4.4复数的基本知识

合集下载

复数的知识点总结

复数的知识点总结

复数的知识点总结一、复数概述复数是数学中的一个重要概念,它由实数和虚数部分组成。

虚数单位i定义为i² = -1,其中i是一个虚数。

复数可表示为a + bi的形式,其中a是实数部分,bi 是虚数部分。

二、复数运算1. 复数加法和减法复数的加法和减法按照实部和虚部分别进行运算,即将实部相加或相减,并将虚部相加或相减。

例如,给定复数z₁ = a₁ + b₁i和z₂ = a₂ + b₂i,它们的和可以表示为z₁ + z₂ = (a₁ + a₂) + (b₁ + b₂)i,差可以表示为z₁ - z₂ = (a₁ - a₂) + (b₁ - b₂)i。

2. 复数乘法复数乘法采用分配律和虚数单位的平方等于-1的性质进行计算。

例如,给定复数z₁ = a₁ + b₁i和z₂ = a₂ + b₂i,它们的乘积可以表示为z₁ * z₂ = (a₁ * a₂ - b₁ * b₂) + (a₁ * b₂ + a₂ * b₁)i。

3. 复数除法复数除法是将分子和分母同乘以分母的共轭,并利用虚数单位的平方等于-1的性质进行计算。

例如,给定复数z₁ = a₁ + b₁i和z₂ = a₂ + b₂i,它们的除法可以表示为z₁ / z₂ = ((a₁ * a₂ + b₁ * b₂) / (a₂² + b₂²)) + ((a₂ * b₁ - a₁ * b₂) / (a₂² + b₂²))i。

三、复数的共轭和模1. 复数的共轭复数的共轭是保持实部相同而虚部变号的操作。

复数a + bi的共轭可以表示为a - bi,其中a是实部,b是虚部。

2. 复数的模复数的模是复数到原点的距离,可以用勾股定理计算。

复数a + bi的模可以表示为√(a² + b²)。

四、复数的指数形式和三角形式1. 复数的指数形式复数可以用指数形式表示为re^(iθ),其中r是模,θ是辐角。

2. 复数的三角形式复数的三角形式是指使用三角函数表示复数。

(完整版)复数知识点总结

(完整版)复数知识点总结

复数一、复数的概念1. 虚数单位i(1) 它的平方等于1-,即 2i 1=-;(2) 实数可以与它进行四则运算,进行四则运算时,原有的加、乘法运算仍然成立,即满足交换律与结合律.(3) i 的乘方: 4414243*i 1,i i,i 1,i i,N n n n n n +++===-=-∈,它们不超出i b 的形式.2. 复数的定义形如i(,)R a b a b +∈的数叫做复数, ,a b 分别叫做复数的实部与虚部3. 复数相等 i i a b c d +=+,即,a c b d ==,那么这两个复数相等4. 共轭复数 i z a b =+时,i z a b =-. 性质:z z =;2121z z z z ±=±;1121z z z z ⋅=⋅; );0()(22121≠=z z z z z 二、复平面及复数的坐标表示1. 复平面在直角坐标系里,点z 的横坐标是a ,纵坐标是b ,复数i z a b =+可用点(,)Z a b 来表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x 轴为实轴,y 轴出去原点的部分称为虚轴.2. 复数的坐标表示 点(,)Z a b3. 复数的向量表示 向量OZ .4. 复数的模在复平面内,复数i z a b =+对应点(,)Z a b ,点Z 到原点的距离OZ 叫做复数z 的模,记作z .由定义知,z =.三、复数的运算1. 加法 (i)(i)()()i a b c d a c b d +++=+++.几何意义: 设1i z a b =+对应向量1(,)OZ a b =,2i z c d =+对应向量2(,)OZ c d =,则12z z +对应的向量为12(,)OZ OZ a c b d +=++.因此复数的和可以在复平面上用平行四边形法则解释.2. 减法 (i)(i)()()i a b c d a c b d +-+=-+-.几何意义: 设1i z a b =+对应向量1(,)OZ a b =,2i z c d =+对应向量2(,)OZ c d =,则12z z -对应的向量为1221(,)OZ OZ Z Z a c b d -==--.12()()i z z a c b d -=-+-=1Z 、2Z 两点之间的距离,也等于向量12Z Z 的模.3. 乘法 ()()()()a bi c di a c b d i +±+=±+±.4. 乘方 m n m n z z z +⋅= ()m n mn z z = 1212()n n n z z z z ⋅=⋅5. 除法 ()()()()()()()()22a bi c di ac bd bc ad i a bi a bi c di c di c di c di c d+-++-++÷+===++-+. 6. 复数运算的常用结论 (1) 222(i)2i a b a b ab +=-+, 22(i)(i)a b a b a b +-=+(2) 2(1i)2i +=, 2(1i)2i -=-(3) 1i i 1i +=-, 1i i 1i-=-+ (4) 1212z z z z ±=±, 1212z z z z ⋅=⋅, 1122z z z z ⎛⎫=⎪⎝⎭,z z =.(5) 2z z z ⋅=, z z =(6) 121212z z z z z z -≤+≤+ (7) 1212z z z z ⋅=⋅,1212z z z z ⋅=⋅,nn z z = 四、复数的平方根与立方根1. 平方根 若2(i)i a b c d +=+,则i a b +是i c d +的一个平方根,(i)a b -+也是i c d +的平方根. (1的平方根是i ±.) 2. 立方根 如果复数1z 、2z 满足312z z =,则称1z 是2z 的立方根.(1) 1的立方根: 21,,ωω.12ω=-+,212ωω==--,31ω=. 210ωω++=. (2) 1-的立方根:111,22z z -=+=-. 五、复数方程1. 常见图形的复数方程(1) 圆:0z z r -=(0r >,0z 为常数),表示以0z 对应的点0Z 为圆心,r 为半径的圆(2) 线段12Z Z 的中垂线:12z z z z -=-(其中12,z z 分别对应点12,Z Z )(3) 椭圆: 122z z z z a -+-=(其中0a >且122z z a -<),表示以12,z z 对应的点F1、F2为焦点,长轴长为2a 的椭圆(4) 双曲线: 122z z z z a ---=(其中0a >且122z z a ->),表示以12,z z 对应的点F1、F2为焦点,实轴长为2a 的双曲线2. 实系数方程在复数范围内求根(1)求根公式:1,21,21,20 20 20 2b x a b x a b x a ⎧-∆>=⎪⎪⎪-∆==⎨⎪⎪-±∆<=⎪⎩一对实根一对相等的实根一对共轭虚根 (2) 韦达定理:1212b x x a cx x a ⎧+=-⎪⎪⎨⎪=⎪⎩。

复数知识点总结

复数知识点总结

复数知识点总结一、复数的定义形如\(a + bi\)(\(a,b\in R\),\(i\)为虚数单位)的数叫做复数,其中\(a\)叫做复数的实部,\(b\)叫做复数的虚部。

