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

人教版八年级上学期期末考试数学试卷(附带答案)精选全文

精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试题一、单选题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.下列式子中,是分式的是()A .1πB .3xC .11x -D .25x3.如图,在△ABC 中,∠A=70°,∠B=60°,∠ACD 是△ABC 的一个外角,则∠ACD=()A .10°B .60°C .70°D .130°4.下列计算正确的是()A .333•2b b b =B .2336ab a b ()=C .3249•a a a ()=D .2224a a (﹣)=﹣5.数据0.000000005用科学记数法表示为()A .5×10﹣8B .5×10﹣9C .0.5×10﹣8D .0.5×10﹣96.下列长度的三条线段中,能组成三角形的是()A .3cm ,5cm ,8cmB .8cm ,8cm ,18cmC .3cm ,3cm ,5cmD .3cm ,4cm ,8cm 7.若221()4y a y by -=-+,则a 的值可能是()A .14B .14-C .12D .188.在如图所示的钢架中,AB=AC ,AD 是连接点A 与BC 中点D 的支架,这样实际上可以得到△ABD ≌△ACD ,理由不可能是()A .AAAB .ASAC .SASD .SSS9.如图,在ABC 中,90B ∠=︒,AD 平分BAC ∠,10BC =,6CD =,则点D 到AC 的距离为()A .4B .6C .8D .1010.如图,在△ABC 中,CA 的平分线交BC 于点D ,过点D 作DE ⊥AC 于点E ,DF ⊥AB 于点F ,连接EF ,则下列结论中,不正确的是()A .∠AEF=∠AFEB .EF ∥BC C .AD 垂直平分EFD .S △BDF :S △CED=BF :CE二、填空题11.分解因式:25x 2﹣16y 2=_____.12.要使分式3m m +有意义,则m 的取值应满足__________.13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为______.14.如图,ABN ACM ≌,∠B=35°,∠BAM=25°,则∠ANB=____________.15.如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于点O ,且OA 平分∠BAC ,OD=2,则OE=____________.16.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线MN 交AC 于点D ,则∠DBC =_____度.17.如图,等边△ABC 中,BD ⊥AC 于D ,QD =1.5,点P 、Q 分别为AB 、AD 上的两个定点且BP =AQ =2,在BD 上有一动点E 使PE +QE 最短,则PE +QE 的最小值为_____.18.如图,在ABC ∆中,AB 的垂直平分线交AB 于E ,交BC 于D ,连结AD .若4AC cm =,ADC ∆的周长为11cm ,则BC 的长为__________cm .三、解答题19.计算:434224()(2)x x x x x ⋅⋅++-.20.先化简,再求值:(1﹣31x +)÷2441x x x -++,其中x =3.21.如图,已知∠AOB ,直线MN ∥OA .请根据以下步骤完成作图过程.(1)尺规作图(保留作图痕迹,不写作法);①以点O 为圆心,任意长为半径画弧,交OA ,OB 于点P 、Q ;②以P ,Q 为圆心,大于12PO 长为半径画弧,交于一点K ,连接OK ,交MN 于点L .(2)直接写出∠BOL 和∠AOL 的数量关系.22.小明利用一根长3m 的竿子来测量路灯AB 的高度.他的方法如下:如图,在路灯前选一点P ,使3m BP =,并测得70APB ∠=︒,然后把竖直的竿子(3m)CD CD =在BP 的延长线上左右移动,使20CPD ∠=︒,此时测得11.2m BD =.请根据这些数据,计算出路灯AB 的高度.23.如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,FC AB ∥.求证:AE CE =.24.某轮船由西向东航行,在A 处测得小岛P 的方位是北偏东75°,又继续航行7海里后,在B 处测得小岛P 的方位是北偏东60°,求:(1)此时轮船与小岛P 的距离BP 是多少海里;(2)小岛点P 方圆3海里内有暗礁,如果轮船继续向东行驶,请问轮船有没有触礁的危险?请说明理由.25.如图,某中学校园内有一块长为(3a+b )米,宽为(2a+b )米的长方形地块,学校计划在中间留一块边长为(a+b )米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a、b的代数式表示)(2)当a=2,b=4时,求绿化的面积.26.如图,CB为∠ACE的平分线,F是线段CB上一点,CA=CF,∠B=∠E,延长EF与线段AC相交于点D.(1)求证:AB=FE;(2)若ED⊥AC,AB∥CE,求∠A的度数.27.超市预测某品牌饮料有销售前景,用1200元购进一批该饮料,试销售后果然供不应求,又用5400元购进这种饮料,第二批饮料的数量是第一批的3倍,但进货单价比第一批贵3元.(1)第一批饮料进货单价为多少元?(2)若二次购进饮料同一价格销售,两批全部售完后,获利不少于3000元,则销售单价至少为多少元?28.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=12∠BAD ,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙在指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E ,F 处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.参考答案1.A2.C3.D4.B5.B6.C7.C8.A9.A10.B11.(54)(54)x y x y +-12.3m ≠-【分析】分母不为零时,分式有意义,利用分母不为零列不等式即可.【详解】解: 分式3m m +有意义,30,m ∴+≠3.m ∴≠-故答案为: 3.m ≠-【点睛】本题考查的是分式有意义的条件,利用分式有意义列不等式是解题的关键.13.6【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n 边形,根据题意得,(n-2)•180°=2×360°,解得n=6.故答案为:6.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.14.60°【分析】根据ABN ACM △≌△可知35C B ∠=∠=︒,25CAN BAM ∠=∠=︒,根据ANB CAN C ∠=∠+∠计算求解即可.【详解】解:∵ABN ACM△≌△∴35C B ∠=∠=︒,BAN CAM∠=∠∴BAN MAN CAM MAN∠-∠=∠-∠∴25CAN BAM ∠=∠=︒∴60ANB CAN C ∠=∠+∠=︒故答案为:60°.【点睛】本题考查了全等三角形的性质,三角形外角的性质.解题的关键在于找出角度的数量关系.15.2【分析】证明△AOE ≌△AOD (AAS ),得OE=OD=2即可.【详解】解:∵CD ⊥AB ,BE ⊥AC ,∴∠ODA=∠OEA=90°,∵OA 平分∠BAC ,∴∠1=∠2,在△AOE 和△AOD 中,21OEA ODA OA OA ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AOE ≌△AOD (AAS ),∴OE=OD=2,故答案为:2.【点睛】本题考查了全等三角形的判定与性质以及角平分线定义等知识,证明△AOE ≌△AOD 是解题的关键.16.30【详解】∵AB=AC ,∠A=40°,∴∠ABC=∠C=70°,∵AB 的垂直平分线MN 交AC 于点D ,∴AD=BD ,∴∠ABD=∠A=40°,∴∠DBC=∠ABC -∠ABD=70°-40°=30°.故答案为:3017.5【分析】作点Q 关于BD 的对称点Q′,连接PQ′交BD 于E ,连接QE ,此时PE+QE 的值最小,最小值PE+QE=PE+EQ′=PQ′.【详解】解:如上图,∵△ABC是等边三角形,∴BA=BC,∵BD⊥AC,∴AD=DC=AQ+QD=2+1.5=3.5,∴AB=AC=2AD=7,作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+QE的值最小,最小值为PE+QE=PE+EQ′=PQ′,∴QD=DQ′=1.5,∴AQ′=AD+DQ′=3.5+1.5=5,∵BP=2,∴AP=AB-BP=7-2=5,∴AP=AQ′=5,∵∠A=60°,∴△APQ′是等边三角形,∴PQ′=PA=5,∴PE+QE的最小值为5.∴答案为5.【点睛】本题主要考查了利用对称求点之间距离的最小值以及等边三角形性质,解题的关键是学会利用轴对称解决最短问题.18.7【分析】由AB的垂直平分线交AB于E,交BC于D,根据线段垂直平分线的性质,可得AD=BD,又由△ADC的周长为11cm,即可求得AC+BC=11cm,然后由AC=4cm,即可求得BC的长.【详解】解:∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD,∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm,∵AC=4cm,∴BC=7cm.故答案为:7.【点睛】此题考查了线段垂直平分线的性质.此题比较简单,注意掌握数形结合思想的应用.19.818x 【分析】首先利用同底数幂的乘法法则、幂的乘方与积的乘方法则计算,再合并同类项即可.【详解】解:原式88816x x x =++818x =【点睛】本题主要考查了整式的混合运算,熟练掌握同底数幂的乘法法则、幂的乘方与积的乘方法则是解题关键.20.1,12x -.【分析】先将括号里的分式通分,然后按照分式减法法则计算,再根据分式除法法则进行运算即可将分式化简,最后代入字母取值进行计算即可求解.【详解】解:原式=()2213111x x x x x -+⎛⎫-÷ ⎪+++⎝⎭,=()22112x x x x -+⋅+-,=12x -,当x =3时,原式=1132=-.【点睛】本题主要考查分式化简求值,解决本题的关键是要熟练掌握分式的通分和分式的运算法则.21.(1)见解析(2)∠BOL=∠AOL【分析】(1)根据作图过程即可解决问题;(2)根据作图过程可得OL 平分∠AOB ,进而可得结论.(1)解:如图所示即为所求.(2)解:由作图可知:OL 平分∠AOB ,∴∠BOL=∠AOL .22.路灯AB 的高度是8.2m【分析】根据题意可得△CPD ≌△PAB (ASA ),进而利用AB=DP=DB-PB 求出即可.【详解】解:∵20CPD ∠=︒,70APB ∠=︒,90CDP ABP ∠=∠=︒,∴70DCP APB ∠=∠=︒,20BAP DPC ∠=∠=︒在CPD △和PAB △中,CDP PBA CD PB DCP BPA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()CPD PAB ASA ≌,∴DP AB =.∵11.2m BD =,3m BP =,∴8.2m DP BD BP =-=,即8.2m AB =.答:路灯AB 的高度是8.2m .23.见解析【分析】此题根据已知条件及对顶角相等的知识先证得△AED ≌△CEF ,则易求证AE =CE .【详解】证明:∵AB ∥FC ,∴∠ADE =∠CFE ,在△AED 和△CEF 中,ADE CFE DE FE AED CEF ∠⎪∠⎧⎩∠⎪∠⎨===,∴△AED ≌△CEF (ASA ),∴AE =CE .【点睛】主要考查了全等三角形的判定定理和性质;由平行线得到内错角相等是解决本题的突破口,做题时注意运用.24.(1)BP=7海里;(2)没有危险,理由见解析.【分析】(1)由方向角求出∠PAB和∠PBD,再根据外角的性质求出∠APB,可证明△APB 是等腰三角形,即可求解.(2)过P作AB的垂线PD,在直角△BPD中可以求出∠PBD的度数是30°,从而根据30°角的性质求出PD的长,再把PD的长与3海里比较大小.【详解】解:(1)∵∠PAB=90﹣75=15°,∠PBD=90°﹣60°=30°∴∠APB=∠PBD﹣∠PAB=30°﹣15°=15°,∴∠PAB=∠APB∴BP=AB=7(海里)(2)过点P作PD垂直AC,则∠PDB=90°∴PD=12PB=3.5>3∴没有危险25.(1)(5a2+3ab)平方米;(2)绿化面积是44平方米.【分析】(1)先找到绿化面积=矩形面积-正方形面积的等量关系,然后再利用多项式乘多项式法则以及完全平方公式化简即可解答;(2)将a与b的值代入(1)计算求值即可.【详解】解:(1)依题意得:(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=(5a2+3ab)平方米.答:绿化面积是(5a2+3ab)平方米;(2)当a=2,b=4时,原式=20+24=44(平方米).答:绿化面积是44平方米.【点睛】本题考查了多项式乘多项式以及整式的混合运算、化简求值,弄清题意列出代数式并进行化简是解答本题的关键.26.(1)见解析(2)120°【分析】(1)根据“AAS”证明ABC FEC ≌,即可证明AB FE =;(2)根据∥AB CE 得到B FCE ∠=∠,进而证明E FCE B ACB ∠∠=∠=∠=,利用直角三角形性质得到90∠+∠+∠=︒E FCE ACB ,即可求出30ACB ∠=︒,30B ∠=︒,即可求出120A ∠=︒.(1)证明:∵CB 为ACE ∠的角平分线,∴ACB FCE ∠=∠,在ABC 与FEC 中,B E ACB FCE CA CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴() ≌ABC FEC AAS ,∴AB FE =;(2)解:∵∥AB CE ,∴B FCE ∠=∠,∴E FCE B ACB ∠∠=∠=∠=,∵ED AC ⊥,即90CDE ∠=︒,∴90∠+∠+∠=︒E FCE ACB ,即390ACB ∠=︒,∴30ACB ∠=︒,∴30B ∠=︒,∴1801803030120∠=︒-∠-∠=︒-︒-︒=︒A B ACB .27.(1)第一批饮料进货单价为6元;(2)销售单价至少为12元.【分析】(1)设第一批饮料进货单价为x 元,则第二批饮料进货单价为(3)x +元,根据数量=总价÷单价结合第二批饮料购进数量是第一批的3倍,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)根据数量=总价÷单价可分别求出前两批饮料的购进数量,设销售单价为y 元,根据利润=销售收入-进货成本,即可得出关于y 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设第一批饮料进货单价为x 元,则第二批饮料进货单价为(3)x +元.依题意,得:5400120033x x =⨯+.解得:6x =.经检验,6x =是原方程的解,且符合题意.答:第一批饮料进货单价为6元.(2)第一批饮料进货数量为12006200÷=第二批饮料进货数量为5400(63)600÷+=.设销售单价为y 元,依题意,得:(200600)(12005400)3000y +-+.解得:y =12元答:销售单价至少为12元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.28.问题背景:EF=BE+DF ;探索延伸:仍然成立,理由见解析;实际应用:此时两舰艇之间的距离为320海里【分析】问题背景:延长FD 到点G ,使DG=BE ,连接AG ,证明△ABE ≌△ADG ,得到△AEF ≌△AGF ,证明EF=FG ,得到答案;探索延伸:连接EF ,延长AE ,BF 相交于点C ,利用全等三角形的性质证明EF=AE+FB .实际应用:如图3,连接EF ,延长AE ,BF 相交于点C ,首先证明,∠FOE=12∠AOB ,利用结论EF=AE+BF 求解即可.【详解】解:问题背景:由题意:△ABE ≌△ADG ,△AEF ≌△AGF ,∴BE=DG ,EF=GF ,∴EF=FG=DF+DG=BE+FD .故答案为:EF=BE+FD .探索延伸:EF=BE+FD 仍然成立.理由:如图2,延长FD 到点G ,使DG=BE ,连接AG∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG ,又∵AB=AD ,在△ABE 和△ADG 中,AB ADB ADG BE DG=⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ADG(SAS),∴AE=AG ,∠BAE=∠DAG ,又∵∠EAF=12∠BAD ,∴∠FAG=∠FAD+∠DAG=∠FAD+∠BAE=∠BAD ﹣∠EAF ,=∠BAD ﹣12∠BAD=12∠BAD ,∴∠EAF=∠GAF .在△AEF 和△AGF 中,AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AGF(SAS),∴EF=FG ,又∵FG=DG+DF=BE+DF ,∴EF=BE+FD .实际应用:如图3,连接EF ,延长AE ,BF 相交于点C ,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=12∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.即,EF=AE+FB=2×(70+90)=320(海里)答:此时两舰艇之间的距离为320海里.。

人教版八年级上册数学期末考试试题及答案

人教版八年级上册数学期末考试试题及答案

人教版八年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下列平面图形中,不是轴对称图形的是()A .B .C .D .2.﹣2的绝对值是()A .2B .12C .12-D .2-3.在下列长度的各组线段中,能组成三角形的是()A .1,2,4B .1,4,9C .3,4,5D .4,5,94.据广东省旅游局统计显示,2018年4月全省旅游住宿设施接待过夜旅客约27700000人,将27700000用科学计数法表示为()A .527710⨯B .80.27710⨯C .72.7710⨯D .82.7710⨯5.在211x 13xy 31a x 22πx y m+++,,,,,中,分式的个数是()A .2B .3C .4D .56.下列计算中正确的是()A .()236ab ab =B .44a a a ÷=C .248a a a ⋅=D .()326a a -=-7.为参加“爱我家园”摄影赛,小明同学将参与植树活动的照片放大为长acm ,宽34acm 的形状,又精心在四周加上了宽2cm 的木框,则这幅摄影作品所占的面积是()A .237442a a -+B .237164a a -+C .237442a a ++D .237164a a ++8.等腰三角形的两边长分别为8cm 和4cm ,则它的周长为()A .12cmB .16cmC .20cmD .16cm 或20cm9.下列条件中,不能判定两个直角三角形全等的是()A .两个锐角对应相等B .一条边和一个锐角对应相等C .两条直角边对应相等D .一条直角边和一条斜边对应相等10.如图,DE 是△ABC 中AC 边的垂直平分线,若BC=6cm ,AB=8cm ,则△EBC 的周长是()A .14cmB .18cmC .20cmD .22cm二、填空题11.已知点A(2,a)与点B(b ,4)关于x 轴对称,则a+b =_____.12.若一个多边形的内角和是900º,则这个多边形是_____边形.13.如图,在△ABC 中,已知AD 是角平分线,DE ⊥AC 于E ,AC=4,S △ADC =6,则点D 到AB 的距离是________.14.二元一次方程组128x y x y -=⎧⎨+=⎩的解为_________.15.如图,将三角形纸板ABC 沿直线AB 平移,使点A 移到点B ,若∠CAB =60°,∠ABC =80°,则∠CBE 的度数为_____.16.现在生活人们已经离不开密码,如取款、上网等都需要密码,有一种用“因式分解”法产生的密码,方便记忆.原理是:如对于多项式44x y -,因式分解的结果是()22()()x y x y x y -++,若取9x =,9y =时则各个因式的值是:0x y -=,18x y +=,22162x y +=,把这些值从小到大排列得到018162,于是就可以把“018162”作为一个六位数的密码.对于多项式324x xy -,取10x =,10y =时,请你写出用上述方法产生的密码_________.三、解答题17.计算:102|3|(2----+;18.解方程:32122x x x =---19.先化简,再求值:2()()()x y x y x y x ⎡⎤-+-+÷⎣⎦,其中x =1-,12y =.20.计算:221369324a a a a a a a +--+-÷-+-.21.如图所示,在ABC ∆,A ABC CB =∠∠.(1)尺规作图:过顶点A 作ABC ∆的角平分线AD ,交BC 于D ;(不写作法,保留作图痕迹)(2)在AD 上任取一点E (不与点A 、D 重合),连结BE ,CE ,求证:EB EC =.22.某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元,乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:①甲队单独完成这项工程刚好如期完成;②乙队单独完成这项工程要比规定日期多用5天;③若甲乙两队合作4天,余下的工程由乙队单独也正好如期完成.(1)甲、乙单独完成各需要多少天?(2)在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?23.如图,已知正方形ABCD 的边长为10厘米,点E 在边AB 上,且AE=4厘米,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上由C 点向D 点运动.设运动时间为t 秒.(1)若点Q的运动速度与点P的运动速度相等,经过2秒后,△BPE与△CQP是否全等?请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,则当t为何值时,能够使△BPE与△CQP 全等;此时点Q的运动速度为多少.24.如图,在四边形ABCD中,//AD BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且GDF ADF∠=∠.(1)求证:ADE∆≌BFE∆.(2)连接EG,判断EG与DF的位置关系并说明理由.25.在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).参考答案1.A【详解】试题分析:根据轴对称图形的定义作答.如果把一个图形沿着一条直线翻折过来,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.故选A.考点:轴对称图形.2.A【详解】分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.3.C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】A、1+2=3<4,不能组成三角形,故此选项错误;B、4+1=5<9,不能组成三角形,故此选项错误;C、3+4=7>5,能组成三角形,故此选项正确;D、5+4=9,不能组成三角形,故此选项错误;故选:C.【点睛】此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4.C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将27700000用科学记数法表示为2.77×107,故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】解:在211133122x xy ax x y mπ+++,,,,,中,分式有131ax x y m++,,∴分式的个数是3个.故选:B.【点睛】本题主要考查分式的定义,注意π不是字母,是常数,所以象2xπ-不是分式,是整式.6.D 【分析】根据幂的乘除运算法则运算即可.【详解】A.()2326ab a b =,该选项错误B.34a a a ÷=,该选项错误C.246a a a ⋅=,该选项错误D.()326a a -=-,该选项正确故选D.【点睛】本题考查幂的乘除的运算,关键在于熟悉乘除、乘方的运算规律.7.D 【分析】此题涉及面积公式的运用,解答时直接运用面积的公式求出答案.【详解】根据题意可知,这幅摄影作品占的面积是34a 2+4(a +4)+4(34a +4)−4×4=237164a a ++故选:D .【点睛】列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系列出式子.8.C 【分析】根据等腰三角形的两腰相等,可知边长为8,8,4或4,4,8,再根据三角形三边关系可知4,4,8不能组成三角形,据此可得出答案.【详解】∵等腰三角形的两边长分别为8cm 和4cm ,∴它的三边长可能为8cm ,8cm ,4cm 或4cm ,4cm ,8cm ,∵4+4=8,不能组成三角形,∴此等腰三角形的三边长只能是8cm,8cm,4cm8+8+4=20cm故选C.【点睛】本题考查等腰三角形的性质与三角形的三边关系,熟练掌握三角形两边之和大于第三边是解题的关键.9.A【分析】直角三角形全等的判定方法:HL,SAS,ASA,SSS,AAS,做题时要结合已知条件与全等的判定方法逐一验证.【详解】A、全等三角形的判定必须有边的参与,故本选项符合题意;B、符合判定ASA或AAS,故本选项正确,不符合题意;C、符合判定SAS,故本选项不符合题意;D、符合判定HL,故本选项不符合题意.故选:A.【点睛】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.A【分析】先根据线段垂直平分线的性质得出AE=CE,故CE+BE=AB,再由△EBC的周长=BC+CE+BE=BC+AB,即可得出结论.【详解】中AC边的垂直平分线,DE是ABC∴=,AE CE∴+==,CE BE AB8cm,=BC6cmEBC ∴ 的周长()BC CE BE BC AB 6814cm =++=+=+=,故选A .【点睛】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.11.-2【分析】直接利用关于x 轴对称点的性质得出a ,b 的值,进而得出答案.【详解】∵点A (2,a )与点B (b ,4)关于x 轴对称,∴b =2,a =−4,则a +b =−4+2=−2,故答案为:−2.【点睛】此题主要考查了关于x 轴对称点的性质,正确把握横纵坐标的关系是解题关键.12.七【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -︒=⋅︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.13.3【解析】如图,过点D 作DF ⊥AB 于点F ,∵DE ⊥AC 于点E ,∴S△ADC =12AC⋅DE=6,即:142⨯⨯DE=6,解得DE=3.∵在△ABC中,已知AD是角平分线,DE⊥AC于点E,DF⊥AB于点F,∴DF=DE=3,即点D到AB的距离为3.14.32 xy=⎧⎨=⎩【分析】方程组利用加减消元法求出解即可.【详解】解128x yx y-=⎧⎨+=⎩①②,①+②得:3x=9,解得:x=3,把x=3代入①得:y=2,则方程组的解为32 xy=⎧⎨=⎩,故答案为:32 xy=⎧⎨=⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.15.40°【分析】根据平移的性质得出△ACB≌△BED,进而得出∠EBD=60°,∠BDE=80°,进而得出∠CBE 的度数.【详解】∵将△ABC沿直线AB向右平移到达△BDE的位置,∴△ACB≌△BED,∵∠CAB=60°,∠ABC=80°,∴∠EBD=60°,∠BDE=80°,则∠CBE的度数为:180°﹣80°﹣60°=40°.故答案为:40°.【点睛】此题主要考查了平移的性质,根据平移的性质得出∠EBD,∠BDE的度数是解题关键.16.101030【分析】把所求的代数式分解因式后整理成条件中所给出的代数式的形式,然后整体代入即可.【详解】4x3−xy2=x(4x2−y2)=x(2x+y)(2x−y),当x=10,y=10时,x=10;2x+y=30;2x−y=10,把它们从小到大排列得到101030.用上述方法产生的密码是:101030.故答案为:101030.【点睛】本题考查了提公因式法,公式法分解因式,读懂题目信息,正确进行因式分解是解题的关键,还考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.17.−1 2【分析】直接利用负整数指数幂的性质以及零指数幂的性质、绝对值的性质分别化简得出答案.【详解】102|3|(2----=12−3−1+3=−1 2.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.x =76【解析】【分析】观察可得方程最简公分母为2(x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】方程两边同乘2(x-1),得2x=3-2(2x-2),2x=3-4x+4,6x=7,∴x =76,检验:当x =76时,2(x-1)≠0,∴x =76是原分式方程的解.【点睛】此题考查了解分式方程.解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.19.2(x-y);-3.【分析】括号内先提取公因式(x-y),整理,再根据整式除法法则化简出最简结果,把x 、y 的值代入求值即可.【详解】2()()()x y x y x y x⎡⎤-+-+÷⎣⎦=(x-y)(x-y+x+y)÷x=2x(x-y)÷x=2(x-y).当x =1-,12y =时,原式=2(x-y)=2×(-1-12)=-3.【点睛】本题考查因式分解的应用——化简求值,正确找出公因式(x-y)是解题关键.20.33a -【分析】根据分式的混合运算顺序和运算法则计算可得.【详解】221369324a a a a a a a +--+-÷-+-=()()2221332(3)a a a a a a a +-+--⋅-+-=1233a a a a +----=33a -.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.21.(1)图见解析(2)证明见解析【分析】(1)利用基本作图(作已知角的平分线)作∠BAC 的平分线交BC 于D ,则AD 为所求;(2)先证明△ABC 为等腰三角形,再根据等腰三角形的性质,由AD 平分∠BAC 可判断AD 垂直平分BC ,然后根据线段垂直平分线的性质可得EB =EC .【详解】(1)解:如图,AD 为所作;(2)证明:如图,∵∠ABC =∠ACB ,∴△ABC 为等腰三角形,∵AD 平分∠BAC ,∴AD ⊥BC ,BD =CD ,即AD 垂直平分BC ,∴EB =EC .【点睛】本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了等腰三角形的性质和线段垂直平分线的性质.22.(1)甲单独20天,乙单独25天完成.(2)方案③最节省.【分析】(1)设这项工程的工期是x天,根据甲队单独完成这项工程刚好如期完成,乙队单独完成这项工程要比规定日期多用5天,若甲、乙两队合做4天,余下的工程由乙队单独做也正好如期完成以及工作量=工作时间×工作效率可列方程求解.(2)根据题意可得方案①、③不耽误工期,符合要求,再求出各自的费用,方案②显然不符合要求.【详解】(1)设规定日期x天完成,则有:415xx x+=+解得x=20.经检验得出x=20是原方程的解;答:甲单独20天,乙单独25天完成.(2)方案①:20×1.5=30(万元),方案②:25×1.1=27.5(万元),但是耽误工期,方案③:4×1.5+1.1×20=28(万元).所以在不耽误工期的前提下,选第三种施工方案最节省工程款.所以方案③最节省.【点睛】本题考查了分式方程的应用,关键知道完成工作的话工作量为1,根据工作量=工作时间×工作效率可列方程求解,求出做的天数再根据甲乙做每天的钱数求出总钱数.23.(1)△BPE与△CQP全等,理由见解析;(2)t=5 2 ,【分析】(1)根据SAS可判定全等;(2)由于点Q的运动速度与点P的运动速度不相等,而运动时间相同,所以BP≠CQ.又△BPE与△CQP全等,则有BP=PC=12BC=5,CQ=BE=6,由BP=5求出运动时间,再根据速度=路程÷时间,即可得出点Q的速度.【详解】(1)△BPE与△CQP全等.∵点Q的运动速度与点P的运动速度相等,且t=2秒,∴BP=CQ=2×2=4厘米,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∵四边形ABCD是正方形,∴在Rt△BPE和Rt△CQP中,{BP CQ BE CP==,∴Rt△BPE≌Rt△CQP;(2)∵点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.∴点P,Q运动的时间t=BP522=(秒)此时点Q的运动速度为CQ12t5QV==(厘米/秒).【点睛】本题主要考查了正方形的性质以及全等三角形的判定,解决问题的关键是掌握:正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.解题时注意分类思想的运用.24.(1)见解析;(2)EG DF⊥,见解析【分析】(1)由AD与BC平行,利用两直线平行内错角相等,得到一对角相等,再由一对对顶角相等及E为AB中点得到一对边相等,利用AAS即可得出△ADE≌△BFE;(2)∠GDF=∠ADE,以及(1)得出的∠ADE=∠BFE,等量代换得到∠GDF=∠BFE,利用等角对等边得到GF=GD,即三角形GDF为等腰三角形,再由(1)得到DE=FE,即GE为底边上的中线,利用三线合一即可得到GE与DF垂直.【详解】(1)证明:∵AD ∥BC ,∴∠ADE =∠BFE ,∵E 为AB 的中点,∴AE =BE ,在△ADE 和△BFE 中,ADE BFE AED BEF AE BE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△BFE (AAS );(2)EG ⊥DF ,理由如下:连接EG,∵∠GDF =∠ADE ,∠ADE =∠BFE ,∴∠GDF =∠BFE ,∴DG =FG ,由(1)得:△ADE ≌△BFE∴DE =FE ,即GE 为DF 上的中线,又∵DG =FG ,∴EG ⊥DF .【点睛】此题考查了全等三角形的判定与性质,平行线的性质,以及等腰三角形的判定与性质,熟练掌握判定与性质是解本题的关键.25.(1)40°;(2)①补图见解析;②证明见解析.【详解】试题分析:(1)根据等腰三角形的性质得到∠APQ=∠AQP ,由邻补角的定义得到∠APB=∠AQC,根据三角形外角的性质即可得到结论;(2)①根据要求作出图形,如图2;②根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,由点Q 关于直线AC的对称点为M,得到AQ=AM,∠OAC=∠MAC,等量代换得到∠MAC=∠BAP,推出△APM是等边三角形,根据等边三角形的性质即可得到结论.试题解析:(1)∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ=20°,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=60°﹣20°﹣20°=20°,∴∠BAQ=∠BAP+∠PAQ=40°;(2)①如图2;②∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,∠QAC=∠MAC,∴∠MAC=∠BAP,∴∠BAP+∠PAC=∠MAC+∠CAP=60°,∴∠PAM=60°,∵AP=AQ,∴AP=AM,∴△APM是等边三角形,∴AP=PM.考点:三角形综合题.。

