最新版精选高中数学单元测试题-集合模拟考试题库(含答案)
高中数学集合测试题(附答案和解析)
高中数学集合测试题(附答案和解析)一、单选题1.已知集合U =R ,{}2230A x x x =--<,则U A ( )A .{}13x x -<<B .{}13x x -≤≤C .{1x x ≤-或3}x ≥D .{1x x <-或3}x >2.已知集合(){}{}|20,|10M x x x N x x =-<=-<,则MN =( ) A .(),2-∞ B .(),1-∞ C .()0,1 D .()1,23.设全集U =R ,集合302x A x x ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()U A B =( ) A .()e,3 B .[]e,3 C .[)2,e - D .()2,e - 4.设集合{}()(){}|32,|130A x x B x x x =-<<=+-≤,则A B =( ) A .{}|12x x -≤< B .{}|33x x -<≤ C .{}|32x x -<≤ D .{}|13x x -≤≤ 5.已知{}33U x x =-≤<,{}23A x x =-≤<,则图中阴影表示的集合是( )A .{}32x x -≤≤-B .][33,)-∞-⋃+∞(,C .{}0x x ≤D .{}32x x -≤<-6.集合{}220A x x x =--≤,{}10B x x =-<,则A B =( ) A .{}1x x ≥B .{}11x x -≤<C .{}1x x <-D .{}21x x -≤<7.已知集合{}|03A x x =<<,{}|14B x x =≤≤,则A B ⋃=( )A .{}|13≤<x xB .{}|04x x <≤C .{}|04x x <<D .{}3|1x x <<8.已知集合{}|21x A x =>,{}22B x y x x ==-∣,则A B =( ) A .()0,+∞ B .(]0,2 C .(]1,2 D .[)2,+∞9.已知集合{}28x A x =≤,{}16B x x =-≤≤,则A B ⋃=( ) A .(,6]-∞ B .[1,6]- C .[1,3]- D .(0,6]10.设全集{}*5U x N x =∈≤,集合{}1,2M =,{}2,3,4N =,则图中阴影部分表示的集合是( )A .{}2B .{}3,4C .{}2,3D .{}2,3,4 11.已知集合{}(5)0A x x x =-<,{}14B x x =-,则A B ⋃=( )A .[1,0)-B .[4,5)C .(0,4]D .[1,5)-12.设集合{}A x x a =>,{}2320B x x x =-+>,若A B ⊆,则实数a 的取值范围是( ).A .(),1-∞B .(],1-∞C .()2,+∞D .[)2,+∞ 13.设全集2,1,0,1,2U,{}2,1,2A =--,{}2,1,0,1B =--,则()U A B =( ) A .{}2,1- B .{}0,1 C .{}1,0,1- D .{}2,1,0,1--14.设集合{}*21230,1A x N x x B x R x ⎧⎫=∈--≤=∈≥⎨⎬⎩⎭∣∣,则A B =( ) A .0,1 B .{}1 C .(]0,1 D .{}0,1 15.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤二、填空题16.集合()(){}2140,A x x x ax x R =-++=∈中所有元素之和为3,则实数=a ________. 17.若集合406x A x x ⎧⎫-=<⎨⎬+⎩⎭,{}230B x x =+<,则()R A B ⋂=______. 18.已知集合(){}ln 2|A x y x ==-,{}2430|B x x x ≤=-+,则A B ⋃=____________19.若A ={}(,)21x y y x =-,B ={}2(,)x y y x =,则A B =____________ 20.已知函数2()43f x x x =-+,()52g x mx m =+-,若对任意的[]11,4x ∈,总存在[]21,4x ∈,使12()()f x g x =成立,则实数m 的取值范围是 ________.21.若{}31,2a ∈,则实数=a ____________.22.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________23.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.24.立德中学有35人参加“学党史知识竞赛”若答对第一题的有20人,答对第二题的有16人,两题都答对的有6人,则第一、二题都没答对的有___人.25.已知A ={x |2a <x ≤a +8},B ={x |x <-1或x >5},若A ∪B =R , 则a 的取值范围是________.三、解答题26.已知集合2111x A x x +⎧⎫=>-⎨⎬-⎩⎭,(){}222B x x m x m B =<-+,不为空集. (1)当1m =时,求()R A B ⋃;(2)若“x A ∈”是“x B ∈”的必要条件,求实数m 的取值范围.27.已知函数()f x =A ,函数()g x 的定义域为集合B ,(1)当0a =时,求A B ;(2)设命题:p x A ∈,命题:q x B ∈,p q 是的充分不必要条件,求实数a 的取值范围.28.已知集合{}37A x x =≤<,{}210B x x =<<,{}C x x a =<.(1)求A B ,()A B R ;(2)若A C ⋂≠∅,求a 的取值范围.29.已知集合{}12,,,n A a a a =⋅⋅⋅(120n a a a ≤<<⋅⋅⋅<,*n ∈N ,3n ≥)具有性质P :对任意,i j (1i j m ≤≤≤),i j a a +与j i a a -至少一个属于A .(1)分别判断集合{}0,2,4M =,与{}1,2,3N =是否具有性质P ,并说明理由;(2){}123,,A a a a =具有性质P ,当24a =时,求集合A ;(3)①求证:0A ∈;②求证:1232n n n a a a a a +++⋅⋅⋅+=.30.已知集合{}{}222,|540A xa a B x x x x =-≤+=-+≤≥∣. (1)当3a =时,求A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.【参考答案】一、单选题1.C【解析】【分析】根据补集的定义,结合一元二次不等式的解法进行求解即可.【详解】 因为集合{}2230{|13}A x x x x x =--<=-<<, 所以U A {1x x ≤-∣或3}x ≥. 故选:C.2.C 【解析】【分析】分别求出集合M 和集合N ,然后取交集即可.【详解】集合(){}{}|20|02M x x x x x =-<=<<,{}|1N x x =<,则MN ={}()|010,1x x <<=, 故选:C3.D【解析】【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩.【详解】 因为{}30232x A x x x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥,所以,{}e U B x x =<,因此,()()2,e U A B =-.故选:D.4.A【解析】【分析】首先解一元二次不等式求出集合B ,再根据交集的定义计算可得;【详解】解:由()()130x x +-≤,解得13x -≤≤,所以()(){}{}|130|13B x x x x x =+-≤=-≤≤,又{}|32A x x =-<<,所以{}|12A B x x ⋂=-≤<.故选:A5.D【解析】【分析】根据韦恩图,写出相应集合即可【详解】由图可知,阴影表示的集合为集合A 相对于全集U 的补集,即阴影表示的集合是U A ,所以{}32U A x x =-≤<-;故选:D6.B【解析】【分析】解不等式可求得集合,A B ,由交集定义可得结果.【详解】{}{}22012A x x x x x =--≤=-≤≤,{}{}101B x x x x =-<=<, {}11A B x x ∴⋂=-≤<.故选:B.7.B【解析】【分析】 根据集合的并集运算即可.【详解】因为{}|03A x x =<<,{}|14B x x =≤≤,所以{}|04A B x x =<≤.故选:B.8.B【解析】【分析】先求出集合A ,B ,再根据交集定义即可求出.【详解】因为{}|0A x x =>,{}|02B x x =≤≤,所以(]0,2A B =.故选:B.9.A【解析】【分析】先解出集合A ,再计算A B 即可.【详解】{}{}283x A x x x =≤=≤,故A B ⋃=(,6]-∞. 故选:A.10.B【解析】【分析】由Venn 图中阴影部分可知对应集合为N()U M ,然后根据集合的基本运算求解即可. 【详解】解:由Venn 图中阴影部分可知对应集合为N ()U M全集*{|5}{1U x N x =∈≤=,2,3,4,5},集合{1M =,2},{2N =,3,4},U M ={}3,4,5,N ()U M ={}3,4.故选:B .11.D【解析】【分析】由一元二次不等式的解法求出集合A ,再根据并集的定义即可求解.【详解】解:因为集合{}{}(5)005A x x x x x =-<=<<,{}14B x x =-,所以{}{}[05141,5)A B x x x x ⋃=<<⋃-=-.故选:D.12.D【解析】【分析】先求出集合B ,再由A B ⊆求出实数a 的范围.【详解】{}{23202B x x x x x =-+>=>或}1x <. 因为集合{}A x x a =>,A B ⊆,所以2a ≥.故选:D13.B【解析】【分析】先求U A ,再求()U A B ⋂即可.【详解】 U A ={0,1},()U A B ={0,1}. 故选:B.14.B【解析】【分析】先求出结合,A B ,再根据集合的交集运算,即可求出结果.【详解】 因为{}{}{}*2*N 230N 131,2,3A x x x x x =∈--≤=∈-≤≤=∣, {}1101B x x x x ⎧⎫=∈≥=∈<≤⎨⎬⎩⎭R R 所以{}1A B =.故选:B.15.A【解析】【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案.【详解】①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误;空集是任一集合的子集,所以②正确;{}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确;a 是{},,bc a 的元素,所以⑤正确.故选:A.二、填空题16.2-【解析】【分析】由()()2140x x ax -++=得1231x x x a ++=-,即可求解参数. 