当\(b = 0\)时,复数\(a + bi\)为实数;当\(b \neq 0\)时,复数\(a +bi\)为虚数;当\(a = 0\)且\(b \neq 0\)时,复数\(a + bi\)为纯虚数。

二、虚数单位\(i\)虚数单位\(i\)满足\(i^2 =-1\)。

三、复数的代数形式复数的代数形式为\(z = a + bi\)(\(a,b\in R\))。

四、复数的几何意义1、复平面建立直角坐标系来表示复数的平面叫做复平面,\(x\)轴叫做实轴,\(y\)轴叫做虚轴。

实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。

2、复数的模复数\(z = a + bi\)的模\(|z| =\sqrt{a^2 + b^2}\)。

3、复数与向量复数\(z = a + bi\)对应复平面内的向量\(\overrightarrow{OZ} =(a,b)\)。

五、复数的四则运算1、加法\((a + bi) +(c + di) =(a + c) +(b + d)i\)2、减法\((a + bi) (c + di) =(a c) +(b d)i\)3、乘法\((a + bi)(c + di) = ac + adi + bci + bdi^2 =(ac bd) +(ad + bc)i\)4、除法\\begin{align}\frac{a + bi}{c + di}&=\frac{(a + bi)(c di)}{(c + di)(c di)}\\&=\frac{ac adi + bci bdi^2}{c^2 + d^2}\\&=\frac{(ac + bd) +(bc ad)i}{c^2 + d^2}\end{align}\六、共轭复数当两个复数的实部相等,虚部互为相反数时,这两个复数互为共轭复数。

复数的知识点总结

复数的知识点总结

复数的知识点总结一、基本概念复数是指由实数和虚数构成的数,形式为 a + bi,其中a 和b 都是实数,i 是虚数单位,满足 i² = -1。

实数是指具有有限位小数的数或无理数,而虚数是不能用实数表示的数。

二、复数的表示法复数有一般式、三角式和指数式三种表示法。

1. 一般式:a + bi其中 a 表示实部,b 表示虚部。

2. 三角式:r(cosθ + i sinθ)其中 r 表示复数的模,θ 表示复数的辐角或幅角。

3. 指数式:re^(iθ)其中 r 表示复数的模,e 是自然对数的底数,θ 表示复数的幅角。

三、基本运算1. 加法(a + bi) + (c + di) = (a + c) + (b + d)i即实部相加,虚部相加。

2. 减法(a + bi) - (c + di) = (a - c) + (b - d)i即实部相减,虚部相减。

3. 乘法(a + bi) × (c + di) = (ac - bd) + (ad + bc)i即实数部分按照常规乘法规则计算,虚数部分交叉相乘。

4. 除法(a + bi) ÷ (c + di) = (ac + bd)/(c² + d²) + (bc - ad)/(c² + d²)i即分子分母同除以 c + di,然后将分子分母分别展开并化简。

5. 共轭复数(a + bi) 的共轭复数为 (a - bi),共轭复数满足以下性质:a. 它们的实部相等。

b. 它们的虚部相等,但符号相反。

c. 一个复数与它的共轭复数的积等于这个复数的模的平方。

d. 两个复数的积的共轭等于它们的共轭的积。

四、复数的模和幅角1. 复数模|r|复数的模是指复数与原点之间的距离,可以用勾股定理求出。

|r| = √(a² + b²)2. 复数的幅角θ复数的幅角是指复数与正实轴正方向的夹角,可以用反正切函数求出。

复数的知识点总结

复数的知识点总结

复数的知识点总结复数是数学中的一个重要概念,它表示数量不止一个的情况。

在复数中,有实部和虚部两个部分,可以用数学形式表示为a+bi。

其中a是实部,bi是虚部,i表示虚数单位。

下面将从复数的定义、复数的运算、复数的表示形式以及复数的应用等方面进行总结。

一、复数的定义复数是由实部和虚部组成的数,可以表示为a+bi的形式,其中a和b 都是实数,i表示虚数单位,i满足i^2=-1。

实部表示复数在实数轴上的位置,虚部则表示复数在虚数轴上的位置。

通过复数,可以扩展实数系到复数系,使得一些无法用实数表示的数也能够得到解释。

二、复数的运算1. 复数的加减法:实部和虚部分别相加或相减。

2. 复数的乘法:按照分配律和虚数单位的性质相乘。

3. 复数的除法:先将分母有理化为实数,再按照分配律相除。

需要注意的是,复数的运算遵循交换律、结合律和分配律,与实数的运算相似。

三、复数的表示形式1. 算术形式:a+bi,其中a和b都是实数。

2. 指数形式:re^(iθ),其中r是复数的模,θ是复数的幅角。

四、复数的应用1. 电路分析:在电路分析中,很多情况下需要使用复数来表示电流和电压等物理量,特别是交流电路。

2. 信号处理:复数可以方便地表示信号的频率和相位,对于信号处理和调制等领域具有广泛的应用。

3. 物理学:在波动光学和量子力学等物理学领域,复数也起到了非常重要的作用。

4. 工程计算:在求解二次方程及其特征值、求解导数和积分等数学问题中,复数都有重要的应用。

总结:复数是由实部和虚部组成的数,可以表示为a+bi的形式。

复数的运算包括加减法、乘法和除法,与实数的运算相似。

复数可以用算术形式和指数形式表示。

复数的应用广泛,包括电路分析、信号处理、物理学和工程计算等领域。

深入理解复数的概念和运算规则,对于进一步学习和应用数学和物理学等学科都具有重要的意义。

复数的考点知识点归纳总结

复数的考点知识点归纳总结

复数的考点知识点归纳总结复数的考点知识点归纳总结复数是基础数学中的重要概念,广泛应用于数学、物理、工程等领域。

掌握复数的概念、性质和运算规则对于建立数学思维、解决实际问题具有重要意义。

本文将从复数的基本概念、运算法则和实际应用等方面进行归纳总结。

一、复数的基本概念1. 复数的定义:复数是由实部和虚部组成的数,形式为a+bi,其中a为实数部分,bi为虚数部分,i为虚数单位,满足i²=-1。

2. 复数的实部和虚部:复数a+bi中,a为实部,bi为虚部。

3. 复数的共轭复数:设复数z=a+bi,其共轭复数记为z*,则z*的实部与z相同,虚部的符号相反。

4. 复数的模:复数z=a+bi的模定义为|z|=√(a²+b²)。

5. 复数的辐角:复数z=a+bi的辐角定义为复数与正实轴正半轴的夹角,记作arg(z)。

6. 三角形式:复数z=a+bi可以写成三角形式r(cosθ+isinθ),其中r为模,θ为辐角。

二、复数的运算法则1. 复数的加法和减法:复数的加法和减法运算与实数类似,实部与实部相加减,虚部与虚部相加减。

2. 复数的乘法:复数的乘法运算使用分配律和虚数单位的性质,即(a+bi)(c+di)=(ac-bd)+(ad+bc)i。

3. 复数的除法:复数的除法运算需要将分子分母同时乘以共轭复数,即(a+bi)/(c+di)=[(a+bi)(c-di)]/[(c+di)(c-di)]。

4. 复数的乘方和开方:复数的乘方和开方运算需要使用三角函数的性质和欧拉公式,即z^n=r^n[cos(nθ)+isin(nθ)],√z=±√r[cos(θ/2)+isin(θ/2)]。

