家电Proe自上而下top-down骨架设计Creo教程
proe骨架模型——自顶向下的设计方法
Pro/ENGINEER 用设计来简化复杂的装配采用自顶向下的设计方法设计小组或个人便能够使用集中式信息来同时处理多项工作,自顶向下设计是一种在上层处理关键信息并把这些数据向较低的产品结构层传递的方法。
通过使用六种主要功能(布局『可选』、装配结构、骨架、数据通讯、发布/复制几何体、以及建立零件/装配几何体),个人或设计小组可以缩短设计时间,提高质量,并能在高层实现更改控制。
始于布局规划Pro/ENGINEER提供了一个电子记事薄,随着设计概念的发展,可以在此获取和更新设计意图。
采用自顶向下方法,可以把实体模型链接到布局,并随着布局的变化自动更新模型。
虽然它们不是自顶向下设计的必要条件,但是,布局能把设计信息集中保存,这有助于在建立实体模型之前建立设计意图。
- 技巧-在检索引用了布局的模型时,通常会把布局调出到缓存区中。
即使装配不在缓存区中,模型需要的所有关系也都有效。
定义装配结构在建立装配结构的过程中,用户实质上建立了一个虚拟的物料清单(BOM)。
这是一种确定设计小组主要工作的方法,如果只有一个人负责项目,那么,这种结构就可以起到类似标签或标记的作用,它们可以指出需要完成或需要处理的地方。
虚拟物料清单可以帮助用户为各个小组成员分配工作,从而使用户把精力放在某些具体的工作上,而不是整个装配上。
另外,虚拟物料清单还允许关联前面的零件库,把模型提交给Pro/INTRALINK或PDMLink,并把它们分配给适当的库或文件夹。
- 技巧-用户可以在Pro/INTRALINK 或PDMLink中建立虚拟物料清单,然后把装配拖到Pro/ENGINEER中。
建立虚拟物料清单的步骤:建立顶层装配。
用户可以输入名称,使用缺省的模板,或者复制另一个文件。
在设计需要的时候添加空组件或子装配。
添加一些散件,比如润滑油,用以表示物料清单中不用建模的项目。
骨架为装配设计提供了框架。
当骨架发生变化时,所连接的实体模型也跟着发生变化。
proe topdown 自顶向下设计
5.组织后续设计
在已经明确了设计意图并定义了包括骨架模型在内的产品基本结构和清晰的产品框架后,下一步将围绕设计意图和基本框架展开零件和子装配的详细设计。
6.管理元件间的相互性
用Pro/E软件设计的好处之一是利用它的相关性,具备设计意图修改后目标零件作相应的自动更新的能力。这需要通过外部参考关系、零件间的相互依赖性或参考控制来实现。尽管创建外部参数功能是Pro/E软件最强有力的武器,但对于大型设计仍是非常复杂的工作。因此,可以通过软件提供的外部参数管理工具来调查或管理这些参考。
组织:Top-Down设计组织并强化了装配中元件之间的交互性和依赖性。许多交互和依赖性存在于实际的装配设计中并且在设计模型中是需要提取的。举一个关于依赖性的例子,一个零件上有一个安装孔而另外零件的相应位置也存在孔,如果第一个零件的安装孔的位置发生改变,利用Top-Down技术可以控制第二个零件孔的位置也随之改变。这种依赖性用户是可以控制的,利用从动模型的模型树中的工具进行设置可使用户得到或限制元件的依赖性。
二Top-Down设计的六个步骤
Top-Down设计在组织方式上展开装配设计时通常包括六个主要步骤,这些步骤包括:规划、创建产品结构;通过产品的结构层次共享设计信息;独立元件之间获取信息。在构建大型装配的概念设计时,Top-Down设计是驾御和控制Pro/ENGINEER软件相关性设计工具最好的方法。
1.定义设计意图
所有的产品在设计之前要有初步的规划,如设计草图、提出各种想法和建议及设计规范等来实现产品设计的目的和功能。这个规划帮助设计者更好地理解产品并开始系统地设计或元件的详细设计。设计者可以利用这些信息开始定义设计结构和独立元件的详细需求并利用Pro/ENGINEER软件完成设计。
关于Creo parametric 2 Top Down的初步建模
关于Creo parametric 2.0 Top Down建模的总结Top Down建模是一种对于大规模装配建模的思路,类似的还有Down Top,Half Half等。
实际工程中,常常是各种方法灵活叠加使用。
在大规模装配时,物件的位置和装配关系是第一重要的,这时采用Top Down建模可以使设计师专注于装配关系,并在此基础上设计各个分部件。
Top Down,就是自上而下设计,本质上将,就是从总装配关系入手设计,创建骨架模型,所有的零件先确定装配位置,再设计具体的细节。
初学者常常使用与之相反的Down Top 建模思路,就是直接建各个分部件,再在装配体中装配,发现干涉再回去修改。
Down Top 的缺点就是后期调整非常麻烦,对于较为简单的产品还可以使用,但是对于内燃机的全零件装配,后期调整几乎是不可能的。
下面说说使用Top Down建模思路建简单鼠标壳体的过程:第一步:零件拆分鼠标整体:A.prt----------------------------------------总骨架—上部:A1.prt----------------------------------------- 分骨架A——上壳:A1_1.prt——鼠标:A1_2.prt---------------------------------- 分骨架B———左鼠标:A1_2_L.prt———右鼠标:A1_2_R.prt—下部:A2.prt这一步是非常重要的,在使用Top Down建模之前,必须使用树状图对整体进行拆分,搞清总骨架是什么,分骨架是什么,零件是怎么装配的,也就是搞清装配之间的逻辑顺序。
后期我们要根据这个树状图建立装配体。
第二部:直接生成装配体在树状图中要显示特征的树图,在模型树项中选中“特征”,树状图中会出现ASM平面。