【详解】由()()2140x x ax -++=得10x -=或240x ax ++=所以11x =或23x x a +=-依题意得12313x x x a ++=-=,得2a =-故答案为:2-.17.342x x ⎧⎫-≤<⎨⎬⎩⎭【解析】【分析】先求出集合A 和集合B 的补集,再求两集合的交集即可【详解】 依题意,{}40646x A x x x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,{}32302B x x x x ⎧⎫=+<=<-⎨⎬⎩⎭, 则R 32B x x ⎧⎫=≥-⎨⎬⎩⎭, 故()R 342A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭. 故答案为:342x x ⎧⎫-≤<⎨⎬⎩⎭18.[)1,+∞ 【解析】【分析】先求出集合A 、B ,再求A B .【详解】集合(){}()2|2ln ,A x y x =+∞==-,{}[]2|1,3430B x x x =≤=-+, 所以()[][)2,1,31,A B +∞⋃=∞⋃+=.故答案为:[)1,+∞19.{(1,1)}【解析】【分析】由集合中的条件组成方程组求解可得.【详解】 将21y x =-代入2yx ,得2210x x -+=,解得1x =,则211y =-=,所以{(1,1)}A B =.故答案为:{(1,1)} 20.(,3][6,)-∞-⋃+∞【分析】根据对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =,可得两个函数值域的包含关系,进而根据关于m 的不等式组,解不等式组即可.【详解】因为()22()4321f x x x x =-+=--,所以函数()f x 的对称轴为2x =,对任意的[]11,4x ∈,记()[]1,3f x ∈-.记[]1,3A =-.由题意知,当0m =时不成立,当0m >时,()52g x mx m =+-在[]1,4上是增函数,所以[]()5,25g x m m ∈-+,记[]5,25B m m =-+由题意知,B A所以m m -≥-+≥⎧⎨⎩15253,解得6m ≥. 当0m <时,()52g x mx m =+-在[]1,4上是减函数,所以[]()25,5g x m m ∈+-,记[]25,5C m m =+-,由题意知,C A ⊇所以251{53m m +≤--≥,解得3m ≤-. 综上所述,实数m 的取值范围是(,3][6,)-∞-⋃+∞.故答案为: (,3][6,)-∞-⋃+∞【点睛】解决本题的关键是将问题转化为对任意的[]11,4x ∈,总存在[]21,4x ∈,使得12()()f x g x =, 可得两个函数值域的包含关系,进而分别求两个函数的值域.21.5##32【解析】【分析】根据题中条件,由元素与集合之间的关系,得到23a =求解,即可得出结果.【详解】因为{}31,2a ∈,所以23a =,解得32a =. 故答案为:32. 22.5,66ππ⎛⎫ ⎪⎝⎭【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫ ⎪⎝⎭. 23.12【解析】【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可.【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12.24.5【解析】【分析】集合元素计算,只对第一题,只对第二题,二题都答对和二题都不对,总数为35人.【详解】设第一、二题都没答对的有x 人,则()()206166635x -+-++= ,所以5x =故答案为:525.13,2⎡⎫--⎪⎢⎣⎭ 【解析】【分析】由集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,列出不等式组,能求出a 的取值范围.【详解】集合{|28}A x a x a =<+,{|1B x x =<-,或5}x >,A B R =,∴2185a a <-⎧⎨+⎩, 解得132a -<-.a ∴的取值范围为[3-,1)2-. 故答案为:[3-,1)2-. 三、解答题26.(1)12x x ⎧≤-⎨⎩或}1x ≥ (2)(]2,4-【解析】【分析】(1)分别求出集合,A B ,再根据并集和补集的定义即可得出答案;(2)根据“x A ∈”是“x B ∈”的必要条件,可得B A ⊆且B ≠∅,讨论m 的范围,从而可得出答案.(1)解:当1m =时,{}212112B x x x x x ⎧⎫=<+=-<<⎨⎬⎩⎭, {}211211x A x x x x +⎧⎫=>-=-<<⎨⎬-⎩⎭, 则112A B x x ⎧⎫⋃=-<<⎨⎬⎩⎭, 所以()12R A B x x ⎧⋃=≤-⎨⎩或}1x ≥; (2) 解:(){}()(){}222210B x x m x m x x m x =<-+=+-<, 因为“x A ∈”是“x B ∈”的必要条件,所以B A ⊆且B ≠∅,故2m ≠-, 当12m ->,即2m <-时,12m B x x ⎧⎫=<<-⎨⎬⎩⎭, 因为{}21A x x =-<<,所以A B =∅,不符合题意; 当12m -<,即2m >-时,12m B x x ⎧⎫=-<<⎨⎬⎩⎭, 则有222m m >-⎧⎪⎨-≥-⎪⎩,解得24m -<≤, 综上(]2,4m ∈-.27.(1)1{|03A B x x ⋂=-<≤或1}x =;(2)1a ≥或43a ≤-. 【解析】【分析】(1)求解分式不等式和一元二次不等式,解得集合,A B ,再求交集即可; (2)根据p q 是的充分不必要条件可知A 是B 的真子集,列不等式求a 的取值范围即可.(1)要使得()f x 有意义,则1031x x -≥+,得(1)(31)0310x x x -+≥⎧⎨+≠⎩,解得:113x ≤-<, 所以1|13A x x ⎧⎫=-<≤⎨⎬⎩⎭;当0a =时,()g x =()g x 有意义,则20x x -≥,解得:1x ≥或0x ≤, 所以{|1B x x =≥或0}x ≤, 故1{|03A B x x ⋂=-<≤或1}x =. (2)以为22(21)0x a x a a -+++≥,即[]()(1)0x a x a --+≥,解得:1x a ≥+或x a ≤, 所以{|1B x x a =≥+或}x a ≤,由题意可知A 是B 的真子集,所以1a ≥或113a +≤-(等号不同时成立), 得1a ≥或43a ≤-. 28.(1){}210A B x x ⋃=<<,R (){|23A B x x =<<或710}x ≤<;(2)()3,+∞.【解析】【分析】 (1)直接利用集合并集、交集和补集的定义求解;(2)分析A C ⋂≠∅即得解.(1)解:因为A ={x |3≤x <7},B ={x |2<x <10}, 所以{}210A B x x ⋃=<<.因为A ={x |3≤x <7},所以R {|3A x x =<或 7}x ≥则R (){|23A B x x =<<或710}x ≤<. (2)解:因为A ={x |3≤x <7},C ={x |x a <},且A C ⋂≠∅,所以3a >.所以a 的取值范围为()3,+∞.29.(1)集合M 具有,集合N 不具有,理由见详解(2)A {0,4,8}=(3)证明见详解【解析】【分析】(1)利用性质P 的定义判断即可;(2)利用33a a A +∉,330a A a -=∈可得10a =,又23a a A +∉,32a a A -∈,分析可得322a a a -=,即得解;(3)① 由 n n a a A +∉,0n n a A a -=∈,可证明; ② 由110n n n n n a a a a a a -≤<<⋅⋅⋅<---,以及n n i a a A -+∉,n n i a a A --∈可得121321,,,...,n n n n n n n n a a a a a a a a a a a a --=-=-=-=-,将等式左右两边相加可证明.(1)集合{}0,2,4M =具有性质P ,集合{}1,2,3N =不具有性质P 理由如下:对集合{}0,2,4M =,由于202,422,404,000,220,440M -=-=-=-=-=-=∈ 所以集合M 具有性质P ;对集合{}1,2,3N =,由于224N +=∉,故集合N 不具有性质P .(2)由于33333A a a a a a +>∴+∉,故330a A a -=∈10a ∴= 又23323,a a a A a a +>∴+∉,故32a a A -∈又3230<a a a -<,故322a a a -=322=8a a =∴因此集合A {0,4,8}=(3)①由于n n n n n A a a a a a +>∴+∉,故0n n a A a -=∈10a ∴= 0A ∴∈,故得证②由于120n a a a ≤<<⋅⋅⋅<故110n n n n n a a a a a a -≤<<⋅⋅⋅<---又(1,2,...,1)n n i n n n i a a a i n a a A --+>=-∴+∉n n i a a A -∴-∈121321,,,...,n n n n n n n n a a a a a a a a a a a a --∴=-=-=-=- 将各个式子左右两边相加可得:1232n n n a a a a a +++⋅⋅⋅+= 故得证30.(1){|11A B x x ⋂=-≤≤或}45x ≤≤(2)01a <<【解析】【分析】(1)求出集合,A B ,进而可得A B ; (2)根据包含关系列不等式求解即可.(1)∵当3a =时,{}{|15,|1A x x B x x =-≤≤=≤戓}4x ≥, ∴{|11A B x x ⋂=-≤≤或}45x ≤≤;(2)∵{|1B x x =≤或}4x ≥,∴{}|14R B x x =<<, 由“x A ∈”是“R x B ∈的充分不必要条件得A 是B R 的真子集且A ≠∅又{}()|220x A x a a a =-≤+>≤,∴2124a a ->⎧⎨+<⎩∴01a <<.。
高中集合测试题及答案
高中集合测试题及答案### 高中集合测试题及答案#### 测试题1. 集合的基本概念- 判断题:集合中的元素具有互异性,即集合中不能有重复的元素。
()- 选择题:设集合A={1,2,3},B={2,3,4},求A∩B。
选项:A. {1}B. {2,3}C. {4}D. {1,2,3}2. 集合的运算- 计算题:给定集合A={x | x < 5},B={x | x > 3},求A∪B。
- 填空题:若集合C={x | x^2 - 5x + 6 = 0},求C的元素。
3. 子集与幂集- 判断题:若集合A是B的子集,那么A∪B等于B。
()- 计算题:设集合D={1,2},求D的所有子集。
4. 集合的包含关系- 选择题:若集合E={x | x^2 ≤ 4},F={-2, -1, 0, 1, 2},判断E与F的关系。
A. E是F的子集B. F是E的子集C. E与F相等D. E与F没有包含关系5. 集合的笛卡尔积- 计算题:设集合G={1,2},H={a,b},求G×H。