三、复数的性质和应用1. 复数的性质:复数具有加法和乘法的封闭性、交换律、结合律、分配律等性质。

2. 复数平面:复数可以用平面上的点来表示,实部为横坐标,虚部为纵坐标,构成复数平面。

3. 复数与向量:复数可以看作是向量的延伸,复数的运算有时可以用向量的加法和旋转来理解。

(完整版)复数基础知识点

(完整版)复数基础知识点

1、复数的定义:设i 为方程x 2=-1的根,i 称为虚数单位,形如a +bi (a 、b ∈R )的数,称为复数.所有复数构成的集合称复数集,通常用C 来表示.a 为实部,b 为虚部2.复数集⎧⎧⎧整数⎪⎪有理数⎨实数(b =0)⎨⎪⎩分数⎪⎪复数a +bi (a ,b ∈R )⎨小数)⎩无理数(无限不循环⎪虚数(a ≠0)⎪虚数(b ≠0)⎧纯⎨⎪虚数(a =0)⎩非纯⎩3.复数的几何意义对任意复数z=a+bi(a,b∈R),a 称实部记作Re(z),b 称虚部记作Im(z).z=ai 称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z 与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。

因此复数可以用点来表示,表示复数的平面称为复平面,x 轴称为实轴,y 轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z 又对应唯一一个向量。

复平面内的点Z (a,b )复数z =a +bi平面向量OZ4.两个复数相等的定义:a +bi =c +di ⇔a =c 且b =d (其中a ,b ,c ,d ,∈R )特别地,a +bi =0⇔a =b =0.5.复数的四则运算设z 1=a 1+b 1i ,z 2=a 2+b 2i(1)加法:z 1+z 2=(a 1+a 2)+(b 1+b 2)i 即实部与实部相加,虚部与虚部相加;,(2)减法:z 1-z 2=(a 1-a 2)+(b 1-b 2)i ,即实部与实部相减,虚部与虚部相减;(3)乘法:z 1⋅z 2=(a 1a 2-b 1b 2)+(a 2b 1+a 1b 2)i ,特别z ⋅z =a 2+b 2;c +di(a ,b 是均不为0的实数)的化简就是通过分母实数化的方a +bi法将分母化为实数,即分子分母同时乘以分母的共轭复数,然后再化简:(4)除法z =c +di c +di a -bi (ac +bd )+(ad -bc )iz ==⋅=;a +bi a +bi a -bi a 2+b 2(5)四则运算的交换率、结合率;分配率都适合于复数的情况。

