德州仪器

合集下载

德州仪器简介

德州仪器简介

德州仪器简介德州仪器公司(Texas Instruments,简称TI)成立于1930年。

TI设计并生产模拟器件、数字信号处理(DSP) 以及微控制器(MCU) 半导体芯片。

TI 是模拟器件解决方案和数字嵌入及应用处理半导体解决方案领先的半导体供应商。

总部位于美国得克萨斯州的达拉斯,并在25多个国家设有制造、设计或销售机构。

TI2008年营业额为125亿美元。

在财富(Fortune) 500强企业中名列第215位。

TI自1986年进入中国大陆以来,一直高度重视在中国市场的发展。

经过公司董事会批准的TI 中国发展战略于1996年正式实施。

此战略的目标是帮助中国企业建立合理的电子产品结构,提高高科技产品的设计创新能力,支持中国高科技企业走向世界。

为贯彻此战略,TI在北京、上海、深圳、成都、苏州、南京、西安、杭州、武汉、广州、青岛、厦门等地设立了分公司,并组建了强大的技术支持队伍,提供许多独特的产品及技术服务,包括DSP和模拟器件产品、硬件和软件开发工具以及设计咨询服务等。

TI与众多国内知名厂商紧密合作,帮助他们取得了令人瞩目的成果,包括推出无线通信、宽带接入及其它数字信息等众多产品。

我们的成功正是企业文化的完美体现:鼓励创新、磨练意志,而这正是在激烈竞争中占尽先机所必不可少的品质。

同时,TI 还勇于承担社会责任、积极关注公民思想、努力建设高道德标准、大力支持教育事业,并在研究与开发方面发挥领头作用,从而成为公司融入社会、服务社会的典范。

如欲了解更多信息,敬请登录全球网站/,或中文网站/。

2011德州仪器校园招聘半导体行业和中国市场蓬勃发展的今天,每一滴新鲜血液的注入都将为我们的成功带来推波助澜的效应。

公司对火热的中国半导体市场也作出积极回应。

在结束了今年预定的校园招聘后,公司决定继续扩大中国销售和研发团队。

新一轮的简历投递接收正如火如荼的展开,请各位同学抓紧时间,于12月12日前投递简历!谢谢!TI成就未来!请登陆以下网址在线投递简历:/ti关于简历投递以及其它招聘相关问题同学们可以投递邮件到邮箱:TI2011CAMPUS@,相关工作人员会尽量解答,谢谢!招聘职位:Technical Sales Associate/助理销售工程师(扩招)Sell all TI semiconductor products (Analog, Embedded Processing, etc.)Working Location: South Region(Shenzhen, Xiamen, Zhuhai, Dongguan…), Shenyang, Qingdao, Xi’anPrimary Responsibilities:-Builds customer relationships-Communicates effectively and projects credibility-Understands customer needs (business/technical), creates/proposes compellingsolutions, and influences decision making-Drives for results-Manages TI's interface and strategy at a particular account or set of accounts培训计划:一年培训,包括一个月的美国总部培训专业要求:不限专业,具有微电子,电子,电气,自动化,信息,机械电子等相关专业的知识背景更佳。

texas instruments 尾缀

texas instruments 尾缀

texas instruments 尾缀摘要:1.概述:什么是德州仪器(Texas Instruments)及其尾缀2.尾缀的作用:如何在文件名中使用尾缀3.常见尾缀:列举一些常用的德州仪器尾缀4.使用尾缀的好处:解释使用尾缀的优势5.结论:总结德州仪器尾缀的重要性正文:1.概述:什么是德州仪器(Texas Instruments)及其尾缀德州仪器(Texas Instruments,简称TI)是一家全球领先的半导体公司,成立于1930 年。

它致力于为客户提供各种创新的半导体技术,包括处理器、微控制器、传感器等。

在日常工作中,我们可能会接触到一些TI 相关的文件,如数据表、应用笔记等。

在这些文件名中,通常会出现一个代表德州仪器的尾缀。

2.尾缀的作用:如何在文件名中使用尾缀在文件名中使用尾缀可以帮助我们快速识别文件的来源和内容。

对于德州仪器的相关文件,通常会在文件名后添加一个代表公司或产品系列的尾缀。

例如,对于一个关于TI 处理器的数据表,文件名可能为“处理器数据表.pdf”。

通过这个尾缀,我们可以清楚地知道这个数据表是关于TI 处理器的。

3.常见尾缀:列举一些常用的德州仪器尾缀在实际应用中,德州仪器的尾缀有很多种。

以下是一些常见的尾缀:-.TI:代表德州仪器公司,可用于任何TI 相关的文件-.TMS:代表德州仪器的某个产品系列,如TMS320 系列DSP(数字信号处理器)-.TSP:代表德州仪器的软件开发工具,如TSP5x 系列编程器-.TIG:代表德州仪器的图形库,如TIG100 系列LCD 驱动器4.使用尾缀的好处:解释使用尾缀的优势使用尾缀有以下好处:- 方便识别:通过尾缀,我们可以快速判断文件的内容和来源,节省查找和筛选的时间- 提高效率:在处理大量文件时,使用尾缀可以提高我们的工作效率,避免因文件名混淆而导致的错误- 便于管理:对于德州仪器相关的文件,使用尾缀有助于我们进行分类和管理,使得文件更加井然有序5.结论:总结德州仪器尾缀的重要性总之,德州仪器尾缀在文件名中起着举足轻重的作用。