6. 集合的相等性- 判断题:若集合I={1,2,3}和J={3,2,1},那么I等于J。
()#### 答案1. 集合的基本概念- 判断题:正确。
- 选择题:B. {2,3}2. 集合的运算- 计算题:A∪B={x | x < 5 或 x > 3},即所有小于5或大于3的实数。
- 填空题:C的元素为{2,3},因为2^2 - 5*2 + 6 = 0 和 3^2 - 5*3 + 6 = 0。
3. 子集与幂集- 判断题:正确。
- 计算题:D的所有子集为:∅, {1}, {2}, {1,2}。
4. 集合的包含关系- 选择题:C. E与F相等,因为E={-2, -1, 0, 1, 2}。
5. 集合的笛卡尔积- 计算题:G×H={(1,a), (1,b), (2,a), (2,b)}。
6. 集合的相等性- 判断题:正确,因为集合的元素是无序的。
高中数学集合测试题(含答案和解析)
高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}23250A x x x =--<,{}B x x a =>,若A B B ⋃=,则实数a 的取值范围为( ) A .5,3⎛⎤-∞ ⎥⎝⎦B .5,3⎛⎫-∞ ⎪⎝⎭C .(],1-∞-D .(),1-∞-2.已知集合{}111,202x A x x B x ⎧⎫⎪⎪⎛⎫=+<=-≥⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则()AB =R( )A .()2,1--B .(]2,1--C .()1,0-D .[)1,0-3.已知{}{||2},0A x Z xB x x N x =∈<=∈>∣∣∣,则A B =( ) A .{1}B .{0,1}C .{0,1,2}D .∅4.已知集合{}|21xA x =>,{B xy ==∣,则A B =( ) A .()0,+∞ B .(]0,2 C .(]1,2 D .[)2,+∞ 5.已知集合2{|13},{|4}A x x B x x =-≤<=≥,则A B =( ) A .[1,2]-B .[1,2]C .[2,3)D .[2,)+∞6.已知集合{}22A x x x =<,集合{}1B x x =<,则A B =( )A .(),2-∞B .(),1-∞C .()0,1D .()0,27.若集合{}2{1},340A xx B x x x =>=--≤∣∣,则A B =( ) A .(]1,4 B .[]1,4 C .[)1,1- D .[)1,-+∞8.已知集合{3,1,2}A =-,{}2|60B x N x x =∈--≤,则A B ⋃=( )A .{}1,2B .{}3,0,1,2-C .{}3,1,2,3-D .{}3,0,1,2,3- 9.下列关系中正确的是( ) A .{}0=∅B .{}0∅⊆C .{}(){}0,10,1⊆D .(){}(){},,a b b a =10.设集合{}09A x x =∈≤≤N ,{}1,2,3,6,9,10B =-,则()AA B ⋂=( ).A .{}0,1,4,5,7,8B .{}1,4,5,7,8C .{}2,3,6,9D .∅11.已知集合{},,A a b c =的所有非空真子集的元素之和等于12,则a b c ++的值为( ) A .1B .2C .3D .412.已知集合{1,2,3,4,5}A =,()(){}130B x R x x =∈+-≤,则集合A B 等于( ) A .{1}B .{3}C .{1,2,3}D .{3,4,5}13.设全集{}0,1,2,3,4U =,集合{}1,2,4A =,{}2,3B =,则()U A B ⋂=( ) A .{}2B .{}2,3C .{}0,3D .{}314.已知集合{}0A x x =≥,{}11,B x x x Z =-≤≤∈,则A B =( ) A .{}0,1 B .{}1,2 C .[]0,2D .[]1,215.已知不等式231x x m ->+的解集为M ,若1M ∈,则实数m 的取值范围为( )A .(),3-∞-B .(),1-∞-C .()3,-+∞D .()3,1--二、填空题16.若集合406x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}230B x x =+<,则()R A B ⋂=______. 17.若A ={}(,)21x y y x =-,B ={}2(,)x y y x =,则A B =____________18.若集合(){}21420A x a x x =-+-=有且仅有两个子集,则实数a 的值是____.19.已知a 、R b ∈,若不等式20ax x b -+<的解集为112A x x ⎧⎫=<<⎨⎬⎩⎭,不等式210ax bx +-≤的解集为B ,则()R A B ⋂=______.20.已知集合{}{}35,10A x Zx B y y =∈-<<=+>∣∣,则A B 的元素个数为___________. 21.若集合{}2210A x x x =-+=,{}210B x x =-=,则A ______B .(用符号“⊂”“=”或“⊃”连接)22.已知集合{0,1,2,3,4,5}A =,集合{1,3,5,7,9}B =,则Venn 图中阴影部分表示的集合中元素的个数为________.23.在下面的写法中:①∅ {}0;②{}{}00,1∈;③0∈∅;④{}{}0,11,0⊆;⑤{}0∅∈,错误..的写法的序号是______. 24.设P ,Q 为两个非空实数集合,P 中含有0,2两个元素,Q 中含有1,6两个元素,定义集合P+Q 中的元素是a+b ,其中aP ,b Q ,则P Q +中元素的个数是_________.25.已知集合{}2202120200A x x x =-+<,{}B x x a =<,若A B ⊆,则实数a 的取值范围是______.三、解答题26.已知集合11{|}A x a x a =-≤≤+,5|03x B x x -⎧⎫=≤⎨⎬+⎩⎭. (1)若3a =-,求A B ;(2)在①A B =∅,②()R B A R ⋃=,③A B B ⋃=,这三个条件中任选一个作为已知条件,求实数a 的取值范围.27.已知U =R 且{}2|560A x x x =--<,{|3B x x =≥或1}x ≤.求:(1)A B ,A B ; (2)()()U U A B .28.已知集合{}22A x a x a =-≤≤+,{1B x x =≤或}4x ≥. (1)当3a =时,求A B ;(2)若0a >,且“x A ∈”是“R x B ∈”的充分不必要条件,求实数a 的取值范围.29.已知全集{1,2,3,4,5,6,7}U =,集合{2,3,6}A =,集合{1,2,3,5}B =, (1)求A B ,UB(2)求()()U U A B A B ,30.设全集U =R ,集合{}14A x x =-<≤,{}2log 1B x x => (1)求()UA B ;(2)若集合{}123C x a x a =-<<+,满足B C B ⋃=,求实数a 的取值范围.【参考答案】一、单选题 1.C 【解析】 【分析】先求出A 集合,再根据集合的包含关系求出a 的值即可 【详解】依题意{}{}253250(35)(1)013A x x x x x x x x ⎧⎫=--<=-+<=-<<⎨⎬⎩⎭,而A B B ⋃=,故A B ⊆,得1a ≤-故选:C 2.C 【解析】 【分析】由绝对值不等式的解法求出集合A ,再利用指数函数的单调性求解集合B ,最后根据集合的补集、交集的定义即可求解. 【详解】解:由题意,{}{}|111|20A x x x x =-<+<=-<<,{}{}|22|1xB x x x -=≥=≤-,∴{}1R B x x =>-,∴(){}()|101,0R A B x x ⋂=-<<=-. 故选:C . 3.A 【解析】 【分析】首先列举表示集合A ,再求A B . 【详解】由条件可知{}1,0,1A =-,{}0B x x N x =∈>,所以{}1A B ⋂=. 故选:A 4.B 【解析】 【分析】先求出集合A ,B ,再根据交集定义即可求出. 【详解】因为{}|0A x x =>,{}|02B x x =≤≤,所以(]0,2A B =. 故选:B.5.C 【解析】 【分析】先化简集合B ,再与集合A 取交集即可解决. 【详解】{2{|4}|2B x x x x =≥=≥或}2x ≤-则A B {|13}x x =-≤<⋂{|2x x ≥或}2x ≤-{|23}x x =≤< 故选:C 6.C 【解析】 【分析】解一元二次不等式,求得集合A ,根据集合的交集运算,求得答案. 【详解】{}22{|02}A x x x x x =<=<<,故{|01}A B x x =<<, 故选:C. 7.A 【解析】 【分析】求出不等式的解集后进行交集运算 【详解】2340,(1)(4)0x x x x --≤+-≤,解得14x ≤≤,故[1,4]B =,(1,4]A B = 故选:A 8.D 【解析】 【分析】先求出集合B 的元素,进行并集运算即可. 【详解】因为{}()(){}2|60|320B x N x x x N x x =∈--≤=∈-+≤{}{}|230,1,2,3x N x =∈-≤≤=,所以{}3,0,1,2,3A B ⋃=-. 故选:D. 9.B 【解析】 【分析】明确∅和{}0的含义,可判断A,B;说明{}0,1是数集,而(){}0,1是点集,判断C; 当在ab 时(){}(){},,a b b a =不成立,判断D;对于A, {}0是单元素集合,元素为0,而∅是空集,二者不相等,故A 错误; 对于B ,空集为任何一个集合的子集,故{}0∅⊆正确;对于C ,{}0,1 的元素为0,1,而(){}0,1的元素为点()0,1,二者没有包含关系,故错误; 对于D, (,),(,)a b b a 当a b 表示不同的点,故(){}(){},,,a b b a 在ab 时不相等,故错误,故选:B 10.A 【解析】 【分析】根据集合的运算直接可得. 【详解】解:依题意{}0123456789A ,,,,,,,,,=,{}1,2,3,6,9,10B =-, 所以{}2,3,6,9A B ⋂=,故(){}0,1,4,5,7,8AA B ⋂=.故选:A . 11.D 【解析】 【分析】根据真子集的定义进行求解即可. 【详解】因为集合{},,A a b c =的所有非空真子集为:{}{}{}{}{}{},,,,,,,,a b c a b a c b c , 所以有123()124a b c a b a c b c a b c a b c ++++++++=⇒++=⇒++=, 故选:D 12.C 【解析】 【分析】先化简集合B ,再利用交集运算求解. 【详解】解:因为集合{1,2,3,4,5}A =,()(){}{}13013B x R x x x x =∈+-≤=-≤≤, 所以{1,2,3}A B ⋂=, 故选:C . 13.D 【解析】 【分析】利用补集和交集的定义可求得结果. 【详解】 由已知可得{}0,3UA =,因此,(){}U 3AB ⋂=,故选:D.【解析】 【分析】先化简集合B ,然后由交集运算可得答案. 