复数知识点总结

复数知识点总结

复数知识点总结复数是数学中的一个基本概念,它扩展了实数的概念,包括了实数和虚数。

复数的引入极大地丰富了数学理论,并在物理学、工程学等领域有着广泛的应用。

以下是复数的知识点总结:1. 复数的定义:复数是形如a+bi的数,其中a和b是实数,i是虚数单位,满足i^2=-1。

复数由实部a和虚部b组成。

2. 复数的表示:复数可以用直角坐标系中的点表示,实部a对应x轴,虚部b对应y轴,因此复数也可以表示为有序对(a, b)。

3. 复数的四则运算:复数的加法、减法、乘法和除法都有特定的运算规则。

加法和减法通过分别对实部和虚部进行运算实现;乘法和除法则需要使用分配律和共轭复数的概念。

4. 共轭复数:一个复数的共轭复数是其实部相同,虚部相反的复数。

例如,对于复数z=a+bi,其共轭复数为z*=a-bi。

5. 复数的模:复数的模是其实部和虚部平方和的平方根,表示为|z|=√(a^2+b^2)。

模可以用来度量复数在复平面上的大小。

6. 复数的指数形式:欧拉公式表明,复数可以表示为指数形式,即z=r(cosθ+isinθ),其中r是复数的模,θ是复数的辐角。

7. 复数的极坐标形式:复数也可以表示为极坐标形式,即z=r(cosθ+isinθ),其中r是复数的模,θ是复数的辐角。

8. 复数的辐角:复数的辐角是其在复平面上与正实轴的夹角,通常用θ表示。

辐角的取值范围是[0, 2π)。

9. 复数的代数形式:复数可以表示为代数形式,即z=a+bi,其中a是实部,b是虚部。

10. 复数的几何意义:在复平面上,复数对应一个向量,其长度是复数的模,方向是复数的辐角。

11. 复数的解析函数:在复分析中,复数的解析函数是复数域上的函数,满足柯西-黎曼方程,即函数的实部和虚部都是调和函数。

12. 复数的积分:复数的积分在复分析中有着重要的地位,包括柯西积分定理和留数定理等。

13. 复数的应用:复数在信号处理、控制系统、量子力学等领域有着广泛的应用,例如在信号处理中,复数可以用来表示振荡信号的幅度和相位。

复数的知识点公式总结

复数的知识点公式总结

复数的知识点公式总结一、复数的基本概念1. 复数的定义:形如a+bi的数称为复数,其中a是实部,b是虚部,i是虚数单位,满足i²=-1。

2. 复数的实部与虚部:复数z=a+bi中,a称为实部,b称为虚部,通常用Re(z)和Im(z)表示。

3. 纯虚数:实部为0的复数,称为纯虚数,如bi,则bi为纯虚数。

4. 共轭复数:设z=a+bi是一个复数,如果将z的虚部b改变符号,得到一个新的复数z’=a-bi,称z’是z的共轭复数。

二、复数的表示形式1. 代数形式:z=a+bi,即由实部a和虚部b构成的复数形式。

2. 幅角形式:z=r(cosθ+isinθ),其中r=|z|为复数的模,θ为复数的辐角。

3. 按模辐角表示:z=r·exp(iθ)。

4. 柯西-黎曼公式:当z=x+yi时,可表示为z=r(exp[i(θ+2kπ)]), k=0,±1,±2,...。

三、复数的运算规则1. 加法:(a+bi)+(c+di)=(a+c)+(b+d)i。

2. 减法:(a+bi)-(c+di)=(a+c)-(b+d)i。

3. 乘法:(a+bi)·(c+di)=(ac-bd)+(ad+bc)i。

4. 除法:(a+bi)/(c+di)=(ac+bd)/(c²+d²)+(bc-ad)i/(c²+d²)。

5. 复数的乘方:(a+bi)²=a²-b²+2abi。

6. 复数的幂运算:zⁿ=(r·exp(iθ))ⁿ=rⁿ·exp(iθn)。

7. 复数的共轭:z=a+bi的共轭为z*=a-bi。

8. 复数的倒数:z=a+bi的倒数为1/z=1/(a+bi)。

四、复数的性质1. 除法:任一非零复数z=a+bi,存在有唯一的复数1/z=1/(a+bi),满足z(1/z)=1。

2. 复数的模:|z|=√(a²+b²),其中|z|为z的模。

复数有关知识点总结

复数有关知识点总结

复数有关知识点总结一、复数的基本概念复数是指表示多个人、事物或概念的一种形式。

在英语中,名词的复数形式通常是在单数形式的基础上加上-s或-es后缀来表示的。

复数形式不仅用于表示数量上的复数,还可以用于表示概念上的复数,比如表示一类人或物体的情况。

二、复数的形成规则1. 一般情况下,名词的复数形式是在单数名词的末尾加上-s后缀。

比如:cat—cats,dog—dogs,book—books等。

2. 当单数名词以s, sh, ch, x, o结尾时,复数形式一般是在单数名词的末尾加上-es后缀。

比如:bus—buses,brush—brushes,box—boxes,tomato—tomatoes等。

3. 当单数名词以辅音字母+y结尾时,复数形式将y改为i,并加上-es后缀。

比如:city—cities,party—parties等。

4. 以f或fe结尾的单数名词变复数时,通常将f或fe改为v,再加上-es后缀。

比如:leaf—leaves,knife—knives等。

5. 以o结尾的单数名词变复数时,有些名词只需加上-s后缀,比如:photo—photos,radio—radios等;有些名词加上-es后缀,比如:potato—potatoes,tomato—tomatoes 等。

6. 有些名词的复数形式是不规则的,需要记忆。

比如:child—children,man—men,woman—women等。

以上是复数形式的一般规则,但是也有例外情况。

需要通过大量的阅读和实际练习来熟练掌握各种名词的复数形式。

三、不可数名词和复数的用法不可数名词是指不能用复数形式表示的名词,它表示不可分割的整体,或者是一种抽象的概念。

英语中有很多不可数名词,比如:water, air, milk, advice, information等。

这些名词在表示数量上并不具有复数形式,而是用单数形式来表示。

但是有些名词在特定情况下可以表示一定数量的概念,这时候可以用复数形式来表示。

复数知识点总结公式大全

复数知识点总结公式大全

复数知识点总结公式大全复数是数学中一个重要的概念,其包括实数和虚数。

在实际应用中,复数广泛被用于电路分析、信号处理、控制系统、波动方程求解等领域。

因此,理解复数的性质和运算规律对于掌握这些领域的知识具有重要意义。

以下是复数知识点的总结和相关公式的大全:1. 复数的定义:复数可以表示为a+bi的形式,其中a称为实部,b称为虚部,i称为虚数单位,满足i^2=-1。

2. 复数的运算:(1)加法:(a+bi)+(c+di)=(a+c)+(b+d)i(2)减法:(a+bi)-(c+di)=(a-c)+(b-d)i(3)乘法:(a+bi)(c+di)=(ac-bd)+(ad+bc)i(4)除法:(a+bi)/(c+di)=(ac+bd)/(c^2+d^2)+(bc-ad)i/(c^2+d^2)3. 共轭复数:设z=a+bi,其共轭复数为z*=a-bi。

显然,复数与共轭复数的乘积是实数,即zz*=|z|^2,其中|z|表示复数z的模。

4. 欧拉公式:e^(iθ)=cosθ+isinθ5. 复指数函数:e^(z)=e^a(cosb+isinb),其中z=a+bi6. 幅角和辐角:复数z=a+bi的幅角θ满足tanθ=b/a,辐角则为θ+2kπ(k∈Z)。

7. 极坐标形式:复数z=a+bi可以表示为z=r(cosθ+isinθ),其中r=|z|,θ为z的辐角。

8. 三角形式:复数z=r(cosθ+isinθ)可以表示为z=r∠θ9. 复数的乘除法:(1)乘法:z1=r1∠θ1,z2=r2∠θ2,则z1z2=r1r2∠(θ1+θ2)(2)除法:z1=r1∠θ1,z2=r2∠θ2,则z1/z2=r1/r2∠(θ1-θ2)10. 复数的幂:z^n=r^n∠(nθ)11. 根式:复数z=r∠θ的n次根是n个复数,其模为∛r,辐角依次加2kπ/n(k=0,1,...,n-1)。

12. 解析函数与共轭函数:设u(x,y)和v(x,y)是复变函数f(x+iy)的实部和虚部,则f(z)=u(x,y)+iv(x,y)。

复数的全部知识点总结

复数的全部知识点总结

复数的全部知识点总结一、形成复数的基本规则1. 在大多数情况下,名词的复数形式是在单数名词后面加上“-s”,比如:book-books,cat-cats,dog-dogs等。

2. 如果单数名词以“s, x, sh, ch”结尾,或者以“o”结尾,加上“es”来表示复数形式,比如:box-boxes,bus-buses,dish-dishes,church-churches,potato-potatoes等。

3. 以“y”结尾的名词,如果前面是辅音字母,则变“y”为“i”,然后加上“es”来表示复数形式,比如:baby-babies,city-cities等。

4. 以“f”或者“fe”结尾的名词,通常变“f”或者“fe”为“v”,然后再加上“es”来表示复数形式,比如:leaf-leaves,wife-wives等。

5. 以“o”结尾的名词,有一部分名词的复数形式是加上“-s”,比如:photo-photos,radio-radios等,但也有一部分名词的复数形式是加上“-es”,比如:potato-potatoes,tomato-tomatoes等。

6. 一些名词的复数形式和单数形式完全一样,比如:sheep-sheep,deer-deer,series-series等。

二、复数形式的不规则形式1. 有一些名词的复数形式是非常不规则的,需要特别记忆,比如:man-men,woman-women,child-children,foot-feet,tooth-teeth等。

2. 有一些名词的复数形式和单数形式完全不同,需要特别记忆,比如:mouse-mice,goose-geese,ox-oxen等。

3. 一些名词在复数形式中增加“en”来表示复数形式,比如:child-children,ox-oxen等。

三、表示复数的特殊情况1. 有一些名词是不可数名词,表示整体或者抽象概念,不能用于复数形式,比如:water,information,money等。

(完整版)复数知识点总结

(完整版)复数知识点总结

(完整版)复数知识点总结复数是数学中的一个基本概念,特别是在代数和几何中扮演着重要角色。

以下是复数的知识点总结:1. 定义:复数是形如 a + bi 的数,其中 a 和 b 是实数,i 是虚数单位,满足 i² = -1。

2. 实部与虚部:对于复数 z = a + bi,a 称为它的实部(Re(z)),b 称为它的虚部(Im(z))。

3. 共轭复数:一个复数 z 的共轭复数表示为 z* 或者z̅,定义为a - bi。

共轭复数在复平面上关于实轴对称。

4. 模与辐角:复数 z 的模(|z|)是其实部和虚部的平方和的平方根,即|z| = √(a² + b²)。

辐角(arg(z))是从正实轴到复数在复平面上表示的向量的角度,通常用θ 表示。

5. 复数的乘法与除法:- 乘法:(a + bi)(c + di) = (ac - bd) + (ad + bc)i- 除法:(a + bi) / (c + di) = [(ac + bd) / (c² + d²)] + [(bc - ad) / (c² + d²)]i6. 欧拉公式:e^(ix) = cos(x) + i*sin(x),其中 e 是自然对数的底数,i 是虚数单位。