汽车芯片原材料供应商

汽车芯片原材料供应商

汽车芯片原材料供应商随着汽车电子化的快速发展,汽车芯片作为汽车电子系统的核心组成部分,越来越受到市场的关注。

而汽车芯片的生产离不开各种原材料的供应,本文将介绍一些常见的汽车芯片原材料供应商。

1. 德州仪器(Texas Instruments)德州仪器是全球领先的模拟和数字半导体解决方案供应商之一,也是汽车芯片原材料供应商中的重要一员。

德州仪器提供多种用于汽车芯片制造的原材料,如硅片、金属材料和封装材料等。

该公司的产品品质稳定可靠,广泛应用于汽车电子系统中。

2. 英飞凌(Infineon Technologies)英飞凌是一家总部位于德国的半导体公司,也是汽车芯片原材料供应商中的重要参与者。

英飞凌提供多种汽车芯片制造所需的原材料,包括碳化硅、氮化镓、硅和铝等。

该公司的产品在汽车电子领域具有广泛的应用,为汽车电子系统的高性能和高可靠性提供了支持。

3. 美光科技(Micron Technology)美光科技是一家总部位于美国的半导体公司,在汽车芯片原材料供应方面也有一定的实力。

美光科技提供多种用于汽车芯片制造的原材料,如硅片、金属材料和封装材料等。

该公司的产品具有优异的性能和可靠性,广泛应用于汽车电子系统中。

4. 中芯国际(SMIC)中芯国际是中国大陆最大的集成电路制造企业之一,也是汽车芯片原材料供应商中的重要参与者。

中芯国际提供多种汽车芯片制造所需的原材料,如硅片、金属材料和封装材料等。

该公司凭借高品质的产品和可靠的供应链服务,赢得了众多汽车芯片制造商的青睐。

5. 台积电(TSMC)台积电是全球领先的集成电路制造企业之一,也是汽车芯片原材料供应商中的重要参与者。

台积电提供多种用于汽车芯片制造的原材料,如硅片、金属材料和封装材料等。

该公司凭借卓越的技术实力和高质量的产品,为汽车芯片制造商提供可靠的原材料供应。

总结起来,随着汽车电子化的发展,汽车芯片的需求不断增加,汽车芯片原材料供应商的地位也日益重要。

德州仪器DTA144E D数字三极管(BRT)使用说明书

德州仪器DTA144E D数字三极管(BRT)使用说明书

MUN2113, MMUN2113L,MUN5113, DTA144EE,DTA144EM3, NSBA144EF3Digital Transistors (BRT)R1 = 47 k W , R2 = 47 k WPNP Transistors with Monolithic Bias Resistor NetworkThis series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base −emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.Features•Simplifies Circuit Design •Reduces Board Space•Reduces Component Count•S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable•These Devices are Pb −Free, Halogen Free/BFR Free and are RoHS CompliantMAXIMUM RATINGS (T A = 25°C)RatingSymbol Max Unit Collector −Base Voltage V CBO 50Vdc Collector −Emitter Voltage V CEO 50Vdc Collector Current − Continuous I C 100mAdcInput Forward Voltage V IN(fwd)40Vdc Input Reverse VoltageV IN(rev)10VdcStresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not beassumed, damage may occur and reliability may be affected.PIN 3(OUTPUT)PIN 2EMITTER (GROUND)PIN 1BASE See detailed ordering, marking, and shipping information inORDERING INFORMATION SC −75CASE 463STYLE 1MARKING DIAGRAMSXXX =Specific Device Code M=Date Code*G=Pb −Free Package(Note: Microdot may be in either location)*Date Code orientation may vary depending up-on manufacturing location.SC −59CASE 318DSTYLE 1SOT −23CASE 318STYLE 6SC −70/SOT −323CASE 419STYLE 3SOT −723CASE 631AA STYLE 1SOT −1123CASE 524AA STYLE 1XX M G G 11XXX M GG XX M G G 1XX M 1X M 1PIN CONNECTIONSTable 1. ORDERING INFORMATIONDevicePart MarkingPackage Shipping †MUN2113T1G, SMUN2113T1G*6C SC −59(Pb −Free)3000 / Tape & Reel MMUN2113LT1G, SMMUN2113LT1G*A6C SOT −23(Pb −Free)3000 / Tape & Reel MMUN2113LT3G, NSVMMUN2113LT3G*A6C SOT −23(Pb −Free)10000 / Tape & Reel MUN5113T1G, SMUN5113T1G*6C SC −70/SOT −323(Pb −Free)3000 / Tape & Reel MUN5113T3G6C SC−70/SOT −323(Pb −Free)10000 / Tape & Reel DTA144EET1G, NSVDTA144EET1G*6C SC −75(Pb −Free)3000 / Tape & Reel DTA144EM3T5G 6C SOT −723(Pb −Free)8000 / Tape & Reel NSBA144EF3T5GESOT −1123(Pb −Free)8000 / Tape & Reel†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.Figure 1. Derating CurveAMBIENT TEMPERATURE (°C)P D , P O W E R D I S S I P A T I O N (m W )(1) SC −75 and SC −70/SOT −323; Minimum Pad (2) SC −59; Minimum Pad (3) SOT −23; Minimum Pad(4) SOT −1123; 100 mm 2, 1 oz. copper trace (5) SOT −723; Minimum PadTHERMAL CHARACTERISTICS (SC−59) (MUN2113)Total Device DissipationT A = 25°C(Note 1)(Note 2)Derate above 25°C(Note 1)(Note 2)P D2303381.82.7mWmW/°CThermal Resistance,(Note 1) Junction to Ambient(Note 2)R q JA540370°C/WThermal Resistance,(Note 1) Junction to Lead(Note 2)R q JL264287°C/WJunction and Storage Temperature Range T J, T stg−55 to +150°C THERMAL CHARACTERISTICS (SOT−23) (MMUN2113L)Total Device DissipationT A = 25°C(Note 1)(Note 2)Derate above 25°C(Note 1)(Note 2)P D2464002.03.2mWmW/°CThermal Resistance,(Note 1) Junction to Ambient(Note 2)R q JA508311°C/WThermal Resistance,(Note 1) Junction to Lead(Note 2)R q JL174208°C/WJunction and Storage Temperature Range T J, T stg−55 to +150°C THERMAL CHARACTERISTICS (SC−70/SOT−323) (MUN5113)Total Device DissipationT A = 25°C(Note 1)(Note 2)Derate above 25°C(Note 1)(Note 2)P D2023101.62.5mWmW/°CThermal Resistance,(Note 1) Junction to Ambient(Note 2)R q JA618403°C/WThermal Resistance,(Note 1) Junction to Lead(Note 2)R q JL280332°C/WJunction and Storage Temperature Range T J, T stg−55 to +150°C THERMAL CHARACTERISTICS (SC−75) (DTA144EE)Total Device DissipationT A = 25°C(Note 1)(Note 2)Derate above 25°C(Note 1)(Note 2)P D2003001.62.4mWmW/°CThermal Resistance,(Note 1) Junction to Ambient(Note 2)R q JA600400°C/WJunction and Storage Temperature Range T J, T stg−55 to +150°C THERMAL CHARACTERISTICS (SOT−723) (DTA144EM3)Total Device DissipationT A = 25°C(Note 1)(Note 2)Derate above 25°C(Note 1)(Note 2)P D2606002.04.8mWmW/°CThermal Resistance,(Note 1) Junction to Ambient(Note 2)R q JA480205°C/WJunction and Storage Temperature Range T J, T stg−55 to +150°C1.FR−4 @ Minimum Pad.2.FR−*******.0InchPad.3.FR−4 @ 100 mm2, 1 oz. copper traces, still air.4.FR−4 @ 500 mm2, 1 oz. copper traces, still air.THERMAL CHARACTERISTICS (SOT−1123) (NSBA144EF3)Total Device DissipationT A = 25°C(Note 3)(Note 4)Derate above 25°C(Note 3)(Note 4)P D2542972.02.4mWmW/°CThermal Resistance,(Note 3) Junction to Ambient(Note 4)R q JA493421°C/WThermal Resistance, Junction to Lead(Note 3)R q JL193°C/W Junction and Storage Temperature Range T J, T stg−55 to +150°C1.FR−4 @ Minimum Pad.2.FR−*******.0InchPad.3.FR−4 @ 100 mm2, 1 oz. copper traces, still air.4.FR−4 @ 500 mm2, 1 oz. copper traces, still air.Table 3. ELECTRICAL CHARACTERISTICS (T A = 25°C, unless otherwise noted)Characteristic Symbol Min Typ Max Unit OFF CHARACTERISTICSCollector−Base Cutoff Current (V CB = 50 V, I E = 0)I CBO−−100nAdcCollector−Emitter Cutoff Current (V CE = 50 V, I B = 0)I CEO−−500nAdcEmitter−Base Cutoff Current (V EB = 6.0 V, I C = 0)I EBO−−0.1mAdcCollector−Base Breakdown Voltage (I C = 10 m A, I E = 0)V(BR)CBO50−−VdcCollector−Emitter Breakdown Voltage (Note 5) (I C = 2.0 mA, I B = 0)V(BR)CEO50−−VdcON CHARACTERISTICSDC Current Gain (Note 5) (I C = 5.0 mA, V CE = 10 V)h FE80140−Collector−Emitter Saturation Voltage (Note 5) (I C = 10 mA, I B = 0.3 mA)V CE(sat)−−0.25VdcInput Voltage (off)(V CE = 5.0 V, I C = 100 m A)V i(off)− 1.20.8VdcInput Voltage (on)(V CE = 0.3 V, I C = 2.0 mA)V i(on)3.0 1.6−VdcOutput Voltage (on)(V CC = 5.0 V, V B = 3.5 V, R L = 1.0 k W)V OL−−0.2VdcOutput Voltage (off)(V CC = 5.0 V, V B = 0.5 V, R L = 1.0 k W)V OH4.9−−VdcInput Resistor R132.94761.1k W Resistor Ratio R1/R20.8 1.0 1.2Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.5.Pulsed Condition: Pulse Width = 300 msec, Duty Cycle ≤ 2%.TYPICAL CHARACTERISTICSMUN2113, MMUN2113L, MUN5113, DTA144EE, DTA144EM3Figure 2. V CE(sat) vs. I C1001010.1I C , COLLECTOR CURRENT (mA)Figure 3. DC Current GainFigure 4. Output Capacitance 1001010.10.010.001V in , INPUT VOLTAGE (V)Figure 5. Output Current vs. Input Voltage100010010I C , COLLECTOR CURRENT (mA)Figure 6. Input Voltage vs. Output CurrentI C , COLLECTOR CURRENT (mA)10.10.01V R , REVERSE VOLTAGE (V)C o b , O U T P U T C A P A C I T A N C E (p F )V i n , I N P U T V O L T A G E (V )V C E (s a t ), C O L L E C T O R −E M I T T E R V O L T A G E (V )I C , C O L L E C T O R C U R R E N T (m A )h F E , C U R R E N T G A I NTYPICAL CHARACTERISTICS − NSBA144EF3Figure 7. V CE(sat) vs. I CFigure 8. DC Current GainI C , COLLECTOR CURRENT (mA)I C , COLLECTOR CURRENT (mA)0.010.11Figure 9. Output CapacitanceFigure 10. Output Current vs. Input VoltageV R , REVERSE VOLTAGE (V)V in , INPUT VOLTAGE (V)Figure 11. Input Voltage vs. Output CurrentI C , COLLECTOR CURRENT (mA)V C E (s a t ), C O L L E C T O R −E M I T T E R V O L T A G E (V )h F E , D C C U R R E N T G A I N C o b , O U T P U T C A P A C I T A N C E (p F )I C , C O L L E C T O R C U R R E N T (m A )V i n , I N P U T V O L T A G E (V )SOT −23 (TO −236)CASE 318−08ISSUE ASDATE 30 JAN 2018SCALE 4:11XXXM G G XXX = Specific Device Code M = Date Code G = Pb −Free Package*This information is generic. Please refer to device data sheet for actual part marking.Pb −Free indicator, “G” or microdot “ G ”,may or may not be present.GENERICMARKING DIAGRAM*NOTES:1.DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.2.CONTROLLING DIMENSION: MILLIMETERS.3.MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.4.DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,PROTRUSIONS, OR GATE BURRS.SOLDERING FOOTPRINTDIM A MIN NOM MAX MINMILLIMETERS0.89 1.00 1.110.035INCHES A10.010.060.100.000b 0.370.440.500.015c 0.080.140.200.003D 2.80 2.90 3.040.110E 1.20 1.30 1.400.047e 1.78 1.90 2.040.070L 0.300.430.550.0120.0390.0440.0020.0040.0170.0200.0060.0080.1140.1200.0510.0550.0750.0800.0170.022NOM MAX L1STYLE 22:PIN 1.RETURN2.OUTPUT3.INPUT STYLE 6:PIN 1.BASE2.EMITTER3.COLLECTOR STYLE 7:PIN 1.EMITTER2.BASE3.COLLECTORSTYLE 8:PIN 1.ANODE2.NO CONNECTION3.CATHODESTYLE 9:PIN 1.ANODE2.ANODE3.CATHODE STYLE 10:PIN 1.DRAIN2.SOURCE3.GATE STYLE 11:PIN 1.ANODE 2.CATHODE 3.CATHODE −ANODE STYLE 12:PIN 1.CATHODE2.CATHODE3.ANODE STYLE 13:PIN 1.SOURCE2.DRAIN3.GATESTYLE 14:PIN 1.CATHODE2.GATE3.ANODESTYLE 15:PIN 1.GATE2.CATHODE3.ANODE STYLE 16:PIN 1.ANODE2.CATHODE3.CATHODE STYLE 17:PIN 1.NO CONNECTION2.ANODE3.CATHODE STYLE 18:PIN 1.NO CONNECTION 2.CATHODE 3.ANODE STYLE 19:PIN 1.CATHODE 2.ANODE 3.CATHODE −ANODE STYLE 23:PIN 1.ANODE2.ANODE3.CATHODESTYLE 20:PIN 1.CATHODE2.ANODE3.GATE STYLE 21:PIN 1.GATE2.SOURCE3.DRAIN STYLE 1 THRU 5:CANCELLEDSTYLE 24:PIN 1.GATE2.DRAIN3.SOURCESTYLE 25:PIN 1.ANODE2.CATHODE3.GATESTYLE 26:PIN 1.CATHODE2.ANODE3.NO CONNECTIONSTYLE 27:PIN 1.CATHODE2.CATHODE3.CATHODE2.10 2.40 2.640.0830.0940.104H E 0.350.540.690.0140.0210.027c0−−−100−−−10T°°°°END VIEWDIMENSIONS: MILLIMETERS3X3XRECOMMENDED STYLE 28:PIN 1.ANODE2.ANODE3.ANODESC −59CASE 318D −04ISSUE HDATE 28 JUN 2012SCALE 2:1STYLE 3:PIN 1.ANODE2.ANODE3.CATHODESTYLE 1:PIN 1.BASE2.EMITTER3.COLLECTORSTYLE 2:PIN 1.ANODE2.N.C.3.CATHODESTYLE 4:PIN 1.CATHODE2.N.C.3.ANODE STYLE 5:PIN 1.CATHODE2.CATHODE3.ANODE STYLE 6:PIN 1.ANODE2.CATHODE3.ANODE/CATHODENOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: MILLIMETER.ǒmm inchesǓXXX M GG XXX = Specific Device Code M = Date CodeG= Pb −Free Package*GENERICMARKING DIAGRAM*This information is generic. Please refer todevice data sheet for actual part marking.Pb −Free indicator, “G” or microdot “ G ”,may or may not be present.1*For additional information on our Pb −Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*DIM A MIN NOM MAX MINMILLIMETERS1.00 1.15 1.300.039INCHES A10.010.060.100.001b 0.350.430.500.014c 0.090.140.180.003D2.70 2.903.100.106E 1.30 1.50 1.700.051e 1.70 1.90 2.100.067L 0.200.400.600.0082.502.803.000.0990.0450.0510.0020.0040.0170.0200.0050.0070.1140.1220.0590.0670.0750.0830.0160.0240.1100.118NOM MAX H E(*Note: Microdot may be in either location)SC −70 (SOT −323)CASE 419ISSUE PDATE 07 OCT 2021SCALE 4:1STYLE 3:PIN 1.BASE2.EMITTER3.COLLECTOR STYLE 4:PIN 1.CATHODE2.CATHODE3.ANODE STYLE 2:PIN 1.ANODE2.N.C.3.CATHODE STYLE 1:CANCELLEDSTYLE 5:PIN 1.ANODE 2.ANODE 3.CATHODE STYLE 6:PIN 1.EMITTER 2.BASE3.COLLECTORSTYLE 7:PIN 1.BASE 2.EMITTER 3.COLLECTORSTYLE 8:PIN 1.GATE 2.SOURCE 3.DRAINSTYLE 9:PIN 1.ANODE 2.CATHODE3.CATHODE-ANODESTYLE 10:PIN 1.CATHODE 2.ANODE3.ANODE-CATHODEXX M G G XX = Specific Device Code M = Date CodeG= Pb −Free PackageGENERICMARKING DIAGRAM1STYLE 11:PIN 1.CATHODE2.CATHODE3.CATHODE*This information is generic. Please refer to device data sheet for actual part marking.Pb −Free indicator, “G” or microdot “G ”, may or may not be present. Some products maynot follow the Generic Marking.SC −75/SOT −416CASE 463−01ISSUE GDATE 07 AUG 2015SCALE 4:1NOTES:1.DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.2.CONTROLLING DIMENSION: MILLIMETER.STYLE 1:PIN 1.BASE2.EMITTER3.COLLECTOR STYLE 2:PIN 1.ANODE2.N/C3.CATHODE STYLE 3:PIN 1.ANODE2.ANODE3.CATHODESTYLE 4:PIN 1.CATHODE2.CATHODE3.ANODEXX = Specific Device Code M = Date Code G = Pb −Free PackageSTYLE 5:PIN 1.GATE2.SOURCE3.DRAINDIM MIN NOM MAX MILLIMETERS A 0.700.800.90A10.000.050.10b C 0.100.150.25D 1.55 1.60 1.65E e 1.00 BSC 0.0270.0310.0350.0000.0020.0040.0040.0060.0100.0610.0630.0650.04 BSCMIN NOM MAX INCHES0.150.200.300.0060.0080.012*This information is generic. Please refer to device data sheet for actual part marking.Pb −Free indicator, “G” or microdot “ G ”,may or may not be present.GENERICMARKING DIAGRAM*H EL 0.100.150.201.50 1.60 1.700.0040.0060.0080.0600.0630.0670.700.800.900.0270.0310.035ǒmm inchesǓSCALE 10:1*For additional information on our Pb −Free strategy and solderingdetails, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*SOT −1123CASE 524AA ISSUE CDATE 29 NOV 2011SCALE 8:1NOTES:1.DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.2.CONTROLLING DIMENSION: MILLIMETERS.3.MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.4.DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.GENERICMARKING DIAGRAM*X = Specific Device Code M= Date Code*This information is generic. Please refer to device data sheet for actual part marking.Pb −Free indicator, “G” or microdot “ G ”,may or may not be present.DIM MIN MAXMILLIMETERS A 0.340.40b 0.150.28c 0.070.17D 0.750.85E 0.550.650.95 1.05L 0.185 REF H E cA*For additional information on our Pb −Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*X Me b10.100.20STYLE 1:PIN 1.BASE2.EMITTER3.COLLECTOR STYLE 2:PIN 1.ANODE2.N/C3.CATHODE STYLE 3:PIN 1.ANODE2.ANODE3.CATHODE STYLE 4:PIN 1.CATHODE2.CATHODE3.ANODE STYLE 5:PIN 1.GATE2.SOURCE3.DRAIN0.350.40TOP VIEWSIDE VIEWBOTTOM VIEW DIMENSIONS: MILLIMETERS0.26OUTLINEL20.050.15SOT −723CASE 631AA −01ISSUE DDATE 10 AUG 2009DIMMIN NOM MAX MILLIMETERS A 0.450.500.55b 0.150.210.27b10.250.310.37C 0.070.120.17D 1.15 1.20 1.25E 0.750.800.85e 0.40 BSC H 1.15 1.20 1.25L E NOTES:1.DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.2.CONTROLLING DIMENSION: MILLIMETERS.3.MAXIMUM LEAD THICKNESS INCLUDES LEADFINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.4.DIMENSIONS D AND E DO NOT INCLUDE MOLDFLASH, PROTRUSIONS OR GATE BURRS.eLXX = Specific Device Code M= Date CodeGENERICMARKING DIAGRAM*SCALE 4:1XX M STYLE 1:PIN 1.BASE2.EMITTER3.COLLECTOR STYLE 2:PIN 1.ANODE2.N/C3.CATHODESTYLE 3:PIN 1.ANODE2.ANODE3.CATHODESTYLE 4:PIN 1.CATHODE2.CATHODE3.ANODE1*This information is generic. Please refer to device data sheet for actual part marking. Pb −Free indicator, “G”, may or not be present.*For additional information on our Pb −Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.SOLDERING FOOTPRINT*STYLE 5:PIN 1.GATE2.SOURCE3.DRAINL20.150.200.250.29 REF 3X3X2XBOTTOM VIEWSIDE VIEWRECOMMENDEDDIMENSIONS: MILLIMETERS3XPUBLICATION ORDERING INFORMATIONTECHNICAL SUPPORTLITERATURE FULFILLMENT:。

德州仪器 笔试 (4)

德州仪器 笔试 (4)

德州仪器笔试1. 德州仪器的背景和历史德州仪器(Texas Instruments,简称TI)是一家全球知名的半导体设计和制造公司,总部位于美国德克萨斯州达拉斯。

该公司成立于1930年,最初是一家电子设备制造商,主要生产电子仪器和电子元器件。

随着半导体技术的发展,德州仪器于1954年开始转向半导体行业,并成为全球领先的半导体解决方案供应商之一。

德州仪器在半导体领域的突破主要集中在模拟和混合信号技术方面。

该公司开发了许多创新的模拟和混合信号解决方案,为各种应用领域提供了高性能的器件和系统。

德州仪器的产品广泛应用于消费电子、工业自动化、汽车电子、通信设备等领域,为客户提供了丰富的选择。

2. 德州仪器的产品和技术德州仪器主要提供模拟和混合信号产品,包括模拟集成电路(Analog Integrated Circuits,简称AIC)、数字信号处理器(Digital Signal Processor,简称DSP)和嵌入式处理器(Embedded Processors)等。