人教版八年级数学上册期末测试题(附参考答案)

人教版八年级数学上册期末测试题(附参考答案)

人教版八年级数学上册期末测试题(附参考答案)满分120分考试时间120分钟一、选择题:本大题共10个小题,每小题3分,共30分。

每小题只有一个选项符合题目要求。

1.已知长度分别为3 cm,4 cm,x cm的三根小棒可以摆成一个三角形,则x的值不可能是( )A.2.4 B.3C.5 D.8.52.下列图案中,是轴对称图形的为( )3.如图,已知AB=AC,AD=AE,添加一个条件不能得到“△ABD≌△ACE”的是( )A.∠ABD=∠ACE B.BD=CEC.∠BAD=∠CAE D.∠BAC=∠DAE4.下列因式分解正确的是( )A.2a2-4a+2=2(a-1)2B.a2+ab+a=a(a+b)C.4a2-b2=(4a+b)(4a-b)D.a3b-ab3=ab(a-b)25.如图,在△ABC中,∠A=45°,∠B=30°,尺规作图如下:分别以点B、点BC的长为半径作弧,过两弧交点的直线交AB于点D,连接CD,C为圆心,大于12则∠ACD的度数为( )A.45°B.65°C.60°D.75°6.一个多边形的内角和是外角和的4倍,则这个多边形是( )A.八边形B.九边形C.十边形D.十二边形7.若(2x-m)(x+1)的运算结果是关于x的二次二项式,则m的值等于( ) A.-2或0 B.2或0C.-2或2 D.2或-2或08.若x是非负整数,则表示2xx+2−x2−4(x+2)2的值的对应点落在下图数轴上的范围是( )A.①B.②C.③D.①或②9.某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问:原计划每天完成多少套桌凳?设原计划每天完成x套桌凳,则所列方程正确的是( )A.540x−2−540x=3 B.540x+2−540x=3C.540x −540x+2=3 D.540x−540x−2=310.关于x的分式方程3x−ax−3+x+13−x=1的解为正数,且关于y的不等式组{y+9≤2(y+2)2y−a3>1的解集为y≥5,则所有满足条件的整数a的值之和是( )A.13 B.15 C.18 D.20二、填空题:本题共6个小题,每小题3分,共18分。

八年级上册期末考试数学试卷含参考答案(共5套,最新人教版)

八年级上册期末考试数学试卷含参考答案(共5套,最新人教版)

初二年级第一学期期末考试数学试卷本试卷包括两道大题,共24道小题。

共6页。

全卷满分120分。

考试时间为120分钟。

考试结束后,将答题卡交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共24分)1.-64的立方根是()A.-4B.8C.-4和4D.-8和82.若3-m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>33.如图,在△ABC中,AB=AC,∠A=40︒,AB的垂直平分线交AB于点D,交AC于点E,连结BE,则∠CBE 的度数为()A.70︒B.80︒C.40︒D.30︒第3题图第5题图4.如果a、b、c是一个直角三角形的三边,则a,b,c可能为()A.1,2,4B.1,3,5C.3,4,7D.5,12,13, x15<x≤20S S5. 如图,要测量河两岸相对的两点 A 、B 的距离,先在 AB 的垂线 BF 上取两点 C 、D ,使 BC =CD ,再作出 BF的垂线 DE ,使点 A 、C 、E 在同一条直线上(如图所示) 可以说明△ ABC ≌△EDC ,得 AB =DE ,因此测得DE 的长就是 AB 的长,判定△ ABC ≌△EDC ,最恰当的理由是() A .边角边 B .角边角 C .边边边D .边边角AS 3S 2B S1 C第 6 题图第 8 题图6.如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交 AD 边于点 E ,且 AE =3,则 AB 的长为().5 A .4B .3C .2D .27. 小 明统计了他家今年 11 月 份打电话的次数及通话时间,并列出了频数分布表:通话时间 x/min 0<x≤5 5<x≤10 10<x≤15 频数(通话次数)1916510则通话时间不超过 15min 的频率为( )A .0.1B .0.4C .0.5D .0.88.如图所示,以 △RtABC 的三边向外作正方形,其面积分别为 S 1,2,3 且 S 1 = 4, S 2 = 8, 则S 3 =()A .4B .8C .12D .32二、填空题(每小题 3 分,共 18 分)9.因式分解: am + an + ap = .10.计算: a 3 ⋅ a 5 =.11.25 的平方根是.12.若代数式 x - 2 - 2 - x 有意义,则 x 的值为.13.如图,△ABC 中,∠C = 90︒ ,AB =10,AD 是△ABC 的一条角平分线,若 CD =3,则△ABD 的面积为.16 - 9 ⎪• 4 18.因式分解 x 3 - 4 x2314.如图, ∠C = ∠ABD = 90︒, AC = 4, BC = 3, BD = 12 ,则 AD=.ACB D第 13 题图第 14 题图三、计算题(每小题 6 分,共 24 分)15. 3a •(a - 4)16.(x3y + 2 x 2 y 2 )÷ xy⎛ 1⎫17.⎝ 2 ⎭四、解答 题:(每小题 8 分,共 32 分)19..先化简,再求值 (x + y )2 - 2 x (x + y ),其中 x=3,y=2.320.已知:a+b=5,a2-b2=10,求a-b的值.21.如图,BD、CE△是ABC的高,且AE=AD,求证:AB=AC.第21题图22.如图,延长□A BCD的边AD到F,使DF=DC,延长CB到点E,使BE=BA,分别连结点A、E和C、F.求证:AE=CF.第22题图五、解答题(23题10分,24题12分,共22分)23.某校为了了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取了本校部分学生进行问卷调查(必选且只选一类节目),将调查结果进行整理后,绘制了如下不完整的条形统计图和扇形统计图,其中喜爱体育节目的学生人数比喜爱戏曲节目的学生人数的3倍还多1人.第23题图请根据所给信息解答下列问题:(1)求本次抽取的学生人数;(2)补全条形图,在扇形统计图中的横线上填上正确的数值;(3)该校有3000名学生,求该校喜爱娱乐节目的学生大约有多少人.24.如图,在△Rt ABC中,∠B=90,AB=7cm,AC=25cm.点P从点A沿AB方向以1cm/s的速度运动至点B,点Q从点B沿BC方向以6cm/s的速度运动至点C,P、Q两点同时出发.(1)求BC的长.(2)若运动2s时,求P、Q两点之间的距离.xk|b|1(3)P、Q两点运动几秒,AP=CQ.第24题图答案:一、1.A 2.A 3.D 4.D 5.A 6.B7.D8.C二、9.a(m+n+p)10.a811.±512.x=213.1514.13三、15.3a2-12a16.x2+2xy17.018.x(x+2)(x-2)四、19.-x2+y2,-520.221.略22.略五、23.(1)50(2)30%(3)108024.(1)24(2)13(3)24 72C.6D.9B B B八年级上册数学期末试题一.选择题45分1.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB△≌OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS1题图2题图3题图4题图2.某市准备在一块三条公路围成的平地△ABC上设立一个大型超市,要求超市到三条公路的距离相等,则超市应建立在△ABC的()A.两个内角的平分线的交点处C.两边中线的交点处B.两边高线的交点处D.两边的垂直平分线的交点处3.如图,已知∠BAC的平分线与BC的垂直平分线PQ相交于点P,PM⊥AC,PN⊥AB,垂足分别为M、N,AB=3,AC=7,则CM的长度为()A.4B.3C.2D.324.如图,在△ABC中,∠C=90°,AC=BC=6,D为AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合)且保持∠EDF=90°,连接EF,在此运动变化过程中,△SCEF的最大值为()A.3B.95.已知A、B两点的坐标分别为(-2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、关于y轴对称;③A、关于原点对称;④A、之间的距离为4,其中正确的有()A.1个B.2个C.3个D.4个6.若一个多边形的内角和与外角和之和是1800°,则此多边形是()边形A.八B.十C.十二D.十四7.六边形的对角线共有()A.9条B.15条C.12条D.6条8.妈妈问小欣现在几点了,小欣瞧见了镜子里的挂钟如图所示(分针正好指向整点位置)她就立刻告诉了妈妈正确的时间,请问正确的时间是()A.6点20分B.5点20分C.6点40分D.5点40分9.如图,∠A+∠B+∠C+∠D+∠E的度数为()A.90°B.180°C.270°D.360°10.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CHA.①②③④B.①②③C.②④D.①③11、下列正多边形中,不能铺满地面的是()A、正三角形C、正六边形B、正方形D、正七边形12、若一个三角形三个角度数的比为2:3:4,则这个三角形的()A、直角三角形C、钝角三角形B、锐角三角形D、正三角形13.如图,直线l1、l2、l3表示三条互相交叉的公路,现在建一个货物中转站,要求到三条公路的距离相等,则可选择的地址有()处A.一处B.两处C.三处D.四处14、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.30°或150°B.30°或150°C.60°或150°D.60°或120°15.下列因式分解结果正确的是()A.x2+2x-3=x(x+2)-3B.6p(p+q)-4q(p+q)=(p+q)(6p-4q)C.a2-2a+1=(a-1)2D.4x2-9=(4x+3)(4x-3)二、解答题16.如图,△ABC△和BDE中,AB=BC,BD=BE,∠ABC=∠EDB=90°,G、H分别为AD、CE 中点,试判断△BGH形状并证明17.如图,等边△ABC的边长为12cm,D为AC边上一动点,E为AB延长线上一动点,DE交CB于点P,点P为DE中点(1)求证:CD=BE(2)若DE⊥AC,求BP的长18.(7分)已知AB∥CD,点E为BC上一点,且AB=CD=BE,AE、DC的延长线交于点F,连BD(1)如图1,求证:CE=CF(2)如图2,若∠ABC=90°,G是EF的中点,求∠BDG的度数已知ABC△和DEF为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点E在AB上,点F在射线AC上19.△(1)如图1,若∠BAC=60°,点F与点C重合,求证:AF=AE+AD(2)如图2,若AD=AB,求证:AF=AE+BC20.如图,AD△为ABC的高,点H为AC的垂直平分线与BC的交点,HC=AB(1)如图1,求证:∠B=2∠C(2)如图2,若2∠DAF=∠B-∠C①求证:AC=BF+BA②直接写出AC FC的值DF21.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F(1)说明BE=CF的理由(2)如果AB=a,AC=b,求AE、BE的长( , a + x a + 1nna (C. = , a ≠ 0)D. =B.=xx 2m ma八年级第一学期期末质量检测试卷数学(总分 150 分,答题时间 120 分钟)A 卷(100 分)一.选择题(每小题 3 分,共 30 分)题号 1 2 3 4 5x67 8 9 10答案1.1 纳米等于 0.0000000001 米,则 35 纳米用科学记数法表示为()A .35×10-9 米B .3.5×10-9 米C .3.5×10-10 米D .3.5×10-8 米2.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A .B. C. D.3.下列各式: 1 1- x ) 4 x , x 2 - y 2 , 1 + x, 5x2 其中分式共有( )个 5 π -3 2 x xA.2B.3C.4D.54.下列各式正确的是()A.5.若把分式 x + y中的 x 和 y 都扩大 3 倍,那么分式的值()2 x yA.扩大 3 倍B.不变C.缩小 3 倍D.缩小 6 倍6.若分式 x - 1x 2 - 3x + 2A.-1的值为 0,则 x 等于( )B.1C.-1 或 1D.1 或 27.A 、B 两地相距 48 千米,一艘轮船从 A 地顺流航行至 B 地,又立即从 B 地逆流返回 A 地,共用去 9 小时,已知水流速度为 4 千米/时,若设该轮船在静水中的速度为 x 千米/时,则可列方程()A.48+=9 B.+=9 C.+4=9 D.+=9CD12.①3a5xy10axy a2-4()y-z x+z x-y,,⎪5122132中得到巴尔末公式,从而打开484848489696x+4x-44+x4-x x x+4x-48.若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cmB.7.5cmC.11cm或7.5cmD.以上都不对9.如图:∠EAF=15°,AB=BC=CD=DE=EF,则∠DEF等于()EA.90°B.75°C.70°D.60°A B F10.若平面直角坐标系中,△ABO关于x轴对称,点A的坐标为(1,-2),则点B的坐标为()A.(-1,2)B.(-1,-2)C.(1,2)D.(-2,1)二、填空题(每小题3分,共30分)11.如图1,AB,CD相交于点O,AD=△C B,请你补充一个条件,使得AOD≌△COB.你补充的条件是______.A C()a+21=,(a≠0)②=13.分式的最简公分母是。