但是我们不需要这些平面,所以选择隐藏。
第三步:创建主骨架元件(A)点集创建-选择“零件-实体”选择定位默认基准-对齐坐标轴于坐标系在ASM原坐标系上点击一下,确定坐标系位置,会发现下部产生了第一个零件。
top_down之布局—骨架协同运用
图28
然后在激活子组件,插入运动骨架,选择运动,之后一切步骤和上面的一样,再插入标准骨架,复制现有选择skeleton,见图29
图29
再插入主体骨架,选择空,然后选择油缸体的轴线和有缸体的轮廓线见图30
图30
再插入一个主体骨架,选择空,选择油缸杆的轴线和轮廓线,点更新,把其他的没有用的链接移除掉,只留下有杠杆的轴线的滑动杆的链接,见图31
图16
图17
弹出主体定义,选择你要传递的几何要素,先选择立柱的草绘(选择是有些技巧,你第一次选择可能一下就点选了一大片的草绘,不用急,按住ctrl,按右键,一个一个选择,选择好)然后打钩。见图18、图19
图18
图19
在插入零件,还是选择空,弹出的菜单和之前的不一样了,见图20
图20
顺序还是一样,选择几何要素,我选择横梁的草绘,见图21
见图3
图3
第三步把你的骨架图形发给其他的工程师,骨架的几何要素全部共享给其他的工程师,工程师们会按照你的骨架的形状和尺寸进行零件的绘制,再装配起来。(根据你的part文件,在ass组件下建立运动骨架模型,通过拉伸,旋转,切除等工具创建组件的part零件,最后在组装起来,完成零件的装配)。一个项目初步完成。见图4图5图6图7图8
图4
图5
图6
图7
图8
第四步当你发现有几个尺寸不满足要求,其他人在草纸上画了改动了数据,当他改动时,发现笔记本上出现了错误的警示,说明他改动的数据是错误的,按照提示更改了几次,他把数据改好了,而且符合要求。(在整个过程中需要用布局文件对组件进行控制,对一些关键的尺寸要进行错误检测,这里用到关系式,比如下面的例子中,当把油缸的中心距调大或者调过小,我们建立的错误检测栏会提示有错误,防止尺寸不当造成的装配失败问题)一套完美的proe下的top-down-design设计理念就体现出来了它的作用。当你习惯了用proe的关联再加上top-down的理念,你会发现设计原来是那么的简单。
基于Creo骨架模型的摆布机构自顶向下设计
摆布机构是纺织印染及织物整理设备中常用的装置。
最常见的结构是曲柄摇杆式四杆机构,因其结构简单、成本低廉、基本免维护等特点而被广泛应用。
曲柄摇杆式四杆机构在三维软件中的传统设计方法为先完成基础计算,确定四杆的长度后进行自底向上(bottom-up )设计,即先设计零件,再进行装配体的设计,然后再运用运动仿真分析机构合理性,最后进行优化修改。
这种逆向设计方法更适用于测绘基于Creo 骨架模型的摆布机构自顶向下设计摘要:在设计新型染整设备过程中,为了了解印染设备摆布机构码放整齐的结构原理,研究曲柄摇杆式摆布机构理想的设计方法,通过分析机构的运动原理与几何图形,推导出摆布长度、摆角、摆臂半径等尺寸参数与曲柄摇杆摆布机构四杆长度之间的关系及设计计算方法。
分析自底向上设计方法的不足,介绍了自顶向下设计理念的优势,并结合摆布机构的设计详细介绍了基于Creo 骨架模型的自顶向下设计方法,最终完成实体零部件的设计,并且完成摆布机构的运动仿真。
实践证明:利用Creo 骨架模型自顶向下设计可以有效地提高设计以及更改效率,提升设计质量。
关键词:自顶向下;骨架模型;摆布机构;曲柄摇杆中图分类号:TS193.3文献标志码:A 文章编号:1005-9350(2023)06-0039-06Abstract:The optimal design approach of the crank-rocker-type fabric arrangement mechanism is investigatedduring the new dyeing and finishing process to comprehend the structural principle of neatly stacking the fabric arrange⁃ment mechanism of the printing and dyeing equipment.The relationship between the dimensional parameters such as fabric length,swing angle and radius of the swing arm,and the length of the four rods of the crank-rocker type fabric arrange⁃ment mechanism and the design calculation method is derived by evaluating the motion principle and geometric graphics of the mechanism.The shortcomings of the bottom-up design method are analyzed,and the advantages of the top-down de⁃sign concept are bined with the design of the swing-cloth mechanism,the top-down design method based on the Creo skeleton model is introduced in detail.Finally,the design of physical components and the operation simulation of the pendulum mechanism is completed.Practice