这些产品具有高效、低功耗和高性能的特点,满足了不同领域的应用需求。

2.1 模拟集成电路德州仪器的模拟集成电路广泛应用于各种电子设备和系统中。

这些器件能够处理和控制各种模拟信号,包括声音、光线、压力、温度等。

德州仪器的模拟集成电路提供了多种产品系列,覆盖了从低功耗应用到高频率、高精度应用的不同要求。

2.2 数字信号处理器德州仪器的数字信号处理器是一种专门用于数字信号处理的处理器。

它能够高效地执行各种数字信号处理算法,包括音频处理、视频编解码、图像处理等。

德州仪器的数字信号处理器具有高性能、低功耗、易于集成等特点,被广泛应用于手机、音频设备、汽车电子等领域。

2.3 嵌入式处理器德州仪器的嵌入式处理器是一种专门用于嵌入式系统的处理器。

它能够高效地执行各种嵌入式应用程序,包括工业控制、汽车电子、医疗设备等。

德州仪器的嵌入式处理器具有高性能、低功耗、丰富的外设接口等特点,满足了不同嵌入式系统的要求。

德州仪器MAX16826评估板使用手册说明书

德州仪器MAX16826评估板使用手册说明书

Evaluates: MAX16826MAX16826 Evaluation KitGeneral DescriptionThe MAX16826 evaluation kit (EV kit) provides a proven design to evaluate the MAX16826, a four-string, I 2C programmable high-brightness LED (HB LED) driver with PWM dimming control. The EV kit also includes Windows ® 2000/XP/Vista ®-compatible software that pro-vides a simple graphical user interface (GUI) for exercis-ing the features of the MAX16826. The MAX16826 EV kit PCB comes with a MAX16826ATJ+ installed. The EV kit is configured in a boost application.This EV kit can be modified by changing component val -ues on the board for other configurations (including RGB LED applications). Refer to the MAX16826 IC data sheet for more information.Features●Four Independently Controllable LED Strings ●7 LEDs Per String Configuration●Independently Programmable 50mA to 150mAString Current●7.5V to 22V Input Voltage●Can Withstand Automotive Load Dump Up to 40Vfor 400ms●0% to 100% DIM Duty Cycle Range ●Shorted LED Protection and Detection ●Open LED String Detection●Adaptive Boost-Stage Voltage Optimization●Convenient Breakaway LED Driver Board EasilyAdaptable to End Application ●Low Mechanical Profile●Windows 2000/XP/Vista (32-Bit)-Compatible Software ●USB-PC Interface●USB-to-I 2C On-Board Circuitry ●Fully Assembled and Tested ●Lead-Free and RoHS Compliant19-4271; Rev 1; 12/20Windows and Windows Vista are registered trademarks of Microsoft Corp.+Denotes lead-free and RoHS compliant.#Denotes RoHS compliant.PARAMETERDESCRIPTION Configuration 7 white LEDs/stringNumber of Strings4 strings LED Current Adjustment Range 50mA to 150mATotal Maximum LED Power 16.8W V IN (min)7.5V V IN (max)22V Load Dump40V for < 400ms Nominal Boost Voltage Adjustment Range22.4V to 32VNominal OVP Trip Threshold 35V Boost Stage Switching Frequency350kHzPARTTYPE MAX16826EVKIT+EV Kit MAX16826EVKIT#EV KitDESIGNATION QTY DESCRIPTIONC1, C2, C3, C5–C8, C12, C15,C17, C23, C2412100nF ±10%, 16V X7R ceramic capacitors (0603)TDK C1608X7R1C104K C9133nF ±10%, 50V X7R ceramic capacitor (0603)TDK C1608X7R1H333K C10, C11222pF ±5%, 50V C0G ceramic capacitors (0603)TDK C1608C0G1H220J C13, C14,C18–C2161μF ±10%, 16V X7R ceramic capacitors (0603)TDK C1608X7R1C105K C16, C25210μF ±10%, 10V X5R ceramic capacitors (1210)Murata GRM32FR61A106KDESIGNATION QTY DESCRIPTIONC26, C28210μF ±20%, 50V X5R ceramic capacitors (2220)Murata GRM55DR61H106K C27110μF ±20%, 50V X7S ceramic capacitor (1210)Taiyo Yuden UMK325BJ106MM-T C2912.2nF ±5%, 50V C0G ceramic capacitor (0603)Murata GRM1885C1H222K C3011μF ±10%, 50V X7R ceramic capacitor (1210)Murata GRM32RR71H105K C3214.7μF ±10%, 6.3V X5R ceramic capacitor (0603)Murata GRM188R60J475KLED Driver Board SpecificationOrdering InformationComponent ListClick here to ask about the production status of specific part numbers.DESIGNATION QTY DESCRIPTIONC3312200pF ±10%, 50V X7R ceramic capacitor (0402)Murata GRM155R71H222KC34, C35247μF ±20%, 50V electrolytic capacitorsPanasonic EEE-FK1H470XPC36, C370Not installed, capacitors (0603)C3811000pF ±5%, 50V C0G ceramic capacitor (0402)Murata GRM1555C1H102JA01DC391220pF ±5%, 50V C0G ceramic capacitor (0402)Murata GRM1555C1H221JC401100pF ±5%, 50V C0G ceramic capacitor (0402)Murata GRM1555C1H101JC41–C4440.01μF ±10%, 50V X7R ceramic capacitors (0402)Murata GRM155R71H103KC450Not installed, capacitor (0402)D1160V, 1A Schottky diode (SMB) Diodes, Inc. B160B-13-FJ11USB series-B right-angle PC-mount receptacleJ2, J30Not installed JU2–JU873-pin headersL11Ferrite bead (0603) TDK MMZ1608R301AL2122μH ±20%, 5A, 52mΩ inductor Coilcraft MSS1260-223MlLED11Red LED (0603) Panasonic LNJ208R8ARAP1, P22Connectors, FFC/FPC 18-pos, 1mm P31Connector, FFC/FPC 6-pos, 1mmQ1140V, 9A, 2.5W n-channel MOSFET (8 SO)International Rectifier IRF7469Q2–Q5455V, 1.9A, 160mΩ n-channel MOSFET s (SOT223) International Rectifier IRFL014NPbFR11220Ω ±5% resistor (0603)R21 2.2kΩ ±5% resistor (0603)R3, R9, R103 1.5kΩ ±5% resistors (0603) R4, R5227Ω ±5% resistors (0603)R61470Ω ±5% resistor (0603)R71100kΩ ±5% resistor (0603)R817.5kΩ ±1% resistor (0603)R11168Ω ±1%, 0.25W resistor (1206)DESIGNATION QTY DESCRIPTION R1210.04Ω ±1%, 0.5W sense resistor(2010)Vishay/Dale WSL2010R0400FEA R131215kΩ ±1% resistor (0402) R14, R16210kΩ ±1% resistors (0402) R151249kΩ ±1% resistor (0402)R171 1.27kΩ ±1% resistor (0603)R181182kΩ ±1% resistor (0603)R1912kΩ ±1% resistor (0402) R20, R22,R24, R264100kΩ ±1% resistors (0402) R21, R23,R25, R27416.5kΩ ±1% resistors (0402) R28–R3142.2Ω ±1%, 100mW sense resistors(0603)Panasonic ECG ERJ-3RQF2R2V R32, R3320Ω ±5% resistors (0603)R34–R3740Ω ±5% resistors (0402)R38112.1Ω ±1% resistor (0805)R391470Ω ±5% resistor (0402)R40110kΩ ±5% resistor (0603) R41–R444237kΩ ±1% resistors (0603) U11LED driver (32 TQFN)Maxim MAX16826ATJ+ U2, U82Microcontrollers (68 QFN-EP*)Maxim MAXQ2000-RAX+ U31UART-to-USB converter (32 TQFP)FTDI FT232BLU4193C46A 3-wire EEPROM (8 SO)Atmel AT93C46A-10SU-2.7 U51p-channel MOSFET power switch(8 SO)Maxim MAX890LESA+U61LDO regulator (5 SC70)Maxim MAX8511EXK25+T U71LDO regulator (5 SC70)Maxim MAX8511EXK33+T Y1120MHz crystal oscillatorY216MHz crystalHong Kong X’talsSSL6000000E18FAF—1Cable, flat flex 18-position, 1mm, 5in—7Shunts—1USB high-speed A-to-B cable,5ft (1.5m)—1PCB: MAX16828 Evaluation Kit+Component List (continued)*Exposed pad.Quick StartRecommended EquipmentBefore beginning, the following equipment is needed: ●MAX16826 EV kit (USB cable included)● A user-supplied Windows 2000/XP/Vista PC with a spare USB port●7V to 24V, 5A DC power supply●Four strings of white LEDs (7 LEDs/string)Note: In the following sections, software-related items are identified by bolding. Text in bold refers to items directly from the EV kit software. Text in bold and underlined refers to items from the Windows operating systemProcedureThe MAX16826 EV kit is fully assembled and tested. Follow the steps below to verify board operation:1) Visit /evkitsoftware to down-load the latest version of the EV kit software,16826Rxx.ZIP (xx in the filename denotes the soft -ware version number). Save the EV kit software to a temporary folder and uncompress the ZIP file.2) Install the EV kit software on your computer by run -ning the INSTALL.EXE program inside the temporary folder. The program files are copied and icons are created in the Windows Start | Programs menu.3) Verify that all jumpers (JU2–JU8) are in their defaultpositions, as shown in Table 1.4) Connect the USB cable from the PC to the EV kitboard. A New Hardware Found window pops up when installing the USB driver for the first time. If you do not see a window that is similar to the one described above after 30 seconds, remove the USB cable from the board and reconnect it. Administra-tor privileges are required to install the USB device driver on Windows.5) Follow the directions of the Add New HardwareWizard to install the USB device driver. Choose the Search for the best driver for your device option. Specify the location of the device driver to be C:\Program Files\MAX16826 (default installation direc-tory) using the Browse button. During device driver installation, Windows may show a warning message indicating that the device driver Maxim uses does not contain a digital signature. This is not an error condi-tion and it is safe to proceed with installation. Refer to the USB_Driver_Help.PDF document included with the software for additional information.6) Set the output of the power supply to 12V. Turn offthe power supply.7) Connect the positive terminal of the power supply tothe VIN pad of the LED driver board.Note: Indicate that you are using the MAX16826 when contacting these component suppliers.SUPPLIERPHONE WEBSITECoilcraft, Diodes, Inc.Hong Kong X’tals Ltd.852-******** International RectifierMurata Electronics North America, Panasonic Taiyo Yuden TDK Vishay/Dale402-563-6866FILE DESCRIPTIONINSTALL.EXE Installs the EV kit files on your computerMAX16826.EXE Application program FTDIBUS.INF USB device driver file FTDIPORT.INF VCP device driver file UNINST.INI Uninstalls the EV kit software USB_Driver_Help.PDFUSB driver installation help fileComponent SuppliersMAX16826 EV Kit Files8) Connect the negative terminal of the power supply tothe PGND pad of the LED driver board.9) Ensure that the supplied ribbon cable is firmly con -nected to the P1 and P2 connectors.10) Connect the anode ends of the LED strings to theP3-1 pin of the P3 connector.11) Connect the cathode ends of the LED strings to theP3-2 to P3-5 pins of the P3 connector.12) Turn on the power supply13) Start the MAX16826 EV kit software by opening itsicon in the Start | Programs menu. The EV kit soft-ware main window appears, as shown in Figure 1.14) Press the Start button to start the LED driver.15) Verify that all of the LEDs are lit.Table 1. MAX16826 EV Kit Jumper Descriptions (JU2–JU8)*Default position.JUMPER SHUNT POSITIONDESCRIPTIONJU21-2*On-board PWM signal for Ch12-3Connect user-supplied PWM signal for Ch1 to the on-board DIM1 pad JU31-2*On-board PWM signal for Ch22-3Connect user-supplied PWM signal for Ch2 to the on-board DIM2 pad JU41-2*MAX16826 SDA signal connected to on-board microcontroller 2-3Connect user-supplied SDA signal to the on-board SDA pad JU51-2*MAX16826 SCL signal connected to on-board microcontroller 2-3Connect user-supplied SCL signal to the on-board SCL pad JU61-2*MAX16826 SYNC/EN signal connected to on-board microcontroller 2-3Connect user-supplied SYNC/EN signal to the on-board SYNC/EN pad JU71-2*On-board PWM signal for Ch32-3Connect user-supplied PWM signal for Ch3 to the on-board DIM3 pad JU81-2*On-board PWM signal for Ch42-3Connect user-supplied PWM signal for Ch4 to the on-board DIM4 padDetailed Description of SoftwareThe MAX16826 evaluation kit software has all the functions to evaluate the MAX16826 IC. To start the MAX16826 EV kit software, click Start | Programs | Maxim MAX16826 Evaluation Kit | Maxim MAX16826 Evaluation Kit that is created during installation. The GUI main window appears as shown in Figure 1.Figure 1. MAX16826 EV Kit Software Main WindowString Current SetThe String Current Set group box is located at the upperleft corner of the main window. Use the scrollbars toadjust the current of the LED strings. The correspondingvalues of the current will be shown in the adjacent editboxes. Press the Read button to read the values from thelinear regulator output registers of the MAX16826. Theequivalent values of the output current will be shown inthe edit boxes.Boost Output ControlThe Boost Output Control Mode group box has thefunctions to control the boost output voltage.To control the boost output voltage manually, click on theradio button next to the Manual Control group box. Usethe scrollbar to adjust the output voltage, and the volt-age value will be displayed in the adjacent edit box. Theactual boost output voltage can be seen in the Read BackValues group box.To use the software automatic control, click on the radiobutton next to the Software Control group box. The editbox next to the Set button is used to change the Drain toGND regulated voltage of the current sink FETs on the LEDstring with the highest voltage drop. This voltage setting willdepend on how much overhead the user is willing to have.If the set value is too low, the LED currents will no longerbe well regulated and may indeed drop because the boostvoltage might fall too low. The scrollbar in this mode willmove automatically to compensate and regulate the outputvoltage. The update rate is approximately once per second.In any case, the channel with the lowest voltage across thesink FET will be regulated to the value in the edit box. DIM Pulse Width Modulation (DPWM)The DPWM group box is located at the center of the mainwindow. The four DIM PWM signals generated by theon-board MAXQ2000 microcontrollers are used to controlthe brightness of the LEDs. Adjust the scrollbars in theDPWM Duty Cycle group box to change the duty cycles of the PWM signals and the values of the duty cycle (%)are shown in the adjacent edit boxes. Check the Set AllChannels to 100% Duty Cycle checkbox to force all channel duty cycles to 100%.In the DPWM Frequency group box, change the DPWMfrequency by adjusting the scrollbar position and pressthe Set button. The frequency value will be shown in theedit box.To guarantee that the leading edge of all the DIM signalsare synchronized, press the Set button in the DPWMFrequency group box.Press the Start button to start to generate the PWM signals.Press the Stop button to stop all PWM signals.StatusThe Status group box is located at the right of the main window. The software reads the external FET drain voltage measurements, and the boost output voltage measurement from the ADC output registers of the MAX16826. The software multiplies the measured values by the appropriate scaling factor and then displays them in the Read Back Values group box.Enter the values into the edit boxes in the Fault Level Set group box to set the fault-detection values. When the value in the Read Back Values group box is less than the fault-detection value, then the color of the read-back value changes to dark green. When the read-back value is 0 to 10% higher than the fault-detection value, the read-back value turns a lime color. If the read-back value is more than 10% higher than the fault-detection value, then the read-back value turns purple. The read-back value turns red when it is more than 20% higher than the fault-detection value.The software also reads the fault register to detect the fault conditions. If a fault condition exists, it will be shown in the String Fault Status group box. See Table 2 for the fault-condition explanations.Press the Read button to update the Status group box. By checking the Automatic Read checkbox, the Status group box will be automatically updated every second. Enable/DisableThe Enable/Disable group box controls the signal on the SYNC/EN pin. Click on the Enable radio button to set the signal high and enable the MAX16826. Click on the Disable radio button to set the signal low and disable the MAX16826.StandbyCheck the Standby checkbox to set the MAX16826 to standby mode. Refer to the MAX16826 IC data sheet for more information regarding standby mode.Table 2. Fault Conditions*Open LED string detection may require multiple flag examination. FAULT NAME CONDITIONTOADC conversion timeout; alsocorresponds to open string condition* Open LED string openShort LED string shortedOVP OvervoltageScaling FactorsThe calculations for the LED string current, boost output voltage, and the read-back values are based on the scal-ing factors. You can change the scaling factor by select-ing the Scaling Factor menu item under the Scaling Factors menu bar. In the pop-up window shown in Figure 2, enter the appropriate scaling factor.See Table 3 for the formulas for the scaling factors. These values can be used for calibration against actual read values with external instruments.When the default values are changed, they are stored in the software. Re-enter the default values to bring the software back to the default setting.Table 3. Scaling FactorFigure 2. Scaling Factor WindowSCALING FACTOR FORMULADEFAULTVALUE DR1 (ADC read-back voltageacross Drain and GND for thesink FET on Ch1)1 + (R20/R21)7.046DR2 (ADC read-back voltageacross Drain and GND for thesink FET on Ch2)1 + (R22/R23)7.046DR3 (ADC read-back voltageacross Drain and GND for thesink FET on Ch3)1 + (R24/R25)7.046DR4 (ADC read-back voltageacross Drain and GND for thesink FET on Ch4)1 + (R26/R27)7.046Read Back VBoost (ADC read-back boost output voltage)1 + (R15/R16)25.900 String Current Set Ch1 (LEDstring current for Ch1)R31 2.200 String Current Set Ch2 (LEDstring current for Ch2)R30 2.200 String Current Set Ch3 (LEDstring current for Ch3)R29 2.200 String Current Set Ch4 (LEDstring current for Ch4)R28 2.200 VBoost (Boost output voltage) 1 + (R13/R14)22.500Detailed Description of HardwareThe MAX16826 EV kit board provides a proven layout for evaluating the MAX16826 IC. This EV kit consists of a controller board and an LED driver board. The break-away slots at the center of the EV kit make it easier for the user to break and separate the controller board from the LED driver board. This is done so that once the evaluation is complete with the included software, the driver board can easily be used in the target application environment with the target system microcontroller.To connect the power, ground, PWM, and the I2C inter-face signals of the boards, attach the ribbon cable to the P1 connector of the controller board and attach the other end of the ribbon cable to the P2 connector of the LED driver board.Controller BoardThe controller board acts as the bridge between the soft-ware in the PC and the actual LED driver board containing the MAX16826. In addition to the USB connectivity, it gen-erates the four adjustable PWM DIM signals that control the brightness of the LEDs. The controller board com-municates with the driver board through the I2C interface, and is able to read or change the values of the registers in the MAX16826.The user can use the MAX16826 evaluation kit software to control the controller board.See Table 1 to control the MAX16826 with a user-supplied PWM signal.LED Driver BoardThe LED driver board is able to drive up to four LED strings (7 LEDs/string). LED strings can be connected to the LED driver board through the P3 connector by using a ribbon cable. Connect all of the anode ends of the LED strings to the P3-1 pin (which connects to the boost out-put) of the P3 connector. Then connect the cathode ends of the LED strings to the P3-2 to P3-5 pins (that connects to the drains of the sink FETs) of the P3 connector. User-Supplied I2C InterfaceTo use the MAX16826 EV kit with a user-supplied I2C interface, install the shunts on pins 2-3 of JU4 and JU5. Connect SDA, SCL, and GND lines from the usersupplied I2C interface to the SDA, SCL, and PGND pads on the MAX16826 controller board.After the LED driver board has broken away from the controller board, the user may connect their supplied I2C, DIM, and power signals to the LED driver board through the P2 connector using a ribbon cable. See Table 4 for the pin description of the P2 connector.Table 4. Pin Description for P2 Connector PIN NUMBER DESCRIPTIONP2-1 to P2-5Connect to the VIN pin of the MAX16826 P2-6Not connectedP2-7 to P2-11Connect to the groundP2-12Connects to the SYNC/EN pin of theMAX16826P2-13Connects to the SDA pin of the MAX16826P2-14Connects to the SCL pin of the MAX16826P2-15Connects to the DIM4 pin of the MAX16826P2-16Connects to the DIM3 pin of the MAX16826P2-17Connects to the DIM2 pin of the MAX16826P2-18Connects to the DIM1 pin of the MAX16826Figure 3. MAX16826 EV Kit LED Driver Board SchematicFigure 4a. MAX16826 EV Kit Controller Board Schematic (Sheet 1 of 2)Figure 4b. MAX16826 EV Kit Controller Board Schematic (Sheet 2 of 2)Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.REVISIONNUMBERREVISION DATE DESCRIPTION PAGES CHANGED 009/08Initial release —112/20Updated Ordering Information 1Revision HistoryFor pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https:///en/storefront/storefront.html.。