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试题一、单选题1.若分式x y yx +中的x 、y 的值都变为原来的3倍,则此分式的值()A .不变B .是原来的3倍C .是原来的13D .是原来的一半2.下列长度的三条线段,能构成三角形的是()A .8,8,15B .4,5,9C .5,5,11D .3,6,93.将数字0.000 005写成科学记数法得到()A .50.510⨯B .6510⨯C .50.510-⨯D .6510-⨯4.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证等式()A .(a+b)2=a 2+2ab+b 2B .(a ﹣b)2=a 2﹣2ab+b 2C .a 2﹣b 2=(a+b)(a ﹣b)D .(a+b)(a ﹣2b)=a 2﹣ab ﹣2b 25.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史.下列由黑白棋子摆成的图案是轴对称图形的是()A .B .C .D .6.如图,将三角尺的直角顶点放在直尺的一边上,∠1=20°,则∠2的度数等于()A .50°B .30°C .20°D .15°7.如图,把一张长方形的纸,按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC 是()A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形8.使分式1xx -有意义的x 的取值范围是()A .1x =B .1x ≠C .1x =-D .1x ≠-9.以下说法正确的是()①一条直角边和斜边上的高对应相等的两个直角三角形全等;②有两条边相等的两个直角三角形全等;③有一边相等的两个等边三角形全等;④两边和其中一边的对角对应相等的两个三角形全等.A .①②B .②④C .①③D .①③④10.如图,在 ABC 中,边BC 的垂直平分线分别交AC ,BC 于点D ,E ,若 ABC 的周长为12,CE 52=,则 ABD 的周长为()A .10B .9C .8D .7二、填空题11.分解因式:2a 2﹣6a =______.12.a 2•a 3÷a 4=_____.13.如果102m =,103n =,那么10m n+=____________.14.在平面直角坐标系中,点M(1,2)关于y 轴对称点的坐标为_____.15.在△ABC 中,AB =5,BC =8,AC =6,AD 平分∠BAC ,则S △ABD :S △ACD =___.16.若a m =2,a n =3,则a m﹣n的值为_____.17.如图,M 为∠AOB 内一定点,E 、F 分别是射线OA 、OB 上一点,当 MEF 周长最小时,若∠OME =40°,则∠AOB =_____.18.如图,已知线段2cm AB =,其垂直平分线CD 的作法如下:①分别以点A 和点B 为圆心,cm b 长为半径画弧,两弧相交于C ,D 两点;②作直线CD .上述作法中b 满足的条作为b ___1.(填“>”,“<”或“=”)19.如图,在ABC ∆中,AC 的垂直平分线交BC 于点D ,交AC 于点E ,ABD ∆的周长为12,cm AC 的长为5cm ,那么ABC ∆的周长是___________cm三、解答题20.解分式方程:21133x x+=--21.化简:2x (x ﹣3y )+(5xy 2﹣2x 2y )÷y .22.在直角坐标系中,ABC ∆的三个顶点的位置如图所示.(1)请画出ABC ∆关于y 轴对称的'''A B C ∆(其中',','A B C 分别是,,A B C 的对应点,不写画法);(2)直接写出',','A B C 三点的坐标'A (),'B (),'C (),(3)求出'''A B C ∆的面积23.如图,已知∠1=∠2,∠C=∠D,求证:△ABC≌△BAD.24.某校田径队的小明同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑是米;(2)小勇同学两次慢跑的速度各是多少?25.如图,在 ABC是等腰直角三角形,∠ACB=90°,点D、E分别是 ABC内的点,且EA=EB,BD=AC,BE平分∠DBC.(1)求证: DBE≌ CBE;(2)求证:∠BDE=45°.26.在△ABC 中,CA =CB ,∠ACB =120°,将一块足够大的三角尺PMN (∠M =90°,∠MPN =30°)按图示放置,顶点P 在线段AB 上滑动,三角尺的直角边PM 始终经过点C ,并且与CB 的夹角∠PCB =α,斜边PN 交AC 于点D .(1)当PN ∥BC 时,∠ACP =°(2)当α=15°时,求∠ADN 的度数.(3)在点P 滑动的过程中,△PCD 的形状可以是等腰三角形吗?若不可以,请说明理由;若可以,请求出α的大小.27.如图,AB ⊥CB ,DC ⊥CB ,E 、F 在BC 上,∠A=∠D ,BE=CF ,求证:AF=DE .28.如图,,ABC AEF ∆∆均为等边三角形,连接BE ,连接并延长CF 交BE 于点D .(1)求证:CAF BAE ∆≅∆;(2)连接AD ,求证DA 平分CDE ∠.参考答案1.C【分析】根据分式的分子分母都乘以(或除以)同一个不为零的数(或整式),结果不变,可得答案.【详解】解:分式x y y x +中的x 、y 的值都变为原来的3倍,则此分式的值是原来的13,故选:C .【点睛】本题考查了分式的基本性质,分式的分子分母都乘以(或除以)同一个不为零的数(或整式),结果不变.2.A【分析】根据三角形的三边关系计算,判断即可.【详解】解:A 、∵15−8<8<15+8,∴长度为8,8,15的三条线段能构成三角形,本选项符合题意;B 、∵4+5=9,∴长度为4,5,9的三条线段不能构成三角形,本选项不符合题意;C 、∵5+5<11,∴长度为5,5,11的三条线段不能构成三角形,本选项不符合题意;D 、∵3+6=9,∴长度为3,6,9的三条线段不能构成三角形,本选项不符合题意;故选:A .【点睛】本题考查的是三角形的三边关系,掌握三角形两边之和大于第三边,三角形的两边差小于第三边是解题的关键.3.D【分析】按照小数科学记数法的原则表示即可.【详解】∵0.000005=6510-⨯故选D.【点睛】本题考查了小数的科学记数法,熟记小数的科学记数法中10的指数是负整数是解题的关键.4.C【分析】图甲中根据阴影部分面积等于大正方形减去小正方的面积,图乙中直接求长方形的即可,根据两个图形中阴影部分的面积相等,即可求解【详解】解:图甲阴影部分的面积为22a b -,图乙中阴影部分的面积等于()()a b a b +- 两个图形中阴影部分的面积相等,∴22a b -=()()a b a b +-故选C【点睛】本题考查了平方差公式与图形面积,正确的求出阴影部分面积是解题的关键.5.D【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,利用轴对称图形的定义进行解答即可.【详解】解:选项A 、B 、C 均不能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项D 能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:D .【点睛】此题主要考查了轴对称图形,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.6.A【分析】根据三角尺可得330∠=︒,根据三角形外角的性质可得4∠13=∠+∠,根据直尺的两边平行,可得24∠∠=【详解】如图,3906030∠=︒-︒=︒,∠1=20°,∴4∠13=∠+∠203050=︒+︒=︒,直尺的两边平行,∴2450∠=∠=︒故选A【点睛】本题考查了三角形外角的性质,平行线的性质,直角三角形两个锐角互余,求得∠=︒是解题的关键.3307.C【分析】依据折叠即可得到AB=AC,进而得出△ABC的形状.【详解】解:由题可得,AB与AC可重合,即AB=AC,∴△ABC是等腰三角形.故选:C.【点睛】本题考查了剪纸问题,解决这类问题要熟知轴对称图形的特点,关键是准确的找到对称轴.一般方法是动手操作,拿张纸按照题目的要求剪出图案,展开即可得到正确的图案.8.B-≠,解答即可.【分析】根据分式的意义,由x10-≠【详解】解:根据分式的意义:x10∴x1≠,故选择:B.【点睛】本题考查了不等式的意义,解题的关键是计算分母不等于0.9.C【分析】根据全等三角形的判定方法或者举出反例能证明原命题是错误的,分别判断各命题的正误即可.【详解】①一条直角边和斜边上的高对应相等的两个直角三角形全等;根据HL可证得两直角三角形全等,此命题正确;②有两条边相等的两个直角三角形不一定全等;比如一直角三角形的两直角边和另一个直角三角形的一直角边和一斜边相等,则这两个直角三角形并不全等;原命题错误;③有一边相等的两个等边三角形全等,符合SSS定理,此命题正确;④两边和其中一边的对角对应相等的两个三角形不一定全等,根据SSA并不能证明三角形全等;故原命题错误;故选C.【点睛】本题考查了全等三角形的判定的应用,能理解全等三角形的判定定理是解此题的关键,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL 定理,但AAA、SSA,无法证明三角形全等.10.D【分析】首先根据垂直平分线的性质得到BD CD =,52BE CE ==,然后根据 ABC 的周长为12,即可求出 ABD 的周长.【详解】解:∵边BC 的垂直平分线分别交AC ,BC 于点D ,E ,∴BD CD =,52BE CE ==,即25BC EC ==,∵ ABC 的周长为12,∴12AB BC AC ++=,∵5BC =,∴7AB AC +=,∴ ABD 的周长7AB BD AD AB CD AD AB AC =++=++=+=.故选:D .【点睛】此题考查了垂直平分线的性质,整体方法的运用,解题的关键是熟练掌握垂直平分线的性质.11.2a(a-3)【分析】只需在原式中提取2a 分解即可.【详解】解:原式=2a(a-3),故答案为:2a(a-3).【点睛】本题考查利用提取公因式分解因式,能够熟练掌握分解因式的方法是解决本题的关键.12.a【分析】先根据同底数幂的乘法进行计算,再根据同底数幂的除法进行计算即可.【详解】a 2•a 3÷a 4=54a a a ÷=故答案为:a【点睛】本题考查了同底数幂的乘除法,掌握同底数幂的乘除法的运算法则是解题的关键.13.6【分析】根据同底数幂乘法的逆用即可求解.【详解】解:101010236m n m n +=⋅=⨯=,故答案为:6.【点睛】本题考查同底数幂乘法的逆用,掌握同底数幂相乘的法则是解题的关键.14.(-1,2)【分析】根据关于y 轴对称,纵坐标不变,横坐标变成相反数计算即可.【详解】∵点M(1,2)关于y 轴对称点的坐标为(-1,2),故答案为:(-1,2).【点睛】本题考查了点的坐标的对称性,熟记对称类型和坐标特点是解题的关键.15.5:6【分析】过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,根据角平分线的性质得出DE =DF ,根据三角形的面积公式求出答案即可.【详解】解:过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,∵AD 平分∠BAC ,∴DE =DF ,设DE =DF =R ,∵S △ABD =12AB DE ⨯⨯=152⨯⨯R ,S △ACD =12AC DF ⨯⨯=162R ⨯⨯,∴S △ABD :S △ACD =5:6,故答案为:5:6.【点睛】本题考查了三角形的面积和角平分线的性质,注意:角平分线上的点到角的两边的距离相等.16.23.【分析】根据同底数幂的除法底数不变指数相减,可得答案.【详解】am ﹣n =am÷an =2÷3=23,故答案为23.【点睛】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.17.50°##50度【分析】分别作M 关于,OA OB 的对称点12,M M ,连接12,OM OM ,当,E F 分别为12M M 与,OA OB 的交点时, MEF 周长最小,进而根据等腰三角形的性质以及三角形内角和定理即可求得AOB ∠.【详解】分别作M 关于,OA OB 的对称点12,M M ,连接12,OM OM ,当,E F 分别为12M M 与,OA OB 的交点时, MEF 周长最小,连接12,M M ,∴1OM OM =,2OM OM =,12OM OM ∴=,2112OM M OM M ∴∠=∠,对称,112,M OA MOA M OB M OB ∴∠=∠∠=∠,1212AOB M OM ∴∠=∠, ∠OME =40°,140OM E ∴∠=︒,121221180100M OM OM M OM M ∴∠=︒-∠-∠=︒,50AOB ∴∠=︒.故答案为:50°【点睛】本题考查了等腰三角形的性质,等边对等角,轴对称的性质,根据轴对称求线段和最短,掌握轴对称的性质是解题的关键.18.>【分析】作图方法为:以A ,B 为圆心,大于12AB 长度画弧交于C ,D 两点,由此得出答案.【详解】解:∵2cm AB =,∴半径b 长度12AB >,即1cm b >.故答案为: .【点睛】本题考查线段的垂直平分线尺规作图法,解题关键是掌握线段垂直平分线的作图方法.19.17.△的周长为12cm,可得【分析】由DE是AC的垂直平分线,可得AD=DC,由ABDAB+AD+BD=12cm,再由AD=DC,可得AB+BC=12cm,结合AC=5cm进行计算即可.△的周长为12cm,【详解】解:∵ABD∴AB+AD+BD=12cm,∵DE是AC的垂直平分线,∴AD=DC,∴AB+DC+BD=12cm,∴AB+BC=12cm,∵AC=5cm,∴AB+BC+AC=17cm,的周长是17cm,即ABC故答案为:17.【点睛】本题考查了线段的垂直平分线的性质,正确理解线段的垂直平分线的性质是解题的关键.20.x=4【分析】两边都乘以x-3化为整式方程求解,然后验根即可.【详解】解:两边都乘以x-3,得2-1=x-3,解得x=4,检验:当x=4时,x-3≠0,∴x=4是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.21.﹣xy【分析】根据单项式乘以多项式,多项式除以单项式去括号,再合并同类项即可【详解】解:原式=2x 2﹣6xy+5xy ﹣2x 2=﹣xy .【点睛】本题考查了单项式乘以多项式,多项式除以单项式,正确的计算是解题的关键.22.(1)所画图形见解析;(2)3,-3;-1,-3;0,4;(3)11【分析】(1)分别作出各点关于y 轴的对称点,再顺次连接各点即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)作矩形DB EF ',用矩形的面积减去三个三角形的面积,即可得到A B C S ''' .【详解】解:(1)如图所示:(2)由图可知,A '(3,-3),B '(-1,-3),C '(0,4);(3)如图,作矩形DB EF ',则DB EF S S S S S ''''''''''=---△A B C △C DB △C FA △A EB 四边形1117417316411222=⨯-⨯⨯-⨯⨯-⨯⨯=,∴11A B C S '''=△.【点睛】本题考查的是作图-轴对称变换,熟知关于y 轴对称的点的坐标特点是解答此题的关键.23.见解析【分析】根据已知条件,直接利用AAS 即可判定△ABC ≌△BAD .【详解】在△ABC 和△BAD 中,21C D AB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△BAD (AAS ).【点睛】本题考查全等三角形的判定,熟练掌握全等三角形的判定定理是解题关键.24.(1)4000;(2)小勇同学两次慢跑的速度各是4003米/分、160米/分.【分析】(1)一次有氧耐力训练慢跑10圈,一圈400米,两数相乘即可求得答案.(2)设出第一次慢跑的速度,接着表示出第二次的速度,分别求出两次所用时间,根据两次时间的关系,列出方程,并求出方程.【详解】(1)解:小勇一圈跑400米,一共跑了10圈,共400×10=4000米.(2)解:设第一次慢跑速度为每分钟x 米,由于第二次慢跑速度比第一次慢跑速度提高了20%,故第二次慢跑速度为每分钟1.2x 米.由题意可得:4000400051.2x x -=解得:4003x =经检验得:4003x =是原分式方程的解.∴第一次慢跑速度为每分钟4003米,第二次慢跑速度为每分钟4001.21603⨯=米.答:小勇同学两次慢跑的速度各是4003米/分、160米/分.【点睛】本题主要是考查了分式方程的实际应用,熟练根据等式关系列出分式方程,并求解分式方程,是解题的关键,但注意分式方程一定要验根.25.(1)见解析(2)见解析【分析】(1)根据BE 平分DBC ∠,可得DBE CBE ∠=∠,根据等腰三角形的定义可得BC AC =,根据SAS 即可证明DBE ≌CBE△(2)根据SSS 直接证明ACE ≌BCE ,可得∠BCE=∠ACE ,由(1)可得DBE ≌CBE △,∠BDE=∠BCE ,进而根据∠ACB=90°,(1)∵ABC 是等腰直角三角形,∴BC AC =,∠ACB=90°.∵BD AC =,∴BC BD =.∵BE 平分DBC ∠,∴DBE CBE ∠=∠.∴在△CBE 与△DBE 中,BC DBDBE CBE BE BE=⎧⎪∠=∠⎨⎪=⎩∴DBE ≌CBE △(SAS).(2)解:在△CBE 与△CAE 中,BC ACCE CE BE AE=⎧⎪=⎨⎪=⎩∴ACE ≌BCE (SSS).∴∠BCE=∠ACE.∵∠BCE+∠ACE=90°∴∠BCE=∠ACE=45°.∵DBE ≌CBE △,∴∠BDE=∠BCE.∴∠BDE=∠BCE=45°26.(1)90;(2)45°;(3)可以,45°或90°或0°【分析】(1)根据平行线性质求出∠BCP ,即可得出答案.(2)求出∠ACP,根据三角形内角和定理求出∠PDC,即可得出答案;(3)分为三种情况:当PC=PD时,当PD=CD时,当PC=CD时,根据等腰三角形性质和三角形内角和定理得出关于α的方程,求出即可.【详解】解:(1)∵PN∥BC,∠MPN=30°,∴∠BCP=∠MPN=30°.∵∠ACB=120°,∴∠ACP=∠ACB-∠BCP=120°-30°=90°.(2)∵∠ACB=120°,∠PCB=15°,∴∠PCD=∠ACB-∠PCB=120°-15°=105°.∴∠PDC=180°-∠PCD-∠MPN=180°-105°-30°=45°.∴∠ADN=∠PDC=45°.(3)△PCD的形状可以是等腰三角形.由题意知∠PCA=120°-α,∠CPD=30°.①若PC=PD,则∠PCD=∠PDC.∴∠PCD=12(180°-∠MPN)=12(180°-30°)=75°,即120°-α=75°,解得α=45°.②若PD=CD,则∠PCD=∠CPD=30°,即120°-α=30°,解得α=90°;③若PC=CD,则∠CDP=∠CPD=30°.∴∠PCD=180°-2×30°=120°,即120°-α=120°,解得α=0°,此时点P与点B重合,点D和点A重合.综合上述,当α=45°或α=90°或α=0°时,△PCD是等腰三角形,即α的大小是45°或90°或0°.27.【分析】由题意可得∠B=∠C=90°,BF=CE ,由“AAS”可证△ABF ≌△DCE ,可得AF=DE .【详解】证明:∵AB ⊥CB ,DC ⊥CB ,∴∠B=∠C=90°,∵BE=CF ,∴BF=CE ,且∠A=∠D ,∠B=∠C=90°,∴△ABF ≌△DCE (AAS ),∴AF=DE ,28.(1)见解析;(2)详见解析.【分析】(1)利用SAS 证明即可;(2)逆用角的平分线性质定理证明.【详解】(1)∵△ABC,△AEF 是等边三角形,∴AC=AB,AF=AE,∠CAB=∠EAF,∴∠CAB-∠FAB =∠EAF-∠FAB,∴∠CAF=∠BAE,∴△CAF ≌△BAE;(2)过点A 分别作AH ⊥CD 于点H,AG ⊥BE,交BE 的延长线于点G,由(1)知,△CAF ≌△BAE ,∴CF=BE ,CAF BAE S S = ,∴1122CE AH BE AG ⨯⨯=⨯⨯,∴AH=AG ,∴DA 平分∠CDE.。

新人教版八年级数学上册期末测试卷带答案

新人教版八年级数学上册期末测试卷带答案

新人教版八年级数学上册期末测试卷带答案班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的相反数是()A. B. 2 C. D.2.下列各数中, , 无理数的个数有()A. 1个B. 2个C. 3个D. 4个3. 如果线段AB=3cm, BC=1cm, 那么A.C两点的距离d的长度为()A. 4cmB. 2cmC. 4cm或2cmD. 小于或等于4cm, 且大于或等于2cm4.若关于x的方程=3的解为正数, 则m的取值范围是()A. m<B. m<且m≠C. m>﹣D. m>﹣且m≠﹣5.已知一个多边形的内角和为1080°, 则这个多边形是()A. 九边形B. 八边形C. 七边形D. 六边形6. 菱形不具备的性质是()A. 四条边都相等B. 对角线一定相等C. 是轴对称图形D. 是中心对称图形7. 在平面直角坐标系中, 一次函数y=kx+b的图象如图所示, 则k和b的取值范围是()A. k>0, b>0B. k>0, b<0C. k<0, b>0D. k<0, b<08.如图所示, 点A.B分别是∠NOP、∠MOP平分线上的点, AB⊥OP于点E, BC ⊥MN于点C, AD⊥MN于点D, 下列结论错误的是()A. AD+BC=ABB. 与∠CBO互余的角有两个C. ∠AOB=90°D. 点O是CD的中点9.两个一次函数与, 它们在同一直角坐标系中的图象可能是()A. B.C. D.10.如图, AB∥EF, CD⊥EF, ∠BAC=50°, 则∠ACD=()A. 120°B. 130°C. 140°D. 150°二、填空题(本大题共6小题, 每小题3分, 共18分)1. 的立方根是__________.2. 若二次根式有意义, 则x的取值范围是▲ .3. 在△ABC中, AB=15, AC=13, 高AD=12, 则的周长为____________. 4.如图, 在中, 点A的坐标为, 点B的坐标为, 点C的坐标为, 点D 在第二象限, 且与全等, 点D的坐标是______.5. 如图, 正方形纸片的边长为12, 是边上一点, 连接. 折叠该纸片, 使点落在上的点, 并使折痕经过点, 得到折痕, 点在上. 若, 则的长为__________.6. 如图, AD∥BC, ∠D=100°, CA平分∠BCD, 则∠DAC=________度.三、解答题(本大题共6小题, 共72分)1. 解下列分式方程:(1)32111x x=+--(2)2531242x x x-=---2. 先化简, 再从﹣1.2.3.4中选一个合适的数作为x的值代入求值. .3. 已知关于x的一元二次方程.(1)求证: 方程有两个不相等的实数根;(2)如果方程的两实根为, , 且, 求m的值.4. 已知: 如图所示△ACB和△DCE都是等腰直角三角形, ∠ACB=∠DCE=90°, 连接AE, BD. 求证: AE=BD.5. 如图, 矩形的顶点, 分别在菱形的边, 上, 顶点、在菱形的对角线上.(1)求证: ;(2)若为中点, , 求菱形的周长.6. 在我市某一城市美化工程招标时, 有甲、乙两个工程队投标, 经测算: 甲队单独完成这项工程需要60天, 若由甲队先做20天, 剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天, 需付工程款 3.5万元, 乙队施工一天需付工程款2万元.若该工程计划在70天内完成, 在不超过计划天数的前提下, 是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、B3、D4、B5、B6、B7、C8、B9、C10、C二、填空题(本大题共6小题, 每小题3分, 共18分)1、-22、x1.3.32或424、(-4, 2)或(-4, 3)5、49 136.40°三、解答题(本大题共6小题, 共72分)1.(1)x=2;(2)2、x+2;当时, 原式=1.3.(1)略(2)1或24、略.5.(1)略;(2)8.6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下, 由甲、乙合作完成最省钱.。

八年级上册期末考试数学试卷含参考答案(共3套,最新人教版)

八年级上册期末考试数学试卷含参考答案(共3套,最新人教版)