【详解】由集合{}{}|111,0,1B x x x Z =-≤≤∈=-,, {}0A x x =≥ 所以{}0,1A B = 故选:A 15.D 【解析】 【分析】利用1M ∈可构造关于m 的不等式,解不等式可得结果. 【详解】1M ∈,21311m-∴>+,即301m m +<+,解得:3<1m -<-, 即实数m 的取值范围为()3,1--. 故选:D.二、填空题16.342x x ⎧⎫-≤<⎨⎬⎩⎭【解析】 【分析】先求出集合A 和集合B 的补集,再求两集合的交集即可 【详解】依题意,{}40646x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,{}32302B x x x x ⎧⎫=+<=<-⎨⎬⎩⎭, 则R32B x x ⎧⎫=≥-⎨⎬⎩⎭, 故()R 342A B x x ⎧⎫⋂=-≤<⎨⎬⎩⎭.故答案为:342x x ⎧⎫-≤<⎨⎬⎩⎭17.{(1,1)}【解析】 【分析】由集合中的条件组成方程组求解可得. 【详解】将21y x =-代入2y x ,得2210x x -+=,解得1x =,则211y =-=,所以{(1,1)}A B =. 故答案为:{(1,1)} 18.±1 【解析】 【分析】分析出集合A 有1个元素,对a 讨论方程解的情况即可. 【详解】因为集合(){}21420A x a x x =-+-=有且仅有两个子集,所以集合A 有1个元素.当a =1时,{}1|4202A x x ⎧⎫=-==⎨⎬⎩⎭,符合题意;当a ≠1时,要使集合A 只有一个元素,只需()()244120a ∆=--⨯-=,解得:1a =-;综上所述: 实数a 的值是1或-1. 故答案为:±1.19.3122x x ⎧-≤≤⎨⎩或}1x =【解析】 【分析】分析可知x 的方程20ax x b -+=的两根分别为12、1,利用韦达定理求出a 、b 的值,然后解不等式210ax bx +-≤可得集合B ,利用补集和交集的定义可求得()A B R . 【详解】由题意可知,关于x 的方程20ax x b -+=的两根分别为12、1,所以11121120a b a a ⎧+=⎪⎪⎪⨯=⎨⎪>⎪⎪⎩,解得2313a b ⎧=⎪⎪⎨⎪=⎪⎩, 不等式210ax bx +-≤即为2211033x x +-≤,即2230x x +-≤,解得312x -≤≤,则312B x x ⎧⎫=-≤≤⎨⎬⎩⎭,因为112A x x ⎧⎫=<<⎨⎬⎩⎭,则R 12A x x ⎧=≤⎨⎩或}1x ≥,因此,()R3122A B x x ⎧⋂=-≤≤⎨⎩或}1x =.故答案为:3122x x ⎧-≤≤⎨⎩或}1x =.20.5 【解析】 【分析】直接求出集合A 、B ,再求出A B ,即可得到答案. 【详解】因为集合{}{}352,1,0,1,2,3,4A x Z x =∈-<<=--∣,集合{}{}101B y y y y =+>=>-∣∣, 所以{}0,1,2,3,4A B =, 所以A B 的元素个数为5. 故答案为:5.21.⊂【解析】 【分析】先化简集合A 、B ,再去判断集合A 、B 间的关系即可解决. 【详解】{}{}22101A x x x =-+==,{}{}2101,1B x x =-==-,则A B ⊂故答案为:⊂ 22.3 【解析】 【分析】由集合定义,及交集补集定义即可求得. 【详解】由Venn 图及集合的运算可知,阴影部分表示的集合为()AAB .又{0,1,2,3,4,5}A =,{1,3,5,7,9}B =,{1,3,5}A B ∴⋂=,(){}0,2,4AA B ∴⋂=即Venn 图中阴影部分表示的集合中元素的个数为3 故答案为:3. 23.②③⑤ 【解析】 【分析】根据集合与集合的关系,元素与集合的关系确定正确答案. 【详解】①,空集是任何非空集合的真子集,①正确.②,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,②错误. ③,空集没有任何元素,③错误. ④,根据集合元素的无序性可知④正确.⑤,集合与集合间是包含关系,不是“属于”,元素与集合之间是属于关系,⑤错误. 故答案为:②③⑤24.4 【解析】 【分析】求得P Q +的元素,由此确定正确答案. 【详解】依题意,011,066,213,268+=+=+=+=, 所以P Q +共有4个元素. 故答案为:425.[)2020,∞+【解析】 【分析】解一元二次不等式求得集合A ,根据A B ⊆求a 的取值范围. 【详解】由2202120200x x -+<,解得:12020x <<, ∴()1,2020A =,又A B ⊆,且{}|B x x a =<, ∴2020a ≥,故a 的取值范围为[)2020,∞+. 故答案为:[)2020,∞+三、解答题26.(1){|45}A B x x ⋃=-≤≤ (2)答案见解析 【解析】 【分析】(1)分别求出集合A 和集合B ,求并集即可;(2)选①,根据集合A 和集合B 的位置在数轴上确定端点的关系,列出不等式组即可求解, 选②,先求出RA ,再根据条件在数轴确定端点位置关系列出不等式组即可求解,选③,得到A B ⊆,根据数轴端点位置关系列出不等式组即可求解.(1)因为3a =-,所以{|42}A x x =-≤≤-,又因为{|35}B x x =-<≤,所以{|45}A B x x ⋃=-≤≤. (2)若选①A B =∅:则满足15a ->或13a +≤-, 所以a 的取值范围为{|4a a ≤-或6}a >.若选②()R B A R ⋃=:所以{|1R A x x a =<-或1}x a >+,则满足1315a a ->-⎧⎨+≤⎩,所以a 的取值范围为{|24}a a -<≤.若选③A B B ⋃=: 由题意得A B ⊆,则满足1315a a ->-⎧⎨+≤⎩ 所以a 的取值范围为{|24}a a -<≤27.(1){|11A B x x ⋂=-<≤或36}x ≤<;A B R ⋃=(2)∅【解析】【分析】(1)先求解集合A ,再根据交集和并集的概念写出结论即可;(2)先分别求解集合A 和集合B 的补集,再根据交集的概念写出答案.(1)根据{}2|560A x x x =--<可知,{}|16A x x =-<< 又{|3B x x =≥或1}x ≤{|11A B x x ∴⋂=-<≤或36}x ≤<;A B R ⋃=.(2)根据题意,{|1U A x x =≤-或6}x ≥;{|13}U B x x =<<所以()()U U A B ⋂=∅.28.(1){11A B xx =-≤≤∣或}45x ≤≤ (2)()0,1【解析】【分析】(1)借助数轴即可确定集合A 与集合B 的交集(2)由于A R B ,根据集合之间的包含关系即可求解(1)当3a =时,集合{}|22A x a x a =-≤≤+{}15xx =-≤≤∣, {|1B x x =≤或}4x ≥ ,{11A B x x ∴=-≤≤∣或}45x ≤≤(2)若0a >,且 “x A ∈”是“R x B ∈”充分不必要条件,{}{}22(0),14R A x a x a a B x x =-≤≤+>=<<∣∣因为A R B ,则21240a a a ->⎧⎪+<⎨⎪>⎩解得01a <<.故a 的取值范围是:()0,129.(1){1,2,3,5,6}A B ⋃=,{4,6,7}U B =(2)(){1,5},(){1,4,5,6,7}U U A B A B ⋂=⋂=【解析】【分析】(1)根据并集和补集的概念与运算直接求得结果;(2)根据补集和交集的概念与运算先求出U A 、A B ,再求出()()U U A B A B ⋂⋂、即可. (1)因为{1,2,3,4,5,6,7}U =,{2,3,6}A =,{1,2,3,5}B =, 所以{1,2,3,5,6}A B ⋃=,{4,6,7}U B =; (2)因为{1,2,3,4,5,6,7}U =,{2,3,6}A =,{1,2,3,5}B =, 所以{}1,4,5,7U A =,{}2,3A B ⋂=,所以(){1,5}(){1,4,5,6,7}U U A B A B ⋂=⋂=,.30.(1)(4,)(,2]+∞-∞;(2)[3,)(,4]+∞-∞-.【解析】【分析】(1)利用对数函数的单调性化简集合B ,根据集合交集和补集的定义进行求解即可; (2)根据集合并集的运算性质进行求解即可.(1) 因为{}{}2log 12B x x x x =>=>,所以(2,4]A B ⋂=,因此()(4,)(,2]U A B =+∞-∞; (2)因为B C B ⋃=,所以C B ⊆,当123a a -≥+时,即4a ≤-时,C =∅,符合C B ⊆; 当123a a -<+时,即4a >-时,要想C B ⊆,只需:123a a -≥⇒≥,因为4a >-,所以3a ≥, 综上所述:实数a 的取值范围为:[3,)(,4]+∞-∞-.。
精选高中数学单元测试题-集合考核题库完整版(含答案)
2019年高中数学单元测试试题 集合(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为 ( )A .1B .2C .3D .4 (2012湖北文)D2.设○+是R 上的一个运算,A 是R 的非空子集,若对任意,a b A ∈有a ○+b A ∈,则称A 对运算○+封闭,下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是( ) (A)自然数集 (B)整数集 (C)有理数集 (D)无理数集(2006辽宁理)3.设{}(,)|420A x y x y =-=,{}(,)231B x y x y =+=,则________A B ⋂=4.若A 为全体正实数的集合,{}2,1,1,2B =--则下列结论正确的是( ) A .}{2,1A B =--I B . ()(,0)R C A B =-∞C .(0,)AB =+∞ D .}{()2,1R C A B =--I (2008安徽卷文1)5.已知集合A ={x ||x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =________.解析:由已知A ={x ||x |≤2,x ∈R}={x |-2≤x ≤2},B ={x |x ≤4,x ∈Z}= {x |0≤x ≤16,x ∈Z},则A ∩B ={x |0≤x ≤2,x ∈Z}={0,1,2}.6.已知非空集合M 和N ,规定{}N x M x x N M ∉∈=-但,,则=--)(N M M -------( )(A)N M (B) N M (C)M (D)N第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题7.集合I={-3,-2,-1,0,1,2},A={-1,1,2},B={-2,-1,0},则A (C I B)=_____________.8.设n m a a ==5log ,3log ,则=+nm a29.满足{}1234,,,M a a a a ⊆,且{}123,,M a a a {}12,a a =的集合M 的个数是 210.以下六个关系式:①{}00∈,②{}0⊇∅,③Q ∉3.0, ④N ∈0, ⑤{}{}a b b a ,,⊆,⑥{}2|20,x x x Z -=∈是空集,其中错误的个数是 个11.若集合2{440,}A x kx x x R =++=∈中只有一个元素,则实数k 的值为 12.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 .13.已知集合{}|1A x x =≤,{}|B x x a =≥,且A B R ⋃=,则实数a 的取值范围是______________________ . .14.已知集合2{|3,},{|ln(2)}P y y x x R Q x y x ==+∈==-,则P Q =___ ▲ .15. 已知集合{}0,1,3M =,{}3,N x x a a M ==∈,则MN = {}0,1,3,916.已知集合A ={-1,3,m},集合B ={3,4}。