德州仪器产品分类

德州仪器产品分类

德州仪器产品分类1.数据转换器(Data Converter) IC -①模数转换IC A/D - ADS、TLV、TLC、THS;②数模转换IC D/A - DAC、TLV、TLC、THS;③触摸屏控制器IC - TSC;④音频编解码IC - PCM、TPA、TLV、TAS、DSD;⑤CCD控制器IC - VSP;⑥模拟前端控制IC(超声波、x射线) - AFE;⑦视频编解码器IC - TVP;⑧V/F和F/V转换器IC - VFC;2. 电源管理(Power Management) IC -①精密串联电压参考IC - REF;②并联电压参考IC - LM4040;③电池管理IC、实时时钟IC、无线电源IC、非易失性RAM IC - BQ;④电源模块- DCx、PTx;⑤功率Mosfet IC- CSD;⑥PWM控制器- UCC;⑦数字功率IC PWM、MosFet控制器IC - UCD;⑧马达PWM驱动器IC - DVR;⑨一般电源管理IC - TPS;3. 放大器(Amplifier)IC -①运算放大器IC - OPA、TLC、TLE、TLV ;②仪表/差分放大器IC - INA;③对数放大器IC - LOG;④可编程增益放大器IC - PGA;4. 接口(Interface) IC-①USB接口IC - TUSB;②1394接口IC - TSB;③CAN接口IC - SN65HVD23;④RS232接口IC - MAX232、GD232等;⑤RS485接口IC - SN65HVD;⑥SCSI接口IC - UCC56;⑦PCI接口IC - PCI、XIO;⑧RF、IF接口IC - CC、GC、TRF ;⑨显示接口IC –TFP ;⑩隔离器IC - ISO;①①串行解串IC - SLK、TLK;①②UART接口IC - TL16;5. 逻辑器件(Logic)IC –触发器IC 锁存器IC 寄存器IC 缓冲器IC 驱动器IC 收发器IC - SN74/54系列IC、CD74系列IC等;6. 处理器(Processor)IC -①DSP IC- TMX320、TMS320;②超低耗微控制器IC - MSP430、LMxS;③数据转换器片上系统IC – MSC等;④Arm Cortex A8/A9 - OMAP/AM35x/AM18x/AM17x;。