has proven that using the Creo skeleton model for top-down design can effectively improve design and change efficiency,and improve design quality.Key words:top-down;skeleton model;swing-cloth mechanism;crank-rockerTop-down design of swing-cloth mechanism based onCreo skeleton model收稿日期:2023-04-23基金项目:山东省重点研发计划资助(2022ZDPT02)作者简介:孙立祥(1984—),男,山东临清人,工程师,本科,主要研究方向为机械设计、新型智能纺织印染设备。
proe自上而下设计方法
我从网上找到的proe自上而下设计,说得很详细。
共同学习一下。
今天来和大家一起说说这种"自上而下”的设计方法及原则,有关这种设计方法在一些网站上也都提到到,本人对此有很大兴趣,就找了些资料,针对性研究了一下,觉得它们在过程上有不到之处,比如“在孤峰”有一款用这种方法设计的电器作品,它的那个骨架是从别的软件中导入进来的!但用到“自上而下”的内容少了点!我个人觉得“自上而下”的设计可分为两种方式来实现,A,首先在LAYUOT里面作草稿,设置他们的形位关系,及尺寸关系,再在PART里升明这种关系,达到自到装配的目标,说白了,也就是用LAYOUT来控制PART,当有变动时,可以修改LAYOUT里的参数!PART 会自动更新!B,就是用骨架,先做出统一的骨架,在共享骨架里的资料,让单个PART受限于骨架的控制,这样在装配时就会以骨架的方式自动到位!在修改骨架参数后,所有相关PART都会更新!有的人也会把LAYOUT和骨架一起用,我觉得没必要,尽管LAYOUT也能控制骨架的参数,但这样就有点多余了!我个人认为,骨架方式的设计的PART在装配时若是自动装配的话,在爆炸时不能达到想要的效果,还要单独的调整!我会分两个过程来说这一个过程,为的就是让不明白的人更明白他们之间的差别!先用LAYOUT的方式来说明!再用骨架说明,如下图所示,这是用机械仿真做的效果,(机械仿真我只学了三天不到)原PART及效果图在“美牙仿真”块!新建一个LAYOUT文件,在里面设置一个网格可见,选“view/draft grid"调出如图一对话框,按需设置!这样工作区就会显示一定间距的网格线,目的是为我们画图提供参考!接下来我们可以设置一个光标捕捉**,打开” sketch/sketcher preferences"调出草绘设置对话框,如图二设置:这样光标就能水平或垂直的沿网格线移动了!其实“破衣”的二维绘图都是一样的!只不过在不同的版块有几个不同命令而,而一些大众化的命令都是和“草绘”一样的使用,这里就简单介绍下:用线和圆画如图三所示的图形!在画图的时候,你可以把一个封闭的图形填充成“实色”或剖面线,这过程就和工程图里的一样,命令在“ edit/fill "我们重点介绍一下”标注“和中心线的过程!以及如何在 ▼ GRID MODIFYhQijj HrTypeOrigin Grid Pararns 间爲Hide Grid■amisLAYOUT 与PART 之前加关系!。
Creo原创教程(六) top-down-design之骨架模型 球阀建模举例
creo原创教程(六)top-down-design之骨架模型球阀建模举例从顶向下设计流程之骨架模型我们先认识一下什么叫做骨架模型当使用者在建立大型装配件时,会因零部件过多而难以处理,造成这种困难的原因可能是彼此间的限制条件相冲突,或者是因为零部件繁杂而忽略了某些小的地方,也可能是从原始设计时,建立的条件就已经出现错误等诸如此类的原因。
因此,在 Proe中提供了一个骨架模型的功能,允许使用者在加入零件之前,先设计好每个零件在空间中的静止位置,或者运动时的相对位置的结构图。
设计好结构图后,可以利用结构将每个零件装配上去,以避免不必要的装配限制冲突。
骨架模型不时实体文件,在装配的明细表中也不包括骨架模型,为什么要采用骨架模型?因为它有以下的优点:1)集中提供设计数据:骨架模型就是一种.part 文件。
在这个.part 文件中,定义了一些非实体单元,例如参考面、轴线、点、坐标系、曲线和曲面等,勾画了产品的主要结构、形状和位置等,作为装配的参考和设计零部件的参考。
2)零部件位置自动变更:零部件的装配是以骨架模型中基准作为参考的,因此零部件的位置会自动跟着骨架模型变化。
3)减少不必要的父子关系:因为设计中要尽可能的参考骨架模型,不去参考其他的零部件,所以可以减少父子关系。
4)可以任意确定零部件的装配顺序:零部件的装配是以骨架模型作为基准装配的,而不是依赖其它的零部件为装配基准的,因此可以方便的更改装配顺序。
5)改变参考控制:通过设计信息集中在骨架模型中,零部件设计以骨架作为参考,可以减少对外部参考的依赖。
骨架模型文件是一种特殊的.part 文件1)是装配中的第一个文件,并且排在默认参考基准面的前面。
2)自动被排除在工程图之外,工程图不显示骨架模型的内容。
3)可以被排除在BOM表之外。
4)没有重量属性。
默认状态下,每个装配件只能由一格骨架模型,当产品比较复杂时,一个骨架模型需要包括的信息太多,可以采用多个骨架模型相互配合分工,完成设计信息的提供和参考。
TOP_DOWN设计方法
自顶向下设计
自顶向下设计功能提供:
• 产品结构定义和操作的工具 • 在子系统级和装配级捕捉设计意图的工 具。 • 管理设计标准的交流和设计意图的完整 性的工具。 • 管理零部件间相互依赖性,增强工程数 据再利用能力的工具。 .
为什么要使用自顶向下设计?