高中数学集合测试题(含答案和解析)
高中数学集合测试题(含答案和解析)一、单选题1.已知集合{}{}22,1,0,2,3,4,|340A B x x x =--=--<,则A B =( )A .{}1,0,2,3,4-B .{}0,2,3,4C .{}0,2,3D .{}2,32.已知集合{}0,1,2,3,4A =,集合{}R 326xB x =∈<,则A B =( )A .{}0,1,2B .{}0,1,2,3C .{}0,1,2,3,4D .{}1,2,33.设集合{}1A x x =>,{}2B x x =≤,则A B =( ) A .∅B .{}12x x <≤C .{}12x x x ≤>或D .R4.若集合{}220A x x x =--<,{}21B x x =<,则A B =( )A .AB .BC .()1,0-D .()0,25.设集合{}0,1S =,{}0,3T =,则S T ⋃=( ) A .{}0 B .{}1,3 C .{}0,1,3D .{}0,1,0,36.已知R 为实数集,集合{}{}2340,ln(1)A x x x B x y x =--≤==-,则R A B ⋃=( )A .{}14x x <≤B .{}11x x -≤≤C .{}1x x ≥-D .{}4x x ≤7.已知集合{}{}234014P x x x Q x N x =--<=∈≤≤,,则=P Q ( )A .{1,2,3,4}B .{1,2,3}C .{1,2}D .{2,3,4}8.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()UA B ⋂=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞9.设集合1|05x A x x -⎧⎫=>⎨⎬-⎩⎭,{}|13B x x =-≤≤,则()A B =R ( ) A .{}|35x x ≤< B .{}|15x x ≤< C .{}|15x x -≤<D .{}|13x x ≤≤10.已知集合{}1A x x =≤,B ={}02x x <<,则A B =( ) A .(]0,1B .[)1,2C .()0,1D .()0,211.已知集合50{|}A x x =<<-,{}41B x x =-≤≤,则A B ⋃=( ) A .AB .BC .(5,1]-D .[4,0)-12.已知集合{}13A x x =≤≤,集合{}24B x x =≤≤,则A B =( ) A .{}23x x ≤≤B .{}34x x <≤C .{}12x x <≤D .{|1x x <或}2x ≥13.若集合{}{}22,3,|560,A B x x x ==-+=则A B =( )A .{2,3}B .∅C .2D .2,314.设集合{}123A =,,,{}2|0B x R x x =∈-=,则A B ⋃=( ) A .{}1B .{}01,C .{}123,,D .{}0123,,,15.已知集合1|2,[,4]2xA xB a a ⎧⎫=>=+⎨⎬⎩⎭,若(]1,2A B =-,则=a ( )A .2B .1-C .2-D .5-二、填空题16.网络流行词“新四大发明’’是指移动支付、高铁、网购与共享单车.某中学为了解本校学生中“新四大发明”的普及情况,随机调查了100名学生,其中使用过移动支付或共享单车的学生共90名,使用过移动支付的学生共有80名,使用过共享单车的学生且使用过移动支付的学生共有60名,则该校使用共享单车的学生人数与该校学生总数比值的估计值为___________.17.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________. 18.集合A ={2|x x -ax +2=0}的子集有两个,则实数a =______. 19.已知集合{}2,1,2A =-,{}1,B a a =+,且B A ⊆,则实数a 的值是___________.20.设全集{}0,1,2U =,集合{}0,1A =,在UA______21.方程组13x y x y -=⎧⎨+=⎩的解集..为_____. 22.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)23.已知集合(){}2,2A x y y xx ==-,()(){},21B x y y x ==+,则AB =___________.24.(1)已知集合{}2230A x x x =--=,{}20B x ax =-=,且B A ⊆,则实数a 的值为______.(2)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为______.25.当x A ∈时,若有1x A -∉且1x A +∉,则称x 是集合A 的一个“孤元”,由A 的所有孤元组成的集合称为A 的“孤星集”,若集合{}1,2,3M =的孤星集是M ',集合{}1,3,4P =的孤星集是P ',则M P ''⋂=______.三、解答题26.已知集合A ={x |24x >},B ={x ||x -a |<2},其中a >0且a ≠1. (1)当a =2时,求A ∪B 及A ∩B ;(2)若集合C ={x |log ax <0}且C ⊆B ,求a 的取值范围.27.已知全集U R =,集合{|A x =213x -<,123}3x x -≤-,{|13}B x x =-≤≤.(1)求A ,A B ⋃,UB(2)如图①,阴影部分表示集合M ,求M . (3)如图②,阴影部分表示集合N ,求N .28.已知函数()()4log 526f x x x =--()g x x α=(α为常数),且()g x 的图象经过点(8,22P .(1)求()f x 的定义域和()g x 的解析式;(2)记()f x 的定义域为集合A ,()g x 的值域为集合B ,求()A B ⋂R .29.集合{}{}3621A x x B x m x m =<≤=≤≤+,. (1)若2m =,求,A B A B ;(2)若x B ∈是x A ∈的必要条件,求实数m 的取值范围.30.设集合{}4U x x =≤,{}12A x x =-≤≤,{}13B x x =≤≤.求:(1)A B ; (2)()U A B ; (3)()()U U A B ⋂.【参考答案】一、单选题 1.C 【解析】 【分析】先求出集合B ,再求两集合的交集即可 【详解】由2340x x --<,得(1)(4)0x x +-<,解得14x -<<, 所以{}14B x x =-<<, 因为{}2,1,0,2,3,4A =--, 所以A B ={}0,2,3, 故选:C 2.A 【解析】 【分析】根据指数函数的单调性,结合集合交集的定义进行求解即可. 【详解】由333262log 26log 273xx <⇒<<<=,因此A B ={}0,1,2, 故选:A 3.B 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1A x x =>,{}2B x x =≤,所以{}12A B x x ⋂=<≤; 故选:B 4.B 【解析】 【分析】由题知{}12A x x =-<<,{}11B x x =-<<,再求交集即可. 【详解】解:解不等式220x x --<得12x -<<,故{}12A x x =-<<, 解不等式21x <得11x -<<,故{}11B x x =-<<, 所以A B ={}11x x B -<<=. 故选:B 5.C 【解析】 【分析】 由并集的概念运算 【详解】 S T ⋃={}0,1,3故选:C 6.D 【解析】 【分析】首先解一元二次不等式求出集合A ,再根据对数型函数的定义域求出集合B ,最后根据补集、并集的定义计算可得; 【详解】解:由2340x x --≤,即410x x ,解得14x -≤≤,即{}{}234014A x x x x x =--≤=-≤≤,又(){}{}ln 11B x y x x x ==-=,所以{}|1RB x x =≤,所以{}4R A B x x ⋃=≤;故选:D 7.B 【解析】 【分析】解不等式得到14{|}P x x =-<<,根据题意得到{1,2,3,4}Q =,再由集合交集的概念得到结果. 【详解】由集合{}234|0P x x x =--<,解不等式得到:14{|}P x x =-<<,又因为{1,2,3,4}Q =,根据集合交集的概念得到:{}1,2,3P Q ⋂=.8.D 【解析】 【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以()UA B ⋂={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D9.D 【解析】 【分析】求解分式不等式的解集,再由补集的定义求解出A R,再由交集的定义去求解得答案.【详解】1015x x x ->⇒<-或5x >,所以{}15A x x =≤≤R , 所以得(){}13A B x x ⋂=≤≤R . 故选:D 10.A 【解析】 【分析】根据集合的交集概念即可计算. 【详解】∵{}1A x x =≤,B ={}02x x <<,∴A B =(]0,1. 故选:A ﹒ 11.C 【解析】 【分析】根据集合并集的概念及运算,正确运算,即可求解. 【详解】由题意,集合50{|}A x x =<<-,{}41B x x =-≤≤,根据集合并集的概念及运算,可得{|51}(5,1]A B x x =-<≤=-. 故选:C. 12.A 【解析】 【分析】由交集运算直接求出两集合的交集即可.由集合{}13A x x =≤≤,集合{}24B x x =≤≤ 则{}|23A B x x =≤≤ 故选:A 13.A 【解析】 【分析】依据交集定义去求A B 即可. 【详解】{}{}2|560=2,3B x x x =-+=则{}{}{}2,32,32,3A B ⋂=⋂=, 故选:A . 14.D 【解析】 【分析】先求出集合B ,再由并集运算得出答案. 【详解】由{}2|0B x R x x =∈-=可得{}0,1B =则{}0,1,2,3A B ⋃= 故选:D 15.C 【解析】 【分析】求出集合A 的解集,由(]1,2A B =-,列出满足题意的关系式求解即可得答案. 