德州仪器DS3184DK示范板使用手册说明书

德州仪器DS3184DK示范板使用手册说明书

GENERAL DESCRIPTIONThe DS3184DK is an easy-to-use demo kit for the DS3184. A surface-mounted DS3184 and careful layout of the analog signal traces provide maximum signal integrity to demonstrate the transmit and receive capabilities of the DS3184. On-board Dallas 8051-compatible microcontroller and included software give point-and-click access to configuration and status registers from a personal computer. General-purpose LEDs on the board can easily be configured to indicate various alarm conditions for all four ports. The board provides eight BNC connectors for the line-side transmit and receive differential pairs, two 140-pin connectors for system interface signals, and two FPGAs to support overhead functions. All LEDs and connectors are clearly labeled with silkscreening to identify associated signals.DEMO KIT CONTENTSDS3184DK BoardCD-ROMChipView SoftwareDS3184 Definition FilesDS3184DK Data SheetDS3184 Data Sheet FEATURESSoldered DS3184 for Best Signal IntegrityBNC Connectors, Transformers, and Termination Passives for All Four LIUsCareful Layout for Analog Signal PathsEquipment-Side Connector for External Data Source/Sink or System Side LoopbackOn-Board DS3, E3, and STS-1 CrystalOscillatorsDS3184 Configured for CPU Bus Operation for Complete Control Over the DeviceOn-Board Dallas Microcontroller and Included Software Provide Point-and-Click Access to theDS3184 Register SetGeneral-Purpose LEDs can be Configured for Various Alarm ConditionsBanana Jack Connectors for VDDand GND Support Use of Lab Power SuppliesSeparate DS3184 VDDto Allow I DDMeasurementsEasy-to-Read Silkscreen Labels Identify the Signals Associated with All Connectors,Jumpers, and LEDsDS3184 DEMO KIT BOARDORDERING INFORMATIONPART DESCRIPTION DS3184DK Demo Kit for the DS3184DS3184DK Quad ATM/Packet PHYs forDS3/E3/STS-1 with Built-In LIU Demo KitCOMPONENT LISTDESIGNATION QTY DESCRIPTION MANUFACTURERPART C1, C2, C12, C13,C14, C18, C19,C44, C54, C57,C65, C69, C70,C74, C7515 10µF ±20%, 10V ceramic capacitors (1206) Panasonic ECJ-3YB1A106MC3–C7, C9, C10,C11, C20, C21,C24–C38, C46,C47, C58–C64,C66, C67, C68,C76–C87, C95,C98, C100, C102,C109–C13782 0.1µF ±20%, 16V X7R ceramic capacitors AVX 0603YC104MATC8, C15, C39, C40 4 4.7µF ±10%, 25V X5R ceramic capacitors Panasonic ECJ-3YB1E475KC16, C17, C41, C42 4 6.8µF 10%, 6.3V X5R ceramic capacitors (1206) Panasonic ECJ-3YB0J685K C22, C23 2 22pF ±5%, 25V NPO ceramic capacitors AVX 06033A220JAT C43, C103 2 68µF ±20%, 16V tantalum capacitors (D case) Panasonic ECS-T1CD686RD1 1 Diode, 1A, 50V, general-purpose silicon GeneralSemiconductor1N4001DS1, DS10 2 Green SMD LEDs Panasonic LN1351CDS2–DS9 8 Red SMD LEDs Panasonic LN1251CDS21 1 Red SMD LED Panasonic LN1251CJ1, J4 2 Sockets, banana plug, horizontal, red Mouser (distributor) 164-6219J2, J3 2 Plugs, SMD, 140-pin, 0.8mm, 2-row vertical AMP 179031-6J5 1 Socket, banana plug, horizontal, black Mouser (distributor) 164-6218J6, J8, J10, J12 4 BNC connectors 75Ω, vertical, 5-pin Cambridge CP-BNCPC-004J7, J9, J11, J13 4 Connector, BNC, 75 ohm, right angle, 5-pin Trompeter UCBJR220 J14 1 Amphenol, right-angle BNC Amphenol 31-5431 J15–J18 4 Terminal strip, 16-pin, dual-row, vertical Samtec TSW-108-07-T-D J21 1 Connector, DB9, right-angle, long case AMP 747459-1J25 1 Terminal strip, 10-pin, dual-row, vertical — — JMP1, JMP2,JMP153 2-pin header, 0.100 centers, vertical Samtec TSW-102-07-T-SJMP3–JMP6,JMP11–JMP14,JMP16, JMP17,JMP18, JMP23–JMP2615 3-pin header, 0.100 centers, vertical Samtec TSW-103-07-T-SJMP7–JMP10,JMP19–JMP228 Do not place, open 2 pin TH jumper — —R1, R2, R3, R16–R19, R36–R39,R41–R51, R53–R59, R61–R68,R229–R231, R24441 0Ω±1%, 1/16W resistors (0603) AVX CJ10-000FR4, R146, R147,R148, R158, R159,R160 7Resistors (0603)Do not populate— —R5, R8–15, R92,R93, R95, R161,R270–R285, R313–R32037 10kΩ±5%, 1/16W resistors (0603) Panasonic ERJ-3GEYJ103VR6, R7, R28–R35, R77–R91, R94, R96–R145, R149–R157, R162–R228, R233–R240, R255–R266, R305–R312,R321–R329 189 33Ω ±5%, 1/16W resistors (0603) Panasonic ERJ-3GEYJ330VR20–R27, R69–R76 16 332Ω ±1%, 1/16W resistors (0603) Panasonic ERJ-3EKF3320V R52, R246–R25410330Ω ±5%, 1/16W resistors (0603)Panasonic ERJ-3GEYJ331V R232 1 51.1Ω ±1%, 1/16W resistor (0603) Panasonic ERJ-3EKF51R1V R241 1 3.3k Ω ±5%, 1/16W resistor (0603)Panasonic ERJ-3GEYJ332V R242, R243, R245,R267, R268, R269 6 4.7k Ω ±5%, 1/16W resistors (0603) Panasonic ERJ-3GEYJ472V R286–R304, R33020 100Ω ±5%, 1/16W resistors (0603) Panasonic ERJ-3GEYJ101V SW5 1 Switch, momentary, 4-pin, single pole Panasonic EVQPAE04M T1, T2 2 Octal T3/E3 transformers, 1 to 2, SMD 32-pin Pulse Engineering T3049 TP3–TP10, TP17, TP21–TP32, TP7022Test points, 1 plated hole, do not stuff——U1 1Quad ATM/Packet PHYs for DS3\E3\STS1 withbuilt-in LIU (400-pin CSBGA) Dallas Semiconductor DS3184U21Quad DS3/E3/STS1 LIU (144-pin CSBGA) Dallas Semiconductor DS3154U3 1Dual RS-232 transmitter/receiver(16-pin SO, 300 mils)Dallas Semiconductor DS232AS U4, U5, U6, U10,U11, U126IC, 3.3V octal buffer/driver (20-pin narrow SOP)Texas Instruments SN74ALVC244NSR U8 1IC, 3-line to 8-line decoder/demultiplexer(16-pin SOIC) Texas InstrumentsSN74HC138NSRU9 1Microprocessor voltage monitor,3.08V reset (4-pin SOT143)Maxim MAX811TEUS-T U13 1IC, TinyLogic ultra-high-speed 2-input exclusive-OR gate (5-pin SOT23) Fairchild NC7SZ86M5 U14 1Microprocessor voltage monitor, 4.38V reset(4-pin SOT143)Maxim MAX812MEUS-T U17 1Microprocessor reset circuit, 3.08V reset(3-pin SC70)Maxim MAX803TEXR-T U18–U25, U41–U46 14IC, TinyLogic ultra-high-speed 2-input OR gate(5-pin SOT23) Fairchild NC7SZ32M5 U26, U27, U2933.3V linear regulator (16-pin TSSOP-EP)MaximMAX1793EUE-33U28 1IC, Xilinx platform flash in-system-programmableconfig PROM (20-pin TSSOP) Xilinx XCF04SVO20C U30 1 1.8V linear regulator (16-pin TSSOP-EP) Maxim MAX1793EUE-18 U311IC, hex inverter, SOICToshibaTC74HC04AFNU32, U33, U34 3 IC, 5.0V octal buffer/driver (20-pin narrow SOIC) Texas Instruments SN74HC244NSR U40 1 High-speed microcontroller (44-pin TQFP) Dallas Semiconductor DS87C520-ECLU50, U51 2 IC, Xilinx Spartan 100k gate, 1.8V FPGA(144-pin TQFP)Xilinx XC2S100E-6TQ144CY1 1 11.0592MHz low-profile crystal Pletronics LP49-33-11.0592MY2 1 3.3V, 34.368MHz oscillator SaronixNTH089AA3-34.368 Y4 1 3.3V, 44.736MHz oscillator SaronixNTH089AA3-44.736 Y3 1 3.3V, 51.840MHz oscillator SaronixNTH089AA3-51.840BOARD FLOOR PLANFigure 1 shows the floor plan of the DS3184DK. The DS3184 is near the center of the board. The analog circuitry is on the right side of the board, which includes transformers and BNC connectors. There is an optional external LIU (DS3154) that can be used in certain configurations. Located one above and one below of the DS3184 are two FPGAs that, along with headers, provide access to the overhead signals. The microprocessor is on the left top of the board, clock distribution is in the left center, and system interface is at the left bottom. General-purpose LEDs, which are driven by configurable outputs, are located at the top of the board. In the upper-left corner are banana jacks for ground, 5V (regulated to provide board V DD), and a separate DS3184 V DD (useful for DS3184 I DD measurements). There are connectors provided for the serial interface to the microprocessor and the JTAG chain. The board also contains DS3, E3, and STS1 oscillators and the necessary jumpers to configure both the DS3184 and the DS3154 clocking.Figure 1. Board Floor PlanCLOCK JUMPERSJumper JMP16 (middle left of board) selects the clock source (external BNC or on-board oscillator) for both CLKA and the system clocks on the DS3184. Jumpers JMP17, JMP18, and JMP23 select the source of the clocks to the external LIU (DS3154), which can be on-board oscillators or a CLAD output of the DS3184. Jumpers JMP24, JMP25, and JMP26 select the specific CLAD output to be connected to the LIU clock inputs on the DS3154.LINE-SIDE CONNECTIONSThe DS3184DK implements the transmit (Tx) and receive (Rx) line interface networks recommended in the DS3184 data sheet and shown in Figure 2. The BNC connectors for LIU1 are labeled TX1 and RX1. The BNC connectors for LIU2 are labeled TX2 and RX2. The BNC connectors for LIU3 are labeled TX3 and RX3. The BNC connectors for LIU4 are labeled TX4 and RX4.Figure 2. Line-Side CircuitrySYSTEM CONNECTORTwo 140-pin connectors at the lower left of the board provide access to the DS3184 system interface pins. The connector labeled J2 supports the receive signals and J3 supports the transmit. There are ground pins spread over both connectors to maintain a low-impedance connection to interface boards. All the interface pins that are driven by the DK are series terminated at the driver to maintain signal integrity. Receive pins are looped back to transmit pins automatically when no interface board is connected via high-speed buffers. When an interface board is attached to the DK, the buffers are tri-stated.MICROCONTROLLERThe DS87C520 microcontroller has factory-installed firmware in on-chip nonvolatile memory. This firmware translates memory access requests from the RS-232 serial port into register accesses on the DS3184. When the microcontroller starts up it turns on DS1, a green LED, to indicate that the controller is working correctly. POWER-SUPPLY CONNECTORSConnect a 5.0V power supply with a current rating of at least 1 amp across the red J1 and black J5 (GND) banana jacks for normal operation. Banana jack J4 accommodates DS3184 IDD measurements. This is accomplished by disconnecting the DS3184 VDD connections from the board VDD by removing jumpers 19, 20, 21, and 22. DiodeD1 provides protection against power connection reversal. The LED DS21 provides indications that a 5V supply is connected properly. The 5V supply is regulated to supply proper voltages to various circuits on the board. CONNECTING TO A COMPUTERConnect a standard DB-9 serial cable between the serial port on the DS3184DK and an available serial port on the host computer. The host computer must be a Windows®-based PC. Be sure the cable is a standard straight-through cable rather than a null-modem cable. Null-modem cables prevent proper operation.INSTALLING AND RUNNING THE SOFTWAREChipView is a general-purpose program that supports a number of Dallas Semiconductor demo kits. To install the ChipView software, run SETUP.EXE from the disk included in the DS3184DK box or from the zip file downloadable on our website at /DS3184DK.After installation, run the ChipView program with the DS3184DK board powered up and connected to the PC. If the default installation options were used, one easy way to run ChipView is to click the Start button on the Windows toolbar and select Programs→ChipView→ChipView. In the opening screen, click the Register View button. (The Demo and Terminal buttons are not supported for the DS3184DK.) Select the correct serial port in the Port Selection dialog box, then click OK.Next, the Definition File Assignment window appears. This window has subwindows to select definition files for up to four separate boards on other Dallas evaluation platforms. Because ChipView is communicating with the DS3184DK, only one subwindow is active. In the active subwindow, select the DS3184.DEF definition file from the list shown, or browse to find it in another directory. Press the Continue button.After selecting the definition file, the main part of the ChipView window displays the DS3184’s register map (described in the DS3184 data sheet). To select a register, click on it in the register map. When a register is selected, the full name of the register and its bit map are displayed at the bottom of the ChipView window. Bits that are logic 0 are displayed in white, while bits that are logic 1 are displayed in green.The ChipView software supports the following actions:• Toggle a bit. Select the register in the register map and then click the bit in the bit map.• Write a register. Select the register, click the Write button, and enter the value to be written.• Write all registers. Click the Write All button and enter the value to be written.• Read a register. Select the register in the register map and click the Read button.• Read all registers. Click the Read All button.Windows is a registered trademark of Microsoft Corp.BASIC DS3184DK CONFIGURATIONThe following example DS3 configuration provides a quick start to using the DS3184DK. The DS3184 and the DS3184DK can be configured in many other ways. To set up other configurations, refer to Section 9 of the DS3184 data sheet and other sections of this data sheet.The following configuration supports port 1 only. The same directions apply for additional ports using the DEF files that support the specific port.• Connect 5V between J1 and J5 and verify that jumpers 19 through 22 are installed. Verify LEDs DS1 and DS21 are on. Connect 75Ω coaxial cables to connectors J6 (Rx) and J7 (Tx). Verify J3 and J4 jumpers are set to the 84 position.• Connect the serial port of a computer to J21. Run the ChipView application and load the definition file named ds3184.def provided with the kit.The following registers in the DS3184 need to be configured. For ChipView-specific help, review the ChipView manual.Select “ds3184.def slot_0” from the “DEF File Selection” MenuAllClickReadPut DS3184 in known condition with all registers set to their default value by initiating a Global ResetGCR1L.RSTSETCLEAR GCR1L.RSTpathresetsdataCLEAR GCR1L.RSTDP clearNote: To configure all 4 ports simultaneously, set GCR1U.GWRM.GCR1U.SIW[1:0]=01 16 bit system interfaceSETGCR1U.SIM[1:0] = 11 POS PHY L3SETNote: UTOPIA L2 is the default setting: GCR1U.SIM[1:0] = 00Configure internal CLADNote: The following CLAD configuration requires a DS3 clock applied to CLKA (CLKB and CLKC are driven low).See CLAD table in DS318x data sheet for other configurationsCLEAR GCR2L.CLAD3GCR2L.CLAD2SETCLEAR GCR2L.CLAD1CLEAR GCR2L.CLAD0Select “ports.def slot_0” from the “DEF File Selection” MenuAllClickReadoperationCLEAR PCR1L.RSTDP normalCLEAR PCR1L.PDAISpayloadPCR1U.PAIS2 disableSETPCR1U.PAIS1SETPCR1U.PAIS0SETSETAISlineIS1 disableIS0SETConfigure the Framer and LIUFor DS3 C-bit format (default mode)CLEAR PCR2L.FM5CLEAR PCR2L.FM4CLEAR PCR2L.FM3CLEAR PCR2L.FM2CLEAR PCR2L.FM1CLEAR PCR2L.FM0SET PCR2U.LM0 LIU on, No JASET PCR2U.LM1 JA on in RX pathSelect “FIFO_ALL.def slot_0” from the “DEF File Selection” MenuClick Read AllCLEAR TCR.TFRST – do this for all 4 portsCLEAR RCR.RFRST – do this for all 4 portsSET TPACL of Port 1 = 0x00 (default setting)SET RPACL of Port 1 = 0x00 (default setting)SET TPACL of Port 2 = 0x01SET RPACL of Port 2 = 0x01SET TPACL of Port 3 = 0x02SET RPACL of Port 3 = 0x02SET TPACL of Port 4 = 0x03SET RPACL of Port 4 = 0x03SET RLCRU of Port 1 = 0x08 – set receive FIFO almost empty level SET TLCRU of Port 1 = 0x10 (default) – set transmit FIFO almost empty levelPC BOARD LAYOUT RECOMMENDATIONSStandard high-speed layout guidelines should be observed when designing a PC board to support the DS3184. The DS3184 should have a low-impedance power supply path that is accomplished with an appropriate decoupling scheme. Decoupling capacitors should be connected directly to the planes with minimal trace length. Surface-mount ceramic capacitors should be used with one 0.1µF per power pin to provide adequate decoupling. Bulk capacitors of the higher capacitance tantalum type should be used near the power-supply connections to provide low-frequency decoupling. All high-speed connections to the DS3184 should be designed with controlled impedance and proper terminations to prevent reflections. The differential connections to the primary or system side of the transformer should be short traces from the DS3184 run together with respect to differential pairs. The connections on the secondary or network side of the transformers should be 75Ω controlled impedance traces. DS3184 INFORMATIONThe DS3184 Quick View page on our website has the latest DS3184 data sheet, application notes, and downloads. Go to /DS3184.DS3184DK INFORMATIONThe DS3184DK Quick View page on our website has the latest DS3184DK data sheet, ChipView software updates, and downloads. Go to /DS3184DK.TECHNICAL SUPPORTFor additional technical support, please email your questions to ***************************.SCHEMATICSThe following 13 pages provide the schematic diagram of the DS3184DK.10 of 23Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product.No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time.。

德州仪器 笔试

德州仪器 笔试

德州仪器笔试一、德州仪器(Texas Instruments)公司简介德州仪器(Texas Instruments, 简称TI)是一家全球领先的半导体制造商,总部位于美国德克萨斯州达拉斯。

该公司成立于1930年,至今已有近100年的历史。

德州仪器致力于设计和生产各种各样的半导体产品和解决方案,广泛应用于消费电子、工业自动化、通信、汽车、医疗等领域。

德州仪器以其卓越的创新能力和高质量的产品而闻名于世。

公司有着众多的研发中心和制造工厂分布在世界各地,使其能够不断推出各种领先的技术和产品,满足不同行业和客户的需求。

二、德州仪器的产品和解决方案2.1 产品范围德州仪器拥有非常广泛的产品线,涵盖了模拟集成电路、数字信号处理器、放大器、显示器驱动器、电压调节器、放大器等等。

这些产品可适用于各种不同的应用,如手机、平板电脑、电视、汽车导航系统、医疗仪器等等。

2.2 解决方案德州仪器还提供多种解决方案,帮助客户解决复杂的电子系统设计和开发问题。

其中包括:2.2.1 无线连接和射频解决方案德州仪器提供多种无线连接和射频解决方案,包括Wi-Fi、蓝牙、Zigbee等等。

这些解决方案可以应用于智能家居、物联网、工业自动化等领域。

2.2.2 电源管理解决方案德州仪器的电源管理解决方案可以提供高效、可靠的电源管理功能,适用于各种应用,如移动设备、工业控制系统等。

2.2.3 模拟解决方案德州仪器的模拟解决方案用于处理模拟信号,可以满足各种应用的要求,包括音频处理、传感器信号处理等。

2.3 客户案例德州仪器的产品和解决方案已经在全球范围内得到广泛应用,并受到众多客户的信赖。

以下是一些客户案例:•苹果公司:德州仪器为苹果公司提供了多种芯片产品和解决方案,用于iPhone、iPad等设备。

•通用汽车:德州仪器为通用汽车提供了汽车电子产品和解决方案,用于汽车导航、车载娱乐系统等。

•西门子:德州仪器为西门子提供了工业自动化控制系统的半导体产品和解决方案。

1—德州仪器公司(TI)简介

1—德州仪器公司(TI)简介

德州仪器公司(TI)简介
德州仪器(TI)公司是世界上最大的半导体公司之一。

TI始终致力于提供创新半导体技术,帮助客户开发世界最先进的电子产品。

其模拟、嵌入式处理以及无线技术不断深入至生活的方方面面,从数字、通信、娱乐到医疗服务、汽车系统以及各种广泛的应用,无所不在。

在 TI 发展之初,公司的目标是利用公司独有的技术能力从根本上颠覆传统市场,创造全新的市场。

TI的发展历程中始终贯穿一条清晰的主线,就是运用越来越先进的实时信号处理技术,实现从量变到质变的进步,真真切切地不断改变世界。

∙TI 是第一家全球化的半导体公司;
∙TI 模拟芯片被广泛用于各种电子产品,从便携式超声波设备到机顶盒,从电子书到计算机服务器,从机器人到 LED 路灯。

∙一个 100 瓦灯泡的功耗相等于 6,000 万个 MSP430 微处理器。

∙TI无线连接芯片组出货量已经超过 10 亿片。

∙TI 的 Jack Kilby 于 1958 年发明集成电路。

∙TI 于 1967 年发明手持计算器。

∙图形计算器的使用让学生对数学的态度大为改善。

∙DLP® 影像技术非常灵活,可以驱动30米的电影屏幕或把手机变成投影仪。

∙TI 拥有两项DLP® 技术艾美奖。

∙TI 是首家赢得美国绿色环保建筑委员会 (the U.S. Green Building Council) 认证的可建造环保制造设施的半导体企业。

∙2011 年 TI 的废弃物回收利用率达 92%。

全球最大的半导体公司之一TI

全球最大的半导体公司之一TI

影响人类史的伟大半导体公司之——德州仪器的技术和专利发展史恒锐科创美国德州仪器公司(英语:Texas Instruments,简称:TI),是世界上最大的模拟电路技术部件制造商,全球领先的半导体跨国公司。

TI最初从事军火供应,但真正让TI闻名遐迩的是其在信号处理与模拟电路方面的成就。

TI提供模拟技术、数字信号处理(DSP)和微处理器(MCU)半导体,另外,TI还致力于汽车及工业设备芯片的研发和制造。

TI被誉为半导体行业的黄埔军校,包括台积电创始人张忠谋,中芯国际创始人张汝京等业内顶尖人才均出自TI。

德州仪器由塞瑟尔·H·格林、J·埃里克·约翰逊、尤金·麦克德莫特、帕特里克·E·哈格蒂在1947年创办。

成立71年来,德州仪器在全球近五十个国家和地区,累计布局专利53000余件。

以专利申请趋势,我们可以把德州仪器的技术发展和专利布局分为8个主要时期,分别是:1930-1945年,1946-1953年,1954-1963年,1964年-1969年,1970-1987年,1988-2001年,2002-2009年和2010-至今。

以技术分类分析,德州仪器主要分布在电学和物理技术领域,进一步的,主要晋中在基本电气元件、电通信技术、基本电子电路和计算推断等技术领域。

下面,以专利和技术发展的八个主要时期,来剖解TI的技术发展史和其对人类社会的影响。

一、1930-1945年德州仪器是母公司地球物理业务公司(Geophysical Service Incorporated, GSI),由麦克德莫特于1930年创办。