设计意图的管理和组织
完全控制和分发设计意图 更好地组织和操作 阻止不正确的参考建立 更容易更精确地测试设计变型 确保公用设计和信息的一致性 设计变更的快速传播 变更发生要求更少的时间,资金和资源 验证运动范围,检查运动干涉
自顶向下设计的6个阶段
概念设计工程 (定义设计标准)
定义主产品结构
捕作设计意图 (骨架模型) 管理相互依赖 相关性交流设计意图 装配的扩展、充实
概念设计工程
Output of Existing 3rd Party Apps
Product Structure
Engineering Experience Existing Graphical Images Design Requirements and Constraints
27ZB1-00001_skel.prt
28ZB1-00020.asm
28ZB1-00020_skel.prt
29ZB1-00001.asm
29ZB1-00001_skel.prt
29ZB1-00002.asm
29ZB1-00002_skel.prt
30ZB1-00001.asm
30ZB1-00001_skel.prt 33ZB1-00001.asm
装配的扩展
组元建立
建立单独的零件文件
在装配中建立组元
Creo原创教程(六) top-down-design之骨架模型 球阀建模举例
creo原创教程(六)top-down-design之骨架模型球阀建模举例从顶向下设计流程之骨架模型我们先认识一下什么叫做骨架模型当使用者在建立大型装配件时,会因零部件过多而难以处理,造成这种困难的原因可能是彼此间的限制条件相冲突,或者是因为零部件繁杂而忽略了某些小的地方,也可能是从原始设计时,建立的条件就已经出现错误等诸如此类的原因。
因此,在 Proe中提供了一个骨架模型的功能,允许使用者在加入零件之前,先设计好每个零件在空间中的静止位置,或者运动时的相对位置的结构图。
设计好结构图后,可以利用结构将每个零件装配上去,以避免不必要的装配限制冲突。
骨架模型不时实体文件,在装配的明细表中也不包括骨架模型,为什么要采用骨架模型?因为它有以下的优点:1)集中提供设计数据:骨架模型就是一种.part 文件。
在这个.part 文件中,定义了一些非实体单元,例如参考面、轴线、点、坐标系、曲线和曲面等,勾画了产品的主要结构、形状和位置等,作为装配的参考和设计零部件的参考。
2)零部件位置自动变更:零部件的装配是以骨架模型中基准作为参考的,因此零部件的位置会自动跟着骨架模型变化。
3)减少不必要的父子关系:因为设计中要尽可能的参考骨架模型,不去参考其他的零部件,所以可以减少父子关系。
4)可以任意确定零部件的装配顺序:零部件的装配是以骨架模型作为基准装配的,而不是依赖其它的零部件为装配基准的,因此可以方便的更改装配顺序。
5)改变参考控制:通过设计信息集中在骨架模型中,零部件设计以骨架作为参考,可以减少对外部参考的依赖。
骨架模型文件是一种特殊的.part 文件1)是装配中的第一个文件,并且排在默认参考基准面的前面。
2)自动被排除在工程图之外,工程图不显示骨架模型的内容。
3)可以被排除在BOM表之外。
4)没有重量属性。
默认状态下,每个装配件只能由一格骨架模型,当产品比较复杂时,一个骨架模型需要包括的信息太多,可以采用多个骨架模型相互配合分工,完成设计信息的提供和参考。
proe自上而下布局设计
Creo原创教程(十)top-down-design之布局运用,看后人人都能top-down这是一个布局来控制液压油缸顶升物体的案例,下面就介绍如何创建控制这样的布局由于布局设计尺寸的更改,导致液压油缸顶升的距离的变动,这个就是从顶向下设计的理念中的一部分。
我们现在的很多人都知道什么是top-down-design,一般人第一印象:“它的作用是自动装配,还没看见它还有什么用途,也不知道怎么用。
”殊不知,top-down-design这一设计理念的实质作用。
(反正top-down实现自动装配我不用,还没到用的时候)有人知道他们的区别么?A: top-down-design 从顶向下(从顶级设计到细节零件设计)B: down -top-design 从下到上(反之)你知道什么使用A,什么时候用B么?A:你是自行设计,自主研发,而且后期更改变动很大,需要用A理念来设计B:你是仿制,copy别人的东西,而且变动不是很大,需要用B理念来设计。
在用A的过程,可以穿插着用B(在细节部分),但是A为主导,在主要尺寸上必须用A。
但是你在前期的投入时间比较多,把一些关系和细节做好了,你会事倍功半的,如果前期没有做好,后期你会以加倍的时间来去做它。
在用B设计的时候,可以穿插着用A,但是一B为主导。
实际上top-down-design涉及到proe的知识相当的多,我们在使用上不一定能用到那么多,或许只用到一小部分。
本人是一俗人,没有那么多华丽的辞藻来编制教程,实实在在,通俗的语言文字来描述top-down-design带来的好处以及如何使用它,手把手教会你。
看见了网上有关很多于top-down的帖子,就没有几个详细介绍关于机械top-down-design设计理念的,有ptc原版的教程,但是适合2001版本的,一部分人看不懂,还有的介绍的非常的简略,还有很多都是抄袭的帖子,我们野火老大的帖子被别人抄袭了好几个版本,以四连杆机构居多(那个是运动骨架来设计的),由于一部分是E文的,还有一部分介绍的很简单,一般的人可能都看不懂,于是乎Creo今天特地做一个教程,一个关于类似于煤矿地下矿井支撑油缸撑板支撑墙壁的教程,网上就没有关于布局来控制油缸等机械运动的教程,悲剧!Top-down设计理念主要是布局和骨架,关于这两个的含义我这里就不讲了,今天将布局大体描述一下布局,布局类似于我们工程师的一个笔记本,一张草纸,比如说你要绘制一个设备,你得先画出它的外形吧,把整体尺寸先控制好,长、宽、高,好建模,声明布局,把参数传给设备或者说是零件,建立好关系,你再草纸上把尺寸更改了,模型会检测到你的更改,它会自动按照你的要求去改,实现了人机互动,这样,不需要你每次更改都要到模型里面去改,而且不容易出错,这就是top-down-design。
Creo2.0 Top-Down设计教程