D,E为对应顶点,下列结论不一定成立的是八年级第一学期期末考试数学试题班级姓名成绩一、选择题(本大题共30分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的.请将正确选项前的字母填在表格中相应的位置.题号12345678910答案1.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是A2.下列计算正确的是A.a3+a2=a5B C DB.a3⋅a2=a5C.(2a2)3=6a6D.a6÷a2=a33.叶绿体是植物进行光合作用的场所,叶绿体DNA最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为A.0.5⨯10-4B.5⨯10-4C.5⨯10-5D.50⨯10-34.若分式a+1a的值等于0,则a的值为A.-1B.1C.-2D.25.如图,点D,E在△ABC的边BC上,△ABD≌△ACE,其中B,C为对应顶点,.A.AC=CD B.BE=CDC.∠ADE=∠AED D.∠BAE=∠CAD6.等腰三角形的一个角是70°,它的底角的大小为AB D E CA.70°B.40°C.70°或40°D.70°或55°7.已知x2-8x+a可以写成一个完全平方式,则a可为A.4B.8C.16D.-168.在平面直角坐标系xOy中,以原点O为圆心,任意长为半径作弧,分别交x轴的负半轴和y轴的正半轴于A点,B点.分别以点A,点B为圆心,AB的长为半径作弧,两弧交于P点.若点P的坐标为(a,b),则A.a=2b B.2a=bC.a=b D.a=-b9.若a+b=3,则a2-b2+6b的值为A.3B.6C.9D.12SD . 3-10.某小区有一块边长为 a 的正方形场地,规划修建两条宽为 b 的绿化带.方案一如图甲所示,绿化带面积为 S ;方案二如图乙所示,绿化带面积为 S .设 k =S甲甲乙乙 (a > b > 0) ,下列选项中正确的是b bba bbb ba ab bb aa ab b甲乙A . 0 < k <121 3 B . < k < 1 C .1 < k <2 22 < k < 2二、填空题(本大题共 24 分,每小题 3 分)11.如图,在四边形 ABCD 中,∠A =90°,∠D =40°,则∠B +∠C 为 .ABD12.点 M (3, 1) 关于 y 轴的对称点的坐标为.C13.已知分式满足条件“只含有字母 x ,且当 x =1 时无意义”,请写出一个这样的分式: .14.已知△ABC 中,AB =2,∠C =40°,请你添加一个适当的条件,使△ABC 的形状和大小都是确定的.你添加的条件是 .15.某地地震过后,小娜同学用下面的方法检测教室的房梁是否处于水平:在等腰直角三角尺斜边中点 O 处拴一条线绳,线绳的另一端挂一个 铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角 顶点,由此得出房梁是水平的(即挂铅锤的线绳与房梁垂直).用到 的数学原理是 .16.如图,在平面直角坐标系 xOy 中,△DEF 可以看作是△ABC 经过若干次的图形变化(轴对称、平移)y3EF2 D 1–3 –2 –1 O –1–2A 1 2 3 xBC得到的,写出一种由△ABC 得到△DEF 的过程:.–321.解方程: x17.如图,在△ABC 中,AB =4,AC =6,∠ A BC 和∠ACB 的平分线交于 O 点,过点O 作 BC 的平行线交 AB 于 M 点,交 AC 于 N 点,则△AMN 的周长为 .M A O NBC18.已知一张三角形纸片 ABC (如图甲),其中 AB =AC .将纸片沿过点 B 的直线折叠,使点 C 落到 AB 边上的 E 点处,折痕为 BD (如图乙).再将纸片沿过点 E 的直线折叠,点 A 恰好与点 D 重合,折痕为 EF (如图丙).原三角形纸片 ABC 中,∠ABC 的大小为 °.AAAEEF DDBC B CBC甲 乙 丙三、解答题(本大题共 17 分,第 19 题 8 分, 第 20 题 4 分,第 21 题 5 分)19.计算:(1) -4 - 9 + 3 -2 - (-2018)0;(2) (15x 2 y - 10 x y 2 ) ÷ 5 x y .20.如图,A ,B ,C ,D 是同一条直线上的点,AC =BD ,AE ∥DF ,∠1=∠2.求证:BE = CF .EA1CB2DF3- 1 = x - 2 x ( x - 2).22.先化简,再求值: (m + 4m + 4 , .四、解答题(本大题共 15 分,每小题 5 分)m + 2) ÷m m 2,其中 m = 3 .23.如图,A ,B 分别为 CD ,CE 的中点,AE ⊥CD 于点 A ,BD ⊥CE 于点 B .求∠AEC 的度数.CBAED24.列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂” 是我们必须世代传承的文化根脉、文化基因为传 承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵 60 元,用 4800 元购买《水浒传》连环画的套数是用 3600 元购买《三国演义》连环画套数的 2 倍,求每套《水浒传》连环画的价格.五、解答题(本大题共 14 分,第 25、26 题各 7 分) 25.阅读材料小明遇到这样一个问题:求计算 ( x + 2)(2 x + 3)(3 x + 4) 所得多项式的一次项系数.小明想通过计算 ( x + 2)(2 x + 3)(3 x + 4) 所得的多项式解决上面的问题,但感觉有些繁琐,他想探寻一下,是否有相对简洁的方法.他决定从简单情况开始,先找 ( x + 2)(2 x + 3) 所得多项式中的一次项系数.通过观察发现:( x + 2)(2 x + 3) = 2 x 2 + 3x + 4 x + 6也就是说,只需用 x + 2 中的一次项系数 1 乘以 2 x + 3 中的常数项 3,再用 x + 2 中的常数项 2 乘以 2 x + 3 中的一次项系数 2,两个积相加1⨯ 3 + 2 ⨯ 2 = 7 ,即可得到一次项系数.延续上面的方法,求计算(x+2)(2x+3)(3x+4)所得多项式的一次项系数.可以先用x+2的一次项系数1,2x+3的常数项3,3x+4的常数项4,相乘得到12;再用2x+3的一次项系数2,x+2的常数项2,3x+4的常数项4,相乘得到16;然后用3x+4的一次项系数3,x+2的常数项2,2x+3的常数项3,相乘得到18.最后将12,16,18相加,得到的一次项系数为46.参考小明思考问题的方法,解决下列问题:(1)计算(2x+1)(3x+2)所得多项式的一次项系数为.(2)计算(x+1)(3x+2)(4x-3)所得多项式的一次项系数为.(3)若计算(x2+x+1)(x2-3x+a)(2x-1)所得多项式的一次项系数为0,则a=_________.(4)若x2-3x+1是x4+ax2+bx+2的一个因式,则2a+b的值为.26.如图,CN是等边△ABC的外角∠ACM内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.(1)依题意补全图形;(2)若∠ACN=α,求∠BDC的大小(用含α的式子表示);(3)用等式表示线段PB,PC与PE之间的数量关系,并证明.A NB C M附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)对于0,1以及真分数p,q,r,若p<q<r,我们称q为p和r的中间分数.为了帮助我们找中间分数,制作了下表:3 3 和 (a 、b 、c 、d 均为正整数, < , c < d )的一个中间分数(用含 a 、b 、c 、 b d b dt 两个不等的正分数有无数多个中间分数.例如:上表中第③行中的 3 个分数 1 1 2、 、 ,有3 2 31 12 1 1 2 1 2 234 3< < ,所以 为 和 的一个中间分数,在表中还可以找到 和 的中间分数 , , , .把3 2 3 2 3 3 5 7 7 51 2这个表一直写下去,可以找到 和 更多的中间分数.33(1)按上表的排列规律,完成下面的填空:①上表中括号内应填的数为;3 2②如果把上面的表一直写下去,那么表中第一个出现的 和 5 3的中间分数是 ;(2)写出分数 a c a c..d 的式子表示),并证明;(3)若 s 9 8与 (m 、n 、s 、 t 均为正整数)都是 和 的中间分数,则 mn 的最小值为 .m n 17 15-“⎩数学参考答案一、选择题(本大题共30分,每小题3分)题号答案1A2B3C4A5A6D7C8D9C10B二、填空题(本大题共24分,每小题3分)11.230°12.(-3,1)13.1 x-114.答案不唯一,如:∠A=60°(注意:如果给一边长,需小于或等于2)或AC=BC15.等腰三角形三线合一”或“到线段两端距离相等的点在这条线段的垂直平分线上和两点确定一条直线”16.答案不唯一,如:将△ABC关于y轴对称,再将三角形向上平移3个单位长度17.1018.72三、解答题(本大题共17分,第19题8分,第20题4分,第21题5分)19.(1)解:原式=4-3+19-1-------------------------------------------------------------------3分=19.-----------------------------------------------------------------------------4分(2)解:原式=(15x2y-10x y2)⋅15x y-------------------------------------------------------1分=5x y(x-2y)⋅15x y--------------------------------------------------------2分=3x-2y.---------------------------------------------------------------------- 4分20.证明:∵AC=AB+BC,BD=BC+CD,AC=BD,E A∴AB=DC.---------------------------------------------1分∵AE∥DF,C 1 B∴∠A=∠D.-------------------------------------------2分2D F在△ABE和△DCF中,⎧∠A=∠D,⎪⎨AB=DC,⎪∠1=∠2,∴△ABE≌△DCF.---------------------------------------------------------------------3分∴BE=CF.------------------------------------------------------------------------------4分2 时, x (x - 2) ≠ 0 .2 .------------------------------------------------------------5 分m + 2 --------------------------------------------------------------------2 分21.解:方程两边乘 x (x - 2),得x 2 - x (x - 2 ) = 3 .-------------------------------------------------------------------------2 分解得 x = 32 .------------------------------------------------------------------------4 分检验:当 x = 3∴原分式方程的解为 x = 3四、解答题(本大题共 15 分,每小题 5 分)22.解:原式=m 2 +4m + 4m÷ m + 2 m 2----------------------------------------------------------------1 分m 2 + 4m + 4 =⋅ mm 2m + 2=(m +2)2m⋅m 2= m 2 + 2m .--------------------------------------------------------------------------3 分当 m = 3 时,原式=15.------------------------------------------------------------------5 分注:直接代入求值正确给 2 分.23.解:连接 DE .----------------------------------------------1 分∵A ,B 分别为 CD ,CE 的中点,C AE ⊥CD 于点 A ,BD ⊥CE 于点 B ,B∴CD =CE =DE ,A∴△CDE 为等边三角形.----------------------------3 分∴∠C =60°. E1∴∠AEC =90° - ∠C =30°.----------------------5 分2D24 . 解:设 每套 《水 浒传 》连 环画 的价 格为 x 元, 则每 套《 三国 演义》连 环画 的价 格为 (x + 60)元.--------------------------------------------------------------------------------------------1 分由题意,得4800x = 23600x + 60 .-----------------------------------------------------------3 分解得x = 120 .-----------------------------------------------------------------4 分经检验, x = 120 是原方程的解,且符合题意.答:每套《水浒传》连环画的价格为 120 元.--------------------------------------------5 分⎩五、解答题(本大题共 14 分,第 25、26 题各 7 分)25.(1)7.--------------------------------------------------------------------------------------------1 分 (2) -7 .----------------------------------------------------------------------------------------3 分(3) -3 .----------------------------------------------------------------------------------------5 分 (4) -15 .--------------------------------------------------------------------------------------7 分26.(1)ANE DPBC M-------------------------------------------------1 分(2)解:∵点 A 与点 D 关于 CN 对称, ∴CN 是 AD 的垂直平分线, ∴CA =CD .∵ ∠ACN = α ,∴∠ACD =2 ∠ACN = 2α .-------------------------------------------------------2 分 ∵等边△ABC ,∴CA =CB =CD ,∠ACB =60°.------------------------------------------------3 分 ∴∠BCD =∠ACB +∠ACD =60°+ 2α .1∴∠BDC =∠DBC = (180° - ∠BCD )=60° - α .-------------------4 分2(3)结论:PB =PC +2PE .------------------------------------------------------------------5 分 本题证法不唯一,如:证明:在 PB 上截取 PF 使 PF =PC ,连接 CF . ∵CA =CD ,∠ACD = 2α∴∠CDA =∠CAD =90° - α . ∵∠BDC =60° - α ,∴∠PDE =∠CDA - ∠BDC =30°.------------------------------------------6 分 ∴PD =2PE .∵∠CPF =∠DPE =90° - ∠PDE =60°. ∴△CPF 是等边三角形. ∴∠CPF =∠CFP =60°. ∴∠BFC =∠DPC =120°. ∴在△BFC 和△DPC 中,⎧∠CFB = ∠CPD , ⎪⎨∠CBF =∠CDP , ⎪CB = CD ,∴△BFC ≌△DPC . ∴BF =PD =2PE .∴PB = PF +BF =PC +2PE .----------------------------------------------------7 分证明:∵a、b、c、d均为正整数,ab+d b b(b+d)b2+bda+c c d(a+c)-c(b+d)ad-bc -===b d<0.b+d d d(b+d)bd+d2d∴a附加题:(本题最高10分,可计入总分,但全卷总分不超过100分)(1)①27;------------------------------------------------------------------------------------1分②58.------------------------------------------------------------------------------------3分(2)本题结论不唯一,证法不唯一,如:结论:a+cb+d.--------------------------------------------------------------------------5分c<,c<d,b da+c a b(a+c)-a(b+d)bc-ad ∴-==c a-=d b>0,b+1da c-1+ba+c c<<.-----------------------------------------------------------8分b b+d d(3)1504.------------------------------------------------------------------------------------10分八年级数学上册期末试题一、选择题(本大题共12小题,每小题3分,共36分。

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试题一、单选题1.下列四个图形中,不是轴对称图形的是()A .B .C .D .2.要使分式5x 1-有意义,则x 的取值范围是()A .x1≠B .x 1>C .x 1<D .x 1≠-3.下列运算正确的是()A .a+a=a 2B .a 6÷a 3=a 2C .(a+b)2=a2+b2D .(a b3)2=a2b64.将多项式32x xy -分解因式,结果正确的是()A .22()x x y -B .2()x x y -C .2()x x y +D .()()x x y x y +-5.已知m x =6,n x =3,则2-m n x 的值为()A .9B .34C .12D .436.下列运算中正确的是()A .623m m m=B .1x yx y-+=-+C .22222a ab b a b a b a b+++=--D .11+=+p pq q7.若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为A .5B .7C .5或7D .68.若22(3)16xm x +-+是完全平方式,则m 的值等于()A .1或5B .5C .7D .7或1-9.如图,在ABC 中,AB AC =,120A ∠=︒,6BC =cm ,AB 的垂直平分线交BC 于点M ,交AB 于点E ,AC 的垂直平分线交BC 于点N ,交AC 于点F ,则MN 的长为()A .4cmB .3cmC .2cmD .1cm10.如图所示,在直角三角形ACB 中,已知∠ACB=90°,点E 是AB 的中点,且DE AB ⊥,DE 交AC 的延长线于点D 、交BC 于点F ,若∠D=30°,EF=2,则DF 的长是()A .5B .4C .3D .211.如图,用尺规作图作已知角平分线,其根据是构造两个三形全等,它所用到的判别方法是()A .SASB .AASC .ASAD .SSS12.如图所示,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正ABC 和正CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下四个结论:①ACD BCE ≅ ;②AD BE =;③60AOB ∠=︒;④CPQ 是等边三角形.其中正确的是()A .①②③④B .②③④C .①③④D .①②③二、填空题13.因式分解:3269a a a -+=______.14.在平面直角坐标系中,(2,0)A ,(0,3)B ,若ABC ∆的面积为6,且点C 在坐标轴上,则符合条件的点C 的坐标为__________.15.若一个n 边形的每个内角都等于135°,则该n 边形的边数是____________.16.计算:0120201(2020)((1)2--+--=______.17.如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠=__________度.18.如图,BC=EC ,∠1=∠2,要使△ABC ≌△DEC ,则应添加的一个条件为__________(答案不唯一,只需填一个)三、解答题19.(1)计算题:①(a 2)3•(a 2)4÷(a 2)5②(x ﹣y+9)(x+y ﹣9)(2)因式分解①﹣2a 3+12a 2﹣18a ②(x 2+1)2﹣4x 2.20.计算题(1)先化简,再求值:22121222a a a a a a ⎛⎫-+-÷ ⎪---⎝⎭其中a=3.(2)解方程:212xx x +=+21.如图所示,AB//DC ,AD ⊥CD ,BE 平分∠ABC ,且点E 是AD 的中点,试探求AB 、CD 与BC 的数量关系,并说明你的理由.22.如图某船在海上航行,在A处观测到灯塔B在北偏东60°方向上,该船以每小时15海里的速度向东航行到达C处,观测到灯塔B在北偏东30°方向上,继续向东航行到D处,观测到灯塔B在北偏西30°方向上,当该船到达D处时恰与灯塔B相距60海里.(1)判断 BCD的形状;(2)求该船从A处航行至D处所用的时间.23.有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)24.已知等腰△ABC一腰上的中线BD把三角形的周长分成21cm和12cm两部分,求底边BC的长.25.某农资公司购进甲、乙两种农药,乙种农药的单价是甲种农药单价的3倍,购买250元甲种农药的数量比购买300元乙种农药的数量多15,求两种农药单价各为多少元?26.已知如图,AD 是BAC ∠的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .求证:AD 垂直平分EF .27.已知:如图,已知△ABC (1)点A 关于x 轴对称的点A 1的坐标是,点A 关于y 轴对称的点A 2的坐标是;(2)画出与△ABC 关于x 轴对称的△A 1B 1C 1;(3)画出与△ABC 关于y 轴对称的△A 2B 2C 2.参考答案1.C【分析】根据轴对称图形的定义即可进行解答.【详解】解:由图形可知A、B、D为轴对称图形,C不是轴对称图形.故选:C.【点睛】本题主要考查了轴对称图形的定义,解题的关键是掌握把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形.2.A【分析】根据分式分母不为0的条件进行求解即可.【详解】由题意得:x-1≠0,解得:x≠1,故选:A.3.D【分析】直接利用合并同类项法则、同底数幂的除法运算法则、幂的乘方运算法则和完全平方公式分别进行计算,再进行判断.【详解】A、a+a=2a,故此选项错误;B、a6÷a3=a6-3=a3,故此选项错误;C、(a+b)2=a2+b2+2ab,故此选项错误;D、(a b3)2=a2b6,故此选项计算正确.故选D.【点睛】考查了幂的乘方运算以及同底数幂的除法运算、合并同类项等知识,正确掌握运算法则是解题关键.4.D【详解】先提取公因式x,再根据平方差公式进行二次分解.平方差公式:a2-b2=(a-b)(a+b).解:x3-xy2=x(x2-y2)=x(x+y)(x-y),故选:D.本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.5.C【分析】根据同底数幂的除法的性质的逆用和幂的乘方的性质计算即可.【详解】解:∵x m =6,x n =3,∴x 2m-n =(x m )2÷x n =62÷3=12.故选:C .【点睛】本题考查了同底数的幂的除法,幂的乘方的性质,把原式化成(x m )2÷x n 是解题的关键.6.C【分析】根据分式的约分可直接进行排除选项.【详解】解:A 、633m m m=,原式计算错误,故不符合题意;B 、x yx y-++分子分母没有公因式,不能约分,故不符合题意;C 、()()()222222a b a ab b a b a b a b a b a b++++==-+--,正确,故符合题意;D 、11p q ++分子分母没有公因式,不能约分,故不符合题意;故选C .【点睛】本题主要考查分式的约分,熟练掌握分式的约分是解题的关键.7.B【分析】因为已知长度为3和1两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论:【详解】①当3为底时,其它两边都为1,∵1+1<3,∴不能构成三角形,故舍去.当3为腰时,其它两边为3和1,3、3、1可以构成三角形,周长为7.故选:B .【点睛】本题考查等腰三角形的性质,以及三边关系,分类讨论是关键.8.D【分析】根据完全平方公式,首末两项是x 和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【详解】解:∵多项式22(3)16x m x +-+是完全平方式,∴222(3)16(4)x m x =x +-+±,∴2(3)8m =-±34-±m=解得:m=7或-1故选:D.【点睛】此题主要查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.9.C【分析】此类题要通过作辅助线来沟通各角之间的关系,首先求出△BMA与△CNA是等腰三角形,再证明△MAN为等边三角形即可.【详解】解:连接AM,AN,∵AB的垂直平分线交BC于M,交AB于E,AC的垂直平分线交BC于N,交AC于F,∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,∵BC=6cm,∴MN=2cm.故答案为2cm.故选:C.【点睛】本题考查的知识点为线段的垂直平分线性质以及等腰三角形的性质;正确作出辅助线是解答本题的关键.10.B【分析】求出∠B=30°,结合EF=2,得到BF,连接AF,根据垂直平分线的性质得到FA=FB=4,再证明∠DAF=∠D,得到DF=AF=4即可.【详解】解:∵DE⊥AB,则在△AED中,∵∠D=30°,∴∠DAE=60°,在Rt△ABC中,∵∠ACB=90°,∠BAC=60°,∴∠B=30°,在Rt△BEF中,∵∠B=30°,EF=2,∴BF=4,连接AF,∵DE是AB的垂直平分线,∴FA=FB=4,∠FAB=∠B=30°,∵∠BAC=60°,∴∠DAF=30°,∵∠D=30°,∴∠DAF=∠D,∴DF=AF=4,故选B.【点睛】本题考查了垂直平分线的判定和性质,直角三角形的性质,解题的关键是掌握相应定理,构造线段AF.11.D【分析】根据作图过程可知:OC=OD,PC=PD,又OP=OP,从而利用SSS判断出△OCP≌△ODP,根据全等三角形的对应角相等得出∠COP=∠DOP,即OP平分∠AOB,从而得出答案.【详解】解:由画法得OC=OD,PC=PD,而OP=OP,所以△OCP ≌△ODP (SSS ),所以∠COP=∠DOP ,即OP 平分∠AOB.故答案为:D.【点睛】本题考查了用尺规作图作已知角平分线,三角形全等的判定,用尺规作图作已知角平分线,三角形全等的判定掌握是解题的关键.12.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】解:ABC ∆ 和CDE ∆是正三角形,AC BC ∴=,CD CE =,60ACB DCE ︒∠=∠=,ACD ACB BCD ∠=∠+∠ ,BCE DCE BCD ∠=∠+∠,ACD BCE ∠∠∴=,()ADC BEC SAS ∴∆≅∆,故①正确,AD BE ∴=,故②正确;ADC BEC ∆≅∆ ,ADC BEC ∠∠∴=,60AOB DAE AEO DAE ADC DCE ∴∠=∠+∠=∠+∠=∠=︒,故③正确;CD CE = ,60DCP ECQ ∠=∠=︒,ADC BEC ∠∠=,()CDP CEQ ASA ∴∆≅∆.CP CQ ∴=,60CPQ CQP ∴∠=∠=︒,CPQ ∴∆是等边三角形,故④正确;故选:A .【点睛】此题主要考查等边三角形的判定与性质、全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理.13.2(3)a a -【分析】先提公因式a ,再利用完全平方公式进行因式分解即可.【详解】解:原式22(69)(3)a a a a a =-+=-,故答案为:2(3)a a -.【点睛】本题考查提公因式法、公式法分解因式,解题的关键是掌握完全平方公式的结构特征.14.()2,0-或()6,0或()0,3-或()0,9【分析】根据C 点在坐标轴上分类讨论即可.【详解】解:①如图所示,若点C 在x 轴上,且在点A 的左侧时,∵(0,3)B ∴OB=3∴S △ABC =12AC·OB=6解得:AC=4∵(2,0)A ∴此时点C 的坐标为:()2,0-;②如图所示,若点C 在x 轴上,且在点A 的右侧时,同理可得:AC=4∴此时点C 的坐标为:()6,0;③如图所示,若点C 在y 轴上,且在点B 的下方时,∵(2,0)A ∴AO=2∴S △ABC =12BC·AO=6解得:BC=6∵(0,3)B ∴此时点C 的坐标为:()0,3-;④如图所示,若点C 在y 轴上,且在点B 的上方时,同理可得:BC=6∴此时点C 的坐标为:()0,9.故答案为()2,0-或()6,0或()0,3-或()0,9.【点睛】此题考查的是平面直角坐标系中已知面积求点的坐标,根据C 点的位置分类讨论是解决此题的关键.15.8【分析】根据题意求得多边形的外角,根据360度除以多边形的外角即可求得n 边形的边数【详解】解:∵一个n边形的每个内角都等于135°,︒-︒=︒∴则这个n边形的每个外角等于18013545÷=360458∴该n边形的边数是8故答案为:8【点睛】本题考查了多边形的内角与外角的关系,求得多边形的外角是解题的关键.16.2【分析】直接根据零指数幂、负整数指数幂、乘方的运算法则计算即可.【详解】解:原式1212=+-=.故答案为:2.【点睛】本题考查了实数的加减运算,解题的关键是掌握运算法则,正确的进行计算.17.80【分析】先根据折叠的性质可得AD DF∠=∠,再根=,根据等边对等角的性质可得B BFD据三角形的内角和定理列式计算即可求解.【详解】解:DEF是DEA△沿直线DE翻折变换而来,∴=,AD DFD是AB边的中点,∴=,AD BD∴=,BD DFB BFD∴∠=∠,,∠=︒B50∴∠=︒-∠-∠=︒-︒-︒=︒.180180505080BDF B BFD故答案为:80.【点睛】本题考查的是折叠的性质,以及等边对等角、三角形内角和定理,熟知折叠的性质是解答此题的关键.18.AC=DC(答案不唯一)【详解】根据∠1=∠2可得∠BCA=∠ECD,添加AC=DC可以利用SAS来进行判定;添加∠B=∠E可以利用ASA来进行判定;添加∠A=∠D可以利用AAS来进行判定.故答案为:AC=DC(答案不唯一)19.(1)①4a ②x 2﹣y 2+18y ﹣81(2)①﹣2a (a ﹣3)2②(x+1)2(x ﹣1)2【分析】(1)①原式利用幂的乘方运算法则计算,再利用单项式乘除单项式法则计算即可得到结果;②原式利用平方差公式变形,再利用完全平方公式展开即可;(2)①原式提取公因式,再利用完全平方公式分解即可;②原式利用平方差公式及完全平方公式分解即可.【详解】解:(1)①原式=a 14÷a 10=a 4;②原式=x 2﹣(y ﹣9)2=x 2﹣y 2+18y ﹣81;(2)①原式=﹣2a (a ﹣3)2;②原式=(x 2+1+2x )(x 2+1-2x )=(x+1)2(x ﹣1)2.20.(1)11a a +-,2;(2)x=-1【分析】(1)先计算括号里面的,再因式分解,然后将除法转化为乘法,约分即可.(2)去掉分母,将分式方程转化为整式方程,求出解后再检验.【详解】解:(1)22121222a a a a a a ⎛⎫-+-÷ ⎪---⎝⎭=()222112a a a a -⎛⎫÷ ⎪---⎝⎭=()()()211221a a a a a +--⨯--=11a a +-,将a=3代入,原式=2;(2)212xx x +=+去分母得:()()2222x x x x +++=,去括号得:22242x x x x +++=,移项合并得:44x =-,系数化为1得:x=-1.经检验:x=-1是原方程的解.【点睛】本题考查了分式的化简求值和解分式方程,解题的关键是掌握运算法则和解法.21.BC=AB+CD,理由见解析【分析】过点E作EF⊥BC于点F,只要证明△ABE≌△FBE(AAS),Rt△CDE≌Rt△CFE (HL)即可解决问题;【详解】解:证明:∵AB//DC,AD CD,∴∠A=∠D=90°,过点E作EF⊥BC于点F,则∠EFB=∠A=90°,又∵BE平分∠ABC,∴∠ABE=∠FBE,∵BE=BE,∴△ABE≌△FBE(AAS),∴AE=EF,AB=BF,又点E是AD的中点,∴AE=ED=EF,∴Rt△CDE≌Rt△CFE(HL),∴CD=CF,∴BC=CF+BF=AB+CD.22.(1)等边三角形;(2)8小时【分析】(1)根据题意可得∠BCD=∠BDC=60°,即可知△BCD是等边三角形;(2)由(1)可求得BC,CD的长,然后易证得△ABC是等腰三角形,继而求得AD的长,则可求得该船从A处航行至D处所用的时间;【详解】解:(1)根据题意得:∠BCD=90°-30°=60°,∠BDC=90°-30°=60°,∴∠BCD=∠BDC=60°,∴BC=BD,∴△BCD是等边三角形;(2)∵△BCD是等边三角形,∴CD=BD=BC=60海里,∵∠BAC=90°-60°=30°,∴∠ABC=∠BCD-∠BAC=30°,∴∠BAC=∠ABC,∴AC=BC=60海里,∴AD=AC+CD=120海里,∴该船从A处航行至D处所用的时间为:120÷15=8(小时);23.答案作图见解析【分析】根据题意知道,点C应满足两个条件,一是在线段AB的垂直平分线上;二是在两条公路夹角的平分线上,所以点C应是它们的交点.【详解】解:连接A,B两点,作AB的垂直平分线,作两直线交角的角平分线,交点有两个.(1)作两条公路夹角的平分线OD或OE;(2)作线段AB的垂直平分线FG;则射线OD,OE与直线FG的交点C1,C2就是所求的位置.考点:作图-应用与设计作图24.5cm【分析】根据图形和题意可知,有AB+AD=21,CD+BC=12或AB+AD=12,CD+BC=21两种情况,据此即可求出BC的长,然后再结合三角形的三边关系进行判断即可.【详解】解:∵△ABC是等腰三角形,∴AB=AC,∵BD是AC边上的中线,∴AD=CD设AB=AC=xcm,BC=ycm,∵BD把三角形的周长分成21cm和12cm两部分,∴有AB+AD=21cm,CD+BC=12cm或AB+AD=12cm,CD+BC=21cm两种情况,则有:①21212 2xxx y⎧+=⎪⎪⎨⎪+=⎪⎩解得:145 xy=⎧⎨=⎩即AB=AC=14cm,BC=5cm,根据三角形构成的条件可知,能够成三角形;②12221 2xxx y⎧+=⎪⎪⎨⎪+=⎪⎩解得:817 xy=⎧⎨=⎩即AB=AC=8cm,BC=17cm,根据三角形构成的条件可知,不能够成三角形,不符合题意;综上所述,等腰三角形底边BC为5cm.25.10元、30元.【分析】设甲农药的单价为x元,乙农药的单价为3x元,根据购买250元甲农药的数量比购买300元乙农药的数量多15件列出方程,求出方程的解即可得到结果;【详解】解:设甲农药的单价为x元,乙农药的单价为3x元,根据题意得,250360-=15x3x,解得x=10,经检验,x=10是所列方程的根,∴3x=3×10=30(元),答:甲、乙两种农药品的单价分别为10元、30元.26.见解析【分析】根据角平分线的性质可得DE DF =,易证AE AF =,即△AEF 为等腰三角形,根据三线合一可证结论.【详解】证明:∵AD 是BAC ∠的角平分线,DE AB ⊥,DF AC ⊥,∴DE DF =,∴12∠=∠,∵90AED AFD ∠=∠=︒,∴3=4∠∠,∴AE AF =,∵AD 是等腰三角形AEF 的顶角平分线,∴AD 垂直平分EF (三线合一)27.(1)(-4,-2),(4,2);(2)图形见解析(3)图形见解析【分析】(1)分别利用关于x 轴以及y 轴对称点的性质得出对应点坐标即可;(2)直接利用关于x 轴对称点的性质得出对应点坐标即可;(3)直接利用关于y 轴对称点的性质得出对应点坐标即可.【详解】解:(1)(-4,-2),(4,2);(2)如图所示:△A 1B 1C 1,即为所求;(3)如图所示:△A 2B 2C 2,即为所求.。