这个公式将复指数函数与三角函数联系起来。

7. 德摩弗定理:对于任何复数 z 和非零复数 w,有 (z/w) = (z - w) / (1 - wz),这个定理在处理复数序列和级数时非常有用。

8. 复数的极限与连续性:复数的极限定义与实数类似,但需要考虑复平面上的点。

复数函数的连续性也可以用类似实数函数的方式定义。

9. 解析函数:如果一个复数函数 f(z) 在某个区域内的每一点都可微分,则称 f(z) 在该区域内解析。

柯西-黎曼方程是判断一个复函数是否可微分的必要条件。

10. 级数展开:复数函数可以通过泰勒级数或劳朗级数在复平面上展开。

复数知识点公式总结

复数知识点公式总结

复数知识点公式总结复数是数学中的一个重要概念,它可以用于表示实数和虚数的和,通常以a+bi的形式表示,其中a是实部,bi是虚部,i是虚数单位,满足i²=-1。

复数在数学中有着广泛的应用,尤其在物理和工程领域中经常会遇到,因此对于复数的基本知识点和公式的掌握是很重要的。

一、复数的基本概念在介绍复数的公式之前,首先需要了解一些基本概念。

1. 复数的表示形式复数可以用代数式表示为a+bi的形式,其中a和b都是实数,a称为实部,b称为虚部,i称为虚数单位。

2. 复数的加法两个复数相加的规则是将实部相加,虚部相加,即(a+bi)+(c+di)=(a+c)+(b+d)i。

3. 复数的减法两个复数相减的规则是将实部相减,虚部相减,即(a+bi)-(c+di)=(a-c)+(b-d)i。

4. 复数的乘法两个复数相乘的规则是将实部之间相乘减虚部之间相乘,即(a+bi)(c+di)=(ac-bd)+(ad+bc)i。

5. 复数的除法两个复数相除的规则是先以分母的共轭复数作为分母,并将分子与分母同时乘以分母的共轭复数,即(a+bi)/(c+di)=((a+bi)(c-di))/((c+di)(c-di))=(ac+bd)/(c²+d²)+(bc-ad)i/(c²+d²)。

6. 复数的模复数z=a+bi的模定义为|z|=√(a²+b²)。

7. 复数的共轭复数z=a+bi的共轭定义为z的虚部取相反数,即z的共轭为a-bi。

二、复数的指数形式复数可以用指数形式表示,即z=r(cosθ+isinθ),其中r为复数的模,θ为复数的辐角,可以表示成z=re^(iθ)。

1. 复数的模和辐角复数z=a+bi的模r和辐角θ可以通过以下公式计算得到:r=|z|=√(a²+b²),θ=arctan(b/a),其中a和b为复数z的实部和虚部。

2. 欧拉公式欧拉公式是指e^(iθ)=cosθ+isinθ,其中e是自然对数的底,i是虚数单位,θ是实数。

复数知识点总结

复数知识点总结

复数知识点小结1、复数的概念复数 (,)z a bi a b R =+∈Re Im a z b z ⎧⎨⎩——实部————虚部——,其中21i =-,i 叫做虚数单位. 2、复数的分类 (0) (,)(0) (0b z a bi a b R b a =⎧=+∈⎨≠=⎩实数复数虚数特别地,时为纯虚数)3、两个复数相等定义:如果两个复数),(1R b a bi a z ∈+=和),(2R d c di c z ∈+=的实部与虚部分别相等,即d b c a ==且,那么这两个复数相等,记作di c bi a +=+.只有当两个复数都是实数时,才能比较大小;当两个复数不都是实数时,只有相等与不相等两种关系,不能比较大小.4、复平面——建立了直角坐标系来表示复数的平面。

复平面中,x 轴叫做实轴,y 轴叫做虚轴。

表示实数的点都在实轴上,表示纯虚数的点都在虚轴上,原点表示实数0。

5、复数的向量表示OZ Z 向量复平面上点复数↔↔+=),(b a bi a z6、复数的模复数模(绝对值)的定义,几何意义:复数z=a+bi (a,b ∈R )所对应的点Z(a,b)到坐标原点的距离。

|z|=|a+bi|=022≥+b a .[说明] ||||z z a ==为实数时,,所以实数绝对值是复数模的特殊情形。

当且仅当a=b=0时,|z|=07、复数的四则运算性质:R d c b a ∈,,,1)、加法:i d b c a di c bi a )()()()(+++=+++2)、减法:i d b c a di c bi a )()()()(-+-=+-+3)、乘法:i bc ad bd ac di c bi a )()())((++-=++4)、除法:i d c ad bc d c bd ac di c bi a 2222+-+++=++ (目的:分母实数化) [要点说明]①计算结果一律写成),(R b a bi a ∈+的代数形式;②复数的加法满足交换律、结合律;③复数乘法满足交换律、结合律及乘法对加法的分配律;交换律:1221z z z z ⋅=⋅结合律:)()(321321z z z z z z ⋅⋅=⋅⋅分配律:3121321)(z z z z z z z ⋅+⋅=+⋅④实数范围内正整数指数幂的运算律在复数范围内仍然成立,即n n n mn n m n m n m z z z z z z z z z N n m C z z z 2121*321)(,)(,,,,,=⋅==∈∈+时:8、i 的整数指数幂的周期性特征:414243441, 1, , 1k k k k k i i i i i i ++++==-=-=若为非负实数,则();024*******=+++++++k k k k i i i i )(9、||21z z -的几何意义:设12, (,,,)z a bi z c di a b c d R =+=+∈ 则2221)()(|)()(||)()(|||d b c a i d b c a di c bi a z z -+-=-+-=+-+=-几何意义:对应复平面上点12(,), (,)Z a b Z c d 两点间距离22)()(d b c a d -+-=10、共轭复数1)定义: 当两个复数的实部相等,虚部互为相反数时,这样的两个复数叫做互为共轭复数,记为bi a z -=问题:当R z ∈时,是否有共轭复数?两者关系如何?z z R z =⇔∈2)运算性质:结论可推广到n 个2121)1(z z z z ±=± 2121)2(z z z z ⋅=⋅ )0()()()3(22121≠=z z z z z 3)模的运算性质:① 121212||||||||||z z z z z z -≤±≤+;② 1212z z z z ⋅=⋅,可推广至有限多个,特别地n n z z= ③ 2121z z z z = ④ 22z z z z ==,特别地,当1=z 时,1=z z 即 1z z=. 11、复数的平方根:在复数集C 内,如果),,,(,R d c b a di c bi a ∈++满足:di c bi a +=+2)(, 则称bi a +是di c +的一个平方根.从运算结果可以看出,一个非零复数的平方根有两个,且互为相反数.12、复数的立方根 设i 2321+-=ω,则: 322331322(1) 1; (2) 10 ; (3) ;(4) 1,{}3.n n n nT ωωωωωωωωωωω++=++======即是的等比数列 13、实系数一元二次方程根的情况1)20(0)ax bx c a ++=≠实系数一元二次方程在复数集内根的情况:① 0 ,∆>当时有两个不相等的实根;② 0 ∆=当时,有两个相等的实根; ③ 0 ∆<当时,有两个共轭虚根.2)0∆<当时,2212112122Re ,||||b c x x x x x x x a a+==-⋅=== 3)120||x x a∆≥-=当时,;120||||22||b i b i x x a a a --∆<-=-=当时,12||x x -=综上:。