Creo2.0 Top-Down设计教程MCAD顾问:周胜强2015.12模块1:简介讲座演示和练习简介创建布局创建设计框架创建和分析设计框架传递设计信息将模型声明到布局共享几何与参照创建组件结构使用共享参照创建设计模型课程活动分析和修改组件结构分析和修改组件结构目标完成此模块的学习后,您将能够:描述自顶向下设计流程。
使用布局记录设计信息。
创建组件结构。
什么是自顶向下设计?Top-Down(自顶向下)设计是一种设计思想,即设计由总体布局、总体结构、部件结构到部件零件的一种自上而下、逐步细化的设计过程。
它是一个管理过程●更改在整个设计中的控制和传播●设计意图的高效管理和沟通自顶向下设计流程✓方案布置信息有效传递✓并行协同设计有效开展✓符合设计思路 元件 元件 元件 传统设计流程✓搭积木的方式✓没有方案布置设计✓必须依赖丰富的设计经验元件 元件 元件设计信息 TOP-DOWN 与BOTTOM-UP 的比较装配元件Top-Down设计概览创建布局将产品设计信息记录在一个集中的位置。
2-D草绘尺寸和参数-校核参数:空间范围(外形尺寸)-配置参数:性能指标(性能参数)-驱动参数:技术细节(定位尺寸)关系注释、表和球标创建组件结构不必创建几何或放置约束而定义产品结构。
开始模型添加元件•使用自动约束(重合等)•使用缺省约束•包括元件(元件会出现在“模型树”中,但不会出现在图形窗口中)•封装(暂不定位元件)•主体项目(主体项表示的对象不需要建立实体模型)总结成功完成此模块后,您应知道如何:描述自顶向下设计流程。
使用布局记录设计信息。
创建组件结构。
模块2:创建设计框架讲座演示和练习简介创建布局创建设计框架创建和分析设计框架传递设计信息将模型声明到布局共享几何与参照创建组件结构使用共享参照创建设计模型课程活动分析和修改组件结构分析和修改组件结构目标完成此模块的学习后,您将能够:创建骨架特征。
创建组件中的空间声明。
创建元件之间的接触面。
pro-e_4.0中的TOP-DOWN建模学习
创建骨架模型—标准(为骨架模型命名),然后再弹出的对话框中选择复 制现有,选择刚才建的模型文件skel-1.prt,如图。
至此才真正建立了骨架模型文件,如图,最初的模型文件只是作为调用文 件起作用。当然,还可以先建立空装配文件,在空装配文件里建立一个空 的骨架模型文件,然后打开骨架模型文件进行编辑。
Hale Waihona Puke Top-Down建模3. 发布几何特征
打开已建立的骨架模型文件,如图。 执行插入-共享数据-发布几何命令,如图。定义要发布的零件,有几个配
合相关联的就发布几次,本例只有盖和盒身,因此要发布两次。
Top-Down建模
4. 详细发布过程
在弹出的对话框有可发布的内 容有三项,曲面,链,参照。
Pro/e 4.0 TOP-DOWN建模学习
Top-Down建模
1. 建立一个骨架模型文件
骨架模型是pro/e特殊的模型文件,其实质是一个零件实体文件,后缀名也 是.prt;建议在命名骨架模型文件的时候尽量加上skel字样以区别零件模型 文件。
本例用一标准的矩形盒子做示范.在骨架模型里面要把分割曲面都做好,本 例用中间的曲面把盒子分成上下两部分.在骨架模型里面要创建特征的基本 原则是,只要是与配合有关的特征都创建完整,单个零件的特征不建议在骨 架模型里面创建,直接把零件分割开后再创建比较便于管理.骨架模型的最 终结果尽量用除实体以外的特征来表达,如:曲面,基准点,基准轴,基准曲线 等等非实体特征。
到cover和under两个集合特征。如图。 把发布了几何的骨架模型文件保存。
Top-Down建模
6. 建立零件模型
proe自上而下设计详解
Top_down设计方法严格来说只是一个概念,在不同的软件上有不同的实现方式,只要能实现数据从顶部模型传递到底部模型的参数化过程都可以称之为Top Down设计方法,从这点来说实现的方法也可以多种多样。
不过从数据管理和条理性上来衡量,对于某一特定类型都有一个相对合适的方法,当产品结构的装配关系很简单时这点不太明显,当产品的结构很复杂或数据很大时数据的管理就很重要了。
下面我们就WildFire 来讨论一下一般的Top Down的实现过程。
不过在讨论之前我们有必要先弄清楚WildFire中各种数据共享方法,因为top down的过程其实就是一个数据传递和管理的过程。
弄清楚不同的几何传递方法才能根据不同的情况使用不同的数据共享方法在WildFire中,数据的共享方法有下面几种:λFrom File...(来自文件….)λCopy Geometry…(复制几何…)λShrinkwrap…(收缩几何..)λMerge…(合并)λCutout…(切除)λPublish Geometry…(发布几何…)λInheritance…(继承…)λCopy Geometry from other Model…(自外部零件复制几何…)λShrinkwrap from Other Model…(自外部零件收缩几何..)λMerge from Other Model…(自外部模型合并…)λCutout from Other Model..(自外部模型切除…)λInheritance from Oth er Model…(自外部模型继承…)From File…(来自文件…)实际就是输入外部数据。
Wildfire可以支持输入一般常见的图形格式,包括igs,step,parasolid,catia,dwg,dxf,asc等等,自己试试就可以看到支持的文件类型列表。
在同一个文件内你可以任意输入各种不同的格式文件。
输入的数据的对齐方式是用坐标对齐的方法,所以你要指定一个坐标系统。
creo自顶向下设计方法
CREO自顶向下设计方法TOP-down一、方法介绍设计思路:在产品开发的前期按照产品的功能要求,预先定义产品架构并考虑组件与零件、零件与零件之间的约束和定位关系,在完成方案和结构设计之后进行详细设计。
其设计方法分为两种:一种是骨架Top-down设计方法;另一种是主控模型Top-down设计方法。
骨架Top-down设计方法如图1所示,先在装配特征树的最上端建立顶级骨架,然后在各组件下建立次级骨架,参照次级骨架进行零部件设计。