人教版八年级上册数学期末试卷含答案

人教版八年级上册数学期末试卷含答案

人教版八年级上册数学期末试题一、单选题1.要使分式7x x -有意义,则x 的取值范围是()A .7x =B .7x >C .7x <D .7x ≠2.下列图形中不是轴对称图形的是()A .B .C .D .3.下列运算正确的是()A .428x x x= B .235m m m +=C .933x x x ÷=D .32264()a b a b -=-4.下列命题中,不正确的是()A .有一个外角是120°的等腰三角形是等边三角形B .一条线段可以看成是以它的垂直平分线为对称轴的轴对称图形C .等腰三角形的对称轴是底边上的中线D .等边三角形有3条对称轴5.满足下列条件的三条线段,,a b c 能构成三角形的是()A .::1:2:3a b c =B .4,9a b a b c +=++=C .3,4,5a b c ===D .::1:1:2a b c =6.在平面直角坐标系中,点A (-2,3)关于y 轴对称的点的坐标()A .(2,3)B .(2,-3)C .(-2,-3)D .(3,2)7.为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两型号机器人的单价和为140万元.若设甲型机器人每台x 万元,根据题意,所列方程正确的是()A .360480140x x =-B .360480140x x =-C .360480140x x +=D .360480140x x-=8.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是()A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA 9.如图,△ABC 中,12AB BC AC ===cm ,现有两点M 、N 分别从点A 、点B 同时出发,沿三角形的边运动,已知点M 的速度为1cm/s ,点N 的速度为2cm/s .当点N 第一次到达B 点时,M 、N 同时停止运动.点M 、N 运动()s 后,可得到等边三角形△AMN .A .4B .6C .8D .不能确定10.如图,已知∠1=∠2,要得到结论 ABC ≌ ADC ,不能添加的条件是()A .BC =DCB .∠ACB =∠ACDC .AB =AD D .∠B =∠D二、填空题11.数据0.000000005用科学记数法表示为______.12.当x =______时,分式21628x x --的值为0.13.因式分解ab 3-4ab =_____.14.已知2ma =,32nb =,m ,n 为正整数,则5102m n +=______.15.化简:()2184416x x x ⎛⎫-⋅+= ⎪--⎝⎭__________.16.如图,△AEB ≌△DFC ,AE ⊥CB ,DF ⊥BC ,垂足分别为E 、F ,且AE=DF ,若∠C=28°,则∠A=__________.17.已知一个正多边形的一个内角是120º,则这个多边形的边数是_______.18.若方程4x 2+(m+1)x+1=0的左边可以写成一个完全平方式,则m 的值为__.19.如图,在△ABC 中,14AB =,8BC =,AM 平分∠BAC ,15BAM ∠=︒,点D 、E 分别为线段AM 、AB 上的动点,则BD DE +的最小值是______.20.如图,已知30PMQ ∠=︒,点123,,A A A ...在射线MQ 上,点123,,B B B ...均在射线MP 上,112223334,,A B A A B A A B A △△△...均为等边三角形,若11MA =,则202120212022A B Az △的边长为__________.三、解答题21.先化简再求值22121(124x x x x ++-÷+-,其中x=-3.22.解方程:21133x x x x =+++.23.一个多边形的内角和比四边形的内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?24.如图,已知∠ABC 和线段DE ,求作一点P ,使点P 到∠ABC 两边的距离相等,且使PD =PE .(不写作法,保留作图痕迹)25.如图,在△ABC 中,D 是AB 上一点,CF//AB ,DF 交AC 于点E ,DE EF =.(1)求证:ADE CFE≌(2)若5AB =,3CF =,求BD 的长.26.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC 的顶点均在格点上,点C 的坐标为(0,-1),(1)写出A ,B 两点的坐标;(2)画出△ABC关于y轴对称的△A1B1C1;(3)求出△ABC的面积.27.如图,已知点D,E分别是 ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∥BC.(1)求证: ABC是等腰三角形(2)作∠ACE的平分线交AF于点G,若40∠= ,求∠AGC的度数.B28.某市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?29.列方程解应用题:一批学生志愿者去距学校8km的老人院参加志愿服务活动,一部分学生骑自行车先走,过了15min后,其余学生乘汽车出发,结果他们同时到达.已知骑车学生的速度是汽车速度的一半,求骑车学生的速度.30.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B 、a 2﹣b 2=(a+b )(a ﹣b )C 、a 2+ab=a (a+b )(2)应用你从(1)选出的等式,完成下列各题:①已知x 2﹣4y 2=12,x+2y=4,求x ﹣2y 的值.②计算:(1﹣212)(1﹣213)(1﹣214)…(1﹣2119)(1﹣2120).参考答案1.D【分析】直接利用分式有意义的条件分析得出答案.【详解】解:要使分式7x x -有意义,则70x -≠,解得:7x ≠.故选:D .【点睛】本题主要考查了分式有意义的条件,正确把握定义是解题关键.2.B【分析】根据轴对称图形的定义,即可一一判定.【详解】解:等腰三角形、等腰梯形、矩形都是轴对称图形,直角三角形不一定是轴对称图形,故选:B .【点睛】本题考查了轴对称图形的定义,轴对称图形:如果把一个图形沿某条直线对折,对折后图形的一部分与另一部分完全重合,我们把具有这样性质的图形叫做轴对称图形,这条直线叫做对称轴.3.B【分析】计算出各个选项中的式子的结果,本题得以解决.【详解】2428x x x = ,故选项A 错误;235m m m += ,故选项B 正确;936x x x ÷= ,故选项C 错误;32264()a b a b -= ,故选项D 错误;故选B .【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.4.C【分析】根据等边三角形的判定定理、轴对称图形的概念判断即可.【详解】解:A 、一个三角形的外角是120°,则内角为60°,∴这个等腰三角形是等边三角形,本选项说法正确,不符合题意;B 、一条线段可以看成是以它的垂直平分线为对称轴的轴对称图形,本选项说法正确,不符合题意;C 、等腰三角形的对称轴是底边上的中线所在的直线,本选项说法错误,符合题意;D 、等边三角形有3条对称轴,本选项说法正确,不符合题意;故选:C .【点睛】本题考查的是命题的真假判断以及等边三角形的判定,轴对称图形的概念等知识,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A.设,,a b c 分别为,2,3(0)x x x x >,则有a b c +=,不符合三角形的三边关系,故不能构成三角形;B.当4a b +=时,5,45c =<,不符合三角形的三边关系,故不能构成三角形;C.当3a =,4b =,5c =时,345+>,符合三角形的三边关系,故能构成三角形;D.设,,a b c 分别为,,2(0)x x x x >,则有a b c +=,不符合三角形的三边关系,故不能构成三角形.故选C .【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.6.A【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【详解】解:点A (-2,3)关于y 轴对称点的坐标是(2,3).故选:A .【点睛】本题考查了关于y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.A【分析】甲型机器人每台x 万元,根据360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,列出方程即可.【详解】解:设甲型机器人每台x 万元,根据题意,可得360480140x x=-,故选:A .【点睛】本题考查的是分式方程,解题的关键是熟练掌握分式方程.8.B【分析】利用全等三角形判定定理ASA ,SAS ,AAS 对各个选项逐一分析即可得出答案.【详解】A 、∵∠1=∠2,AD 为公共边,若AB=AC ,则△ABD ≌△ACD (SAS );故A 不符合题意;B 、∵∠1=∠2,AD 为公共边,若BD=CD ,不符合全等三角形判定定理,不能判定△ABD ≌△ACD ;故B 符合题意;C 、∵∠1=∠2,AD 为公共边,若∠B=∠C ,则△ABD ≌△ACD (AAS );故C 不符合题意;D 、∵∠1=∠2,AD 为公共边,若∠BDA=∠CDA ,则△ABD ≌△ACD (ASA );故D 不符合题意.故选:B .9.A【分析】设点M ,N 运动t 秒时,得到等边三角形AMN ,表示出AM ,AN 的长,根据60A ∠=︒,只要AM AN =,三角形AMN 就是等边三角形.【详解】解:设点M ,N 运动t 秒时,得到等边三角形AMN ,如图所示,则AM t =,2BN t =,∵12AB BC AC ===,∴122AN AB BN t =-=-,∵AM N ∆是等边三角形,∴AM AN =,即122t t =-,解得4t =,∴点M ,N 运动4秒时,得到等边三角形AMN .故选:A【点睛】本题考查了等边三角形的性质和判定,根据题意分析出AM AN =时得到等边三角形AMN 是解题的关键.10.A【分析】根据全等三角形的判定方法,逐项判断即可求解.【详解】解:根据题意得:AC AC =,∠1=∠2,A 、当BC =DC 时,是边边角,不能得到结论 ABC ≌ ADC ,故本选项符合题意;B 、当∠ACB =∠ACD 时,是角边角,能得到结论 ABC ≌ ADC ,故本选项不符合题意;C 、当AB =AD 时,是边角边,能得到结论 ABC ≌ ADC ,故本选项不符合题意;D 、当∠B =∠D 时,是角角边,能得到结论 ABC ≌ ADC ,故本选项不符合题意;故选:A【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.11.9510-⨯【分析】根据绝对值小于1的数用科学记数法表示即可,把一个绝对值小于1的数数表示为10n a -⨯(1≤|a|<10,n 为正整数)的形式,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定,不为0的数字前面有几个0,-n 就是负几.【详解】解:90.0000000052 10-=⨯,故选:B .【点睛】此题主要考查了用科学记数法表示绝对值小于1的数,一般形式为10n a -⨯(1≤|a|<10,n 为正整数),n 为由原数左边起第一个不为零的数字前面的0的个数所决定,熟练掌握科学记数法表示绝对值小于1的数的方法是解题的关键.12.-4【分析】根据分式等于0可知2160x -=,且280x -≠.求出x 即可.【详解】根据题意可知2160280x x ⎧-=⎨-≠⎩,解得:4x =-.故答案为:-4.【点睛】本题考查分式的值为零的条件:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.13.ab (b+2)(b-2).【详解】试题解析:ab 3-4ab=ab (b 2-4)=ab (b+2)(b-2).考点:提公因式法与公式支的综合运用.14.52a b 【分析】直接利用幂的乘方运算法则以及同底数幂的乘法运算法则计算得出答案.【详解】解:∵2m=a ,32n=b=25n ,m ,n 为正整数,∴25m+10n=(2m)5×(25n)2=a5b2,故答案是:a5b2.【点睛】本题主要考查了幂的乘方运算以及同底数幂的乘法运算,解题的关键是正确掌握相关运算法则.15.1【分析】先将小括号内的式子进行通分计算,然后再算括号外面的.【详解】解:218()(4)416x x x -⋅+--48(4)(4)(4)x x x x +-=⋅++-4(4)(4)(4)x x x x -=⋅++-1=,故答案为:1.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.16.62°【详解】∵△AEB ≌△DFC ,∴∠C=∠B=28°,∵AE ⊥CB ,∴∠AEB=90°,∴∠A=62°.故答案为62°.17.6【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角的个数,即多边形的边数.【详解】解:∵一个正多边形的一个内角是120º,∴这个正多边形的一个外角为:180º-120º=60º,∵多边形的外角和为360º,∴360º÷60º=6,则这个多边形是六边形.故答案为:6.【点睛】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.18.-5或3【分析】利用完全平方公式的结构特征判断即可求出m 的值.【详解】解:∵4x 2+(m+1)x+1可以写成一个完全平方式,∴4x 2+(m+1)x+1=(2x±1)2=4x 2±4x+1,∴m+1=±4,解得:m =-5或3,故答案为:-5或3.【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.19.7【分析】作E关于AM的对称点E',连接DE',根据角平分线的性质以及轴对称的性质,垂线段最短,进而根据含30度角的直角三角形的性质求解即可.【详解】∴如图,作E关于AM的对称点E′,连接DE′,∴ED=E′D∴BD+DE≥BE′,当B,D,E′共线,且BE′⊥AC时,BD+DE最小∵AM平分∠BAC,∴E′在AC上,∵AM平分∠BAC,∠BAM=15°,∴∠BAE′=30°∵AB=14,BE′⊥AC∴BE′=12AB=7故答案为:7.【点睛】本题考查了角平分线的定义,轴对称的性质求最短距离,垂线段最短,含30度角的直角三角形的性质,正确的作出图形是解题的关键.20.22020.【详解】解:∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,∵∠PMQ=30°,∴∠MB1A1=∠B1A1A2-∠PMQ=30°,∴∠MB1A1=∠PMQ,∴A1B1=MA1=1,同理可得:A 2B 2=MA 2=2,A 3B 3=MA 3=4=22,A 4B 4=MA 4=23,…∴△A 2021B 2021A 2022的边长=22020,故答案为:22020.21.52.【详解】原式221(1)2(2)(2)x x x x x +-+=÷++-21(2)(2)·2(1)x x x x x ++-=++21x x -=+.当3x =-时,原式325312--==-+22.32x =-【分析】分式方程两边同乘3(x+1),解出x 的解,再检验解是否满足.【详解】解:方程两边都乘()31x +,得:()3231x x x -=+,解得:32x =-,经检验32x =-是方程的解,∴原方程的解为32x =-.【点睛】本题考查的知识点是分式方程的求解,解题关键是解出的解要进行检验.23.135度.【详解】试题分析:首先由题意得出等量关系,即这个多边形的内角和比四边形的内角和多540°,由此列出方程解出边数,进一步可求出它每一个内角的度数.解:设这个多边形边数为n ,则(n ﹣2)•180=360+720,解得:n=8,∵这个多边形的每个内角都相等,∴它每一个内角的度数为1080°÷8=135°.答:这个多边形的每个内角是135度.24.见解析.【分析】作线段DE 的垂直平分线MN ,作∠ABC 的角平分线BO 交MN 于点P ,点P 即为所求.【详解】如图,点P即为所求.【点睛】本题主要考查了线段垂直平分线与角平分线的画图,熟练掌握相关方法是解题关键.25.(1)见解析(2)2BD =【分析】(1)由题意易得,A ECF ADE F ∠=∠∠=∠,然后问题可求证;(2)由(1)可得3AD CF ==,然后问题可求解.(1)证明:∵CF//AB ,∴,A ECF ADE F ∠=∠∠=∠,在ADE ∆和CFE ∆中,A ECF ADE F DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ADE CFE ≌(AAS );(2)解:∵ADE CFE ∆∆≌,CF=3,∴3AD CF ==,∴532BD AB AD =-=-=.【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质及判定是解题的关键.26.(1)A (-1,2),B (-3,1).(2)见解析;(3)见解析【分析】(1)根据A ,B 的位置写出坐标即可;(2)分别画出A ,B ,C 的对应点A 1,B 1,C 1即可;利用分割法求面积即可;【详解】(1)由题意A (-1,2),B (-3,1).(2)如图△A1B1C1即为所求.(3)S ABC =3×3-12×1×2-12×1×3-12×2×3=3.527.(1)证明见解析;(2)70AGC ∠= 【分析】(1)根据角平分线的定义,得到∠DAF=∠CAF ,又根据//BC AF ,得到∠DAF=∠ABC ,∠CAG=∠ACB ,进一步得到∠ABC=∠ACB ,即可证明ABC 是等腰三角形;(2)在ACG 中,分别求得ACG ∠和CAG ∠的度数,利用三角形内角和求解即可.【详解】(1)证明:∵AF 是∠DAC 的角平分线∴∠DAF=∠CAF又∵//BCAF ∴∠DAF=∠ABC ,∠CAG=∠ACB∴∠ABC=∠ACB∴AB=AC∴ABC 是等腰三角形(2)∵CG 是∠ACE 的角平分线∴∠ACG=∠ECG又∵40B ∠= ,∠ACB=∠B∴40ACB ∠=∴∠ACG=∠ECG=()118040702⨯-= 又∵∠CAG=∠ACB∴∠AGC=180407070--=【点睛】本题考查等腰三角形的判定,平行线的性质,角平分线的定义等相关知识点,牢记知识点是解题关键.28.10米【分析】设原计划每天铺设管道x 米,根据等量关系:铺设120米管道的时间+铺设(300﹣120)米管道的时间=27天,可列方程求解.【详解】解:设原计划每天铺设管道x 米,依题意得:12030012027(120%)x x-+=+,解得x=10,经检验,x=10是原方程的解,且符合题意.答:原计划每天铺设管道10米.考点:分式方程的应用.29.骑车学生的速度16㎞/h .【分析】设骑车学生的速度为xkm/h ,则汽车速度为2xkm/h ,根据骑车所用时间-15分钟=汽车所用时间,列方程x x81842-=,解方程即可.【详解】解:设骑车学生的速度为xkm/h ,则汽车速度为2xkm/h,根据题意得:x x81842-=,方程两边都乘以4x 得:x 3216-=,解得16x =,经检验得16x =是原方程的根,且符合题意,答:骑车学生的速度16㎞/h .【点睛】本题考查列分式方程解行程问题应用题,掌握列分式方程解行程问题应用题方法与步骤,抓住等量关系:骑车所用时间-15分钟=汽车所用时间列方程是解题关键.30.(1)B;(2)①3;②21 40.【分析】(1)根据两个图形中阴影部分的面积相等,即可列出等式;(2)①把x2﹣4y2利用(1)的结论写成两个式子相乘的形式,然后把x+2y=4代入即可求解;②利用(1)的结论化成式子相乘的形式即可求解.【详解】(1)第一个图形中阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b),则a2﹣b2=(a+b)(a﹣b).故答案是B;(2)①∵x2﹣4y2=(x+2y)(x﹣2y),∴12=4(x﹣2y)得:x﹣2y=3;②原式=(1﹣12)(1+12)(1﹣13)(1+13)(1﹣14)(1+14) (1)119)(1+119)(1﹣120)(1+1 20)13243518201921 22334419192020 =⨯⨯⨯⨯⨯⨯⋯⨯⨯⨯⨯=1 2×21 20=21 40.。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下面的图形是轴对称图形的是()A .B .C .D .2.数据0.00000164用科学记数法可表示为()A .51.6410-⨯B .61.6410-⨯C .716.410-⨯D .50.16410-⨯3.下列多项式中,能运用平方差公式分解因式的是()A .22a b +B .22a b-C .22a b -+D .22a b --4.计算:3223x y ⎛⎫-= ⎪⎝⎭()A .632x y-B .63827x y C .53827x y -D .63827x y -5.将分式222x x y+中的x ,y 同时扩大4倍,则分式的值()A .扩大4倍B .扩大2倍C .缩小到原来的一半D .保持不变6.已知2x =是分式方程113k x x x -+=-的解,那么k 的值为()A .0B .1C .2D .47.在ABC 中,AB AC =,AD BC ⊥于点D ,若8AB =,5CD =,则ABC 的周长为()A .13B .18C .21D .268.如图,点E 在AC 上,则A B C D DEB ∠+∠+∠+∠+∠的度数是()A .90°B .180°C .270°D .360°9.如图,两个正方形的边长分别为a 、b ,若7a b +=,3ab =,则阴影部分的面积是()A .40B .492C .20D .2310.如图,已知直角三角形ABC 中,90ACB ∠=︒,60CAB ∠=︒,在直线BC 或AC 上取一点P ,使得ABP △为等腰三角形,则符合条件的点有()A .4个B .5个C .6个D .7个二、填空题11.正五边形的外角和等于_______◦.12.已知221x x -=-,则代数式()52x x +-的值为______.13.已知30x yx -=,则y x=______.14.分式方程:2211x x x+=--的解是___________.15.在ABC 中,AB AC =,AB 的垂直平分线与AC 所在直线相交所得的锐角为42°,则B ∠=______.16.如图,B C ∠=∠,译添加一个条件______使得ABE ACD △△≌.17.如图,5AB AC ==,110BAC ∠=︒,AD 是∠BAC 内的一条射线,且25BAD ∠=︒,P 为AD 上一动点,则PB PC -的最大值是______.18.如图,在平面直角坐标系中,已知()2,0A ,()0,3B ,若在第一象限中找一点C ,使得AOC OAB ≅△△,则C 点的坐标为_______.三、解答题19.计算:()()()323235a a a a a -+-+÷.20.已知23m n=,求224421n mn n m m m ⎛⎫--+÷ ⎪⎝⎭的值.21.在()()223x x a x b -++的运算结果中,2x 的系数为4-,x 的系数为7-,求a ,b 的值并对式子224ax b +进行因式分解.22.如图,AB ,CD 相交于点E 且互相平分,F 是BD 延长线上一点,若2FAC BAC ∠=∠,求证:AC DF AF +=.23.某商场计划在年前用30000元购进一批彩灯,由于货源紧张,厂商提价销售,实际的进货价格比原来提高了20%,结果比原计划少购进100盏彩灯.该商场实际购进彩灯的单价是多少元?24.如图1,射线BD 交△ABC 的外角平分线CE 于点P ,已知∠A=78°,∠BPC=39°,BC=7,AB=4.(1)求证:BD平分∠ABC;(2)如图2,AC的垂直平分线交BD于点Q,交AC于点G,QM⊥BC于点M,求MC的长度.25.如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N.求证:(1)AD=BE;(2)∠BMC=∠ANC;(3)△CMN是等边三角形.26.如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B 作BF//AE交ED于F,且EM=FM.(1)若AE=5,求BF的长;(2)若∠AEC=90°,∠DBF=∠CAE,求证:CD=FE.参考答案1.C 2.B 3.C 4.D 5.A 6.D 7.D 8.B 9.C 10.C 11.36012.413.1314.0x =15.66°或24°16.AB AC =(答案不唯一)【详解】解: B C ∠=∠,,A A ∠=∠添加:,AB AC =∴(),ABE ACD ASA ≌△△故答案为:,AB AC =(答案不唯一)17.5【分析】作点B 关于射线AD 的对称点B ',连接AB '、CB '、B'P .则AB AB '=,PB PB '=,AB C 'V 是等边三角形,在PB C ' 中,PB PC B C -'≤',当P 、B '、C 在同一直线上时,PB PC '-取最大值B C ',即为5.所以PB PC '-的最大值是5.【详解】解:如图,作点B 关于射线AD 的对称点B ',连接AB '、CB ',B'P .则AB AB '=,PB PB '=,25B AD BAD ∠=∠='︒,110252560B AC BAC BAB ∠=∠-∠=︒-︒-︒=''︒.∵5AB AC ==,∴5AB AC '==,∴AB C 'V 是等边三角形,∴5B C '=,在PB C ' 中,PB PC B C -'≤',当P 、B '、C 在同一直线上时,PB PC '-取最大值B C ',即为5.∴PB PC '-的最大值是5.故答案为:5.18.()2,3【详解】根据题意C 点在第一象限内,且AOC OAB ≅△△,如图,又已知OAB 和AOC △有已知公共边AO ,∴(23)C ,.故答案为(2)3,.【点睛】本题考查全等三角形的性质,由已知公共边结合三角形全等的性质找到点C 的位置是解答本题的关键.19.210a --【分析】先利用平方差公式进行整式的乘法运算,同步计算多项式除以单项式,再合并同类项即可.【详解】解:原式222495110a a a =---=--.【点睛】本题考查的是平方差公式的运用,多项式除以单项式,掌握“整式的混合运算”是解本题的关键.20.2【分析】先计算括号内分式的加法,再把除法转化为乘法,约分后可得结果,再把23m n =化为23,n m =再整体代入即可.【详解】解:原式222442n mn m mm n m-+=⋅-()22222n m m n mm n m m--=⋅=-∵23m n=∴23n m =,代入上式,得:原式322m m mm m-===.【点睛】本题考查的是分式的化简求值,掌握“整体代入法求解分式的值”是解本题的关键.21.1a =-,2b =,()()411x x +-【分析】先计算多项式乘以多项式,再结合题意可得64b -=-,327a b -=-,解方程组求解,a b 的值,再利用平方差公式分解因式即可.【详解】解:∵()()223x x a x b -++3223623x bx x bx ax ab =+--++()()323623x b x b a x ab=+-+-++∴64b -=-,327a b -=-解得:1a =-,2b =∴()()222444411ax b x x x +=-+=+-.22.【详解】证明:∵AB ,CD 互相平分∴AE BE =,CE DE =又∵AEC BED ∠=∠∴AEC BED△△≌∴CAE DBE =∠∠,AC BD =∵2FAC BAC ∠=∠∴CAE FAE ∠=∠∴DBE FAE ∠=∠∴AF BF =∵BF BD DF =+∴AC DF AF +=.23.商场实际购进彩灯的单价是60元【分析】设商场原计划购进彩灯的单价为x 元,则商场实际购进彩灯的单价为(120%)x +元,由题意:某商场计划在年前用30000元购进一批彩灯,由于货源紧张,厂商提价销售,实际的进货价格比原来提高了20%,结果比原计划少购进100盏彩灯.列出分式方程,解方程即可.【详解】解:设商场原计划购进彩灯的单价为x 元,则商场实际购进彩灯的单价为(120%)x +元,根据题意得:3000030000100(120%)x x-=+,解得:50x =,经检验,50x =是原分式方程的解,且符合题意,则(120%)60x +=(元),答:商场实际购进彩灯的单价为60元.24.(1)见解析(2)MC=1.5【分析】(1)由∠ACF=∠A+∠ABF ,∠ECF=∠BPC+∠DBF ,得∠ABF=∠ACF-78°,∠DBF=∠ECF-39°,再根据CE 平分∠ACF ,得∠ACF=2∠ECF ,则∠ABF=2∠ECF-78°=2(∠ECF-39°)=2∠DBF ,从而证明结论;(2)连接AQ ,CQ ,过点Q 作BA 的垂线交BA 的延长线于N ,利用HL 证明Rt△QNA≌Rt△QMC,得NA=MC,再证明Rt△QNB≌Rt△QMB(HL),得NB=MB,则BC=BM+MC=BN+MC=AB+AN+MC,从而得出答案.(1)证明:∵∠ACF=∠A+∠ABF,∠ECF=∠BPC+∠DBF,∴∠ABF=∠ACF-78°,∠DBF=∠ECF-39°,∵CE平分∠ACF,∴∠ACF=2∠ECF,∴∠ABF=2∠ECF-78°=2(∠ECF-39°)=2∠DBF,∴BD平分∠ABC;(2)解:连接AQ,CQ,过点Q作BA的垂线交BA的延长线于N,∵QG垂直平分AC,∴AQ=CQ,∵BD平分∠ABC,QM⊥BC,QN⊥BA,∴QM=QN,∴Rt△QNA≌Rt△QMC(HL),∴NA=MC,∵QM=QN,BQ=BQ,∴Rt△QNB≌Rt△QMB(HL),∴NB=MB,∴BC=BM+MC=BN+MC=AB+AN+MC,∴7=4+2MC,∴MC=1.5.25.(1)见解析;(2)见解析;(3)见解析【分析】(1)根据等边三角形的性质和题意,可以得到△ACD ≌△BCE 的条件,从而可以证明结论成立;(2)由△ACD ≌△BCE 得∠CBE=∠CAD ,由△ABC 和△DEC 都是等边三角形得60ACB ECD ∠=∠=︒,由平角定义得60ACN ∠=︒,再由三角形内角和定理可得结论;(3)根据(1)中的结论和等边三角形的判定可以证明△CMN 是等边三角形.【详解】(1)证明:∵△ABC 和△CDE 都是等边三角形,∴BC=AC ,CE=CD ,∠BCA=∠ECD=60°,∴∠BCA+∠ACE=∠ECD+∠ACE ,∠ACE=60°,∴∠BCE=∠ACD ,在△ACD 和△BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS );∴AD =BE ;(2)由(1)得△ACD ≌△BCE ∴∠CBE=∠CAD ,∵△ABC 和△DEC 都是等边三角形∴60ACB ECD ∠=∠=︒∴60ACN ∠=︒∵180,180CBM BCM BMC CAN ACN ANC ∠+∠+∠=︒∠+∠+∠=︒∴∠BMC =∠ANC ;(3)由(1)知,△ACD ≌△BCE ,则∠ADC=∠BEC ,即∠CDN=∠CEM ,∵∠ACE=60°,∠ECD=60°,∴∠MCE=∠NCD ,在△MCE 和△NCD 中,MCE NCD MEC NDC CE CD ∠∠⎧⎪∠∠⎨⎪⎩===,∴△MCE≌△NCD(AAS),∴CM=CN,∵∠MCN=60°,∴△MCN是等边三角形.26.(1)BF=5;(2)见解析.【分析】(1)证明△AEM≌△BFM即可;(2)证明△AEC≌△BFD,得到EC=FD,利用等式性质,得到CD=FE.【详解】(1)∵BF//AE,∴∠MFB=∠MEA,∠MBF=∠MAE,∵EM=FM,∴△AEM≌△BFM,∴AE=BF,∵AE=5,∴BF=5;(2)∵BF//AE,∴∠MFB=∠MEA,∵∠AEC=90°,∴∠MFB=90°,∴∠BFD=90°,∴∠BFD=∠AEC,∵∠DBF=∠CAE,AE=BF,∴△AEC≌△BFD,∴EC=FD,∴EF+FC=FC+CD,∴CD=FE.。