麦克德莫特、格林、约翰逊后来在1941年买下了这个公司。

公司创立者的企业家精神、愿景和创新为今天的德州仪器 (TI) 打下了坚实的基础。

这一时期,公司仅有零星的专利申请。

二、1946-1953年TI开始将信号处理技术应用于潜艇侦测,随后也将雷达应用于该领域,这使我们在 1946 年成功创建了电子设备实验室和制造厂。

IC品牌大全

IC品牌大全

IC品牌大全引言概述:IC(Integrated Circuit)是集成电路的缩写,是现代电子技术的基础和核心。

IC 品牌众多,每个品牌都有其独特的特点和应用领域。

本文将为大家介绍一些知名的IC品牌,以帮助读者更好地了解和选择适合自己需求的IC产品。

一、TI(德州仪器)1.1 TI品牌概述:TI是全球领先的模拟和数字半导体解决方案供应商,拥有丰富的产品线和广泛的应用领域。

1.2 TI品牌特点:TI的产品以高性能、低功耗和高集成度著称,广泛应用于通信、工业、汽车等领域。

1.3 TI产品应用案例:TI的DSP芯片在音频处理、图像处理等领域有着广泛的应用,其模拟芯片在电源管理、电机驱动等方面也有很好的表现。

二、ADI(安捷伦)2.1 ADI品牌概述:ADI是一家专注于模拟和数字信号处理技术的公司,提供高性能的模拟集成电路和信号处理器。

2.2 ADI品牌特点:ADI的产品在精度、速度和功耗方面具有优势,广泛应用于医疗、通信、工业等领域。

2.3 ADI产品应用案例:ADI的传感器和模拟前端芯片在医疗设备、工业自动化等方面有着广泛的应用,其数字信号处理器在音频设备、雷达系统等方面也有很好的表现。

三、NXP(恩智浦)3.1 NXP品牌概述:NXP是一家全球领先的半导体解决方案供应商,提供广泛的安全、连接和智能解决方案。

3.2 NXP品牌特点:NXP的产品在汽车电子、物联网、移动支付等领域具有领先地位,以高性能和高可靠性著称。

3.3 NXP产品应用案例:NXP的汽车电子产品在车载娱乐、车身控制等方面有着广泛的应用,其无线通信芯片在智能家居、智能城市等方面也有很好的表现。

四、Intel(英特尔)4.1 Intel品牌概述:Intel是全球领先的半导体公司,提供广泛的处理器和芯片组解决方案。

4.2 Intel品牌特点:Intel的产品在计算性能、能效和安全性方面具有优势,广泛应用于个人电脑、服务器等领域。

4.3 Intel产品应用案例:Intel的处理器在个人电脑、服务器等设备中有着广泛的应用,其芯片组在嵌入式系统、工业控制等方面也有很好的表现。

德州仪器MAX8792EVKIT评估工具包说明书

德州仪器MAX8792EVKIT评估工具包说明书

General DescriptionThe MAX8792 evaluation kit (EV kit) demonstrates the standard 10A application circuit of the MAX8792. This DC-DC converter steps down high-voltage batteries to generate low-voltage core or chipset/RAM bias supplies in notebook computers.The MAX8792 EV kit provides a dynamically adjustable 1.5V/1.05V output voltage from a 7V to 24V battery-input range. It delivers up to 10A output current while achieving greater than 90% efficiency. Programmed by a single resistor, the EV kit operates at 300kHz switch-ing frequency and has superior line- and load-transient response.The EV kit is a fully assembled and tested PCB. It also allows the evaluation of other dynamically adjustable output voltages by varying the external reference input,which can be realized by changing resistors R1, R2,and R3.Featureso 7V to 24V Input Rangeo Dynamically Selectable 1.5V/1.05V Output Voltage o Dynamically Adjustable Output Voltage (0 to V IN Range)o 10A Output Currento 93% Efficiency (V IN = 7V, V OUT = 1.5V at 3A)o 300kHz Switching Frequencyo Power-Good Output Indicator (PGOOD)o Low-Profile, Surface-Mount Components o Fully Assembled and TestedEvaluates: MAX8792MAX8792 Evaluation Kit________________________________________________________________Maxim Integrated Products 119-0688; Rev 1; 1/10Component ListFor pricing, delivery, and ordering information,please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .Ordering Information+Denotes lead(Pb)-free and RoHS compliant.E v a l u a t e s : M A X 8792MAX8792 Evaluation Kit 2_______________________________________________________________________________________these component suppliers.Quick StartRecommended Equipment•7V to 24V power supply, battery, or notebook AC adapter•DC bias power supply, 5V at 100mA •Dummy load capable of sinking 10A •Digital multimeter (DMM)•100MHz dual-trace oscilloscopeProcedureThe MAX8792 EV kit is fully assembled and tested.Follow the steps below to verify board operation.Caution:Do not turn on the power supply until all connections are completed:1)Ensure that the circuit is connected correctly to thesupplies and dummy load prior to applying any power.2)Verify that the shunts are across JU1 pins 1-2(EN high), JU2 pins uninstalled (1.5V output), and JU3 pins 1-2 (forced PWM).3)Turn on battery power prior to +5V bias power;otherwise, the output undervoltage (UVP) FAULT latch will be set, disabling the regulator until +5V power is cycled below 0.5V or EN is toggled.4)Observe the 1.5V output with the DMM and/or oscillo-scope. Look at the LX switching node and MOSFET gate-drive signals while varying the load current.Detailed Description of HardwareJumper SettingsSeveral jumper settings in the following tables illustrate some features of the MAX8792 EV kit.Shutdown Control InputThe MAX8792 EV kit features a 3-pin jumper (JU1) that selects the shutdown control input. Table 1 lists the selectable jumper options.External GateThe MAX8792 EV kit features a 2-pin jumper (JU2) that controls the gate of the external MOSFET (N3). The external MOSFET can be controlled through the GATE test point to dynamically adjust the REFIN voltage by forcing N3 to a low- or a high-impedance state. The default configuration has a shunt installed on only one pin of JU2 to provide a 1.5V output. Table 2 lists the selectable jumper options.Pulse-Skipping Control InputThe MAX8792 EV kit features a 4-pin jumper (JU3) for pulse-skipping control input. This four-level input deter-mines the mode of operation under normal steady-state conditions and dynamic output-voltage transitions. The default configuration has a shunt installed at pins 1-2for low-noise forced-PWM mode. Table 3 lists the other selectable jumper options. Refer to the Modes of Operation section of the IC data sheet for a more detailed description.Evaluates: MAX8792MAX8792 Evaluation Kit_______________________________________________________________________________________3Evaluating Other Dynamic Output VoltagesThe EV kit output is preset to 1.05V/1.5V. However, the output voltage can also be adjusted between 0 and 2V (FB = OUT)by selecting R1, R2, and R3 values. The MAX8792 regulates FB to the voltage set at REFIN. By changing the voltage at REFIN, the MAX8792 can be used in applications that require dynamic output volt-age changes between two set points. Using the exter-nal GATE signal, a resistor can be switched in and out of the REFIN resistor-divider, changing the voltage at REFIN. A logic-high on G ATE turns on the external n-channel MOSFET, forcing N3’s drain to a low-imped-ance state. A logic-low on GATE disables the n-channel MOSFET, so N3’s drain is high impedance. The two output voltages (FB = OUT) are determined by the fol-lowing equations:where V REF = 2.0V.Setting V OUT with aResistive Voltage-Divider at FBConnecting FB to a resistive voltage-divider allows for output voltages above the reference voltage (0 to 0.9 x V IN range). To get an output above 2V, install resistor R10 with a 10k Ω±1% resistor and replace R9with the following equation:where V FB = V REFIN .The switching-frequency setting input should then be adjusted by replacing the external resistor R6 (R TON )where C TON = 16.26pF, f SW = 300kHz, and V FB = V REFIN under normal operating conditions. Refer to the MAX8792 data sheet for selection of output capacitor and inductor values for output voltages greater than 2V.E v a l u a t e s : M A X 8792MAX8792 Evaluation Kit 4_______________________________________________________________________________________Evaluates: MAX8792MAX8792 Evaluation Kit_______________________________________________________________________________________5Figure 1. MAX8792 EV Kit SchematicE v a l u a t e s : M A X 8792MAX8792 Evaluation Kit 6_______________________________________________________________________________________Figure 2. MAX8792 EV Kit Component Placement Guide—Component SideFigure 3. MAX8792 EV Kit PCB Layout—Component SideFigure 4. MAX8792 EV Kit PCB Layout—GND Layer 2Evaluates: MAX8792Figure 5. MAX8792 EV Kit PCB Layout—GND Layer 3Figure 6. MAX8792 EV Kit PCB Layout—Solder SideFigure 7. MAX8792 EV Kit Component Placement Guide—Solder SideMAX8792 Evaluation Kit_______________________________________________________________________________________7Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.8_________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2010 Maxim Integrated ProductsMaxim is a registered trademark of Maxim Integrated Products, Inc.E v a l u a t e s : M A X 8792MAX8792 Evaluation Kit Revision History。

德州仪器(TI) BQ34Z100宽量程电量监测计说明书

德州仪器(TI) BQ34Z100宽量程电量监测计说明书

BQ34Z100 采用 Impedance Track™ 技术的宽量程电量监测计1 特性•支持锂离子和磷酸铁锂化学物质•对电压为 3V 至 65V 的电池使用已获得专利的 Impedance Track™技术估算容量–老化补偿–自放电补偿•支持超过 65Ah 的电池容量•支持高于 32A 的充放电电流•外部负温度系数 (NTC) 热敏电阻支持•支持与主机系统的两线制 I2C 和 HDQ 单线制通信接口•SHA-1/HMAC 认证•一个或者四个 LED 直接显示控制•五个 LED 和通过端口扩展器的更多显示•节能模式(典型电池组运行范围条件)–正常工作:< 140µA 平均电流–睡眠:< 64µA 平均电流–全睡眠:< 19µA 平均电流•封装:14 引脚 TSSOP 2 应用•轻型电动车辆•医疗仪器•移动无线电•电动工具•不间断电源 (UPS)3 说明德州仪器 (TI) BQ34Z100 是独立于电池串联配置工作的电量监测计解决方案,支持各种锂离子和磷酸铁锂电池化学物质。