复数知识点归纳

复数知识点归纳

复数知识点归纳复数是高中数学中的一个重要概念,它既包含实数,又包含虚数,是实数和虚数的统一。

复数的概念和性质在数学的许多领域都有着广泛的应用,如在微积分、线性代数、信号处理等领域。

下面是对复数知识点较为详细的归纳和介绍。

一、复数的基本概念1. 复数的定义:复数是由实数和虚数构成的数,一般形式为a + bi,其中a 和b 都是实数,i 是虚数单位,满足i^2 = -1。

2. 复数的分类:-纯虚数:当a = 0,b ≠0 时,复数z = bi 称为纯虚数。

-实数:当b = 0 时,复数z = a 称为实数。

-非纯虚数:当a ≠0,b ≠0 时,复数z = a + bi 称为非纯虚数。

3. 复数的几何意义:复数可以表示为复平面上的点,实部表示点在x 轴上的位置,虚部表示点在y 轴上的位置。

二、复数的四则运算1. 加法:两个复数相加,实部相加,虚部相加,即(a + bi) + (c + di) = (a + c) + (b + d)i。

2. 减法:两个复数相减,实部相减,虚部相减,即(a + bi) - (c + di) = (a - c) + (b - d)i。

3. 乘法:两个复数相乘,实部乘实部,虚部乘虚部,实部加虚部的乘积,即(a + bi)(c + di) = (ac - bd) + (ad + bc)i。

4. 除法:两个复数相除,先乘以共轭复数,即(a + bi)/(c + di) = (ac + bd)/(c^2 + d^2) + (bc -ad)/(c^2 + d^2)i。

三、复数的特殊性质1. 复数的模:复数z = a + bi 的模定义为|z| = √(a^2 + b^2),表示复数z 在复平面上到原点的距离。

2. 复数的共轭:复数z = a + bi 的共轭复数为z 的实部不变,虚部变号,即z 的共轭复数为a - bi。

3. 复数的乘方和开方:复数乘方遵循实数乘方规则,即(a + bi)^n = (a^n + n*a^(n-1)*bi) + ... + b^n*i^(n-1)。

复数知识点总结

复数知识点总结

复数知识点总结在数学的领域中,复数是一个非常重要的概念。

它不仅在理论上丰富了数学的体系,而且在实际应用中,如物理学、工程学等领域,都发挥着不可或缺的作用。

接下来,让我们一起深入了解复数的相关知识。

一、复数的定义复数是指形如\(a + bi\)的数,其中\(a\)和\(b\)均为实数,\(i\)是虚数单位,满足\(i^2 =-1\)。

\(a\)被称为实部,记作\(Re(z)\);\(b\)被称为虚部,记作\(Im(z)\)。

例如,\(3 + 2i\)就是一个复数,其中\(3\)是实部,\(2\)是虚部。

二、复数的表示形式1、代数形式就是我们刚刚提到的\(a + bi\),这是最常见也是最基本的表示形式。

2、几何形式在平面直角坐标系中,以\(x\)轴为实轴,\(y\)轴为虚轴,复数\(a + bi\)可以用坐标\((a, b)\)来表示。

这样,复数就与平面上的点建立了一一对应的关系。

3、三角形式复数\(z = a + bi\)可以表示为\(z =r(cosθ +isinθ)\),其中\(r =\sqrt{a^2 + b^2}\),\(tanθ =\frac{b}{a}\)。

4、指数形式根据欧拉公式\(e^{iθ} =cosθ +isinθ\),复数还可以表示为\(z = re^{iθ}\)。

三、复数的运算1、加法和减法两个复数\(z_1 = a_1 + b_1i\),\(z_2 = a_2 + b_2i\)的和差为:\(z_1 ± z_2 =(a_1 ± a_2) +(b_1 ± b_2)i\)2、乘法\(z_1 \times z_2 =(a_1 + b_1i) \times (a_2 + b_2i)\)\\begin{align}&=a_1a_2 + a_1b_2i + a_2b_1i + b_1b_2i^2\\&=(a_1a_2 b_1b_2) +(a_1b_2 + a_2b_1)i\end{align}\3、除法\\frac{z_1}{z_2}=\frac{a_1 + b_1i}{a_2 + b_2i}=\frac{(a_1 + b_1i)(a_2 b_2i)}{(a_2 + b_2i)(a_2 b_2i)}\\\begin{align}&=\frac{a_1a_2 + b_1b_2 +(a_2b_1 a_1b_2)i}{a_2^2 +b_2^2}\\&=\frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} +\frac{a_2b_1 a_1b_2}{a_2^2 + b_2^2}i\end{align}\四、共轭复数两个实部相等,虚部互为相反数的复数互为共轭复数。

数学总结复数知识点

数学总结复数知识点

数学总结复数知识点一、复数的定义复数是由实部和虚部组成的数,一般表示为z=a+bi,其中a和b是实数,i是虚数单位,满足i^2=-1。

实部a和虚部b分别对应复数z在复数平面上的横坐标和纵坐标,可以用复平面上的点来表示复数。

在复数平面上,复数z=a+bi对应的点的坐标就是(a,b)。

复数的实部和虚部也可以通过复数的共轭来表示,复数z=a+bi的共轭是z=a-bi,它们是关于实轴对称的,即如果z=a+bi在复平面上的坐标为(a,b),那么它的共轭z=a-bi的坐标就是(a,-b)。

二、复数的基本运算1. 复数的加法和减法复数的加法和减法与实数的加法和减法类似,实部和虚部分别相加或相减即可。

例如,要计算复数z1=a1+b1i和z2=a2+b2i的和z=z1+z2,只需要将它们的实部和虚部分别相加,即z=(a1+a2)+(b1+b2)i;要计算它们的差,也只需要将它们的实部和虚部分别相减。

2. 复数的乘法和除法复数的乘法和除法则需要借助复数的共轭来进行。

复数z1=a1+b1i和z2=a2+b2i的乘积z=z1*z2可以表示为z=(a1a2-b1b2)+(a1b2+a2b1)i,可以通过这个公式来进行计算;复数的除法z=z1/z2可以表示为z=(a1a2+b1b2)/(a2^2+b2^2)+((a2b1-a1b2)/(a2^2+b2^2))i,也可以通过这个公式来进行计算。