该方法可以通过控制不同层级的骨架对相应的零件进行更改,但不利于数据重用。
主控模型Top-down设计方法(如图2所示)是将顶级骨架从整个装配关系中剥离出来,然后在各组件下建立次级骨架,零件设计参照次级骨架,但在数据重用时各组件互不干涉。
底盘产品在开发过程中模型共享现象较多,因此,宜采用主控模型Top-down设计方法。
图2主控模型Top-down设计方法中组件1和组件2是相互独立的组件。
鉴于此特点,在本次示例中采用模块化设计思路。
根据模块划分的原则:模块间的依赖程度要尽量小,模块内部的关联要尽可能多;再依据底盘的功能分布,将底盘划分为5个模块(如图3)。
这几个模块在底盘的位置相对固定、功能相对集中,因此,各模块可以作为一个独立的组件进行开发。
采用主控模型结合模块化设计思想,底盘主控模型的结构框图如图4所示。
在此框图中,顶级骨架独立于装配产品,在各模块下建立二级骨架,其必要设计信息参照顶级骨架。
Top-down的设计流程包括设计意图定义、产品结构定义、骨架模型定义、设计信息发布、部件详细设计。
在底盘的开发中,首先根据底盘的基本参数建立骨架即三维总布置,其次建立分模块内部系统骨架布置方案,最后进行详细的部件设计。
采用PTC公司的CREO软件和Windchill系统搭建协同设计环境,需先在Windchill系统建立各个模块的工作文件夹,然后在本地建立对应工作区并与之关联。
具体的开发流程如图5所示,三维总布置包括整车主要参数的拟定、布局和骨架的建立。
Creo自顶向下设计实例——Topdown设计快速入门
Creo自顶向下设计实例——Topdown设计快速入门下面以一个简单的例子来说明自顶向下设计的过程和步骤。
假设我们要设计一个简单的学生成绩管理系统。
该系统需要实现学生信息的录入、查询和统计分数的功能。
首先,我们需要明确整体的架构和功能模块。
根据需求,我们可以将系统划分为以下几个模块:学生信息录入模块、学生成绩查询模块和分数统计模块。
接下来,我们开始设计每个模块的具体实现。
以学生信息录入模块为例,它的功能是录入学生的基本信息,包括学号、姓名、班级等。
在自顶向下设计中,我们可以继续将该模块分解为更小的子模块,比如学号输入模块、姓名输入模块和班级选择模块。
对于学号输入模块,我们可以定义一个函数来实现输入学号的功能。
同理,对于姓名输入模块和班级选择模块,也可以分别定义对应的函数。
在实际编码过程中,我们可以先实现最顶层的模块,然后逐步实现子模块,直到实现了最底层的模块。
这样的设计方法可以帮助我们更好地进行模块化和分工。
在设计过程中,我们还需要注意模块之间的通信和数据传递。
在自顶向下设计中,较高层的模块可以通过函数调用的方式来调用较低层的模块,同时将数据传递给下一级的模块。
这样的设计方式可以帮助我们实现模块之间的解耦和提高代码的可维护性。
最后,我们可以逐步测试和优化每个模块,确保整个系统的功能和性能达到预期的要求。
总结来说,自顶向下设计是一种从整体到局部、从抽象到具体的设计方法。
通过将问题分解为更小的子问题,并逐步解决每个子问题,可以有效地提高软件开发的效率和质量。
同时,模块化设计和层次结构的设计方式也有助于代码的可复用性和可维护性。
在实际应用中,我们可以根据具体的需求和情况,灵活地运用自顶向下设计方法,使得软件开发过程更加高效和可靠。
pro-e 50中的TOP-DOWN建模学习资料
Top-Down建模
3. 发布几何特征
打开已建立的骨架模型文件,如图。 执行插入-共享数据-发布几何命令,如图。定义要发布的零件,有几个配
合相关联的就发布几次,本例只有盖和盒身,因此要发布两次。
Top-Down建模
4. 详细发布过程
在弹出的对话框有可发布的内 容有三项,曲面,链,参照。
曲面就是要参考的曲面,意思 就是将要创建的零件需要用到 的所有曲面。链参照,意思就 是零件参照的几何边。参照包 括基准轴,基准点等等特征。
Top-Down建模
草绘里面的轴 点功能在产品的 结构设计过程中 是很实用的一个 功能,比如为非 回转体创建轴 线,以及为后面 的特征提前创建 定位等等,本例 用来定义装配里 面的螺钉位置。
Top-Down建模
建好的模型文件, 此面为了区别, 我单独做了上色。
Top-Down建模
2. 建立骨架模型文件
建立一个装配文件,通过插入—元件—创建调出创建元件的对话框,或者 点击工具栏的按钮调出,如图。
创建骨架模型—标准(为骨架模型命名),然后再弹出的对话框中选择复 制现有,选择刚才建的模型文件skel-1.prt,如图。
至此才真正建立了骨架模型文件,如图,最初的模型文件只是作为调用文 件起作用。当然,还可以先建立空装配文件,在空装配文件里建立一个空 的骨架模型文件,然后打开骨架模型文件进行编辑。
Pro/e 5.0 TOP-DOWN建模学习
Top-Down建模
1. 建立一个骨架模型文件
骨架模型是pro/e特殊的模型文件,其实质是一个零件实体文件,后缀名也 是.prt;建议在命名骨架模型文件的时候尽量加上skel字样以区别零件模型 文件。
本例用一标准的矩形盒子做示范.在骨架模型里面要把分割曲面都做好,本 例用中间的曲面把盒子分成上下两部分.在骨架模型里面要创建特征的基本 原则是,只要是与配合有关的特征都创建完整,单个零件的特征不建议在骨 架模型里面创建,直接把零件分割开后再创建比较便于管理.骨架模型的最 终结果尽量用除实体以外的特征来表达,如:曲面,基准点,基准轴,基准曲线 等等非实体特征。
top_down
TOP_DOWN设计TOP_DOWN是自顶向下设计的简称,在组件设计中应用,其意义是先确定总体思路、设计总体布局,然后设计零部件,从而完成一个完整的设计,它是设计中通用的方法和思路。
TOP_DOWN设计概述在PRO|E中进行产品整体设计时,可以先把一个产品的每个零件都设计好,再分别拿到组件中进行装配,装配完成后再检查各零件的设计是否符合要求,是否存在干涉等情况,如果确认需要修改,则分别更改单独的零件,然后再在组件中再次进行检测,直到最后完全符合设计要求。
由于整个过程是自下(零件)而上(组件)的,所以无法从一开始对产品有很好的规划,产品到底有多少个零件只能到所有的零件完成后才能确定。
这种方法在修改中也会因为没有事前的仔细规划而事倍功半。