通过外部电压转换电路可支持 3V 至 65V 的电池,此电路可通过自动控制来降低系统功耗。

BQ34Z100 器件提供多个接口选项,其中包括一个 I2C 从接口、一个 HDQ 从接口、一个或四个直接 LED 接口以及一个警报输出引脚。

此外,BQ34Z100 还支持外部端口扩展器,连接四个以上的 LED。

(1)如需了解所有可用封装,请参阅数据表末尾的可订购产品附录。

简化版原理图Table of Contents1 特性...................................................................................12 应用...................................................................................13 说明...................................................................................14 Revision History ..............................................................25 Pin Configuration and Functions ...................................36 Specifications ..................................................................46.1 Absolute Maximum Ratings........................................46.2 ESD Ratings...............................................................46.3 Recommended Operating Conditions.........................46.4 Thermal Information....................................................56.5 Electrical Characteristics: Power-On Reset................56.6 Electrical Characteristics: LDO Regulator...................56.7 Electrical Characteristics: Internal TemperatureSensor Characteristics..................................................56.8 Electrical Characteristics: Low-FrequencyOscillator.......................................................................66.9 Electrical Characteristics: High-FrequencyOscillator.......................................................................66.10 Electrical Characteristics: Integrating ADC(Coulomb Counter) Characteristics...............................66.11 Electrical Characteristics: ADC (Temperatureand Cell Measurement) Characteristics........................66.12 Electrical Characteristics: Data Flash MemoryCharacteristics (7)6.13 Timing Requirements: HDQ Communication............76.14 Timing Requirements: I 2C-Compatible Interface......86.15 Typical Characteristics..............................................97 Detailed Description ......................................................107.1 Overview...................................................................107.2 Feature Description...................................................117.3 Device Functional Modes..........................................398 Application and Implementation ..................................408.1 Typical Applications..................................................409 Power Supply Recommendations ................................4910 Layout ...........................................................................5010.1 Layout Guidelines...................................................5010.2 Layout Example......................................................5011 Device and Documentation Support ..........................5311.1 Documentation Support..........................................5311.2 接收文档更新通知...................................................5311.3 支持资源..................................................................5311.4 Trademarks.............................................................5311.5 Electrostatic Discharge Caution..............................5311.6 术语表.....................................................................5312 Mechanical, Packaging, and OrderableInformation (53)4 Revision History注:以前版本的页码可能与当前版本的页码不同Changes from Revision B (December 2012) to Revision C (May 2021)Page•根据更新的德州仪器 (TI) 标准更改了文档格式并通篇更新了 SRP 和 SRN 引脚................................................1•Changed Ground System ................................................................................................................................50•Changed Board Offset Considerations ............................................................................................................51Changes from Revision A (September 2012) to Revision B (December 2012)Page•Changed Absolute Maximum Ratings ...............................................................................................................4•Changed 节 6.3 ..................................................................................................................................................4•Changed 节 7.2.15.3 ........................................................................................................................................39•Changed SLEEP Mode ....................................................................................................................................39•Changed FULL SLEEP Mode ..........................................................................................................................39•Changed STEP 3 (44)BQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 20215 Pin Configuration and FunctionsP2P3/SDA VEN P4/SCL P1P5/HDQ BAT P6/TS CE SRN REGIN SRP REG25VSSBQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 2021BQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 6 Specifications6.1 Absolute Maximum Ratings(1)(1)Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratingsonly, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.6.2 ESD Ratings(1)JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.(2)JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.6.3 Recommended Operating Conditions6.3 Recommended Operating Conditions (continued)6.4 Thermal Information(1)For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics Application Report , SPRA953.6.5 Electrical Characteristics: Power-On Reset6.6 Electrical Characteristics: LDO Regulator(1)(1)LDO output current, I OUT , is the sum of internal and external load currents.(2)Specified by design. Not production tested.6.7 Electrical Characteristics: Internal Temperature Sensor CharacteristicsBQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 2021BQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 6.8 Electrical Characteristics: Low-Frequency Oscillator(1)The frequency drift is included and measured from the trimmed frequency at VCC = 2.5 V, T A = 25°C.(2)The frequency error is measured from 32.768 kHz.(3)The startup time is defined as the time it takes for the oscillator output frequency to be ±3%.6.9 Electrical Characteristics: High-Frequency Oscillator(1)The frequency error is measured from 2.097 MHz.(2)The startup time is defined as the time it takes for the oscillator output frequency to be ±3%.6.10 Electrical Characteristics: Integrating ADC (Coulomb Counter) Characteristics(1)Specified by design. Not tested in production.(2)Full-scale reference6.11 Electrical Characteristics: ADC (Temperature and Cell Measurement) Characteristics6.11 Electrical Characteristics: ADC (Temperature and Cell Measurement) Characteristics (continued)(1)Specified by design. Not tested in production.6.12 Electrical Characteristics: Data Flash Memory Characteristics(1)Specified by design. Not tested in production.6.13 Timing Requirements: HDQ CommunicationT A = –40°C to 85°C, C REG = 1.0 μF, 2.45 V < V REGIN = V BAT < 5.5 V; typical values at T A = 25°C and V REGIN = V BAT = 3.6 VBQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 2021(a)Break and Break Recovery(c)Host Transmitted Bit(d)Gauge Transmitted Bit(b)HDQ line rise time图 6-1. Timing Diagrams6.14 Timing Requirements: I2C-Compatible InterfaceT A = –40°C to 85°C, C REG = 0.47 μF, 2.45 V < V REGIN = V BAT < 5.5 V; typical values at T A = 25°C and V REGIN = V BAT = 3.6t SU(STA)SCLSDAt w(H)tw(L)t f tr t(BUF)t rt d(STA)REPEATEDSTARTt h(DAT)t su(DAT)t f t su(STOP)STOP START图 6-2. I2C-Compatible Interface Timing DiagramsBQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 6.15 Typical CharacteristicsBQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 2021BQ34Z100ZHCS926C – MAY 2012 – REVISED MAY 7 Detailed Description7.1 OverviewThe BQ34Z100 device accurately predicts the battery capacity and other operational characteristics of a single cell or multiple rechargeable cell blocks, which are voltage balanced when resting. The device supports various Li-ion and LiFePO4 chemistries, and can be interrogated by a host processor to provide cell information, such as remaining capacity, full charge capacity, and average current.Information is accessed through a series of commands called Standard Data Commands (see 节7.2.1.1). Further capabilities are provided by the additional Extended Data Commands set (see 节 7.2.2). Both sets of commands, indicated by the general format Command(), are used to read and write information contained within the BQ34Z100 device’s control and status registers, as well as its data flash locations. Commands are sent from host to gauge using the BQ34Z100 serial communications engines, HDQ and I2C, and can be executed during application development, pack manufacture, or end-equipment operation.Cell information is stored in the BQ34Z100 in non-volatile flash memory. Many of these data flash locations are accessible during application development and pack manufacture. They cannot, generally, be accessed directly during end-equipment operation. Access to these locations is achieved by using the BQ34Z100 device’s companion evaluation software, through individual commands, or through a sequence of data-flash-access commands. To access a desired data flash location, the correct data flash subclass and offset must be known. The BQ34Z100 provides 32 bytes of user-programmable data flash memory. This data space is accessed through a data flash interface. For specifics on accessing the data flash, refer to 节 7.2.3.The key to the BQ34Z100 device’s high-accuracy gas gauging prediction is Texas Instrument’s proprietary Impedance Track algorithm. This algorithm uses voltage measurements, characteristics, and properties to create state-of-charge predictions that can achieve accuracy with as little as 1% error across a wide variety of operating conditions.The BQ34Z100 measures charge/discharge activity by monitoring the voltage across a small-value series sense resistor connected in the low side of the battery circuit. When an application’s load is applied, cell impedance is measured by comparing its Open Circuit Voltage (OCV) with its measured voltage under loading conditions.The BQ34Z100 can use an NTC thermistor (default is Semitec 103AT or Mitsubishi BN35-3H103FB-50) for temperature measurement, or can also be configured to use its internal temperature sensor. The BQ34Z100 uses temperature to monitor the battery-pack environment, which is used for fuel gauging and cell protection functionality.To minimize power consumption, the BQ34Z100 has three power modes: NORMAL, SLEEP, and FULL SLEEP. The BQ34Z100 passes automatically between these modes, depending upon the occurrence of specific events. Multiple modes are available for configuring from one to 16 LEDs as an indicator of remaining state of charge. More than four LEDs require the use of one or two inexpensive SN74HC164 shift register expanders.A SHA-1/HMAC-based battery pack authentication feature is also implemented on the BQ34Z100. When the IC is in UNSEALED mode, authentication keys can be (re)assigned. A scratch pad area is used to receive challenge information from a host and to export SHA-1/HMAC encrypted responses. See 节 7.2.14.1 for further details.备注Formatting conventions in this document:Commands: italics with parentheses and no breaking spaces; for example, RemainingCapacity().Data Flash: italics, bold, and breaking spaces; for example, Design Capacity.Register Bits and Flags: brackets only; for example, [TDA] DataFlash Bits: italic and bold; for example, [LED1]Modes and states: ALL CAPITALS; for example, UNSEALED mode.7.2 Feature Description7.2.1 Data Commands7.2.1.1 Standard Data CommandsThe BQ34Z100 uses a series of 2-byte standard commands to enable host reading and writing of battery information. Each standard command has an associated command-code pair, as indicated in 表 7-1. Because each command consists of two bytes of data, two consecutive HDQ/I2C transmissions must be executed to initiate the command function and to read or write the corresponding two bytes of data. Standard commands are accessible in NORMAL operation. Also, two block commands are available to read Manufacturer Name and Device Chemistry. Read/Write permissions depend on the active access mode.7.2.1.2 Control(): 0x00/0x01Issuing a Control() command requires a subsequent two-byte subcommand. These additional bytes specify the particular control function desired. The Control()command allows the host to control specific features of the BQ34Z100 during normal operation, and additional features when the BQ34Z100 is in different access modes, as described in 表 7-2.7.2.1.2.1 CONTROL_STATUS: 0x0000Instructs the fuel gauge to return status information to Control addresses 0x00/0x01. The status word includes the following information.Legend: RSVD = ReservedFAS:Status bit that indicates the BQ34Z100 is in FULL ACCESS SEALED state. Active when set.SS:Status bit that indicates the BQ34Z100 is in the SEALED state. Active when set.CALMODE:Status bit that indicates the BQ34Z100 calibration function is active. True when set.Default is 0.CCA:Status bit that indicates the BQ34Z100 Coulomb Counter Calibration routine is active. Active when set.BCA:Status bit that indicates the BQ34Z100 Board Calibration routine is active. Active when set.CSV:Status bit that indicates a valid data flash checksum has been generated. Active when set.FULLSLEEP:Status bit that indicates the BQ34Z100 is in FULL SLEEP mode. True when set. The state can only be detected by monitoring the power used by the BQ34Z100 because any communication will automatically clear it.SLEEP:Status bit that indicates the BQ34Z100 is in SLEEP mode. True when set.LDMD:Status bit that indicates the BQ34Z100 Impedance Track algorithm using constant-power mode. True when set.Default is 0 (CONSTANT CURRENT mode).RUP_DIS:Status bit that indicates the BQ34Z100 Ra table updates are disabled. True when set.VOK:Status bit that indicates cell voltages are OK for Qmax updates. True when set.QEN:Status bit that indicates the BQ34Z100 Qmax updates are enabled. True when set.7.2.1.2.2 DEVICE TYPE: 0x0001Instructs the fuel gauge to return the device type to addresses 0x00/0x01.7.2.1.2.3 FW_VERSION: 0x0002Instructs the fuel gauge to return the firmware version to addresses 0x00/0x01.7.2.1.2.4 HW_VERSION: 0x0003Instructs the fuel gauge to return the hardware version to addresses 0x00/0x01.7.2.1.2.5 RESET_DATA: 0x0005Instructs the fuel gauge to return the number of resets performed to addresses 0x00/0x01.7.2.1.2.6 PREV_MACWRITE: 0x0007Instructs the fuel gauge to return the previous command written to addresses 0x00/0x01. The value returned is limited to less than 0x0020.7.2.1.2.7 CHEM ID: 0x0008Instructs the fuel gauge to return the chemical identifier for the Impedance Track configuration to addresses 0x00/0x01.7.2.1.2.8 BOARD_OFFSET: 0x0009Instructs the fuel gauge to calibrate board offset. During board offset calibration the [BCA] bit is set.7.2.1.2.9 CC_OFFSET: 0x000AInstructs the fuel gauge to calibrate the coulomb counter offset. During calibration the [CCA] bit is set.7.2.1.2.10 CC_OFFSET_SAVE: 0x000BInstructs the fuel gauge to save the coulomb counter offset after calibration.7.2.1.2.11 DF_VERSION: 0x000CInstructs the fuel gauge to return the data flash version to addresses 0x00/0x01.7.2.1.2.12 SET_FULLSLEEP: 0x0010Instructs the fuel gauge to set the FULLSLEEP bit in the Control Status register to 1. This allows the gauge to enter the FULL SLEEP power mode after the transition to SLEEP power state is detected. In FULL SLEEP mode, less power is consumed by disabling an oscillator circuit used by the communication engines. For HDQ communication, one host message will be dropped. For I2C communications, the first I2C message will incur a 6-ms–8-ms clock stretch while the oscillator is started and stabilized. A communication to the device in FULL SLEEP will force the part back to the SLEEP mode.7.2.1.2.13 STATIC_CHEM_DF_CHKSUM: 0x0017Instructs the fuel gauge to calculate chemistry checksum as a 16-bit unsigned integer sum of all static chemistry data. The most significant bit (MSB) of the checksum is masked yielding a 15-bit checksum. This checksum is compared with the value stored in the data flash Static Chem DF Checksum. If the value matches, the MSB will be cleared to indicate a pass. If it does not match, the MSB will be set to indicate a failure.7.2.1.2.14 SEALED: 0x0020Instructs the fuel gauge to transition from UNSEALED state to SEALED state. The fuel gauge should always be set to SEALED state for use in customer’s end equipment.7.2.1.2.15 IT ENABLE: 0x0021Forces the fuel gauge to begin the Impedance Track algorithm, sets Bit 2 of UpdateStatus and causes the [VOK] and [QEN] flags to be set in the CONTROL STATUS register. [VOK] is cleared if the voltages are not suitable for a Qmax update. Once set, [QEN] cannot be cleared. This command is only available when the fuel gauge is UNSEALED and is typically enabled at the last step of production after the system test is completed.7.2.1.2.16 RESET: 0x0041Instructs the fuel gauge to perform a full reset. This command is only available when the fuel gauge is UNSEALED.7.2.1.2.17 EXIT_CAL: 0x0080Instructs the fuel gauge to exit CALIBRATION mode.7.2.1.2.18 ENTER_CAL: 0x0081Instructs the fuel gauge to enter CALIBRATION mode.7.2.1.2.19 OFFSET_CAL: 0x0082Instructs the fuel gauge to perform offset calibration.7.2.1.3 StateOfCharge(): 0x02/0x03This read-only function returns an unsigned integer value of the predicted remaining battery capacity expressed as a percentage of FullChargeCapacity() with a range of 0 to 100%.7.2.1.4 RemainingCapacity(): 0x04/0x05This read-only command pair returns the compensated battery capacity remaining. Unit is 1 mAh per bit.7.2.1.5 FullChargeCapacity(): 0x06/07This read-only command pair returns the compensated capacity of the battery when fully charged. Unit is 1 mAh per bit except if X10 mode is selected. In X10 mode, units are 10 mAh per bit. with units of 1 mAh per bit. . FullChargeCapacity() is updated at regular intervals, as specified by the Impedance Track algorithm.7.2.1.6 Voltage(): 0x08/0x09This read-word function returns an unsigned integer value of the measured cell-pack voltage in mV with a range of 0 V to 65535 mV.7.2.1.7 AverageCurrent(): 0x0A/0x0BThis read-only command pair returns a signed integer value that is the average current flowing through the sense resistor. It is updated every 1 second. Unit is 1 mA per bit except if X10 mode is selected. In X10 mode, units are 10 mA per bit. with units of 1 mA per bit.7.2.1.8 Temperature(): 0x0C/0x0DThis read-word function returns an unsigned integer value of the temperature, in units of 0.1 K, measured by the gas gauge and has a range of 0 to 6553.5 K. The source of the measured temperature is configured by the [TEMPS] bit in the Pack Configuration register (see 节 7.2.2).7.2.1.9 Flags(): 0x0E/0x0FThis read-word function returns the contents of the Gas Gauge Status register, depicting current operation status.Legend: RSVD = ReservedOTC:Overtemperature in Charge condition is detected. True when setOTD:Overtemperature in Discharge condition is detected. True when setBATHI:Battery High bit that indicates a high battery voltage condition. Refer to the data flash BATTERY HIGH parameters for threshold settings.BATLOW:Battery Low bit that indicates a low battery voltage condition. Refer to the data flash BATTERY LOW parameters for threshold settings.CHG_INH:Charge Inhibit: unable to begin charging. Refer to the data flash [Charge Inhibit Temp Low, Charge Inhibit Temp High] . True when setXCHG:Charging not allowedRSVD:ReservedFC:Full charge is detected. FC is set when charge termination is reached and FC Set% = –1 (see 节 7.2.10 for details) or StateOfCharge() is larger than FC Set% and FC Set% is not –1. True when setCHG:(Fast) charging allowed. True when setOCVTAKEN:Cleared on entry to RELAX mode and set to 1 when OCV measurement is performed in RELAX mode.ISD:Internal Short is detected. True when set. TDD = Tab Disconnect is detected. True when setSOC1:State-of-Charge Threshold 1 reached. True when setSOCF:State-of-Charge Threshold Final reached. True when setDSG:Discharging detected. True when set7.2.2 Extended Data CommandsExtended commands offer additional functionality beyond the standard set of commands. They are used in the same manner; however, unlike standard commands, extended commands are not limited to 2-byte words. The number of command bytes for a given extended command ranges in size from single to multiple bytes, as specified in 表 7-6. For details on the SEALED and UNSEALED states, refer to 节 7.2.3.3.(1)SEALED and UNSEALED states are entered via commands to CNTL 0x00/0x01.(2)In SEALED mode, data flash cannot be accessed through commands 0x3E and 0x3F.7.2.2.1 AtRate(): 0X10/0x11The AtRate() read-/write-word function is the first half of a two-function call-set used to set the AtRate value used in calculations made by the AtRateTimeToEmpty() function. The AtRate() units are in mA.The AtRate() value is a signed integer and both positive and negative values will be interpreted as a discharge current value. The AtRateTimeToEmpty()function returns the predicted operating time at the AtRate value of discharge. The default value for AtRate() is zero and will force AtRate() to return 65535.7.2.2.2 AtRateTimeToEmpty(): 0x12/0x13This read-word function returns an unsigned integer value of the predicted remaining operating time if the battery is discharged at the AtRate() value in minutes with a range of 0 to 65534. A value of 65535 indicatesAtRate() = 0.The gas gauge updates AtRateTimeToEmpty() within 1s after the host sets the AtRate() value. The gas gauge automatically updates AtRateTimeToEmpty() based on the AtRate() value every 1 s.7.2.2.3 Current(): 0x10/0x11This read-only command pair returns a signed integer value that is the current flow through the sense resistor. It is updated every 1 second. Units are 1 mA per bit except if X10 mode is selected. In X10 mode, units are 10 mA per bit.with units of 1mA. However, if PackConfiguration [SCALED]is set then the units have been scaled through the calibration process. The actual scale is not set in the device and SCALED is just an indicator flag.7.2.2.4 NominalAvailableCapacity(): 0x14/0x15This read-only command pair returns the uncompensated (no or light load) battery capacity remaining. Unit is 1 mAh per bit.7.2.2.5 FullAvailableCapacity(): 0x16/0x17This read-only command pair returns the uncompensated (no or light load) capacity of the battery when fully charged. Unit is 1 mAh per bit. FullAvailableCapacity()is updated at regular intervals, as specified by the Impedance Track algorithm.7.2.2.6 TimeToEmpty(): 0x18/0x19This read-only function returns an unsigned integer value of the predicted remaining battery life at the present rate of discharge , in minutes. A value of 65535 indicates that the battery is not being discharged.This read-only function returns an unsigned integer value of predicted remaining time until the battery reaches full charge, in minutes, based upon AverageCurrent(). The computation should account for the taper current time extension from the linear TTF computation based on a fixed AverageCurrent() rate of charge accumulation. A value of 65535 indicates the battery is not being charged.7.2.2.8 StandbyCurrent(): 0x1C/0x1DThis read-only function returns a signed integer value of the measured standby current through the sense resistor. The StandbyCurrent() is an adaptive measurement. Initially, it reports the standby current programmed in Initial Standby, and after spending some time in standby, reports the measured standby current.The register value is updated every 1 second when the measured current is above the Deadband (3 mA default) and is less than or equal to 2 x Initial Standby. The first and last values that meet this criterion should not be averaged in, since they may not be stable values. To approximate a 1 minute time constant, each new StandbyCurrent() value is computed as follows:StandbyCurrent()NEW = (239/256) × StandbyCurrent()OLD + (17/256) × AverageCurrent()7.2.2.9 StandbyTimeToEmpty(): 0x1E/0x1FThis read-only function returns an unsigned integer value of the predicted remaining battery life at the standby rate of discharge, in minutes. The computation should use Nominal Available Capacity (NAC), the uncompensated remaining capacity, for this computation. A value of 65535 indicates battery is not being discharged.7.2.2.10 MaxLoadCurrent(): 0x20/0x21This read-only function returns a signed integer value, in units of mA, of the maximum load conditions. The MaxLoadCurrent()is an adaptive measurement which is initially it reports the maximum load current programmed in Initial Max Load Current. If the measured current is ever greater than Initial Max Load Current, then MaxLoadCurrent() updates to the new current. MaxLoadCurrent() is reduced to the average of the previous value and Initial Max Load Current whenever the battery is charged to full after a previous discharge to an SOC less than 50%. This prevents the reported value from maintaining an unusually high value.7.2.2.11 MaxLoadTimeToEmpty(): 0x22/0x23This read-only function returns an unsigned integer value of the predicted remaining battery life at the maximum load current discharge rate, in minutes. A value of 65535 indicates that the battery is not being discharged.7.2.2.12 AvailableEnergy(): 0x24/0x25This read-only function returns an unsigned integer value of the predicted charge or energy remaining in the battery. The value is reported in units of mWh.7.2.2.13 AveragePower(): 0x26/0x27This read-word function returns an unsigned integer value of the average power of the current discharge. A value of 0 indicates that the battery is not being discharged. The value is reported in units of mW.7.2.2.14 TimeToEmptyAtConstantPower(): 0x28/0x29This read-only function returns an unsigned integer value of the predicted remaining operating time if the battery is discharged at the AveragePower() value in minutes. A value of 65535 indicates AveragePower() = 0. The gas gauge automatically updates TimeToEmptyatContantPower() based on the AveragePower() value every 1s.7.2.2.15 InternalTemp(): 0x2A/0x2BThis read-only function returns an unsigned integer value of the measured internal temperature of the device, in units of 0.1 K, measured by the fuel gauge.。