【详解】解:因为{}{}11|2|22|1(1,)2x x A x x x x -⎧⎫=>=>=>-=-+∞⎨⎬⎩⎭,[,4]B a a =+,又(1,2]A B ⋂=-,所以421a a +=⎧⎨≤-⎩,即2a =-,故选:C.二、填空题16.710##0.7 【解析】 【分析】利用韦恩图,根据题中的信息得出样本中使用共享单车和移动支付的学生人数,将人数除以100可得出所求结果. 【详解】根据题意,将使用过移动支付、共享单车的人数用如图所示的韦恩图表示,所以该校使用共享单车的学生人数与该校学生总数比值的估计值为6010710010+=. 故答案为:710. 17.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.18.22±【解析】 【分析】根据题意可得集合A 中仅有一个元素,则方程220x ax -+=只有一个解,从而有0∆=,即可得出答案. 【详解】解:因为A ={2|x x -ax +2=0}的子集有两个, 所以集合A 中仅有一个元素, 所以方程220x ax -+=只有一个解, 所以280a ∆=-=,解得22a =± 故答案为:22± 19.1 【解析】 【分析】由子集定义分类讨论即可. 【详解】因为B A ⊆,所以a A ∈1a A ∈, 当2a =-1a 无意义,不满足题意;当1a =12=,满足题意; 当2a =11=,不满足题意. 综上,实数a 的值1. 故答案为:120.{2}【解析】 【分析】利用集合的补运算求UA 即可.【详解】由{}0,1,2U =,{}0,1A =,则{2}UA =.故答案为:{2}.21.{(2,1)}【解析】 【分析】利用加减消元法求得方程组的解集. 【详解】依题意13x y x y -=⎧⎨+=⎩,两式相加得24,21x x y ==⇒=, 所以方程组的解集为{(2,1)}. 故答案为:{(2,1)}22.()A BAB ⋃【解析】 【分析】由集合的交并补运算求解即可. 【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A BAB ⋃故答案为:()A BAB ⋃23.()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭【解析】 【分析】解方程组直接求解即可 【详解】由()2221y x x y x ⎧=-⎪⎨=+⎪⎩得121x y ⎧=-⎪⎨⎪=⎩或26x y =⎧⎨=⎩,∴()1,1,2,62A B ⎧⎫⎛⎫⋂=-⎨⎬ ⎪⎝⎭⎩⎭.故答案为:()1,1,2,62⎧⎫⎛⎫-⎨⎬ ⎪⎝⎭⎩⎭24. 2a =-或23a =或0 30k -<≤ 【解析】 【分析】(1)分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a=,解出即可;(2)分情况讨论,当0k =时,满足题意;当0k ≠时,只需要满足23Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解不等式组即可. 【详解】已知集合{}{}22301,3A x x x =--==-,{}20B x ax =-=当0,a B ==∅,满足B A ⊆; 当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a= 解得2a =-或23a =; 不等式23208kx kx +-<对一切实数x 都成立,当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解得30k -<< 综上结果为:30k -<≤. 故答案为:2a =-或23a =或0;30k -<≤ 25.∅【解析】 【分析】根据集合的新定义求解出集合M '和P ',再求解交集可得出答案. 【详解】根据“孤星集”的定义,1,112,2A A ∈+=∈ 所以1不是集合M '的元素同理2,3也都不是集合M '的元素M ∴'=∅,同理可得 {}1P '=所以M P '⋂'=∅.故答案为:∅.三、解答题26.(1)A ∪B ={x |x >0},A ∩B ={x |2<x <4};(2){a |1<a ≤2},【解析】【分析】(1)化简集合A ,B ,利用并集及交集的概念运算即得;(2)分a >1,0<a <1讨论,利用条件列出不等式即得.(1)∵A ={x |2x >4}={x |x >2},B ={x ||x -a |<2}={x |a -2<x <a +2},∴当a =2时,B ={x |0<x <4},所以A ∪B ={x | x >0},A ∩B ={x |2<x <4};(2)当a >1时,C ={x |log ax <0}={x |0<x <1},因为C ⊆B ,所以2021a a -≤⎧⎨+≥⎩,解得-1≤ a ≤2, 因为a >1,此时1<a ≤2,当0<a <1时,C ={x |log ax <0}={x |x >1},此时不满足C ⊆B ,综上,a 的取值范围为{a |1<a ≤2}.27.(1)3{|2}2A x x =≤<,{|13}AB x x ⋃=-≤≤,U B {|1x x =<-或3}x >; (2)3{|12M x x =-≤<或23}x ≤≤; (3){|1M x x =<-或3}x >.【解析】【分析】(1)求解不等式组解得集合A ,再根据集合的并运算和补运算即可求得结果; (2)根据阴影部分可知M =()B A B ⋂,根据已知集合求解即可; (3)根据阴影部分可知M =()U A B ,根据已知集合求解即可. (1){|A x =213x -<,1323}{|2}32x x x x -≤-=≤<, {|13}A B x x ⋃=-≤≤,U B {|1x x =<-或3}x >.(2)因为3{|2}2A B x x ⋂=≤< 根据题意可得M =()B A B ⋂3{|12x x =-≤<或23}x ≤≤. (3) 因为{|13}A B x x ⋃=-≤≤,根据题意可得M =()U A B {|1x x =<-或3}x >. 28.(1)()3,5;()12g x x =;(2)][)0,35,∞⎡⋃+⎣.【解析】【分析】(1)根据f (x )解析式即可求其定义域,根据()g x x α=过P 求出α即可求出g (x )解析式; (2)根据幂函数的性质求g (x )值域即B ,根据集合的补集和交集的运算方法求解即可.(1)5052603x x x x ⎧-><⎧⇒⎨⎨->>⎩⎩, ∴f (x )定义域为()3,5;∵()g x x α=过(P ,则()3132218222g x x ααα==⇒=⇒=; (2)()3,5A =,[)0,B ∞=+,][(),35,A ∞∞=-⋃+R ,()][)0,35,A B ∞⎡⋂=⋃+⎣R .29.(1){}35A B x x ⋂=<≤,{|26}x x AB ≤≤=; (2)5,32⎡⎤⎢⎥⎣⎦【解析】【分析】(1)将m 的值代入集合B ,然后根据交集与并集的定义即可求解;(2)由题意,可得A B ⊆,根据集合的包含关系列不等式组求解即可得答案.(1)解:当2m =时,{|25}B x x =≤≤,又{}36A x x =<≤, 所以{}35A B x x ⋂=<≤,{|26}x x AB ≤≤=;(2)解:因为x B ∈是x A ∈的必要条件,所以A B ⊆,即(3,6][,21]m m ⊆+,所以有3216m m ≤⎧⎨+≥⎩,解得532≤≤m , 所以实数m 的取值范围为5,32⎡⎤⎢⎥⎣⎦. 30.(1){|12}A B x x =≤≤;(2)(){|1U B x A x ⋃=<-或14}x ≤≤;(3)()(){|1U U x B x A ⋂=<-或34}x <≤.【解析】【分析】(1)由集合的交集运算可求得答案; (2)先算出U A ,再求()U A B ⋃; (3)先求U B ,再求()()U U A B ⋂. (1)解:∵{|12}A x x =-≤≤,{|13}B x x =≤≤, ∴{|12}A B x x =≤≤;(2)解:{|4}U x x =≤,{}12A x x =-≤≤,所以{|1U A x x =<-或24}x <≤. 又∵{|13}B x x =≤≤,∴(){|1U B x A x ⋃=<-或14}x ≤≤.(3)∵{|4}U x x =≤,{|13}B x x =≤≤,∴{|1U B x x =<或34}x <≤, ∴()(){|1U U x B x A ⋂=<-或34}x <≤.。
高中集合单元测试题及答案
高中集合单元测试题及答案一、选择题(每题3分,共30分)1. 集合A={1,2,3},集合B={2,3,4},那么A∩B等于:A. {1}B. {2,3}C. {4}D. {1,2,3,4}2. 对于任意集合A和B,下列哪个表达式是正确的:A. A∪B = B∪AB. A∩B = B∩AC. A∪B = A∩BD. 所有选项都正确3. 如果集合C={x|x>5},那么C的补集C'等于:A. {x|x≤5}B. {x|x<5}C. {x|x≥5}D. {x|x=5}4. 集合{1,2,3}与{2,3,4}的并集是:A. {1,2,3}B. {2,3}C. {1,2,3,4}D. {4}5. 集合{1,2,3}与{2,3,4}的差集是:A. {1}C. {4}D. {1,4}6. 集合{1,2,3}的幂集包含多少个元素?A. 2^3B. 3^2C. 3^3D. 4^37. 集合{1,2,3}的子集个数是:A. 3B. 4C. 7D. 88. 集合{1,2,3}的真子集个数是:A. 3B. 4C. 6D. 79. 如果A={1,2},B={2,3},那么A∪B∩C={3},C可能是什么?A. {1,3}B. {2,3}C. {3}D. 所有选项都正确10. 集合{1,2,3}的对称差集与{2,3,4}是:A. {1,4}B. {1,2,3,4}D. {1,4,5}二、填空题(每题2分,共10分)11. 集合A={x|x是小于10的正整数},A的元素有________个。
12. 如果A={1,2,3},B={3,4,5},那么A∩B={________}。
13. 集合A={x|x是偶数},B={x|x是奇数},则A∪B=________。
14. 如果A={1,2,3},B={2,3,4},那么A⊆B是________(填“真”或“假”)。
15. 集合{1,2,3}的幂集的元素个数是________。
精选最新版高一数学单元测试题-集合模拟考试(标准答案)