这种自下而上的设计,在有现成的产品提供参考,且产品系列单一的情况下还是可以使用的。
但在全新的产品设计或产品系列丰富多变的情况下就显得很不方便。
所以,PRO|E给我们提供了一种十分方便的设计方法——TOP_DOWN设计。
TOP_DOWN 设计是指从已完成的产品进行分析,然后向下设计。
将产品的主框架作为主组件,并将产品分解为组件、子组件,然后标识主组件元件及其相关特征,最后了解组件内部及组件之间的关系,并评估产品的装配方式。
掌握了这些信息,就能规划设计并在模型中总体设计意图。
TOP_DOWN设计有很多优点,它既可以管理大型组件,又能有效地掌握设计意图,使组织结构明确,不仅能在同一设计小组间迅速传递设计信息、达到信息共享的目的,也能在不同的设计小组间同样传递相同的设计信息,达到协同作战的目的。
这样在设计初期,通过严谨的沟通管理,能让不同的设计部门同步进行产品的设计和开发。
在PRO|E中进行设计的过程中,系统提供了以下方法来让我们进行TOP_DOWN设计: 二维布局(Layout)主控件(Master Part)产品数据管理骨架模型(Skeleton)元件—子组件—组件骨架模型当使用者在建立大型装配件时,会因零部件过多而难以处理,造成这种困难的原因可能是彼此间的限制条件相冲突,或者是因为零部件繁杂而忽略了某些小的地方,也可能是从原始设计时,建立的条件就已经出现错误等诸如此类的原因。
Creo2.0TopDown设计教程
8
创建组件结构
不必创建几何或放置约束而定义产品结构。 开始模型 添加元件
• 使用自动约束(重合等) • 使用缺省约束 • 包括元件(元件会出现在“模型树”中,但不会出
现在图形窗口中)
• 封装(暂不定位元件) • 主体项目(主体项表示的对象不需要建立实体模型)
9
总结
成功完成此模块后,您应知道如何: 描述自顶向下设计流程。 使用布局记录设计信息。 创建组件结构。
25
继承信息——外部复制几何
外部复制几何是把某些信息从没有联系的一个零件复制到另一个零件
– 一般情况下,需要继承信息时,使用”外部复制几何“,选取“发布几何”特征; – 不用发布几何时,曲面、边或曲线、基准特征、注释的选择要对应; – “从属”与“非从属”的选择(可以使最终的复制几何从属或独立于骨架模型) – 规则命名,描述“源头、内容或出处,如:“FROM_XX系统”
13
创建骨架
骨架用作组件的设计框架。
骨架分类:
运动骨架(定义装配中实体之间的运动) 标准骨架(为了定义装配中某些元件的设计目的而创建的)
骨架是由基准特征和草绘、曲面、参数、关系 等组成。
骨架是新组件中的第一个元件。 元件参照骨架而创建。
设计信息的几何传递,从应用方面讲,大致分为3类:
1、设计参照。(直接从参照特征上创建模型特征。关联紧密) 2、视觉参照。(没有直接关联,只用于空间协调) 3、定位参照。
10
模块 2:创建设计框架
11
课程活动
讲座 演示和练习
简介 创建布局
创建设计框架
传递设计信息
分析和 修改组件结构
创建和分析 设计框架
将模型 声明到布局
Top-down设计培训_creo
9
CREO2.0培训---TOPDOWN设计-刘超
10
细化气缸体设计骨架
发布几何特征 坐标 PU_OUT PU_INSIDE PU_MACH PU_WATER PU_MECH
说明 所有设计师 外形设计师 曲轴箱芯设计师 油腔设计师 水套设计师 机加工设计师
注意: 再生气缸体设计骨架时,一定要保证整机设计骨架在Creo 中打开或者在Creo的进程中。
25
三缸水套
CREO2.0培训---TOPDOWN设计-刘超
26
四缸水套
CREO2.0培训---TOPDOWN设计-刘超
27
气缸体水套模型
CREO2.0培训---TOPDOWN设计-刘超
28
曲轴箱内芯设计
设计思路及过程同缸体外形建模过程相同: 通用单元 缸体骨架
CREO2.0培训---TOPDOWN设计-刘超
CREO2.0培训---TOPDOWN设计-刘超
8
确定文件及特征命名
由于气缸体零件非常复杂,会对该模型进行分解, 分别按照外形、水套、曲轴箱内芯、油腔、加工模型、 毛坯、配车、成品等模型进行设计,为了方便管理这 些模型,需要对这些模型有一定命名规则,便于设计
师之间的沟通交流。
CREO2.0培训---TOPDOWN设计-刘超
CREO2.0培训---TOPDOWN设计-刘超
16
二缸外形
基本思路方法同一缸,二缸外形较简单,复制通用单 元后只需增加少许特征即可,需从气缸体骨架中复制单体 泵位置、坐标系、气缸体外形、搭子位置等几何信息。 在外部复制几何完成以后,设计单体泵安装孔外形、 搭子,根据需要进行部分倒圆角,最后创建发布几何。
CREO2.0培训---TOPDOWN设计-刘超
creo top-down参数化设计在产品开发中的运用
2019.10
键点:A 为瓶底旋转轴心点;B 为瓶底外侧轮廓线点;C 为瓶子 上端外侧轮廓点;D 为瓶口模型与瓶身连接的点。创建轮廓线 技术要点。
(1)轮廓线的圆角尽量不要在草绘轮廓中出现,模型复杂 时,修改也相对麻烦,模型创建后,可以通过圆角 Round 命令 解决。
(2)创建瓶体轮廓,外侧的两个基准点 B 和 C,B 与 C 之间 用多义线 Spline 连接,方便轮廓调节。
4 结束语
充分利用 Creo 强大的参数化设计,采用骨架模型进行 Top-Down 方法的设计,大大提高了新产品的开发质量和速度, 产品技术开发工作效率提高 30% 以上,并随着运用参数化设 计技术熟练程度的提高,效率会更高。相信以后公司的产品 开发,将进一步加大 Creo 的运用。
参考文献: 1] 张峰,李兆前,黄传真 . 参数化设计的研究与发展现状[J]. 机械 工程师,2002(1):13~15. [2] 马勇 .Pro/E 软件 Top-Down 设计理念在产品设计中的应用 [J]. 机械管理开发,2011.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。
试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。