人教版八年级上册数学期末考试试题含答案

人教版八年级上册数学期末考试试题含答案

人教版八年级上册数学期末考试试卷一、单选题1.下列四个标志中,是轴对称图形的是()A .B .C .D .2.下列运算正确的是()A .248m m m ⋅=B .()()235m m m -⋅-=C .()6240m m m m ÷=≠D .()222448mn m n =3.某病毒的平均直径为0.0000001米,用科学记数法表示为()A .5110-⨯B .6110-⨯C .7110-⨯D .8110-⨯4.如果2169x ax ++是一个完全平方式,那么a 的值等于()A .13B .26C .-26D .±265.下列等式成立的是()A .(-3)-2=-9B .(-3)-2=19C .122()-a =a 14D .132()----a b =-a 2b 66.已知三角形的两边长分别为3cm 和7cm ,则下列四条线段中能作为第三边的是()A .3cm B .4cm C .9cm D .10cm7.在锐角三角形ABC 内一点P ,满足PA=PB=PC ,则点P 是△ABC ()A .三条角平分线的交点B .三条中线的交点C .三条高的交点D .三边垂直平分线的交点8.已知,在△ABC 中,AB AC =,如图,(1)分别以B ,C 为圆心,BC 长为半径作弧,两弧交于点D ;(2)作射线AD ,连接BD ,CD .根据以上作图过程及所作图形,下列结论中错误..的是()A .BAD CAD∠=∠B .△BCD 是等边三角形C .AD 垂直平分BC D .ABDC S AD BC=9.如图,把长方形纸片ABCD 沿对角线BD 折叠,重叠部分为 EBD ,则下列说法错误的是()A . EBA ≌ EDCB . EBD 是等腰三角形C .折叠后的图形是轴对称图形D .∠ABE =∠CBD10.在直角 ABC 中,∠C =90°,BD 平分∠ABC ,交AC 于D ,DE ⊥AB ,垂足为E ,将 ABC 沿DE 所在直线折叠,则点A 恰好与点B 重合,下列结论:①DE 垂直平分AB ;②∠A=30°;③12DC BC =;④ DEB 的周长等于AC +BC ,其中正确的命题是()A .①②③B .①②④C .①③④D .②③④二、填空题11.因式分解:2mn +6mn+9m=_________________.12.计算:22(1510)(5)x y xy xy -÷=_________.13.点()3,3A -关于y 轴对称的点1A 的坐标是______.14.若分式55y y --的值为0,则y =_______15.等腰三角形一腰上的高与另一腰的夹角为25 ,则顶角的度数为__________.16.在 ABC 中,D 、E 为AB 边上两点,把∠A 、∠1、∠2这三个角用“>”链接起来是_____.17.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了______米.18.如图,已知直角 ABC 和直角111A B C △,190C C ∠==∠︒,11AC A C =,若111ABC A B C ≌△△则需要添加的一个条件是_____.三、解答题19.计算:(3)(3)(3)(1)a a a a +-20.先化简,再求值:22113(1)4442a a a a a a --÷-+-++-,其中()()202122333a π--=⨯---⨯21.解方程:13124212x x x-=--22.某乡为了解决干旱问题,要在某河道处建一座水泵站,分别向河同一侧的张村A 和李村B 送水,经实地勘查后,工程人员设计图纸时,以河道上的大桥O 点为坐标原点,以河道所在的直线为x 轴建立直角坐标系,如图所示,两村的坐标分别为A(2,3),B(12,7).(1)若从节约经费的角度考虑,水泵站建在距离大桥O 点千米的C 点可使所用输水管最短.(2)水泵站建在距离大桥O千米点的D点,可使它到张村、李村的距离相等.(利用尺规作图请在图中分别标出点C、D的位置,再填空.不写做法,不用证明)23.玩具商店用500元购进一批悠悠球,很受小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价都是35元,那么全部售出后,该玩具商店可获得的利润是多少元?24.某农场计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?25.如图,点C在线段AB上,CF为线段DE的垂直平分线,AC=EB,AD=BC试探究AD 与EB的位置关系,并说明理由.26.如图,∠B=∠C=90°,点E为BC的中点,DE平分∠ADC,过点E作EF⊥AD,垂足为F,连结AE、BF.(1)求证:AE是∠DAB的平分线.(2)求证:线段AE垂直平分BF.∥27.如图,已知 ABC,∠ACB=90°,AC=BC,点D在BA延长线上,过点D作DN AC∥交CA的延长线于点M,O为线段AB的中点,交BC的延长线于点N,过点D作DM BC连接OM,ON.(1)求证:DM=CN.(2)判断 MON的形状,并说明理由.28.(1)如图1,在 ABC中,∠BAC=90°,AB=AC,AF是过点A的一条直线,且B,C在AF的同侧,BD⊥AF于D,CE⊥AF于E,则图中与线段AD相等的线段是.(2)如图2,∠ABC=90°,BA=BC,点A,B的坐标分别是(-2,0),(0,3),求点C的坐标.(3)在(2)的条件下,在坐标平面内是否存在一点P(不与点C重合),使 PAB与 ABC 全等?若存在,请直接写出点P的坐标;若不存在,请说明理由.参考答案1.B【分析】结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别计算,进而判断得出答案.同底数幂的乘法法则:底数不变,指数相加,am·an=am+n;同底数幂的除法法则:底数不变,指数相减,am÷an=am-n;幂的乘方:底数不变,指数相乘(am)n=amn;积的乘方:等于各因数分别乘方的积am·bm=(ab)m.【详解】解:A.m2•m4=m6,故选项错误,不符合题意;B.(-m)2•(-m)3=-m5,故选项错误,不符合题意;C.m6÷m2=m4(m≠0),故选项正确,符合题意;D.(4mn2)2=16m2n4,故选项错误,不符合题意;故选:C.【点睛】此题考查了同底数幂的乘除运算以及积的乘方运算,解题的关键是正确掌握相关运算法则.还要注意当n为奇数时(-a)n=-an;当n为偶数时(-a)n=an.3.C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000001=1×10-7.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.D【分析】完全平方式有两个:a2+2ab+b2和a2-2ab+b2,根据以上内容得出ax=±2•x•13,求出即可.【详解】解:∵x2+ax+169是一个完全平方式,∴ax=±2•x•13,解得:a=±26,故选:D.【点睛】本题考查了对完全平方公式的应用,能根据题意得出ax=±2•x•13是解此题的关键,注意:完全平方式有两个:a2+2ab+b2和a2-2ab+b2.5.B【分析】结合幂的乘方与积的乘方的概念和运算法则进行求解即可.【详解】解:A、(-3)2=9≠-9,本选项错误;B、(-3)-2=19,本选项正确;C、(a-12)2=a-24≠a14,本选项错误;D 、(-a -1b -3)-2=a 2b 6≠-a 2b 6,本选项错误.故选B .【点睛】本题考查了幂的乘方与积的乘方,解答本题的关键在于熟练掌握该知识点的概念和运算法则.6.C【分析】△ABC 的两边a 、b 之和是10,a 、b 之差是4.根据在三角形中任意两边之和>第三边,任意两边之差<第三边;即可求第三边长c 的范围,然后由c 的范围来作出选择.【详解】解:设三角形的两边长分别为a 、b ,第三边是c .则:a+b=10cm 、a-b=4cm ,∴4cm <c <10cm .故选:C .【点睛】本题考查了三角形三边关系的应用.此类求三角形第三边的范围的题,实际上就是根据三角形三边关系定理列出不等式,然后解不等式即可.7.D【分析】利用线段的垂直平分线的性质进行思考,首先思考满足PA=PB 的点的位置,然后思考满足PB=PC 的点的位置,答案可得.【详解】∵PA=PB ,∴P 在AB 的垂直平分线上,同理P 在AC ,BC 的垂直平分线上.∴点P 是△ABC 三边垂直平分线的交点.故选D .【点睛】本题考查的知识点为:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.注意做题时要分别进行思考.8.D【分析】根据作图过程及所作图形可知BD BC CD ==,得出△BCD 是等边三角形;又因为AB AC =,,BD CD AD AD ==,推出ABD ACD ≅△△,继而得出BAD CAD ∠=∠;根据,BAD CAD ∠=∠,可知AD 为BAC ∠的角平分线,根据三线合一得出AD 垂直平分BC ;四边形ABCD 的面积等于ABD △的面积与ACD 的面积之和,为12AD BC ⋅.【详解】解:∵BD BC CD ==∴△BCD 是等边三角形故选项B 正确;∵AB AC =,,BD CD AD AD==∴ABD ACD≅△△∴BAD CAD∠=∠故选项A 正确;∵BAD CAD ∠=∠,AB AC=∴据三线合一得出AD 垂直平分BC故选项C 正确;∵四边形ABCD 的面积等于ABD △的面积与ACD 的面积之和∴12ABCD S AD BC =⋅故选项D 错误.故选:D .【点睛】本题考查的知识点是等边三角形的判定、全等三角形的判定及性质、线段垂直平分线的判定以及四边形的面积,考查的范围较广,但难度不大.9.D【分析】根据翻转变换的性质、全等三角形的判定定理和性质定理解答.根据题意结合图形可以证明EB=ED ,进而根据HL 证明△ABE ≌△CDE ;此时可以判断选项A ,B ,C 正确,D 错误,问题即可解决.【详解】解:如图,由题意得:△BCD ≌△BFD ,∴DC=DF ,∠C=∠F=90°;∠CBD=∠FBD ;又∵四边形ABFD 为长方形,∴∠A=∠F=90°,DE ∥BF ,AB=DF ;∴∠EDB=∠FBD ,DC=AB ;∴∠EDB=∠CBD ,∴EB=ED ,∴△EBD 为等腰三角形;故B 选项正确;在Rt △ABE 与Rt △CDE 中,BE DE AB CD =⎧⎨=⎩,∴Rt △ABE ≌Rt △CDE (HL );故A 选项正确;折叠后∠ABE+2∠CBD=90°,∠ABE 和∠CBD 不一定相等(除非都是30°),故D 选项错误;∵Rt △ABE ≌Rt △CDE ,又∵△EBD 为等腰三角形,∴折叠后得到的图形是轴对称图形;故C 此选项正确;综上所述,错误的结论是D 选项,故选:D .【点睛】本题考查的是翻转变换的性质、直角三角形的性质,解题的关键是翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.10.B【分析】首先证明∠A=∠ABD=∠CBD=30°,再证明AB=2BC ,DA=DB ,,可得结论.【详解】解:∵BD 平分∠ABC ,∴∠ABD=∠CBD ,∵将△ABC 沿DE 所在直线折叠,则点A 恰好与点B 重合,∴∠A=∠ABD=∠CBD ,DA=DB ,∵DE ⊥AB ,∴AE=EB ,∴DE 垂直平分线段AB ,故①正确,∵∠C=90°,∴∠A+∠ABC=90°,∴3∠A=90°,∴∠A=30°,故②正确,∵∠CBD=30°,∠C=90°,∴,故③错误,∵∠C=90°,∠A=30°,∴AB=2BC ,∴BE=BC ,∵DC ⊥CB ,DE ⊥AB ,BD 平分∠ABC ,∴DC=DE ,∴△DEB 的周长=DE+BE+BD=CD+BC+AD=AC+BC ,故④正确.故选:B .【点睛】本题考查命题与定理,角平分线的性质定理,轴对称的性质,含30°角的直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.()23m n +【分析】提公因式法和应用公式法因式分解.【详解】解:()()222mn +6mn+9m=m n +6n+9=m n+3.故答案为:()23m n +12.32x y -【分析】根据整式的除法法则计算可得解.【详解】()22(1510)5x y xy xy -÷22155105x y xy xy xy=÷-÷32x y=-故答案是:32x y -.13.(3,3)【分析】平面直角坐标系中任意一点A(x,y),关于y轴的对称点是(−x,y),从而可得出答案.【详解】根据轴对称的性质,得点A(−3,3)关于y轴对称点的坐标A1(3,3).故答案是:(3,3).14.-5【分析】分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可.【详解】解:若分式y55y--的值等于0,则|y|-5=0,y=±5.又∵5-y≠0,y≠5,∴y=-5.若分式y55y--的值等于0,则y=-5.故答案为-5.15.115°或65°【分析】分两种情况:等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角,分别进行求解即可【详解】解:①如图1,当等腰三角形的顶角是钝角时,腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+25°=115°;②如图2,当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°-25°=65°.故答案为115°或65°【点睛】本题主要考查了等腰三角形的性质,注意此类题的两种情况,同时考查了:直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.16.∠2>∠1>∠A【分析】根据三角形外角的性质可求解.【详解】解:∵∠1是△ACE的外角,∴∠1>∠A ,∵∠2是△CDE 的外角,∴∠2>∠1,∴∠2>∠1>∠A .故答案为:∠2>∠1>∠A .【点睛】本题主要考查三角形外角的性质,掌握三角形的外角大于和它不相邻的任意一个内角是解题的关键.17.120【详解】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米,故答案为:120.18.11AB A B =或11BC B C =或1A A ∠=∠或1B B ∠=∠【分析】此题是一道开放型的题目,答案不唯一,只要符合两直角三角形全等的判定定理即可.【详解】解:添加的条件是∠A =∠A 1,理由是:在△ABC 和△A 1B 1C 1中,1111A A AC AC C C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABC ≌△A 1B 1C 1,(ASA ),故答案为:∠A =∠A 1(答案不唯一).【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS ,两直角三角形全等还有HL 等.19.2a-【分析】利用平方差公式和多项式乘多项式的运算法则计算乘法,然后去括号,合并同类项进行化简.【详解】原式=()22333a a a a ---+-=22323a a a ---+=2a-【点睛】本题考查二次根式的混合运算,理解二次根式的性质,掌握平方差公式(a+b )(a-b )=a 2-b 2是解题关键.20.12a -,411-【分析】先根据分式的混合运算顺序和运算法则化简原式,再利用幂的混合运算求得a 的值代入计算可得.【详解】22113(1)4442a a a a a a --÷-+-++-()()()2213222122a a a a a a a a +--⎛⎫=⨯-+ ⎪+----⎝⎭2122a a a a ++=---212a a a +--=-12a =-;()()202122333a π--=⨯---⨯2111943⎛⎫=⨯--⨯ ⎪⎝⎭114=-=34-,将34a =-代入12a -得1431124=---.【点睛】本题主要考查分式的化简求值以及幂的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.21.1x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:原方程可化为:13122121x x x -=---()方程的两边同乘()221x -得()2132x x --=-1x =检验:当1x =时,()2210x -≠,∴1x =是原方程的解.∴原分式方程的解为1x =.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(1)5(2)9,见解析【分析】(1)作A 点关于x 轴的对称点A′,连接A′B 与河道交于点C ,C 点即为所求点;(2)作线段AB 的垂直平分线与河道交于点D ,则D 点到两村的距离相等;(1)解:如图:作点A 关于x 轴的对称点A′,连结A′B ,交x 轴于C ,连结AC ,∵AC=A′C ,∴AC+BC=A′C+BC≥A′B ,设A′B 所在的直线为y=kx+b ,则直线过A′(2,-3),B (12,7)两点,∴32712k b k b-=+⎧⎨=+⎩,解得15k b =⎧⎨=-⎩,∴y=x-5,令y=0,则x=5(千米),故答案为:5;(2)解:如图,分别以点A 、B 为圆心,以AB 长为半径作弧交直线AB 两侧于M 、N 两点,连接MN 交x 轴于点D ,连接DA 、DB 则DA=DB ;设D 点坐标为(a ,0),由两点距离公式得:()()()()22222031207a a -++=-+-,()()()()22222031207a a -++=-+-,20a=180,a=9(千米),故答案为:9;【点睛】本题考查了轴对称图形的实际应用,一次函数的实际应用,平面坐标系上两点距离公式的应用,线段垂直平分线的作法和性质;掌握作图方法是解题关键.23.(1)25元(2)350元【分析】(1)设第一批悠悠球每套的进价是x 元,由题意:东东玩具商店用500元购进一批悠悠球,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.列出分式方程,解方程即可;(2)结合(1)的结果列式计算即可.(1)设第一批悠悠球每套的进价是x 元,由题意得:5009001.55x x ⨯=+,解得:x =25,经检验,x =25是分式方程的解,且符合题意,答:第一批悠悠球每套的进价是25元.(2)3550025⨯(1+1.5)﹣(500+900)=350,答:该玩具商店可获得350元的利润.24.(1)这项工程的规定时间是30天;(2)该工程的施工费用为180000元.【分析】(1)设这项工程的规定时间是x 天,根据甲、乙队先合做15天,余下的工程由甲队单独需要10天完成,可得出方程解答即可;(2)先计算甲、乙合作需要的时间,然后计算费用即可.(1)解:设这项工程的规定时间是x 天,根据题意得:115()1511.5x x x+⨯+=,解得x=30,经检验x=30是方程的解,答:这项工程的规定时间是30天;(2)解:该工程由甲、乙合做完成,所需时间为:111()1830 1.530÷+=⨯,则该工程的施工费用是:18×(6500+3500)=180000(元),答:该工程的施工费用为180000元.25.AD EB ∥,见解析【分析】由线段垂直平分线的性质得出CD=CE ,证明△ADC ≌△BCE (SSS ),由全等三角形的性质得出∠A=∠B ,则可得出结论.【详解】解:AD EB ∥,理由如下:证明:∵CF 为线段DE 的垂直平分线,∴CD =CE ,在△ADC 和△BCE 中,CD CE AC EB AD BC =⎧⎪=⎨⎪=⎩∴△ADD ≌△BCE∴∠A =∠B ,∴AD EB ∥.【点睛】本题考查了平行线的判定,线段垂直平分线的性质,全等三角形的判定与性质,解题的关键是证明△ADC ≌△BCE .26.(1)见解析(2)见解析【分析】(1)证出EF=EB ,由角平分线的性质得出结论;(2)证明Rt △ABE ≌Rt △AFE (HL ),由全等三角形的性质得出AB=AF ,由等腰三角形的性质可得出结论.(1)证明:∵∠C=90°,∴CE ⊥DC ,又∵EF ⊥AD ,DE 平分∠ADC ,∴EF=CE ,又∵点E 为BC 的中点,∴EB=CE ,∴EF=EB ,∵∠B=90°,∴EB ⊥AB ,又∵EF ⊥AD ,∴AE 是∠DAB 的平分线;(2)证明:在Rt △ABE 和Rt △AFE 中,EF EB AE AE=⎧⎨=⎩∴△ABE ≌△AFE∴AB =AF△ABF 为等腰三角形又∵AE 是∠DAB 的平分线,∴线段AE 垂直平分BF【点睛】本题考查了角平分线的性质,等腰三角形的性质,全等三角形的判定与性质,解题的关键是证明△ABE≌△AFE.27.(1)见解析(2)等腰直角三角形,见解析【分析】(1)证明△DNM≌△CMN(ASA),由全等三角形的性质得出DM=CN;(2)连接OC,证明△NCO≌△MAO(SAS),由全等三角形的性质得出OM=ON,∠NOC=∠MOA,则可得出结论.(1)证明:∵DN//AC,∴∠DNM=∠NMC,∵DM//BC,∴∠DMN=∠CNM,∵MN=MN,∴△DNM≌△CMN(ASA),∴DM=CN;(2)△MON为等腰直角三角形.证明:连接OC,∵∠ACB=90°,AC=BC,∴∠CAB=45°,∵DN//AC,∴∠NDB=∠CAB=45°,∵△DNM≌△CMN,∠ACB=90°,∴∠NDM=∠NCM=90°,∵∠ADM=∠DAM=∠CAB=45°,∴DM=AM=CN ,∵∠ACB=90°,AC=BC ,O 为线段AB 的中点,∴∠BCO=45°,OC ⊥AB ,OA=OC=OB ,∴∠NCO=∠MAO=180°-45°=135°,在△NCO 和△MAO 中,AM CN NCO MAO OA OC ⎧⎪∠∠⎨⎪⎩===,∴△NCO ≌△MAO (SAS ),∴OM=ON ,∠NOC=∠MOA ,∴∠MON=∠MOA+∠NOA=∠NOC+∠NOA=90°.∴△OMN 为等腰直角三角形.【点睛】本题考查了平行线的性质,等腰三角形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,证明△DNM ≌△CMN 是解题的关键.28.(1)CE ;(2)()3,5C -;(3)存在,()15,2P -,()21,2P -,()33,1P 【分析】(1)证明△ADB ≌△CEA 即可得AD=CE ,从而得到答案;(2)过C 作CD ⊥y 轴于D ,证明△AOB ≌△BDC 即得CD=OB=3,BD=OA=2,故C (-3,5);(3)①当△ABC ≌ABP 时,过P 作PE ⊥y 轴于E ,证明△CDB ≌△PEB (AAS )得PE=CD=3,BE=BD=2,即得P (3,1),②当△ABC ≌△BAP 时,过P 作x 轴平行线,过A 作y 轴平行线交于F ,证明△CDB ≌△PFA (AAS ),得AF=BD=2,PF=CD=3,故P (1,-2),③当△ABC ≌△APC 时,过P 作PH ⊥x 轴于H ,证明△PHA ≌△BDC (AAS ),得PH=BD=2,AH=CD=3,故P (-5,2).