3. 模和幅角复数z=a+bi的模|z|定义为z与原点之间的距离,可以表示为|z|=sqrt(a^2+b^2);复数的幅角arg(z)定义为z与正实轴之间的角度,通常取值范围为(-π,π]。

可以通过模和幅角来表示复数z的极坐标形式z=r(cosθ+isinθ),其中r=|z|,θ=arg(z)。

三、复数的代数运算复数的代数运算包括共轭、模、幅角等操作,用来求解复数的某些特定性质,也是解决实际问题时常常用到的操作。

1. 共轭已经在前面介绍过,复数z=a+bi的共轭是z=a-bi,它们是关于实轴对称的。

(完整版)复数知识点归纳

(完整版)复数知识点归纳

精心整理页脚内容 复数【知识梳理】一、复数的基本概念1、虚数单位的性质i 叫做虚数单位,并规定:①i 可与实数进行四则运算;②12-=i ;这样方程12-=x 就有解了,解为i x =2(1①a z =(2例题:注意:三、共轭复数bi a +与di c +共轭),,,(,R d c b a d b c a ∈-==⇔bi a z +=的共轭复数记作bi a z -=_,且22_b a z z +=⋅四、复数的几何意义1、复平面的概念建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。

显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。

精心整理页脚内容2、复数的几何意义复数bi a z +=与复平面内的点),(b a Z 及平面向量),(b a OZ =→),(R b a ∈是一一对应关系(复数的实质是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量)相等的向量表示同一个复数例题:(1)当实数m 为何值时,复平面内表示复数i m m m m z )145()158(22--++-=的点①位于第三象限;②位于直线x y =上(2)复平面内)6,2(=→AB ,已知→→AB CD //,求→CD 对应的复数3、复数的模:向量OZ 的模叫做复数bi a z +=的模,记作z 或bi a +,表示点),(b a 到原点的距离,即=z 22b a bi a +=+,z z =若bi a z +=1,di c z +=2,则21z z -表示),(b a 到),(d c 的距离,即2221)()(d b c a z z -+-=- 例题:已知i z +=2,求i z +-1的值 五、复数的运算(1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R①i d b c a di c bi a z z )()(21+++=+++=±②i ad bc bd ac di c bi a z z )()()()(21++-=+⋅+=⋅③2221)()()()())(()()(dc i ad bc bd ac di c di c di c bi a di c bi a z z +-++=-⋅+-+=++= (2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即=+,=-.六、常用结论(1)i ,12-=i ,i i -=3,14=i求n i ,只需将n 除以4看余数是几就是i 的几次例题:=675i(2)i i 2)1(2=+,i i 2)1(2-=-(3)1)2321(3=±-i ,1)2321(3-=±i 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)方程x 2+x +1=0没有解.( )..(2)复数z=a+b i(a,b∈R)中,虚部为b i.()(3)复数中有相等复数的概念,因此复数可以比较大小.()(4)原点是实轴与虚轴的交点.()(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.() 【考点自测】1.(2015·安徽)设i是虚数单位,则复数(1-i)(1+2i)等于()A.3+3iB.-1+3iC.3+iD.-1+i2.(2015·课标全国Ⅰ)已知复数z满足(z-1)i=1+i,则z等于()A.-2-iB.-2+iC.2-iD.2+i3.在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是()A.4+8iB.8+2iC.2+4iD.4+i4.已知a,b∈R,i是虚数单位.若a+i=2-b i,则(a+b i)2等于()A.3-4iB.3+4iC.4-3iD.4+3i5.已知(1+2i)=4+3i,则z=________.【题型分析】题型一复数的概念例1(1)设i是虚数单位.若复数z=a-(a∈R)是纯虚数,则a的值为()A.-3B.-1C.1D.3(2)已知a∈R,复数z1=2+a i,z2=1-2i,若为纯虚数,则复数的虚部为()A.1B.iC.D.0(3)若z1=(m2+m+1)+(m2+m-4)i(m∈R),z2=3-2i,则“m=1”是“z1=z2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件引申探究1.对本例(1)中的复数z,若|z|=,求a的值.2.在本例(2)中,若为实数,则a=________.思维升华解决复数概念问题的方法及注意事项..精心整理(1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a+b i(a,b∈R)的形式,以确定实部和虚部.(1)若复数z=(x2-1)+(x-1)i为纯虚数,则实数x的值为()A.-1B.0C.1D.-1或1(2)(2014·浙江)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+b i)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件题型二复数的运算命题点1复数的乘法运算例2(1)(2015·湖北)i为虚数单位,i607的共轭复数为()A.iB.-iC.1D.-1(2)(2015·北京)复数i(2-i)等于()A.1+2iB.1-2iC.-1+2iD.-1-2i命题点2复数的除法运算例3(1)(2015·湖南)已知=1+i(i为虚数单位),则复数z等于()A.1+iB.1-iC.-1+iD.-1-i(2)()6+=________.命题点3复数的运算与复数概念的综合问题例4(1)(2015·天津)i是虚数单位,若复数(1-2i)(a+i)是纯虚数,则实数a的值为________. (2)(2014·江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为________.命题点4复数的综合运算例5(1)(2014·安徽)设i是虚数单位,表示复数z的共轭复数.若z=1+i,则+i·等于()A.-2B.-2iC.2D.2i(2)若复数z满足(3-4i)z=|4+3i|,则z的虚部为()A.-4B.-C.4D.思维升华复数代数形式运算问题的常见类型及解题策略页脚内容..(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位i的看作一类同类项,不含i的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i的幂写成最简形式.(3)复数的运算与复数概念的综合题,先利用复数的运算法则化简,一般化为a+b i(a,b∈R)的形式,再结合相关定义解答.(4)复数的运算与复数几何意义的综合题.先利用复数的运算法则化简,一般化为a+b i(a,b∈R)的形式,再结合复数的几何意义解答.(5)复数的综合运算.分别运用复数的乘法、除法法则进行运算,要注意运算顺序,要先算乘除,后算加减,有括号要先算括号里面的.(1)(2015·山东)若复数z满足=i,其中i为虚数单位,则z等于()A.1-iB.1+iC.-1-iD.-1+i(2)2016=________.(3)+2016=________.题型三复数的几何意义例6(1)(2014·重庆)实部为-2,虚部为1的复数所对应的点位于复平面的()A.第一象限B.第二象限C.第三象限D.