德州仪器 笔试

德州仪器 笔试

德州仪器笔试
德州仪器(Texas Instruments)是一家全球领先的半导体和电子解决方案公司,总部位于美国德克萨斯州达拉斯市。

以下是可能会在德州仪器笔试中出现的一些题目和注意事项:
1. 数学能力题目:可能会涉及基本的数学运算,如加减乘除、百分比等,以及一些简单的数学推理题目。

2. 逻辑推理题目:可能会涉及一些逻辑推理和思考能力的
题目,如填空题、判断题、推算题等。

3. 电路和电子技术题目:可能会涉及一些基本的电路和电
子技术知识,如电阻、电容、电感的计算等。

4. C语言编程题目:可能会涉及一些基本的C语言编程题目,如语法、函数、循环、数组和指针的使用等。

5. 注意事项:在笔试过程中,需要认真阅读题目并仔细思考,注意答题时间和顺序,合理分配时间,避免在某一道
题目上花费过多时间而导致其他题目失分。

同时,对于涉
及计算的题目,要小心计算错误,避免粗心导致答案错误。

德州仪器的核心管理措施

德州仪器的核心管理措施

德州仪器的核心管理措施
德州仪器(Texas Instruments)是一家全球领先的半导体技术和解决方案提供商。

以下是德州仪器采取的核心管理措施:
1.以员工为中心:德州仪器注重对员工的关怀和培养,建立了以员工为中心的管理理念。

公司提供包括培训、发展、福利和平衡工作与生活等方面的支持,鼓励员工充分发挥自己的潜力。

2.激励和奖励制度:德州仪器实行激励和奖励制度,根据员工的贡献和绩效进行评估,并给予相应的奖励或晋升机会。

这激励了员工的积极性和创造力,推动了公司的发展。

3.持续的创新和研发:德州仪器致力于持续创新和研发,不断推出具有市场竞争力的新产品和解决方案。

公司重视技术创新和知识产权保护,不断提升自身竞争力。

4.高效的供应链管理:德州仪器建立了高效的供应链管理系统,确保原材料供应的稳定性和成本控制。

公司通过合理的库存管理和供应商合作,优化供应链流程,提供高质量的产品和服务。

5.质量和可持续发展:德州仪器将质量作为管理的核心,推行严格的质量控制和认证体系,确保产品和解决方案的可靠性和稳定性。

同时,公司致力于可持续发展,关注环境保护和社会责任,推动可持续的商业实践。

6.客户导向:德州仪器始终以客户为中心,关注客户需求,并提供定制化的解决方案和优质的客户服务。

公司积极倾听和回应客户反馈,不断提升客户满意度,保持良好的客户关系。

n 沟道 nexfet

n 沟道 nexfet

n 沟道 nexfetN沟道NexFET是德州仪器(Texas Instruments)推出的一种功率MOSFET技术。

它采用了非常先进的制造工艺和设计技术,具有低导通电阻、快速开关速度、高效能、低损耗等优点。

NexFET已经成为许多应用领域中最受欢迎和最先进的功率MOSFET之一。

首先,N沟道NexFET的最显著特点之一是其低导通电阻。

导通电阻是指功率MOSFET在导通状态下存在的电阻,它决定了MOSFET的导通损耗。

NexFET采用了特殊的设计和材料,使其具有非常低的导通电阻,因此在导通状态下具有很低的能量损耗。

这使得NexFET非常适合于高效能和高效率的应用,例如电源供应、电动车辆、电机驱动等。

其次,N沟道NexFET还具有快速的开关速度。

开关速度是指MOSFET从关断到导通或从导通到关断的转换时间。

NexFET采用了先进的制造工艺和设计技术,使其具有非常快的开关速度。

快速开关速度有助于减少开关过程中的能量损耗和功率损耗,并提高MOSFET的工作效率。

因此,NexFET在快速开关应用中具有非常好的性能表现。

此外,NexFET还具有优良的瞬态特性。

瞬态特性是指MOSFET在开关过程中的响应时间和稳定性。

NexFET具有优秀的瞬态响应特性,它能够在短时间内快速响应输入信号的变化,并能够稳定地工作在高频率环境下。

这使得NexFET非常适合于高频开关电源、通信设备和高频电路等应用。

此外,N沟道NexFET还具有良好的热特性和可靠性。

它采用了高质量的材料和制造工艺,在高温环境下能够保持良好的工作性能。

同时,NexFET还具有一些保护功能,例如过温保护和过电流保护等,可以有效保护MOSFET和相关电路免受损坏。

这些特性使得NexFET非常适用于要求高稳定性和可靠性的应用领域。

总结来说,N沟道NexFET是一种先进的功率MOSFET技术。

它具有低导通电阻、快速开关速度、高效能以及良好的瞬态特性、热特性和可靠性等优点。

dlptexasinstruments的使用说明

dlptexasinstruments的使用说明

dlptexasinstruments的使用说明使用 DLP(Digital Light Processing)技术的德州仪器(Texas Instruments)是一种广泛用于光学投影和显示技术的数码微镜投影技术。

该技术基于微型数字显示技术,利用微镜对图像进行成像和投影。

下面将提供关于 DLP 德州仪器的详细说明。

一、DLP德州仪器的工作原理:1.数码微镜投影系统由两部分组成:数码微镜芯片和光学引擎。

2.数码微镜芯片是DLP投影技术的关键,它包含数百万个微镜,每个微镜都能独立地翻转开关,使光线可以通过或者被阻挡。

3. 当微镜翻转时,可调制micromirror device (DMD) 芯片将像素所代表的颜色反射到光学引擎中。

4.光学引擎通过组合红、绿、蓝三个原色的光束,形成彩色图像,并将其投射到屏幕上。

5.数码微镜投影技术通过快速的镜片切换,可以实现精确、快速、高亮度和高对比度的投影。

二、DLP德州仪器的优势:1.高亮度:DLP采用高亮度的灯泡和高反射率的微镜,能够投射出更亮的图像。

2.高对比度:微镜在翻转开关时,可以完全关闭光线,从而实现黑色背景的投影,提供高对比度的图像。

3.高分辨率:DLP芯片具有微小的微镜尺寸,可以实现非常高的分辨率和图像细节。

4.长寿命:DLP德州仪器的芯片无灯泡、烟泡或液晶面板等易损部件,因此寿命更长。

5.可靠性:DLP德州仪器具有良好的抗震性能,适用于各种环境和场合。

6.三维效果:DLP可使用特殊的眼镜实现立体图像展示。

7.显示色彩准确:DLP德州仪器利用彩色光轮技术,可以显示真实而鲜艳的颜色。

三、DLP德州仪器的应用领域:1.投影仪:DLP德州仪器广泛用于家庭影院、教育、商务会议、演讲和活动等领域。

2.大屏幕电视:DLP德州仪器被用于大屏幕电视、室内和户外显示,提供高品质和高清晰度的图像。

3.3D打印:DLP德州仪器可用于高精度的3D打印设备,用于制造精密零件和模型。

ti芯片丝印

ti芯片丝印

ti芯片丝印TI芯片是德州仪器(Texas Instruments,简称TI)公司的一种系列集成电路芯片产品。

TI公司是全球领先的模拟和数字半导体解决方案供应商,其产品应用广泛,包括通信、工业、汽车、计算机、消费电子以及航空航天等领域。

TI芯片的丝印是指印在芯片外部封装上的标识信息。

丝印是通过印刷技术将字母、数字、图标等信息印在芯片封装的表面上,以便用户和生产厂商识别和辨别芯片的型号、批次等信息。

TI芯片的丝印通常包括以下几个方面的信息:1. 型号:丝印上通常会印上芯片的型号,用于标识该芯片的具体型号和功能。

型号一般由字母和数字组成,例如“LM317”表示一款稳压器芯片。

2. 商标:丝印上还会有德州仪器公司的商标,用于标识该芯片的制造商。

商标通常是公司的商标图案、名称或者缩写,例如“TI”表示德州仪器公司。

3. 序号:丝印上有时会印上芯片的序列号,用于标识该芯片的生产批次。

序列号一般由数字组成,例如“12345678”。

4. 日期代码:丝印上还会有一个日期代码,用于标识芯片的生产日期。

日期代码一般由数字和字母组成,例如“YYWW”,其中YY代表年份的后两位,WW代表一年中的第几周。

5. 其他信息:丝印上还可能包括一些其他信息,如技术规格、警告符号、工艺符号等。

TI芯片的丝印对于用户和生产厂商来说都非常重要。

对于用户而言,通过丝印上的信息可以快速准确地判断芯片的型号和批次,以确保使用正确的芯片和避免产品质量问题。

对于生产厂商而言,丝印可以帮助他们对芯片进行追溯和管理,以提高产品质量和检测芯片的真伪。

总之,TI芯片的丝印是德州仪器公司为了方便用户和自身管理而印在芯片封装上的标识信息,它承载了型号、商标、序号、日期代码等重要信息,对于用户和生产厂商来说都具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Change the world, Love your job!
2012/2013 德州仪器Texas Instrument 校园招聘
德州仪器(TI)是世界最大的半导体公司之一,总部位于美国得克萨斯州的达拉斯,并在35个国家设有制造、设计或销售机构。

在2011年度财富(Fortune) 500强企业中名列第175位。

我们始终致力于提供创新半导体技术,帮助我们的客户开发世界上最先进的电子产品。

TI 的模拟、嵌入式处理和无线技术已经渗透到人们日常生活的方方面面。

您打出的每一通电话、进行的每一次网络连接、拍的每一张相片、看的每一场电影,TI技术都蕴含其中。

自1986年进入中国大陆以来,TI除在中国建立了庞大的代理商销售网外,还在北京、上海、广州、深圳、成都、重庆、南京、西安、武汉、厦门、东莞、珠海、青岛、苏州、杭州、长沙以及香港设立了销售、市场营销、研发以及制造团队。

目前TI在中国有超过1500名员工,近10000家客户。

选择一个好的起点,对整个职业生涯至关重要。

德州仪器作为全球半导体行业的领军人物,我们为你提供最前沿的技术平台、国际化的管理运作、全面系统的培训体系、量身定制的职业发展通道。

你在这里会感受到家庭的温暖、成长的速度、团队的力量和多元的文化。

无论技术能力、外语
水平、还是管理知识、人际沟通,都能得到全方位的提升。

TI会让你在未来的工作和生活中受益良多。

我们期待富有激情、敢于梦想的你和TI一起成长!
了解关于TI的更多信息,敬请登录全球网站/,或中文网站/。

我们将在校园BBS、TI校园招聘官方微博及TI人人网公共主页实时更新校招行程,面试安排等信息,欢迎关注:微博@TI芯学院及人人网@德州仪器
校园宣讲会将于9月17日在全国范围内开始!欢迎参加!
2013年校园招聘,我们将扩大招聘规模,在线申请请点击:/ti
招聘岗位如下:
销售及市场类岗位:
助理销售工程师项目/Technical Sales Associate)(TSA)(全国各地)
助理技术应用工程师项目/Applications Engineering Associate(Apps)(全国各地)
研发类岗位:
系统工程师(上海/北京/深圳/成都)
应用工程师(上海/北京/深圳/成都)
模拟设计工程师(上海/北京/深圳/成都)
数字设计工程师(上海)
产品/测试工程师(上海/北京/深圳/成都)
其他岗位:
财务ACCESS培训生项目/Finance Access Program Trainee(上海)
市场营销培训生项目/Communication Associate Program Trainee(上海)
技术和制造部管理培训生项目/(LDRP, Leadership Development Rotation Program)(成都)
人力资源发展项目/Human Resources Development Program Trainee(上海)
我们在寻找合适的你:
2013电子工程或相关专业, 以及财务\市场营销\管理\人力资源专业应届毕业生,学士及以上学位
解决问题的能力和团队合作精神
主动性、计划与组织能力
良好的中英文沟通能力
想要改变世界并爱上你的工作?加入TI吧!。

相关文档
最新文档