2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。
3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。
包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。
这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。
二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。
解法较多,属于较难题,得分率较低。
【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。
2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。
【解题思路】1.把向量用OA ,OB ,OC 表示出来。
2.把求最值问题转化为三角函数的最值求解。
【解析】设单位圆的圆心为O ,由AB AC →→=得,22()()OB OA OC OA -=-,因为1OA OB OC ===,所以有,OB OA OC OA ⋅=⋅则()()AB AC OB OA OC OA ⋅=-⋅-2OB OC OB OA OA OC OA =⋅-⋅-⋅+ 21OB OC OB OA =⋅-⋅+设OB 与OA 的夹角为α,则OB 与OC 的夹角为2α所以,cos 22cos 1AB AC αα⋅=-+2112(cos )22α=--即,AB AC ⋅的最小值为12-,故选B 。
【举一反三】【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 .【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ⋅,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==, AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB →→⋅=,求BDK ∆内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。
【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。
2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。
【解题思路】1.设出点的坐标,列出方程。
2.利用韦达定理,设而不求,简化运算过程。
3.根据圆的性质,巧用点到直线的距离公式求解。
【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -,故214x my y x =-⎧⎨=⎩整理得2440y my -+=,故121244y y m y y +=⎧⎨=⎩则直线BD 的方程为()212221y y y y x x x x +-=--即2222144y y y x y y ⎛⎫-=- ⎪-⎝⎭令0y =,得1214y yx ==,所以()1,0F 在直线BD 上.(Ⅱ)由(Ⅰ)可知121244y y m y y +=⎧⎨=⎩,所以()()212121142x x my my m +=-+-=-,()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →=-故()()()21212121211584FA FB x x y y x x x x m →→⋅=--+=-++=-,则28484,93m m -=∴=±,故直线l 的方程为3430x y ++=或3430x y -+=213y y -===±,故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131,54t t +--------------10分 由313154t t +-=得19t =或9t =(舍去).故圆M 的半径为31253t r +== 所以圆M 的方程为221499x y ⎛⎫-+= ⎪⎝⎭【举一反三】【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x. (2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入y 2=2px ,得x 0=8p,所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D(2m 2+1,2m), |AB|=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M(x 3,y 3),N(x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝ ⎛⎭⎪⎫2m2+2m 2+3,-2m ,|MN|=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2.由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=12|MN|,从而14|AB|2+|DE|2=14|MN|2,即 4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.三、考卷比较本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。
即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。
题型分值完全一样。
选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。
3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。
四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)。