第四象限(2)△ABC的三个顶点对应的复数分别为z1,z2,z3,若复数z满足|z-z1|=|z-z2|=|z-z3|,则z对应的点为△ABC的()A.内心B.垂心C.重心D.外心思维升华因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.(1)如图,在复平面内,点A表示复数z,则图中表示z的共轭复数的点是()A.AB.BC.CD.D(2)已知z是复数,z+2i、均为实数(i为虚数单位),且复数(z+a i)2在复平面内对应的点在第一象限,求实数a的取值范围...精心整理页脚内容【思想与方法】解决复数问题的实数化思想典例 已知x ,y 为共轭复数,且(x +y )2-3xy i =4-6i ,求x ,y .思维点拨 (1)x ,y 为共轭复数,可用复数的基本形式表示出来;(2)利用复数相等,将复数问题转化为实数问题.温馨提醒 (1)复数问题要把握一点,即复数问题实数化,这是解决复数问题最基本的思想方法.(2)本题求解的关键是先把x 、y 用复数的基本形式表示出来,再用待定系数法求解.这是常用的数学方法.(3)1..2.复数z3.1.2.3.1.(2015·福建)若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( )A.3,-2B.3,2C.3,-3D.-1,42.设z =+i ,则|z |等于( )A.B.C.D.23.(2015·课标全国Ⅱ)若a 为实数,且(2+a i)(a -2i)=-4i ,则a 等于( )A.-1B.0C.1D.24.若i 为虚数单位,图中复平面内点Z 表示复数z ,则表示复数的点是( )..A.EB.FC.GD.H5.(2014·江西)是z的共轭复数,若z+=2,(z-)i=2(i为虚数单位),则z等于()A.1+iB.-1-iC.-1+iD.1-i6.(2015·江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为________.7.若=a+b i(a,b为实数,i为虚数单位),则a+b=________.8.复数(3+i)m-(2+i)对应的点在第三象限内,则实数m的取值范围是________.9.计算:(1);(2);(3)+;(4).10.复数z1=+(10-a2)i,z2=+(2a-5)i,若1+z2是实数,求实数a的值.【能力提升】11.复数z1,z2满足z1=m+(4-m2)i,z2=2cosθ+(λ+3sinθ)i(m,λ,θ∈R),并且z1=z2,则λ的取值范围是()A.[-1,1]B.C.D.12.设f(n)=n+n(n∈N*),则集合{f(n)}中元素的个数为()A.1B.2C.3D.无数个13.已知复数z=x+y i,且|z-2|=,则的最大值为________.14.设a∈R,若复数z=+在复平面内对应的点在直线x+y=0上,则a的值为____________.15.若1+i是关于x的实系数方程x2+bx+c=0的一个复数根,则b=________,c=________. 【巩固练习参考答案】1A.2.B.3.B.4.D.5.D.6..7.3.8.m<.9.解(1)==-1-3i.(2)====+i.(3)+=+=+=-1.(4)====--i.10.解1+z2=+(a2-10)i++(2a-5)i=+[(a2-10)+(2a-5)]i=+(a2+2a-15)i.∵1+z2是实数,∴a2+2a-15=0,解得a=-5或a=3.又(a+5)(a-1)≠0,∴a≠-5且a≠1,故a=3...精心整理11.解析由复数相等的充要条件可得化简得4-4cos2θ=λ+3sinθ,由此可得λ=-4cos2θ-3sinθ+4=-4(1-sin2θ)-3sinθ+4=4sin2θ-3sinθ=42-,因为sinθ∈[-1,1],所以4sin2θ-3sinθ∈.答案C12.解析f(n)=n+n=i n+(-i)n,f(1)=0,f(2)=-2,f(3)=0,f(4)=2,f(5)=0,…∴集合中共有3个元素.答案 C13.解析∵|z-2|==,∴(x-2)2+y2=3.由图可知max==.14.解析∵z=+=+i,∴依题意得+=0,∴a=0.15.解析∵实系数一元二次方程x2+bx+c=0的一个虚根为1+i,∴其共轭复数1-i也是方程的根.由根与系数的关系知,∴b=-2,c=3.页脚内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A a1 jb1 r11
B a2 jb2 r22
A B r11 r22 r1e j1 r2e j2 r1 r2e j12
A B r1 r21 2
乘法:模相乘,角相加。
A r11 B r22
r1e j1 r2e j2
r1 e j12 r2
A B
r1 r2
1
2
除法:模相除,角相减。
A1 的辅角
2
=
arctan
b a
=
arctan
4 3
=126.9
在第四象限
A1 的极坐标式 A2 5126.9
四个坐标方向
j
1 10 1 1180 j 190 j 1 90
1
j2 1
4.4.2 复数的运算法则
加减运算:
若 A a1 jb1 r11
B a2 jb2 r22
1
+1
2 101 1 2 +1
P2(2, 2) 2
(b)
j
b
P
r
0
a +1
(c)
复平面
r a2 b2 arctanb
a
P1 1 j2 P2 2 j2
P a jb 代数式
P r cos jr sin
三角函数式
P r 极坐标式
复数表示法:
代数式 A a jb
代数式→极坐标式
练习:
A 3 j4 553.1
B 8 j6 10 36.9
A B 3 j4 8 j6 11 j2 11.18 10.3
A B 3 j4 (8 j6) 5 j10 11.18116.57
A B 553.1 10 36.9 5016.2
A B
553.1 A 10 36.9B
三角函数式 A r cos jr sin
尤拉公式:e j cos j sin
指数式 A r(cos j sin) re j
A re j
r a2 b2
arctan
b a
A
r
相量图
1
极坐标式→代数式
a=r cos b r sin
极坐标式 A r
A a jb r cos j r sin re j r
例:写出下列复数的极坐标式
(1)A1 3 j4 (2) A2 3 j4 解:(1) A1 的模
r1 a2 b2 (3)2 42 5
A1 的辅角
1
=
arctan
b a
=
arctan
4 3
=
36.9
在第二象限
A1 的极坐标式 A1 5 36.9
(2) A2 的模 r2 a2 b2 5
则 A B a1 jb1 a2 jb2 (a1 a2 ) j(b1 b2 ) 加减用代 A B a1 jb1 (a2 jb2 ) (a1 a2 ) j(b1 b2 ) 数式运算
加减也可用图解法 符合平行四边形法则
A
AB
A B
B 1
B
乘除运算——用极坐标型或指数型形式
6.72870.16o
1
B
0.590A B
j0.5
练习1: A 547o B 10 25o 求 Z A B
解: Z (3.41 j3.657) (9.063 j4.226)
12.47 j0.569
A
12.48 2.61o
A B
练习2: Z = (17 j9) (4 j6)
20 j5
解:
Z
19.2427.9o 7.21156.3o 20.6214.04obr Nhomakorabeaa
A
1
= arctan b
a
复数的辅角 取值在正180度到负180度之间
三角函数式: A r cos jr sin 其中: a r cos
b r sin
一个复数也可以用复平面上的点来表示,还可以用复平 面上从坐标原点指向该点的有向线段来表示。
j
2 1
2 101 1 2 2
(a)
j
2 P1 (1,2)
第4章 正弦交流电的基本概念
4.1 周期交流电的概念与产生 4.2 正弦交流电的三要素 4.3 正弦交流电的有效值和平均值
4.4 复数的基本知识 √
4.5 正弦交流量的相量表示法
4.4 复数的基本知识
4.4.1 复数的表示
j
设A为复数:
j2 1
代数式: A a jb
实部
虚部
如图: r a2 b2 复数的模
相关文档
最新文档