【详解】(1)∵∠BAC=90°,BD ⊥AE 于D ,CE ⊥AE ,∴∠DAB=90°-∠EAC=∠ACE ,∠ADB=∠AEC=90°,∵AB=AC ,∴△ADB ≌△CEA (AAS ),∴AD=CE ,故答案为:CE ;(2)过C 作CD ⊥y 轴于D ,如图:∵∠ABC=90°,∴∠CBD=90°-∠ABO=∠BAO,∵∠CDB=∠BOA=90°,AB=BC,∴△AOB≌△BDC(AAS),∴CD=OB=3,BD=OA=2,∴OD=OB+BD=5,∴C(-3,5);(3)存在,①当△ABC≌ABP时,过P作PE⊥y轴于E,如图:∵△ABC≌ABP,∴BC=BP,∠ABC=∠ABP=90°,∴∠ABC+∠ABP=180°,∴C、B、P共线,∴∠CBD=∠EBP,又∠CDB=∠PEB=90°,∴△CDB≌△PEB(AAS),∴PE=CD=3,BE=BD=2,∴OE=OB-BE=1,∴P(3,1),②当△ABC≌△BAP时,过P作x轴平行线,过A作y轴平行线交于F,如图:∵△ABC≌△BAP,∴∠ABC=∠BAP=90°,BC=AP,∴BC∥AP,∴∠DBC=∠BGA=∠FAP,∵∠CDB=∠PFA=90°,∴△CDB≌△PFA(AAS),∴AF=BD=2,PF=CD=3,∴P(1,-2),③当△ABC≌△APC时,过P作PH⊥x轴于H,如图:∵△ABC≌△APC,∴AB=AP,∠BAC=∠PAC=45°,∴∠PAB=90°,∴∠PAH=90°-∠BAO=∠ABO=90°-∠CBD=∠BCD,∵AB=BC,∴BC=AP,而∠PHA=∠CDB=90°,∴△PHA≌△BDC(AAS),∴PH=BD=2,AH=CD=3,∴P(-5,2),综上所述,P的坐标为:(3,1)或(1,−2)或(−5,2).。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中有且只有一条对称轴的是()A .B .C .D .2.如果分式62x -有意义,那么x 满足()A .2x =B .2x ≠C .0x =D .0x ≠3.下列各式不能用平方差公式计算的是()A .(2a -3b )(3a +2b )B .(4a 2-3bc )(4a 2+3bc )C .(3a +2b )(2b -3a )D .(3m +5)(5-3m )4.从正多边形的一个顶点可以引出5条对角线,则这个正多边形每个外角的度数为()A .135°B .45°C .60°D .120°5.如图,在△ABC 中,F 是高AD 和BE 的交点,BC =6,CD =2,AD =BD ,则线段AF 的长度为()A .2B .1C .4D .36.如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为()A .1B .2C .3D .47.如图,在△ABC 中,D 是CA 延长线上一点,∠B=40°,∠BAD=76°,则∠C 的度数为()A .36︒B .116︒C .26︒D .104︒8.已知:如图,在△ABC 中,边AB 的垂直平分线分别交BC 、AB 于点G 、D ,若△AGC 的周长为31cm ,AB=20cm ,则△ABC 的周长为()A .31cmB .41cmC .51cmD .61cm二、填空题9.数据0.00000008m ,用科学记数法表示为______________m10.若代数式02(2)(2)m m -++-有意义,则m 的取值范围是___________.11.因式分解:22123xy -=__________.12.若23x =,25y =,则2x y +=_____.13.如图,在△ABC 中,点E 、F 分别是AB 、AC 边上的点,EF ∥BC ,点D 在BC 边上,连接DE 、DF 请你添加一个条件___________________,使△BED ≌△FDE14.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是__________.15.如图,在Rt △ABC 中,∠C=90°,∠B=30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD=3,则BC 的长为___________16.当x_________时,分式235x -有意义.17.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为___.18.如图,过边长为1的等边ABC ∆的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交AC 边于D ,则DE 的长为______.三、解答题19.解方程:1x -53x +=020.先化简,再求值:()()2(23)22x y x y x y +-+-,其中13x =,12y =-.21.如图,在平面直角坐标系中(1)请在图中作出△ABC 关于直线m 的轴对称图形△A 1B 1C 1(2)坐标系中有一点M(-3,3),点M 关于直线m 的对称点为点N ,点N 关于直线n 的对称点为点E ,写出点N 的坐标;点E 的坐标.22.已知:如图,点E 、A 、C 在同一直线上,AB ∥CD ,AB =CE ,AC =CD求证:∠B =∠E23.如图,BD是△ABC的角平分线,AE丄BD交BD的'延长线于点E,∠ABC=72°,∠C:∠ADB=2:3,求∠BAC和∠DAE的度数.24.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB(1)若∠ABC=65°,则∠NMA的度数为(2)若AB=10cm,△MBC的周长是18cm①求BC的长度②若点P为直线MN上一点,则△PBC周长的最小值为cm25.问题:分解因式(a+b)2-2(a+b)+1答:将“a+b”看成整体,设M=a+b,原式=M2-2M+1=(M-1)2,将M还原,得原式=(a+b-1)2上述解题用到的是“整体思想”,这是数学解题中常用的一种思想方法.请你仿照上面的方法解答下列问题:(1)因式分解:(2a+b)2-9a2=(2)求证:(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方(n 为正整数)26.如图,△ABC 是等边三角形,D 是边AC 的中点,EC ⊥BC 与点C ,连接BD 、DE 、AE 且CE=BD ,求证:△ADE 为等边三角形27.水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)28.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE ,我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.参考答案1.D【分析】根据轴对称图形的概念求解,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,故此选项不合题意;B.有4条对称轴,故此选项不合题意;C.有3条对称轴,故此选项不合题意;D.有1条对称轴,故此选项符合题意.故选:D.2.B【分析】根据分式有意义的条件:分母不为零,得到不等式解不等式即可.【详解】要使分式62x-有意义,则x-2≠0,得到2x≠,故选B3.A【分析】利用平方差公式的结构特征判断即可.【详解】解:A.(2a-3b)(3a+2b)不符合平方差公式的特点,故不能用平方差公式计算;B.(4a2-3bc)(4a2+3bc)=16a4-9b2c2,故能用平方差公式计算;C.(3a+2b)(2b-3a)=4b2-9a2,故能用平方差公式计算;D.(3m+5)(5-3m)=25-9m2,故能用平方差公式计算;故选:A.4.B【分析】先由n边形从一个顶点出发可引出(n-3)条对角线,可求出多边形的边数,再根据正多边形的每个外角相等且外角和为360°.【详解】解:∵经过多边形的一个顶点有5条对角线,∴这个多边形有5+3=8条边,∴此正多边形的每个外角度数为360°÷8=45°,故选B5.A【分析】先求BD,AD的长,再证△BFD≌△ADC,即可得到FD的长,即可求解.【详解】∵BC=6,CD=2,∴BD=BC-CD =6-2=4,∴AD =BD=4∵AD 和BE 是三角形的高∴∠ADB=∠ADC=∠BEC=90°∴∠DAC+∠C=90°,∠EBC+∠C=90°∴∠DAC=∠EBC在△BFD 和△ADC 中DAC EBC BD AD ADB ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BFD ≌△ADC (ASA )∴FD=DC=2∴AF=AD-FD=2故选A6.B【分析】根据题意点Q 是射线OM 上的一个动点,要求PQ 的最小值,需要找出满足题意的点Q ,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P 作PQ 垂直OM ,此时的PQ 最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ ,利用已知的PA 的值即可求出PQ 的最小值.【详解】解:过点P 作PQ ⊥OM ,垂足为Q ,则PQ 为最短距离,∵OP 平分∠MON ,PA ⊥ON ,PQ ⊥OM ,∴PA=PQ=2,故选:B .7.A【详解】解:∵∠BAD 是△ABC 的一个外角,∴∠BAD=∠B+∠C ,∴∠C=∠BAD-∠B=76°-40°=36°.故选A.8.C【分析】已知△AGC 的周长,因为GB 等于AG ,所以△ABC 的周长等于AC+CG+GB+AB ,即等于△AGC 的周长+AB.【详解】∵DG 是AB 边的垂直平分线,∴GA=GB ,△AGC 的周长=AG+AC+CG=AC+BC=31cm ,又AB=20cm ,∴△ABC 的周长=AC+BC+AB=51cm ,故选C.【点睛】本题考查线段的垂直平分线的性质.把求△ABC 的周长进行转化是解题的关键.9.8810-⨯【分析】将原数写成10n a ⨯的形式,a 是大于等于1小于10的数.【详解】解:80.00000008810-=⨯.故答案是:8810-⨯.【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的表示方法.10.2m ≠±【分析】根据零指数幂的法则和负整数指数幂的法则可得关于m 的不等式组,解不等式组即可得出答案.【详解】解:根据题意,得:20m +≠且20m -≠,解得:2m ≠±.故答案为2m ≠±.【点睛】本题考查了零指数幂和负整数指数幂的知识,属于基础题型,熟知运用零指数幂和负整数指数幂的运算法则进行计算的前提条件是解此题的关键.11.3(2x+y)(2x-y)【分析】先提取公因式,然后根据平方差公式因式分解即可.【详解】解:原式=3(4x 2-y 2)=3(2x+y )(2x-y ).【点睛】因式分解是本题的考点,熟练掌握因式分解的方法是解题的关键,本题用到了提取公因式法和公式法.12.15【分析】由23x=,25y =,根据同底数幂的乘法可得222x y x y +=⋅,继而可求得答案.【详解】∵23x=,25y =,∴2223515x y x y +=⋅=⨯=,故答案为15.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.本题中要注意掌握公式的逆运算.13.BD=FE (答案不唯一);【分析】根据平行四边形的判定和性质、全等三角形的判定定理即可解答.【详解】当BD=FE 时,△BED ≌△FDE ,∵EF ∥BC ,当BD=FE 时,∴四边形BEFD 是平行四边形,∴∠B =∠DFE ,BE =FD∵BD =FE∴△BED ≌△FDE ,故答案为:BD =FE .【点睛】本题考查了全等三角形的判定,利用了平行四边形的判定及其性质,全等三角形的判定,利用平行四边形的性质得出三角形全等的条件是解题关键.14.110°或70°【详解】解:分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.15.9【详解】∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=∠DAE+∠B=60°,∴∠CAD=30°,∴AD=2DC=6,即BD=6,∴BC=9.【点睛】本题主要考查的知识点有线段垂直平分线的性质、直角三角形30°角所对的直角边等于斜边的一半的性质,熟练运用各性质是解题的关键.16.5 3≠【分析】根据分母不等于0列式求解即可.【详解】由题意得3x-5≠0,x5 3≠.故答案为5 3≠.【点睛】本题考查了分式有意义的条件,熟知分母不为零时分式有意义是解答本题的关键.17.5000x=8000600+x【分析】设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【详解】解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,由题意得:5000x=8000600+x.故答案是:5000x =8000600+x .【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.18.12【分析】过P 作PF ∥BC 交AC 于F ,得出等边三角形APF ,推出AP=PF=QC ,根据等腰三角形性质求出EF=AE ,证△PFD ≌△QCD ,推出FD=CD ,推出DE=12AC 即可.【详解】解:过P 作PF ∥BC 交AC 于F,∵PF ∥BC ,△ABC 是等边三角形,∴∠PFD=∠QCD ,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,∴△APF 是等边三角形,∴AP=PF=AF ,∵PE ⊥AC ,∴AE=EF ,∵AP=PF ,AP=CQ ,∴PF=CQ ,在△PFD 和△QCD 中PFD QCDPDF CDQ PF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFD ≌△QCD ,∴FD=CD ,∵AE=EF ,∴EF+FD=AE+CD ,∴AE+CD=DE=12AC ,∵AC=1,∴DE=12;故答案为:12.【点睛】本题综合考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.19.x=34【分析】方程两边同乘以x(x+3),得到整式方程,解整式方程,把得到的根代入最简公分母检验即可.【详解】解:x +3-5x=04x=3x=34检验:当x=34时,x (x+3)≠0,故x=34是原方程的根.【点睛】本题考查的是分式方程的解法,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.20.21210xy y +,12【分析】先利用完全平方公式与平方差公式计算乘法,再合并同类项,最后代入计算即可.【详解】()()2(23)22x y x y x y +-+-()222241294x xy y x y =++--22222412941210x xy y x y xy y =++-+=+,当13x =,12y =-时,原式21111210322⎛⎫⎛⎫=⨯⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭522=-+12=.【点睛】本题主要考查了整式的混合运算,涉及了完全平方公式,平方差公式,解题的关键是熟练掌握整式混合运算的运算顺序和运算法则.21.(1)见解析;(2)(1,3),(1,1).【分析】(1)利用网格结构分别找出点A 、B 、C 关于直线m 的对称点,然后顺次连接即可.(2)利用网格结构找出点M 关于直线m 的对称点N ,再找出点N 关于直线n 的对称点E ,写出其坐标即可.【详解】(1)如图即为ABC 关于直线m 的轴对称图形111A B C △.(2)如图,即可知点M 关于直线m 的对称点N 的坐标是(1,3);点N 关于直线n 的对称点E 的坐标是(1,1).故答案为:(1,3);(1,1).【点睛】本题考查画轴对称图形和轴对称-坐标的变化.了解轴对称的性质是解答本题的关键.22.见解析【分析】根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应角相等即可求证结论.【详解】证明:∵AB ∥CD∴∠BAC=∠ECD∵在△ABC 和△CED 中,AB CE BAC ECD AC CD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CED (SAS )∴∠B=∠E【点睛】本题考查了平行线的性质,全等三角形的判定和性质,解题的关键是证明△ABC ≌△CED .23.∠BAC =36°,∠DAE=18°.【分析】先根据BD 是△ABC 的角平分线,∠ABC =72°求出∠EBC=36°,由∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,根据在△BCD 中的外角定理列出方程即可求解x,再根据等腰三角形的及垂直的性质求解.【详解】∵BD 是△ABC 的角平分线,∠ABC =72°∴∠EBC=36°,∵∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,在△BCD 中∠ADB=∠EBC+∠C即3x=36°+2x解得x=36°,∴∠C=72°,∠ADB=108°,故∠BAC=180°-∠C-∠ABC=36°,在△DAE 中,AE 丄BD∴∠DAE=∠ADB-90°=18°.【点睛】此题主要考查角度的求解,解题的关键是熟知三角形的外角定理.24.(1)40°;(2)①8cm ;②18【分析】(1)先根据等腰三角形的性质求出∠A=50°,根据垂直平分线的定义得到∠ANM =90°,然后根据直角三角形两锐角互余求解即可;(2)①根据垂直平分线的性质得AM=BM ,△MBC 的周长是18cm ,AC=AB=10cm ,即可求BC 的长度;②当点P 与点M 重合时,△PBC 周长的最小,即为△MBC 的周长.【详解】解:(1)∵AB=AC ,∴∠ABC=∠C∵∠ABC=65°,∴∠C=65°,∴∠A=50°,∵MN 是AB 的垂直平分线,∴∠ANM =90°,∴∠NMA=90°-50°=40°;(2)①∵MN 是线段AB 的垂直平分线,∴AM=MB .∵△MBC 的周长是18cm ,AB=10cm ,∴BM+MC+BC=AM+MC+BC=AC+BC=AB+BC=18cm ,∴BC=18-AB=18-10=8cm ;②∵MN 是线段AB 的垂直平分线,∴点A 和点B 关于直线MN 对称,∴当点P 与点M 重合时,△PBC 周长的值最小,∴△PBC 的周长的最小值为18cm .【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,轴对称-最短路线问题,解决本题的关键是掌握线段垂直平分线的性质和等腰三角形的性质.25.(1)()()5+a b b a -;(2)见解析【分析】(1)根据平方差公式分解因式即可求解;(2)先根据多项式乘以多项式进行计算,再根据完全平方公式分解即可求解.【详解】解:(1)原式()()22=2+3a b a -()()=2+32+3a b a a b a +-()()=5+a b b a -证明(2)(n+1)(n+2)(n 2+3n )+1=(n 2+3n+2)(n 2+3n )+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n+1)2故当n 为正整数时,(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方【点睛】本题考查因式分解,解题的关键是熟练掌握平方差公式、完全平方公式的应用.26.证明见解析【分析】利用△ABC 是等边三角形,D 为边AC 的中点,求得∠ADB=90°,再用SAS 证明△CBD ≌△ACE ,推出AE=CD=AD ,∠AEC=∠BDC=90°,根据直角三角形斜边上中线性质求出DE=AD ,即可证明.【详解】证明:∵△ABC 是等边三角形,D 是边AC 的中点,∴AD=DC ,BC=CA ,BD ⊥AC ,∴∠BDC=90°,即∠DBC+∠DCB=90°,∵EC ⊥BC ,∴∠BCE=90°,即∠ACE+∠BCD=90°,∴∠ACE=∠DBC ,在△CBD 和△ACE 中,BC CA DBC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩∴△CBD ≅△ACE (SAS )∴CD=AE ,∴∠AEC=∠CDB=90°∵D 为AC 的中点∴AD=DE ,AD=DC ,∴AD=AE=DE ,即△ADE 为等边三角形.【点睛】本题主要考查等边三角形的性质和判定,全等三角形的性质和判定,直角三角形斜边上的中线等.解答此题的关键是先证明△CBD ≌△ACE ,然后再利用三边相等证明此三角形是等边三角形.27.(1)进价为180元;(2)至少打6折.【分析】(1)根据题意,列出等式24003370025x x ⨯=+,解等式,再验证即可得到答案;(2)设剩余的仙桃每件售价打y 折,由题意得到不等式,再解不等式,即可得到答案.【详解】解:(1)设第一批仙桃每件进价x 元,则24003370025x x ⨯=+,解得180x =.经检验,180x =是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y 折.则:3700370022580%225(180%)0.1370044018051805y ⨯⨯+⨯⨯-⨯-≥++,解得6y ≥.答:剩余的仙桃每件售价至少打6折.【点睛】本题考查分式方程的应用和一元一次不等式的应用,解题的关键是熟练掌握分式方程的应用和一元一次不等式的应用.28.(1)见解析;(2)A(32,52)或(52,-32).【分析】(1)过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N .根据“K 字模型”即可证明AH=DM 和AH=EN ,即EN=DM ,再根据全等三角形的判定和性质即可证明DG=EG ,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1.在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理△ACH ≅△EAN (AAS ),∴AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅ ,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=,解得32x =,∴32AC =,35122DE =+=.即点A 坐标为(32,52).②当A点在OB的下方时,如图,作AP垂直于y轴,BM垂直于x轴,PA和BM的延长线交于点Q.根据①同理可得:52AP=,32MQ=.即点A坐标为(52,32-).。

新人教版八年级数学上册期末试题

新人教版八年级数学上册期末试题

新人教版八年级数学上册期末试题校6公里,私家车的速度是每小时50公里,公交车的速度是每小时30公里,问XXX家乘坐私家车上学需要多少时间?解答:私家车比公交车快15分钟,换算成小时就是0.25小时。