2019年高中数学单元测试试题 集合(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.已知集合A = {x ∈R | |x |≤2}, A = {x ∈R | x ≤1}, 则A B ⋂=(A) (,2]-∞ (B) [1,2] (C) [2,2] (D) [-2,1] (2013年普通高等学校招生统一考试天津数学(理)试题(含答案))2.已知集合{}12,M x x x R =-≤∈,51,1P x x Z x ⎧⎫=≥∈⎨⎬+⎩⎭,则M P 等于(A){}03,x x x Z <≤∈ (B){}03,x x x Z ≤≤∈(C){}10,x x x Z -≤≤∈ (D){}10,x x x Z -≤<∈ (2005上海理)3.设集合∈<≤=x x x A 且30{N}的真子集...的个数是( ) (A) 16(B) 8; (C) 7 (D) 4(2005天津文)4.设全集U=N M ={1,2,3,4,5},M U N ð={2,4},则N=( )(A ).{1,2,3} (B ).{1,3,5} (C ).{1,4,5} (D ).{2,3,4}(2011湖南文1)【精讲精析】选 B. M U N ð={2,4},∴N 中一定没元素2和 4.假设N ∉1,则U 1N,1M 1M N ∈∉∴∉⋃,ð,与已知条件矛盾,所以1是N 中的元素,同理,3和5也是N 中的元素.5.已知集合{}{}0,1,2,3,4,1,3,5,,M N P M N ===则P 的子集共有( )A .2个 B.4个 C.6个 D.8个(2011全国文1)6.设集合M={-1,0,1},N={x|x 2=x},则M ∩N=A.{-1,0,1}B.{0,1}C.{1}D.{0}7.设集合M={-1,0,1},N={x|x 2≤x},则M∩N=( ) A .{0}B .{0,1}C .{-1,1}D .{-1,0,0}(2012湖南理)第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题8.设函数22()ln f x a x x ax =-+,0a >,不等式21()e f x e -≤≤对[1,]x e ∈恒成立,则a 的取值集合是 ▲ .9.设集合A ={x |-12<x <2},B ={x |x 2≤1},则A ∪B = .10.已知集合{1,1,2,4},{1,0,2}A B =-=-,则A B = .11.集合}0a |x 2x ||x {M 2=+-=有8个子集,则实数a 的值为 ▲12.集合}1,0,1{-共有___________个子集. (2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))13.设全集{1,2,3,4,5}U =,集合{1,2,3}A =,{2,3,4}B =,则()U C AB = ▲ .14.设集合{}{}{},7,5,3,5,4,2,1,80==≤<∈=T S x N x U 则()=⋂T C S U 15.已知集合{}{}=⋂==B A B A ,4,3,2,5,3,1 16.若集合{}R ∈==x x x A x ,32cos 3π,{}R ∈==y y y B ,12,则B A = .17.已知全集{}1,2,3,4,5,6,7,8U =,{}3,4,5A =,{}1,3,6B =,那么集合U U A B =痧 {}2,7,8 .18.已知集合A={x|y=21x -,x ∈R},B={x|x=t 2,t ∈A},则集合A B19.已知,a b a b ==则的大小关系为 .20.2{60},{10}A x x x B x mx =+-==+=,且A B A ⋃=,则m 的取值是21.集合A 和B 各含6个元素,A B 含3个元素,C 同时满足三个条件:①C A B Ü;②C 中含有3个元素;③CA ≠∅,则这样的集合C 的个数是_____________个22.设集合A={m|关于x 的方程x 2-2x+m=0有实根,m ∈R}, B={m|关于x 的二次方程mx 2-x+1=0无实根,m ∈R},则A ∪B= .三、解答题23.设全集R U =,集合A =}31|{<≤-x x ,B =}242|{-≥-x x x 。
最新精选高中数学单元测试题-集合模拟考试(标准答案)
2019年高中数学单元测试试题 集合(含答案) 学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.已知集合P={x ∈N|1≤x ≤10},集合Q={x ∈R|x 2+x -6≤0}, 则P ∩Q 等于( )A. {2}B.{1,2}C.{2,3}D.{1,2,3}(2006陕西理)2.设全集U=R ,集合M={x ∣x>l},P={x ∣x 2>l},则下列关系中正确的是(A)M=P (B) M P ⊂ (C) P M ⊂ (D) ∅=⋂P M C U (2005北京理)3.已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =( )(A ){x |x <-2} (B ){x |x >3}(C ){x |-1<x <2} (D ){x |2<x <3}(2004全国2文)(1)4.设集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M ∩(N C U )= ( )A .{5}B .{0,3}C .{0,2,3,5}D . {0,1,3,4,5}(2004全国4文1)5.集合P ={x |x 2-16<0},Q ={x |x =2n ,n ∈Z },则P Q =(C )A.{-2,2}B.{-2,2,-4,4}C.{-2,0,2}D.{-2,2,0,-4,4}(2006湖北文)6.集合A= {x ∣12x -≤≤},B={x ∣x<1},则()R A B ð= (D )(A ){x ∣x>1} (B) {x ∣x ≥ 1} (C) {x ∣12x <≤ } (D) {x ∣12x ≤≤} (2007)第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题7.设集合{}2230A x x x =--<,{}21x B x =>,则AB = ▲ .8.设集合2{3,log },{,}P a Q a b ==,若{0}PQ =,则P Q = .9.设(){}(){},46,,53,A x y y x B x y y x ==-+==-,则A B ={(1,2)}10.学校开运动会,某班有30名同学,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,则两项都参加的是________人;11.已知集合}{12A x x =-<<,集合}{31B x x =-<≤,则B A = {|11}x x -<≤ .12.若集合{}R ∈==x x x A x ,32cos 3π,{}R ∈==y y y B ,12,则B A = .13.设全集为R ,11A xx ⎧⎫=<⎨⎬⎩⎭,则R C A =___________.14.设集合{}{}25,log (3),,(,)R A a B a b a b =+=∈,若{}1AB =,则A B = .15.已知A ={x |0<x <3},B ={x |x ≥a }若A B Þ,则a 的取值范围是 .16.如果全集U={1,2,3,4,5,6,7,8},A={2,5,8},B={1,3,5,7},那么()UA B C ⋂= 17.已知集合{1,1,2,4},{1,0,2},A B =-=- 则AB = ▲ (江苏2011年5分) 18.2{|340},{|0}A x x x B x x a =--<=-<,且()A A B ⊆⋂,则实数a 的取值范围是________;19.设T S ,是R 的两个非空子集,如果存在一个从S 到T 的函数)(x f y =满足; (i)}|)({S x x f T ∈=;(ii)对任意S x x ∈21,,当21x x <时,恒有)()(21x f x f <. 那么称这两个集合“保序同构”.现给出以下3对集合:①*,N B N A ==;②}108|{},31|{≤≤-=≤≤-=x x B x x A ;③R B x x A =<<=},10|{.其中,“保序同构”的集合对的序号是____________(写出所有“保序同构”的集合对的序号) (2013年高考福建卷(文))20.已知集合{}{}2,0,2,4,|03P Q x x =-=<<,则P Q = ▲ .21.已知直线l 1:4x +7y -4=0,l 2:mx +y =0,l 3:2x +3my -4=0,三条直线不能构成三角形.则m 为取值集合为22.设集合{}21A x x x =<∈R ,,{}20B x x =≤≤,则A B = ▲ .23.若集合{}4,12,32+--=a a a M ,且M ∈-3,则实数a 的取值是 ▲ .24.已知集合若则▲ .25.已知集合{{},sin ,P Q y y R θθ=-==∈,则=P Q ▲ .三、解答题26.设集合{}02A x x m =<-<,{}03B x x x =≤≥或.分别求出满足下列条件的实数m 的取值范围.(Ⅰ)A B =∅;(Ⅱ)B B A = .27.已知全集U =R ,集合{}0A x x =>,11}B x x =-<{≤,求: (1)A B ; (2)A B ;(3)U A B ð.28.设集合{}42<=x x A ,⎭⎬⎫⎩⎨⎧<+-=031x x xB . (1)求集合B A ;(2)若不等式022<++b ax x 的解集为B ,求a ,b 的值.。
精选最新版高中数学单元测试题-集合模拟考试题库(含答案)
2019年高中数学单元测试试题 集合(含答案) 学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是( )A .9B .8C .7D .6(2005湖北卷)2.已知A ,B 均为集合U={1,3,5,7,9}的子集,且A ∩B={3},u ðB ∩A={9},则A=(A ){1,3} (B){3,7,9} (C){3,5,9} (D){3,9}(2010辽宁理数)1.3.若集合M={-1,0,1},N={0,1,2},则M∩N等于( )(A).{0,1} (B).{-1,0,1}(C).{0,1,2}(D).{-1,0,1,2}(2011福建文1)【思路点拨】直接取集合M 和集合N 的公共元素,即可得MN . 【精讲精析】选A. {-1,0,1}N {0,1,2}{0,1}.M M N ∴=,=,=4.若集合{}20A x x x =|-<,{|03}B x x =<<,则A B 等于( )A .{}01x x |<<B .{}03x x |<<C .{}13x x |<<D .∅(2008福建文)(1)第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题5.若集合{1,4,5},A = 集合{3,4,5,6}B =,则A B = .6. 集合{}33|>-<=x x x A 或,{}41|><=x x x B 或,A B ⋂=__ _______..7.设全集∪={3,9,a 2+2a -1},P={3,a +7},C u P={7},则 a 的值为8.设集合M={-1,1},N ={x |21<12+x <4,Z x ∈},则M ⋂N= 。
精选最新版高中数学单元测试题-集合模拟考核题库(含答案)
2019年高中数学单元测试试题 集合(含答案) 学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()U A B =ð( B )(A){}2,3 (B){}1,4,5 (C){}4,5 (D){}1,5(2008四川理)2.设全集{1,2,3,4,5,6,7,8}U =,集合{1,3,5}S =,{3,6}T =,则()U C S T ⋃等于( )A .∅B .{2,4,7,8}C .{1,3,5,6}D .{2,4,6,8} (2006安徽文)3.设集合()22{,|1}416x y A x y =+=,{(,)|3}x B x y y ==,则A B ⋂的子集的个数是 A .4 B .3 C .2 D .1(2010湖北理数)2.4.已知{}7,6,5,4,3,2=U ,{}7,5,4,3=M ,{}6,5,4,2=N ,则( )A .{}6,4=⋂N M .B MN U =C .U M N C u = )( D. NN M C u = )((2008湖南文1)5.设全集U=N M ={1,2,3,4,5},M U N ð={2,4},则N=( )(A ).{1,2,3} (B ).{1,3,5} (C ).{1,4,5} (D ).{2,3,4}(2011湖南文1)【精讲精析】选 B. M U N ð={2,4},∴N 中一定没元素2和 4.假设N ∉1,则U 1N,1M 1M N ∈∉∴∉⋃,ð,与已知条件矛盾,所以1是N 中的元素,同理,3和5也是N 中的元素.6.已知集合2{|1},{}P x x M a =≤=,若P M P =,则a 的取值范围是( )(A )(,1]-∞- (B )[1,)+∞ (C )[1,1]- (D )(,1][1,)-∞-+∞(2011北京理1)【思路点拨】先化简集合P ,再利用M 为P 的子集,可求出a 的取值范围.【精讲精析】选C.[1,1]P =-.由P M P =得,M P ⊆,所以[1,1]a ∈-.7.已知集合A={ (x ,y)|x ,y 为实数,且x 2+y 2=l},B={(x ,y) |x ,y 为实数,且y=x}, 则A ∩ B 的元素个数为( ) A .0 B .1 C .2 D .3(2011年高考广东卷理科2)8.设集合{1,2,3,4,5,6}U =,{1,3,5}M =,则U M =ðA. {2,4,6}B. {1,3,5}C. {1,2,4}D. U第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题9.若集合}012|{2=++=x ax x A 中只有一个元素,则a 的值是______ __10.设集合{}1,2,4A =,{}2,6B =,则AB = .11.集合{1,1},{0,1,2}P Q =-=,则P Q = ▲12.已知集合{}Z x x x x A ∈≤-=,042,(){}A x x y y B ∈+==,1log 2,则=B A 。
精选最新版高一数学单元测试题-集合模拟考试(含答案)
2019年高中数学单元测试试题 集合(含答案)学校:__________第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题1.设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T= ( )A .[-4,+∞)B .(-2, +∞)C .[-4,1]D .(-2,1] (2013年高考浙江卷(文))2.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()U AB =ð( B )(A){}2,3 (B){}1,4,5 (C){}4,5 (D){}1,5(2008四川理)3.已知集合U ={1,2,3,4,5,6,7}, A ={2,4,5,7},B ={3,4,5},则()()A B =U U 痧( D )(A ){1,6} (B ){4,5} (C ){2,3,4,5,7} (D ){1,2,3,6,7}(2006重庆文)4.设D 是正123PP P ∆及其内部的点构成的集合,点0P 是123PP P ∆的中心,若集合0{|,||||,1,2,3}i S P P D PP PP i =∈≤=,则集合S 表示的平面区域是 ( )A . 三角形区域B .四边形区域C . 五边形区域D .六边形区域(2009北京文)5.已知U =R ,{}|0A x x =>,{}|1B x x =-≤,则()()U UAB B A 痧=( )(A )∅ (B ){}|0x x ≤(C ){}|1x x >- (D ){}|01x x x >≤-或(2008浙江理) (2)6.设集合{1,2,3,4,5,6}U =,{1,3,5}M =,则U M =ð A. {2,4,6} B. {1,3,5} C. {1,2,4} D. U第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题7.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年高中数学单元测试试题 集合(含答案)
学校:__________
第I 卷(选择题)
请点击修改第I 卷的文字说明
一、选择题
1.若全集U={x∈R|x 2
≤4} A={x∈R||x+1|≤1}的补集CuA 为 ( )
A .|x∈R |0<x<2|
B .|x∈R |0≤x<2|
C .|x∈R |0<x≤2|
D .|x∈R |0≤x≤2|(2012江西文)
C
2.设全集U=R ,集合M={x ∣x>l},P={x ∣x 2
>l},则下列关系中正确的是
(A)M=P (B) M P ⊂ (C) P M ⊂ (D) ∅=⋂P M C U (2005北京理)
3.设D 是正123PP P ∆及其内部的点构成的集合,点0P 是123PP P ∆的中心,若集合
0{|,||||,1,2,3}i S P P D PP PP i =∈≤=,则集合S 表示的平面区域是 ( )
A . 三角形区域
B .四边形区域
C . 五边形区域
D .六边形区域(2009
北京文)
4.设集合{}
08U x x =∈<N ≤,{}1245S =,,,,{}357T =,,,则()U
S
T =ð( )
A .{}124,,
B .{}123457,,,,,
C .{}12,
D .{}124568,,,,,(2008天津文) 1.
5.已知集合P={x ︱x 2
≤1},M={a }.若P ∪M=P,则a 的取值范围是
(A )(-∞, -1] (B )[1, +∞) (C )[-1,1] (D )(-∞,-1] ∪[1,+∞)(2011北京理1)
6.集合{}0,2,A a =,{}
21,B a =,若{}0,1,2,4,16A
B =,则a 的值为( )
A.0
B.1
C.2
D.4(2009山东卷理)
【解析】:∵{}0,2,A a =,{}21,B a =,{}0,1,2,4,16A B =∴216
4a a ⎧=⎨=⎩
∴4a =,故选D.
第II 卷(非选择题)
请点击修改第II 卷的文字说明
二、填空题
7.已知集合[)1,4,(,)A B a ==-∞,若A B ⊆,则实数a 的取值范围是 。
8.已知全集{
}4,3,2,1=U ,集合{}{}3,2,2,1==Q P ,则()U
P Q ð等于__________.
9.已知集合M={x |1
-x x
>2},N={x ||2x -1|<2},则M∩N= .
10.已知集合{1,1,2,4},{1,0,2},A B =-=- 则_______,=⋂B A 关键字:求交集;数集
11.集合A={(x ,y )|y=a|x|},B={(x ,y )|y=x+a},C=A ∩B ,且集合C 为单元素集合,则实数a 的取值范围为________________
12.集合{
}
2
,1,1A a a =+-,{
}
2
21,2,34B a a a =--+,若{}1A
B =-,则实数
a = 0a = .
13.设A ,B 均为有限集,A 中元素的个数为m ,B 中元素的个数为n ,A B 中的元素的
个数s ,A
B 中的元素的个数t ,则下列各式能成立的序号是(1)(2)
(1).m n s +> (2).m n s += (3).m n s +
14.已知全集为R ,若集合,{}{}
012,01>+=≥-=x x N x x M ,则=⋂N M 。
15.设集合
16.已知集合{}{}2,0,2,4,|03P Q x x =-=<<,则P Q = ▲ .
17.已知集合{}
3,2a M =,{},N a b =.若{}4M N =,则=M
N ▲ .
18.已知集合21
{|340},{|
0}A x x x B x x
=+-==>,则A B = .
19.当两个集合中一个集合为另一个集合的子集时称这两个集合之间构成“全食”,当两个集合有公
共元素,但互不为对方子集时称两个集合之间构成“偏食”.对于集合{}211,,1,|1,02A B x ax a ⎧⎫
=-==≥⎨⎬⎩⎭
, 若A 与B 构成“全食”或构成“偏食”,则a 的取值集合为 .
20.期中考试,某班数学优秀率为70%,语文优秀率为75%,上述两门学科都优秀的百分率至少为_____________.
21.已知集合{0,1,2}A =,集合{}2B x x =>,则A
B =
22.已知集合{2}A a =+, {1,1,3}B =-,且A B ⊆,则实数a 的值是 .
23.已知全集U R =,集合{
}
2
|1A x x =≥,那么U C A 等于 (1,1)- 24.设集合A ={x |-1≤x ≤2},B ={x |0≤x ≤4},则A ∪B = .[-1,4] 25.若集合⎭
⎬⎫⎩⎨⎧<
=21x x M ,{}
02
≤-=x x x N ,则=N M .
三、解答题
26.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R}. (1) 当m=2时,求A B ;
(2) 若A ∩B =[1,3],求实数m 的值;
(3) 若A ⊆∁R B ,求实数m 的取值范围.(本题满分14分) 27.已知q 和n 均为给定的大于1的自然数.设集合{}0,1,2,1,
q M =-,集合
{}112,,1,2,
,n n i A x x x x q x q x M i
n -+?==++
.
(Ⅰ)当2q =,3n =时,用列举法表示集合A ; (Ⅱ)设,s t A Î,112n n s a a q a q -=+++,112n n t b b q b q -=+++,其中
(本小题满分14分)
28. 已知集合{}]3,2[,2∈-==x y y A x ,{}
03322>--+=a a x x x B .(1)当4a =时,求A B ; (2)若A B ⊆,求实数a 的取值范围.
29.已知集合A={x|x 2﹣2x ﹣3≤0},B={x|x 2﹣2mx+m 2﹣9≤0},m ∈R . (1)若m=3,求A ∩B .;
(2)若A ⊆B ,求实数m 的取值范围.(14分)
30.设{}
Q
n m n
m x x A ∈+==
,,2.(1)2)21(+
是A 中元素吗?
(2)求证:当A x x ∈21,时, .21A x x ∈⋅ ;(3)求证: 当A x x ∈21,,且0
2≠x 时,A x x ∈2
1。