距离为6公里,私家车速度为每小时50公里,所需时间为6÷50=0.12小时。

因此,XXX家乘坐私家车上学需要的总时间为0.12-0.25=-0.13小时,即7.8分钟。

但是,时间不能为负数,因此XXX家只能选择乘坐公交车上学。

校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍。

设乘公交车平均每小时走x千米,则乘私家车每小时走2.5x千米。

根据题意可列方程为:8/x = 8/(2.5x),解得x=3.2.所以乘公交车平均每小时走3.2千米,乘私家车平均每小时走8/3.2=2.5千米。

1.x≠1.x≠22.x(x-4)(x-1)3.k=-2或k=34.AB=EF5.1cm6.60°7.1/38.1/49.6/521.先化简,再求值:(112m,其中m=9.+)÷(2m-3m+3m-6m+9) = (112m / 9) ÷ (2m - 6) = (16m / 3) ÷ (m - 3) = 16 / 3 + 16 / (3(m - 3))22.(1) x(x+1)(x-1) (2) (m²-9n²)(m²+9n²)23.x=1或x=-124.(1) 因为∠A和∠B都是直角,所以AD=AB=CE;(2) AD和CE垂直,因为AD和BC互为垂直平分线,CE和AB 互为垂直平分线。

25.作AO和BO的平分线,交于点O。

作OM和ON垂直于AO和BO。

则点P在MN上,且OP垂直于AB,OP=OM=ON。

B。

(1) 甲队完成工程所需时间为20天。

(2) 甲队和乙队合做完成工程所需费用为20×(6500+3500) = 元。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中,不是..轴对称图形的是()A .B .C .D .2.要使分式12x x +-有意义,则x 的取值应满足()A .2x ≠B .1x ≠-C .2x =D .1x =-3.点M (3,2)关于y 轴的对称点的坐标为()A .(﹣3,2)B .(3,﹣2)C .(﹣3,﹣2)D .(1,2)4.12020-的值是()A .2020-B .12020-C .12020D .15.用科学记数法表示0.0000098是()A .0.98×10﹣5B .9.8×106C .9.8×10﹣5D .9.8×10﹣66.下列设计的原理不是利用三角形的稳定性的是()A .由四边形组成的伸缩门B .自行车的三角形车架C .斜钉一根木条的长方形窗框D .照相机的三脚架7.如图,ABC 中,36A ∠=︒,AB AC =,BD 平分ABC ∠交AC 于点D ,则图中的等腰三角形共有()个.A .2B .3C .4D .58.下列计算正确的是()A .()22224a b a b -=-B .()222224a b a ab b -=-+C .()()2571235x x x x +-=--D .()232324612x x x x x --=-+9.如图,AC ,BD 相交于点O ,OA=OC ,要使△AOB ≌△COD ,则下列添加的条件中错误的是()A .∠A =∠CB .∠B =∠DC .OB =OD D .AB =CD10.如图所示,OP 平分∠AOB ,PA ⊥OA 于点A ,PB ⊥OB 于点B .下列结论中,不一定成立的是()A .PA=PBB .PO 平分∠APBC .OA=OBD .AB 垂直平分OP二、填空题11.当x_____时,分式25x x -有意义.12.因式分解:22ax ax a -+=_________.13.某个等腰三角形的一个角为50°,则它的底角为______.14.(9a 2﹣6ab )÷3a =_____.15.若一条长为24cm 的细线能围成一边长等于9cm 的等腰三角形,则该等腰三角形的腰长为_____cm .16.若x-y=3,xy=2,则x 2+y 2=_____.17.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.18.如图,M 为∠AOB 内一定点,E 、F 分别是射线OA 、OB 上一点,当 MEF 周长最小时,若∠OME =40°,则∠AOB =_____.三、解答题19.计算:(a+b )(a-b )-(a-2b )220.如图,在ABC 中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.21.如图,AB ⊥CB ,DC ⊥CB ,E 、F 在BC 上,∠A=∠D ,BE=CF ,求证:AF=DE .22.如图,在平面直角坐标系中,A (-1,5),B (-1,0),C (-4,3).(1)作出△ABC 关于y 轴的对称图形△A'B'C';(2)写出点A',B',C'的坐标;(3)在y 轴上找一点P ,使PA+PC 的长最短.23.先化简,再求值:(32)2xx x -++,其中32x =-.24.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y )2+2(x+y )+1.解:将“x+y”看成整体,令x+y=A ,则原式=A 2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请解答下列问题:(1)因式分解:1+2(2x-3y )+(2x-3y )2.(2)因式分解:(a+b )(a+b-4)+4;25.如图,△ABD ,△AEC 都是等边三角形,连接CD ,BE 交于点F .求证:(1)∠BFC =120°;(2)FA 平分∠DFE .26.如图,在 ABC 是等腰直角三角形,∠ACB=90°,点D 、E 分别是 ABC 内的点,且EA=EB ,BD=AC ,BE 平分∠DBC .(1)求证: DBE ≌ CBE ;(2)求证:∠BDE=45°.27.数学课上,我们知道可以用图形的面积来解释一些代数恒等式,如图1可以解释完全平方公式:()2222a b a ab b +=++.(1)如图2(图中各小长方形大小均相等),请用两种不同的方法求图2中阴影部分的面积(不化简):方法1:S =阴影_________________;方法2∶S =阴影_________________.(2)由(1)中两种不同的方法,你能得到怎样的等式?(3)①已知()216+=m n ,3mn =,请利用(2)中的等式,求m n -的值.②已知()2213m n +=,()225m n -=,请利用(2)中的等式,求mn 的值.参考答案1.C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A 、B 、D 选项中的图形都能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;C 选项中的图形不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;故选:C .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.【分析】根据分式有意义的条件即可求出答案.【详解】解:∵12x x +-在实数范围内有意义,∴-20x ≠.∴2x ≠故选A .【点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.3.A【分析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】解:点(3,2)关于y 轴的对称点的坐标是(-3,2).故选:A .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.4.C【分析】根据负整数指数幂的计算公式解答.【详解】12020-的值是12020,故选:C .【点睛】此题考查负整数指数幂计算公式,熟记公式是解题的关键.5.D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:用科学记数法表示0.0000098是9.8×10-6.故选:D .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.【分析】利用三角形的稳定性进行解答.【详解】解:由四边形组成的伸缩门是利用了四边形的不稳定性,故A 不是利用三角形的稳定性;B 、C 、D 都是利用三角形的稳定性;故选:A .【点睛】此题主要考查了三角形的稳定性,当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.7.B【分析】由已知条件,利用三角形的内角和定理及角平分线的性质得到各角的度数,根据等腰三角形的定义及等角对等边得出答案.【详解】解:∵AB AC =,∴ABC 是等腰三角形,∵36A ∠=︒,∴72C ABC ∠=∠=︒,∵BD 平分ABC ∠交AC 于D ,∴36ABD DBC ∠=∠=︒,∴36A ABD ∠=∠=︒,∴ABD △是等腰三角形.∵363672BDC A ABD C ∠=∠+∠=︒+︒=︒=∠,∴BDC 是等腰三角形.∴共有3个等腰三角形.故选B .【点睛】本题考查了等腰三角形的判定与性质及三角形内角和定理,解题的关键是正确求得各角的度数.8.D【分析】分别依据完全平方公式和多项式乘多项式法则、单项式乘多项式法则计算即可.【详解】解:A .(a-2b )2=a 2-4ab+4b 2,此选项不符合题意;B .(a-2b )2=a 2-4ab+4b 2,此选项不符合题意;C .(x+5)(x-7)=x 2-2x-35,此选项不符合题意;D.-3x(2x2-4x)=-6x3+12x2,此选项符合题意;故选D.【点睛】本题考查完全平方公式和多项式乘多项式,解题的关键是熟练掌握完全平方公式和多项式乘多项式法则.9.D【分析】根据全等三角形的判定定理依次分析判断即可.【详解】∵∠AOB=∠COD,OB=OD,∴当添加∠A=∠C时,可根据“AAS”判断△AOB≌△COD;当添加∠B=∠D时,可根据“ASA”判断△AOB≌△COD;当添加OB=OD时,可根据“SAS”判断△AOB≌△COD.如果添加AB=CD,则根据“SSA”不能判定△AOB≌△COD.故选:D.【点睛】此题考查了全等三角形的判定定理,熟记全等三角形的判定定理并应用是解题的关键.10.D【分析】根据角平分线上的点到角的两边距离相等可得PA=PB,再利用“AAS”证明△AOP 和△BOP全等,根据全等三角形对应角相等可得∠AOP=∠BOP,全等三角形对应边相等可得OA=OB.【详解】解:∵OP平分∠AOB,PA⊥OA,PB⊥OB,∴PA=PB,故A选项正确;∵∠PAO=∠PBO=90°,∠POA=∠POB,OP=OP,∴△AOP≌△BOP(AAS),∴∠APO=∠BPO,OA=OB,故B,C选项正确;∵OA=OB,∴∠OBA=∠OAB,由等腰三角形三线合一的性质,OP垂直平分AB,AB不一定垂直平分OP,故D选项错误;即不一定成立的是选项D,故选:D.11.≠5【详解】解:由分式有意义的条件可知:x-5≠0,∴x≠5,故答案为:≠5.12.()21a x -【详解】解:22ax ax a-+=()221a x x -+=()21a x -,故答案为:()21a x -.13.50°或65°【详解】解:当底角为50°时,根据等腰三角形两个底角相等,∴等腰三角形的另一个底角为50°;当顶角为50°时,根据等腰三角形两个底角相等,∴等腰三角形的底角为180501306522︒-︒︒==︒,故答案为:50°或65°.14.3a-2b【详解】解:(9a 2-6ab )÷3a=9a 2÷3a-6ab÷3a=3a-2b .故答案为:3a-2b15.9或7.5【详解】解:若9cm 为底时,腰长应该是12(24-9)=7.5cm ,故三角形的三边分别为7.5cm 、7.5cm 、9cm ,∵7.5+7.5=15>9,故能围成等腰三角形;若9cm 为腰时,底边长应该是24-9×2=6,故三角形的三边为9cm 、9cm 、6cm ,∵6+9=15>9,∴以9cm 、9cm 、6cm 为三边能围成三角形,综上所述,腰长是9cm 或7.5cm ,故答案为:9或7.5.16.13【详解】解:因为x-y=3,xy=2,则x 2+y 2=(x-y)2+2xy=9+4=13,故答案为:13.17.360︒【详解】∵//AE BC ,∴180A B ∠+∠=︒,∵五边形内角和=5218540(0)-⨯︒=︒,∴C D E ∠+∠+∠=540180︒-︒=360︒,故答案为:360︒.18.50°【详解】分别作M 关于,OA OB 的对称点12,M M ,连接12,OM OM ,当,E F 分别为12M M 与,OA OB 的交点时, MEF 周长最小,连接12,M M ,∴1OM OM =,2OM OM =,12OM OM ∴=,2112OM M OM M ∴∠=∠,对称,112,M OA MOA M OB M OB ∴∠=∠∠=∠,1212AOB M OM ∴∠=∠,∠OME =40°,140OM E ∴∠=︒,121221180100M OM OM M OM M ∴∠=︒-∠-∠=︒,50AOB ∴∠=︒.故答案为:50°19.4ab-5b 2.【详解】解:原式=a 2-b 2-(a 2-4ab+4b 2)=a 2-b 2-a 2+4ab-4b 2=4ab-5b 2.故答案为4ab-5b 2.20.∠B =77°,∠C =38.5︒【详解】解:∵AB =AD ,26BAD ∠=︒∴∠B =∠ADB =12×(180°﹣26°)=77°,∵AD =DC ,∴∠C=∠DAC ,∴∠C =12∠ADB =12×77°=38.5︒.21.【详解】证明:∵AB ⊥CB ,DC ⊥CB ,∴∠B=∠C=90°,∵BE=CF ,∴BF=CE ,且∠A=∠D ,∠B=∠C=90°,∴△ABF ≌△DCE (AAS ),∴AF=DE ,22.(1)见解析;(2)A′(1,5),B′(1,0),C′(4,3);(3)见解析【分析】(1)分别作出点A 、B 、C 关于y 轴的对称点,再收尾顺次连接即可得;(2)根据△A'B'C'各顶点的位置,写出其坐标即可;(3)连接PC ,则PC=PC′,根据两点之间线段最短,可得PA+PC 的值最小.【详解】解:(1)如图所示,△A′B′C′为所求作;(2)由图可得,A′(1,5),B′(1,0),C′(4,3);(3)如图所示,连接AC′,交y轴于点P,则点P即为所求作.23.26x+,3【分析】根据整式与分式的加减计算括号内的,进而根据分式的性质化简,再将32 x=-代入求解即可【详解】原式=362(3)(2)(2)2622x x xx x xx x+-+⋅+=⋅+=+ ++当32x=-时,原式=32()62⨯-+=3.24.(1)(1+2x-3y)2;(2)(a+b-2)2.【分析】(1)将(2x-3y)看作一个整体,利用完全平方公式进行因式分解.(2)令A=a+b,代入后因式分解,再代入即可将原式因式分解.【详解】解:(1)原式=(1+2x-3y)2.(2)令A=a+b,则原式变为A(A-4)+4=A2-4A+4=(A-2)2,故:(a+b)(a+b-4)+4=(a+b-2)2.故答案为(1)(1+2x-3y)2;(2)(a+b-2)2.25.(1)见解析;(2)见解析【分析】(1)利用△ABD、△AEC都是等边三角形,求证△DAC≌△BAE,根据全等三角形的性质解答即可;(2)过点A作AH⊥DC,AG⊥BE,垂足分别为H、G.首先证明△DAH≌△BAG,依据全等三角形的性质得到AH=AG,最后依据到角两边距离相等的点在角的平分线上.【详解】证明:(1)∵△ABD、△AEC都是等边三角形,∴AD=AB,AE=AC,∠DAB=∠CAE=60°,∴∠DAC=∠BAC+60°,∠BAE=∠BAC+60°,∴∠DAC=∠BAE ,在△DAC 和△BAE 中,AD AB DAC BAE AE AC =⎧⎪∠=∠⎨⎪=⎩,∴△DAC ≌△BAE (SAS ),∴∠ABE=∠ADC ,令AB 与DC 的交点为G ,∵∠BGD=∠ABE+∠BFG ,∠BGD=∠ADC+∠DAG ,∴∠ABE+∠BFG=∠ADC+∠DAG ,∴∠BFG=∠DAG=60°,∴∠BFC=180°-∠BFG=120°;(2)过点A 作AH ⊥DC ,AG ⊥BE ,垂足分别为H 、G.∵AH ⊥DC ,AG ⊥BE ,∴∠DHA=∠BGA=90°.∵△DAC ≌△BAE ,∴∠ADC=∠ABE .在△DAH 和△BAG 中ADC ABE DHA BGA AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DAH ≌△BAG .∴AH=AG .又∵AH ⊥DC ,AG ⊥BE ,∴FA 为∠DFE 的角平分线.【点睛】本题主要考查的是等边三角形的性质、全等三角形的性质和判定、角平分线的判定,掌握本题辅助线的做法是解题的关键.26.(1)见解析(2)见解析【分析】(1)根据BE 平分DBC ∠,可得DBE CBE ∠=∠,根据等腰三角形的定义可得BC AC =,根据SAS 即可证明DBE ≌CBE△(2)根据SSS 直接证明ACE ≌BCE ,可得∠BCE=∠ACE ,由(1)可得DBE ≌CBE △,∠BDE=∠BCE ,进而根据∠ACB=90°,(1)∵ABC 是等腰直角三角形,∴BC AC =,∠ACB=90°.∵BD AC =,∴BC BD =.∵BE 平分DBC ∠,∴DBE CBE ∠=∠.∴在△CBE 与△DBE 中,BC DBDBE CBE BE BE=⎧⎪∠=∠⎨⎪=⎩∴DBE ≌CBE △(SAS).(2)解:在△CBE 与△CAE 中,BC ACCE CE BE AE=⎧⎪=⎨⎪=⎩∴ACE ≌BCE (SSS).∴∠BCE=∠ACE.∵∠BCE+∠ACE=90°∴∠BCE=∠ACE=45°.∵DBE ≌CBE △,∴∠BDE=∠BCE.∴∠BDE=∠BCE=45°【点睛】本题考查了等腰三角形的定义,三角形全等的性质与判定,掌握三角形全等的性质与判定是解题的关键.27.(1)4ab ,()()22a b a b +--;(2)()()224a b a b ab +--=;(3)①2±;②1【分析】(1)根据阴影部分的面积=4个小长方形的面积=大正方形的面积-小正方形的面积即可解答;(2)根据(1)求得的结果,利用两种方法求得的阴影面积相等即可解答;(3)①根据()22()4m n m n mn +--=即可得到22()()4m n m n mn +=--,由此求解即可;②根据()22()4m n m n mn +--=可得()()22(2)2428m n m n m n mn +--=⋅=,由此求解即可.【详解】解:(1)方法1:阴影部分面积为4个相同的小长方形的面积之和,∴阴影部分面积=4ab ;方法2:阴影部分面积=大正方形的面积-小正方形面积∴阴影部分面积=()()22a b a b +--.故答案为:4ab ,()()22a b a b +--;(2)∵(1)中两种方法求得的阴影部分面积相等,∴()()224a b a b ab +--=;(3)①∵2()=16m n +,3mn =,()22()4m n m n mn +--=,∴224161()(24)m n m n mn =-=--=+,∴2m n -=±;②2(2)=13m n +,2=25()m n -,()()22(2)2428m n m n m n mn +--=⋅=,∴228(2)(2)8mn m n m n =+-=-,∴1mn =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柳州市2017-2018学年度八年级(上)期末质量抽测试题
数学
(考试时间:90分钟,全卷满分:100分)
一、选择题(本题共10小题,每小题3分,满分30分。

在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分,请把选择题的答案填入下面的表格中)
1.如图,下列图案是我国几家银行的标志,其中不是轴对称图形的是
2.若分式有意义,则x满足的条件是
A.x=3 B.x<3 C. x>3 D.x≠3
3.下列长度的三根小木棒能够成三角形的是
A.2cm,3cm,5cm
B.7cm,4cm,2cm
C.3cm,4cm,8cm
D.3cm,3cm,4cm
4.下列计算正确的是
A. B. C. D.
5.如图,线段AC与BD交于点0,且OA=OC,请添加一个条件,使△AOB≌△COD,这个条件是
A.AC=BD B.OD=OC C.∠A=∠C D.OA=OB
6.若是一个完全平方式,则k的值是
A.2 B.4 C.-4 D.4或-4
7.如图,△ABD≌△CDB,下面四个结论中,不正确的是
A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等
C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC
8.下列各式由左边到右边的变形中,是分解因式的为
A.a(x+y)=ax+ay
B. -4x+4=x(x-4)+4
C.10-5x=5x(2x-1)
D. —16+3x=(x-4)(x+4)+3x
9.若一个三角形三个内角度数的比为2:3:4,则这个三角形是
A.直角三角形 B.锐角三角形 C.钝角三角形 D.等边三角形
10.暑假期间,赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页,才能在借期内读完,他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中正确的是
A. B.
C. D.
二、填空题(本大题共6小题,每小题3分,满分18分)
11.计算: ____
12.一个多边形的内角和是1800,这个多边形是____ 边形.
13.一粒大米的质量约为0.000021kg,这个数用科学记数法表示为____
14.在Rt△ABC中,∠A=30,∠B=90,AC=10,则BC=____
15.如图,在△ABC中,点D是BC上一点,ZBAD=80,AB=AD=DC,则∠CAD=____
16.如图,△ABC申,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=82,则∠BDC=____
三、解答题(本大题共7题,满分52分,解答时应写出必要的文字说明、演算步骤或推理过程)
17.(6分)分解因式:
18.(6分)化简:
19.(6分)解分式方程:
20.(8分)如图,在平面直角坐标系中,△ABC的顶点的坐标分别为A(-2,3),B(-4,1),C(-l,2)
(1)画出△ABC关于y轴的对称图形△A1BlC1;
(2)直接写出点A1关于x轴的对称点的坐标____
(3)直接写出△ABC的面积为____
21.(8分)如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AB=DE,BF=CE.
求证: (1) △ABC≌△DEF;
(2)GF=GC.
22.(8分)2017年10月23日,环广西公路自行车世界巡回赛在柳州举行。

柳州某中学八年级学生去距学校10千米的市政府广场观看,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达。

已知汽车的平均速度是骑车同学平均速度的2位,求骑车同学的平均速度。

23.(10分)如图(1),AB=4cm,AC⊥AB于A,BD⊥AB于B,AC=BD=3cm.点P在线段AB上以lcm/s的速度由点A向点B运动,同时。

点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).
(1)若点Q 的运动速度与点P 的运动速度相等,当t=l 时,△ACP 与△BPQ 是否全等?PC 与PQ 是否垂直?请分别说明理由;
(2)如图(2),将图(1)中的“AC 上AB 于A,BD 上AB 于B ”改为“∠CAB=∠DBA=60”,其他条件不变.设点Q 的运动速度为x cm/s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由,
柳州市2017-2018学年度八年级(上)期末质量抽测试题数学 解析与评分标准
一、选择题(本题共10小题,每小题3分,满分30分。

在每个小题给出的四个选项中,只有一项是正确的,每小题选对得3分,选错、不选或多选均得零分,请把选择题的答案填入下面的表格中)
二.填空题(共6小题,满分18分,每小题3分)
11.5a 12.十二 13.5
2.110-⨯ 14.5 15.25 16.98
三.解答题(本大题共7题,满分52分,解答时应写出必要的文字说明、演算步骤或推理过程)
17.(6分)分解因式:3x x -
解:原式
2
(1)x x =- …………………………………3分 (1)(1)x x x =+- ……………………………………6分
18.(6分)化简:
()()
2
2a b a b a -+-
解:原式222
22a ab b ab a =-++- ……………………………………3分
2
b = ……………………………………6分
19.(6分)解分式方程:27
13
26x x x +=
++
解:方程两边同乘以23x +(),得
42(3)7x x ++=. ……………………………………2分
解得
1
6x =
. ……………………………………4分
检验:当
1
6x =
时,23x +≠(
)0. ……………………………………5分 所以,原分式方程的解为1
6x =
. ……………………………………6分
20.(8分)如图,在平面直角坐标系中,△ABC 的顶点的坐标分别为A (﹣2,3),B (﹣4,1),C (﹣1,2).
(1)画出△ABC 关于y 轴的对称图形△111A B C ; …………………………3分
如图所示△
111A B C 即为所求作的图形 …………………………4分
第21题图
(2)直接写出点1A 关于x 轴的对称点的坐标 (2,-3) . …………………………6分 (3)直接写出△ABC 的面积= 2 . …………………………8分 21.证明:(1)∵BF=CE
∴BF+FC=CE+FC ,即BC=EF ……………………2分 又∵AB ⊥BE ,DE ⊥BE
∴∠B=∠E=90° ……………………4分 又∵AB=DE
∴△ABC ≌△DEF (SAS ); ……………………6分 (2)∵△ABC ≌△DEF
∴∠ACB=∠DFE ……………………………………7分 ∴GF=GC . ……………………………………8分
22.解:设骑车学生的平均速度为/xkm h ,则汽车的平均速度为2/xkm h . ……1分
根据题意,列方程得
101020
260x x -=. …………………………5分 解得:15x =. ……………………………………6分 经检验:15x =是原方程的解. ……………………………………7分 答:骑车同学的速度为15/km h . ……………………………………8分 23.
解:(1)当t =1时,△ACP ≌△BPQ ,PC 垂直于PQ ……………………………1分 理由如下:
当t=1时,AP=BQ=1,BP=AC=3, ……………………………………2分
第21题图
BQ
AP
=
又∠A=∠B=90°, ……………………………………3分 ∴在△ACP 和△BPQ 中,
∴△ACP ≌△BPQ (SAS ). ……………………………………4分 ∴∠ACP=∠BPQ ,
∴∠APC+∠BPQ=∠APC+∠ACP=90°.
∴∠CPQ=90°,即线段PC 与线段PQ 垂直.……………………………………5分 (2)①若△ACP ≌△BPQ , 则AC=BP ,AP=BQ ,
解得
……………………………………7分
②若△
ACP ≌△BQP , 则AC=BQ ,AP=BP ,
解得……………………………………9分
综上所述,存在 ACP 与△BPQ 全等.…10分 xt
t t
=-=43t t xt -==432
32
=
=x t 2
32
=
=x t 1
1==x t 11
==x t。

相关文档
最新文档